WorldWideScience

Sample records for chiral lanthanide complexes

  1. Brilliant Sm, Eu, Tb and Dy chiral lanthanide complexes withstrong circularly polarized luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Petoud, Stephane; Muller, Gilles; Moore, Evan G.; Xu, Jide; Sokolnicki, Jurek; Riehl, James P.; Le, Uyen; Cohen, Seth M.; Raymond,Kenneth N.

    2006-07-10

    The synthesis, characterization and luminescent behavior of trivalent Sm, Eu, Dy and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g{sub lum}, recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.

  2. Stereochemistry and solid-state circular dichroism spectroscopy of eight-coordinate chiral lanthanide complexes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Eight-coordinate chiral lanthanide complexes [Eu(dbm)3LRR](1),[Eu(dbm)3LSS](2) and [Tb(dbm)3LRR](3)(LRR/LSS =(-)-/(+)-4,5-pineno-2,2’-bipyridine,Hdbm = dibenzoylmethane) were synthesized stereoselectively,which were characterized by UV-vis,CD spectra and X-ray single-crystal diffraction.The mirrorimage structure features of complexes 1 and 2 were obtained by combination of the solid-state CD spectra and the crystal structure analysis.After further comparison with the solid-state CD spectra of six-coordinate and seven-coordinate metal complexes containing β-diketone ligands,the CD spectraabsolute configuration correlation rule for the eight-coordinate β-diketonate lanthanide complexes was proposed through the exciton chirality method for the first time.The △ or Λ absolute configurations of complexes 1―3 with the distorted square antiprism geometry were confirmed by the X-ray single-crystal analysis.

  3. Stereochemistry and solid-state circular dichroism spectroscopy of eight-coordinate chiral lanthanide complexes

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nan; WAN ShiGang; ZHAO Jian; LIN YiJi; XUAN WeiMin; FANG XueMing; ZHANG Hui

    2009-01-01

    Eight-coordinate chiral lanthanide complexes[Eu(dbm)_3L~(RR)](1),[Eu(dbm)_3L~(SS)](2) and[Tb(dbm)_3L~(RR)](3)(L~(RR)/L~(SS)=(-)-1(+)-4,5-pineno-2,2'-bipyridine,Hdbm=dibenzoylmethane) were synthesized stereoselectively,which were characterized by UV-vis,CD spectra and X-ray single-crystal diffraction.The mirrorimage structure features of complexes 1 and 2 were obtained by combination of the solid-state CD spectra and the crystal structure analysis.After further comparison with the solid-state CD spectra of six-coordinate and seven-coordinate metal complexes containing β-diketone ligands,the CD spectraabsolute configuration correlation rule for the eight-coordinate β-diketonate lanthanide complexes was proposed through the exciton chirality method for the first time.The △ or Λ absolute configurations of complexes 1-3 with the distorted square antiprism geometry were confirmed by the X-ray single-crystal analysis.

  4. Photocytotoxic lanthanide complexes

    Indian Academy of Sciences (India)

    Akhtar Hussain; Akhil R Chakravarty

    2012-11-01

    Lanthanide complexes have recently received considerable attention in the field of therapeutic and diagnostic medicines. Among many applications of lanthanides, gadolinium complexes are used as magnetic resonance imaging (MRI) contrast agents in clinical radiology and luminescent lanthanides for bioanalysis, imaging and sensing. The chemistry of photoactive lanthanide complexes showing biological applications is of recent origin. Photodynamic therapy (PDT) is a non-invasive treatment modality of cancer using a photosensitizer drug and light. This review primarily focuses on different aspects of the chemistry of lanthanide complexes showing photoactivated DNA cleavage activity and cytotoxicity in cancer cells. Macrocyclic texaphyrin-lanthanide complexes are known to show photocytotoxicity with the PDT effect in near-IR light. Very recently, non-macrocyclic lanthanide complexes are reported to show photocytotoxicity in cancer cells. Attempts have been made in this perspective article to review and highlight the photocytotoxic behaviour of various lanthanide complexes for their potential photochemotherapeutic applications.

  5. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    Science.gov (United States)

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates.

  6. Luminescent macrocyclic lanthanide complexes

    Science.gov (United States)

    Raymond, Kenneth N [Berkeley, CA; Corneillie, Todd M [Campbell, CA; Xu, Jide [Berkeley, CA

    2012-05-08

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  7. Liquid-crystalline lanthanide complexes

    OpenAIRE

    Binnemans, Koen

    1999-01-01

    The paper describes the recent developments in the field of liquid-crystalline lanthanide complexes. The role of trivalent lanthanide ions as the central metal ion in metallomesogens is considered. An outlook for the future is given.

  8. Thermolysis of lanthanide dithiocarbamate complexes

    Science.gov (United States)

    Boncher, William L.; Regulacio, Michelle D.; Stoll, Sarah L.

    2010-01-01

    Polycrystalline lanthanide sulfide materials were formed at low temperatures using a single-source precursor based on the lanthanide dithiocarbamate complex. The synthesis temperatures are generally lower than standard solid state preparations, avoid toxic sulfurizing gases and provide a convenient route to prepare lanthanide chalcogenide nanoparticles. Depending on the reaction conditions and oxophilicity of the lanthanide, the sulfide material was formed with oxidized products including oxysulfides, oxysulfates and the oxide.

  9. Aromatic triamide-lanthanide complexes

    Science.gov (United States)

    Raymond, Kenneth N; Petoud, Stephane; Xu, Jide

    2013-10-08

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  10. Recent Advances in Organic Reactions Catalyzed by Lanthanide (Ⅲ) Complexes

    Institute of Scientific and Technical Information of China (English)

    CHEN,Rui-Fang(陈瑞芳); QIAN,Chang-Tao(钱长涛)

    2002-01-01

    Lanthanide compounds have been attracting much attention in organic synthesis. Chiral Ln-substituted BINOL have been widely studied in several asymmetric organic reactions. LnCl3 and Ln(OTf)3 have been expected to serve as Lewis acids and have been applied to many important synthetic reactions in a one-pot manner. Ln(O-i-Pr)3 exhibits some basic characters,which also can be utilized in some special organic transformation. This article deals with some lanthanides (Ⅲ) complexes promoted organic reactions, which we have recently developed.

  11. Efficient C2-Symmetric Chiral Schiff Bases for Lanthanide-catalyzed Asymmetric Hydrogenation of Acetophenone

    Institute of Scientific and Technical Information of China (English)

    Peng Fei YAN; Wen Bin SUN; Guang Ming LI; Chun Hong NIE; Zheng Yu YUE

    2006-01-01

    An array of C2-symmetric chiral Schiff bases of substituted salicylaldehyde (1R, 2R)-1,2-cyclohexanediamine and (R)-(+)-2, 2'-diamino-1, 1'-binaphthalene, incorporated with lanthanide complexes, have been applied as catalysts for asymmetric hydrogenation of acetophenone for the first time. Highly enantioselective product with 90% enantiomeric excess (e.e.) was obtained when the catalyst, hybridized by the bulky electron-donating 3, 5-di-tert-butyl substituted Schiff base (2) and SmCl3·4THF, was employed.

  12. Magnetic circular dichroism of porphyrin lanthanide M3+ complexes.

    Science.gov (United States)

    Andrushchenko, Valery; Padula, Daniele; Zhivotova, Elena; Yamamoto, Shigeki; Bouř, Petr

    2014-10-01

    Lanthanide complexes exhibit interesting spectroscopic properties yielding many applications as imaging probes, natural chirality amplifiers, and therapeutic agents. However, many properties are not fully understood yet. Therefore, we applied magnetic circular dichroism (MCD) spectroscopy, which provides enhanced information about the underlying electronic structure to a series of lanthanide compounds. The metals in the M(3+) state included Y, La, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu; the spectra were collected for selected tetraphenylporphin (TPP) and octaethylporphin (OEP) complexes in chloroform. While the MCD and UV-VIS absorption spectra were dominated by the porphyrin signal, metal binding significantly modulated them. MCD spectroscopy was found to be better suited to discriminate between various species than absorption spectroscopy alone. The main features and trends in the lanthanide series observed in MCD and absorption spectra of the complexes could be interpreted at the Density Functional Theory (DFT) level, with effective core potentials on metal nuclei. The sum over state (SOS) method was used for simulation of the MCD intensities. The combination of the spectroscopy and quantum-chemical computations is important for understanding the interactions of the metals with the organic compounds.

  13. Lanthanide dithiocarbamate complexes: efficient catalysts for the cyanosilylation of aldehydes

    OpenAIRE

    VALE, JULIANA A.; FAUSTINO, WAGNER M.; Menezes, Paulo H.; Sá,Gilberto F. de

    2006-01-01

    A new class of lanthanide dithiocarbamate complexes was used to promote the cyanosilylation of aldehydes at high yields at room temperature. This represents the first application of lanthanide dithiocarbamate acting as Lewis acid.

  14. Enantiomeric self-recognition in homo- and heterodinuclear macrocyclic lanthanide(III) complexes.

    Science.gov (United States)

    Lisowski, Jerzy

    2011-06-20

    The controlled formation of lanthanide(III) dinuclear μ-hydroxo-bridged [Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes (where X = H(2)O, NO(3)(-), or Cl(-)) of the enantiopure chiral macrocycle L is reported. The (1)H and (13)C NMR resonances of these complexes have been assigned on the basis of COSY, NOESY, TOCSY, and HMQC spectra. The observed NOE connectivities confirm that the dimeric solid-state structure is retained in solution. The enantiomeric nature of the obtained chiral complexes and binding of hydroxide anions are reflected in their CD spectra. The formation of the dimeric complexes is accompanied by a complete enantiomeric self-recognition of the chiral macrocyclic units. The reaction of NaOH with a mixture of two different mononuclear lanthanide(III) complexes, [Ln(1)L](3+) and [Ln(2)L](3+), results in formation of the heterodinuclear [Ln(1)Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes as well as the corresponding homodinuclear complexes. The formation of the heterodinuclear complex is directly confirmed by the NOESY spectra of [EuLuL(2)(μ-OH)(2)(H(2)O)(2)](4+), which reveal close contacts between the macrocyclic unit containing the Eu(III) ion and the macrocyclic unit containing the Lu(III) ion. While the relative amounts of homo- and heterodinuclear complexes are statistical for the two lanthanide(III) ions of similar radii, a clear preference for the formation of heterodinuclear species is observed when the two mononuclear complexes contain lanthanide(III) ions of markedly different sizes, e.g., La(III) and Yb(III). The formation of heterodinuclear complexes is accompanied by the self-sorting of the chiral macrocyclic units based on their chirality. The reactions of NaOH with a pair of homochiral or racemic mononuclear complexes, [Ln(1)L(RRRR)](3+)/[Ln(2)L(RRRR)](3+), [Ln(1)L(SSSS)](3+)/[Ln(2)L(SSSS)](3+), or [Ln(1)L(rac)](3+)/[Ln(2)L(rac)](3+), results in mixtures of homochiral, homodinuclear and homochiral, heterodinuclear complexes. On the contrary, no

  15. Calibration beads containing luminescent lanthanide ion complexes

    Science.gov (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  16. Lanthanide Complexes for Oligomerization of Phenyl Isocyanate

    Institute of Scientific and Technical Information of China (English)

    DENG,Ming-Yu; YAO,Ying-Ming; ZHOU,Yu-Fang; ZHANG,Li-Fen; SHEN,Qi

    2003-01-01

    A series of lanthanide complexes including (Ind)3Sm(THF)(1),[(MeCp)2Sm(μ-SPh)(THF)]2(2),[(MeCp)2Y(μ-O-i-Pr)]2(3),(MeCp)3Sm·THF(4),Sm(SPh)3(hmpa)3(5),[(MeCp)2Y-(μ-OCH2CF3)2(6)and (CF3CH2O)3Y(THF)3(7) were synthesized and they have good activity for the oligomerization of phenylisocyanate.Among them 5 shows the highest activity.The conversion is as high as 96.2%,with 1/2500 of the molar ratio of cat./PhNCO.The main components in oligomer were characterized to be a cycdlodimer and a cyclotrimer.The ratio of cyclodimer to cyclotrimer depends on the lanthanide complexes used.7 gave 85.2%cyclotrimer with 1/300 of the molar ratio of cat./PhNCO at 40℃ for 0.5h,while 5 gave 77.6% cyclodimer with 1/300 of the molar ratio of cat./PhNCO at 40℃ for 4h.

  17. Salicylamide-lanthanide complexes for use as luminescent markers

    Science.gov (United States)

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth; Xu, Jide

    2002-01-01

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one salicylamidyl moiety. Also provided are probes incorporating the salicylamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  18. Phthalamide-lanthanide complexes for use as luminescent markers

    Science.gov (United States)

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth; Xu, Jide

    2008-10-28

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  19. Phthalamide lanthanide complexes for use as luminescent markers

    Science.gov (United States)

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth M.; Xu, Jide

    2003-01-01

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  20. Lanthanide Complexes as a Test for Evidence of Life

    Science.gov (United States)

    Benavides, Jeannette

    1998-01-01

    The objective of this research is to advance the understanding of the interaction of lanthanide metals with biological organic molecules and to develop a technique to detect these compounds in the solid state and in situ in Mars and other planetary bodies. The detection of these complexes should provide evidence of life past or present. In addition, detection of the metals alone will provide important information about the geological history of a planetary body. Lanthanides were chosen as our focus of interest because they form very stable complexes with organic molecules in solution and they produce intense luminescence in the ultraviolet and visible spectra. The rare earth complexes available are mostly synthetic for diverse applications in medicine. There is not much work done on the complexes that form in nature. Lanthanides have many applications and they are mined aR over the world, however, since the interest has been only in the elements, the analytical techniques employed destroy any organic ligands that may be present. In order to determine if and which lanthanide complexes form in nature and their concentration, soil samples have been collected from areas rich in soluble lanthanide compounds like phosphates and also rich in vegetation. The soil samples will be analyzed and the lanthanide complexes if present will be isolated and characterized. A spectrometer to detect the lanthanide complexes in situ and in the solid state will be designed. In this workshop, the research approach and its implications will be discussed.

  1. POLYMER-SUPPORTED LANTHANIDE COMPLEXES FOR THE POLYMERIZATION OF BUTADIENE

    Institute of Scientific and Technical Information of China (English)

    YU Guangqian; LI Yuliang; LIU Chongming

    1992-01-01

    The characteristics of styrene-acrylic acid copolymer supported lanthanide complexes(SAAC Ln)(Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were described.butadiene, a peak in activity appeared at Nd and Pr, Sm, Eu and the heavy lanthanides exhibited low or no activities. The effects of some factors on the activities were discussed. The microstructure of the polymers obtained with all the lanthanides in the series were the same and the content of cis-1,4 polybutadiene attained was more than 98%.

  2. Design of efficient electroluminescent lanthanide(III) complexes

    CERN Document Server

    You, B R; Park, N G; Kim, Y S

    2001-01-01

    The lanthanide complexes have been anticipated to exhibit high efficiency along with a narrow emission spectrum. Photoluminescence for the lanthanide complex is characterized by a high efficiency since both single and triplet excitons are involved in the luminescence process. However, the maximum external electroluminescence quantum efficiencies have exhibited values around 1% due to triplet-triplet annihilation at high current. Here, we proposed a new energy transfer mechanism to overcome triplet-triplet annihilation by the Eu complex doped into phosphorescent materials with triplet levels that were higher than single levels of the Eu complex. In order to show the feasibility of the proposed energy transfer mechanism and to obtain the optimal ligands and host material, we have calculated the effect depending on ligands as a factor that controls emission intensity in lanthanide complexes. The calculation shows that triplet state as well as singlet state of anion ligand affects on absorption efficiency indirec...

  3. Studies on some lanthanide(Ⅲ)complexes with 4-hydroxyantipyrine

    Institute of Scientific and Technical Information of China (English)

    G. Rijulal; P. Indrasenan

    2008-01-01

    Seven new lanthanide(III) complexes with 4-hydroxyantipyrine were synthesized. These complexes were characterized by elemental analysis, molar conductance, magnetic moment measurements, FT-IR, electronic and 1HNMR spectra, X-ray powder diffraction, and thermogravimetric studies. The ligand, 4-hydroxyantipyrine (hap), contained carbonyl oxygen and hydroxyl oxygen as potential donor sites. On coordination, deprotonation occurred and as a result, hap acted as a monobasic bidentate ligand. A coordination number 6 was assigned to the lanthanide(III) ions in these complexes with orthorhombic structure. All the complexes were thermally stable~150℃ and underwent decomposition in three stages with the formation of Ln2O3 as the final residues.

  4. Quantifying the formation of chiral luminescent lanthanide assemblies in an aqueous medium through chiroptical spectroscopy and generation of luminescent hydrogels.

    Science.gov (United States)

    Bradberry, Samuel J; Savyasachi, Aramballi Jayant; Peacock, Robert D; Gunnlaugsson, Thorfinnur

    2015-01-01

    Herein we present the synthesis and the photophysical evaluation of water-soluble chiral ligands (2·(R,R) and 2·(S,S)) and their application in the formation of lanthanide directed self-assembled structures. These pyridine-2,6-dicarboxylic amide based ligands, possessing two naphthalene moieties as sensitising antennae, that can be used to populate the excited state of lanthanide ions, were structurally modified using 3-propanesultone and caesium carbonate, allowing for the incorporation of a water-solubilising sulfonate motif. We show, using microwave synthesis, that Eu(III) forms chiral complexes in 1 : 3 (M : L) stoichiometries (Eu·[2·(R,R)]3 and Eu·[2·(S,S)]3) with these ligands, and that the red Eu(III)-centred emission arising from these complexes has quantum yields (Φtot) of 12% in water. Both circular dichroism (CD) and circular polarised luminescence (CPL) analysis show that the complexes are chiral; giving rise to characteristic CD and CPL signatures for both the Λ and the Δ complexes, which both possess characteristic luminescence dissymmetry factors (g(lum)), describing the structure in solution. The self-assembly process was also monitored in situ by observing the changes in the ligand absorption and fluorescence emission, as well as in the Eu(III) luminescence. The change, fitted using non-linear regression analysis, demonstrated high binding affinity for Eu(III) which in part can be assigned to being driven by additional hydrophobic effects. Moreover, using CD spectroscopy, the changes in the chiroptical properties of both (2·(R,R) and 2·(S,S)) were monitored in real time. Fitting the changes in the CD spectra allowed for the step-wise binding constants to be determined for these assemblies; these matched well with those determined from both the ground and the excited state changes. Both the ligands and the Eu(III) complexes were then used in the formation of hydrogels; the Eu(III)-metallogels were luminescent to the naked-eye.

  5. Experimental and Theoretical Studies on Biologically Active Lanthanide (III) Complexes

    Science.gov (United States)

    Kostova, I.; Trendafilova, N.; Georgieva, I.; Rastogi, V. K.; Kiefer, W.

    2008-11-01

    The complexation ability and the binding mode of the ligand coumarin-3-carboxylic acid (HCCA) to La(III), Ce(III), Nd(III), Sm(III), Gd(III) and Dy(III) lanthanide ions (Ln(III)) are elucidated at experimental and theoretical level. The complexes were characterized using elemental analysis, DTA and TGA data as well as 1H NMR and 13C NMR spectra. FTIR and Raman spectroscopic techniques as well as DFT quantum chemical calculations were used for characterization of the binding mode and the structures of lanthanide(III) complexes of HCCA. The metal—ligand binding mode is predicted through molecular modeling and energy estimation of different Ln—CCA structures using B3LYP/6-31G(d) method combined with a large quasi-relativistic effective core potential for lanthanide ion. The energies obtained predict bidentate coordination of CCA- to Ln(III) ions through the carbonylic oxygen and the carboxylic oxygen. Detailed vibrational analysis of HCCA, CCA- and Ln(III) complexes based on both calculated and experimental frequencies confirms the suggested metal—ligand binding mode. The natural bonding analysis predicts strongly ionic character of the Ln(III)-CCA bonding in the- complexes studied. With the relatively resistant tumor cell line K-562 we obtained very interesting in-vitro results which are in accordance with our previously published data concerning the activity of lanthanide(III) complexes with other coumarin derivatives.

  6. Lanthanide complexes of azidophenacyl-DO3A as new synthons for click chemistry and the synthesis of heterometallic lanthanide arrays.

    Science.gov (United States)

    Tropiano, Manuel; Kenwright, Alan M; Faulkner, Stephen

    2015-04-07

    Lanthanide complexes of azidophenacyl DO3A are effective substrates for click reactions with ethyne derivatives, giving rise to aryl triazole appended lanthanide complexes, in which the aryl triazole acts as an effective sensitising chromophore for lanthanide luminescence. They also undergo click chemistry with propargylDO3A derivatives, giving rise to heterometallic complexes.

  7. The synthesis, design and applications of lanthanide cored complexes

    Science.gov (United States)

    Phelan, Gregory David

    Novel luminescent materials based on lanthanide cored complexes have been designed and synthesized. The complexes consist of a beta-diketone ligand chelated to a lanthanide metal such as europium or gadolinium. A series of beta-diketone ligands were designed and synthesized. The ligands consist of a polycyclic aromatic sensitizer, phenanthrene, and a second functional group. The second groups consisted of another unit of phenanthrene, a dendritic structure, or a fluorinated alkyl chain. The europium complexes have been incorporated into organic light emitting devices that have a major emission at 615 nm and a maximum brightness of 300 cd/m2. The gadolinium complexes were used to dope into the resulting organic light emitting devices to help improve the efficiency of the device. The use of the gadolinium complexes results in a 25 fold increase in efficiency.

  8. Polarized Emission of Molecular Film With Lanthanide (Ⅲ) Complex

    Institute of Scientific and Technical Information of China (English)

    M.Hasegawa

    2007-01-01

    1 Results In the coordination system by using complexation with organic ligand, the ff emission of lanthanide(Ⅲ) (Ln(Ⅲ)) is induced the excitation energy transfer form the organic chromophore under the light-irradiation. However, there are not so much number of reports to discuss the energy relaxation mechanism in such complexes with Ln(Ⅲ). Recently, we succeeded firstly to estimate the rate constant of the energy transfer between the ligand and Ln(Ⅲ) in Pr(Ⅲ)-phenanthroline analogs[1]. Here, we will di...

  9. Complexes of light lanthanides with 2,3-dimethoxybenzoic acid

    Directory of Open Access Journals (Sweden)

    AGNIESZKA WALKÓW-DZIEWULSKA

    2001-08-01

    Full Text Available The complexes of light lanthanides with 2,3-dimethoxybenzoic acid of the formula: Ln(C9H9O43, where Ln = La(III, Ce(III, Pr(III, Nd(III, Sm(III, Eu(III and Gd(III have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric studies, as well as X-ray and magnetic measurements. The complexes have colours typical for Ln3+ ions (La, Ce, Eu, Gd–white, Sm–cream, Pr–green, Nd–violet. The carboxylate group in these complexes is a bidentate, chelating ligand or a tridentate chelating and bridging one. They are crystalline compounds characterized by low symmetry. On heating in air to 1173 K, the 2,3-dimethoxybenzoates of the light lanthanides decompose in various ways. The complexes of Ce(III, Pr(III, Sm(III, Eu(III and Gd(III decompose directly to oxides of the respective metals while those of La(III and Nd(III via the intermediate formation of La2O2CO3 and Nd2O2CO3. The solubilities of the 2,3-dimethoxybenzoates of the light lanthanides in water at 293 K are in the orders of 10-3 – 10-2 mol dm-3. The magnetic moments were determined in the range 4.2–298 K and the complexes are found to obey the Curie-Weiss law.

  10. Structural rearrangement through lanthanide contraction in dinuclear complexes.

    Science.gov (United States)

    Hutchings, Amy-Jayne; Habib, Fatemah; Holmberg, Rebecca J; Korobkov, Ilia; Murugesu, Muralee

    2014-02-17

    A new series of lanthanide complexes was synthesized, and the geometry and preliminary magnetic measurements of the complexes were explored. The specific ligand used (N'-(2-hydroxy-3-methoxybenzylidene)benzhydrazide) (H2hmb) was synthesized using a Schiff-base approach and was employed due to the presence of a coordination pocket that is able to accommodate magnetically selective lanthanide ions. The series can be divided into two groups that are categorized by a drastic structural rearrangement. The first group, Type I, contains six analogous complexes with the formula [M(III)2(Hhmb)3(NCS)3]·2MeOH·py (M = Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Ho 6), while the second group, Type II, contains two dinuclear complexes with formula [M(III)2(Hhmb)2(NCS)4(MeOH)2] (M = Er 7, and Yb 8). Single-crystal X-ray analysis revealed that all M(III) ions in Type I exhibit monocapped distorted square antiprismatic geometries, while those of Type II exhibit distorted dodecahedron geometry. The direct current and alternating current magnetic measurements were carried out on all complexes, with 5, 7, and 8 exhibiting slow relaxation of the magnetization under an applied optimum dc field. Furthermore, complex 8 is the first example of a dinuclear Yb-based single-molecule magnet showing field-dependent multiple relaxation processes.

  11. Energetic Ionic Liquids Based on Lanthanide Nitrate Complex Anions (Postprint)

    Science.gov (United States)

    2008-01-01

    xH2O (x=27–44) [5a] and lanthanide complexes of the pseudohalide SCN in the hydrolytically unstable [ bmim ]4Ln ACHTUNGTRENNUNG(SCN)7·H2O ( bmim =1-butyl-3...Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim These are not the final page numbers! &1& FULL PAPER cal ionic liquids. The instability of [ bmim ]4Ln... bmim ]4Ln ACHTUNGTRENNUNG(SCN)7·H2O ionic liquids by displacing the isothiocyanate ligand.[5b] In our syntheses, guanidinium ni- trate and lanthanum or

  12. Lanthanide(III) complexation with an amide derived pyridinophane.

    Science.gov (United States)

    Castro, Goretti; Bastida, Rufina; Macías, Alejandro; Pérez-Lourido, Paulo; Platas-Iglesias, Carlos; Valencia, Laura

    2015-02-16

    Herein we report a detailed investigation of the solid state and solution structures of lanthanide(III) complexes with the 18-membered pyridinophane ligand containing acetamide pendant arms TPPTAM (TPPTAM = 2,2',2″-(3,7,11-triaza-1,5,9(2,6)-tripyridinacyclododecaphane-3,7,11-triyl)triacetamide). The ligand crystallizes in the form of a clathrated hydrate, where the clathrated water molecule establishes hydrogen-bonding interactions with the amide NH groups and two N atoms of the macrocycle. The X-ray structures of 13 different Ln(3+) complexes obtained as the nitrate salts (Ln(3+) = La(3+)-Yb(3+), except Pm(3+)) have been determined. Additionally, the X-ray structure of the La(3+) complex obtained as the triflate salt was also obtained. In all cases the ligand provides 9-fold coordination to the Ln(3+) ion, ten coordination being completed by an oxygen atom of a coordinated water molecule or a nitrate or triflate anion. The bond distances of the metal coordination environment show a quadratic change along the lanthanide series, as expected for isostructural series of Ln(3+) complexes. Luminescence lifetime measurements obtained from solutions of the Eu(3+) and Tb(3+) complexes in H2O and D2O point to the presence of a water molecule coordinated to the metal ion in aqueous solutions. The analysis of the Ln(3+)-induced paramagnetic shifts indicates that the complexes are ten-coordinated throughout the lanthanide series from Ce(3+) to Yb(3+), and that the solution structure is very similar to the structures observed in the solid state. The complexes of the light Ln(3+) ions are fluxional due to a fast Δ(λλλλλλ) ↔ Λ(δδδδδδ) interconversion that involves the inversion of the macrocyclic ligand and the rotation of the acetamide pendant arms. The complexes of the small Ln(3+) ions are considerably more rigid, the activation free energy determined from VT (1)H NMR for the Lu(3+) complex being ΔG(⧧)298 = 72.4 ± 5.1 kJ mol(-1).

  13. Tetraanionic biphenyl lanthanide complexes as single-molecule magnets.

    Science.gov (United States)

    Huang, Wenliang; Le Roy, Jennifer J; Khan, Saeed I; Ungur, Liviu; Murugesu, Muralee; Diaconescu, Paula L

    2015-03-02

    Inverse sandwich biphenyl complexes [(NN(TBS))Ln]2(μ-biphenyl)[K(solvent)]2 [NN(TBS) = 1,1'-fc(NSi(t)BuMe2)2; Ln = Gd, Dy, Er; solvent = Et2O, toluene; 18-crown-6], containing a quadruply reduced biphenyl ligand, were synthesized and their magnetic properties measured. One of the dysprosium biphenyl complexes was found to exhibit antiferromagnetic coupling and single-molecule-magnet behavior with Ueff of 34 K under zero applied field. The solvent coordinated to potassium affected drastically the nature of the magnetic interaction, with the other dysprosium complex showing ferromagnetic coupling. Ab initio calculations were performed to understand the nature of magnetic coupling between the two lanthanide ions bridged by the anionic arene ligand and the origin of single-molecule-magnet behavior.

  14. Chirality sensing with stereodynamic biphenolate zinc complexes.

    Science.gov (United States)

    Bentley, Keith W; de Los Santos, Zeus A; Weiss, Mary J; Wolf, Christian

    2015-10-01

    Two bidentate ligands consisting of a fluxional polyarylacetylene framework with terminal phenol groups were synthesized. Reaction with diethylzinc gives stereodynamic complexes that undergo distinct asymmetric transformation of the first kind upon binding of chiral amines and amino alcohols. The substrate-to-ligand chirality imprinting at the zinc coordination sphere results in characteristic circular dichroism signals that can be used for direct enantiomeric excess (ee) analysis. This chemosensing approach bears potential for high-throughput ee screening with small sample amounts and reduced solvent waste compared to traditional high-performance liquid chromatography methods.

  15. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG XiaoMing

    2001-01-01

    @@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.

  16. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG; XiaoMing

    2001-01-01

    Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.  ……

  17. Near infrared (NIR) lanthanide emissive Langmuir-Blodgett monolayers formed using Nd(III) directed self-assembly synthesis of chiral amphiphilic ligands.

    Science.gov (United States)

    Barry, Dawn E; Kitchen, Jonathan A; Albrecht, Martin; Faulkner, Stephen; Gunnlaugsson, Thorfinnur

    2013-09-10

    The incorporation of chiral amphiphilic lanthanide-directed self-assembled Nd(III) complexes (Nd.13 and Nd.23) into stable Langmuir monolayers, and the subsequent Langmuir-Blodgett film formation of these, is described. The photophysical properties of the enantiomeric pair of ligands 1 and 2 in the presence of Nd(CF3SO3)3 were also investigated in CH3CN solutions using UV-vis, fluorescence, and lanthanide luminescence spectroscopies. Analysis of the resulting self-assembly processes revealed that two main species were formed in solution,1:1 and 1:3 Nd:L self-assembly complexes, with the latter being the dominant species upon the addition of 0.33 equivalents of Nd(III). Excited state lifetime measurements of Nd.13 and Nd.23 in CH3OH and CD3OD and CH3CN were also evaluated. The formation of the self-assembly in solution was also monitored by observing the changes in the circular dichroism (CD) spectra; and large differences were observed between the 1:3 and other stoichiometries in the spectra, allowing for correlation to be made with that seen in the emission studies of these systems. Surface pressure-area and surface pressure-time isotherms evidenced the formation of stable Langmuir monolayers of Nd.13 and Nd.23 at an air-water interface, and the deposition of these monolayers onto a quartz solid substrate (Langmuir-Blodgett films) gave rise to immobilized chiral monomolecular films which exhibited Nd(III) NIR luminescence upon excitation of the ligand chromophore, demonstrating efficient energy transfer to the Nd(III) excided state (sensitized) with concomitant emission centered at 800 and 1334 nm.

  18. Highly Luminescent Lanthanide Complexes of 1 Hydroxy-2-pyridinones

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lawrence National Laboratory; Raymond, Kenneth; Moore, Evan G.; Xu, Jide; Jocher, Christoph J.; Castro-Rodriguez, Ingrid; Raymond, Kenneth N.

    2007-11-01

    The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III) and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission ({Phi}{sub tot}{sup Eu} {approx} 21.5%) with high stability (pEu {approx} 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysical properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure, and were found to agree with corresponding TD-DFT calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.

  19. Standard Enthalpies of Formation of Solid Complexes of Lanthanide Nitrates with Alanine

    Institute of Scientific and Technical Information of China (English)

    杨旭武; 陈三平; 高胜利; 刘晓华; 史启祯

    2002-01-01

    The combustion energies of fourteen solid complexes of lanthanide nitrate with alanine were determined. The standard enthalpies of combustion, Δc,coor(s)H°, and standard enthalpies of formation, Δf,coor(s)H°, were calculated for these complexes. The relationship of Δc,coor(s)H° and Δf,coor(s)H° with the atomic numbers of the elements in the lanthanide series were examined. The results show that a certain amount of covalence is present in the chemical bond between the lanthanide cations and alanine.

  20. Synthesis of Resins with Chiral Salen Complexes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The enormous growth in the use of polymer resin supports in solid phase combinatorial synthesis, and related methodologies, has re-stimulated interest in the area of polymer-supported transition metal complex catalyst .The recently developed chiral salen-based for the enantioselective ring opening of meso epoxides and kinetic resolution of terminal epoxides are appealing candidates for immobilization on solid support. The catalysts are reading prepare from inexpensive components, and are amenable to modification for attachment to a solid support.

  1. Controlled Synthesis of a Novel Heteropolymetallic Complex with Selectively Incorporated Lanthanide(III) Ions

    OpenAIRE

    Debroye, Elke; Ceulemans, Matthias; Vander Elst, Luce; Laurent, Sophie; Muller, Robert N.; Parac-Vogt, Tatjana

    2014-01-01

    A novel synthetic strategy toward a heteropolymetallic lanthanide complex with selectively incorporated gadolinium and europium ions is outlined. Luminescence and relaxometric measurements suggest possible applications in bimodal (magnetic resonance/optical) imaging.

  2. Photo-reactive charge trapping memory based on lanthanide complex.

    Science.gov (United States)

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V A L

    2015-10-09

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 10(4) s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  3. Prediction of Decomposition Temperature for Lanthanide Complexes Involving Cyclopentadienyl and Benzohydroxamic Acid Ligand by ANNs

    Institute of Scientific and Technical Information of China (English)

    孙益民; 凌青; 万玉宝; 王修然; 宇海银

    2002-01-01

    The decomposition temperatures of the lanthanide organic complexes(η5-C5H5)2Ln(C6H5CONHO)involving cyclopentadienyl and benzohydroxamic acid ligands were calculated and predicted by the model based on ANNs(artificial neural netowrks)method.The comparison was carried out between results from ANNs method and traditinal regression method.It is proved that ANNs could be used more efficiently for the prediction of decomposition temperature of lanthanide organic complexes.

  4. Prediction of Decomposition Temperature for Lanthanide Complexes Involving Cyclopentadienyl and Benzohydroxamic Acid Ligand by ANNs

    Institute of Scientific and Technical Information of China (English)

    SUN,Yi-Min(孙益民); LING,Qing(凌青); WAN,Yu-Bao(万玉宝); WANG,Xiu-Ran(王修然); YU,Hai-Yin(宇海银)

    2002-01-01

    The decomposition temperatures of the lanthanide organic complexes (η5-C5H5)2Ln(C6H5CONHO) involving cyclopentadienyl and benzohydroxamic acid ligands were calculated and predicted by the model based on ANNs (artificial neural networks)method. The comparison was carried out between results from ANNs method and traditional regression method. It is proved that ANNs could be used more efficiently for the prediction of decomposition temperature of lanthanide organic complexes.

  5. Synthesis and Thermal Behaviour of Lanthanide Complexes of 4′-[(Cholesterylox y)Carbonyl]-Benzo-15-Crown-5

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Lanthanide complexes of a steroid-substituted benzocrown ether were synthesised . The metal-to-ligand ratio of all the metal complexes is 1∶1. The ligand 4′ -[(cholesteryloxy)carbonyl]-benzo-15-crown-5 is a monotropic liquid cryst al, displaying a cholesteric mesophase. The lanthanide complexes with nitrate co unter-ions form a highly viscous mesophase, decomposing at the clearing point. The transition temperatures change as a function of the lanthanide ion. The corr esponding lanthanide complexes with dodecylsulphate (DOS) counter-ions do not f orm a mesophase. In both cases, the metal complexes have a much lower melting po int than the parent ligand.

  6. Synthesis of Resins with Chiral Salen Complexes

    Institute of Scientific and Technical Information of China (English)

    WANG; YunPu

    2001-01-01

    The enormous growth in the use of polymer resin supports in solid phase combinatorial synthesis, and related methodologies, has re-stimulated interest in the area of polymer-supported transition metal complex catalyst .The recently developed chiral salen-based for the enantioselective ring opening of meso epoxides and kinetic resolution of terminal epoxides are appealing candidates for immobilization on solid support. The catalysts are reading prepare from inexpensive components, and are amenable to modification for attachment to a solid support.  ……

  7. Synthesis, Characterization and Properties of Lanthanide Nitrate Complexes with Isonicotinoyl Hydrazone

    Institute of Scientific and Technical Information of China (English)

    卜显和; 高育新; 陈巍; 刘河; 张若桦

    2001-01-01

    Some light-lanthanide nitrate complexes were obtained by the reaction of lanthanide nitrate with isonicotinoyl hydrazone (HL=N,N′-diisonicotinoyl-2-hydroxy-5-methyl-isophthalaldehyde dihydrazone) in methanol. The general formula of the complexes is Ln(L)(NO3)2*nH2O(Ln=La, Ce, Pr, Nd and Sm; n=0, 1). The complexes were characterized by elemental analyses, conductance, thermal analyses, UV and IR spectra. The results show that the lanthanide ion in each complex is coordinated by oxygen and nitrogen atoms of the ligand (L) and the oxygen atoms of the nitrate. The amide-oxygen atoms of L coordinate to the Ln ions in its keto-form. The magnetic susceptibility of the neodymium complex shows that the magnetic data obey Curie-Weiss law in the range of 75K<T<300K.

  8. Thermodynamic and Spectroscopic Studies of Lanthanides(III) Complexation with Polyamines in Dimethyl Sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Di Bernardo, Plinio [Univ. of Padova (Italy); Zanonato, Pier Luigi [Univ. of Padova (Italy); Melchior, Andrea [Univ. of Udine (Italy); Portanova, Roberto [Univ. of Udine (Italy); Tolazzi, Marilena [Univ. of Udine (Italy); Choppin, Gregory R. [Florida State Univ., Tallahassee, FL (United States); Wang, Zheming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2008-01-01

    The thermodynamic parameters of complexation of Ln(III) cations with tris(2-aminoethyl)amine (tren) and tetraethylenepentamine (tetren) were determined in dimethyl sulfoxide (DMSO) by potentiometry and calorimetry. The excitation and emission spectra and luminescence decay constants of Eu3+ and Tb3+ complexed by tren and tetren, as well as those of the same lanthanides(III) complexed with diethylenetriamine (dien) and triethylenetetramine (trien), were also obtained in the same solvent. The combination of thermodynamic and spectroscopic data showed that, in the 1:1 complexes, all nitrogens of the ligands bound to the lanthanides except in the case of tren, in which only pendant N bound. For the larger ligands (trien, tren, tetren) in the higher complexes (ML2), there was less complete binding by available donors, presumably due to steric crowding. FT-IR studies were carried out in an acetonitrile/DMSO mixture, suitably chosen in order to follow the changes in the primary solvation sphere of lanthanide(III) due to complexation of amine ligands. Results show that the mean number of molecules of DMSO removed from the inner coordination sphere of lanthanides(III) is lower than ligand denticity and that the coordination number of the metal ions increases with amine complexation from ~8 to ~10. Independently of the number and structure of the amines, linear trends, similar for all lanthanides, were obtained by plotting the values of ΔGj°, ΔHj° and TΔSj° for the complexation of ethylenediamine (en), dien, trien, tren and tetren as a function of the number of amine metal-coordinated nitrogen atoms. The main factors on which the thermodynamic functions of lanthanide(III) complexation reactions in DMSO depend are discussed.

  9. Calorimetric approach of lanthanides (3) complexation and extraction by malonamides; Approche calorimetrique de la complexation et de l'extraction des lanthanides (3) par les malonamides

    Energy Technology Data Exchange (ETDEWEB)

    Flandin, J.L

    2001-07-01

    In the field of long lived radionuclides separation, diamides are interesting extractants because of their ability to co-extract trivalent lanthanides and actinides, which is a preliminary and essential step in high level radioactive waste reprocessing. The research carried out contributes to a better understanding of the mechanisms and the aim is the determination of thermodynamics properties ({delta}{sub r}G, {delta}{sub r}H et {delta}{sub r}S) related to the complexation and the extraction of lanthanides(III) by malonamides. The first part of the document deals with the complexation of lanthanides(III) by an hydrosoluble diamide. The experimental results obtained by UV-visible spectrometry, TRLIF, NMR and microcalorimetric titration proved that lanthanides(III)-TEMA interactions in aqueous medium are very weak and that the complexation reaction is endothermic. The TEMA ligand still stays in the second coordination sphere of coordination of the lanthanide ion. The second part of this study focuses on the extraction of neodymium(III) nitrate by a lipophilic diamide which is an exothermic reaction. The influence of the composition of aqueous and organic phases on the thermodynamics properties {delta}{sub r}G et {delta}{sub r}H has been studied by microcalorimetric titration. The most influent parameter is the total concentration in extractant. As a consequence, thermodynamic values are very dependent on the organic phase organisation before and alter extraction. At the same time, this study showed the interest of the calorimetric approach for the analysis of basic reactions like diamide dilution and their organisation as oligomeric aggregates. (author)

  10. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  11. Actinides(3)/lanthanides(3) separation by nano-filtration assisted by complexation; Separation actinides(3)lanthanides(3) par nanofiltration assistee par complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sorin, A

    2006-07-01

    In France, one of the research trend concerning the reprocessing of spent nuclear fuel consists to separate selectively the very radio-toxic elements with a long life to be recycled (Pu) or transmuted (Am, Cm, Np). The aim of this thesis concerns the last theme about actinides(III)/lanthanides(III) separation by a process of nano-filtration assisted by complexation. Thus, a pilot of tangential membrane filtration was designed and established in a glove box at the ATALANTE place of CEA-Marcoule. Physico-chemical characterisation of the Desal GH membrane (OSMONICS), selected to carry out actinides(III)/lanthanides(III) separation, was realized to determine the zeta potential of the active layer and its resistance to ionizing radiations. Moreover, a parametric study was also carried out to optimize the selectivity of complexation, and the operating conditions of complex retention (influences of the transmembrane pressure, solute concentration, tangential velocity and temperature). Finally, the separation of traces of Am(III) contained in a mixture of lanthanides(III), simulating the real load coming from a reprocessing cycle, was evaluated with several chelating agents such as poly-amino-carboxylic acids according to the solution acidity and the [Ligand]/[Cation(III)] ratio. (author)

  12. Using remote substituents to control solution structure and anion binding in lanthanide complexes

    DEFF Research Database (Denmark)

    Tropiano, Manuel; Blackburn, Octavia A.; Tilney, James A.

    2013-01-01

    A study of the anion-binding properties of three structurally related lanthanide complexes, which all contain chemically identical anion-binding motifs, has revealed dramatic differences in their anion affinity. These arise as a consequence of changes in the substitution pattern on the periphery...... conformational space. Peripheral modifications to a binuclear lanthanide motif derived from α,α'-bis(DO3 Ayl)-m-xylene are shown to result in dramatic changes to the binding constant for isophthalate. In this system, the parent compound displays considerable conformational flexibility, yet can be assumed to bind...

  13. Synthesis, EPR and Fluorescence Properties of Quaternary Lanthanide Complexes with Chloroacetate and Phenanthroline Ligands

    Institute of Scientific and Technical Information of China (English)

    朱龙观; 肖洪平

    2002-01-01

    A series of novel quaternary mixed anion complexes of lanthanide containing 1,10-phenanthroline (phen) and chloroacetate ligands were synthesized from the water/ethanol solution with slightly acidic solution and characterized by elemental analysis, IR, UV and thermal analysis. The EPR and fluorescence properties also were studied.

  14. Molecular spectrum of lanthanide complexes with 2,3-dichlorobenzoic acid and 2,2-bipyridine.

    Science.gov (United States)

    He, Shu-Mei; Sun, Shu-Jing; Zheng, Jun-Ru; Zhang, Jian-Jun

    2014-04-05

    With 2,3-dichlorobenzoic acid as the first ligands and 2,2'-bipyridine as the second ligands, the lanthanide complexes [Ln(2,3-DClBA)3bipy]2 [Ln=Nd(a), Sm(b), Eu(c), Tb(d), Dy(e), Ho(f)] have been synthesized. By using Infrared (IR) and Raman (R) spectra, the characteristics of the groups can be identified. The bands of lanthanide complexes have been analyzed and attributed, and clearly demonstrated with the use of the complementarity of IR and R. The experiment reveals that the bands of complexes are affected by lanthanide elements (Ln). The frequency of stretching vibration and breathing vibration of ring, together with the stretching vibration of the carbonyl group (νCO), tends to be rising as the atomic number of lanthanide increasing. Meanwhile, crystallography data demonstrate that the six carbonyl groups have different bond length and bond angle, which can lead to different vibration frequency. The second derivatives of IR show that there are multiple vibration frequencies existing in the symmetrical stretching vibration of the carbonyl group (νsCO). Therefore the second derivative of IR spectrum is a characteristic band of different coordination modes of carbonyl group.

  15. Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity

    Science.gov (United States)

    Shiju, C.; Arish, D.; Kumaresan, S.

    2013-03-01

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H2O2. The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  16. Homodinuclear lanthanide complexes of phenylthiopropionic acid: synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity.

    Science.gov (United States)

    Shiju, C; Arish, D; Kumaresan, S

    2013-03-15

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H(2)O(2). The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  17. Synthesis, characterization, cytotoxicity, DNA cleavage and antimicrobial activity of homodinuclear lanthanide complexes of phenylthioacetic acid

    Institute of Scientific and Technical Information of China (English)

    T. F. Abbs Fen Reji; A. Jeena Pearl; Bojaxa A. Rosy

    2013-01-01

    Lanthanide complexes of Eu(III), Gd(III), Nd(III), Sm(III), and Tb(III) with phenylthioacetic acid were synthesized and characterized by elemental analysis, mass, infrared radiation (IR), electronic spectra, molar conductance, thermogravimetric analysis (TGA), and powder X-ray diffraction (XRD). The results showed that the lanthanide complexes were homodinuclear in nature. The two lanthanide ions were bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles were consis-tent with the proposed formulations. Powder XRD studies showed that all the complexes were amorphous in nature. Antimicrobial studies indicated that these complexes exhibited more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence of H2O2. The result showed that the Eu(III) and Nd(III) complexes completely cleaved the DNA. The anticancer activities of the complexes were also studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the Eu(III) and Nd(III) complexes were more active than the corresponding Gd(III), Sm(III), Tb(III) complexes and the free ligand on both the cancer cells.

  18. Studies of Some Lanthanide(III Nitrate Complexes of Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Kishor Arora Mukesh Sharma

    2009-01-01

    Full Text Available The studies of 16 new lanthanide(III nitrate complexes of Schiff base ligands are discussed. Schiff bases were obtained by the condensation of 2–methyl–4–N,N–bis–2' –cyanoethyl aminobenzaldehyde with aniline and 3 different substituted anilines. Lanthanide(III nitrates, viz. gadolinium(III nitrate, lanthanum(III nitrate, samarium(III nitrate and cerium(III nitrate were chosen to synthesize new complexes. The complexes were characterized on the basis of physicochemical studies viz. elemental analysis, spectral, viz. IR and electronic spectral and magnetic studies. TGA studies of some of the representative complexes were also done. Some of the representative complexes were also screened for the anti microbial studies.

  19. Structural, magnetic and luminescent properties of lanthanide complexes with N-salicylideneglycine.

    Science.gov (United States)

    Vančo, Ján; Trávníček, Zdeněk; Kozák, Ondřej; Boča, Roman

    2015-04-28

    A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)₂(H₂O)₂]∙H₂O (1-6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution.

  20. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples.

    Science.gov (United States)

    Thorson, Megan K; Ung, Phuc; Leaver, Franklin M; Corbin, Teresa S; Tuck, Kellie L; Graham, Bim; Barrios, Amy M

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil.

  1. Synthesis and luminescence properties of lanthanide complexes with a new tripodal ligands featuring salicylamide arms.

    Science.gov (United States)

    Song, Xue-Qin; Dong, Wen-Kui; Zhang, Yu-Jie; Liu, Wei-Sheng

    2010-01-01

    A series of luminescent lanthanide complexes with a new tripodal ligand featuring salicylamide arms, 2,2',2''-nitrilotris(2-furfurylaminoformylphenoxy)triethylamine (L), were synthesized and characterized by elemental analysis, IR and molar conductivity measurements. Photophysical properties of the complexes were studied by means of UV-vis absorption and steady-state luminescence spectroscopy. Excited-state luminescence lifetimes and quantum yield of the complexes were determined. Luminescence studies demonstrated that the tripodal ligand featuring salicylamide arms exhibits a good antennae effect with respect to the Tb(III) and Dy(III) ion due to efficient intersystem crossing and ligand to metal energy transfer. From a more general perspective, this work offers interesting perspectives for the development of efficient luminescent stains and enlarges the arsenal for developing novel luminescent lanthanide complexes of salicylamide derivatives.

  2. Fluorescent dialdehyde ligand for the encapsulation of dinuclear luminescent lanthanide complexes.

    Science.gov (United States)

    Lin, Po-Heng; Leclère, Mathieu; Long, Jérôme; Burchell, Tara J; Korobkov, Ilia; Clérac, Rodolphe; Murugesu, Muralee

    2010-06-28

    Five dinuclear lanthanide complexes [Ln(III)(2)(hpd)(6)].solvent, Ln(III) = Eu(III) (1.2MeCN), Gd(III) (2.2MeCN), Tb(III) (3.MeCN.MeOH), Dy(III) (4.2MeCN), Ho(III) (5.2MeCN) and Hhpd (2-Hydroxyisophthaldehyde) were synthesised and structurally and magnetically characterised. X-Ray structural analysis shows all complexes are isostructural and crystallise in the triclinic P1 space group. The dinuclear complexes are composed of eight-coordinate lanthanide ions linked by two phenoxide bridges from two hpd(-) ligands. Complex 1 exhibits characteristic fluorescence in the visible region.

  3. Lanthanide Complexes of Substituted -Diketone Hydrazone Derivatives: Synthesis, Characterization, and Biological Activities

    OpenAIRE

    Hegazy, W. H.; I. H. Al-Motawaa

    2011-01-01

    A series of β-diketone hydrazone derivatives have been synthesized through condensation of β-diketone with aromatic aldehydes followed by reaction with phenylhydrazine. The structure of the ligands and intermediates are well defined through elemental and spectroscopic analyses. These hydrazones are potential ligands toward lanthanide metal ions. New complexes of trivalent Scandium, Yttrium, Lanthanum, and Cerium have been synthesized. The composition of these complexes is discussed on the bas...

  4. Multicolour optical coding from a series of luminescent lanthanide complexes with a unique antenna.

    Science.gov (United States)

    Wartenberg, Nicolas; Raccurt, Olivier; Bourgeat-Lami, Elodie; Imbert, Daniel; Mazzanti, Marinella

    2013-03-04

    The bis-tetrazolate-pyridine ligand H(2)pytz sensitises efficiently the visible and/or near-IR luminescence emission of ten lanthanide cations (Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb). The Ln(III) complexes present sizeable quantum yields in both domains with a single excitation source. The wide range of possible colour combinations in water, organic solvents and the solid state makes the complexes very attractive for labelling and encoding.

  5. Synthesis, characterization and luminescent properties of lanthanide complexes with a novel multipodal ligand.

    Science.gov (United States)

    Yan, Zhen-Zhong; Hou, Na; Wang, Cong-Min

    2015-02-25

    Solid complexes of lanthanide nitrates with an novel multipodal ligand, 1,2,4,5-tetramethyl-3,6-bis{N,N-bis[((2'-furfurylaminoformyl)phenoxyl)ethyl]-aminomethyl}-benzene (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions. The lowest triplet state energy level of the ligand indicates that the triplet state energy level (T1) of the ligand matches better the resonance level of Tb(III) than other lanthanide ions.

  6. Highly luminescent bis-diketone lanthanide complexes with triple-stranded dinuclear structure.

    Science.gov (United States)

    Li, Hong-Feng; Yan, Peng-Fei; Chen, Peng; Wang, Yan; Xu, Hui; Li, Guang-Ming

    2012-01-21

    A new bis-β-diketone, 3,3'-bis(4,4,4-trifluoro-1,3-dioxobutyl)biphenyl (BTB), has been designed and prepared for the synthesis of a series of dinuclear lanthanide complexes [Ln(2)(BTB)(3)(C(2)H(5)OH)(2)(H(2)O)(2)] [Ln = Eu (1), Gd (2)], [Ln(2)(BTB)(3)(DME)(2)] [Ln = Nd (3), Yb (4); DME = ethylene glycol dimethyl ether] and [Eu(2)(BTB)(3)(L)(2)] [L = 2,2-bipydine (5); 1,10-phenanthroline (6); 4,7-diphenyl-1,10-phenanthroline (7)]. Complexes 1-7 have been characterized by various spectroscopic techniques and their photophysical properties are investigated. X-ray crystallographical analysis reveals that complexes 1, 3 and 4 adopt triple-stranded dinuclear structures which are formed by three bis-bidentate ligands with two lanthanide ions. The complexes 1 and 3-7 display strong visible red or NIR luminescence upon irradiation at ligand band around 372 nm, depending on the choice of the lanthanide. The solid-state photoluminescence quantum yields and the lifetimes of Eu(3+) complexes are determined and described.

  7. Correlation of retention of lanthanide and actinide complexes with stability constants and their speciation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Viswanathan, K.S.; Ghosh, Suddhasattwa; Srinivasan, T.G.; Vasudeva Rao, P.R. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2013-03-01

    The present study describes a correlation that is developed from retention of lanthanide and actinide complexes with the stability constant. In these studies, an ion-pairing reagent, camphor-10-sulphonic acid (CSA) was used as the modifier and organic acids such as {alpha}-hydroxy isobutyric acid ({alpha}-HIBA), mandelic acid, lactic acid and tartaric acid were used as complexing reagent for elution. From these studies, a correlation has been established between capacity factor of a metal ion, concentration of ion-pairing reagent and complexing agent with the stability constant of metal complex. Based on these studies, it has been shown that the stability constant of lanthanide and actinide complexes can be estimated using a single lanthanide calibrant. Validation of the method was carried out with the complexing agents such as {alpha}-HIBA and lactic acid. It was also demonstrated that data from a single chromatogram can be used for estimation of stability constant at various ionic strengths. These studies also demonstrated that the method can be applied for estimation of stability constant of actinides with a ligand whose value is not reported yet, e.g., ligands of importance in the lanthanide-actinide separations, chelation therapy etc. The chromatographic separation method is fast and the estimation of stability constant can be done in a very short time, which is a significant advantage especially in dealing with radioactive elements. The stability constant data was used to derive speciation data of plutonium in different oxidation states as well as that of americium with {alpha}-HIBA. The elution behavior of actinides such as Pu and Am from reversed phase chromatographic technique could be explained based on these studies. (orig.)

  8. Highly luminescent lanthanide complexes with novel bis-β-diketone ligand: Synthesis, characterization and photoluminescent properties

    Science.gov (United States)

    Li, Hong-Feng; Li, Guang-Ming; Chen, Peng; Sun, Wen-Bin; Yan, Peng-Fei

    2012-11-01

    A biphenyl-linked bis-β-diketone ligand, 3,3'-bis(3-phenyl-3-oxopropanol)biphenyl (BPB) has been prepared for the syntheses of a series of dinuclear lanthanide complexes. The ligand bears two benzoyl β-diketonate sites linked by a 3,3'-biphenyl spacer. Reaction of the doubly negatively charged bis-bidenate ligand with lanthanide ions forms triple-stranded dinuclear complexes Ln2(BPB)3 (Ln = Nd (1), Sm (2), Eu (3), Yb (4) and Gd (5)). Electrospray mass spectrometry is used to identify the formation of the triple-stranded dinuclear complexes 1-5, which have been further characterized by various spectroscopic techniques. The complexes display strong visible and NIR luminescence upon excitation at ligands bands around 360 nm, depending on the choice of the lanthanides, and the emission quantum yields and luminescence lifetimes of 2-3 have been determined. It shows that the biphenyl-linked ligand BPB is a more efficient sensitizer than the monodiketone ligand DBM (dibenzoylmethane), through the comparisons of Ln2(BPB)3 and Ln(DBM)3 on their photoluminescent properties.

  9. Highly luminescent lanthanide complexes with novel bis-β-diketone ligand: synthesis, characterization and photoluminescent properties.

    Science.gov (United States)

    Li, Hong-Feng; Li, Guang-Ming; Chen, Peng; Sun, Wen-Bin; Yan, Peng-Fei

    2012-11-01

    A biphenyl-linked bis-β-diketone ligand, 3,3'-bis(3-phenyl-3-oxopropanol)biphenyl (BPB) has been prepared for the syntheses of a series of dinuclear lanthanide complexes. The ligand bears two benzoyl β-diketonate sites linked by a 3,3'-biphenyl spacer. Reaction of the doubly negatively charged bis-bidenate ligand with lanthanide ions forms triple-stranded dinuclear complexes Ln(2)(BPB)(3) (Ln=Nd (1), Sm (2), Eu (3), Yb (4) and Gd (5)). Electrospray mass spectrometry is used to identify the formation of the triple-stranded dinuclear complexes 1-5, which have been further characterized by various spectroscopic techniques. The complexes display strong visible and NIR luminescence upon excitation at ligands bands around 360 nm, depending on the choice of the lanthanides, and the emission quantum yields and luminescence lifetimes of 2-3 have been determined. It shows that the biphenyl-linked ligand BPB is a more efficient sensitizer than the monodiketone ligand DBM (dibenzoylmethane), through the comparisons of Ln(2)(BPB)(3) and Ln(DBM)(3) on their photoluminescent properties.

  10. Efficient polymerization of acrylonitrile catalyzed by diValent lanthanide complex/sodium phenolate systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Four divalent lanthanide complexes Sm(ArO)2(THF)4, Yb(ArO)2(THF)3, Eu(ArO)2(THF)3 (ArO = 2,6-ditert-butyl-4-methylphenolate) and (ButCp)2Sm(THF)2 were synthesized. Their catalytic activities on the polymerization of acrylonitrile were studied. The catalytic activities were influenced by the central metal ions involved. The catalytic activities of these divalent lanthanide complexes can be greatly increased by adding NaOC~H2-2,6-But2-4-Me,NaOC6H4-4-But, or NaOC10H6-2-Me. The amount of additive has apparent effect on the catalytic activity, but the additive has no effect on the tacticity of the resulting polyacrylonitrile

  11. Heterobimetallic dinuclear lanthanide alkoxide complexes as acid-base difunctional catalysts for transesterification.

    Science.gov (United States)

    Zeng, Ruijie; Sheng, Hongting; Zhang, Yongcang; Feng, Yan; Chen, Zhi; Wang, Junfeng; Chen, Man; Zhu, Manzhou; Guo, Qingxiang

    2014-10-03

    A practical lanthanide(III)-catalyzed transesterification of carboxylic esters, weakly reactive carbonates, and much less-reactive ethyl silicate with primary and secondary alcohols was developed. Heterobimetallic dinuclear lanthanide alkoxide complexes [Ln2Na8{(OCH2CH2NMe2)}12(OH)2] (Ln = Nd (I), Sm (II), and Yb (III)) were used as highly active catalysts for this reaction. The mild reaction conditions enabled the transesterification of various substrates to proceed in good to high yield. Efficient activation of transesterification may be endowed by the above complexes as cooperative acid-base difunctional catalysts, which is proposed to be responsible for the higher reactivity in comparison with simple acid/base catalysts.

  12. THE BIMODAL MOLECULAR WEIGHT DISTRIBUTION OF cis-POLYBUTADIENE POLYMERIZED WITH LANTHANIDE COMPLEX CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    CHENG Rongshi; HU Huizhen; JIANG Liansheng

    1987-01-01

    The variation of the molecular weight and molecular weight distribution of cis-polybutadiene in the course of polymerization catalyzed by lanthanide complex composed of triisobutyl aluminium or diisobutyl aluminium hydride was investigated by osmometry, viscometry and size exclusion chromatography. By analyzing the experimental data, the reasons of the appearance of bimodal molecular weight distribution were elucidated and the possible mechanisms of polymerization were discussed.

  13. Novel lanthanide complexes constructed from 3, 4-dimethoxybenzoic acid: crystal structures, spectrum and thermochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Xia; Wu, Jun-Chen [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Ren, Ning, E-mail: ningren9@163.com [College of Chemical engineering & Material, Handan College, Handan 056005 (China); Zhao, Chun-Li [Raoyang High School of Hebei, Raoyang 053900 (China); Zhang, Jian-Jun, E-mail: jjzhang6@126.com [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Zong, Guang-Cai; Gao, Jie [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050024 (China)

    2015-09-10

    Graphical abstract: Four novel lanthanide coordination polymers [Ln(3,4-DMOBA){sub 3}(H{sub 2}O){sub 2}]·H{sub 2}O·C{sub 2}H{sub 5}OH (Ln = Sm(1), Tb(2), Dy(3), Ho(4); 3,4-DMOBA = 3, 4-dimethoxybenzoate) have been hydrothermal synthesized and characterized. Single crystal structures indicates 1 D stucture of the title complexes are linked by hydrogen bonds to form a three-dimensional (3-D) structure. Complex 2 exhibits the characteristic emission of Tb{sup 3+} ion({sup 5}D{sub 4} → {sup 7}F{sub 6-3}). The investigation of TG-FTIR and IR spectra of the evolved gases shows uncoordinated water and ethanol molecules tend to lose firstly, and then 3,4-DMOBA ligands begin to decompose. - Highlights: • Four lanthanide coordination polymers were synthesized and characterized. • 1-D chain structures of the title complexes are are linked by hydrogen bonds to form a 3-D structures. • Thermal decomposition processes of the title complexes were studied using TG-FTIR techniques. • IR spectra of evolved gases in thermal decomposition process were obtained and analyzed. - Abstract: Four novel lanthanide complexes [Ln(3,4-DMOBA){sub 3}(H{sub 2}O){sub 2}]·H{sub 2}O·C{sub 2}H{sub 5}OH (Ln = Sm(1), Tb(2), Dy(3), Ho(4); 3,4-DMOBA = 3, 4-dimethoxybenzoate) have been hydrothermal synthesized and characterized. Structural analyses reveal that adjacent lanthanide ions are connected by 3,4-DMOBA ligands adopting bridging bidentate mode to generate one-dimensional (1-D) structure with the uncoordinated water and ethanol molecules. 1-D structures are linked by hydrogen bonds to form a three-dimensional (3-D) structure, which is rarely observed in lanthanide carboxylic acids complexes. Under the radiation of UV light, complex 2 exhibits the characteristic emission of Tb{sup 3+} ion ({sup 5}D{sub 4} → {sup 7}F{sub 6-3}). The thermal decomposition mechanism is investigated by TG-FTIR technology. IR spectra of the evolved gases show that the uncoordinated water and ethanol

  14. Lanthanide Complexes of Substituted β-Diketone Hydrazone Derivatives: Synthesis, Characterization, and Biological Activities.

    Science.gov (United States)

    Hegazy, W H; Al-Motawaa, I H

    2011-01-01

    A series of β-diketone hydrazone derivatives have been synthesized through condensation of β-diketone with aromatic aldehydes followed by reaction with phenylhydrazine. The structure of the ligands and intermediates are well defined through elemental and spectroscopic analyses. These hydrazones are potential ligands toward lanthanide metal ions. New complexes of trivalent Scandium, Yttrium, Lanthanum, and Cerium have been synthesized. The composition of these complexes is discussed on the basis of elemental analyses, IR, magnetic moments, and thermal analyses. The prepared complexes were screened for antibacterial and antifungal properties and have exhibited potential activity.

  15. Optimizing millisecond time scale near-infrared emission in polynuclear chrome(III)-lanthanide(III) complexes.

    Science.gov (United States)

    Aboshyan-Sorgho, Lilit; Nozary, Homayoun; Aebischer, Annina; Bünzli, Jean-Claude G; Morgantini, Pierre-Yves; Kittilstved, Kevin R; Hauser, Andreas; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2012-08-01

    This work illustrates a simple approach for optimizing long-lived near-infrared lanthanide-centered luminescence using trivalent chromium chromophores as sensitizers. Reactions of the segmental ligand L2 with stoichiometric amounts of M(CF(3)SO(3))(2) (M = Cr, Zn) and Ln(CF(3)SO(3))(3) (Ln = Nd, Er, Yb) under aerobic conditions quantitatively yield the D(3)-symmetrical trinuclear [MLnM(L2)(3)](CF(3)SO(3))(n) complexes (M = Zn, n = 7; M = Cr, n = 9), in which the central lanthanide activator is sandwiched between the two transition metal cations. Visible or NIR irradiation of the peripheral Cr(III) chromophores in [CrLnCr(L2)(3)](9+) induces rate-limiting intramolecular intermetallic Cr→Ln energy transfer processes (Ln = Nd, Er, Yb), which eventually produces lanthanide-centered near-infrared (NIR) or IR emission with apparent lifetimes within the millisecond range. As compared to the parent dinuclear complexes [CrLn(L1)(3)](6+), the connection of a second strong-field [CrN(6)] sensitizer in [CrLnCr(L2)(3)](9+) significantly enhances the emission intensity without perturbing the kinetic regime. This work opens novel exciting photophysical perspectives via the buildup of non-negligible population densities for the long-lived doubly excited state [Cr*LnCr*(L2)(3)](9+) under reasonable pumping powers.

  16. In vitro studies of lanthanide complexes for the treatment of osteoporosis.

    Science.gov (United States)

    Mawani, Yasmin; Cawthray, Jacqueline F; Chang, Stanley; Sachs-Barrable, Kristina; Weekes, David M; Wasan, Kishor M; Orvig, Chris

    2013-05-07

    Lanthanide ions, Ln(III), are of interest in the treatment of bone density disorders because they are found to accumulate preferentially in bone (in vivo), have a stimulatory effect on bone formation, and exhibit an inhibitory effect on bone degradation (in vitro), altering the homeostasis of the bone cycle. In an effort to develop an orally active lanthanide drug, a series of 3-hydroxy-4-pyridinone ligands were synthesized and eight of these ligands (H1 = 3-hydroxy-2-methyl-1-(2-hydroxyethyl)-4-pyridinone, H2 = 3-hydroxy-2-methyl-1-(3-hydroxypropyl)-4-pyridinone, H3 = 3-hydroxy-2-methyl-1-(4-hydroxybutyl)-4-pyridinone, H4 = 3-hydroxy-2-methyl-1-(2-hydroxypropyl)-4-pyridinone, H5 = 3-hydroxy-2-methyl-1-(1-hydroxy-3-methylbutan-2-yl)-4-pyridinone, H6 = 3-hydroxy-2-methyl-1-(1-hydroxybutan-2-yl)-4-pyridinone, H7 = 1-carboxymethyl-3-hydroxy-2-methyl-4-pyridinone, H8 = 1-carboxyethyl-3-hydroxy-2-methyl-4-pyridinone) were coordinated to Ln(3+) (Ln = La, Eu, Gd, Lu) forming stable tris-ligand complexes (LnL(3), L = 1(-), 2(-), 3(-), 4(-), 5(-), 6(-), 7(-) and 8(-)). The dissociation (pK(an)) and metal ligand stability constants (log β(n)) of the 3-hydroxy-4-pyridinones with La(3+) and Gd(3+) were determined by potentiometric titrations, which demonstrated that the 3-hydroxy-4-pyridinones form stable tris-ligand complexes with the lanthanide ions. One phosphinate-EDTA derivative (H(5)XT = bis[[bis(carboxymethyl)amino]methyl]phosphinate) was also synthesized and coordinated to Ln(3+) (Ln = La, Eu, Lu), forming the potassium salt of [Ln(XT)](2-). Cytotoxicity assays were carried out in MG-63 cells; all the ligands and metal complexes tested were observed to be non-toxic to this cell line. Studies to investigate the toxicity, cellular uptake and apparent permeability (P(app)) of the lanthanide ions were conducted in Caco-2 cells where it was observed that [La(XT)](2-) had the greatest cell uptake. Binding affinities of free lanthanide ions (Ln = La, Gd and Lu), metal

  17. Influence of Schiff base and lanthanide metals on the synthesis, stability, and reactivity of monoamido lanthanide complexes bearing two Schiff bases.

    Science.gov (United States)

    Han, Fubin; Teng, Qiaoqiao; Zhang, Yong; Wang, Yaorong; Shen, Qi

    2011-03-21

    The monoamido lanthanide complexes stabilized by Schiff base ligand L(2)LnN(TMS)(2) (L = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-8-C(9)H(6)N, Ln = Yb (1), Y (2), Eu (3), Nd (4), and La (5)) were synthesized in good yields by the reactions of Ln[N(TMS)(2)](3) with 1.8 equiv of HL in hexane at room temperature. It was found that the stability of 1-5 depends greatly on the size of the lanthanide metals with the increasing trend of Yb ≈ Y metals of Y and Yb, L''(2)LnN(TMS)(2) (Ln = Yb (13) and Y (14)), and the more stable tris-Schiff base complexes with the large metals of La and Nd, yielded L''(3)Ln as the only product. Complexes 1-14 were fully characterized including X-ray crystal structural analysis. Complexes 1-5, 10, and 14 can serve as the efficient catalysts for addition of amines to carbodiimides, and the catalytic activity is greatly affected by the lanthanide metals with the active sequence of Yb < Y < Eu ≈ Nd ≈ La.

  18. Synthesis and luminescence properties of lanthanide complexes with a new tripodal ligand featuring N-thenylsalicylamide arms.

    Science.gov (United States)

    Song, Xue-Qin; Zheng, Qing-Fang; Wang, Li; Liu, Wei-Sheng

    2012-01-01

    To explore the relationship between the structure of the ligands and the luminescent properties of the lanthanide complexes, luminescent lanthanide complexes of a new tripodal ligand, featuring N-thenylsalicylamide arms, were synthesized and characterized by elemental analysis, IR and TGA measurements. Photophysical properties of the complexes were studied by means of UV - visible absorption and steady-state luminescence spectroscopy. The results of UV - vis spectra indicate that metal binding does not disturb the electronic structure of the ligand. Excited-state luminescence lifetimes and quantum yields of the complexes were determined. The photoluminescence analysis suggested that there is an efficient ligand - Ln(III) energy transfer for the Tb(III) complex, and the ligand is an efficient 'antenna' for Tb(III). From a more general perspective, the results demonstrated the potential application of the lanthanide complex as luminescent materials in material chemistry.

  19. Non-centrosymmetric behavior of a clay film ion-exchanged with chiral metal complexes.

    Science.gov (United States)

    Suzuki, Yasutaka; Matsunaga, Ryoya; Sato, Hisako; Kogure, Toshihiro; Yamagishi, Akihiko; Kawamata, Jun

    2009-12-07

    SHG measurements on a highly transparent clay film ion-exchanged with chiral metal complexes revealed that the mono-molecular layer of the chiral complexes in an interlayer space acquired a non-centrosymmetric character.

  20. Highly emitting near-infrared lanthanide "encapsulated sandwich" metallacrown complexes with excitation shifted toward lower energy.

    Science.gov (United States)

    Trivedi, Evan R; Eliseeva, Svetlana V; Jankolovits, Joseph; Olmstead, Marilyn M; Petoud, Stéphane; Pecoraro, Vincent L

    2014-01-29

    Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy to arrange several organic sensitizers at a well-controlled distance from a lanthanide cation. Herein we report a series of lanthanide “encapsulated sandwich” MC complexes of the form Ln3+ [12-MC(Zn(II),quinHA)-4]2[24-MC(Zn(II),quinHA)-8] (Ln3+ [Zn(II)MC(quinHA)]) in which the MC framework is formed by the self-assembly of Zn2+ ions and tetradentate chromophoric ligands based on quinaldichydroxamic acid (quinHA). A first-generation of luminescent MCs was presented previously but was limited due to excitation wavelengths in the UV. We report here that through the design of the chromophore of the MC assembly, we have significantly shifted the absorption wavelength toward lower energy (450 nm). In addition to this near-visible inter- and/or intraligand charge transfer absorption, Ln3+ [Zn(II)MC(quinHA)] exhibits remarkably high quantum yields, long luminescence lifetimes (CD3OD; Yb3+, QLn(L) = 2.88(2)%, τobs = 150.7(2) μs; Nd3+, QLn(L) = 1.35(1)%, τobs = 4.11(3) μs; Er3+, QLn(L) = 3.60(6)·10–2%, τobs = 11.40(3) μs), and excellent photostability. Quantum yields of Nd3+ and Er3+ MCs in the solid state and in deuterated solvents, upon excitation at low energy, are the highest values among NIR-emitting lanthanide complexes containing C–H bonds. The versatility of the MC strategy allows modifications in the excitation wavelength and absorptivity through the appropriate design of the ligand sensitizer, providing a highly efficient platform with tunable properties.

  1. Highly selective recovery of phosphopeptides using trypsin-assisted digestion of precipitated lanthanide-phosphoprotein complexes.

    Science.gov (United States)

    Güzel, Yüksel; Rainer, Matthias; Mirza, Munazza R; Messner, Christoph B; Bonn, Günther K

    2013-05-21

    The basic idea of this study was to recover phosphopeptides after trypsin-assisted digestion of precipitated phosphoproteins using trivalent lanthanide ions. In the first step, phosphoproteins were extracted from the protein solution by precipitation with La(3+) and Ce(3+) ions, forming stable pellets. Additionally, the precipitated lanthanide-phosphoprotein complexes were suspended and directly digested on-pellet using trypsin. Non-phosphorylated peptides were released into the supernatants by enzymatic cleavage and phosphopeptides remained bound on the precipitated pellet. Further washing steps improved the removal of non-phosphorylated peptides. For the recovery of phosphopeptides the precipitated pellets were dissolved in 3.7% hydrochloric acid. The performance of this method was evaluated by several experiments using MALDI-TOF MS measurements and delivered the highest selectivity for phosphopeptides. This can be explained by the overwhelming preference of lanthanides for binding to oxygen-containing anions such as phosphates. The developed enrichment method was evaluated with several types of biological samples, including fresh milk and egg white. The uniqueness and the main advantages of the presented approach are the enrichment on the protein-level and the recovery of phosphopeptides on the peptide-level. This allows much easier handling, as the number of molecules on the peptide level is unavoidably higher, by complicating every enrichment strategy.

  2. Spontaneous Resolution and Carbonation of Chiral Benzyllithium Complexes

    DEFF Research Database (Denmark)

    Lennartson, Anders; Sundberg, Jonas; Wiklund, Tove

    2010-01-01

    In search for new examples of absolute asymmetric synthesis (AAS), chiral α-substituted benzyllithium complexes have been prepared. While [Li(phet)(pmdta)] (1) (phet = 1-phenylethyl, pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine) affords only racemic crystals, a promising candidate for AAS...... was indeed found: [Li(phet)(tmpda)], α-2, (tmpda = N,N,N′,N′-tetramethylpropylenediamine) crystallises as a conglomerate. Although concomitant polymorphism was not observed, a racemic phase (β-2) could also be isolated. Chiral crystals of α-2 gave 2-phenylpropionic acid in high yield on reaction with gaseous...

  3. Chiral diamine-silver(I)-alkene complexes: a quantum chemical and NMR study

    DEFF Research Database (Denmark)

    Kieken, Elsa; Wiest, Olaf; Helquist, Paul

    2005-01-01

    The ability of chiral diamine silver complexes to bind chiral and prochiral alkenes has been analyzed in detail. The stereoselectivity in binding of alkenes to a chiral ethanediamine silver complex has been investigated by NMR. The low-energy conformations of several small model complexes have be...

  4. Characterization of surfactant effects on the visible spectroscopy of lanthanide metal ion-triphenylmethane dye complexes

    Energy Technology Data Exchange (ETDEWEB)

    Klopf, G.J.

    1985-01-01

    To better define the mechanism responsible for sensitization, the interactions of representative cationic, anionic, and nonionic surfactants with several lanthanide metal ion-triphenylmethane dye complexes, particularly the gadolinium (Gd/sup +3/)-Chromeazurol S (CAS) complex, were characterized. Only cationic surfactants induced sensitization when added to the Gd/sup +3/-CAS complex. Sensitization induced by cetylpyridinium chloride (CPC) occurred at submicellar concentrations and was attributed to the formation of a 1:2:4 Gd/sup +3/-CAS-CPC ternary complex. Additional ternary complexes evidently form if excess CAS is present. Mechanisms are proposed for the sensitization of the reaction by quaternary compounds and by anionic surfactants. Although both micellar and submicellar concentrations were considered, adding the nonionic surfactant Triton X-100 to the Gd/sup +3/-CAS complex had little effect.

  5. Lanthanide amino acid Schiff base complexes: synthesis, spectroscopic characterization, physical properties and in vitro antimicrobial studies

    Institute of Scientific and Technical Information of China (English)

    Samir Alghool; M.Sh.Zoromba; Hanan F.Abd El-Halim

    2013-01-01

    Complexes of La (Ⅲ),Nd(Ⅲ),Gd(Ⅲ),Sm(Ⅲ),and Ce(Ⅳ) were synthesized with Schiff base [(3,5-di-tert-butyl-2-hydroxybenzyl) amino] acetic acid (H3L).The ligand and its complexes were synthesized and characterized based on the following analysis:elemental analyses,FAB-mass,molar conductance measurements,magnetic measurement,UV-visible,IR,and NMR spectral studies.The spectral data revealed that the ligand acted as a neutral tridentate coordinating to metal ion through ONO donor sequence.Thermal degradation studies of the ligand and its complexes showed that the previous lanthanide complexes were more thermally stable than the ligand itself.The Schiff base and its complexes were screened for their antibacterial (Escherichia coli,Staphylococcus aureus) and antifungal (Aspergillus flavus and Candida Albicans).

  6. Model of complex chiral drug metabolic systems and numerical simulation of the remaining chirality toward analysis of dynamical pharmacological activity.

    Science.gov (United States)

    Ogino, Yoshiyuki; Asahi, Toru

    2015-05-21

    In this study, systems of complicated pathways involved in chiral drug metabolism were investigated. The development of chiral drugs resulted in significant improvement in the remedies available for the treatment of various severe sicknesses. Enantiopure drugs undergo various biological transformations that involve chiral inversion and thus result in the generation of multiple enantiomeric metabolites. Identification of the specific active substances determining a given drug׳s efficacy among such a mixture of different metabolites remains a challenge. To comprehend this complexity, we constructed a mathematical model representing the complicated metabolic pathways simultaneously involving chiral inversion. Moreover, this model is applied to the metabolism of thalidomide, which has recently been revived as a potentially effective prescription drug for a number of intractable diseases. The numerical simulation results indicate that retained chirality in the metabolites reflects the original chirality of the unmetabolized drug, and a higher level of enantiomeric purity is preserved during spontaneous degradation. In addition, chirality remaining after equilibration is directly related to the rate constant not only for chiral inversion but also for generation and degradation. Furthermore, the retention of chirality is quantitatively predictable using this combination of kinetic parameters. Our simulation results well explain the behavior of thalidomide in the practical biological experimental data. Therefore, this model promises a comprehensive understanding of dynamic metabolic systems involving chiral drugs that express multiple enantiospecific drug efficacies.

  7. Temperature-dependent luminescence properties of lanthanide(III) β-diketonate complex-doped LAPONITE®.

    Science.gov (United States)

    Xu, Qianqian; Li, Zhiqiang; Wang, Yige; Li, Huanrong

    2016-03-01

    In this work, by doping the lanthanide(III)-hexafluoroacetylacetone complex into LAPONITE®, we obtained a lanthanide-based organic-inorganic hybrid material. The resulting hybrid materials were fully characterized with elementary analysis, scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) techniques. The Ln(3+) and HFA loadings were experimentally determined to be roughly 0.3 per u.c. and 0.72 per u.c. by analyzing the supernatant (titration against EDTA) and elemental analysis, respectively. XRD patterns suggest that at least partial complexes are intercalated within the interlayers of the LAPONITE®. The in situ formation of luminescent Ln(3+) complexes is confirmed by the luminescence data. Furthermore, the emission intensity ratio of the (5)D4→(7)F5 transition (Tb(3+)) to the (5)D0→(7)F2 transition (Eu(3+)) of the hybrid material containing both Eu(3+) and Tb(3+) can be linearly related to temperature in the range from 197 K to 287 K (temperature sensitivity: 1.107% per K), which will be an appealing alternative for in situ and real time detection of temperature in many special areas. This strategy presents new opportunities for the development of highly sensitive and stable thermo sensors.

  8. Synthesis, Characterization and Fluorescence of Phenylcarboxymethyl Sulfoxide Complexes with Lanthanide Nitrates

    Institute of Scientific and Technical Information of China (English)

    李文先; 张东凤

    2002-01-01

    Phenylcarboxymethyl Sulfoxide, PhSOCH2COOH(LH), complexes of six lanthanide nitrates: Ln2L2(NO3)4*2LH*nH2O(where Ln=La, Ce, Pr, Nd, Sm, Eu) were synthesized. Elemental analyses, molar conductivities, IR, 1HNMR and TG-DTA measurements were used to characterize the complexes. The results show that the ligand(L) is coordinated to metal ions through two oxygen atoms of the carboxyl group and one oxygen atom of the sulfoxide moieties. Neutral ligang (LH)is coordinated to two metal ions through two oxygen atoms of carboxyl group as an asymmetrical bridging bidentate. The fluorescence spectra of Eu3+ complex indicates that there is no inversion symmetry at the site of Eu3+ ion, but the emission intensity of fluorescence is quite good.The solubility of the complexes is very good in water.

  9. Lanthanide Complexes with Acetylacetonate and 5,10,15,20-Tetra[para-(4-chlorobenzoyloxy)phenyl]porphyrin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ The lanthanide complexes of acetylacetonate and 5,10,15,20-tetra[para-(chlorobenzoyloxy)phenyl]porphyrin having a general formula Ln[(cbop)4p]acac(where Ln=Tb,Ho,Er,Tm;cbop=(4-chlorobenzoyloxy)phenyl;Hacac=acetylacetone;p=porphyrin) were prepared and characterized.The structure of the complexs was proposed.

  10. Calix[4]arene-triacids as receptors for lanthanides; synthesis and luminescence of neutral Eu3+ and Tb3+ complexes

    NARCIS (Netherlands)

    Rudkevich, Dmitry M.; Verboom, Willem; Tol, van der Erik B.; Staveren, van Catharina J.; Kaspersen, Frans M.; Verhoeven, Jan W.; Reinhoudt, David N.

    1995-01-01

    Calix[4]arene triacids (3a–d) have been prepared that are able to form neutral complexes with lanthanides. Complexes of 3a–d with Eu3+ and Tb3+ have been studied with respect to their luminescent properties in a protic solvent (methanol). In all cases it was found that the luminescent lifetime of th

  11. Sparkle/PM7 Lanthanide Parameters for the Modeling of Complexes and Materials

    Science.gov (United States)

    Dutra, José Diogo L.; Filho, Manoel A. M.; Rocha, Gerd B.; Freire, Ricardo O.; Simas, Alfredo M.; Stewart, James J. P.

    2013-01-01

    The recently published Parametric Method number 7, PM7, is the first semiempirical method to be successfully tested by modeling crystal structures and heats of formation of solids. PM7 is thus also capable of producing results of useful accuracy for materials science, and constitutes a great improvement over its predecessor, PM6. In this article, we present Sparkle Model parameters to be used with PM7 that allow the prediction of geometries of metal complexes and materials which contain lanthanide trications. Accordingly, we considered the geometries of 224 high-quality crystallographic structures of complexes for the parameterization set and 395 more for the validation of the parameterization for the whole lanthanide series, from La(III) to Lu(III). The average unsigned error for Sparkle/PM7 for the distances between the metal ion and its coordinating atoms is 0.063Å for all lanthanides, ranging from a minimum of 0.052Å for Tb(III) to 0.088Å for Ce(III), comparable to the equivalent errors in the distances predicted by PM7 for other metals. These distance deviations follow a gamma distribution within a 95% level of confidence, signifying that they appear to be random around a mean, confirming that Sparkle/PM7 is a well-tempered method. We conclude by carrying out a Sparkle/PM7 full geometry optimization of two spatial groups of the same thulium-containing metal organic framework, with unit cells accommodating 376 atoms, of which 16 are Tm(III) cations; the optimized geometries were in good agreement with the crystallographic ones. These results emphasize the capability of the use of the Sparkle Model for the prediction of geometries of compounds containing lanthanide trications within the PM7 semiempirical model, as well as the usefulness of such semiempirical calculations for materials modeling. Sparkle/PM7 is available in the software package MOPAC2012, at no cost for academics and can be obtained from http://openmopac.net. PMID:24163641

  12. Lanthanide-cyclodextrin complexes as probes for elucidating optical purity by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.J.; Bogyo, M.S.; Lebeau, E.L. (Bates College, Lewiston, ME (United States))

    1994-06-01

    A multidentate ligand is bonded to cyclodextrins by the reaction of diethylenetriaminepentaacetic dianhydride with 6-mono- and 2-mono(ethylenediamine) derivatives of cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives enhances the enantiomeric resolution in the [sup 1]H NMR spectra of carbionoxamine maleate, doxylamine succinate, pheniramine maleate, propranolol hydrochloride, and tryptophan. The enhancement is more pronounced with the secondary derivative. The Dy(III)-induced shifts can be used to elucidate the geometry of cyclodextrin-substrate inclusion complexes. Lanthanide-induced shifts are reported for complexes of aspartame, tryptophan, propranolol, and 1-anilino-8-naphthalenesulfonate with cyclodextrins, and the relative magnitudes of the shifts agree with previously reported structures of the complexes. 37 refs., 9 figs., 5 tabs.

  13. Solid-state and solution-state coordination chemistry of lanthanide(III) complexes with α-hydroxyisobutyric acid.

    Science.gov (United States)

    Chen, Xiao-Yan; Goff, George S; Ewing, William C; Scott, Brian L; Runde, Wolfgang

    2012-12-17

    Despite the wide range of applications of α-hydroxyisobutyric acid (HIBA) in biochemical processes, pharmaceutical formulations, and group and elemental separations of lanthanides and actinides, the structures and geometries of lanthanide-HIBA complexes are still not well understood. We reacted HIBA with lanthanides in aqueous solution at pH = 5 and synthesized 14 lanthanide-HIBA complexes of the formula [Ln(HIBA)(2)(H(2)O)(2)](NO(3))·H(2)O (Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Ho (10), Er (11), Tm (12), Yb (13), Lu (14)), isolating single crystals (1-7, 10, and 11) and powders (8, 9, and 12-14). Both single-crystal and powder X-ray diffraction studies reveal a two-dimensional extended structure across the entire lanthanide series. The environment around the eight-coordinated Ln(III) atom is best described as a distorted dodecahedron, where HIBA acts as a monoanionic tridentate ligand with one carboxylato oxygen atom and one hydroxyl oxygen atom chelating to one Ln(III) center. The carboxylato oxygen atom from a second HIBA ligand bridges to a neighboring Ln(III) atom to form a two-dimensional extended structure. While the coordination mode for HIBA is identical across the lanthanide series, three different structure types are found for La, Ce-Ho, and Er-Lu. Solution characterization using (13)C NMR further confirmed a single solution complex under the crystallization conditions. Raman and UV-vis-NIR absorbance and diffuse reflectance spectra of HIBA-Ln(III) complexes were also measured.

  14. Complex Langevin dynamics for chiral random matrix theory

    Science.gov (United States)

    Mollgaard, A.; Splittorff, K.

    2013-12-01

    We apply complex Langevin dynamics to chiral random matrix theory at nonzero chemical potential. At large quark mass, the simulations agree with the analytical results while incorrect convergence is found for small quark masses. The region of quark masses for which the complex Langevin dynamics converges incorrectly is identified as the region where the fermion determinant frequently traces out a path surrounding the origin of the complex plane during the Langevin flow. This links the incorrect convergence to an ambiguity in the Langevin force due to the presence of the logarithm of the fermion determinant in the action.

  15. Complex Langevin Dynamics for chiral Random Matrix Theory

    CERN Document Server

    Mollgaard, A

    2013-01-01

    We apply complex Langevin dynamics to chiral random matrix theory at nonzero chemical potential. At large quark mass the simulations agree with the analytical results while incorrect convergence is found for small quark masses. The region of quark masses for which the complex Langevin dynamics converges incorrectly is identified as the region where the fermion determinant frequently traces out a path surrounding the origin of the complex plane during the Langevin flow. This links the incorrect convergence to an ambiguity in the Langevin force due to the presence of the logarithm of the fermion determinant in the action.

  16. Synthesis and Thermal Behaviour of Lanthanide Complexes of 4′[(Cholesteryloxy)Carbonyl]—Benzo—15—Crown—5

    Institute of Scientific and Technical Information of China (English)

    KoenBinnemans; BilgiCuendogan

    2002-01-01

    Lanthanide complexes of a steroid-substituted benzocrown ether were synthesised.The metal-to-ligand ratio of the metal complexes is1:1,The ligand4′[(Cholesteryloxy)Carbonyl]-Benzo-15-Crown-5 is a monotropicliquid crystal,displaying a cholesteric mesophase.The lanethanide complexes with nitate counter-ions form a highly viscous mesophase,decomposing at the clearing point ,The transition temperatures change as a function of the lanthanide ion.The corresponding lanthanide complexes with dodecylsulphate(DOS)counter-ions do not form a mesophase,In both cases ,the metal complexes have a much lower melting point than the parent ligand.

  17. A series of three-dimensional architectures constructed from lanthanide-substituted polyoxometalosilicates and lanthanide cations or lanthanide-organic complexes as linkers.

    Science.gov (United States)

    An, Haiyan; Zhang, Hua; Chen, Zhaofei; Li, Yangguang; Liu, Xuan; Chen, Hao

    2012-07-21

    Six 3D architectures based on lanthanide-substituted polyoxometalosilicates, KLn[(H(2)O)(6)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 1, n = 42; Ce 2, n = 40), H[(H(2)O)(6)Nd](2)[(H(2)O)(7)Nd][(H(2)O)(4)NdSiW(11)O(39)][(H(2)O)(3)NdSiW(11)O(39)]·13H(2)O (3), H(2)K(2)[(Hpic)(H(2)O)(5)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 4, n = 18.5; Ce 5, n = 35; Nd 6, n = 36; Hpic = 4-picolinic acid), have been synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy, TG analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, built up of lanthanide-substituted polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with 1D channels. The polyoxoanion [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions. When Nd(3+) ion was used instead of La(3+) or Ce(3+) ions, compound 3 with a different structure was obtained, containing two kinds of polyoxoanions [{(H(2)O)(4)Nd(SiW(11)O(39))}(2)](10-) and [{(H(2)O)(3)Nd(SiW(11)O(39))}(2)](10-) which are connected together by Nd(3+) ions to yield a 3D framework. When 4-picolinic acid was added to the reaction system of 1-3, isostructural compounds 4-6 were obtained, constructed from the polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by picolinate-chelated lanthanide centers to form a 3D channel framework. From a topological viewpoint, the 3D nets of 1, 2, 4, 5 and 6 exhibit a (3,6)-connected rutile topology, whereas the 3D structure of 3 possesses a rare (3,3,6,10)-connected topology. The magnetic properties of 2, 3, 5 and 6 have been studied by measuring their magnetic susceptibilities in the temperature range 2-300 K.

  18. Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex.

    Science.gov (United States)

    Tan, Hongliang; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Chen, Shouhui; Wang, Li

    2013-12-15

    The meta-organic coordination polymers have been emerged as fascinating nanomaterials because of their tunable nature. In this work, we employed lanthanide coordination polymer self-assembled from adenosine monophosphate (AMP) and europium ion (Eu(3+)) as receptor reagent and citrate (Cit) as ancillary ligand to construct a fluorescent sensor for the detection of tetracycline (Tc) in milk. The co-coordination of Cit and Tc with Eu(3+) on the surface of the coordination polymer AMP/Eu leads to the formation of ternary complex which emitted strong fluorescence due to the removal of coordinated water molecules and an intramolecular energy transfer from Tc to Eu(3+). The fluorescent intensity of Eu(3+) displayed a good linear response to Tc concentrations in the range of 0.1-20 μM with a detection limit of 60 nM. This method was successfully applied to determine the levels of Tc in milk, which is the first application of coordination polymer as a fluorescent sensor in real sample. Compared with other Eu(3+)-based fluorescent methods for Tc detection, the presented method allows simple, direct analysis of Tc without requiring special reaction media or complicated prepreparation processes. This straightforward strategy could be extended to the preparation of other lanthanide coordination polymer-based fluorescent probes for applications in biosensing, imaging, drug delivery, and so on.

  19. Synthesis, mechanism and NMR spectra of lanthanide complexes with a novel unsymmetrical Schiff base

    Institute of Scientific and Technical Information of China (English)

    姚克敏; 周文; 鲁桂; 沈联芳

    1999-01-01

    Owing to its two unsymmetrical-NH2 groups sited on different terminals, 2, 6-diaminocaproic acid (lysine) was used as a reactant for synthesizing a novel unsymmetrical Schiff base with salicylaldehyde on one side and ovanillin on the other for the first time. It is a new way to synthesize such a special unsymmetrical Schiff base. It is named "hetero bis-Schiff base" for distinguishing it from others. The synthesis method, formation mechanism as well as twelve new lanthanide complexes with the above ligand are reported and discussed herein. They were characterized by elementary analysis, molar conductivity, IR-spectra and especially by 1H and 13C NMR spectra. The results obtained may provide a new promising method for synthesizing similar unsymmetrical Schiff bases and their complexes.

  20. Magnetic anisotropy in surface-supported single-ion lanthanide complexes

    CERN Document Server

    Stoll, Paul; Rolf, Daniela; Nickel, Fabian; Xu, Qingyu; Hartmann, Claudia; Umbach, Tobias R; Kopprasch, Jens; Ladenthin, Janina N; Schierle, Enrico; Weschke, Eugen; Czekelius, Constantin; Kuch, Wolfgang; Franke, Katharina J

    2016-01-01

    Single-ion lanthanide-organic complexes can provide stable magnetic moments with well-defined orientation for spintronic applications on the atomic level. Here, we show by a combined experimental approach of scanning tunneling microscopy and X-ray absorption spectroscopy that dysprosium-tris(1,1,1-trifluoro-4-(2-thienyl)-2,4butanedionate) (Dy(tta)$_3$) complexes deposited on a Au(111) surface undergo a molecular distortion, resulting in distinct crystal field symmetry imposed on the Dy ion. This leads to an easy-axis magnetization direction in the ligand plane. Furthermore, we show that tunneling electrons hardly couple to the spin excitations, which we ascribe to the shielded nature of the $4f$ electrons.

  1. Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

    Science.gov (United States)

    Chen, Jinjie; Edelmann, Kevin; Wulfhekel, Wulf

    2015-01-01

    Summary We deposited a volatile lanthanide complex, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)terbium(III), onto metal surfaces of Cu(111), Ag(111) and Au(111) in vacuum and observed well-ordered sub-monolayer films with low temperature (5 K) scanning tunneling microscopy. The films show a distorted three-fold symmetry with a commensurate structure. Scanning tunneling spectroscopy reveals molecular orbitals delocalized on the ligands of the molecule. Our results imply that this complex can be transferred onto the metal substrates without molecular decomposition or contamination of the surface. This new rare-earth-based class of molecules broadens the choice of molecular magnets to study with scanning tunneling microscopy. PMID:26733215

  2. Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

    Directory of Open Access Journals (Sweden)

    Hironari Isshiki

    2015-12-01

    Full Text Available We deposited a volatile lanthanide complex, tris(2,2,6,6-tetramethyl-3,5-heptanedionatoterbium(III, onto metal surfaces of Cu(111, Ag(111 and Au(111 in vacuum and observed well-ordered sub-monolayer films with low temperature (5 K scanning tunneling microscopy. The films show a distorted three-fold symmetry with a commensurate structure. Scanning tunneling spectroscopy reveals molecular orbitals delocalized on the ligands of the molecule. Our results imply that this complex can be transferred onto the metal substrates without molecular decomposition or contamination of the surface. This new rare-earth-based class of molecules broadens the choice of molecular magnets to study with scanning tunneling microscopy.

  3. Evidence of Different Stoichiometries for the Limiting Carbonate Complexes across the Lanthanide(III) Series

    Energy Technology Data Exchange (ETDEWEB)

    Philippini, V.; Vercouter, T.; Vitorge, P. [CEA Saclay, DEN DPC SECR Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Vitorge, P. [Univ Evry Val Essonne, CNRS, Lab Anal and Modelisat Biol and Environm, UMR 8587, F-91025 Evry (France)

    2010-07-01

    The stoichiometries of limiting carbonate complexes of lanthanide(III) ions were investigated by solubility measurements of hydrated NaLn(CO{sub 3}){sub 2} solid compounds (Ln = La, Nd, Eu and Dy) at room temperature in aqueous solutions of high ionic strength (3. 5 mol. kg{sup -1}) NaClO{sub 4}) and high CO{sub 3}{sup 2-} concentrations (0. 1 to 1. 5 mol. kg{sup -1}). The results were interpreted by considering the stability of carbonate complexes, with limiting species found to be La(CO{sub 3}){sub 4}{sup 5-}, Nd(CO{sub 3}){sub 4}{sup 5-}, Eu(CO{sub 3}){sub 3}{sup 3-} and Dy(CO{sub 3}){sub 3}{sup 3-}. TRLFS measurements on the Eu and Dy solutions confirmed the predominance of a single aqueous complex in all the samples. Equilibrium constants were determined for the reaction Ln(CO{sub 3}){sub 3}{sup 3-} + CO{sub 3}{sup 2-} reversible arrow Ln(CO{sub 3}){sub 4}{sup 5-}: log(10) K{sub 4,} {sub L}a{sup 3}. 5{sup m} {sup N}a{sup C}l{sup O}{sub 4} = 0. 7 {+-} 0. 3, log(10) K{sub 4,} {sub N}d{sup 3}. 5{sup m} {sup N}a{sup C}l{sup O}{sub 4} = 1. 3 {+-} 0. 3, and for Ln = Eu and Dy, log(10) K{sub 4,} {sub L}n{sup 3}. 5{sup m} {sup N}a{sup C}l{sup O}{sub 4}) {<=} -0. 4. These results suggest that tetra-carbonato complexes are stable only for the light lanthanide ions in up to 1. 5 molal CO{sub 3}{sup 2-} aqueous solutions, in agreement with our recent capillary electrophoresis study. Comparison with literature results indicates that analogies between actinide(III) and lanthanide(III) ions of similar ionic radii do not hold in concentrated carbonate solutions. Am(CO{sub 3}){sub 3}{sup 3-} was previously evidenced by solubility measurements, whereas we have observed that Nd(CO{sub 3}){sub 4}{sup 5-} predominates in similar conditions. We may speculate that small chemical differences between Ln(III) and An(III) could result in macroscopic differences when their coordination sphere is complete. (authors)

  4. Linear analysis on the stability of lanthanide vapor complexes LnAl3Cli2(Ln = La to Lu)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The reactions LnCl3 (s) + (3/2)Al2Cl6 (g) = LnAl3Cl12 (g) for Ln = La to Lu were studied by quenching experi-ments in roughly the same temperature and pressure ranges (588-851 K and 0.01-0.22 MPa). Stability constants Kθ oflanthanide complexes LnAl3Cl12 were calculated from the measurements. The values of lg Kθ change linearly with theionpotential (Z+/r) of lanthanide(Ⅲ) from La to Gd and from Tb to Lu, respectively, indicating the Gd break. There exist in-clined W effect between lg Kθ and the total angular momentum L of lanthanide(Ⅲ). And hereby lanthanide elements aredivided into four segments, La-Nd, Pm-Gd, Tb-Ho, and Er-Lu. In each segment, the linearity is maintained.

  5. Polymerization of Dimethylaminoethyl Methacrylate Catalyzed by Substituted Indenyl Lanthanide(Ⅱ) Complexes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The polymerization of dimethylaminoethyl methacrylate (DMAEMA) catalyzed by the 1-cyclopentylindenyl lanthanide (Ⅱ) complex (1-C5H9C9H6)2Yb (THF)2 was investigated.The results indicated that the complex (1-C5H9C9H6)2Yb (THF)2 as a single component catalyst showed high activity.The conversion of the polymerization and the molecular weight of the polymer were affected by temperature, time, amount of catalyst and solvent in the polymerization process.The catalytic activity of (1-C5H9C9H6)2Yb (THF)2 enhanced significantly when a small amount of polar solvent THF was added into the polymerization system in which toluene was selected as the solvent.The optimal temperature of polymerization was about 0 ℃.Other modified substituted indenyl lanthanide (Ⅱ) complexes also showed good catalytic activity.The order of catalytic activity of the complexes was as follows: (1-C5H9C9H6)2Sm(THF)≈(1-C2H5C9H6)2Sm(THF)2>(1-C5H9C9H6)2Yb(THF)2>(1-PhCH2C9H6)2Sm(THF)2.The steric regularity of poly (dimethylaminoethyl methacrylate) (PDMAEMA) was characterized by 1H NMR spectra.The polymerization provided syndiotacticity-rich PDMAEMA.The molecular weight and the molecular weight distribution of PDMAEMA were measured by gel permeation chromatography.

  6. Isoquinoline-based lanthanide complexes: bright NIR optical probes and efficient MRI agents.

    Science.gov (United States)

    Caillé, Fabien; Bonnet, Célia S; Buron, Frédéric; Villette, Sandrine; Helm, Lothar; Petoud, Stéphane; Suzenet, Franck; Tóth, Eva

    2012-02-20

    In the objective of developing ligands that simultaneously satisfy the requirements for MRI contrast agents and near-infrared emitting optical probes that are suitable for imaging, three isoquinoline-based polyaminocarboxylate ligands, L1, L2 and L3, have been synthesized and the corresponding Gd(3+), Nd(3+) and Yb(3+) complexes investigated. The specific challenge of the present work was to create NIR emitting agents which (i) have excitation wavelengths compatible with biological applications and (ii) are able to emit a sufficient number of photons to ensure sensitive NIR detection for microscopic imaging. Here we report the first observation of a NIR signal arising from a Ln(3+) complex in aqueous solution in a microscopy setup. The lanthanide complexes have high thermodynamic stability (log K(LnL) =17.7-18.7) and good selectivity for lanthanide ions versus the endogenous cations Zn(2+), Cu(2+), and Ca(2+) thus preventing transmetalation. A variable temperature and pressure (17)O NMR study combined with nuclear magnetic relaxation dispersion measurements yielded the microscopic parameters characterizing water exchange and rotation. Bishydration of the lanthanide cation in the complexes, an important advantage to obtain high relaxivity for the Gd(3+) chelates, has been demonstrated by (17)O chemical shifts for the Gd(3+) complexes and by luminescence lifetime measurements for the Yb(3+) analogues. The water exchange on the three Gd(3+) complexes is considerably faster (k(ex)(298) = (13.9-15.4) × 10(6) s(-1)) than on commercial Gd(3+)-based contrast agents and proceeds via a dissociative mechanism, as evidenced by the large positive activation volumes for GdL1 and GdL2 (+10.3 ± 0.9 and +10.6 ± 0.9 cm(3) mol(-1), respectively). The relaxivity of GdL1 is doubled at 40 MHz and 298 K in fetal bovine serum (r(1) = 16.1 vs 8.5 mM(-1) s(-1) in HEPES buffer), due to hydrophobic interactions between the chelate and serum proteins. The isoquinoline core allows for the

  7. Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation.

    Science.gov (United States)

    Sun, Lining; Qiu, Yannan; Liu, Tao; Feng, Jing; Deng, Wei; Shi, Liyi

    2015-11-01

    We used the synthesized dinaphthylmethane (Hdnm) ligand whose absorption extends to the visible-light wavelength, to prepare a family of ternary lanthanide complexes, named as [Ln(dnm)3 phen] (Ln = Sm, Nd, Yb, Er, Tm, Pr). The properties of these complexes were investigated by Fourier transform infrared (FT-IR) spectroscopy, diffuse reflectance (DR) spectroscopy, thermogravimetric analyses, and excitation and emission spectroscopy. Generally, excitation with visible light is much more advantageous than UV excitation. Importantly, upon excitation with visible light (401-460 nm), the complexes show characteristic visible (Sm(3+)) as well as near-infrared (Sm(3+), Nd(3+), Yb(3+), Er(3+), Tm(3+), Pr(3+)) luminescence of the corresponding lanthanide ions, attributed to the energy transfer from the ligands to the lanthanide ions, an antenna effect. Now, using these near-infrared luminescent lanthanide complexes, the luminescent spectral region from 800 to 1650 nm, can be covered completely, which is of particular interest for biomedical imaging applications, laser systems, and optical amplification applications.

  8. Synthesis of Chiral Metal Complexes of Unsymmetrical Schiff Bases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Recently, in asymmetric catalyst research the great developments of chiral Salen complexes have been made, but the report on unsymmetrical schiff bases is deficient. The unsymmetrical schiff bases complexes are an effective system in catalytically selective Olefin-epoxidations1. At the same time, unsymmetrical schiff bases was immobilized onto polymer supports for heterogenization2. The potential benefits of the catalyst include facilitation of catalyst separation from reagents, simplification of methods for catalyst recycle, and the possible adaptation of the immobilized catalyst to continuous-flow processes. A series of new unsymmetrical schiff bases was synthesized to study the relations between unsymmetry and enantioselectivity and select better catalyst. The following is the route:

  9. A study of in vitro antibacterial activity of lanthanides complexes with a tetradentate Schiff base ligand

    Institute of Scientific and Technical Information of China (English)

    Waleed Mahmoud Al Momani; Ziyad Ahmed Taha; Abdulaziz Mahmoud Ajlouni; Qasem Mohammad Abu Shaqra; Muaz Al Zouby

    2013-01-01

    Objective: To establish the antibacterial activity of lanthanides complexes with a tetradentate Schiff base ligand L. Methods: (N, N'-bis (1-naphthaldimine)-o-phenylenediamine) was prepared from the condensation of 2-hydroxy-1-naphthaldehyde with o-phenylenediamine in a molar ratio of 2:1. The antimicrobial activity of the resultant Ln (III) complexes was investigated using agar well diffusion and micro-broth dilution techniques; the latter was used to establish the minimum inhibitory concentrations for each compound investigated. Results: Most of Ln (III) complexes were found to exhibit antibacterial activities against a number of pathogenic bacteria with MICs ranging between 1.95-250.00 μg/mL. Staphylococcus aureus was the most susceptible bacterial species to [LaL(NO3)2(H2O)](NO3) complex while Shigella dysenteriae andEscherichia coli required a relatively higher MIC (250 μg/mL). The complexes La (III) and Pr (III) were effective inhibitors against Staphylococcus aureus, whereas Sm (III) complex was effective against Serratia marcescens. On the other hand, Gd (III), La (III) and Nd (III) were found to be more potent inhibitors against Pseudomonas aeruginosa than two of commonly used antibiotics. The remaining Ln (III) complexes showed no remarkable activity as compared to the two standard drugs used. Conclusions: Tetradentate Schiff base ligand L and its complexes could be a potential antibacterial compounds after further investigation.

  10. Kinetically inert lanthanide complexes as reporter groups for binding of potassium by 18-crown-6

    DEFF Research Database (Denmark)

    Junker, Anne Kathrine Ravnsborg; Tropiano, Manuel; Faulkner, Stephen

    2016-01-01

    The barcode-like spectrum of lanthanide-centered emission has been used in imaging and to make responsive luminescent reporters. The intensities and the shapes of each line in the luminescence spectrum can also report on the coordination environment of the lanthanide ion. Here, we used lanthanide......-centered emission to report on the binding of potassium in an 18-crown-6 binding pocket. The responsive systems were made by linking a crown ether to a kinetically inert lanthanide binding pocket using a molecular building block approach. Specifically, an alkyne-appended Ln.DO3A was used as a building block...... of the lanthanide emission spectra was shown to be unperturbed by the binding of potassium, while the binding was reported by an overall increased intensity of the lanthanide-centered emission. This observation was contrasted to the change in spectral shape between propargyl-Ln.DO3A and the triazolyl-Ln.DO3A...

  11. Lanthanide complexes derived from hexadentate macrocyclic ligand: synthesis, spectroscopic and thermal investigation.

    Science.gov (United States)

    Chandra, Sulekh; Tyagi, Monika; Rani, Soni; Kumar, Sumit

    2010-02-01

    The lanthanide complexes derived from (3,5,13,15-tetramethyl 2,6,12,16,21-22-hexaazatricyclo[15.3.I(1-17)I(7-11)]cosa-1(21),2,5,7,9,11(22),12,15,17,19-decane) were synthesized. The complexes were found to have general composition [Ln(L)X(2).H(2)O]X, where Ln=La(3+), Ce(3+), Nd(3+), Sm(3+) and Eu(3+) and X=NO(3)(-) and Cl(-). The ligand was characterized by elemental analyses, IR, Mass, and (1)H NMR spectral studies. All the complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, Mass, electronic spectral techniques and thermal studies. The ligand acts as a hexadentate and coordinates through four nitrogen atoms of azomethine groups and two nitrogen of pyridine ring. The lanthanum complexes are diamagnetic while the other Ln(III) complexes are paramagnetic. The spectral parameters i.e. nephelauxetic ratio (beta), covalency factor (b(1/2)), Sinha parameter (delta%) and covalency angular overlap parameter (eta) have been calculated from absorption spectra of Nd(III) and Sm(III) complexes. These parameters suggest the metal-ligand covalent bonding. In the present study, the complexes were found to have coordination number nine.

  12. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples

    Energy Technology Data Exchange (ETDEWEB)

    Thorson, Megan K. [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States); Ung, Phuc [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Leaver, Franklin M. [Water & Energy Systems Technology, Inc., Kaysville, UT 84037 (United States); Corbin, Teresa S. [Quality Services Laboratory, Tesoro Refining and Marketing, Salt Lake City, UT 84103 (United States); Tuck, Kellie L., E-mail: kellie.tuck@monash.edu [School of Chemistry, Monash University, Victoria 3800 (Australia); Graham, Bim, E-mail: bim.graham@monash.edu [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Barrios, Amy M., E-mail: amy.barrios@utah.edu [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States)

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. - Highlights: • Lanthanide–azide based sulfide sensors were synthesized and characterized. • The probes have excitation and emission profiles compatible with sulfide-contaminated samples from the petrochemical industry. • A terbium-based probe was used to measure the sulfide concentration in oil refinery wastewater. • A europium-based probe had compatibility with partially refined crude oil samples.

  13. Increasing the luminescence of lanthanide(III) macrocyclic complexes by the use of polymers and lanthanide enhanced luminescence

    Science.gov (United States)

    Leif, Robert C.; Becker, Margie C.; Bromm, Alfred J., Jr.; Vallarino, Lidia M.; Williams, Steven A.; Yang, Sean

    2001-05-01

    A Eu (III)-macrocycle-isothiocyanate, Quantum DyeTM, has been reacted with lysine homo- and hetero-peptides to give polymers with multiple luminescent side chains. Contrary to the concentration quenching that occurs with conventional organic fluorophores, the attachment of multiple Quantum Dyes to a polymer results in a concomitant increase in luminescence. The emission intensity of the peptide-bound Quantum Dye units is approximately linearly related to their number. The attachment of peptides containing multiple lanthanide (III) macrocycles to analyte-binding species is facilitated by employing solid-phase technology. Bead-bound peptides are first labeled with multiple Quantum Dye units, then conjugated to an antibody, and finally released from the bead by specific cleavage with Proteinase K unedr physiological conditions. Since the luminescence of lanthanide(III) macrocycles is enhanced by the presence of GD(III) or Y(III) ions in a micellar system, a significant increase in signal can be achieved by attaching a polymer labeled with multiple Quantum Dye units to an analyte- binding species, such as a monoclonal antibody, or by taking advantage of the luminescence enhancing effects of Gd(III) or Y(III), or by both approaches concomitantly. A comparison between the integrated intensity and lifetime measurements of the Eu(III)-macrocycle under a variety of conditions show that the signal increase caused by Gd(III) can not be explained solely by the increase in lifetime, and must result in significant part from an energy transfer process invloving donors not directly bound to the Eu(III).

  14. H4octapa: highly stable complexation of lanthanide(III) ions and copper(II).

    Science.gov (United States)

    Kálmán, Ferenc Krisztián; Végh, Andrea; Regueiro-Figueroa, Martín; Tóth, Éva; Platas-Iglesias, Carlos; Tircsó, Gyula

    2015-03-02

    The acyclic ligand octapa(4-) (H4octapa = 6,6'-((ethane-1,2-diylbis((carboxymethyl)azanediyl))bis(methylene))dipicolinic acid) forms stable complexes with the Ln(3+) ions in aqueous solution. The stability constants determined for the complexes with La(3+), Gd(3+), and Lu(3+) using relaxometric methods are log KLaL = 20.13(7), log KGdL = 20.23(4), and log KLuL = 20.49(5) (I = 0.15 M NaCl). High stability constants were also determined for the complexes formed with divalent metal ions such as Zn(2+) and Cu(2+) (log KZnL = 18.91(3) and log KCuL = 22.08(2)). UV-visible and NMR spectroscopic studies and density functional theory (DFT) calculations point to hexadentate binding of the ligand to Zn(2+) and Cu(2+), the donor atoms of the acetate groups of the ligand remaining uncoordinated. The complexes formed with the Ln(3+) ions are nine-coordinated thanks to the octadentate binding of the ligand and the presence of a coordinated water molecule. The stability constants of the complexes formed with the Ln(3+) ions do not change significantly across the lanthanide series. A DFT investigation shows that this is the result of a subtle balance between the increased binding energies across the 4f period, which contribute to an increasing complex stability, and the parallel increase of the absolute values of the hydration free energies of the Ln(3+) ions. In the case of the [Ln(octapa)(H2O)](-) complexes the interaction between the amine nitrogen atoms of the ligand and the Ln(3+) ions is weakened along the lanthanide series, and therefore the increased electrostatic interaction does not overcome the increasing hydration energies. A detailed kinetic study of the dissociation of the [Gd(octapa)(H2O)](-) complex in the presence of Cu(2+) shows that the metal-assisted pathway is the main responsible for complex dissociation at pH 7.4 and physiological [Cu(2+)] concentration (1 μM).

  15. Theoretical study of the structure and reactivity of lanthanide and actinide based organometallic complexes; Etude theorique de la structure et de la reactivite de complexes organometalliques de lanthanides et d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Barros, N

    2007-06-15

    In this PhD thesis, lanthanide and actinide based organometallic complexes are studied using quantum chemistry methods. In a first part, the catalytic properties of organo-lanthanide compounds are evaluated by studying two types of reactions: the catalytic hydro-functionalization of olefins and the polymerisation of polar monomers. The reaction mechanisms are theoretically determined and validated, and the influence of possible secondary non productive reactions is envisaged. A second part focuses on uranium-based complexes. Firstly, the electronic structure of uranium metallocenes is analysed. An analogy with the uranyl compounds is proposed. In a second chapter, two isoelectronic complexes of uranium IV are studied. After validating the use of DFT methods for describing the electronic structure and the reactivity of these compounds, it is shown that their reactivity difference can be related to a different nature of chemical bonding in these complexes. (author)

  16. AFM reconstruction of complex-shaped chiral plasmonic nanostructures

    CERN Document Server

    Kondratov, Alexey V; Gainutdinov, Radmir V

    2016-01-01

    A significant part of the optical metamaterial phenomena has the plasmonic nature and their investigation requires very accurate knowledge of the fabricated structures shape with a focus on the periodical features. We describe a consistent approach to the shape reconstruction of the plasmonic nanostructures. This includes vertical and tilted spike AFM probes fabrication, AFM imaging and specific post-processing. We studied a complex-shaped chiral metamaterial and conclude that the described post-processing routine extends possibilities of the existing deconvolution algorithms in the case of periodical structures with known rotational symmetry, by providing valuable information about periodical features.

  17. Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand

    Science.gov (United States)

    Taha, Ziyad A.; Ajlouni, Abdulaziz M.; Al Momani, Waleed; Al-Ghzawi, Abeer A.

    2011-10-01

    A tetradentate Schiff base ligand L (N,N'-bis(1-naphthaldimine)-o-phenylenediamine) was prepared from the condensation of 2-hydroxy-1-naphthaldehyde with o-phenylenediamine in a molar ratio of 2:1. New eight lanthanide metal complexes [Ln L(NO 3) 2(H 2O) x](NO 3) {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, x = 0 for Nd, Sm, 1 for La, Gd, Pr, Nd, Dy, and 2 for Tb} were prepared. The characterization and nature of bonding of these complexes were elucidated by elemental analysis, spectral analysis ( 1H NMR, FT-IR, UV-vis), molar conductivity measurements, luminescence spectra and thermogravimetric studies. Analytical and spectral data revealed that the ligand L coordinates to the central Ln(III) ions by its two imine nitrogen atoms and two phenolic oxygen atoms with 1:1 stoichiometry. Under the excitation with 329 nm at room temperature, Tb and Dy complexes exhibited characteristic luminescence of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of Ln(III) complexes found to exhibit antibacterial activities against a number of pathogenic bacteria. We found that the antioxident activity of Ln(III) complexes on DPPH rad is concentration dependent and higher than that of the free ligand L.

  18. Synthesis, spectral characterization, thermal and biological studies of lanthanide(III) complexes of oxyphenbutazone

    Institute of Scientific and Technical Information of China (English)

    PS Binil; MR Anoop; KR Jisha; S Suma; MR Sudarsanakumar

    2014-01-01

    Lanthanide(III) complexes of 4-butyl-1-(4-hydroxyphenyl)-2-phenyl-3,5-pyrazolidinedione (OPB) were prepared by ho-mogeneous precipitation. The solid complexes were characterized by elemental analysis, magnetic susceptibility data, molar conduc-tivity measurements and IR, UV-Vis, mass, 1H NMR and 13C NMR spectral methods. The thermal decomposition of the complexes under static air atmosphere was investigated by simultaneous TG/DTG at a heating rate of 10 °C/min. The final decomposition prod-ucts were found to be metal oxides. The spectroscopic data suggested that OPB acted as a bidentate, mono-ionic ligand coordinating through two carbonyl oxygens of the pyrazolidinedione ring. The kinetic and thermodynamic parameters such as activation energy, pre-exponential factor and entropy of activation for each step of the decomposition reactions were evaluated using Coats-Redfern and MacCallum-Tanner equations. The negative entropy values of the complexes indicated that the activated complexes had a more or-dered structure than the reactant and that the reactions were slower than normal. Investigations of antimicrobial activity of the com-pounds were carried out by the disk diffusion technique.

  19. Functionalisation of lanthanide complexes via microwave-enhanced Cu(I)-catalysed azide-alkyne cycloaddition.

    Science.gov (United States)

    Szíjjártó, Csongor; Pershagen, Elias; Borbas, K Eszter

    2012-07-07

    Cu(I)-catalysed azide-alkyne cycloaddition reactions were used to functionalise lanthanide(III)-complexes (Ln; La, Eu and Tb) incorporating alkyne or azide reactive groups. Microwave irradiation significantly accelerated the reactions, enabling full conversion to the triazole products in some cases in 5 min. Alkyl and aryl azides and alkyl and aryl alkynes could all serve as coupling partners. These reaction conditions proved efficient for cyclen-tricarboxylates and previously unreactive cyclen-tris-primary amide chelates. The synthesis of heterobimetallic (Eu/Tb, EuTb17 and Eu/La, EuLa17) and heterotrimetallic (Eu/La/Eu) complexes was achieved in up to 60% isolated yield starting from coumarin 2-appended alkynyl complexes Tb16 or La16 and an azido-Eu complex Eu4, and bis-alkynyl La-complex La5 and Eu4, respectively. EuTb17 displayed dual Eu(III) and Tb(III)-emission upon antenna-centred excitation.

  20. Synthesis and Characterization of Chiral Organogallium and Indium Complexes with Salen Ligands

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several new chiral organogallium and indium complexes with chiral Salen (1 and 2) as anxciliary ligands have been synthesized and characterized by elemental analysis, IR, 1H NMR and Mass spectroscopy. For the gallium, mono and bimetallic complexes were obtained, whereas ring closure complexes of indium were obtained.

  1. Experimental measurement and theoretical assessment of fast lanthanide electronic relaxation in solution with four series of isostructural complexes.

    Science.gov (United States)

    Funk, Alexander M; Fries, Pascal H; Harvey, Peter; Kenwright, Alan M; Parker, David

    2013-02-07

    The rates of longitudinal relaxation for ligand nuclei in four isostructural series of lanthanide(III) complexes have been measured by solution state NMR at 295 K at five magnetic fields in the range 4.7-16.5 T. The electronic relaxation time T(le) is a function of both the lanthanide ion and the local ligand field. It needs to be considered when relaxation probes for magnetic resonance applications are devised because it affects the nuclear relaxation, especially over the field range 0.5 to 4.7 T. Analysis of the data, based on Bloch-Redfield-Wangsness theory describing the paramagnetic enhancement of the nuclear relaxation rate has allowed reliable estimates of electronic relaxation times, T(1e), to be obtained using global minimization methods. Values were found in the range 0.10-0.63 ps, consistent with fluctuations in the transient ligand field induced by solvent collision. A refined theoretical model for lanthanide electronic relaxation beyond the Redfield approximation is introduced, which accounts for the magnitude of the ligand field coefficients of order 2, 4, and 6 and their relative contributions to the rate 1/T(le). Despite the considerable variation of these contributions with the nature of the lanthanide ion and its fluctuating ligand field, the theory explains the modest change of measured T(le) values and their remarkable statistical ordering across the lanthanide series. Both experiment and theory indicate that complexes of terbium and dysprosium should most efficiently promote paramagnetic enhancement of the rate of nuclear relaxation.

  2. Crystal Structure and Luminescence Property of Lanthanide Complexes with 2-Fluorobenzoic Acid and 2,2'-Bipyridine

    Institute of Scientific and Technical Information of China (English)

    Li Xia; Zhang Zhuoyong; Song Haibin

    2005-01-01

    The two compounds of [Ln(2-FBA)3·2,2'-bpy]2 (2-FBA=2-fluorobenzoato, 2,2'-bpy=2,2'-bipyridine, Ln=Eu(1), Dy(2)) were synthesized and their structures were determined by X-ray diffraction method. Crystallized complexes 1 and 2 are isomorphous, monoclinic system with P21/n space group. The two complexes are binuclear molecule with an inversion center. The two lanthanide ions are linked by four bridged 2-FBA ligands and each lanthanide ion is further bonded to one chelated bidentate 2-FBA ligand and one 2,2'-bipyridine molecule. The coordination number of metal ion is eight. The europium complex exhibits strong red fluorescence. 5D0→7Fj (j= 1~4) transition emission of Eu3+ ion was observed.

  3. Synthesis, Characterization and Antioxidative Activity of Lanthanide Complexes with 3,5-Dibenzyloxybenzoyl-2,4-Dihydroxybenzaldehyde-Hydrazone

    Institute of Scientific and Technical Information of China (English)

    张玲; 唐宁; 房建国; 谭民裕

    2003-01-01

    In order to study the coordination character of the rare earth elements with hydrazones and the antioxidative activity of the ligand and the complexes, 3,5-dibenzyloxybenzoyl-2,4-dihydroxybenzaldehyde hydrazone (H2L), a new chelating ligand, and its six lanthanide complexes, Ln (HL)(OAc)2*n H2O [Ln=La(Ⅲ), Sm(Ⅲ), Eu(Ⅲ), Gd(Ⅲ), Tb(Ⅲ), Dy(Ⅲ); n=2, 4, 5], were synthesized and characterized on the basis of elemental analyses, IR and 1H NMR spectra, molar conductivity. The results show that the lanthanide ions are coordinated by O, O and N donors of the phenol (Ar-OH(A)) without deprotonation, the enol oxygen of the hydrazone group (NCO-) and the azomethine group (CH=N) from the ligand respectively, and by the four carboxylic oxygen from two acetate groups (CH3COO-) in the bidentate form. The scavenging activity of the ligand and the six lanthanides complexes on the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radicals is also evaluated. The results show that both the ligand and the complexes have the scavenging activity on the DPPH radicals, and the scavenging activity of the complexes is better than the ligand.

  4. Heptanuclear lanthanide [Ln7] clusters: from blue-emitting solution-stable complexes to hybrid clusters.

    Science.gov (United States)

    Canaj, Angelos B; Tsikalas, George K; Philippidis, Aggelos; Spyros, Apostolos; Milios, Constantinos J

    2014-09-07

    The use of LH3 (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol) and aibH (2-amino-isobutyric acid) in 4f chemistry has led to the isolation of eight new isostructural lanthanide complexes. More specifically, the reaction of the corresponding lanthanide nitrate salt with LH3 and aibH in MeOH, under solvothermal conditions in the presence of NEt3, led to the isolation and characterization of seven complexes with the general formulae [Ln(III)7(OH)2(L')9(aib)]·4MeOH (Ln = Gd, ·4MeOH; Tb, ·4MeOH; Dy, ·4MeOH; Ho, ·4MeOH; Er, ·4MeOH; Tm, ·4MeOH; Yb, ·4MeOH L' = the dianion of the Schiff base between naphthalene aldehyde and 2-amino-isobutyric acid). Furthermore, the isostructural Y(III) analogue, cluster [Y(III)7(OH)2(L')9(aib)]·4MeOH (·4MeOH), was synthesized in a similar manner to . The structure of all eight clusters describes a distorted [M(III)6] octahedron which encapsulates a seventh M(III) ion in an off-centre fashion. Dc magnetic susceptibility studies in the 5-300 K range for complexes reveal the presence of dominant antiferromagnetic exchange interactions within the metallic clusters as evidenced by the negative Weiss constant, θ, while ac magnetic susceptibility measurements show temperature and frequency dependent out-of-phase signals for the [Dy(III)7] analogue (·4MeOH), suggesting potential single molecule magnetism character. Furthermore, for complex , simulation of its dc magnetic susceptibility data yielded very weak antiferromagnetic interactions within the metallic centres. Solid-state emission studies for all clusters display ligand-based emission, while extended 1D and 2D NMR studies for ·4MeOH reveal that the species retain their structural integrity in solution. In addition, TGA measurements for , and revealed excellent thermal stability up to 340 °C for the clusters.

  5. Thermally unstable complexants: Stability of lanthanide/actinide complexes, thermal instability of the ligands, and applications in actinide separations

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L.; Rickert, P.G.

    1991-01-01

    Water soluble complexing agents are commonly used in separations to enhance the selectivity of both ion exchange and solvent extraction processes. Applications of this type in the treatment of nuclear wastes using conventional complexing agents have found mixed success due to the nature of the complexants. In addition, the residual solutions containing these species have led to potentially serious complications in waste storage. To overcome some of the limitations of carboxylic acid and aminopolycarboxylate ligands, we have initiated a program to investigate the complexing ability, thermal/oxidative instability, and separation potential of a group of water soluble organophosphorus compounds which we call Thermally Unstable Complexants, or simply TUCS. Complexants of this type appear to be superior to conventional analogues in a number of respects. In this report, we will summarize our research to date on the actinide/lanthanide complexes with a series of substituted methanediphosphonic acids, the kinetics of their oxidative decomposition, and a few applications which have been developed for their use. 17 refs., 5 figs., 3 tab.

  6. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes

    Science.gov (United States)

    Gregson, Matthew; Lu, Erli; Mills, David P.; Tuna, Floriana; McInnes, Eric J. L.; Hennig, Christoph; Scheinost, Andreas C.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Kerridge, Andrew; Liddle, Stephen T.

    2017-02-01

    Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal-ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inverse-trans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C=M=C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle.

  7. Relaxation process and phase transition of lanthanide liquid crystalline complexes by photoacoustic spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI Junjia; YANG Yuetao; LIU Xiaojun; ZHANG Shuyi; ZHANG Zhongning

    2008-01-01

    Lanthanide-containing liquid crystals exhibiting smectic A phase close to room temperature were obtained. Photoacoustic (PA) spectroscopy was used to study the spectral properties and phase transitions of liquid crystalline metal complexes. It was found that PA intensity of the ligand had a relationship with the probability of nonradiative transitions, which increased in the order of Eu(tta)3L2complexes were studied in depth from two aspects: radiative and non-radiative processes, combining with their fluorescence spectra. Phase transitions of europium(III) and erbium(III) complexes, in the temperature range of 383-358 K, could be clearly monitored by both PA amplitude and PA phase signals. As the temperature crossed the transition point, PA amplitude showed a minimum and PA phase a maximum. The results indicated that PA technique could serve as a new tool for investigating the physicochemical properties of liquid crystals containing metal ions.

  8. Synthesis of mixed Cp/Tp(Me2) lanthanide complexes from lanthanocene precursors and their structures and reactivities.

    Science.gov (United States)

    Han, Fuyan; Zhang, Jie; Han, Yanan; Zhang, Zhengxing; Chen, Zhenxia; Weng, Linhong; Zhou, Xigeng

    2009-02-16

    Reaction of Cp(2)LnCl with 1 equiv of KTp(Me2) in toluene gives the mixed Tp(Me2)/Cp lanthanide complexes Cp(2)Ln(Tp(Me2)) (Ln = Yb (1a), Er (1b), Dy (1c)), while unexpected complexes CpLn(Tp(Me2))Cl(THF) (Ln = Yb (2a), Er (2b.THF), Dy (2c), Y (2d)) are obtained when the reactions are carried out in THF. Complex 2b can also be formed by the reaction of CpErCl(2)(THF)(3) with 1 equiv of KTp(Me2) in THF. Moreover, complex 1a can also be obtained from the reaction of Cp(3)Yb and KTp(Me2). The results not only represent an efficient and versatile method for the synthesis of mixed Cp/Tp(Me2) lanthanide complexes but also provide new insight into the reactivity of Cp(2)LnCl. Furthermore, the reactivities of complexes 1a-c toward proton-donating reagents are examined. It has been found that 1b reacts with benzotriazole (C(6)H(4)NHN(2)) in THF to yield a lanthanide metallomacrocyclic complex [(Tp(Me2))CpEr(mu-N(3)C(6)H(4))](3) (3), while the reaction of 1a with 1 equiv of 2-aminopyridine in THF gives an unexpected oxide complex [(Tp(Me2))Yb(2-HNC(5)H(4)N)](2)(mu-O) (4). Presumably, the oxide ligand of compound 4 results from adventitious water. In addition, treatment of 1c with 2 equiv of 3,5-dimethylpyrazole yields a completely Cp-abstracted product (Tp(Me2))Dy(Pz(Me2))(2)(THF) (5), which can also be directly obtained from a three-component reaction of Cp(2)DyCl, KTp(Me2), and 3,5-dimethylpyrazole in THF. These results further indicate that the new mixed Tp(Me2)/Cp lanthanide complexes are practical and versatile precursors for the synthesis of poly(pyrazolyl)borate lanthanide derivatives. All new compounds have been characterized by elemental analysis and spectroscopic methods. The structures of complexes 1a,b and 2-5 have also been determined through single-crystal X-ray diffraction analysis.

  9. Synthesis of Chiral Metal Complexes of Unsymmetrical Schiff Bases

    Institute of Scientific and Technical Information of China (English)

    SONG; Bo

    2001-01-01

    Recently, in asymmetric catalyst research the great developments of chiral Salen complexes have been made, but the report on unsymmetrical schiff bases is deficient. The unsymmetrical schiff bases complexes are an effective system in catalytically selective Olefin-epoxidations1. At the same time, unsymmetrical schiff bases was immobilized onto polymer supports for heterogenization2. The potential benefits of the catalyst include facilitation of catalyst separation from reagents, simplification of methods for catalyst recycle, and the possible adaptation of the immobilized catalyst to continuous-flow processes. A series of new unsymmetrical schiff bases was synthesized to study the relations between unsymmetry and enantioselectivity and select better catalyst. The following is the route:  ……

  10. Efficient formation of luminescent lanthanide(III) complexes by solid-phase synthesis and on-resin screening.

    Science.gov (United States)

    Nakamura, Tatsuya; Mizukami, Shin; Tanaka, Miho; Kikuchi, Kazuya

    2013-11-01

    Time-resolved luminescence measurements of luminescent lanthanide complexes have advantages in biological assays and high-throughput screening, owing to their high sensitivity. In spite of the recent advances in their energy-transfer mechanism and molecular-orbital-based computational molecular design, it is still difficult to estimate the quantum yields of new luminescent lanthanide complexes. Herein, solid-phase libraries of luminescent lanthanide complexes were prepared through amide-condensation and Pd-catalyzed coupling reactions and their luminescent properties were screened with a microplate reader. Good correlation was observed between the time-resolved luminescence intensities of the solid-phase libraries and those of the corresponding complexes that were synthesized by using liquid-phase chemistry. This method enabled the rapid and efficient development of new sensitizers for Sm(III), Eu(III), and Tb(III) luminescence. Thus, solid-phase combinatorial synthesis combined with on-resin screening led to the discovery of a wide variety of luminescent sensitizers.

  11. Evidence of different stoichiometries for the limiting carbonate complexes of lanthanides(3); Mise en evidence d'un changement de stoechiometrie du complexe carbonate limite au sein de la serie des lanthanides(3)

    Energy Technology Data Exchange (ETDEWEB)

    Philippini, V

    2007-12-15

    Two stoichiometries have been proposed by different laboratories to interpret measurements on the limiting carbonate complexes of An{sup 3+} and Ln{sup 3+} cations. The study of the solubility of double carbonates (AlkLn(CO{sub 3}){sub 2},xH{sub 2}O) in concentrated carbonate solutions at room temperature and high ionic strengths has shown that on the one hand the lightest lanthanides (La and Nd) form Ln(CO{sub 3}){sub 4}{sup 5-} whereas the heaviest (Eu and Dy) form Ln(CO{sub 3}){sub 3}{sup 3-} in the studied chemical conditions, and on the other hand, that the kinetics of precipitation of double carbonates depends on the alkali metal and the lanthanide ions. The existence of two stoichiometries for the limiting carbonate complexes was confirmed by capillary electrophoresis hyphenated to an inductively coupled plasma mass spectrometer (CE-ICP-MS), used to extend the study to the whole series of lanthanides (except Ce, Pm and Yb). Two behaviours have been put forward comparing the electrophoretic mobilities: La to Tb form Ln(CO{sub 3}){sub 4}{sup 5-} while Dy to Lu form Ln(CO{sub 3}){sub 3}{sup 3-}. Measurements by time resolved laser fluorescence spectroscopy (TRLFS) on Eu(III) indicate small variations of the geometry of Eu(CO{sub 3}){sub 3}{sup 3-} complex, specially with Cs{sup +}. Although analogies are currently used among the 4f-block trivalent elements, different aqueous speciations are evidenced in concentrated carbonate solutions across the lanthanide series. (author)

  12. Inorganic pigments doped with tris(pyrazol-1-yl)borate lanthanide complexes: A photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Gheno, Giulia, E-mail: giulia.gheno@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Bortoluzzi, Marco; Ganzerla, Renzo [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Enrichi, Francesco [CIVEN, Coordinamento Interuniversitario Veneto per le Nanotecnologie, Via delle Industrie 5, 30175 Marghera, Venezia (Italy)

    2014-01-15

    The inorganic pigments malachite, Egyptian blue, Ercolano blue and chrome yellow have been doped with the neutral homoleptic Ln(III) complex Ln(Tp){sub 3} (Ln=Eu, Tb; Tp=hydrotris(pyrazol-1-yl)borate) in the presence of arabic gum or acrylic emulsion as binders, in order to obtain photoluminescent materials of interest for cultural heritage restoration. The doped pigments have shown emissions associated to f–f transitions in the visible range upon excitation with UV light. Thermal and UV-light ageings have been carried out. In all the cases the photoluminescent behaviour is maintained, but in the cases of acrylic-based paints emission spectra and lifetimes are strongly influenced by thermal treatments. The choice of binder and pigments influences the photoluminescent behaviour of the corresponding film paints. -- Highlights: • Inorganic pigments doped with photoluminescent lanthanide complexes. • Hydrotris(pyrazol-1-yl)borate (Tp) as antenna-ligand for Eu(III) and Tb(III). • Emission associated to f–f transitions upon excitation with UV light. • Photoluminescence of paints influenced by the choice of binder and pigments. • Photoluminescence after ageing depending upon the type of binder.

  13. Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging

    Science.gov (United States)

    Biju, Vasudevanpillai; Hamada, Morihiko; Ono, Kenji; Sugino, Sakiko; Ohnishi, Takashi; Shibu, Edakkattuparambil Sidharth; Yamamura, Shohei; Sawada, Makoto; Nakanishi, Shunsuke; Shigeri, Yasushi; Wakida, Shin-Ichi

    2015-09-01

    Multimodal and multifunctional contrast agents receive enormous attention in the biomedical imaging field. Such contrast agents are routinely prepared by the incorporation of organic molecules and inorganic nanoparticles (NPs) into host materials such as gold NPs, silica NPs, polymer NPs, and liposomes. Despite their non-cytotoxic nature, the large size of these NPs limits the in vivo distribution and clearance and inflames complex pharmacokinetics, which hinder the regulatory approval for clinical applications. Herein, we report a unique method that combines magnetic resonance imaging (MRI) and fluorescence imaging modalities together in nanoscale entities by the simple, direct and stable conjugation of novel biotinylated coordination complexes of gadolinium(iii) to CdSe/ZnS quantum dots (QD) and terbium(iii) to super paramagnetic iron oxide NPs (SPION) but without any host material. Subsequently, we evaluate the potentials of such lanthanide-speckled fluorescent-magnetic NPs for bioimaging at single-molecule, cell and in vivo levels. The simple preparation and small size make such fluorescent-magnetic NPs promising contrast agents for biomedical imaging.

  14. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity of lanthanide(III) complexes of 2-benzoylpyridine acetylhydrazone

    Indian Academy of Sciences (India)

    KARREDDULA RAJA; AKKILI SUSEELAMMA; KATREDDI HUSSAIN REDDY

    2016-08-01

    Lanthanide(III) complexes of general formula [La(BPAH)₂(NO₃)₃] and [Ce(BPAH)₂(NO₃)(H₂O)₂] 2NO₃.H₂O (where, BPAH = 2-benzoylpyridine acetyl hydrazone), were synthesized and characterized by elemental analysis, molar conductance, IR spectroscopy and single crystal X-ray diffraction and Hirschfeld studies. The central metal ion is 12-coordinate in lanthanum complex and 10-coordinated in the cerium complex. The coordination polyhedra around the lanthanum and cerium were found to have distorted icosahedron and distorted bicapped square antiprism respectively. DNA binding and nuclease activity of these complexes were also investigated in the present work.

  15. The influence of carboxilate, phosphinate and seleninate groups on luminescent properties of lanthanides complexes

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jorge H.S.K.; Formiga, André L.B.; Sigoli, Fernando A., E-mail: fsigoli@iqm.unicamp.br

    2014-10-15

    The lanthanides(III) complexes [Ln(bza){sub 3}(H{sub 2}O){sub n}]·mH{sub 2}O, [Ln(ppa){sub 3}(H{sub 2}O){sub n}]·mH{sub 2}O and [Ln(abse){sub 3}(H{sub 2}O){sub n}]·mH{sub 2}O where Ln=Eu{sup 3+}, Gd{sup 3+} or Tb{sup 3+} were synthesized using sodium benzoate (Nabza), sodium phenylseleninate (Naabse) and sodium phenylphosphinate (Nappa) in order to verify the influence on coordination modes and the luminescence parameters when the carbon is exchanged by phosphorus or selenium in those ligands. The complexes' stoichiometries were determined by lanthanide(III) titration, microanalysis and TGA. The coordination modes were determined as bidentate bridging and chelate by the FT-IR. The triplet state energies of the ligands were obtained by two different approaches giving a difference of about ∼2000 cm{sup −1} between them. The [Eu(abse){sub 3}(H{sub 2}O)] complex shows the higher degree of covalence which was verified by the centroid of {sup 5}D{sub 0}→{sup 7}F{sub 0} transition (17,248 cm{sup −1}). On the other hand the [Ln(abse){sub 3}(H{sub 2}O){sub n}]·mH{sub 2}O complexes have an inefficient antenna effect verified by the low values of absolute emission quantum yields. The [Ln(ppa){sub 3}(H{sub 2}O){sub n}]·mH{sub 2}O complexes have higher emission decay lifetime values among the complexes which is a result of the ability of this ligand to form coordination polymers avoiding water molecules in the first coordination sphere. The [Eu(ppa){sub 3}] complex has the highest point symmetry around europium(III) among the synthesized complexes, followed by the [Eu(bza){sub 3}(H{sub 2}O){sub 2}]·3/2(H{sub 2}O) and [Eu(abse){sub 3}(H{sub 2}O)] complexes where europium(III) show similar point symmetries. As one may expect, the triplet state energy position would change the transfer and/or back energy transfer rates from ligand to metal. The calculation of these rates show that the back energy transfer rates are more affected than the transfer ones by

  16. The Lanthanide Contraction Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Oliver, Allen G.; Raymond, Kenneth N.

    2007-04-19

    A complete, isostructural series of lanthanide complexes (except Pm) with the ligand TREN-1,2-HOIQO has been synthesized and structurally characterized by means of single-crystal X-ray analysis. All complexes are 1D-polymeric species in the solid state, with the lanthanide being in an eight-coordinate, distorted trigonal-dodecahedral environment with a donor set of eight unique oxygen atoms. This series constitutes the first complete set of isostructural lanthanide complexes with a ligand of denticity greater than two. The geometric arrangement of the chelating moieties slightly deviates across the lanthanide series, as analyzed by a shape parameter metric based on the comparison of the dihedral angles along all edges of the coordination polyhedron. The apparent lanthanide contraction in the individual Ln-O bond lengths deviates considerably from the expected quadratic decrease that was found previously in a number of complexes with ligands of low denticity. The sum of all bond lengths around the trivalent metal cation, however, is more regular, showing an almost ideal quadratic behavior across the entire series. The quadratic nature of the lanthanide contraction is derived theoretically from Slater's model for the calculation of ionic radii. In addition, the sum of all distances along the edges of the coordination polyhedron show exactly the same quadratic dependency as the Ln-X bond lengths. The universal validity of this coordination sphere contraction, concomitant with the quadratic decrease in Ln-X bond lengths, was confirmed by reexamination of four other, previously published, almost complete series of lanthanide complexes. Due to the importance of multidentate ligands for the chelation of rare-earth metals, this result provides a significant advance for the prediction and rationalization of the geometric features of the corresponding lanthanide complexes, with great potential impact for all aspects of lanthanide coordination.

  17. Cyanomethylene-bis(phosphonate)-based lanthanide complexes: structural, photophysical, and magnetic investigations.

    Science.gov (United States)

    Maxim, Catalin; Branzea, Diana G; Tiseanu, Carmen; Rouzières, Mathieu; Clérac, Rodolphe; Andruh, Marius; Avarvari, Narcis

    2014-03-01

    The syntheses, structural investigations, magnetic and photophysical properties of a series of 10 lanthanide mononuclear complexes, containing the heteroditopic ligand cyanomethylene-bis(5,5-dimethyl-2-oxo-1,3,2λ(5)-dioxa-phosphorinane) (L), are described. The crystallographic analyses indicate two structural types: in the first one, [Ln(III)(L)3(H2O)2]·H2O (Ln = La, Pr, Nd), the metal ions are eight-coordinated within a square antiprism geometry, while the second one, [Ln(III)(L)3(H2O)]·8H2O (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er), contains seven-coordinated Ln(III) ions within distorted monocapped trigonal prisms. Intermolecular hydrogen bonding between nitrogen atoms of the cyano groups, crystallization, and coordination water molecules leads to the formation of extended supramolecular networks. Solid-state photophysical investigations demonstrate that Eu(III) and Tb(III) complexes possess intense luminescence with relatively long excited-state lifetimes of 530 and 1370 μs, respectively, while Pr(III), Dy(III), and Ho(III) complexes have weak intensity luminescence characterized by short lifetimes ranging between a few nanoseconds to microseconds. The magnetic properties for Pr(III), Gd(III), Tb(III), Dy(III), and Ho(III) complexes are in agreement with isolated Ln(III) ions in the solid state, as suggested by the single-crystal X-ray analyses. Alternating current (ac) susceptibility measurements up to 10 kHz reveal that only the Ho(III) complex shows a frequency-dependent ac response, with a relaxation mode clearly observed at 1.85 K around 4500 Hz.

  18. Aromatic Lateral Substituents Influence the Excitation Energies of Hexaaza Lanthanide Macrocyclic Complexes: A Wave Function Theory and Density Functional Study.

    Science.gov (United States)

    Rabanal-León, Walter A; Murillo-López, Juliana A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2015-09-24

    The high interest in lanthanide chemistry, and particularly in their luminescence, has been encouraged by the need of understanding the lanthanide chemical coordination and how the design of new luminescent materials can be affected by this. This work is focused on the understanding of the electronic structure, bonding nature, and optical properties of a set of lanthanide hexaaza macrocyclic complexes, which can lead to potential optical applications. Here we found that the DFT ground state of the open-shell complexes are mainly characterized by the manifold of low lying f states, having small HOMO-LUMO energy gaps. The results obtained from the wave function theory calculations (SO-RASSI) put on evidence the multiconfigurational character of their ground state and it is observed that the large spin-orbit coupling and the weak crystal field produce a strong mix of the ground and the excited states. The electron localization function (ELF) and the energy decomposition analysis (EDA) support the idea of a dative interaction between the macrocyclic ligand and the lanthanide center for all the studied systems; noting that, this interaction has a covalent character, where the d-orbital participation is evidenced from NBO analysis, leaving the f shell completely noninteracting in the chemical bonding. From the optical part we observed in all cases the characteristic intraligand (IL) (π-π*) and ligand to metal charge-transfer (LMCT) bands that are present in the ultraviolet and visible regions, and for the open-shell complexes we found the inherent f-f electronic transitions on the visible and near-infrared region.

  19. Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy.

    Science.gov (United States)

    Nishio, Masaki; Inami, Shinnosuke; Katayama, Misaki; Ozutsumi, Kazuhiko; Hayashi, Yoshihito

    2012-01-16

    Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.

  20. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D. [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil); Treu-Filho, O. [UNESP – Univ Estadual Paulista, Instituto de Química, São Paulo CEP 14800-900 (Brazil); Bannach, G., E-mail: gilbert@fc.unesp.br [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil)

    2014-01-10

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L){sub 3}, in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand.

  1. Revealing and tuning the core, structure, properties and function of polymer micelles with lanthanide-coordination complexes.

    Science.gov (United States)

    Wang, Junyou; Groeneveld, Andrea; Oikonomou, Maria; Prusova, Alena; Van As, Henk; van Lent, Jan W M; Velders, Aldrik H

    2016-01-07

    Controlling self-assembly processes is of great interest in various fields where multifunctional and tunable materials are designed. We here present the versatility of lanthanide-complex-based micelles (Ln-C3Ms) with tunable coordination structures and corresponding functions (e.g. luminescence and magnetic relaxation enhancement). Micelles are prepared by charge-driven self-assembly of a polycationic-neutral diblock copolymer and anionic coordination complexes formed by Ln(III) ions and the bis-ligand L2EO4, which contains two dipicolinic acid (DPA) ligand groups (L) connected by a tetra-ethylene oxide spacer (EO4). By varying the DPA/Ln ratio, micelles are obtained with similar size but with different stability, different aggregation numbers and different oligomeric and polymeric lanthanide(III) coordination structures in the core. Electron microscopy, light scattering, luminescence spectroscopy and magnetic resonance relaxation experiments provide an unprecedented detailed insight into the core structures of such micelles. Concomitantly, the self-assembly is controlled such that tunable luminescence or magnetic relaxation with Eu-C3Ms, respectively, Gd-C3Ms is achieved, showing potential for applications, e.g. as contrast agents in (pre)clinical imaging. Considering the various lanthanide(III) ions have unique electron configurations with specific physical chemical properties, yet very similar coordination chemistry, the generality of the current coordination-structure based micellar design shows great promise for development of new materials such as, e.g., hypermodal agents.

  2. Synthesis and characterization of lanthanide complexes containing a bulky tridentate [N,N,O] Schiff base ligand

    Institute of Scientific and Technical Information of China (English)

    LI Bangyu; YAO Yingming; WANG Yaorong; ZHANG Yong; SHEN Qi

    2008-01-01

    The lanthanide complexes containing a bulky tridentate [N,N,O] Schiff base ligand 3,5-But2-2-(OH)C6H2CH=N-8-C9H6N (HL) were synthesized and characterized. The reaction of anhydrous LnCl3 with NaL formed in situ in a 1:1 molar ratio in THF at room temperature afforded the lanthanide Schiff base dichloride complexes LnLCl2(DME) (Ln=Eu (1);Sm (2)). Complexes 1 and 2 can be used as precursors for the synthesis of the lanthanide cyclopentadienyl Schiff base derivatives. The reactions of complexes 1 and 2 with one equiv of NaCH3C5H4 in THF provided the desired products LnL(CH3C5H4)Cl(THF)·THF (Ln=Eu (3);Sm (4)) in good isolated yields. These complexes were characterized by elemental analysis, IR spectra, and X-ray structural determination, in the case of complexes 3 and 4. The crystal data of complex 3 are monoclinic, P21/c space group, a=1.3370(2) nm, b=1.5190(2) nm, c=1.8910(3) nm, β=109.846(4)°, V=3.6125(8) nm3, Z=4, Dc=1.416 mg/m3, μ=1.847 mm-1, F(000)=1584, R=0.0707, wR=0.1350. The crystal data of complex 4 are monoclinic, P21/c space group, a=1.3383(1) nm, b=1.5210(2) nm, c=1.8960(2) nm, β =109.878(3)°, V=3.6293(7) nm3, Z=4, Dc=1.407 mg/m3, μ=1.728 mm-1, F(000)=1580, R=0.0670, wR=0.1385.

  3. An europium(III) diglycolamide complex: insights into the coordination chemistry of lanthanides in solvent extraction.

    Science.gov (United States)

    Antonio, Mark R; McAlister, Daniel R; Horwitz, E Philip

    2015-01-14

    The synthesis, stoichiometry, and structural characterization of a homoleptic, cationic europium(III) complex with three neutral tetraalkyldiglycolamide ligands are reported. The tri(bismuth tetrachloride)tris(N,N,N',N'-tetra-n-octyldiglycolamide)Eu salt, [Eu(TODGA)3][(BiCl4)3] obtained from methanol was examined by Eu L3-edge X-ray absorption spectroscopy (XAS) to reveal an inner-sphere coordination of Eu(3+) that arises from 9 O atoms and two next-nearest coordination spheres that arise from 6 carbon atoms each. A structural model is proposed in which each TODGA ligand with its O=Ca-Cb-O-Cb-Ca=O backbone acts as a tridentate O donor, where the two carbonyl O atoms and the one ether O atom bond to Eu(3+). Given the structural rigidity of the tridentate coordination motif in [Eu(TODGA)3](3+) with six 5-membered chelate rings, the six Eu-Ca and six Eu-Cb interactions are readily resolved in the EXAFS (extended X-ray absorption fine structure) spectrum. The three charge balancing [BiCl4](-) anions are beyond the cationic [Eu(TODGA)3](3+) cluster in an outer sphere environment that is too distant to be detected by XAS. Despite their sizeable length and propensity for entanglement, the four n-octyl groups of each TODGA (for a total of twelve) do not perturb the Eu(3+) coordination environment over that seen from previously reported single-crystal structures of tripositive lanthanide (Ln(3+)) complexes with tetraalkyldiglycolamide ligands (of the same 1:3 metal-to-ligand ratio stoichiometry) but having shorter i-propyl and i-butyl groups. The present results set the foundation for understanding advanced solvent extraction processes for the separation of the minor, tripositive actinides (Am, Cm) from the Ln(3+) ions in terms of the local structure of Eu(3+) in a solid state coordination complex with TODGA.

  4. Hydroformylation of olefins catalyzed by chiral phosphite- Rh(I) complexes

    Institute of Scientific and Technical Information of China (English)

    YAN Ming; LI Xingshu; CHAN Albert Sunchi

    2003-01-01

    A series of chiral phosphite ligands based on chiral binaphthol have been designed and synthesized. Their Rhodium(I) complexes were found to be efficient catalysts for the asymmetric hydroformylation of styrene and vinyl acetate and showed excellent catalytic activities and chemos- electivities as well as good regioselectivities (branched aldehyde/linear aldehyde). The enantioselectivities up to 37.0% ee and 38.1% ee were achieved in the hydroformylation of styrene and vinyl acetate respectively. The chiral bidentate phosphite ligands provided better enantioselectivities, however lower regioselectivities than the chiral mono-dentate phosphite ligand.

  5. A complex-polarization-propagator protocol for magneto-chiral axial dichroism and birefringence dispersion

    DEFF Research Database (Denmark)

    Cukras, Janusz; Kauczor, Joanna; Norman, Patrick

    2016-01-01

    A computational protocol for magneto-chiral dichroism and magneto-chiral birefringence dispersion is presented within the framework of damped response theory, also known as complex polarization propagator theory, at the level of time-dependent Hartree–Fock and time-dependent density functional...... theory. Magneto-chiral dichroism and magneto-chiral birefringence spectra in the (resonant) frequency region below the first ionization threshold of R-methyloxirane and L-alanine are presented and compared with the corresponding results obtained for both the electronic circular dichroism and the magnetic...

  6. Thermodynamic study on the complexation of Trivalent actinide and lanthanide cation by N-donor ligands in homogeneous conditions; Etude thermodynamique de la complexation des ions actinide (III) et lanthanide (III) par des ligands polyazotes en milieu homogene

    Energy Technology Data Exchange (ETDEWEB)

    Miguirditchian, M

    2004-07-01

    Polydentate N-donor ligands, alone or combined with a synergic acid, may selectively extract minor actinides(III) from lanthanide(III) ions, allowing to develop separation processes of long-live radioelements. The aim of the researches carried out during this thesis was to better understand the chemical mechanisms of the complexation of f-elements by Adptz, a tridentate N-donor ligand, in homogeneous conditions. A thermodynamic approach was retained in order to estimate, from an energetic point of view, the influence of the different contributions to the reaction, and to acquire a complete set of thermodynamic data on this reaction. First, the influence of the nature of the cation on the thermodynamics was considered. The stability constants of the 1/1 complexes were systematically determined by UV-visible spectrophotometry for every lanthanide ion (except promethium) and for yttrium in a mixed solvent methanol/water in volume proportions 75/25%. The thermodynamic parameters ({delta}H{sup 0} {delta}{sup S}) of complexation were estimated by the van't Hoff method and by micro-calorimetry. The trends of the variations across the lanthanide series are compared with similar studies. The same methods were applied to the study of three actinide(III) cations: plutonium, americium and curium. The comparison of these values with those obtained for the lanthanides highlights the increase of stability of these complexes by a factor of 20 in favor of the actinide cations. This gap is explained by a more exothermic reaction and is associated, in the data interpretation, to a higher covalency of the actinide(III)-nitrogen bond. Then, the influence of the change of solvent composition on the thermodynamic of complexation was studied. The thermodynamic parameters of the complexation of europium(III) by Adptz were determined for several fractions of methanol. The stability of the complex formed increases with the percentage of methanol in the mixed solvent, owing to an

  7. Dynamic Figure Eight Chirality: Multifarious Inversions of a Helical Preference Induced by Complexation.

    Science.gov (United States)

    Katoono, Ryo; Tanaka, Yuki; Kusaka, Keiichi; Fujiwara, Kenshu; Suzuki, Takanori

    2015-08-07

    We demonstrate two types of inversion of a helical preference upon the 1:1 complexation of a dynamic figure eight molecule with a guest molecule through the controlled transmission of point chirality. We designed a series of macrocycles that prefer a nonplanar conformation with figure eight chirality. These macrocycles are composed of a chirality-transferring unit (terephthalamide) and a structure-modifying unit (two o-phenylene rings spaced with a varying number of triple bonds). The former unit provides a binding site for capturing a guest molecule through the formation of hydrogen bonds. The attachment of chiral auxiliaries to the former unit induces a helical preference for a particular sense through the intramolecular transmission of point chirality. For relatively small-sized macrocycles, the preferred sense was reversed upon complexation with an achiral guest. Contrary preferences before and after complexation were both seen for chiral auxiliaries associated with a figure eight host through two-way intramolecular transmission of the single chiral source. Alternatively, the helical preference induced in relatively large-sized macrocycles was reversed only when a figure eight host formed a 1:1 complex with a particular enantiomeric guest through the supramolecular transmission of point chirality in the guest. This stereospecific inversion of a helical preference is rare.

  8. Lanthanide(III) complexes of bis-semicarbazone and bis-imine-substituted phenanthroline ligands: solid-state structures, photophysical properties, and anion sensing.

    Science.gov (United States)

    Nadella, Sandeep; Selvakumar, Paulraj M; Suresh, Eringathodi; Subramanian, Palani S; Albrecht, Markus; Giese, Michael; Fröhlich, Roland

    2012-12-21

    Phenanthroline-based hexadentate ligands L(1) and L(2) bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as La(III), Eu(III), Tb(III), Lu(III), and Y(III) metal ions, were synthesized, and the crystal structures of [ML(1)Cl(3)] (M=La(III), Eu(III), Tb(III), Lu(III), or Y(III)) complexes were determined. Solvent or water molecules act as coligands for the rare-earth metals in addition to halide anions. The big Ln(III) ion exhibits a coordination number (CN) of 10, whereas the corresponding Eu(III), Tb(III), Lu(III), and Y(III) centers with smaller ionic radii show CN=9. Complexes of L(2), namely [ML(2)Cl(3)] (M=Eu(III), Tb(III), Lu(III), or Y(III)) ions could also be prepared. Only the complex of Eu(III) showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine-5'-triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) was found. (31)P NMR spectroscopic studies revealed the formation of a [EuL(2)(ATP)] coordination species.

  9. A general method for preparing lanthanide oxide nanoparticles via thermal decomposition of lanthanide(III) complexes with 1-hydroxy-2-naphthoic acid and hydrazine ligands

    Science.gov (United States)

    Parimalagandhi, Karuppannan; Premkumar, Thathan; Vairam, Sundararajan

    2016-09-01

    Six new lanthanide(III) complexes (i.e., [Ln(L)2(NA)1.5]·3H2O, where Ln=La(III), Pr(III), Nd(III), Sm(III), Gd(III), and Ce(III) and L and NA indicate N2H4 and C10H6(1-O)(2-COO), respectively) with 1-hydroxy-2-naphthoic acid [C10H6(1-O)(2-COOH)] and hydrazine (N2H4) as co-ligands were characterized by elemental, FTIR, UV-visible, and XRD techniques. In the FT-IR spectra, the N-N stretching frequency in the range of 981-949 cm-1 demonstrates evidence of the presence of coordinated N2H4, indicating the bidentate bridging nature of hydrazine in the complexes. These complexes show symmetric and asymmetric COO- stretching from 1444 to 1441 cm-1 and 1582 to 1557 cm-1, respectively, indicating bidentate coordination. TG-DTA studies revealed that the compounds underwent endothermic dehydration from 98 to 110 °C. This was followed by the exothermic decomposition of oxalate intermediates to yield the respective metal oxides as the end products. From SEM images, the average size of the metal oxide particles prepared by thermal decomposition of the complexes was determined to be 39-42 nm. The powder X-ray and SEM coupled with energy dispersive X-ray (EDX) studies revealed the presence of the respective nano-sized metal oxides. The kinetic parameters of the decomposition of the complexes were calculated using the Coats-Redfern equation.

  10. Trinuclear lanthanide complexes of a compartmental ligand N, N'-bis(2-pyridinyl)-2,6-pyridinedicarboxamide: A spectroscopic investigation

    Science.gov (United States)

    Gudasi, Kalagouda B.; Shenoy, Rashmi V.; Vadavi, Ramesh S.; Patil, Siddappa A.

    2006-11-01

    Trinuclear lanthanide complexes of the formula [Ln 3(PPDA)(NO 3) 6(H 2O) 2]·NO 3·2H 2O where Ln = La(III), Pr(III), Sm(III), Nd(III), Eu(III) Gd(III) Tb(III), Dy(III) and Y(III); H 2PPDA = N, N'-bis(2-pyridinyl)-2,6-pyridinedicarboxamide, have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility measurements and spectral (IR, NMR, UV-vis, fluorescence, FAB and EPR) and thermal studies.

  11. Enantioselective Michael reaction catalyzed by well-defined chiral ru amido complexes: isolation and characterization of the catalyst intermediate, ru malonato complex having a metal-carbon bond.

    Science.gov (United States)

    Watanabe, Masahito; Murata, Kunihiko; Ikariya, Takao

    2003-06-25

    Chiral Ru amido complexes promote asymmetric Michael addition of malonates to cyclic enones, leading to Michael adducts with excellent ee's, in which the chiral Ru amido complexes react with malonates to give isolable catalyst intermediates, chiral Ru malonato complexes bearing a metal bound C-nucleophile.

  12. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure

    2014-01-13

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  13. Synthesis and Characterization of Some Lanthanide(Ⅲ) Complexes with 4-[N-(2-methoxybenzylimine)formyl]-2, 3-dimethyl-1-phenyl-3-pyazolin-5-one

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of seven novel lanthanide(Ⅲ) nitrato complexes with 4-[N-(2-methoxybenzylimine)formyl]l-2, 3-dimethyl-1-phenyl-3-pyazolin-5-one (2mbfa), were synthesized.These complexes were characterized by elemental analysis, molecular mass determination, conductance and magnetic moment measurements, IR, UV-visible, and 13CNMR spectral studies.In these complexes, the Schiff base, 2mbfa, acts as neutral bidentate ligand by utilizing the carbonyl oxygen and azomethine nitrogen as donor sites.All the three nitrate ions are also coordinated unidentately with 7 coordination for the lanthanide(Ⅲ) ions with a tentative monocapped octahedral geometry for the complexes.All the seven lanthanide(Ⅲ) complexes have a general formula, [Ln(2mbfa)2(NO3)3].

  14. Core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses: Preparation and their effects on photoluminescence of lanthanide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jie; Li, Yuan; Chen, Yingnan; Wang, Ailing; Yue, Bin; Qu, Yanrong; Zhao, Yongliang; Chu, Haibin, E-mail: chuhb@imu.edu.cn

    2015-11-15

    Highlights: • Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses were prepared via the Stöber process. • Sm and Dy complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. • The complex-doped Ag@SiO{sub 2} composites show stronger luminescent intensities than pure complexes. • The luminescent intensities of the composites strongly depend on the SiO{sub 2} shell thickness. - Abstract: Three kinds of almost spherical core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses (10, 25 and 80 nm) were prepared via the Stöber process. The Ag core nanoparticles were prepared by reducing silver nitrate with sodium citrate. The size, morphology and structure of core–shell Ag@SiO{sub 2} nanoparticles were characterized by transmission electron microscopy. Subsequently, eight kinds of lanthanide complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. The composition of the lanthanide complexes was characterized by elemental analysis, IR and UV spectra. Finally, lanthanide complexes were attached to the surface of Ag@SiO{sub 2} nanoparticles to form lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites. The results show that the complex-doped Ag@SiO{sub 2} nanocomposites display much stronger luminescence intensities than the lanthanide complexes. Furthermore, the luminescence intensities of the lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites with SiO{sub 2} shell thickness of 25 nm are stronger than those of the nanocomposites with SiO{sub 2} shell thickness of 10 and 80 nm.

  15. N-heterocyclic carbene-ruthenium complexes for the racemization of chiral alcohols.

    Science.gov (United States)

    Bosson, Johann; Nolan, Steven P

    2010-03-19

    The activity of well-defined 16-electron ruthenium complexes bearing an N-heterocyclic carbene ligand in the racemization of chiral alcohols is reported. Mechanistic considerations are also presented.

  16. Novel one-dimensional lanthanide acrylic acid complexes: an alternative chain constructed by hydrogen bonding

    Science.gov (United States)

    Li, Hui; Hu, Chang Wen

    2004-12-01

    Novel one-dimensional (1D) chains of three lanthanide complexes La(L 1) 3(CH 3OH)]·CH 3OH (L 1=(E)-3-(2-hydroxyl-phenyl)-acrylic acid) 1, La(L 2) 3(H 2O) 2]·2.75H 2O (L 2=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) 2, and La(L 3) 3(CH 3OH) 2(H 2O)]·CH 3OH (L 3=(E)-3-(4-hydroxyl-phenyl)-acrylic acid) 3 are reported. The crystal structure data are as follows for 1: C 29H 29LaO 11, monoclinic, P2 1/ n, a=15.4289(12) Å, b=7.9585(6) Å, c=23.041(2) Å, β=99.657(2)°, Z=4, R1=0.0637, w R2=0.0919; for 2: C 27H 30.50LaO 13.75, triclinic, P-1, a=8.4719(17) Å, b=13.719(3) Å, c=14.570(3) Å, α=62.19(3)°, β=99.657(2)°, γ=78.22(3)°, Z=2, R1=0.0384, w R2=0.0820; and for 3: C 30H 35LaO 13, monoclinic, P2(1)/ c, a=9.5667(6) Å, b=24.3911(15) Å, c=14.0448(9) Å, β=109.245(2)°, Z=4, R1=0.0374, w R2=0.0630. All the three structure data were collected using graphite monochromated molybdenum Kα radiation and refined using full-matrix least-squares techniques on F 2. These structures show that four kinds of the carboxylato bridge modes are included in these chains to link the La(III) ions. It is the first time that it has been found that the intra-chain hydrogen bonding can construct an alternative chain even, when the coordination bridge mode is the same along the chain (complex 2). There are 2D and 3D hydrogen bonding in the crystal lattices of complexes 1- 3.

  17. Catalytic Asymmetric Carbon-Carbon Forming Reactions Catalyzed Chiral Schiff Base-Metal Complexes

    Institute of Scientific and Technical Information of China (English)

    Takanori; Tanaka; Masahiko; Hayashi

    2007-01-01

    1 Results In 1991, we disclosed the novel asymmetric catalysts prepared from chiral Schiff base and titanium alkoxide in the reaction of asymmetric silylcyanation of aldehydes (eq.1)[1]. Since our first report, chiral Schiff base-metal complex was proven to be efficient in a variety of asymmetric reactions. We reported the first example of enantioselective addition of diketene to aldehydes promoted by chiral Schiff base-titanium alkoxide complexes (eq.2)[2]. The products of this reaction have been cove...

  18. Syntheses and Properties of Lanthanide Hydroxy-meso-tetra(p-chlorophenyl)porphyrin Complexes

    Institute of Scientific and Technical Information of China (English)

    YU Miao; YU Lian-xiang; JIAN Wen-ping; YANG Wen-sheng; LIU Guo-fa

    2004-01-01

    @@ Introduction The syntheses and characterization of porphyrins and metalloporphyrins have been studied extensively[1]. Hemoglobin, myoglobin or cytochrome P450, has been applied as a model compound[2]. Wong C. P. et al.[3] synthesized the first lanthanide porphyrin, acetylacetonate tetraphenylporphyrin europium, in 1974.

  19. Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines.

    Science.gov (United States)

    Kapoor, Puja; Fahmi, Nighat; Singh, R V

    2011-12-01

    The present work stems from our interest in the synthesis, characterization and biological evaluation of lanthanide(III) complexes of a class of coumarin based imines which have been prepared by the interaction of hydrated lanthanide(III) chloride with the sodium salts of 3-acetylcoumarin thiosemicarbazone (ACTSZH) and 3-acetylcoumarin semicarbazone (ACSZH) in 1:3 molar ratio using thermal as well as microwave method. Characterization of the ligands as well as the metal complexes have been carried out by elemental analysis, melting point determinations, molecular weight determinations, magnetic moment, molar conductance, IR, (1)H NMR, (13)C NMR, electronic, EPR, X-ray powder diffraction and mass spectral studies. Spectral studies confirm ligands to be monofunctional bidentate and octahedral environment around metal ions. The redox behavior of one of the synthesized metal complex was investigated by cyclic voltammetry. Further, free ligands and their metal complexes have been screened for their antimicrobial as well as DNA cleavage activity. The results of these findings have been presented and discussed.

  20. Preparation for Supramolecular Complexes of Chiral Diols BDPDD, DMBDPD and BINOL with Some Prochiral Compounds

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Interaction between chiral diols BDPDD, DMBDPD and BINOL with prochiral compounds was examined and some new supramolecular complexes were prepared. It was found that these chiral hosts could include prochiral guests,α,β-unsaturated compounds or piper- azinedione derivatives to give inclusion crystals in different molar ratio. Formations of these supramolecular complexes were characterized by the data of IR and 1H NMR spectra.

  1. Fluorescent studies on the interaction of DNA and ternary lanthanide complexes with cinnamic acid-phenanthroline and antibacterial activities testing.

    Science.gov (United States)

    Sun, Hui-Juan; Wang, Ai-Ling; Chu, Hai-Bin; Zhao, Yong-Liang

    2015-03-01

    Twelve lanthanide complexes with cinnamate (cin(-) ) and 1,10-phenanthroline (phen) were synthesized and characterized. Their compositions were assumed to be RE(cin)3 phen (RE(3+)  = La(3+) , Pr(3+) , Nd(3+) , Sm(3+) , Eu(3+) , Gd(3+) , Tb(3+) , Dy(3+) , Ho(3+) , Tm(3+) , Yb(3+) , Lu(3+) ). The interaction mode between the complexes and DNA was investigated by fluorescence quenching experiment. The results indicated the complexes could bind to DNA and the main binding mode is intercalative binding. The fluorescence quenching constants of the complexes increased from La(cin)3 phen to Lu(cin)3 phen. Additionally, the antibacterial activity testing showed that the complexes exhibited excellent antibacterial ability against Escherichia coli, and the changes of antibacterial ability are in agreement with that of the fluorescence quenching constants.

  2. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    DEFF Research Database (Denmark)

    Konstantatos, Andreas

    )imino)- methyl)benzene-1,2-diol]. Using this ligand, we were able to synthesize four different families of lanthanide complexes framed by alkali metals. Throughout the chapter we demonstrate how we can exploit the presence of the coordinated alkali metal ions in order to induce changes to the structure....... In Chapter 3 we present the results of our work with third row (3d) transition metal ions and their complexes. Specifically, in section 2.1 we report a series of complexes synthesized using a tripodal hexadentate Schiff-base ligand. The ligand demonstrates the ability to form mononuclear or trinuclear...... complexes of M3+ or M2+ metal ions (M: 3d transition metal) with the preference to either approximate octahedral or trigonal prismatic coordination geometry. A detailed magnetic characterization for most of the complexes is presented where a trinuclear Co2+ cluster stands out for its pronounced SMM...

  3. Separation and Detection of Lanthanide Ions with Nitrilotri (methylenephosphonic) Acid as Complexing Agent and Eluent by IPC

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A mixture containing eleven lanthanide ions was separated and detected on an anion-exchange co-lumn by ion chromatography with indirect photometry detection (IPC).An aqueous solution of 1.5×10-2mol/L nitrilotri(methylenephosphonic) acid and 2.5×10-3mol/L tiron was used as the eluent in which the former served as complexing agent and eluent,the latter played as color reagent and eluent.The effects of acidity,concentration and composition of eluent on the retention behavior of the analytes and detection sensitivity are discussed.

  4. Modeling the magnetic properties of lanthanide complexes: relationship of the REC parameters with Pauling electronegativity and coordination number.

    Science.gov (United States)

    Baldoví, José J; Gaita-Ariño, Alejandro; Coronado, Eugenio

    2015-07-28

    In a previous study, we introduced the Radial Effective Charge (REC) model to study the magnetic properties of lanthanide single ion magnets. Now, we perform an empirical determination of the effective charges (Zi) and radial displacements (Dr) of this model using spectroscopic data. This systematic study allows us to relate Dr and Zi with chemical factors such as the coordination number and the electronegativities of the metal and the donor atoms. This strategy is being used to drastically reduce the number of free parameters in the modeling of the magnetic and spectroscopic properties of f-element complexes.

  5. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  6. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  7. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

    Science.gov (United States)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew

    2016-10-01

    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer

  8. Synthesis,Charactarization and Crystal Structures of Lanthanide Phenoxyacetate Complexes with1,10—Phenanthroline

    Institute of Scientific and Technical Information of China (English)

    邓洪; 蔡跃鹏; 巢晖; 陈春龙; 蒋才武; 陈超球; 计亮年

    2003-01-01

    Three new lanthanide phenoxyacetate complexes with 1,10-phenanthroline,[Nd(POA)3(phen)]2·2C2H5OH(1),[Eu(POA)3-(phen)]2·2C2H5OH(2) and [Sm(POA)2(DMSO)(phen)]2-(ClO4)2 (3)(POA=phenoxyacetate,phen=1,10-phenanthroline,DMSO=dimethyl sulfoxide),were synthesized and characterized by elemental analyses,IR,UV-vis and FAB-MS spectra.Their structures were determined by single crystal X-ray diffraction analysis.In complexes 1 and 2,the carboxlyate groups are bonded to Ln3+ ion in three modes:the chelating bidentate,the bridging bidentate and the bridging tridentate.In complex3,the carboxylate groups are bonded to Sm3+ ion only involved in one mode:the bridging bidentate.The luminescence behavior of complex 2 was also studied by means of emission spectra.

  9. Secret lanthanides.

    Science.gov (United States)

    Sturza, C M

    2014-09-15

    Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz.

  10. Sensitization of visible and NIR emitting lanthanide(III) ions in noncentrosymmetric complexes of hexafluoroacetylacetone and unsubstituted monodentate pyrazole.

    Science.gov (United States)

    Ahmed, Zubair; Iftikhar, K

    2013-11-07

    A series of highly volatile eight-coordinate air and moisture stable lanthanide complexes of the type [Ln(hfaa)3(L)2] (Ln = Pr (1), Nd (2), Eu (3), Gd (4), Tb (5), Dy (6), Ho (7), Er (8), Tm (9), and Yb (10); hfaa = anion of hexafluoroacetylacetone and L = pyrazole) have been synthesized and characterized by elemental analysis, IR, ESI-MS(+), and NMR studies. Single-crystal X-ray structures have been determined for the Eu(III) and Dy(III) complexes. These complexes crystallize in the monoclinic space group P2(1)/c. The lanthanide ion in each of these complexes is eight-coordinate with six oxygen atoms from three hfaa and two N-atoms from two pyrazole units, forming a coordination polyhedron best describable as a distorted square antiprism. The NMR spectra reveal that both the pyrazole units remain attached to the metal in solution and the β-diketonate and pyrazole protons are shifted in opposite directions in the case of paramagnetic complexes. The lanthanide-induced chemical shifts are dipolar in nature. The hypersensitive transitions of Nd(III), Ho(III), and Er(III) are sensitive to the environment (solvent), which is reflected by the oscillator strength and band shape of these transitions. The band shape due to the hypersensitive transition of Nd(III) in noncoordinating chloroform and dichloromethane is similar to those of the typical eight-coordinate Nd(III) β-diketonate complexes. The quantum yield and lifetime of Pr(III), Eu(III), Tb(III), Dy(III), and Tm(III) in visible and Pr(III), Nd(III), Dy(III), Ho(III), Er(III) Tm(III), and Yb(III) in the NIR region are sizable. The environment around these metal ions is asymmetric, which leads to increased radiative rates and luminescence efficiencies. The quantum yield of the complexes reveal that ligand-to-metal energy transfer follows the order Eu(III) > Tb(III) ≫ Pr(III) > Dy(III) > Tm(III). Both ligands (hfaa and pyrazole) are good sensitizers for all the visible and NIR emitters effectively, except for Tb

  11. Design of lanthanide fingers: compact lanthanide-binding metalloproteins.

    Science.gov (United States)

    am Ende, Christopher W; Meng, Hai Yun; Ye, Mao; Pandey, Anil K; Zondlo, Neal J

    2010-08-16

    Lanthanides have interesting chemical properties; these include luminescent, magnetic, and catalytic functions. Toward the development of proteins incorporating novel functions, we have designed a new lanthanide-binding motif, lanthanide fingers. These were designed based on the Zif268 zinc finger, which exhibits a beta beta alpha structural motif. Lanthanide fingers utilize an Asp(2)Glu(2) metal-coordination environment to bind lanthanides through a tetracarboxylate peptide ligand. The iterative design of a general lanthanide-binding peptide incorporated the following key elements: 1) residues with high alpha-helix and beta-sheet propensities in the respective secondary structures; 2) an optimized big box alpha-helix N-cap; 3) a Schellman alpha-helix C-cap motif; and 4) an optional D-Pro-Ser type II' beta-turn in the beta-hairpin. The peptides were characterized for lanthanide binding by circular dichroism (CD), NMR, and fluorescence spectroscopy. In all instances, stabilization of the peptide secondary structures resulted in an increase in metal affinity. The optimized protein design was a 25-residue peptide that was a general lanthanide-binding motif; this binds all lanthanides examined in a competitive aqueous environment, with a dissociation constant of 9.3 microM for binding Er(3+). CD spectra of the peptide-lanthanide complexes are similar to those of zinc fingers and other beta beta alpha proteins. Metal binding involves residues from the N-terminal beta-hairpin and the C terminal alpha-helical segments of the peptide. NMR data indicated that metal binding induced a global change in the peptide structure. The D-Pro-Ser type II' beta-turn motif could be replaced by Thr-Ile to generate genetically encodable lanthanide fingers. Replacement of the central Phe with Trp generated genetically encodable lanthanide fingers that exhibited terbium luminescence greater than that of an EF-hand peptide.

  12. Challenging lanthanide relaxation theory: erbium and thulium complexes that show NMR relaxation rates faster than dysprosium and terbium analogues.

    Science.gov (United States)

    Funk, Alexander M; Harvey, Peter; Finney, Katie-Louise N A; Fox, Mark A; Kenwright, Alan M; Rogers, Nicola J; Senanayake, P Kanthi; Parker, David

    2015-07-07

    Measurements of the proton NMR paramagnetic relaxation rates for several series of isostructural lanthanide(III) complexes have been performed in aqueous solution over the field range 1.0 to 16.5 Tesla. The field dependence has been modeled using Bloch-Redfield-Wangsness theory, allowing values for the electronic relaxation time, Tle and the magnetic susceptibility, μeff, to be estimated. Anomalous relaxation rate profiles were obtained, notably for erbium and thulium complexes of low symmetry 8-coordinate aza-phosphinate complexes. Such behaviour challenges accepted theory and can be interpreted in terms of changes in Tle values that are a function of the transient ligand field induced by solvent collision and vary considerably between Ln(3+) ions, along with magnetic susceptibilities that deviate significantly from free-ion values.

  13. Synthesis, infrared and fluorescence spectra of lanthanide complexes with a new amide-based 1,3,4-oxadiazole derivative

    Science.gov (United States)

    Tang, Xiao-Liang; Dou, Wei; Chen, Su-Wen; Dang, Fang-Fang; Liu, Wei-Sheng

    2007-10-01

    A new amide-based 1,3,4-oxadiazole derivative ligand 2,5-bis[2-( N, N-diethyl-1'-oxopropylamide)phenyl]-1,3,4-oxadiazole (L) and its complexes, Ln(NO 3) 3L (Ln = La, Eu, Gd, Tb, Er), were synthesized. The complexes were characterized by elemental analysis, infrared spectra and conductivity. The lanthanide ions were coordinated by O atoms from C dbnd O. The fluorescence properties of Eu(NO 3) 3L and Tb(NO 3) 3L in the solid state and in different solvents were investigated. Under the excitation of UV light, these complexes exhibit characteristic fluorescence of europium and terbium ions. The solvent factors influencing the fluorescent intensity were discussed.

  14. Evidence of different stoichiometries for the limiting carbonate complexes across the lanthanide(III) series: A capillary electrophoresis-mass spectrometry study

    Energy Technology Data Exchange (ETDEWEB)

    Philippini, V.; Vercouter, T.; Vitorge, P. [CEA, Dept Physicochem, Lab Speciat Radionucleides et Mol, F-91191 Gif Sur Yvette, (France); Aupiais, J.; Topin, S.; Ambard, C. [CEA, Serv Radioanalyse Chim et Environm, Bruyeres Le Chatel, (France); Chausse, A.; Vitorge, P. [Lab Analyse et Modelisat Biol et Environm, Evry, (France)

    2008-07-01

    The electrophoretic mobilities ({mu}{sub ep,Ln}) of twelve lanthanides (not Ce, Pr and Yb) were measured by CE-ICP-MS in 0.15 and 0.5 mol L{sup -1} Alk{sub 2}CO{sub 3} aqueous solutions for Alk{sup +} = Li{sup +}, Na{sup +}, K{sup +} and Cs{sup +}. In 0.5 mol L{sup -1} solutions, two different {mu}{sub ep,Ln} values were found for the light (La to Nd) and the heavy (Dy to Tm) lanthanides, which suggests two different stoichiometries for the carbonate limiting complexes. These results are consistent with a solubility study that attests the Ln(CO{sub 3}){sub 3}{sup 3-} and Ln(CO{sub 3}){sub 4}{sup 5-} stoichiometries for the heavy (small) and the light (big) lanthanides, respectively. The Alk{sup +} counter-ions influence the {mu}{sub ep,Ln}{sup Alk2CO3} values, but not the overall shape of the {mu}{sub ep,Ln}{sup Alk2CO3} plots as a function of the lanthanide atomic numbers: the counter-ions do not modify the stoichiometries of the inner sphere complexes. The influence of the Alk{sup +} counter-ions decreases in the Li{sup +} {>=} Na{sup +} {>=}{>=} K{sup +} {>=} Cs{sup +} series. The K{sub 3,Ln} stepwise formation constants of the Ln(CO{sub 3}){sub 3}{sup 3-} complexes slightly increase with the atomic numbers of the lanthanides while K{sub 4,Ln}, the stepwise formation constants of Ln(CO{sub 3}){sub 4}{sup 5-} complexes, slightly decrease from La to Th, and is no longer measurable for heavier lanthanides. (authors)

  15. Metal-promoted synthesis, characterization, crystal structure and RNA cleavage ability of 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) lanthanide complexes.

    Science.gov (United States)

    Kozłowski, Michał; Kierzek, Ryszard; Kubicki, Maciej; Radecka-Paryzek, Wanda

    2013-09-01

    New 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) lanthanide complexes were formed in the metal-induced one-step [1+2] condensation reaction between 2,6-diacetylpyridine and 2-aminobenzoylhydrazide in the presence of lanthanide (La(3+), Pr(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), Ho(3+), Er(3+), Tm(3+) or Yb(3+)) nitrates as template agents. The analytical and spectral characterizations of all the compounds were correlated with the single crystal X-ray structural determination of Eu(3+), Gd(3+), Tb(3+), Dy(3+) and Er(3+) nitrate complexes. The Eu(3+), Gd(3+), Tb(3+)and Dy(3+) complexes of pentadentate 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) with the N3O2 set of donor atoms display a high and relatively rare coordination number of 11, whereas the Er(3+) ion complex is 9-coordinated, which is consistent with the lanthanide contraction phenomenon. The scission of 21-mer RNA was assessed for Eu(3+), Gd(3+) and Tb(3+) nitrate complexes. Lanthanide complexes not covalently attached to the oligonucleotide are able to cleave RNA at the target site in a sequence-selective or non-selective manner depending on the presence of protecting 12-mer 2'OMe RNA.

  16. Aqueous complexation of trivalent lanthanide and actinide cations by N,N,N'{sub 2},N'-tetrakis(2-pyridylmethyl)ethylenediamine.

    Energy Technology Data Exchange (ETDEWEB)

    Beitz, J. V.; Ensor, D. D.; Jensen, M. P.; Morss, L. R.

    1999-06-16

    The aqueous complexation reactions of trivalent lanthanide and actinide cations with the hexadentate ligand N,N,N{prime},N{prime}-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), have been characterized using potentiometric and spectroscopic techniques in 0.1 M NaClO{sub 4} At 25 C, the stability constant of Am(TPEN){sup 3+} is two orders of magnitude larger than that of Sm(TPEN){sup 3+}, reflecting the stronger interactions of the trivalent actinide cations with softer ligands as compared to lanthanide cations.

  17. Transfer hydrogenation reactions catalyzed by chiral half-sandwich Ruthenium complexes derived from Proline

    Indian Academy of Sciences (India)

    ARUN KUMAR PANDIA KUMAR; ASHOKA G SAMUELSON

    2016-09-01

    Chiral ruthenium half-sandwich complexes were prepared using a chelating diamine made from proline with a phenyl, ethyl, or benzyl group, instead of hydrogen on one of the coordinating arms. Three of these complexes were obtained as single diastereoisomers and their configuration identified by X-ray crystallography. The complexes are recyclable catalysts for the reduction of ketones to chiral alcohols in water. A ruthenium hydride species is identified as the active species by NMR spectroscopy and isotopic labelling experiments.Maximum enantio-selectivity was attained when a phenyl group was directly attached to the primary amine on the diamine ligand derived from proline.

  18. Chiral interactions of light induced by low-dimensional dynamics in complex potentials

    CERN Document Server

    Yu, Sunkyu; Piao, Xianji; Min, Bumki; Park, Namkyoo

    2014-01-01

    Chirality is a universal feature in nature, as observed in fermion interactions and DNA helicity. Much attention has been given to the chiral interactions of light, not only regarding its physical interpretation but also focusing on intriguing phenomena in excitation, absorption, generation, and refraction. Although recent progress in metamaterials and 3-dimensional writing technology has spurred artificial enhancements of optical chirality, most approaches are founded on the same principle of the mixing of electric and magnetic responses. However, due to the orthogonal form of electric and magnetic fields, intricate designs are commonly required for mixing. Here, we propose an alternative route to optical chirality, exploiting the nonmagnetic mixing of amplifying and decaying electric modes based on non-Hermitian theory. We show that a 1-dimensional helical eigenmode can exist singularly in a complex anisotropic material, in sharp contrast to the 2-dimensional eigenspaces employed in previous approaches. We ...

  19. Spectrophotometric Study of Ternary Complex Forming Systems of Some Lanthanide Metal Ions with Eriochrome Cyanine R in Presence of Cetylpyridinium Bromide for Microdetermination

    Directory of Open Access Journals (Sweden)

    A. S. Dhepe

    2011-01-01

    Full Text Available Study of coordination compounds of lanthanide elements has received a great attention due to growing applications in science and technology. Number of chromogenic reagents form water soluble colored complexes with lanthanides. Eriochrome cyanine R (ECR a member of triphenylmethane type of dye has been reported to form green colored complexes with lanthanides and has been used for microdetermination of these metal ions. Addition of cationic surfactant, Cetylpyridinium bromide (CPB, a cationic surfactant sensitizes the color reactions of Gd(III, Tb(III, Dy(III, Ho(III and Lu(III with ECR. Formation of water soluble, highly colored ternary complexes with a considerable bathochromic shift of about 50 nm in presence of surfactant has been observed. Optimum reaction conditions and other analytical parameters were also evaluated. Stoichiometric ratio 1:3:3 of Ln: ECR: CPB are responsible for the observed rise in molar absorptivity and sensitivity. Beer’s law was obeyed between 0.50 to 13.00 ppm. Effective photometric range and molar absorptivity of these ternary complexes have been calculated. Effect of some common interfering ions on determination of these lanthanide metal ions was studied. A simple, rapid and highly sensitive spectrophotometeric method has been proposed for the determination of metal ions understudy.

  20. Metal-organic complex-functionalized protein nanopore sensor for aromatic amino acids chiral recognition.

    Science.gov (United States)

    Guo, Yanli; Niu, Aihua; Jian, Feifei; Wang, Ying; Yao, Fujun; Wei, Yongfeng; Tian, Lei; Kang, Xiaofeng

    2017-03-27

    Chiral recognition at single-molecule level for small active molecules is important, as exhibited by many nanostructures and molecular assemblies in biological systems, but it presents a significant challenge. We report a simple and rapid sensing strategy to discriminate all enantiomers of natural aromatic amino acids (AAA) using a metal-organic complex-functionalized protein nanopore, in which a chiral recognition element and a chiral recognition valve were equipped. A trifunctional molecule, heptakis-(6-deoxy-6-amino)-β-cyclodextrin (am7βCD), was non-covalently lodged within the nanopore of an α-hemolysin (αHL) mutant, (M113R)7-αHL. Copper(ii) ion reversibly bonds to the amino group of am7βCD to form an am7βCD-Cu(II) complex, which allowed chiral recognition for each enantiomer in the mixture of AAA by distinct current signals. The Cu(II) plugging valve plays a crucial rule that holds chiral molecules in the nanocavity for a sufficient registering time. Importantly, six enantiomers of all nature AAA could be simultaneously recognized at one time. Enantiomeric excess (ee) could also be accurately detected by this approach. It should be possible to generalize this approach for sensing of other chiral molecules.

  1. Study on the Interaction between Lanthanide Cationic Porphyrin Complex and Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    LIU, Peng; LIU, Yi; LI, Xi; HUANG, Wei-Guo

    2007-01-01

    The interaction between lanthanide cationic porphyrin and bovine serum albumin (BSA) was studied by fluorescence and UV-Vis spectrum. The static quenching of BSA was observed in the presence of YbTMPyP. According to the thermodynamic parameters, this binding was regarded as "enthalpy-driven" reaction. Furthermore,YbTMPyP is so close to the residues of BSA that molecular resonance energy transfer occurs between them. Besides, the red drift and hypochromicity of absorption spectrum of YbTMPyP were accompanied with the binding reaction.

  2. Synthesis of racemic and chiral BEDT-TTF derivatives possessing hydroxy groups and their achiral and chiral charge transfer complexes

    Directory of Open Access Journals (Sweden)

    Sara J. Krivickas

    2015-09-01

    , θ21 and two kinds of α’-types, and their electrical conductivities of charge transfer complexes based upon the racemic and enantiopure (S,S-2, and (R,R-2 donors originates not only from the chirality, but also the introduced intermolecular hydrogen bonds involving the hydroxymethyl groups, perchlorate anion, and the included solvent H2O.

  3. Synthesis, spectroscopic characterization, DNA cleavage and antibacterial studies of a novel tridentate Schiff base and some lanthanide(III) complexes

    Institute of Scientific and Technical Information of China (English)

    K. Mohanan; R. Aswathy; L.P. Nitha; Niecy Elsa Mathews; B. Sindhu Kumari

    2014-01-01

    A novel potential tridentate Schiff base was prepared by condensing equimolar quantities of 2-hydroxyacetophenone and 2-aminopyrimidine in methanol. This ligand was versatile in forming a series of complexes with lanthanide ions such as La(III), Pr(III), Nd(III), Sm(III), Gd(III), Dy(III) and Yb(III). The ligand and the metal complexes were characterized through elemental analysis, molar conductance, UV-Visible, IR, 1H NMR, and mass spectral studies. The spectral studies indicated that the ligand was coordinated to the metal ion in neutral tridentate fashion through the azomethine nitrogen, one of the nitrogen atoms in the pyrimidine ring and the phenolic oxygen without deprotonation. Thermal decomposition and luminescence property of lanthanum(III) complex were also examined. The X-ray diffraction patterns showed the crystalline nature of the ligand and its lanthanum(III) complex. The DNA cleavage studies of the ligand and the metal complexes were carried out and it was observed that the lanthanum(III) and neo-dymium(III) complexes cleaved the pUC19 DNA effectively. The ligand and the metal complexes were screened for their antibacte-rial activities. The metal complexes were found to be more potent bactericides than the ligand.

  4. Separation of chiral primary amino compounds by forming a sandwiched complex in reversed-phase high performance liquid chromatography.

    Science.gov (United States)

    Zhang, Chen; Huang, Wei X; Chen, Zhi; Rustum, Abu M

    2010-07-23

    Separation of chiral primary amino compounds was efficiently achieved under reversed-phase high performance liquid chromatography (RP-HPLC) conditions using a mixture of non-chiral crown ether (18-crown-6) and dimethyl-beta-cyclodextrin (DM-beta-CD) in the mobile phase. Under these conditions, the amino group of the chiral compound was protonated in a low pH mobile phase, and then interacted with 18-crown-6 and DM-beta-CD to form a sandwiched complex [18-crown-6+amine+CD]. Enantiomers of the compound in the sandwiched complex were separated with good enantioselectivity. Formation of the sandwiched complex among the chiral compound and additives in the mobile phase is a key step of the chiral separation. Four different chiral amino compounds namely, 1-aminoindan (AI), 1,2,3,4-tetrahydro-1-naphthylamine (THNA), tyrosine (Tyr), and phenylalanine (Phe), were selected to demonstrate the separation using the sandwiched complex mechanism in RP-HPLC.

  5. The self-aggregation of chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The self-aggregation of chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes in water-alcohol system and water-alcohol-NaCl system has been studied by circular dichroism (CD),UV-Vis absorption spectra and fluorescence spectra methods.The experiment results indicate that chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes have two different kinds of aggregates in water-alcohol system and water-alcohol-NaCl system.And the porphyrins may form highly organized and orientated aggregates in water-alcohol-NaCl system.The aggregates in water-alcohol-NaCl system may have helical structures.

  6. Microwave assisted synthesis, spectroscopic, thermal, and antifungal studies of some lanthanide(Ⅲ) complexes with a heterocyclic bishydrazone

    Institute of Scientific and Technical Information of China (English)

    K. Mohanan; B. Sindhu Kumari; G. Rijulal

    2008-01-01

    A bishydrazone formed by the condensation of isatinmonohydrazone and salicylaldehyde reacted with lanthanide(Ⅲ) chloride to form complexes of the type [Ln(HISA)2Cl3], where, Ln=La(Ⅲ), ce(Ⅲ), Pr(Ⅲ), Nd(Ⅲ), Sin(Ⅲ), Eu(Ⅲ), or Gd(Ⅲ) and HISA=[(2-hydroxybenzaldehyde)-3-isatin]bishydrazone. Both reactions were carried out under microwave conditions. The ligand and the metal complexes were characterized on the basis of elemental analysis, molar conductance, magnetic susceptibility measurements, UV visible, infrared, far infrared, and proton NMR spectral data. The ligand acted as neutral tridentate, coordinating through the carbonyl oxygen, azomethine nitrogen, and phenolic oxygen without deprotonation. The ligand and lanthanum(Ⅲ) complex were subjected to X-ray diffraction studies. The X-ray diffraction pattern of ligand exhibited its crystalline nature and that of the lanthanum(Ⅲ) complex indicated its amorphous character. The thermal decomposition behaviour of the complex, [La(HISA)2Cl3], was examined in the temperature range of 40-800 ℃ using TG, DTG, and DTA. The ligand and the metal complexes were screened for their antifungal activities.

  7. Lanthanide(III and Yttrium(III Complexes of Benzimidazole-2-Acetic Acid: Synthesis, Characterisation and Effect of La(III Complex on Germination of Wheat

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The synthesis and characterisation of lanthanide(III and yttrium(III nitrate complexes of benzimidazole-2-acetic acid (HBIA are reported. The complexes have been characterised by elemental analysis, molar conductance, magnetic studies, IR, 1 H NMR, UV-visible, EPR, and TG/DTA studies. They have the stoichiometry [ Ln 3 ( BIA 2 ( NO 3 7 ( H 2 O 4 ]⋅3 H 2 O where Ln=La(III, Pr(III, Nd(II, Sm(III, Eu(III, Gd(III, Tb(III, Dy(III, and Y(III. The effect of La(III complex on germination, coleoptile, and root length of two local varieties of wheat DWR-195 and GW-349 for different treatment periods has been investigated. The complex was found to exhibit enhanced activity, compared to HBIA or metal salt alone at lower treatment periods.

  8. Structural study of the uranyl and rare earth complexation functionalized by the CMPO; Etude structurale de la complexation de l'uranyle et des ions lanthanides par des calixarenes fonctionnalises par le CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Cherfa, S

    1998-12-10

    In view of reducing the volume of nuclear waste solutions, a possible way is to extract simultaneously actinide and lanthanide ions prior to their ulterior separation.. Historically, the two extractant families used for nuclear waste reprocessing are the phosphine oxides and the CMPO (Carbamoyl Methyl Phosphine Oxide). For a better understanding of the complexes formed during extraction, we undertook structural studies of the complexes formed between uranyl and lanthanide (III) ions and the two classes of ligands cited above. These studies have been performed by X-ray diffraction on single crystals. Recently, a new type of extractants of lanthanide (III) and actinide (III) ions has been developed. When the Organic macrocycle called calixarene (an oligomeric compound resulting from the poly-condensation of phenolic units) is functionalized by a CMPO ligand, the extracting power, in terms of yield and selectivity towards lightest lanthanides, is greatly enhanced compared to the one measured for the single CMPO. Our X-ray diffraction studies allowed us to characterise, in terms of stoichiometry and monodentate or bidentate coordination mode of the CMPO functions, the complexes of calix[4]arene-CMPO (with four phenolic units) with lanthanide nitrates and uranyl. These different steps of characterisation enabled us to determine the correlation between the structures of the complexes and both selectivity and exacerbation of the extracting power measured in the liquid phase. (author)

  9. Complexation of actinides(III) and lanthanides(III) cations by tridentate nitrogen ligands; Complexation des cations actinides(III) et lanthanides(III) par des ligands azotes tridentates

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, P.Y.; Francois, N.; Guillaneux, D.; Hill, C.; Madic, Ch. [CEA Valrho, (DCC/DRRV/SEMP), 30 - Marcoule (France); Illemassene, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    2000-07-01

    To understand the properties of some systems able to extract actinides (III) from lanthanides(III) selectively, the solution chemistry of lanthanide(III) and actinide(III) cations with poly-hetero-aromatic nitrogen-containing ligands was studied by Time-Resolved Laser Induced Fluorimetry (TRLIF) and UV-visible spectrophotometry, combined with chemo-metric methods. Three soft donor ligands (L) were selected for the study: 2,2':6;2{sup -}ter-pyridine (Tpy),4,6-tri-(pyridine-2-yl)-1,3,5-triazine (Tptz) and 2,6-bis-(5,6-dimethyl-1,2,4-triazine-3-yl)-pyridine (MeBtp). Tpy and Tptz exhibit moderate affinity (distribution ratio) and selectivity when used in the synergistic liquid-liquid extraction of americium(III) (with a lipophilic carboxylic acid). MeBtp is also very efficient, and extracts Am(III) with high selectivity; The TRLIF study analyzed the Eu(III) fluorescence emission spectrum. By analyzing the respective changes in the band intensities, and the lifetimes of the Eu(III) excited states, when the ligands were added in homogeneous phase, the following conclusions were drawn: - for Tpy and Tptz, only one EuL{sup 3+} complex species was detected, with a low symmetry in the first coordination sphere, and the Eu(III) hydration number (number of water molecules in the Eu(III) first sphere of coordination) in these complexes was found to be around 5-6; - for MeBtp, two species were detected, one with a low symmetry and a hydration number close to 5-6, the other with a high symmetry and almost completely dehydrated. This is indicative of the formation of the complexes: EuL{sup 3+} for L =Tpy and Tptz, and Eu(MeBtp){sup 3+} and Eu(MeBtp){sub 3}{sup 3+} in the case of MeBtp. The formation of these complexes, as well as the protonated ligands, was quantitatively studied using UV-visible spectrophotometry. In each case, the variation in the absorption spectrum of one species was monitored, while the concentration of the other was varied. The complex formation

  10. Complexation studies with lanthanides and humic acid analyzed by ultrafiltration and capillary electrophoresis-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Kautenburger, Ralf; Beck, Horst Philipp

    2007-08-03

    For the long-term storage of radioactive waste, detailed information about geo-chemical behavior of radioactive and toxic metal ions under environmental conditions is necessary. Humic acid (HA) can play an important role in the immobilisation or mobilisation of metal ions due to complexation and colloid formation. Therefore, we investigate the complexation behavior of HA and its influence on the migration or retardation of selected lanthanides (europium and gadolinium as homologues of the actinides americium and curium). Two independent speciation techniques, ultrafiltration and capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) have been compared for the study of Eu and Gd interaction with (purified Aldrich) HA. The degree of complexation of Eu and Gd in 25 mg l(-1) Aldrich HA solutions was determined with a broad range of metal loading (Eu and Gd total concentration between 10(-6) and 10(-4) mol l(-1)), ionic strength of 10 mM (NaClO4) and different pH-values. From the CE-ICP-MS electropherograms, additional information on the charge of the Eu species was obtained by the use of 1-bromopropane as neutral marker. To detect HA in the ICP-MS and separate between HA complexed and non complexed metal ions in the CE-ICP-MS, we have halogenated the HA with iodine as ICP-MS marker.

  11. Quantum chemical study of inner-sphere complexes of trivalent lanthanide and actinide ions on the corundum (110) surface

    Energy Technology Data Exchange (ETDEWEB)

    Polly, R.; Schimmelpfennig, B.; Rabung, T.; Kupcik, T.; Klenze, R.; Geckeis, H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung (INE); Floersheimer, M. [Hochschule RheinMain, Ruesselsheim (Germany). Fachbereich Ingenieurwissenschaften

    2013-11-01

    Sorption plays a major role in the safety assessment of nuclear waste disposal. In the present theoretical study we focused on understanding the interaction of trivalent lanthanides and actinides (La{sup 3+}, Eu{sup 3+} and Cm{sup 3+}) with the corundum (110) surface. Optimization of the structures were carried out using density functional theory with different basis sets. Additionally, Moeller-Plesset perturbation theory of second order was used for single point energy calculations. We studied the structure of different inner-sphere complexes depending on the surface deprotonation and the number of water molecules in the first coordination shell. The most likely structure of the inner-sphere complex (tri- or tetradentate) was predicted. For the calculations we used a cluster model for the surface. By deprotonating the cluster a chemical environment at elevated pH values was mimicked. Our calculations predict the highest stability for a tetradentate inner-sphere surface complexes with five water molecules remaining in the first coordination sphere of the metal ions. The formation of the inner-sphere complexes is favored when a coordination takes place with at most one deprotonated surface aluminol group located beneath the inner-sphere complex. The mutual interaction between sorbing metal ions at the surface is studied as well. The minimal possible distance between two inner-sphere sorbed metal ions at the surface was determined to be 530 pm. (orig.)

  12. Study of the selectivity of poly-nitrogenous extracting molecules in the complexation of actinides (III) and lanthanides (III) in solution in anhydrous pyridine; Etude de la selectivite de molecules extractantes polyazotees dans la complexation des actinides (III) et des lanthanides (III) en solution dans la pyridine anhydre

    Energy Technology Data Exchange (ETDEWEB)

    Riviere, Ch

    2000-10-05

    The aim of this work is to better understand the factors which contribute to the separation of lanthanides(III) and actinides(III). Polydentate nitrogenous molecules present an interesting selectivity. A thermodynamic study of the complexation in pyridine of lanthanide and uranium by the bipyridine ligand (bipy) has been carried out. The formation constants and the thermodynamic values of the different complexes have been determined. It has been shown that the bipy complexes formation is controlled by the enthalpy and unfavored by the entropy. The conductometry has revealed too a significant difference in the uranium and lanthanides complexation by the bipyridine ligand. The use of the phenanthroline ligand induces a better complexation of the metallic ions but the selectivity is not improved. On the other hand, the decrease of the basicity and the increase of the ligand denticity (for instance in the case of the use of ter-pyridine) favour the selectivity without improving the complexation. The selectivity difference for the complexation of actinides(III) and lanthanides(III) by the different studied ligands (independent systems) has been confirmed by experiments of inter-metals competition. (O.M.)

  13. Factors Affecting the Efficiency of Excited-States Interactions of Complexes between Some Visible Light-Emitting Lanthanide Ions and Cyclophanes Containing Spirobiindanol Phosphonates

    Directory of Open Access Journals (Sweden)

    M. S. Attia

    2007-01-01

    Full Text Available The efficiency of excited-states interactions between lanthanide ions Tb3+ and Eu3+ and some new cyclophanes (I, II, and III has been studied in different media. High luminescence quantum yield values for terbium and europium complexes in DMSO and PMMA were obtained. The photophysical properties of the green and red emissive Tb3+ and Eu3+ complexes have been elucidated, respectively.

  14. CD Spectroscopic Study on the Molecular Recognition of Chiral Salen-Metal Complexes

    Institute of Scientific and Technical Information of China (English)

    刘涛; 阮文娟; 南晶; 朱志昂

    2003-01-01

    The molecular recognition behavior of the chiral salen-metal complexes towards guest molecules, such as imidazole derivatives and amino-acid ester, was systematically investigated by means of circular dichroism (CD) spectra. The coordination numbers of the host-guest complexes as well as the recognition capability of the salen-metal complexes were explained by character and intensity analyses of the CD spectra.

  15. Lanthanide(III) di- and tetra-nuclear complexes supported by a chelating tripodal tris(amidate) ligand.

    Science.gov (United States)

    Brown, Jessie L; Jones, Matthew B; Gaunt, Andrew J; Scott, Brian L; MacBeth, Cora E; Gordon, John C

    2015-04-20

    Syntheses, structural, and spectroscopic characterization of multinuclear tris(amidate) lanthanide complexes is described. Addition of K3[N(o-PhNC(O)(t)Bu)3] to LnX3 (LnX3 = LaBr3, CeI3, and NdCl3) in N,N-dimethylformamide (DMF) results in the generation of dinuclear complexes, [Ln(N(o-PhNC(O)(t)Bu)3)(DMF)]2(μ-DMF) (Ln = La (1), Ce (2), Nd(3)), in good yields. Syntheses of tetranuclear complexes, [Ln(N(o-PhNC(O)(t)Bu)3)]4 (Ln = Ce (4), Nd(5)), resulted from protonolysis of Ln[N(SiMe3)2]3 (Ln = Ce, Nd) with N(o-PhNCH(O)(t)Bu)3. In the solid-state, complexes 1-5 exhibit coordination modes of the tripodal tris(amidate) ligand that are unique to the 4f elements and have not been previously observed in transition metal systems.

  16. Synthesis, crystal structure, and luminescent properties of 2-(2,2,2-trifluoroethyl)-1-indone lanthanide complexes.

    Science.gov (United States)

    Li, Jingya; Li, Hongfeng; Yan, Pengfei; Chen, Peng; Hou, Guangfeng; Li, Guangming

    2012-05-07

    A new β-diketone, 2-(2,2,2-trifluoroethyl)-1-indone (TFI), which contains a trifluorinated alkyl group and a rigid indone group, has been designed and employed for the synthesis of two series of new TFI lanthanide complexes with a general formula [Ln(TFI)(3)L] [Ln = Eu, L = (H(2)O)(2) (1), bpy (2), and phen (3); Ln = Sm, L = (H(2)O)(2) (4), bpy (5), and phen (6); bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline]. X-ray crystallographic analysis reveals that complexes 1-6 are mononuclear, with the central Ln(3+) ion eight-coordinated by six oxygen atoms furnished by three TFI ligands and two O/N atoms from ancillary ligand(s). The room-temperature photoluminescence (PL) spectra of complexes 1-6 show strong characteristic emissions of the corresponding Eu(3+) and Sm(3+) ions, and the substitution of the solvent molecules by bidentate nitrogen ligands essentially enhances the luminescence quantum yields and lifetimes of the complexes.

  17. Synthesis, spectroscopic characterization and thermal studies of some lanthanide(Ⅲ) nitrate complexes with a hydrazo derivative of 4-aminoantipyrine

    Institute of Scientific and Technical Information of China (English)

    K. Mohanan; C.J. Athira; Y. Sindhu; M.S. Sujamol

    2009-01-01

    A heterocyclic ligand synthesized by the coupling of diazotized 4-aminoantipyrine with acetylacetone reacted with lanthanide(Ⅲ) nitrate to form complexes of the type [Ln(HAAP)2(NO3)3] where, Ln=La(Ⅲ), Ce(Ⅲ), Pr(Ⅲ), Nd(Ⅲ), Sm(Ⅲ), or Gd(Ⅲ) and HAAP=3-{[2-(N-1-pheny1-2,3-dimethylpyrazol-3-in-5-on-4-yl)]hydrazone}pent-2,3,4-trione. The ligand and metal complexes were characterized on the basis of elemental analysis, molar conductance, magnetic susceptibility measurements, UV-Visible, infrared, far infrared and proton NMR spectral data. The spectral data revealed that the ligand existed in the hydrazo form and coordinated to the metal ion without deproto-nation in a neutral tridentate manner, through carbonyl oxygen of pyrazolone ring, hydrazo nitrogen and carbonyl oxygen of the acetylace-tone moiety. The molar conductance values adequately supported their non-electrolytic nature. The ligand and the praseodymium(Ⅲ) com-plex were subjected to X-ray diffraction studies. Thermal decomposition behavior of the lanthanum(Ⅲ) complex was also examined.moiety.

  18. Synthesis and luminescent properties of novel lanthanide(III) beta-diketone complexes with nitrogen p,p'-disubstituted aromatic ligands.

    Science.gov (United States)

    Bellusci, Anna; Barberio, Giovanna; Crispini, Alessandra; Ghedini, Mauro; La Deda, Massimo; Pucci, Daniela

    2005-03-21

    Tris-beta-diketonate lanthanide(III) complexes (Ln = Eu, Er, Yb, Tb), of general formula [Ln(acac)3 L(m)], with chelating ligands such as 4,7-disubstituted-1,10-phenanthrolines and 4,4'-disubstituted-2,2'-bipyridines, have been synthesized and fully characterized. The inductive effects of the para-substituents on the aromatic N-donor ligands have been investigated both in the solid and in the solution states. Single-crystal X-ray structures have been determined for the diethyl 1,10-phenanthroline-4,7-dicarboxylate europium and 4,4'-dimethoxy-2,2'-bipyridine erbium derivatives, revealing a distorted square antiprismatic geometry around the lanthanide atom in both cases. The influence exerted by the p,p'-substituents with respect to the nitrogen coordinating atoms on the Ln-N bond distances is discussed comparing the geometrical parameters with those found for the crystal structures containing the fragments [Ln(III)(phen)] and [Ln(III)(bipy)] obtained from the Cambridge Structural Database. The influence exerted by the electron-attracting groups on the coordination ability of the ligands, that in some cases becomes lack of coordination of the lanthanide ions, has been also detected in solution where the loss of the ligand has been followed by UV-vis spectroscopy. Moreover, the use of relatively long alkoxy chains as substituents on the 1,10-phenanthroline ligand led to the formation of a promesogenic lanthanide complex, whose thermal behavior is encouraging for the synthesis of new lanthanide liquid-crystalline species.

  19. Asymmetric Michael Reaction of Malononitrile Catalyzed by Chiral Ru(Ⅱ) Complex and Achiral Base

    Institute of Scientific and Technical Information of China (English)

    MA Ya-Ping; XING Zhi-Kui; ZHU Jin; CUI Xin; CUN Lin-Feng; DENG Jin-Gen

    2003-01-01

    @@ Michael addition reactions represent one of the most important carbon-carbon bond forming reactions in modern synthetic organic chemistry. [1 ~3] We achieved catalytic enantioselective Michael addition reactions of malononitrile with chiral vicinal diamine-Ru(Ⅱ) complex in the presence of achiral base. High yields and moderate ee were observed.

  20. Enantioselective Conjugate Addition of Grignard Reagents to Enones Catalyzed by Chiral Zinc(II) Complexes

    NARCIS (Netherlands)

    Jansen, Johan F.G.A.; Feringa, Bernard

    1990-01-01

    Various chiral zinc(II) complexes catalyze the asymmetric 1,4-addition of Grignard reagents to α,β-unsaturated ketones with high chemoselectivities (yields of 1,4-adducts, 83-99%), high regioselectivities (1,4/1,2 ratios up to 499) and modest enantioselectivities (ee up to 33%). A study of several f

  1. Detection Limits for Natural Circular Dichroism of Chiral Complexes in the X-ray Range

    NARCIS (Netherlands)

    Goulon, José; Sette, Francesco; Moise, Claude; Fontaine, Alain; Perey, Danièle; Rudolf, Petra; Baudelet, François

    1993-01-01

    Whereas both Magnetic Circular Dichroism and Faraday Rotation studies have been successfully carried out at the K-, L- and M- absorption edges of metal atoms in ferromagnetic systems, Natural optical activity of chiral complexes has not yet been detected quite unambiguously in the X-ray range. We re

  2. Novel Chiral PNNP-Ru Complexes: Synthesis and Application in Asymmetric Transfer Hydrogenation of Ketones

    Institute of Scientific and Technical Information of China (English)

    CHENG Zhi-bo; YU Shen-luan; LI Yan-yun; DONG Zhen-rong; SUN Guo-song; HUANG Ke-lin; GAO Jing-xing

    2011-01-01

    The efficient catalytic systems generated in situ from RuCl2(PPh3)3 and chiral ligands N,N-bis[2-(di-otolylphosphino)-benzyl]cyclohexane-l,2-diamine(2) were employed for asymmetric transfer hydrogenation of aromatic ketones, giving the corresponding optically active alcohols with high activities(up to 99% conversion) and excellent enantioselectivities(up to 96% e.e.) under mild conditions. The chiral ruthenium(Ⅱ) complex (R,R)-3 has been prepared and characterized by NMR and X-ray crystallography.

  3. Full simulation of chiral Random Matrix Theory at non-zero chemical potential by Complex Langevin

    CERN Document Server

    Mollgaard, A

    2014-01-01

    It is demonstrated that the complex Langevin method can simulate chiral random matrix theory at non-zero chemical potential. The successful match with the analytic prediction for the chiral condensate is established through a shift of matrix integration variables and choosing a polar representation for the new matrix elements before complexification. Furthermore, we test the proposal to work with a Langevin-time dependent quark mass and find that it allows us to control the fluctuations of the phase of the fermion determinant throughout the Langevin trajectory.

  4. Full simulation of chiral random matrix theory at nonzero chemical potential by complex Langevin

    Science.gov (United States)

    Mollgaard, A.; Splittorff, K.

    2015-02-01

    It is demonstrated that the complex Langevin method can simulate chiral random matrix theory at nonzero chemical potential. The successful match with the analytic prediction for the chiral condensate is established through a shift of matrix integration variables and choosing a polar representation for the new matrix elements before complexification. Furthermore, we test the proposal to work with a Langevin-time-dependent quark mass and find that it allows us to control the fluctuations of the phase of the fermion determinant throughout the Langevin trajectory.

  5. Synthesis and CD Spectra of Chiral Molybdenum-fullerenyl Complexes with Pineno-bipyridine Ligands

    Institute of Scientific and Technical Information of China (English)

    Hui ZHANG; Cai Fei ZHU; Li LI; Wei ZOU; Yong Qing HUANG; Jing Xing GAO

    2004-01-01

    The synthesis and characterization of two chiral fullerene complexes (+) CD430- [Mo(η2-C60)(CO)3(LRR)] 1 and (-)CD430-[Mo(η2-C60)(CO)3(LSS)] 2 were described. The CD spectra of 1 and 2 in the visible range show weak Cotton effects, which are approximately of mirror image, indicating that the appended pineno-groups with opposite chirality in bipyridines can perturb the fullerene chromophores through the molybdenum centers and lead to induced CD effects.

  6. Synthesis, characterization and antibacterial activity of new complexes of some lanthanide ions with 15-crown-5 and 18-crown-6

    Directory of Open Access Journals (Sweden)

    Hussein Al-Amery

    2016-05-01

    Full Text Available Complexes of some lanthanide picrates (Ln3+ = Pr3+, Nd3+ and Dy3+ with 15-crown-5 and 18-crown-6 were synthesized and characterized by elemental analysis, ICP-AES, FTIR, 1H-NMR, 13C-NMR and UV-Visible spectrophotometric methods, thermal analysis (TGA & DTG, magnetic susceptibility , molar conductance and melting points. Also an in-vitro study on pathogenic gram positive (Staphylococcus aureus and pathogenic gram negative bacteria (Escherichia coli, Salmonella and pseudomonas aeruginosa was performed and the results were compared to those of a broad spectrum antibiotic (Chloramphinicol. The complexes of 15-crown-5 have the general formula [Ln(15C52(Pic]Pic2.nH2O where (Ln3+ = Nd3+ and Dy3+, (Pic = Picrate anion and (n = 2 or 4 except for Pr3+ complex which has the formula [Pr(15C5]Pic3.H2O , the 18-crown-6 complexes have the general formula [Ln(18C6]Pic3 where (Ln3+ = Pr3+ and Nd3+ except for Dy3+ complex which has the formula [Dy(18C6(Pic]Pic2.3H2O. In 15-crown-5 complexes both Nd3+ and Dy3+ were coordinated with two 15-crown-5 ligands and one picrate anion through its phenolic oxygen and the oxygen of it’s ortho nitro group, except for Pr3+ which was coordinated with only one 15-crown-5 ligand leaving three picrate anions as counter ions. In 18-crown-6 complexes both Pr3+ and Nd3+ were coordinated with one 18-crown-6 ligand leaving all the three picrate anions as counter ions outside the coordination sphere, except for the Dy3+ complex which was coordinated with one 18-crown-6 ligand and one picrate anion.

  7. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Mingjing [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Ye Zhiqiang, E-mail: zhiqiangye2001@yahoo.com.cn [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Xin Chenglong [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Yuan Jingli, E-mail: jingliyuan@yahoo.com.cn [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer A lanthanide complex-based ratiometric luminescent pH sensor was developed. Black-Right-Pointing-Pointer The sensor can luminously respond to pH in weakly acidic to neutral media. Black-Right-Pointing-Pointer The sensor can be used for monitoring pH with time-resolved luminescence mode. Black-Right-Pointing-Pointer The sensor can be also used for monitoring pH with absorbance mode. Black-Right-Pointing-Pointer The utility of the sensor for the luminescent cell imaging was demonstrated. - Abstract: Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4 Prime -hydroxy-2,2 Prime :6 Prime ,2 Prime Prime -terpyridine-6,6 Prime Prime -diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu{sup 3+} and Tb{sup 3+} complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu{sup 3+} is strongly dependent on the pH values in weakly acidic to neutral media (pK{sub a} = 5.8, pH 4.8-7.5), while that of HTTA-Tb{sup 3+} is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu{sup 3+} and HTTA-Tb{sup 3+} (the HTTA-Eu{sup 3+}/Tb{sup 3+} mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb{sup 3+} emission at 540 nm to its Eu{sup 3+} emission at 610 nm, I{sub 540nm}/I{sub 610nm}, as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu{sup 3+}/Tb{sup 3+} mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A{sub 290nm

  8. Impact of the Kohn-Sham Delocalization Error on the 4f Shell Localization and Population in Lanthanide Complexes.

    Science.gov (United States)

    Duignan, Thomas J; Autschbach, Jochen

    2016-07-12

    The extent of ligand to metal donation bonding and mixing of 4f (and 5d) orbitals with ligand orbitals is studied by Kohn-Sham (KS) calculations for LaX3 (X = F, Cl, Br, I), GdX3, and LuX3 model complexes, CeCl6(2-), YbCp3, and selected lanthanide complexes with larger ligands. The KS delocalization error (DE) is quantified via the curvature of the energy for noninteger electron numbers. The extent of donation bonding and 4f-ligand mixing correlates well with the DE. For Lu complexes, the DE also correlates with the extent of mixing of ligand and 4f orbitals in the canonical molecular orbitals (MOs). However, the localized set of MOs and population analyses indicate that the closed 4f shell is localized. Attempts to create situations where mixing of 4f and ligand orbitals occurs due to a degeneracy of fragment orbitals were unsuccessful. For La(III) and, in particular, for Ce(IV), Hartree-Fock, KS, and coupled cluster singles and doubles calculations are in agreement in that excess 4f populations arise from ligand donation, along with donation into the 5d shell. Likewise, KS calculations for all systems with incompletely filled 4f shells, even those with "optimally tuned" functionals affording a small DE, produce varying degrees of excess 4f populations which may be only partially attributed to 5d polarization.

  9. Characteristics of Trivalent Lanthanides in Coordination Chemistry

    Institute of Scientific and Technical Information of China (English)

    Xue Dongfeng(薛冬峰); Zuo Sen(左森); Henryk Ratajczak

    2004-01-01

    Some basic characteristics of lanthanide-oxygen bonds in various trivalent lanthanide metal-organic complexes are quantitatively studied by the bond valence model. Some important relationships among the electronegativity, bond valence parameter, bond length and lanthanide coordination number in these complexes are generally found , which show that for each trivalent lanthanide cation all calculated parameters may well be correlated with its coordination number in their coordination complexes. Specifically,32 new data for the bond valence parameter are first calculated in this work.An approximate linear relationship between the Ln-O bond valence parameter and the coordination number of Ln3+ is obtained.The Ln-O bond length increases with the increase in the lanthanide coordination number.The difference of electronegative values decreases with the increase in the lanthanide coordination number.

  10. Solution and Structural Investigations of Ligand Preorganization in Trivalent Lanthanide Complexes of Bicyclic Malonamides

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Bevin W.; Gilbertson, Robert D.; Hutchison, J. E.; Rather Healey, Elisabeth; Weakley, Timothy J R; Rapko, Brian M.; Hay, Benjamin P.; Sinkov, Sergei I.; Broker, Grant A.; Rogers, Robin D.

    2006-02-20

    This report describes an investigation into the coordination chemistry of trivalentlanthanides in solution and the solid state with acyclic and preorganized bicyclic malonamide ligands. Two experimental investigations were performed: solution bindingaffinities were determined through single-phase spectrophotometric titrations and the extent of conformational change upon binding was investigated with single-crystal X-raycrystallography. Both experimental methods compare the bicyclic malonamide (BMA), which is designed to be preorganized for binding trivalent lanthanides, to an analogousacyclic malonamide. Results from the spectrophotometric titrations indicate that BMA exhibits a 10-100 times increase in binding affinity to Ln(III) over acyclic malonamide.In addition, BMA forms compounds with high ligand-metal ratios, even when competing with water and nitrate ligands for binding sites. The crystal structures exhibit nosignificant differences in the nature of the binding between Ln(III) and the BMA or acyclic malonamide. These results support the conclusion that rational ligand design canlead to compounds that enhance the binding affinities within a ligand class.

  11. Configuration-averaged open shell ab initio method for crystal field levels and magnetic properties of lanthanide(III) complexes

    CERN Document Server

    Heuvel, Willem Van den; Soncini, Alessandro

    2015-01-01

    We present an ab initio methodology dedicated to the determination of the electronic structure and magnetic properties of ground and low-lying excited states, i.e., the crystal field levels, in lanthanide(III) complexes. Currently, the most popular and successful ab initio approach is the CASSCF/RASSI-SO method, consisting of the optimization of multiple complete active space self-consistent field (CASSCF) spin eigenfunctions, followed by full diagonalization of the spin--orbit coupling (SOC) Hamiltonian in the basis of the CASSCF spin states featuring spin-dependent orbitals. Based on two simple observations valid for Ln(III) complexes, namely: (i) CASSCF 4f atomic orbitals are expected to change very little when optimized for different multiconfigurational states belonging to the 4f-electronic configuration, (ii) due to strong SOC the total spin is not a good quantum number, we propose here an efficient ab initio strategy which completely avoids any multiconfigurational calculation, by optimizing a unique s...

  12. Synthesis,Characterization and Application of Benzyl-substituted Cyclopentadienyl lanthanide Complexes as Catalyst Precursors for the Syndiotactic Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    QIAN,Yan-Long(钱延龙); BALA,Muhammad D.; XIE,Xiao-Min(谢小敏); HUANG,Ji-Ling(黄吉玲)

    2004-01-01

    Benzyl-substituted cyclopentadienyl lanthanide complexes were synthesized and characterized by elemental analysis, MS and IR spectroscopy. The analytical data point out the formation of monomeric, unsolvated complexes.In conjunction with Al(Et)3 as co-catalyst, the title complexes are efficient catalysts for the syndiotactic polymerization of methyl methacrylate. For the complex (C6H5CH2C5H4)2YCI, under the optimum polymerization conditions (60 ℃, n(MMA):n(catalyst):n(co-catalyst)= 1000:1:10), a predominantly syndiotactic (rr=66%) polymer of high molecular weight (Mη = 105000) was obtained.

  13. Lanthanide Complexes with Multidentate Oxime Ligands as Single-Molecule Magnets and Atmospheric Carbon Dioxide Fixation Systems.

    Science.gov (United States)

    Hołyńska, Małgorzata; Clérac, Rodolphe; Rouzières, Mathieu

    2015-09-14

    The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 (1: [La2 (pop)2 (acac)4 (CH3 OH)], 2: [Dy2 (pop)(acac)5 ]) are synthesized from the 2-hydroxyimino-N-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3, 4, and 5 (3: [Dy2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.85 CH3 CN⋅1.58 H2 O; 4: [Tb2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.52 CH3 CN⋅1.71 H2 O; 5: [La6 (CO3 )2 (naphthsao)5 (naphthsaoH)0.5 (acac)8 (CO3 )0.5 (CH3 OH)2.76 H5.5 (H2 O)1.24 ]⋅2.39 CH3 CN⋅0.12 H2 O) contain 1-(1-hydroxynaphthalen-2-yl)-ethanone oxime (naphthsaoH2 ). In 1-4, dinuclear [Ln2 ] complexes crystallize, whereas hexanuclear La(III) complex 5 is formed after fixation of atmospheric carbon dioxide. Dy(III) -based complexes 2 and 3 display single-molecule-magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy(3+) ions.

  14. Azobenzene-derived tris-β-diketonate lanthanide complexes: reversible trans-to-cis photoisomerization in solution and solid state.

    Science.gov (United States)

    Lin, Li-Rong; Wang, Xuan; Wei, Gao-Ning; Tang, Hui-Hui; Zhang, Hui; Ma, Li-Hua

    2016-10-14

    Novel azobenzene-derived β-diketonates (4,4,5,5,6,6,6-heptafluoro-1-azobenzene-1,3-hexanedione (LA), 4,4,5,5,6,6,6-heptafluoro-1-(4-dimethylamino)azobenzene-1,3-hexanedione (LB)) were designed and their complexes with lanthanide cations (La(3+), Eu(3+), Gd(3+), Yb(3+)) were prepared and characterized by (1)H NMR, FT-IR, and elemental analysis. Three of the complexes were crystallized successfully and identified by X-ray diffraction. It was significant to find that LA showed remarkably reversible trans-to-cis isomerization properties, however, LB, bearing an electron donor compared with LA, slowed down the isomerization to an extent. The presence of Ln(iii) enhanced the reversible trans-to-cis isomerization properties of both LA and LB a little upon photoirradiation in organic solvents, and amazingly increased the fatigue resistance. In addition, the complexes doped in polymethyl methacrylate (PMMA) films produced a similar phenomenon as well as when in solution. Theoretical calculations based on time dependent density functional theory (TD-DFT) were performed for geometry optimization and to determine the excitation energies of LA and LB to gain further insight into the electronic structure of the complexes, and the data were consistent with the experimental results. The excellent reversible photoisomerization properties of the newly designed Ln(iii) complexes can offer important advantages that will help with the further study of these materials to reach their full potential in applications such as molecular switching devices.

  15. Synthesis, crystal structure and effect of deuterated solvents and temperature on visible and near infrared luminescence of N4-donor Schiff base lanthanide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuo; Fan, Rui-Qing; Gao, Song; Wang, Xinming; Yang, Yu-Lin, E-mail: ylyang@hit.edu.cn

    2014-05-01

    A series of lanthanide complexes [LnL(NO{sub 3}){sub 3}]·CH{sub 3}CN [Ln=Ce, (1• Ce); Nd, (2• Nd); Tb, (3• Tb); Dy, (4• Dy); Ho, (5• Ho); Er, (6• Er); Tm, (7• Tm); Yb (8• Yb)] have been synthesized by the reaction of N4 chelate ligand N,N'-bis(2-pyridinylmethylene)cyclohexane-1,2-diamine (L) with lanthanide salts. Photoluminescence spectra of complexes 2• Nd, 3• Tb, 4• Dy, and 8• Yb show the strong characteristic luminescence from visible to near infrared (NIR) region. Further, the singlet state (32,467 cm{sup −1}) and the lowest triplet (23,202 cm{sup −1}) energy level of L are calculated, indicating that the energy transfer from L to Tb{sup 3+} ion is more effective than that to Dy{sup 3+} ion. An extended work is developed to discuss on the effect of deuterated reagent and temperature on luminescent properties of 3• Tb and 8• Yb. - Highlights: • A series of N4-donor Schiff base lanthanide complex are designed and synthesized. • The characteristic luminescence from visible to near infrared region could be revealed. • The influence of deuterated reagent and temperature on luminescent properties is described.

  16. Synthesis, characterization and DNA interaction studies of complexes of lanthanide nitrates with tris{2-[(3,4-dihydroxybenzylidene)imino]ethyl}amine

    Science.gov (United States)

    Liu, Min; Yuan, Wen-bing; Zhang, Qi; Yan, Lan; Yang, Ru-dong

    2008-10-01

    A new tripodal, hydroxyl-rich ligand, tris{2-[(3,4-dihydroxybenzylidene)imino]ethyl}amine (L), and its complexes with lanthanide nitrates were synthesized. These complexes which are stable in air with the general formula of [LnL(NO 3) 2]NO 3·H 2O (Ln = La, Sm, Eu, Gd, Y) were characterized by molar conductivity, elemental analysis, IR spectra and thermal analysis. The NO 3- groups coordinated to lanthanide mono-dentately, and the coordination number in these complexes may be 8. The interaction of complexes with DNA were investigated by ultraviolet and fluorescent spectra, which showed that the binding mode of complexes with DNA was intercalation, and the binding affinity with DNA were La(III) complex > Sm(III) complex > Eu(III) complex > Gd(III) complex > Y(III) complex. Based on these results, it can be shown that the La(III)complex is promising candidate for therapeutic reagents and DNA probes.

  17. Synthesis of New Chiral Benzimidazolylidene–Rh Complexes and Their Application in Asymmetric Addition Reactions of Organoboronic Acids to Aldehydes

    Directory of Open Access Journals (Sweden)

    Weiping He

    2016-09-01

    Full Text Available A series of novel chiral N-heterocyclic carbene rhodium complexes (NHC–Rh based on benzimidazole have been prepared, and all of the NHC–Rh complexes were fully characterized by NMR and mass spectrometry. These complexes could be used as catalysts for the asymmetric 1,2-addition of organoboronic acids to aldehydes, affording chiral diarylmethanols with high yields and moderate enantioselectivities.

  18. Novel polycarboxylated EDTA-type cyclodextrins as ligands for lanthanide binding: study of their luminescence, relaxivity properties of Gd(iii) complexes, and PM3 theoretical calculations.

    Science.gov (United States)

    Maffeo, Davide; Lampropoulou, Maria; Fardis, Michael; Lazarou, Yannis G; Mavridis, Irene M; Mavridou, Despoina A I; Urso, Elena; Pratsinis, Harris; Kletsas, Dimitris; Yannakopoulou, Konstantina

    2010-04-21

    Novel -type cyclodextrin (CD) derivatives, , and , bearing 6, 7 and 8 bis(carboxymethyl)amino (iminodiacetic acid) groups, respectively, were prepared, and their complexation with Eu(iii), Tb(iii) and Gd(iii) ions was studied. Luminescence titrations and mass spectrometry showed formation of multimetal complexes ( 2 to 3, mainly 3 and exactly 4 metal ions), whereas luminescence lifetime measurements revealed the presence of exchangeable water molecules. Semiempirical quantum mechanical calculations, performed by the PM3 method and assessed by DFT calculations on model ligands, indicated efficient multi-metal complexation, in agreement with the experiment. The structures showed coordination of the metal ions in the outer primary side of the CDs via 4 carboxylate O atoms, 2 N atoms and a glucopyranose O atom per metal ion. Coordination of water molecules was also predicted, in accordance with experimental results. Calculated bond lengths and angles were in agreement with literature experimental values of lanthanide complexes. Calculated energies showed that complex stability decreases in the order > > . (1)H NMR molecular relaxivity measurements for the Gd(iii) complexes of , or in water afforded values 4 to 10 times higher than the relaxivity of a commercial contrast agent at 12 MHz, and 6 to 20 times higher at 100 MHz. Solutions of and Gd(iii) complexes in human blood plasma displayed relaxivity values at 100 MHz 7 and 12 times, respectively, higher than the commercial agent. MTT tests of the Gd(iii) complexes using human skin fibroblasts did not show toxicity. Attempts to supramolecularly sensitize the luminescence of the lanthanide complexes using various aromatic CD guests were ineffective, evidently due to large guest-metal distances and inefficient inclusion. The described lanthanide complexes, could be useful as contrast agents in MRI.

  19. Photo-induced DNA cleavage activity and remarkable photocytotoxicity of lanthanide(III) complexes of a polypyridyl ligand.

    Science.gov (United States)

    Hussain, Akhtar; Gadadhar, Sudarshan; Goswami, Tridib K; Karande, Anjali A; Chakravarty, Akhil R

    2012-01-21

    Lanthanide(III) complexes [Ln(pyphen)(acac)(2)(NO(3))] (1, 2), [Ln(pydppz)(acac)(2)(NO(3))] (3, 4) and [La(pydppz)(anacac)(2)(NO(3))] (5), where Ln is La(III) (in 1, 3, 5) and Gd(III) (in 2, 4), pyphen is 6-(2-pyridyl)-1,10-phenanthroline, pydppz is 6-(2-pyridyl)-dipyrido[3,2-a:2',3'-c]phenazine, anacac is anthracenylacetylacetonate and acac is acetylacetonate, were prepared, characterized and their DNA photocleavage activity and photocytotoxicity studied. The crystal structure of complex 2 displays a GdO(6)N(3) coordination. The pydppz complexes 3-5 show an electronic spectral band at ~390 nm in DMF. The La(III) complexes are diamagnetic, while the Gd(III) complexes are paramagnetic with seven unpaired electrons. The molar conductivity data suggest 1 : 1 electrolytic nature of the complexes in aqueous DMF. They are avid binders to calf thymus DNA giving K(b) in the range of 5.4 × 10(4)-1.2 × 10(6) M(-1). Complexes 3-5 efficiently cleave supercoiled DNA to its nicked circular form in UV-A light of 365 nm via formation of singlet oxygen ((1)O(2)) and hydroxyl radical (HO˙) species. Complexes 3-5 also exhibit significant photocytotoxic effect in HeLa cancer cells giving respective IC(50) value of 0.16(±0.01), 0.15(±0.01) and 0.26±(0.02) μM in UV-A light of 365 nm, while they are less toxic in dark with an IC(50) value of >3 μM. The presence of an additional pyridyl group makes the pydppz complexes more photocytotoxic than their dppz analogues. FACS analysis of the HeLa cells treated with complex 4 shows apoptosis as the major pathway of cell death. Nuclear localization of complex 5 having an anthracenyl moiety as a fluorophore is evidenced from the confocal microscopic studies.

  20. Synthesis, thermodynamic properties and antibacterial activities of lanthanide complexes with 3,5-dimethoxybenzoic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jun-Ru [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Ren, Shu-Xia [Material Science and Engineering School, Shijiazhuang Tiedao University, Shijiazhaung 050043 (China); Ren, Ning [Department of Chemistry, Handan College, Handan 056005 (China); Zhang, Jian-Jun, E-mail: jjzhang6@126.com [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Da-Hai [Department of Chemistry, Handan College, Handan 056005 (China); Wang, Shu-Ping [College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China)

    2013-11-20

    Graphical abstract: Four novel complexes ([Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} (Ln = Tb(1), Dy(2), Er(3), Yb(4); 3,5-DmeoxBA = 3,5-dimethoxybenzoic acid; phen = 1,10-phenanthroline))were synthesized and characterized by elemental analysis, IR and TG/DSC-FTIR technology. Heat capacities of the four complexes were measured by differential scanning calorimetry (DSC). The antibacterial action of the four complexes on bacteria and fungus such as Escherichia coli, Staphylococcus aureus and Candida albicans were studied by filter paper approach. - Highlights: • Four novel complexes ([Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} were synthesized and characterized. • The thermal decomposition processes of the title complexes were studied using the TG/DSC–FTIR coupling techniques. • The heat capacities of the complexes were measured by (DSC). • The antibacterial action of the four complexes on Escherichia coli, Staphylococcus aureus and Candida albicans were studied. - Abstract: Four lanthanide complexes with a general formula [Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} (Ln = Tb(1), Dy(2), Er(3), Yb(4); 3,5-DmeoxBA = 3,5-dimethoxybenzoic acid; phen = 1,10-phenanthroline) were synthesized and characterized by elemental analysis, infrared spectra (IR), and thermogravimetric, differential scanning calorimetry techniques, combined with Fourier transform infrared (TG/DSC–FTIR) technology. The thermal decomposition processes of the four complexes were investigated by TG/DSC–FTIR techniques. Heat capacities were measured by DSC. The values of the experimental heat capacities were fitted to a polynomial equation with the least-squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions (H{sub T} − H{sub 298.15} {sub K}), (S{sub T} − S{sub 298.15} {sub K}), and (G{sub T} − G{sub 298.15} {sub K}) were calculated. The antibacterial action of the four complexes on bacteria and fungus such as Escherichia coli, Staphylococcus aureus and

  1. Catalytic Enantioselective Olefin Metathesis in Natural Product Synthesis. Chiral Metal-Based Complexes that Deliver High Enantioselectivity and More

    Science.gov (United States)

    Malcolmson, Steven J.; Meek, Simon J.; Zhugralin, Adil R.

    2012-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations. PMID:19967680

  2. Bromide complexation by the Eu(III) lanthanide cation in dry and humid ionic liquids: a molecular dynamics PMF study.

    Science.gov (United States)

    Chaumont, Alain; Wipff, Georges

    2012-05-14

    We report a molecular dynamics study on the EuBr(n)(3-n) complexes (n=0 to 6) formed upon complexation of Br(-) by Eu(3+) in the [BMI][PF(6)], [BMI][Tf(2)N] and [MeBu(3)N][Tf(2)N] ionic liquids (ILs), to compare the effect of the IL anion (PF(6)(-) versus Tf(2)N(-)), the IL cation (BMI(+) versus MeBu(3)N(+)) and the "IL humidity" on their solvation and stability. In "dry" solutions all complexes remain stable and the first coordination shell of Eu(3+) is purely anionic (Br(-) and IL anions), surrounded by IL cations (BMI(+) or MeBu(3)N(+) ions). Long range "onion type" solvation features (up to 20 Å from Eu(3+)), with alternating cation-rich and anion-rich solvent shells, are observed around the different complexes. The comparison of gas phase-optimized structures of EuBr(n)(3-n) complexes (that are unstable for n=5 and 6) with those observed in solution points to the importance of solvation forces on the nature of the complex, with a higher stabilization by imidazolium- than by ammonium-based dry ILs. Adding water to the IL has different effects, depending on the IL. In the highly hygroscopic [BMI][PF(6)] IL, Br(-) ligands are displaced by water, to finally form Eu(H(2)O)(9)(3+). In the less "humid" [BMI][Tf(2)N], the EuBr(n)(3-n) complexes do not dissociate and coordinate at most 1-2 H(2)O molecules. We also calculated the free-energy profiles (Potential of Mean Force calculations) for the stepwise complexation of Br(-), and found significant solvent effects. EuBr(6)(3-) is predicted to form in both [BMI][PF(6)] and [BMI][Tf(2)N], but not in [MeBu(3)N][Tf(2)N], mainly due to weaker interactions with the cationic solvation shell. First steps are found to be more exergonic in the PF(6)(-)- than in the Tf(2)N(-)-based IL. Molecular dynamics (MD) comparisons between ILs and classical solvents (acetonitrile and water) are also reported, affording good agreement with the experimental observations of Br(-) complexation by trivalent lanthanides in these classical

  3. Structural, luminescence and biological studies of trivalent lanthanide complexes with N,N Prime -bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine Schiff base ligand

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M. [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 (Jordan); Al Momani, Waleed [Department of Allied Medical Sciences, Al Balqa Applied University (Jordan)

    2012-11-15

    New eight lanthanide metal complexes were prepared. These complexes were characterized by elemental analysis, molar conductivity measurements, spectral analysis ({sup 1}H NMR, FT-IR, UV-vis), luminescence and thermal gravimetric analysis. All Ln(III) complexes were 1:1 electrolytes as established by their molar conductivities. The microanalysis and spectroscopic analysis revealed eight-coordinated environments around lanthanide ions with two nitrate ligands behaving in a bidentate manner. The other four positions were found to be occupied with tetradentate L{sub III} ligand. Tb-L{sub III} and Sm-L{sub III} complexes exhibited characteristic luminescence emissions of the central metal ions and this was attributed to efficient energy transfer from the ligand to the metal center. The L{sub III} and Ln-L{sub III} complexes showed antibacterial activity against a number of pathogenic bacteria. - Highlights: Black-Right-Pointing-Pointer Ln(III) ion adopts an eight-coordinate geometry. Black-Right-Pointing-Pointer Luminescence spectra of Sm-L{sub III} and Tb-L{sub III} complexes display the metal centered line emission. Black-Right-Pointing-Pointer Energy transfer process from L{sub III} to Sm in Sm-L{sub III} complex is more efficient than to Tb in Tb-L{sub III} complex. Black-Right-Pointing-Pointer Ln(III) complexes may serve as models for biologically important species.

  4. Highly enantioselective asymmetric autocatalysis using chiral ruthenium complex-ion-exchanged synthetic hectorite as a chiral initiator.

    Science.gov (United States)

    Kawasaki, Tsuneomi; Omine, Toshiki; Suzuki, Kenta; Sato, Hisako; Yamagishi, Akihiko; Soai, Kenso

    2009-03-21

    The synthetic hectorite containing intercalated chiral Delta- and Lambda-tris(1,10-phenanthroline)ruthenium(II) ions acts as a heterogeneous chiral catalyst in the enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde to afford, in combination with asymmetric autocatalytic amplification of enantiomeric excess, 5-pyrimidyl alkanol with high enantiomeric excess.

  5. Synthesis, chemistry and catalytic activity of complexes of lanthanide and actinide metals in unusual oxidation states and coordination environments. Progress report for period February 1, 1980-January 31, 1981. [none

    Energy Technology Data Exchange (ETDEWEB)

    Evans, W.J.

    1980-10-01

    Investigations are being conducted on two classes of lanthanide compounds: metal vapor co-condensation reactions with unsaturated hydrocarbons and homoleptic and heteroleptic alkyl lanthanide complexes. Three models have been considered for the interaction of erbium atoms with 3-hexyne. The structure of the heteroleptic alkynide ((C/sub 5/H/sub 5/)/sub 2/ErC triple bond CCMe/sub 3/)/sub 2/ was studied. Some new organolanthanides have been prepared. (DLC)

  6. Polyoxometalate complexes for oxidative kinetic resolution of secondary alcohols: unique effects of chiral environment, immobilization and aggregation.

    Science.gov (United States)

    Shi, Lei; Wang, Yizhan; Li, Bao; Wu, Lixin

    2014-06-28

    In this paper, the chiral surfactants bearing two long alkyl chains with hydroxyl groups at their terminals were synthesized and employed to encapsulate a catalytically efficient polyoxometalate through electrostatic interaction. The obtained chiral surfactant-encapsulated polyoxometalate complexes, in which a defined chiral microenvironment surrounds the inorganic cluster, were covalently immobilized into the silica matrix via a sol-gel process. Kinetic resolution of racemic aromatic alcohols was selected as the model reaction to evaluate the chiral supramolecular hybrid catalysts. Up to 89% enantiomeric excess was obtained by varying the reaction conditions. Importantly, the change of loading values of the chiral surfactant-encapsulated polyoxometalates leads to mutative inner microstructures ranging from uniform dispersion to subsequent formation of nanocrystalline domains in the silica matrix. Such a structural evolution differentiates the density and stability of the chiral microenvironment, resulting in a regular change of enantioselectivity of the prepared asymmetric catalysts. Moreover, the fixation of the chiral microenvironment surrounding the polyoxometalates by covalent immobilization was proved to have a promoting effect on enantioselectivity. The present research uncovers the unique effect of immobilization on the kinetic resolution. The strategy helps to understand the influencing factors of enantioselectivity, and provides a convenient and efficient approach for the construction of supramolecular asymmetric catalysts based on chiral surfactant-encapsulated polyoxometalate complexes.

  7. Line bundle twisted chiral de Rham complex and bound states of D-branes on toric manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomenko, S.E., E-mail: spark@itp.ac.ru [Landau Institute for Theoretical Physics, 142432 Chernogolovka, Moscow region (Russian Federation); Moscow Institute of Physics and Technology, 141707 Dolgoprudny, Moscow region (Russian Federation)

    2014-04-15

    In this note we calculate elliptic genus in various examples of twisted chiral de Rham complex on two-dimensional toric compact manifolds and Calabi–Yau hypersurfaces in toric manifolds. At first the elliptic genus is calculated for the line bundle twisted chiral de Rham complex on a compact smooth toric manifold and K3 hypersurface in P{sup 3}. Then we twist chiral de Rham complex by sheaves localized on positive codimension submanifolds in P{sup 2} and calculate in each case the elliptic genus. In the last example the elliptic genus of chiral de Rham complex on P{sup 2} twisted by SL(N) vector bundle with instanton number k is calculated. In all the cases considered we find the infinite tower of open string oscillator contributions and identify directly the open string boundary conditions of the corresponding bound state of D-branes.

  8. STEREOREGULARITY OF POLY (METHYL METHACRYLATE) OBTAINED WITH CHIRAL ANIONIC COMPLEX INITIATOR

    Institute of Scientific and Technical Information of China (English)

    CHEN Chuanfu; REN Changyu; XI Fu

    1995-01-01

    The stereoregular polymerization of methyl methacrylate (MMA) have been investigated with chiral anionic complex initiator[FlLi-(-)SP]in toluene,THF and toluene/THF [1/1(v/v)].The tacticities of PMMAs obtained in the three solvents have been found to be mainly a syndiotactic triads (s-PMMA)with content of 72.3,67.7 and 71.4% ,respectively.

  9. Reconnaissance chirale dans des complexes moléculaires neutres et ioniques

    OpenAIRE

    Sen, Ananya

    2012-01-01

    The main objective of this thesis is a spectroscopic study of molecules or complexes bearing multiple chiral centres in the gas phase, to understand the effects of stereochemistry on their structural properties. Neutral cinchona alkaloids have been introduced intact in gas phase by laser-ablation. They have been studied by combining supersonic expansion with laser spectroscopy. The two pseudo-enantiomers Quinine and Quinidine show similar electronic and vibrational spectra, in line with simil...

  10. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  11. Asymmetric catalysis mediated by the ligand sphere of octahedral chiral-at-metal complexes.

    Science.gov (United States)

    Gong, Lei; Chen, Liang-An; Meggers, Eric

    2014-10-06

    Due to the relationship between structure and function in chemistry, access to novel chemical structures ultimately drives the discovery of novel chemical function. In this light, the formidable utility of the octahedral geometry of six-coordinate metal complexes is founded in its stereochemical complexity combined with the ability to access chemical space that might be unavailable for purely organic compounds. In this Minireview we wish to draw attention to inert octahedral chiral-at-metal complexes as an emerging class of metal-templated asymmetric "organocatalysts" which exploit the globular, rigid nature and stereochemical options of octahedral compounds and promise to provide new opportunities in the field of catalysis.

  12. Lanthanide complexes of tritopic bis(hydrazone) ligands: single-molecule magnet behavior in a linear Dy(III)3 complex.

    Science.gov (United States)

    Anwar, Muhammad U; Tandon, Santokh S; Dawe, Louise N; Habib, Fatemah; Murugesu, Muralee; Thompson, Laurence K

    2012-01-16

    Tritopic pyridinebis(hydrazone)-based ligands typically produce square M(9) [3 × 3] grid complexes with first-row transition-metal ions (e.g., M = Mn, Fe, Co, Cu, Zn), but with larger lanthanide ions, such coordination motifs are not produced, and instead linear trinuclear complexes appear to be a preferred option. The reaction of 2pomp [derived from pyridine-2,6-bis(hydrazone) and 2-acetylpyridine] with La(III), Gd(III), and Dy(III) salts produces helical linear trinuclear [Ln(3)(2pomp)(2)]-based complexes, where each metal ion occupies one of the three tridentate ligand pockets. Two ligands encompass the three metal ions, and internal connections between metal ions occur through μ-O(hydrazone) bridges. Coligands include benzoate, nitrate, and N,N-dimethylformamide. The linear Dy(III)(3) complex exhibits single-molecule magnet behavior, demonstrated through alternating-current susceptibility measurements. Slow thermal magnetic relaxation was detected in an external field of 1800 Oe, where quantum-tunneling effects were suppressed (U(eff) = 14 K).

  13. Luminescence, magnetocaloric effect and single-molecule magnet behavior in lanthanide complexes based on a tridentate ligand derived from 8-hydroxyquinoline.

    Science.gov (United States)

    Shen, Hai-Yun; Wang, Wen-Min; Bi, Yan-Xia; Gao, Hong-Ling; Liu, Shuang; Cui, Jian-Zhong

    2015-11-21

    A new family of lanthanide complexes, [Ln2(hfac)4L2] (Ln = Eu (1), Gd (2), Tb (3), Dy (4), Ho (5), Er (6), Lu (7); hfac = hexafluoroacetylacetonate, HL = 2-(2′-benzothiazole)-8-hydroxyquinoline), was synthesized and characterized using single-crystal X-ray diffraction, elemental analysis (EA), thermal gravimetric analysis (TGA), powder X-ray diffraction (PXRD) and UV-vis spectra. X-ray crystallographic analyses reveal that 1–7 are isomorphous and crystallize in the monoclinic space group C2/c. In these dinuclear complexes, each LnШ ion is eight-coordinated with two bidentate hfac and two μ-phenol bridging L ligands. The TGA results show that the complexes have relatively high thermal stabilities. Complexes 1 and 3 show the characteristic transitions of the corresponding lanthanide ions with ligand-related emission peaks. Meanwhile, complexes 4 and 7 exhibit ligand-centered fluorescence at room temperature. Magnetic measurements were carried out on complexes 2–6. The magnetic study reveals that 2 displays a magnetocaloric effect, with a maximum −ΔSm value of 16.89 J K−1 kg−1 at 2 K for ΔH = 8 T. Dynamic magnetic studies reveal single-molecule magnet (SMM) behavior for complex 4. Fitting the dynamic magnetic data to the Arrhenius law gives an energy barrier ΔE/kB = 50.33 K and pre-exponential factor τ0 = 1.05 × 10(-8)s.

  14. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Science.gov (United States)

    Díaz, Jairo A; Jaramillo, Natalia A; Murillo, Mauricio F

    2007-12-12

    The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must

  15. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further

  16. Critical analysis of the data on complexation of lanthanides and actinides by natural organic matter: particular case of humic substances; Analyse critique des donnees de complexation des lanthanides et actinides par la matiere organique naturelle: cas des substances humiques

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P.

    2010-07-01

    This document proposes a critical analysis of the models that describe the actinides and lanthanides complexation by natural organic matter in general and by humic substances in particular. In order to better delimit the particular properties of these substances the most influent physical and chemical properties on complexation are recalled as a preamble. Models as well as data that has been used are reviewed, compiled, and eventually compared to independent data in order to identify (i) their application domain, (ii) the possible simplifications which permit to obtain operational models, (iii) the conditions in which simplifications cannot be ascertained yet, and (iv) the data or fields of knowledge which are still too uncertain. A comparison between the different models is proposed in order to adapt parameters from one model to another minimising the experimental acquisitions, or at least to focus on missing data. Usually, data on the complexation of free ions M{sup z+} are reliable; as soon as hydrolysis, or competition with another ligand in general, in at stake data are much less reliable. Predictions from models are much more uncertain: formation of mixed complexes with hydroxide or carbonate anions is not univocal whatever the modelling strategy. Hints for transfer functions between models which are believed to be incompatible could be explored in order to justify necessary simplifications for using operational modelling. Influence on the solubility of oxides could be quantified, but it is difficult to clearly separate it from colloidal particles stabilisation. The account of the competition between cations by the models has also been tested. In view of the small number of available experimental data there still lie some uncertainties especially for the media that are close to neutrality and in the case of competition with magnesium, but overall in the case of the competition with aluminium and iron. The influence of redox activity of humic substances is

  17. Synthesis and Application of Lanthanide Complexes with Schiff Base of Pridoxylidence-Glycine

    Institute of Scientific and Technical Information of China (English)

    黄晓华; 周青; 王玉红; 王云翔; 李奚; 王小锋; 李邨

    2002-01-01

    A series of novel rare earths complexes with Schiff base of pridoxylidence-glycine acid (HL) were synthesized in absolute methanol under argon atmosphere. The complexes were characterized by elemental analysis, molar conductivity, IR, UV spectra, and H-NMR spectra et al. Data indicate that the complexes have a general formula Ln LCl2*3H2O (Ln=La, Y, Sm, Gd, Dy, Yb; L=C10H11N2O4). Effects of the complexes (Ln=La) on physiological and biochemical indexes of plants under Pb stress were studied. The experiments shown that the complexes obviously mitigated Pb pollution results in decreasing of chlorophyll content, rising of cell membrane permeability, changing catalase(CAT) and distribution of Pb.

  18. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    Science.gov (United States)

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  19. Crystal structures and fluorescence properties of lanthanide complexes prepared with 2,2'-biphenyldicarboxylic acid and 2,2':6',2”-terpyridine

    Institute of Scientific and Technical Information of China (English)

    XIE Hongzhen; LU Guanzhong

    2013-01-01

    Five lanthanide complexes of Ln2(dpdc)2(tpy)2(NO3)2(H2O)2 [Ln=La (1),Ce (2),Pr (3),Sm (4),Gd (5),H2dpdc=2,2'-biphenyldicarboxylic acid and tpy=2,2':6',2''-terpyridine] were prepared at room temperature and characterized by X-ray diffiaction,FT-IR and thermo-gravimetric analysis.The results showed that complexes 1-5 were isostructural and consisted of dinuclear units [Ln2(dpdc)2(tpy)2(NO3)(H2O)2] bridged by two dpdc2-ligands.The dinuclear units with strong intramolecular hydrogen bonds were assembled into 2D supramolecular layers by the weak π…π staking interactions between pyridine rings of tpy.The TG analysis showed that the complexes 1-5 behaved higher thermal stability with no mass loss at < 320 ℃.The lanthanide contraction effect and the solid state luminescence properties of complexes 1-5 were also investigated.The luminescence emission spectra of complexes 1-5 exhibited ligands emission bands and complex 3 and 4 had no typical emission in the visible region.

  20. Self-aggregated dinuclear lanthanide(III) complexes as potential bimodal probes for magnetic resonance and optical imaging.

    Science.gov (United States)

    Regueiro-Figueroa, Martín; Nonat, Aline; Rolla, Gabriele A; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Charbonnière, Loïc J; Botta, Mauro; Platas-Iglesias, Carlos

    2013-08-26

    Homodinuclear lanthanide complexes (Ln = La, Eu, Gd, Tb, Yb and Lu) derived from a bis-macrocyclic ligand featuring two 2,2',2''-(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid chelating sites linked by a 2,6-bis(pyrazol-1-yl)pyridine spacer (H2L(3)) were prepared and characterized. Luminescence lifetime measurements recorded on solutions of the Eu(III) and Tb(III) complexes indicate the presence of one inner-sphere water molecule coordinated to each metal ion in these complexes. The overall luminescence quantum yields were determined (ϕ H2O = 0.01 for [Eu2(L(3))] and 0.50 for [Tb2(L(3))] in 0.01 M TRIS/HCl, pH 7.4; TRIS = tris(hydroxymethyl)aminomethane), pointing to an effective sensitization of the metal ion by the bispyrazolylpyridyl unit of the ligand, especially with Tb. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd2(L(3))] are characteristic of slowly tumbling systems, showing a low-field plateau and a broad maximum around 30 MHz. This suggests the occurrence of aggregation of the complexes giving rise to slowly rotating species. A similar behavior is observed for the analogous Gd(III) complex containing a 4,4'-dimethyl-2,2'-bipyridyl spacer ([Gd2(L(1))]). The relaxivity of [Gd2(L(3))] recorded at 0.5 T and 298 K (pH 6.9) amounts to 13.7 mM(-1)  s(-1). The formation of aggregates has been confirmed by dynamic light scattering (DLS) experiments, which provided mean particle sizes of 114 and 38 nm for [Gd2(L(1))] and [Gd2(L(3))], respectively. TEM images of [Gd2(L(3))] indicate the formation of nearly spherical nanosized aggregates with a mean diameter of about 41 nm, together with some nonspherical particles with larger size.

  1. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands; Simulations par mecanique quantique et dynamique moleculaire de la complexation de cations alcalino-terreux et lanthanides par des ligands polyaminocarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Durand, S

    1999-07-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA{sup 4-}, ethylene-diamino-tri-acetate-acetic acid EDTA(H){sup 3-}, tetra-aza-cyclo-dodecane-tetra-acetate DOTA{sup 4-}, methylene-imidine-acetate MIDA{sup 2-}) are reported. First, a consistent set of Lennard-Jones parameters for La{sup 3+}, Eu{sup 3+} and Lu{sup 3+} cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA{sup 4-}, EDTA(H){sup 3-}, DOTA{sup 4-} and 1:2 complexes of lanthanide cations with MIDA{sup 2-} were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca{sup 2+} vs Sr{sup 2+} and vs Ba{sup 2+} on the one hand, and with La{sup 3+} vs Eu{sup 3+} and vs Lu{sup 3+} on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  2. Computational study of organo-cesium complexes and the possibility of lanthanide/actinide ions substitution

    Science.gov (United States)

    Rabanal-León, Walter A.; Martinez-Ariza, Guillermo; Roberts, Sue A.; Hulme, Christopher; Arratia-Pérez, Ramiro

    2015-11-01

    Relativistic DFT calculations suggest that two organo-cesium complexes studied herein afford large HOMO-LUMO gaps of around 2.4 eV with the PBE xc-functional, which accounts for their stability. Energy decomposition studies suggest these two complexes are largely ionic with about 20% covalency. However, when the Cs+ ions are substituted by the isoelectronic La3+ and Th4+, their predicted ionicity decreases significantly. The significant increase in covalence indicates that employing Ugi reaction cascades that afford tetramic acid-based organo-cesium complexes may be extended to La3+ and Th4+ organometallics.

  3. One-dimensional chiral copper (II) complexes with novel nano-structures and superior antitumor activity.

    Science.gov (United States)

    Zhang, Wei Chuan; Tang, Xue; Lu, Xiaoming

    2016-03-01

    Three novel copper(II) compounds of formulas {[Cu(Phen)(Ala)]·NO3·H2O}n (1), {[Cu(Phen)(Ala)]·NO3}n (2) and [Cu(Ala)2]n (3) have been synthesized and determined by X-ray diffraction. 1 and 2 are shown in one dimensional long-chain chiral structures, and 3 is a two dimensional checkerboard-type structure. Both 1 and 2 displayed a higher anticancer activity than 3 against various cancer cells, even higher than the similar mononuclear complexes and clinical anticancer drug 5-fluorouracil. The noncancerous cell lines (CCC-HEL-1) have showed that complexes 1-3 have hardly any cytotoxicity. Transmission electron microscopy was studied to show the nano-structure and π function of two complexes. The ligand 1,10-phenanthroline inserted into its enantiomer lead complex 1 stable, and the π-π interaction outside the chain made complex 2 active, which is easy to crack and pile up together. In addition, the energy gaps, UV-vis, luminescent and cyclic voltammetry were experimented to show the stable one dimensional long-chain chiral structure and the π function of two complexes.

  4. Catalytic Asymmetric Coupling of 2-Naphthols by Chiral Tridentate Oxovanadium(IV) Complexes

    Institute of Scientific and Technical Information of China (English)

    HON; Sang-Wen

    2001-01-01

    A series of chiral oxovanadium(IV) complexes derived from tridentate N-3,5-substituted-, N-3,4-benzo-and N-5,6-benzo-salicylidene-α-amino acids can serve as efficient catalysts for the enantioselective oxidative couplings of various 3-, 6-, and 7-substituted 2-naphthols under O2. The best scenario involves the use of a vanadyl complex arising from 2-hydroxy-l-naphthaldehyde and valine (or phenylalanine) in CCl4, leading to BINOLs in good yields (75-100%) and with enantioselectivities of up to 68%.……

  5. Catalytic Asymmetric Coupling of 2-Naphthols by Chiral Tridentate Oxovanadium(IV) Complexes

    Institute of Scientific and Technical Information of China (English)

    HON Sang-Wen; LI Chun-Hsin; KUO Jen-Huang; BARHATE N. B.; LIU Yi-Hung; WANG Yu; CHEN Chien-Tien

    2001-01-01

    @@ A series of chiral oxovanadium(IV) complexes derived from tridentate N-3,5-substituted-, N-3,4-benzo-and N-5,6-benzo-salicylidene-α-amino acids can serve as efficient catalysts for the enantioselective oxidative couplings of various 3-, 6-, and 7-substituted 2-naphthols under O2. The best scenario involves the use of a vanadyl complex arising from 2-hydroxy-l-naphthaldehyde and valine (or phenylalanine) in CCl4, leading to BINOLs in good yields (75-100%) and with enantioselectivities of up to 68%.

  6. Metal Complexes:Novel Chiral Dopants with High Helical Twisting Power in Liquid Crystals

    Institute of Scientific and Technical Information of China (English)

    Manfred; Braun; R.Fleischer; A.Hahn; M.Engelmann; S.Schlecht

    2007-01-01

    1 Introduction A particularly efficient and elegant route to chiral mesophases is based on the addition of small amounts of an enantiomerically pure dopant to a nematic phase so that the latter is converted into a cholesteric phase(See Fig.1).Fig.1 A nematic phase is converted into a cholesteric phase Fig.2 Bis-chelated imine-alkoxy-titanium complexes2 ExperimetalBis-chelated imine-alkoxy-titanium complexes like 1 and 2 (Fig.2) have been synthesizedstarting from triphenyl-substituted aminoethanols, T...

  7. 六齿双Schiff碱稀土配合物的结构及发光%Structure and luminescence of hexa-bis-Schiff base lanthanide complexes

    Institute of Scientific and Technical Information of China (English)

    闫鹏飞; 杨帆; 李光明

    2011-01-01

    A large variety of multidentate ligands have been designed and synthesized for the preparation of lantha-nide complexes with desired functions. Hexa-bis-Schiff base, as one of the most known ligands with N2O4 cavity has been modified to various derivatives in respective to the expected functions. Correspondingly, a large number of Hexa-bis-Schiff base 3d- and/or 4f- metals complexes have been isolated, some of which exhibit intriguing luminescent properties. Especially, hexa-bis-Schiff base polynuclear lanthanide complexes with distinct luminescent properties are currently of interest because of their potential applications in the fabrication of novel materials and as probes in biological systems. In this paper, structure and luminescence of Hexa-bis-Schiff base lanthanide complexes are briefly summarized for those who are interested in this field.%稀土有机配合物作为重要的分子功能材料,由于具有光敏性强、发光效率高等特点,在生产生活的很多领域都具有广阔的应用前景.作为以分子发光材料和分子磁性材料为研究热点的Schiff碱稀土配合物,其合成、结构及其性能的研究吸引了大量国内外化学工作者的广泛关注.结合六齿Schiff碱稀土配合物结构及其性能的最新研究进展,对其新颖结构以及光学方面的性能研究进行概要介绍.

  8. 3,4,3-LI(1,2-HOPO): In Vitro Formation of Highly Stable Lanthanide Complexes Translates into Efficacious In Vivo Europium Decorporation

    Energy Technology Data Exchange (ETDEWEB)

    Sturzbecher-Hoehne, Manuel; Ng Pak Leung, Clara; Daleo, Anthony; Kullgren, Birgitta; Prigent, Anne-Laure; Shuh, David K.; Raymond, Kenneth N.; Abergel, Rebecca J.

    2011-07-13

    The spermine-based hydroxypyridonate octadentate chelator 3,4,3-LI(1,2-HOPO) was investigated for its ability to act as an antennae that sensitizes the emission of Sm{sup III}, Eu{sup III}, and Tb{sup III} in the Visible range (Φ{sub tot} = 0.2 - 7%) and the emission of Pr{sup III}, Nd{sup III}, Sm{sup III}, and Yb{sup III} in the Near Infra-Red range, with decay times varying from 1.78 μs to 805 μs at room temperature. The particular luminescence spectroscopic properties of these lanthanide complexes formed with 3,4,3-LI(1,2-HOPO) were used to characterize their respective solution thermodynamic stabilities as well as those of the corresponding La{sup III}, Gd{sup III}, Dy{sup III}, Ho{sup III}, Er{sup III}, Tm{sup III}, and Lu{sup III} complexes. The remarkably high affinity of 3,4,3-LI(1,2-HOPO) for lanthanide metal ions and the resulting high complex stabilities (pM values ranging from 17.2 for La{sup III} to 23.1 for Yb{sup III}) constitute a necessary but not sufficient criteria to consider this octadentate ligand an optimal candidate for in vivo metal decorporation. The in vivo lanthanide complex stability and decorporation capacity of the ligand were assessed, using the radioactive isotope {sup 152}Eu as a tracer in a rodent model, which provided a direct comparison with the in vitro thermodynamic results and demonstrated the great potential of 3,4,3-LI(1,2-HOPO) as a therapeutic metal chelating agent.

  9. Synthesis, characterization and thermolysis of lanthanide metal nitrate complexes with 1, 10-phenanthroline, Part-95

    Institute of Scientific and Technical Information of China (English)

    Nibha; BP Baranwal; Gurdip Singh; Constantin G. Daniliuc

    2014-01-01

    The nitrate complexes of cerium, praseodymium and neodymium with 1,10-phenanthroline (phen) of general formula [Ln(phen)2(NO3)2(H2O)2]·NO3 (where, Ln=Ce, Pr and Nd) were prepared and characterized by X-ray crystallography. Thermolysis of these complexes was investigated by simultaneous thermogravimetry (TG) and differential thermal analysis (DTA). Isothermal TG was taken to evaluate the kinetic parameters using model fitting as well as model free isoconversional methods. The thermolytic pathways were also suggested, which involves decomposition followed by ignition. All the three complexes had coordination number ten and showed multistep decompositions. In order to evaluate the response of rapid heating, ignition delay (Di) measurements were undertaken. The activation energies for ignition were found to decrease in the order: Nd>Pr>Ce.

  10. Synthesis, structure and luminescence property of 2D lanthanide complexes with 3-fluorophthalate and oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yu-E [Department of Chemistry, Capital Normal University, Beijing 100048 (China); Li, Xia, E-mail: xiali@mail.cnu.edu.cn [Department of Chemistry, Capital Normal University, Beijing 100048 (China); Song, Shuang [Department of Chemistry, Capital Normal University, Beijing 100048 (China)

    2012-12-15

    Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (Ln=Sm 1, Eu 2, Tb 3 and Dy 4; fpht=3-fluorophthalate and ox=oxalate) have been synthesized and structurally characterized by single crystal X-ray diffraction. The four complexes possess similar 2D framework structures constructed from Ln-fpht double-stranded helices and ox linkages. Complexes 2 and 3 display the characteristic emission {sup 5}D{sub 0}{yields}{sup 7}F{sub J} (J=0-4) transitions of Eu(III) ion and {sup 5}D{sub 4}{yields}{sup 7}F{sub J} (J=6-3) transitions of Tb(III) ion, respectively. The emission decay curves reveal a monoexponential behavior yielding the lifetime values of 0.266{+-}0.002 ms for 2 and 0.733{+-}0.002 ms for 3. The emission spectrum of 1 shows three weak bands corresponding to the characteristic emission {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 5/2}, {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 7/2} and {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 9/2} transitions of Sm(III) ion. The emission spectrum of 4 displays a broad band centered at 438 nm, which comes from the {pi}{sup Low-Asterisk }-{pi} transition of the ligand. - Graphical abstract: Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate, ox=oxalate) possess 2D structures. Sm(III), Eu(III) and Tb(III) complexes show the characteristic fluorescent emission of the Ln(III). Dy(III) complex displays ligand-based luminescent behavior. Highlights: Black-Right-Pointing-Pointer [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate; ox=oxalate) show 2D structures. Black-Right-Pointing-Pointer The 2D structures are constructed from Ln-fpht double-stranded helices and ox linkage. Black-Right-Pointing-Pointer The Sm(III), Eu(III) and Tb(III) complexes show the characteristic emission of the Ln(III) ions. Black-Right-Pointing-Pointer Dy(III) complex displays ligand-based luminescent behavior.

  11. Lanthanide triangles sandwiched by tetranuclear copper complexes afford a family of hendecanuclear heterometallic complexes [Ln(III)3Cu(II)8] (Ln = La-Lu): synthesis and magnetostructural studies.

    Science.gov (United States)

    Iasco, Olga; Novitchi, Ghenadie; Jeanneau, Erwann; Luneau, Dominique

    2013-08-05

    Reaction in ethanol of 3-hydroxymethylen-5-methylsalicylaldoxime (H3L) with CuCl2·2H2O and LnCl3·xH2O [Ln = La (1), Ce (2), Pr (3), Nd (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9), Yb (10), Lu (11), Ho (12)] allowed the synthesis of a family of hendecanuclear heterometallic copper(II)-lanthanide(III) clusters with general formula [Ln(III)3Cu(II)8(HL)6(μ4-O)2Cl6(H2O)8]Cl3 (1-12). According to the single-crystal X-ray diffraction investigation, the complexes are isomorphous and crystallize in the trigonal R32 group. The hendecanuclear cluster is formed by two tetrahedral μ4-oxo {Cu4} clusters assembled by three lanthanide ions sandwiched in between. Along the family, the separation between the {Cu4} moieties increases linearly from Lu to La in good correlation with ionic radius of the lanthanide ions. A comparative analysis of the magnetic data for the lanthanum (1) and lutetium (11) compounds shows the presence of ferromagnetic and antiferromagnetic interactions within the μ4-oxo {Cu4} moieties. For the gadolinium (6) and terbium (7) compounds, the magnetic interactions between the lanthanide and the copper ions are found to be ferromagnetic. The dysprosium (8) compound exhibits single-molecule magnet behavior.

  12. Solid-Liquid Extraction of Some Lanthanide Complexes with 1-Nitroso-2-Naphthol

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The extraction behavior of Sm(III), Eu(III) ,Er(III) and Yb(III) with 1- nitroso -2- naphthol (HA) in paraffin has been studied. The composition of extracted complexes has been determined to be LnA3 by slope analysis method. The effect of temperature on extraction system is also investigated and thermodynamic parameters are obtained.

  13. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    Science.gov (United States)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts.

  14. Syntheses and Structures of Two Mixed Ligands Lanthanide Complexes with N,N'-Substituted Adipamide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Crystal structures of neodymium (Ⅲ) and dysprosium (Ⅲ) nitrate complexes with the new ligand N, N'-dimethyl-N, N'-diphenyladipamide (mpaa) has been determined. Both complexes are triclinic with space group Pi ,formula [C22H30N5NdO12S]2 1 [C42H54N7DyO14S 2]Mr = 1465.62[1075.48], a = 8.541(1)[9.711(2)], b = 11.915(1)[16.017(3)], c = 15.906(1)[16.686(3)] A,α =107.22(1)[109.600(1)],β = 98.12(1)[92.50(1)], γ = 99.78(1) [96.22(1)]° ,μ=0.71073cn-1; R=0.0261 [0.0364], wR=0.0611 [0.0857] reflections with I>2 σ (Ⅰ). Complex (1)is dinuclear, in which two Nd(Ⅲ) ions are double-bridged by two mpaa ligands. And Dy(mpaa)2(dmso)(NO3)3 (2) (dmso= dimethylsulfoxide) is a mononuclear complex, in which one of the two C=O groups in MPAA is uncoordinated. In the two above complexes, each Ln(Ⅲ)ion is nine-coordinated including three bidenate nitrates, one dmso molecule and two carbonyl oxygens from two different mpaa ligands. Neutral monodentate dmso enters the coordination in diamides of the type (R1R2NCO)2(CH2)n was increased, the ligand prefers to act as a bridging reagent rather than a chelate.

  15. Structure of Complexes of Lanthanides with N,N'-Dimethyl-3-Oxa-Glutaramic Acid

    Institute of Scientific and Technical Information of China (English)

    Huang Nian; Wang Jianchen; Zhang Ping; Sun Dazhi; Zhang Jing; Liu Tao

    2005-01-01

    A new stripping agent N,N-dimethyl-3-oxa-glutaramic Acid (DOGA) was used in TRPO process to simplify the TRPO process. The structures of the complexes of the DOGA with Eu(Ⅲ), Nd(Ⅲ), La(Ⅲ) were characterized with extended X-ray absorption fine structure spectroscopy (EXAFS), infrared spectra (IR) and mass spectra (MS). The molecular formula of the complexes of Eu(Ⅲ) and Nd(Ⅲ) is deduced to be M(DOGA)3, and only La(Ⅲ) can form the complex HM(DOGA)4 under condition of high consistency of the DOGA. The coordination number of Ln(Ⅲ) in the complexes is 8, and all of coordinated donor atoms are O atoms. For Eu(Ⅲ), Nd(Ⅲ), the coordination numbers of O atom in the first coordination shell is 6 and the average coordination bond lengths of Ln-O are 0.240 nm, 0.244 nm respectively, while the numbers of the second O shell are 2.4, and the average coordination bond lengths of Ln-O are 0.260 nm, 0.262 nm. For La(Ⅲ), the coordination numbers of O atom in the first coordination shell is 6 and the average coordination bond lengths of La-O are 0.258 nm, while the number of O atom in the second coordination shell is 4.4, and the average coordination bond length of La-O is 0.28 nm. The results of IR and MS show that there is no water coordinating with Ln(Ⅲ) in the complexes.

  16. Complexation of Sn{sub 2}Se{sub 6} with lanthanide(III) centers influenced by ethylene polyamines: Solvothermal syntheses, crystal structures, and optical properties of lanthanide selenidostannates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunying; Wang, Fang; Chen, Ruihong; Jiang, Wenqing; Zhang, Yong; Jia, Dingxian, E-mail: jiadingxian@suda.edu.cn

    2013-08-15

    Lanthanide selenidostannates (H{sub 3}O){sub n}[Ce(tepa)(μ-1κ{sup 2}:2κ{sup 2}-Sn{sub 2}Se{sub 6})]{sub n} (1), [(Yb(tepa)(μ-OH)){sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})]{sub n}·nH{sub 2}O (2), [Htrien]{sub 2}[(Ln(trien)(tren)){sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})][Sn{sub 2}Se{sub 6}] (Ln=Ce(3), Nd(4)) and [(Yb(dien){sub 2}){sub 2}(μ-OH){sub 2}]Sn{sub 2}Se{sub 6} (5) were solvothermally prepared in different ethylene polyamines. The Sn{sub 2}Se{sub 6} unit connects [Ce(tepa)]{sup 3+} and [(Yb(tepa)(μ-OH)){sub 2}]{sup 4+} fragments with tetradentate μ-1κ{sup 2}Se{sup 1},Se{sup 2}:2κ{sup 2}Se{sup 5},Se{sup 6} and bidentate μ-1κSe{sup 1}:2κSe{sup 5} bridging coordination modes in tepa, to form polymers 1 and 2, respectively. It joins two [Ln(trien)(tren)]{sup 3+} fragments as a μ-1κSe{sup 1}:2κSe{sup 5} ligand to form binuclear complexes 3 and 4 in trien. Unlike the Sn{sub 2}Se{sub 6} units in 1–4 that bind with Ln(III) centers as Se-donor ligands, the Sn{sub 2}Se{sub 6} unit in 5 exists as a discrete ion. The syntheses of 1–5 show that the ethylene polyamines play an important role in the complexation of Sn{sub 2}Se{sub 6} ligand with Ln(III) centers. Compounds 1–5 exhibit optical band gaps in the range of 2.09–2.42 eV, which are influenced by the complexation of Sn{sub 2}Se{sub 6} with Ln(III) centers. - Graphical abstract: New lanthanide complexes concerning the Sn{sub 2}Se{sub 6} ligand were solvothermally prepared, and the effect of ethylene polyamines on the complexation of Sn{sub 2}Se{sub 6} with Ln(III) centers are observed. Highlights: • Lanthanide complexes concerning the selenidostannates have been solvothermally prepared in different ethylene polyamines. • A tetradentate μ-1κ{sup 2}Se{sup 1},Se{sup 2}:2κ{sup 2}Se{sup 5},Se{sup 6} and a bidentate μ-1κSe{sup 1}:2κSe{sup 5} bridging coordination modes for the Sn{sub 2}Se{sub 6} ligand is obtained. • The complexation of the Sn{sub 2}Se{sub 6} ligand with Ln(III) centers are

  17. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    Science.gov (United States)

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  18. Preparation of Lanthanide-Polymer Composite Material via Click Chemistry.

    Science.gov (United States)

    Chen, Bin; Wen, Guian; Wu, Jiajie; Feng, Jiachun

    2015-10-01

    Covalently attaching lanthanide complexes to the polymer backbone can effectively reduce the clustering of lanthanides and thus become an important strategy to fully unleash their potential. In this Communication, a metal-free click reaction is used for the first time to link a lanthanide complex to the polymer matrix. A diene-bearing copolymer with anthracenylmethyl methacrylate as a monomer and a dienophile-bearing lanthanide complex with 5-maleimido-1,10-phenanthroline as the second ligand are synthesized and coupled together through a Diels-Alder cycloaddition (DA). A comparative investigation demonstrates that the composite material prepared by DA click reaction shows the highest quantum yields in the same lanthanide concentration as compared to materials prepared by widely used "directly doping" and "in situ coordinating lanthanide ions with macromolecular ligand" approaches. This work suggests that the "metal-free" DA click reaction can be a promising tool in the synthesis of high efficient lanthanide functionalized polymeric materials.

  19. Synthesis and characterization of a tetranuclear copper(Ⅱ) complex with a chiral Schiff base ligand

    Institute of Scientific and Technical Information of China (English)

    Hua Xiang; Long Jiang; Huan-Yong Li; Xiao-Dan Zheng; YU Li

    2013-01-01

    The title complex l-[CuⅡ4(Hvap)2(vap)2(MeOH)2](ClO4)2 1 has been synthesized and characterized by EA,IR,TGA,solid-state CD spectra and X-ray single-crystal analyses (I-H2vap:a Schiff base ligand derived from the condensation of o-vanillin and 1-2-amino-3-phenyl-1-propanol).Complex 1 crystallizes in monoclinic system,chiral space group P21 with a=10.4257(18),b=21.695(4),c=15.721(3) (A),β =94.443(3)°,V=3545.1 (11) (A)3,Z =2,Cu4C7oH78N4O22Cl2,Mr =1652.42,Dc =1.548 g/cm3,F(0 0 0) =1704 and μ(MoKα) =1.338 mm-1.The final R =0.0682 and wR =0.1420 for 6170 observed reflections with I > 2σ(Ⅰ) and R =0.1775 and wR =0.1830 for all data.The structure of complex 1 contains a boat-shaped {Cu4O4} motif.The solid-state CD spectra confirm the chiral nature of complex 1.

  20. Features of the complexation of octadecane-2,4-dione and lanthanide ions in Langmuir monolayers

    Science.gov (United States)

    Sokolov, M. E.; Repina, I. N.; Raitman, O. A.; Kolokolov, F. A.; Panyushkin, V. T.

    2016-05-01

    Monolayers of octadecane-2,4-dione on the surfaces of EuCl3 and TbCl3 solutions in the concentration range of 1 × 10-4 to 5 × 10-3 M at pH 5.8 are studied. It is found that the limiting area of octadecane-2,4-dione molecule in a monolayer dependence on Eu3+ and Tb3+ concentration is of extreme nature. The formation of complex compounds in the ligand monolayer is postulated, and structures are proposed for these compounds at different concentrations of metal ions.

  1. Ftmw Study of the Chirality Recognition Between Two Different Chiral Molecules: the Glycidol-Propylene Oxide Complex

    Science.gov (United States)

    Thomas, Javix; Sunahori, Fumie X.; Borho, Nicole; Xu, Yunjie

    2010-06-01

    The chirality recognition effect between the prototype chiral molecular systems, i.e. glycidol and propylene oxide has been studied using rotational spectroscopy and high level ab initio calculations. Extensive ab initio calculations have been performed to locate all possible low energy conformers of the diastereomeric pair and twenty eight minima have been found. The four most sable hetero and four homo chiral dimers, formed from the two lowest energy monomer conformations G+g- and G-g+ of the glycidol, were predicted to be close in their stability. Jet-cooled rotational spectra of some of them have been detected using a pulsed molecular beam Fourier transform microwave spectrometer and been assigned for the first time. All the low energy binary conformers observed show one primary intermolecular O-H- - -O hydrogen bond and two secondary intermolecular C-H- - -O hydrogen bonds. The induced fit phenomenon detectedwill be discussed.

  2. Complexing mechanism of the lanthanide cations Eu3+, Gd3+, and Tb3+ with 1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (dota)-characterization of three successive complexing phases: study of the thermodynamic and structural properties of the complexes by potentiometry, luminescence spectroscopy, and EXAFS.

    Science.gov (United States)

    Moreau, Juliette; Guillon, Emmanuel; Pierrard, Jean-Claude; Rimbault, Jean; Port, Marc; Aplincourt, Michel

    2004-10-11

    Complexation of the lanthanides Eu3+, Gd3+, and Tb3+ with 1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (dota) has been studied in solution by using potentiometry, luminescence spectrometry, and EXAFS. Three series of successive complexes were characterized by at least two of these methods: the immediate [LnHn(dota)](n-1)+** and intermediate [LnHn(dota)](n-1)+* complexes with 0 potentiometry. From the results, a complexation mechanism involving three steps has been proposed. In the [LnHn(dota)](n-1)+** complexes that are instantaneously formed, the lanthanide is bound to four oxygen atoms of the carboxylate groups and to five water molecules. These species evolve rapidly: the lanthanide moves into the macrocycle cavity, two new bonds are formed with two nitrogen atoms diametrically opposed in the tetraaza cycle and only three water molecules remain bound to the lanthanide in the [LnHn(dota)](n-1)+* (0 complexes, which appear after a two-day wait. These compounds are stable for about four days. After 4-8 weeks, a concerted rearrangement occurs which leads to the formation of thermodynamically stable [Ln(dota)]- complexes in which the lanthanide is bound to four nitrogen atoms, four carboxylate oxygen atoms, and one water molecule.

  3. Synthesis and Characterization of Heteronuclear Copper(II-Lanthanide(III Complexes of N,N′-1,3-Propylenebis(Salicylaldiminato Where Lanthanide(III = Gd or Eu

    Directory of Open Access Journals (Sweden)

    Longjam Jaideva Singh

    2013-01-01

    Full Text Available Three complexes, namely, [Cu(salbn] (1, [Cu(salbnGd(NO33·H2O] (2, and [Cu(salbnEu(NO33·H2O] (3 where salbn = N,N′-1,3-propylenebis (salicylaldiminato have been synthesized and characterized by elemental analyses, ICP-AES, IR, UV, NMR, MS, EDX, powder XRD, and EPR spectroscopies. The EDX results suggest the presence of two different metal ions in heteronuclear complexes (2 and (3. The ligand(salbn, complex (1, and complex (3 crystallize in triclinic system while complex (2 crystallizes in monoclinic system. The EPR studies suggest that [Cu(salbn] complex is tetragonally coordinated monomeric copper(II complex with unpaired electron in the dx2-y2 orbital and spectral features that are the characteristics of axial symmetry while complex (2 in DMF solution at liquid nitrogen temperature exhibits an anisotropic broad signal around g ~ 2.03 which may suggest a weak magnetic spin-exchange interaction between Gd(III and Cu(II ions. The fluorescence intensity of Eu(III decreased markedly in the complex (3.

  4. Synthesis and design of organic light-emitting devices containing lanthanide-cored complexes

    Science.gov (United States)

    Phelan, Gregory D.; Carlson, Brenden; Lawson, Rhys; Rowe, Daniel; Allen, Kolby; Dalton, Larry; Jiang, Xuezhong; Kim, Joo H.; Jen, Alex K.

    2004-02-01

    There is a considerable interest in the use of metal centered materials as a light source in the growing field of organic light emitting devices (OLED's). In these devices, a polymeric host matrix containing either a carbazole type polymer or polyfluorene derivatives is used to help facilitate energy transfer to the luminophore. We have shown that by using a gadolinium complex that consist of three equivalents of a chelated dibenzoylmethane b-diketone ligand and one equivalent of a phenanthroline type ligand as a component in the host matrix, the performance of a double layer type OLED is improved. We have studied OLED systems that contain tris chelated europium compounds that contain three equivalents of partially fluorinated β-diketone type ligands and an equivalent of a phenanthroline type ligand. In these devices, the external efficiency has shown a 30-fold increase. We have also shown there is an increase for Osmium based OLED's that use the gadolinium complex as part of the polymer matrix. In these devices, the maximum quantum efficiency increased from 2.1% to a value of 3.8%.

  5. Sunlight activated lanthanide complex for luminescent solar collector applications: effect of waveguide matrix

    Science.gov (United States)

    Shahi, Praveen Kumar; Singh, Priyam; Bahadur Rai, Shyam

    2017-02-01

    The performance of Eu(DBM)3Phen complex (EDP) dispersed in PMMA poly-(methyl methacrylate) polymer matrix, as simple planner luminescent solar collectors (LSCs) is demonstrated using spectroscopic and photovoltaic (PV) measurements. The organic ligands absorb ultra-violet-blue (UV-blue) radiation (220–450 nm) very efficiently and transfer its energy to the Eu3+ ion, which gives an intense red emission even in sunlight exposure. The excellent optical properties of EDP in PMMA permit its coating on the front surface of c-Si solar cell (10  ×  10 cm2) for PV measurements. The PV characterizations reveal the improvement in the short circuit current density (J sc) of PV cell and maximum improvement is found to be 4.6% for 2.5 wt% EDP concentration in PMMA matrix. The efficiency of solar cell increases from 17.22% to 18.33% for bare and 2.5% EDP in PMMA. At a higher concentration of EDP, the thin film starts losing its transparency and hence PV efficiency decreases. These results illustrate that a EDP complex combined with a PV cell could work as a prototype of a new generation solar cell.

  6. Characterization of partitioning relevant lanthanide and actinide complexes by NMR spectroscopy; Charakterisierung von partitioningrelevanten Lanthaniden- und Actinidenkomplexen mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Christian

    2016-01-15

    In the present work the interaction of N-donor ligands, such as 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (nPrBTP) and 2,6-Bis(5-(2,2-dimethylpropyl)1H-pyrazol)-3-yl-pyridine (C5-BPP), with trivalent lanthanide and actinide ions was studied. Ligands of this type show a high selectivity for the separation of trivalent actinide ions over lanthanides from nitric acid solutions. However, the reason for this selectivity, which is crucial for future partitioning and transmutation strategies for radioactive wastes, is still unknown. So far, the selectivity of some N-donor ligands is supposed to be an effect of an increased covalency in the actinide-ligand bond, compared to the lanthanide compounds. NMR spectroscopy on paramagnetic metal complexes is an excellent tool for the elucidation of bonding modes. The overall paramagnetic chemical shift consists of two contributions, the Fermi Contact Shift (FCS), due to electron spin delocalisation through covalent bonds, and the Pseudo Contact Shift (PCS), which describes the dipolar coupling of the electron magnetic moment and the nuclear spin. By assessing the FCS share in the paramagnetic shift, the degree of covalency in the metal-ligand bond can be gauged. Several methods to discriminate FCS and PCS have been used on the data of the nPrBTP- and C5-BPP-complexes and were evaluated regarding their applicability on lanthanide and actinide complexes with N-donor ligands. The study comprised the synthesis of all Ln(III) complexes with the exceptions of Pm(III) and Gd(III) as well as the Am(III) complex as a representative of the actinide series with both ligands. All complexes were fully characterised ({sup 1}H, {sup 13}C and {sup 15}N spectra) using NMR spectroscopy. By isotope enrichment with the NMR-active {sup 15}N in positions 8 and 9 in both ligands, resonance signals of these nitrogen atoms were detected for all complexes. The Bleaneymethod relies on different temperature dependencies for FCS (T{sup -1}) and PCS (T

  7. Ga(3+)/Ln(3+) Metallacrowns: A Promising Family of Highly Luminescent Lanthanide Complexes That Covers Visible and Near-Infrared Domains.

    Science.gov (United States)

    Chow, Chun Y; Eliseeva, Svetlana V; Trivedi, Evan R; Nguyen, Tu N; Kampf, Jeff W; Petoud, Stéphane; Pecoraro, Vincent L

    2016-04-20

    Luminescent lanthanide(III)-based molecular scaffolds hold great promises for materials science and for biological applications. Their fascinating photophysical properties enable spectral discrimination of emission bands that range from the visible to the near-infrared (NIR) regions. In addition, their strong resistance to photobleaching makes them suitable for long duration or repeated biological experiments using a broad range of sources of excitation including intense and focalized systems such as lasers (e.g., confocal microscopy). A main challenge in the creation of luminescent lanthanide(III) complexes lies in the design of a ligand framework that combines two main features: (i) it must include a chromophoric moiety that possesses a large molar absorptivity and is able to sensitize several different lanthanide(III) ions emitting in the visible and/or in the near-infrared, and (ii) it must protect the Ln(3+) cation by minimizing nonradiative deactivation pathways due to the presence of -OH, -NH and -CH vibrations. Herein, a new family of luminescent Ga(3+)/Ln(3+) metallacrown (MC) complexes is reported. The MCs with the general composition [LnGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] (Ln-1, Ln = Sm(3+)-Yb(3+)) were synthesized in a one pot reaction using salicylhydroxamic acid (H3shi) with Ga(3+) and Ln(3+) nitrates as reagents. The molecular structure of [DyGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] was obtained by X-ray analysis of single crystals and shows that the complex is formed as a [12-MCGa(III)shi-4] core with four benzoate molecules bridging the central Dy(3+) ion to the Ga(3+) ring metals. The powder X-ray diffraction analysis demonstrates that all other isolated complexes are isostructural. The extended analysis of the luminescence properties of these complexes, excited by the electronic states of the chromophoric ligands, showed the presence of characteristic, sharp f-f transitions that can be generated not only in the NIR (Sm, Dy, Ho, Er, Yb) but also in the

  8. Analysis of multinuclear lanthanide-induced shifts. 4. Some consequences of the lanthanide contraction

    Science.gov (United States)

    Peters, Joop A.

    The effects of the lanthanide contraction on lanthanide-induced shifts are estimated using simulated structures for a set of lanthanide chelates. The variations of the Ln-donor distances cause small conformational changes in the coordination polyhedron of the Ln(III) cation, and the induced pseudocontact shifts for a series of Ln complexes vary gradually going from La(III) to Lu(III). As a result of data manipulation these gradual variations may sometimes show up as an abrupt break in the middle of the lanthanide series.

  9. Synthesis, characterization, biological activities and luminescent properties of lanthanide complexes with [2-thiophenecarboxylic acid, 2-(2- pyridinylmethylene)hydrazide] Schiff bases ligand

    Institute of Scientific and Technical Information of China (English)

    Abdulaziz M Ajlouni; Qutaiba Abu-Salem; Ziyad A Taha; Ahmed K Hijazi; Waleed Al Momani

    2016-01-01

    A Schiff baseL[2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene)hydrazide] with its lanthanide metal complexeswas synthesized. These complexes were characterized by elemental analysis, molar conductivity measurements, spectral analysis (NMR, FT-IR, and UV-Vis), luminescence and thermal gravimetric analysis. The Schiff base ligandwas a tridentate chelate and coordinates to the central lanthanide ion with 1:2 metal:ligand ratio. The conductivity data showeda1:1 electrolytic nature with a general formula [LnL2(NO3)2]NO3. The luminescence emission properties for Sm,Tb, and Eu complexeswere observed and showedthat the ligandL couldabsorb and transfer energy to Sm(III), Tb(III) and Eu(III)ions. The complexes possesseda good antibacterial activity against different bacterial strains. In addition,the scavenging activity of the Ln(III) complexes on DPPHwas concentration dependant and the complexeswere significantly more efficient in quenching DPPH than the free Schiff base ligand.

  10. Lanthanide dinuclear complexes constructed from mixed oxygen-donor ligands: the effect of substituent positions of the neutral ligand on the magnetic dynamics in Dy analogues.

    Science.gov (United States)

    Zhu, Wen-Hua; Li, Shan; Gao, Chen; Xiong, Xia; Zhang, Yan; Liu, Li; Powell, Annie K; Gao, Song

    2016-03-21

    Two series of lanthanide dinuclear complexes with the general formulae, [Ln(n-PNO)(Bza)3(H2O)] {Bza = benzoic acid; n = 3, n-PNO = 3-picoline N-oxide, Dy(1) and Er(2); and n = 4, n-PNO = 4-picoline N-oxide, Nd(3), Eu(4), Gd(5), Tb(6), Dy(7), Er(8) and Y(9)} have been successfully synthesized by the hydrothermal method. Single-crystal X-ray diffraction experiments illustrate that the two series of compounds possess similar carboxylic ligand-bridged dinuclear structure and coordination geometry around the lanthanide ions despite the different methyl-substituent positions on the neutral ligand. Comparative studies of the Dy analogues in the static-field measurements reveal only a little difference with a small butterfly-shaped opening for complex 1 and a close hysteresis loop for 7 at 2.0 K. However, systematic investigations of the alternating-current (ac) measurements indicate that the different substituent positions of the picoline N-oxide ligand have a significant effect on the magnetic relaxation dynamics. A more substantial suppression of the quantum tunnelling of magnetization (QTM) effect and pronounced slow magnetic relaxation were observed in complex 7 as compared to 1 under both zero and a 1 kOe static field.

  11. Characterization of partitioning relevant lanthanide and actinide complexes by NMR spectroscopy; Charakterisierung von partitioningrelevanten Lanthaniden- und Actinidenkomplexen mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Christian

    2016-01-15

    In the present work the interaction of N-donor ligands, such as 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (nPrBTP) and 2,6-Bis(5-(2,2-dimethylpropyl)1H-pyrazol)-3-yl-pyridine (C5-BPP), with trivalent lanthanide and actinide ions was studied. Ligands of this type show a high selectivity for the separation of trivalent actinide ions over lanthanides from nitric acid solutions. However, the reason for this selectivity, which is crucial for future partitioning and transmutation strategies for radioactive wastes, is still unknown. So far, the selectivity of some N-donor ligands is supposed to be an effect of an increased covalency in the actinide-ligand bond, compared to the lanthanide compounds. NMR spectroscopy on paramagnetic metal complexes is an excellent tool for the elucidation of bonding modes. The overall paramagnetic chemical shift consists of two contributions, the Fermi Contact Shift (FCS), due to electron spin delocalisation through covalent bonds, and the Pseudo Contact Shift (PCS), which describes the dipolar coupling of the electron magnetic moment and the nuclear spin. By assessing the FCS share in the paramagnetic shift, the degree of covalency in the metal-ligand bond can be gauged. Several methods to discriminate FCS and PCS have been used on the data of the nPrBTP- and C5-BPP-complexes and were evaluated regarding their applicability on lanthanide and actinide complexes with N-donor ligands. The study comprised the synthesis of all Ln(III) complexes with the exceptions of Pm(III) and Gd(III) as well as the Am(III) complex as a representative of the actinide series with both ligands. All complexes were fully characterised ({sup 1}H, {sup 13}C and {sup 15}N spectra) using NMR spectroscopy. By isotope enrichment with the NMR-active {sup 15}N in positions 8 and 9 in both ligands, resonance signals of these nitrogen atoms were detected for all complexes. The Bleaneymethod relies on different temperature dependencies for FCS (T{sup -1}) and PCS (T

  12. Asymmetric Hydroformylation of Olefins Catalyzed by a Chiral Diphosphite-Rhodium Complex

    Institute of Scientific and Technical Information of China (English)

    YAN, Ming(鄢明); LI, Xing-Shu(黎星术); CHAN, Albert Sun-Chi(陈新滋)

    2004-01-01

    A C2-symmetrical aryl diphosphite derived from chiral binaphthol was prepared and its rhodium complex was used as catalysts in the asymmetric hydroformylation of olefins. High catalytic activity and good regioselectivity were observed. Up to 31.2% ee and 38.1% ee were achieved for the hydroformylation of 4-fluoro-styrene and vinyl acetate respectively. The influences of ligand-to-metal ratio, reaction temperature and the pressure of syn-gas on the enantioselectivity and regioselectivity were also studied.

  13. Sodium salts of anionic chiral cobalt(III) complexes as catalysts of the enantioselective Povarov reaction.

    Science.gov (United States)

    Yu, Jie; Jiang, Hua-Jie; Zhou, Ya; Luo, Shi-Wei; Gong, Liu-Zhu

    2015-09-14

    The sodium salts of anionic chiral cobalt(III) complexes (CCC(-) Na(+) ) have been found to be efficient catalysts of the asymmetric Povarov reaction of easily accessible dienophiles, such as 2,3-dihydrofuran, ethyl vinyl ether, and an N-protected 2,3-dihydropyrrole, with 2-azadienes. Ring-fused tetrahydroquinolines with up to three contiguous stereogenic centers were thus obtained in high yields, excellent diastereoselectivities (endo/exo up to >20:1), and high enantioselectivities (up to 95:5 e.r.).

  14. Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes

    Science.gov (United States)

    Taha, Ziyad A.; Ajlouni, Abdulaziz M.; Al-Hassan, Khader A.; Hijazi, Ahmed K.; Faiq, Ari B.

    2011-10-01

    Eight new lanthanide metal complexes [Ln L(NO 3) 2]NO 3 {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand} were prepared. These complexes were characterized by elemental analysis, thermogravimetric analysis (TGA), molar conductivity measurements and spectral studies ( 1H NMR, FT-IR, UV-vis, and luminescence). The Schiff base ligand coordinates to Ln(III) ion in a tetra-dentate manner through the phenolic oxygen and azomethine nitrogen atoms. The coordination number of eight is achieved by involving two bi-dentate nitrate groups in the coordination sphere. Sm, Tb and Dy complexes exhibit the characteristic luminescence emissions of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of the complexes exhibit antibacterial activity against a number of pathogenic bacteria.

  15. NMR investigation of the complexation and chiral discrimination of pyrazole sulfonamide derivatives with cyclodextrins.

    Science.gov (United States)

    Rogez-Florent, Tiphaine; Azaroual, Nathalie; Goossens, Laurence; Goossens, Jean-François; Danel, Cécile

    2015-01-22

    The complexes formed between six original chiral diaryl-pyrazole sulfonamide derivatives, displaying poor solubility, and various CDs (native α-, β- and γ-CDs, hydroxypropylated HP-β-CD, methylated Me-β-CD or amino NH2-β-CD) were studied by 1D and 2D (1)H NMR at physiological pH in order to determine their apparent binding constant, stoichiometry and structure of the supramolecular assembly. For some complexes, the spectra obtained for free racemic compound and for racemic compound in presence of CD indicate a splitting of signal(s). Additional experiments with pure enantiomer and enriched enantiomer allow us to attribute this behavior to chiral discrimination. The complexing ability of the native β-CD towards our compounds appears the most promising since binding values around 7×10(2)M(-1) are obtained. The two-dimensional ROESY ((1)H-(1)H) experiments prove the inclusion of the aliphatic part of the compound in the CD cavity. It is noteworthy that this inclusion occurs via the smaller opening of the cavity.

  16. Complexation thermodynamics and structural studies of trivalent actinide and lanthanide complexes with DTPA, MS-325 and HMDTPA

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, P.; Choppin, G.R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Conca, J.L. [RJ Lee Group, Inc., Pasco, WA (United States). Center for Lab. Sciences; Dodge, C.J. [Brookhaven National Laboratory, Upton, NY (United States); Francis, A.J. [Brookhaven National Laboratory, Upton, NY (United States); Pohang Univ. of Science and Technology (Korea, Republic of). Div. of Advanced Nuclear Engineering

    2013-05-01

    The protonation constants of DTPA (diethylenetriaminepentaacetic acid) and two derivatives of DTPA, 1-R(4,4-diphenyl cyclohexyl-phosphonyl-methyl diethylenentriaminepentaacetic acid) (MS-325) and (R)-hydroxymethyl-diethylenentriaminepentaacetic acid (HMDTPA) were determined by potentiometric titration in 0.1 M NaClO{sub 4}. The formation of 1: 1 complexes of Am{sup 3+}, Cm{sup 3+} and Ln{sup 3+} cations with these three ligands were investigated by potentiometric titration with competition by ethylenediaminetetraacetic acid (EDTA) and the solvent extraction method in aqueous solutions of I=0.10 M NaClO{sub 4}. The thermodynamic data of complexation were determined by the temperature dependence of the stability constants and by calorimetry. The complexation is exothermic and becomes weaker with increase in temperature. The complexation strength of these ligands follows the order: DTPA {approx} HMDTPA > MS-325. Eu{sup 3+}/Cm{sup 3+} luminescence, EXAFS (Extended X-ray Absorption Fine Structure) and DFT (Density Functional Theory) calculations suggest that all three ligands are octadentate in the complex. In the complex, M(L){sup 2-} (L = DTPA, MS-325 and HMDTPA). The M{sup 3+} binds via five carboxylates oxygen atoms, three nitrogen atoms, and the complex contains one water of hydration. (orig.)

  17. Solid-state and solution-state coordination chemistry of lanthanide(III) complexes with (pyrazol-1-yl)acetic acid.

    Science.gov (United States)

    Chen, Xiao-Yan; Goff, George S; Scott, Brian L; Janicke, Michael T; Runde, Wolfgang

    2013-03-18

    As a precursor of carboxyl-functionalized task-specific ionic liquids (TSILs) for f-element separations, (pyrazol-1-yl)acetic acid (L) can be deprotonated as a functionalized pyrazolate anion to coordinate with hard metal cations. However, the coordination chemistry of L with f-elements remains unexplored. We reacted L with lanthanides in aqueous solution at pH = 5 and synthesized four lanthanide complexes of general formula [Ln(L)3(H2O)2]·nH2O (1, Ln = La, n = 2; 2, Ln = Ce, n = 2; 3, Ln = Pr, n = 2; 4, Ln = Nd, n = 1). All complexes were characterized by single crystal X-ray diffraction analysis revealing one-dimensional chain formations. Two distinct crystallographic structures are governed by the different coordination modes of carboxylate groups in L: terminal bidentate and bridging tridentate (1-3); terminal bidentate, bridging bidentate, and tridentate coordination in 4. Comparison of the solid state UV-vis-NIR diffuse reflectance spectra with solution state UV-vis-NIR spectra suggests a different species in solution and solid state. The different coordination in solid state and solution was verified by distinctive (13)C NMR signals of the carboxylate groups in the solid state NMR.

  18. Slow relaxation of the magnetization in an Isostructural series of Zinc-lanthanide complexes: an integrated EPR and AC susceptibility study

    Science.gov (United States)

    Amjad, Asma; Madalan, Augustin; Andruh, Marius; Caneschi, Andrea; Sorace, Lorenzo; University of Bucharest, Faculty of Chemistry, Inorganic Chemistry Laboratory, Bucharest, Romania Collaboration

    2015-03-01

    Lanthanide based molecular complexes have shown potential to behave as single molecule magnets proficient to function above cryogenic temperatures. In this work we explore the dynamics of one such family, [Zn(LH)2Ln](NO3)3 .6H2O - (Ln = Nd3+, Dy3+, Tb3+, Ho3+, Er3+, Yb3+) . The series has a single lanthanide ion as a magnetic center in a low symmetry environment; the dynamics and energy landscape of the series is explored using X-band EPR, AC and DC susceptibility over a range of temperature, field and frequency. DC magnetic data show χT value consistent with expected behavior. EPR spectra for Er3+ and Yb3+ complexes shows EPR spectra typical for easy-plane and quasi-isotropic systems respectively, thus explaining the lack of out of phase susceptibility even in an external applied filed. However, Dy3+ derivative show slow relaxation of the magnetization in zero field up to 15 K and is, accordingly EPR silent.

  19. Synthesis and Characterization of Lanthanide(III Nitrate Complexes with Terdentate ONO Donor Hydrazone Derived from 2-Benzimidazolyl Mercaptoaceto Hydrazide and o-Hydroxy Aromatic Aldehyde

    Directory of Open Access Journals (Sweden)

    Vinayak M. Naik

    2011-01-01

    Full Text Available A few eight coordinated complexes of lanthanide(III nitrate with 2-benzimidazolyl mercaptoaceto hydrazone ligand (LH2 with the general formula [Ln(LH2NO2]H2O (where Ln = La, Pr, Nd, Sm and Gd have been synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance, UV-Visible, IR and 1H NMR spectral studies. The experimental data sustain stoichiometry of 1:2 (metal/ligand for the complexes. The spectral data shows that the ligand reacts in keto form and behaves as monobasic terdentate in nature. The nitrate appears to coordinate in the bidentate fashion to the metal ion. The thermal stabilities of the complexes have been studied by TGA and their kinetic parameters were calculated using Coats-Redfern and MKN methods. The antimicrobial activity studies have been under taken and results are discussed.

  20. Comparison of complex permittivities of isotonic colloids containing single-wall carbon nanotubes of varying chirality.

    Science.gov (United States)

    Nair, Tejas; Symanowski, James T; Gach, H Michael

    2012-02-01

    The application of bio-compatible, conductive nanoparticles in combination with radiofrequency (RF) irradiation to raise tissue temperatures between 40 and 60 °C for hyperthermia and ablation spurred interest in the complex permittivities of isotonic nanoparticle-based colloids. Nanoparticles with large aspect ratios and high permittivities increase the bulk permittivity of the colloid and RF losses at the macroscopic scale. The complex permittivities of isotonic colloids with and without single-wall carbon nanotubes (SWCNTs) containing either metallic, semiconducting, or mixed chiralities were measured from 20 MHz to 1 GHz at room temperature. The colloids were made with one of three different isotonic solvents: phosphate buffered saline (PBS), and Dulbecco's modified eagle medium (DMEM) with and without 0.5% weight/volume bovine serum albumin to simulate cytosol and blood, respectively. The concentration of elemental carbon from the SWCNTs in the colloids ranged from 16 to 17 mM. The permittivities were corrected for electrode polarization effects by fitting the data to the Cole-Cole relaxation model with a constant phase angle element. The presence of SWCNTs increased both the real and imaginary components of the permittivities of the colloids. For all three solvents, the direct current (DC) components of the real and imaginary permittivities were greatest for the colloids containing the mixed chirality SWCNTs, followed by the colloids with semiconducting SWCNTs, and then metallic SWCNTs.

  1. Density functional calculations on electronic circular dichroism spectra of chiral transition metal complexes.

    Science.gov (United States)

    Autschbach, Jochen; Jorge, Francisco E; Ziegler, Tom

    2003-05-05

    Time-dependent density functional theory (TD-DFT) has for the first time been applied to the computation of circular dichroism (CD) spectra of transition metal complexes, and a detailed comparison with experimental spectra has been made. Absorption spectra are also reported. Various Co(III) complexes as well as [Rh(en)(3)](3+) are studied in this work. The resulting simulated CD spectra are generally in good agreement with experimental spectra after corrections for systematic errors in a few of the lowest excitation energies are applied. This allows for an interpretation and assignment of the spectra for the whole experimentally accessible energy range (UV/vis). Solvent effects on the excitations are estimated via inclusion of a continuum solvent model. This significantly improves the computed excitation energies for charge-transfer bands for complexes of charge +3, but has only a small effect on those for neutral or singly charged complexes. The energies of the weak d-to-d transitions of the Co complexes are systematically overestimated due to deficiencies of the density functionals. These errors are much smaller for the 4d metal complex. Taking these systematic errors and the effect of a solvent into consideration, TD-DFT computations are demonstrated to be a reliable tool in order to assist with the assignment and interpretation of CD spectra of chiral transition metal complexes.

  2. A chiral Mn(IV) complex and its supramolecular assembly: Synthesis, characterization and properties

    Indian Academy of Sciences (India)

    Chullikkattil P Pradeep; Panthapally S Zacharias; Samar K Das

    2006-07-01

    The open air reaction of the chiral Schiff base ligand H2L, prepared by the condensation of L-phenylalaninol and 5-bromosalicylaldehyde, with MnII(CH3COO)2$\\cdot$4H2O yielded dark brown complex [MnIVL2]$\\cdot$0.5 DMF (1). Compound 1 was characterized by elemental analysis, IR, UV-visible, CD and EPR spectroscopy, cyclic voltammetry and room temperature magnetic moment determination. Singlecrystal X-ray analysis revealed that compound 1 crystallises in the monoclinic 21 space group with six mononuclear [MnIVL2] units in the asymmetric unit along with three solvent DMF molecules. In the crystal structure, each Mn(IV) complex, acting as the building unit, undergoes supramolecular linking through C-H$\\cdots$O bonds leading to an intricate hydrogen bonding network.

  3. Short-range interactions within molecular complexes formed in supersonic beams: structural effects and chiral discrimination

    Science.gov (United States)

    Latini; Satta; Guidoni; Piccirillo; Speranza

    2000-03-17

    One- and two-color, mass-selected R2PI spectra of the S13-pentanol, were recorded after a supersonic molecular beam expansion. Spectral analysis, coupled with theoretical calculations, indicate that several hydrogen-bonded [R.solv] conformers are present in the beam. The R2PI excitation spectra of [R.solv] are characterized by significant shifts of their band origin relative to that of bare R. The extent and direction of these spectral shifts depend on the structure and configuration of solv and are attributed to different short-range interactions in the ground and excited [R.solv] complexes. Measurement of the binding energies of [R.solv] in their neutral and ionic states points to a subtle balance between attractive (electrostatic and dispersive) and repulsive (steric) forces, which control the spectral features of the complexes and allow enantiomeric discrimination of chiral solv molecules.

  4. Synthesis, structures and magnetic properties of a series of polynuclear copper(II)-lanthanide(III) complexes assembled with carboxylate and hydroxide ligands

    Institute of Scientific and Technical Information of China (English)

    CHEN, Xiao-Ming; YANG, Yang-Yi

    2000-01-01

    Heteromnetallic copper(I)-lanthanide(Ⅲ) complexes have been made with a variety of exclusively O-donor ligands in cluding betaines (zwitterionic carboxylates) and chloroac etate, which are dinuclear CuLn, tetranuclear Cu2Ln2, pen tanuclear Cu3Ln2, and octadecanuclear Cu12 Ln3 complexes. Tne results show that subtle changes in both the carboxylates and acidity of the reaction solution can cause drastic changoes in the structures of the products. Magnetic studies exhibit that shieldirng of the Ln3+ 4f electrons by the outer shell electrons is very effective to preclude significant coutpling interaction be tween the Ln3+ 4f electrons and Cu2+ 3d electrons in either a mono-atomic hydroxide-bridged, or a carboxylate-bridged system.

  5. Study on Properties of TBP-HNO3 Complex Used for Direct Dissolution of Lanthanide and Actinide Oxides in Supercritical Fluid CO2

    Institute of Scientific and Technical Information of China (English)

    DUAN Wu-Hua; ZHU Li-Yang; JING Shan; ZHU Yong-Jun; CHEN Jing

    2007-01-01

    The tri-n-butyl phosphate-nitric acid (TBP-HNO3) complex prepared by contacting the pure TBP with the concentrated HNO3 can be used for direct dissolution of lanthanide and actinide oxides in the supercritical fluid carbon dioxide (SCF-CO2). Properties of the TBP-HNO3 complex have been studied. Experimental results showed that when the initial HNO3/TBP volume ratio was varied from 1 : 7 to 5 : 1, the concentration of HNO3 in the TBP-HNO3 complex changed from 1.95 to 5.89 mol/L, the [HNO3]/[TBP] ratio of the TBP-HNO3 complex changed from 0.61 to 2.22, and the content of H2O in the TBP-HNO3 complex changed from 2.02% to 4.19%. All of the density, viscosity and surface tension of the TBP-HNO3 complex changed with the concentration of HNO3 in the complex, and were higher than those of the pure TBP. The protons of HNO3 and H2O in the complex underwent rapid exchange to exhibit a singlet resonance peak in nuclear magnetic resonance spectra. When the TBP-HNO3 complex was dissolved in a low dielectric constant solvent, small droplets of HNO3 were formed that can be detected by NMR.

  6. Properties of TRPO-HNO3 complex used for direct dissolution of lanthanide and actinide oxides in supercritical fluid CO2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The mixed trialkylphosphine oxide-nitric acid (TRPO-HNO3) complex prepared by contacting pure TRPO with concentrated HNO3 may be used as additives for direct dissolution of lanthanide and actinide oxides in the supercritical fluid carbon dioxide (SCF-CO2). Properties of the TRPO-HNO3 complex have been studied. Experimental results show when the initial HNO3/TRPO volume ratio is varied from 1:7 to 5:1, the concentration of HNO3 in the TRPO-HNO3 complex changes from 2.12 to 6.16 mol/L, the [HNO3]/[TRPO] ratio of the TRPO-HNO3 complex changes from 0.93 to 3.38, and the content of H2O in the TRPO-HNO3 complex changes from 0.97% to 2.70%. All of the density, viscosity and surface tension of the TRPO-HNO3 complex change with the concentration of HNO3 in the complex. The protons of HNO3 and H2O in the complex undergo rapid exchange to exhibit a singlet resonance peak in NMR spectra with D2O insert. When the TRPO-HNO3 complex dissolves in a low dielectric constant solvent, small droplets of HNO3 appear which can be detected by NMR.

  7. Supramolecular coordination chemistry in aqueous solution: lanthanide ion-induced triple helix formation.

    Science.gov (United States)

    Lessmann, J J; Horrocks, W D

    2000-07-24

    The self-assembly of dinuclear triple helical lanthanide ion complexes (helicates), in aqueous solution, is investigated utilizing laser-induced, lanthanide luminescence spectroscopy. A series of dinuclear lanthanide (III) helicates (Ln(III)) based on 2,6-pyridinedicarboxylic acid (dipicolinic acid, dpa) coordinating units was synthesized by linking two dpa moieties using the organic diamines (1R,2R)-diaminocyclohexane (chxn-R,R) and 4,4'-diaminodiphenylmethane (dpm). Luminescence excitation spectroscopy of the Eu3+ 7F0-->5D0 transition shows the apparent cooperative formation of neutral triple helical complexes in aqueous solution, with a [Eu2L3] stoichiometry. Eu3+ excitation peak wavelengths and excited-state lifetimes correspond to those of the [Eu(dpa)3]3- model complex. CD studies of the Nd(III) helicate Nd2(dpa-chxn-R,R)3 reveal optical activity of the f-f transitions, indicating that the chiral linking group induces a stable chirality at the metal ion center. Molecular mechanics calculations using CHARMm suggest that the delta delta configuration at the Nd3+ ion centers is induced by the chxn-R,R linker. Stability constants were determined for both ligands with Eu3+, yielding identical results: log K = 31.6 +/- 0.2 (K in units of M-4). Metal-metal distances calculated from Eu3+-->Nd3+ energy-transfer experiments show that the complexes have metal-metal distances close to those calculated by molecular modeling. The fine structure in the Tb3+ emission bands is consistent with the approximate D3 symmetry as anticipated for helicates.

  8. Asymmetric Cyclopropanation Catalyzed by Four Stereoisomers of a Copper-(Schiff-base) Complex with Double Chiral Centers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Four stereoisomers of a copper-(Schiff-base) complex with double chiral centers were applied to catalyze the asymmetric cyclopropanation. Two of the stereoisomers were also efficient catalysts affording high enantiomeric excess of up to 91.8%. A mechanism that predicts the observed results accurately was proposed.

  9. Lanthanide-containing polyimides

    Science.gov (United States)

    Stoakley, D. M.; St. Clair, Anne K.

    1987-01-01

    The preparation of a variety of lanthanide-containing polyimide films is described, and results of their characterization are presented. The properties investigated include the glass transition temperature, thermooxidative stability, magnetic susceptibility, and electrical conductivity of the polymer. Films containing lanthanide chlorides, fluorides, and sulfides are flexible, but those containing lanthanide nitrates are extremely brittle. The addition of lanthanide acetates and acetylacetonates caused immediate gelation of two of the synthesis-mixture ingredients. It was found that, in general, the addition of lanthanide to the polyimide increases the density and glass transition temperature of the polymer but slightly decreases the thermooxidative stability.

  10. Chirality of tensor perturbations for complex values of the Immirzi parameter

    CERN Document Server

    Bethke, Laura

    2011-01-01

    In this paper we generalise previous work on tensor perturbations in a de Sitter background in terms of Ashtekar variables to cover all complex values of the Immirzi parameter gamma (previous work was restricted to imaginary gamma). Particular attention is paid to the case of real gamma. Following the same approach as in the imaginary case, we can obtain physical graviton states by invoking reality and torsion free conditions. The Hamiltonian in terms of graviton states has the same form whether gamma has a real part or not; however changes occur for the vacuum energy and fluctuations. Specifically, we observe a gamma dependent chiral asymmetry in the vacuum fluctuations only if gamma has an imaginary part. Ordering prescriptions also change this asymmetry. We thus present a measurable result for CMB polarisation experiments that could shed light on the workings of quantum gravity.

  11. Testing a generalized cooling procedure in the complex Langevin simulation of chiral Random Matrix Theory

    CERN Document Server

    Nagata, Keitaro; Shimasaki, Shinji

    2015-01-01

    The complex Langevin method has been attracting much attention as a solution to the sign problem since the method was shown to work in finite density QCD in the deconfined phase by using the so-called gauge cooling procedure. Whether it works also in the confined phase with light quarks is still an open question, though. In order to shed light on this question, we apply the method to the chiral Random Matrix Theory, which describes the epsilon regime of finite density QCD. Earlier works reported that a naive implementation of the method fails to reproduce the known exact results and that the problem can be solved by choosing a suitable coordinate. In this work we stick to the naive implementation, and show that a generalized gauge cooling procedure can be used to avoid the problem.

  12. Synthesis of Three Novel Chiral Binuclear Mn(Ⅲ)-Schiff-base Complexes and the Application in Asymmetric Epoxidation of trans-Stilbene

    Institute of Scientific and Technical Information of China (English)

    Yang SUN; Ning TANG; Xin Wen LIU; Wei Sheng LIU

    2004-01-01

    Three novel chiral binuclear Mn(Ⅲ)-Schiff-base complexes have been synthesized and the application of these complexes in the asymmetric epoxidation of trans-stilbene is described, catalytic mechanism is also discussed briefly.

  13. Highly Efficient Visible-to-NIR Luminescence of Lanthanide(III) Complexes with Zwitterionic Ligands Bearing Charge-Transfer Character: Beyond Triplet Sensitization.

    Science.gov (United States)

    Pan, Mei; Du, Bin-Bin; Zhu, Yi-Xuan; Yue, Mei-Qin; Wei, Zhang-Wen; Su, Cheng-Yong

    2016-02-12

    Two zwitterionic-type ligands featuring π-π* and intraligand charge-transfer (ILCT) excited states, namely 1,1'-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)dipyridinium-4-olate (TMPBPO) and 1-dodecylpyridin-4(1 H)-one (DOPO), have been prepared and applied to the assembly of lanthanide coordination complexes in an effort to understand the ligand-direction effect on the structure of the Ln complexes and the ligand sensitization effect on the luminescence of the Ln complexes. Due to the wide-band triplet states plus additional ILCT excitation states extending into lower energy levels, broadly and strongly sensitized photoluminescence of f→f transitions from various Ln(3+) ions were observed to cover the visible to near-infrared (NIR) regions. Among which, the Pr, Sm, Dy, and Tm complexes simultaneously display both strong visible and NIR emissions. Based on the isostructural feature of the Ln complexes, color tuning and single-component white light was achieved by preparation of solid solutions of the ternary systems Gd-Eu-Tb (for TMPBPO) and La-Eu-Tb and La-Dy-Sm (for DOPO). Moreover, the visible and NIR luminescence lifetimes of the Ln complexes with the TMPBPO ligand were investigated from 77 to 298 K, revealing a strong temperature dependence of the Tm(3+) ((3) H4 ) and Yb(3+) ((2) F5/2 ) decay dynamics, which has not been explored before for their coordination complexes.

  14. Luminescent lanthanide chelates and methods of use

    Science.gov (United States)

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  15. Ruthenium complexes with chiral tetradentate PNNP ligands: asymmetric catalysis from the viewpoint of inorganic chemistry.

    Science.gov (United States)

    Mezzetti, Antonio

    2010-09-14

    This is a personal account of the application of ruthenium complexes containing chiral tetradentate ligands with a P(2)N(2) ligand set (PNNP) as catalyst precursors for enantioselective "atom transfer" reactions. Therewith are meant reactions that involve bond formation between a metal-coordinated molecule and a free reagent. The reactive fragment (e.g. carbene) is transferred either from the metal to the non-coordinated substrate (e.g. olefin) or from the free reagent (e.g. F(+)) to the metal-bound substrate (e.g.beta-ketoester), depending on the class of catalyst (monocationic, Class A; or dicationic, Class B). The monocationic five-coordinate species [RuCl(PNNP)](+) and the six-coordinate complexes [RuCl(L)(PNNP)](+) (L = Et(2)O, H(2)O) of Class A catalyse asymmetric epoxidation, cyclopropanation (carbene transfer from the metal to the free olefin), and imine aziridination. Alternatively, the dicationic complexes [Ru(L-L)(PNNP)](2+) (Class B), which contain substrates that act as neutral bidentate ligands L-L (e.g., beta-ketoesters), catalyse Michael addition, electrophilic fluorination, and hydroxylation reactions. Additionally, unsaturated beta-ketoesters form dicationic complexes of Class B that catalyse Diels-Alder reactions with acyclic dienes to produce tetrahydro-1-indanones and estrone derivatives. Excellent enantioselectivity has been achieved in several of the catalytic reactions mentioned above. The study of key reaction intermediates (both in the solid state and in solution) has revealed significant mechanistic aspects of the catalytic reactions.

  16. A chiral rhenium complex with predicted high parity violation effects: synthesis, stereochemical characterization by VCD spectroscopy and quantum chemical calculations

    CERN Document Server

    Saleh, Nidal; Roisnel, Thierry; Guy, Laure; Bast, Radovan; Saue, Trond; Darquié, Benoît; Crassous, Jeanne

    2015-01-01

    With their rich electronic, vibrational, rotational and hyperfine structure, molecular systems have the potential to play a decisive role in precision tests of fundamental physics. For example, electroweak nuclear interactions should cause small energy differences between the two enantiomers of chiral molecules, a signature of parity symmetry breaking. Enantioenriched oxorhenium(VII) complexes S-(-)- and R-(+)-3 bearing a chiral 2-methyl-1-thio-propanol ligand have been prepared as potential candidates for probing molecular parity violation effects via high resolution laser spectroscopy of the Re=O stretching. Although the rhenium atom is not a stereogenic centre in itself, experimental vibrational circular dichroism (VCD) spectra revealed a surrounding chiral environment, evidenced by the Re=O bond stretching mode signal. The calculated VCD spectrum of the R enantiomer confirmed the position of the sulfur atom cis to the methyl, as observed in the solid-state X-ray crystallographic structure, and showed the ...

  17. Multifunctional nanomesoporous materials with upconversion (in vivo) and downconversion (in vitro) luminescence imaging based on mesoporous capping UCNPs and linking lanthanide complexes

    Science.gov (United States)

    Sun, Lining; Ge, Xiaoqian; Liu, Jinliang; Qiu, Yannan; Wei, Zuwu; Tian, Bo; Shi, Liyi

    2014-10-01

    A series of new multifunctional nanomesoporous materials based on upconversion nanophosphors NaYF4:Yb,Tm@NaGdF4 (UCNPs) and lanthanide complexes were designed and synthesized through mesoporous capping UCNPs nanophosphors and linking lanthanide (Ln) complexes. The obtained UCNPs@mSiO2-Ln(dbm)4 (Ln = Eu, Sm, Er, Nd, Yb) materials can achieve downconversion and upconversion luminescence to show multicolor emission (covering the spectral region from 450 nm to 1700 nm) under visible-light excitation and 980 nm excitation, respectively. In addition, low cytotoxicity and good biocompatibility was found as determined by methyl thiazolyl tetrazolium assay, and the nanomesoporous materials were successfully applied to cell imaging in vitro based on Eu3+ luminescence (under 405 nm excitation) and small animal imaging based on Tm3+ luminescence (under 980 nm excitation). The doped Gd3+ ion endows the nanomesoporous materials UCNPs@mSiO2-Ln(dbm)4 with effective T1 signal enhancement, which affords them as potential magnetic resonance imaging (MRI) contrast agents. Therefore, our results may provide more exciting opportunities for multimodal bioimaging and multifunctional applications.A series of new multifunctional nanomesoporous materials based on upconversion nanophosphors NaYF4:Yb,Tm@NaGdF4 (UCNPs) and lanthanide complexes were designed and synthesized through mesoporous capping UCNPs nanophosphors and linking lanthanide (Ln) complexes. The obtained UCNPs@mSiO2-Ln(dbm)4 (Ln = Eu, Sm, Er, Nd, Yb) materials can achieve downconversion and upconversion luminescence to show multicolor emission (covering the spectral region from 450 nm to 1700 nm) under visible-light excitation and 980 nm excitation, respectively. In addition, low cytotoxicity and good biocompatibility was found as determined by methyl thiazolyl tetrazolium assay, and the nanomesoporous materials were successfully applied to cell imaging in vitro based on Eu3+ luminescence (under 405 nm excitation) and small

  18. Pico- and subpicosecond relaxation processes in lanthanide-porphyrin complexes. [Lanthanoids: Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu

    Energy Technology Data Exchange (ETDEWEB)

    Solov' ev, K.N.; Tsvirko, M.P.; Krasauskas, V.V.; Pyatosin, V.E.; Stel' makh, G.F.

    1984-03-01

    Methods of nano- and picosecond absorption spectroscopy and luminescence are used to determine the deactivation rates of ..pi.., ..pi..*-electron states of S/sub 2/, S/sub 1/ and T/sub 1/ in complexes of organic molecules of meso-tetratolylporphyne and tetrabenzoporphyne with trivalent Sm/sup 3 +/, Eu/sup 3 +/, Gd/sup 3 +/, Tb/sup 3 +/, Dy/sup 3 +/, Ho/sup 3 +/, Er/sup 3 +/, Tm/sup 3 +/, Yb/sup 3 +/, Lu/sup 3 +/. Quantitative data on superfast relaxation processes in lanthanide porphyrines are obtained. The function of the metal entral ion is presented in details as the excitation factor in deactivation processes of photoexcitation energy of the systems in question.

  19. Synthesis, structural characterization and thermal studies of lanthanide complexes with Schiff base ligand N,N′-di-(4′-pentyloxybenzoate-salicylidene-1,3-diaminopropane

    Directory of Open Access Journals (Sweden)

    Sadeem M. Al-Barody

    2015-12-01

    Full Text Available New mesogen Schiff base ligand N,N′-di-(4′-pentyloxybenzoatesalicylidene-1,3-diaminopropane [H2L] was synthesized by the reaction of substituted 4-pentyloxy(4′-formyl-3′-hydroxy-benzoate and 1,3-diaminopropane in 2:1 molar ratio. Four mononuclear lanthanide complexes of the type [Ln(H2LLCl] (Ln = LaIII, CeIII, SmIII and GdIII were synthesized and characterized by 1H,13CNMR, fourier transform infrared (FT-IR spectroscopy, elemental analysis (C.H.N.O, gas chromotography-mass, magnetic susceptibility and molar conductivity. Thermal properties of the title compounds were studied using the thermogravimetric analysis/differential scanning calorimetry (TGA/DSC and optical polarizing microscopy (OPM. The ligand and coordination compounds exhibit liquid crystalline properties (smectic A.

  20. Five novel lanthanide complexes with 2-chloroquinoline-4-carboxylic acid and 1,10-phenanthroline: Crystal structures, molecular spectra, thermal properties and bacteriostatic activities

    Science.gov (United States)

    Wang, Ye; Jin, Cheng-Wei; He, Shu-Mei; Ren, Ning; Zhang, Jian-Jun

    2016-12-01

    Five novel lanthanide complexes [Ln2(2-ClQL)6(phen)2(H2O)2]·2H2O (Ln = Pr(1), Sm(2), Eu(3), Ho(4), Er(5)); 2-ClQL: 2-chloroquinoline-4-carboxylate; phen: 1,10-phenanthroline; were synthesized by conventional solution method at room temperature and characterized via elemental analysis, powder x-ray diffraction, Infrared spectroscopy and Raman spectrometry. The results indicate that complexes 1-5 are isostructural, and each Ln3+ ion is eight-coordinated adopting a distorted square antiprismatic molecular geometry. Binuclear complex 1 are stitched together via hydrogen bonding interactions to form 1D chains, and further to form 2D sheets by the π-π interactions. Luminescence investigation reveals that complex 3 displays strong red emission. TG/DTG-FTIR, reveal the thermal decomposition processes and products of title complexes. The bacteriostatic activities of the complexes were evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus.

  1. Modulation of homochiral Dy(III) complexes: single-molecule magnets with ferroelectric properties.

    Science.gov (United States)

    Li, Xi-Li; Chen, Chun-Lai; Gao, Yu-Liang; Liu, Cai-Ming; Feng, Xiang-Li; Gui, Yang-Hai; Fang, Shao-Ming

    2012-11-12

    Homochiral Dy(III) complexes: by changing the ligand-to-metal ratio, enantiomeric pairs of a Dy(III) complex of different nuclearity could be obtained. The mono- and dinuclear complexes exhibit characteristics of single-molecule magnets and different slow magnetic relaxation processes. In addition, the dinuclear complexes exhibit ferroelectric behavior, thus representing the first chiral polynuclear lanthanide-based single-molecule magnets with ferroelectric properties.

  2. Enantiomeric pair of copper(II) polypyridyl-alanine complexes: Effect of chirality on their interaction with biomolecules.

    Science.gov (United States)

    Ng, Chew Hee; Chan, Cheang Wei; Lai, Jing Wei; Ooi, Ing Hong; Chong, Kok Vei; Maah, Mohd Jamil; Seng, Hoi Ling

    2016-07-01

    Like chiral organic drugs, the chemical and biological properties of metal complexes can be dependent on chirality. Two pairs of [Cu(phen)(ala)(H2O)]X·xH2O (phen=1.10-phenanthroline: X=NO3(-); ala: l-alanine (l-ala), 1 and d-alanine (d-ala) 2; and (X=Cl(-); ala: l-ala, 3 and d-ala, 4) complex salts (x=number of lattice water molecules) have been synthesized and characterized. The crystal structure of 3 has been determined. The same pair of enantiomeric species, viz. [Cu(phen)(l-ala)(H2O)](+) and [Cu(phen)(d-ala)(H2O)](+), have been identified to be present in the aqueous solutions of both 1 and 3, and in those of both 2 and 4 respectively. Both 3 and 4 bind more strongly to ds(AT)6 than ds(CG)6. There is no or insignificant effect of the chirality of 3 and 4 on the production of hydroxyl radicals, binding to deoxyribonucleic acid from calf thymus (CT-DNA), ds(CG)6, G-quadruplex and 17-base pair duplex, and inhibition of both topoisomerase I and proteasome. Among the three proteasome proteolytic sites, the trypsin-like site is inhibited most strongly by these complexes. However, the chirality of 3 and 4 does affect the number of restriction enzymes inhibited, and their binding constants towards ds(AT)6 and serum albumin.

  3. Me-3,2-HOPO Complexes of Near Infra-Red (NIR) Emitting Lanthanides: Efficient Sensitization of Yb(III) and Nd(III) in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Evan G.; Xu, Jide; Dodani, Sheel; Jocher, Christoph; D' Aleo, Anthony; Seitz, Michael; Raymond, Kenneth

    2009-11-10

    The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution ({Phi}{sub tot}{sup Yb} {approx} 0.09-0.22%). Furthermore, the complexes demonstrate very high stability (pYb {approx} 18.8-21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a model Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G{sup ++}(d,p) level of theory for a simplified model monovalent sodium complex.

  4. Preparation and luminescent properties of lanthanide (Eu3+ and Tb3+) complexes grafted to 3-aminopropyltriethoxysilane by covalent bonds

    Science.gov (United States)

    Zhang, Wenjun; Wang, Haiyan

    2015-12-01

    A novel precursor PMA-Si was synthesized by modifying 1,2,4,5-benzene-tetracarboxylic acid (PMA) with 3-aminopropyltriethoxysilane (APTES). Then the hybrids were prepared by PMA-Si coordinating to lanthanide ions (Eu3+ and Tb3+) in sol-gel process. In order to improve luminescent efficiency, 1,10-Phenanthroline (Phen) was introduced to the system as the second ligand. As-prepared compounds in sol condition were coated on quartz plates to form a layer of thin film, which was different from other similar hybrids. The properties of the hybrids were characterized by FT-IR, fluorescence spectra, TG and SEM. The results showed that the obtained materials enhanced thermal stability, mechanical resistances, waterproofness as well as machining properties.

  5. Synthesis and spectroscopic characterization of some lanthanide(III nitrate complexes of ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate

    Directory of Open Access Journals (Sweden)

    CHEMPAKAM JANARDHANAN ATHIRA

    2011-02-01

    Full Text Available Ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate was synthesized by coupling diazotized ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate with acetylacetone. Based on various spectral studies and elemental analysis, an intramolecularly hydrogen-bonded azo-enol structural form was assigned for the ligand. This ligand is versatile in forming a series of lanthanide(III complexes, viz., lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III and gadolinium(III, which were characterized through various spectral studies, elemental analysis, magnetic susceptibility measurements, molar conductance and thermal analysis. The spectral data revealed that the ligand acted as a neutral tridentate, coordinating to the metal ion through one of the azo nitrogen atoms, the ester carbonyl and the enolic oxygen of the acetylacetone moiety, without deprotonation. Molar conductance values adequately supported their non-electrolytic nature. The ligand and lanthanum(III complex were subjected to X-ray diffraction studies. In addition, the lanthanum(III complex underwent a facile transesterification reaction on refluxing with methanol for a long period. The thermal behaviour of the lanthanum(III complex was also examined

  6. Synthesis, structures,thermal and magnetic properties of a series of lanthanide [Ln=Sm, Gd, Er, Yb] complexes with 4-quinolineacarboxylate

    Institute of Scientific and Technical Information of China (English)

    GAO Qian; XIE Yabo; ZHANG Chong; SUN Jihong

    2009-01-01

    A series of lanthanide binuclear complexes, [Ln2(L)6(H2O)4]·2H2O (Ln=Sm(III), Gd(III), Er(III), Yb(III), HL=4-quinolineacarboxylic acid, were synthesized by reactions of corresponding rare earth salts with 4-quinolineacarboxylic acid at room temperature and were characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. X-ray diffraction analyses showed that they exhibited the same binuclear architecture and crystallized in monoclinic system and P21/c space group. In four complexes, each metal center adopted nine-coordinated mode coordinated by nine O atoms from two H2O molecules and three carboxyls of three ligands, and HL showed three different coordination modes. The variable-temperature magnetic susceptibility showed that complex [Gd2(L)6(H2O)4]·2H2O performed very weak antiferromagnetic property at low temperature and exchange was almost paramagnetic at high temperature. Complexes [Er2(L)6(H2O)4]·2H2O and [Yb2(L)6(H2O)4]·2H2O performed dominating antiferromagnetic coupling.

  7. Dysprosium(III)-diethylenetriaminepentaacetate complexes of aminocyclodextrins as chiral NMR shift reagents.

    Science.gov (United States)

    Wenzel, T J; Miles, R D; Zomlefer, K; Frederique, D E; Roan, M A; Troughton, J S; Pond, B V; Colby, A L

    2000-01-01

    A metal chelating ligand is bonded to alpha-, beta-, and gamma-cyclodextrin by the reaction of diethylenetraminepentaacetic dianhydride with the corresponding 6-mono- and 2-mono(amine)cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives causes shifts in the (1)H-NMR spectra of substrates such as propranolol, tryptophan, aspartame, carbinoxamine, pheniramine, doxylamine, and 1-anilino-8-naphthalenesulfonate. The Dy(III)-induced shifts enhance the enantiomeric resolution in the NMR spectra of several substrates. Enhancements in enantiomeric resolution using cyclodextrin derivatives with the amine tether are compared to previously described compounds in which the chelating ligand is attached through an ethylenediamine tether. In general, the Dy(III) complex of the 6-beta-derivative with the amine tether is a more effective chiral resolving agent than the complex with the ethylenediamine tether. The opposite trend is observed with the 2-beta-derivatives. The presence of the chelating ligand in the 2-beta-derivative hinders certain substrates from entering the cavity. For cationic substrates, evidence suggests that a cooperative association involving inclusion in the cavity and association with the Dy(III) unit occurs. Enhancements in enantiomeric resolution in the spectrum of tryptophan are greater for the secondary alpha- and gamma-derivatives than the beta-derivative.

  8. Synthesis and Structural Investigation of New Bio-Relevant Complexes of Lanthanides with 5-Hydroxyflavone: DNA Binding and Protein Interaction Studies

    Directory of Open Access Journals (Sweden)

    Alexandra-Cristina Munteanu

    2016-12-01

    Full Text Available In the present work, we attempted to develop new metal coordination complexes of the natural flavonoid 5-hydroxyflavone with Sm(III, Eu(III, Gd(III, Tb(III. The resultant hydroxo complexes have been characterized by a variety of spectroscopic techniques, including fluorescence, FT-IR, UV-Vis, EPR and mass spectral studies. The general chemical formula of the complexes is [Ln(C15H9O33(OH2(H2Ox]·nH2O, where Ln is the lanthanide cation and x = 0 for Sm(III, x = 1 for Eu(III, Gd(III, Tb(III and n = 0 for Sm(III, Gd(III, Tb(III, n = 1 for Eu(III, respectively. The proposed structures of the complexes were optimized by DFT calculations. Theoretical calculations and experimental determinations sustain the proposed structures of the hydroxo complexes, with two molecules of 5-hydroxyflavone acting as monoanionic bidentate chelate ligands. The interaction of the complexes with calf thymus DNA has been explored by fluorescence titration and UV-Vis absorption binding studies, and revealed that the synthesized complexes interact with DNA with binding constants (Kb ~ 104. Human serum albumin (HSA and transferrin (Tf binding studies have also been performed by fluorescence titration techniques (fluorescence quenching studies, synchronous fluorescence spectra. The apparent association constants (Ka and thermodynamic parameters have been calculated from the fluorescence quenching experiment at 299 K, 308 K, and 318 K. The quenching curves indicate that the complexes bind to HSA with smaller affinity than the ligand, but to Tf with higher binding affinities than the ligand.

  9. Research progress on the single-molecule magnets of Lanthanide complexes%稀土配合物单分子磁体研究进展

    Institute of Scientific and Technical Information of China (English)

    董飘平; 梁福永; 邹征刚; 温和瑞

    2016-01-01

    Single-molecule magnets(SMMs) have potential application in the areas of ultrahigh-density memory components,spintronic devices and quantum computers. Rare earth ions are widely used for preparation of magnetic materials due to their high spin ground state as well as strong spin orbit coupling and magnetic anisotropy. In recent years,the rare earth ions have been used to improve SMMs spin flip energy barrier and a lot of rare earth complexes have been also synthesized. In this paper,the synthesis and structures of Lanthanide-based SMMs are briefly reviewed with an emphasis on magnetism properties of the mono-,di-,tri-,tetra-,penpa- and hexa-nuclear Lanthanide SMMs. Studies have showed that the SMMs made from Dysprosium-based complexes are the best and of the more the complex nuclear,the stronger the characteristics of SMMs. The future research of Lanthanide-based SMMs should focus on the synthesis of high nuclear complexes and the advancement of magnetic anisotropy energy barrier.%单分子磁体在超高密度存储、自旋电子器件、量子计算机等领域具有潜在的应用。稀土离子因其存在高电子自旋基态以及很强的自旋轨道耦合和磁各向异性,被广泛应用于磁性材料的制备。近年来,稀土离子用来提高单分子磁体的自旋翻转能垒的研究备受关注,大量具有单分子磁体性能的稀土配合物被合成。本文综述了稀土配合物单分子磁体的合成、结构与磁性研究进展,着重介绍了单核、双核、三核、四核、五核及六核稀土配合物单分子磁体的结构与磁学性质。研究表明,应用元素镝构筑的稀土配合物单分子磁体性能最好,且随着配合物核数的增加,单分子磁体的特性更加明显。展望稀土配合物单分子磁体的研究,今后的研究重点是合成高核稀土配合物和提高磁各向异性能垒。

  10. The addition of a second lanthanide ion to increase the luminescence of europium(III) macrocyclic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bromm, A.J. Jr.; Vallarino, L.M. [Virginia Commonwealth Univ., Richmond, VA (United States). Dept. of Chemistry; Leif, R.C. [Newport Instruments, San Diego, CA (United States); Quagliano, J.R. [Los Alamos National Lab., NM (United States)

    1998-12-29

    At present, the microscopic visualization of luminescent labels containing lanthanide(III) ions, primarily europium(III), as light-emitting centers is best performed with time-gated instrumentation, which by virtually eliminating the background fluorescence results in an improved signal to noise ratio. However, the use of the europium(III) macrocycle, Quantum Dye{trademark}, in conjunction with the strong luminescence enhancing effect (cofluorescence) of yttrium(III) or gadolinium(III), can eliminate the need for such specialized instrumentation. In the presence of Gd(III), the luminescence of the Eu(III)-macrocycles can be conveniently observed with conventional fluorescence instrumentation at previously unattainable low levels. The Eu(III) {sup 5}D{sub 0} {r_arrow} {sup 7}F{sub 2} emission of the Eu(III)-macrocycles was observed as an extremely sharp band with a maximum at 619 nm and a clearly resolved characteristic pattern. At very low Eu(III)-macrocycle concentrations, another sharp emission was detected at 614 nm, arising from traces of Eu(III) present in even the purest commercially available gadolinium products. Discrimination of the resolved emissions of the Eu(III)-macrocycle and Eu(III) contaminant should provide a means to further lower the limit of detection of the Eu(III)-macrocycle.

  11. Chirality Synchronization of Hydrogen-Bonded Complexes of Achiral N-Heterocycles.

    Science.gov (United States)

    Buchs, Jens; Vogel, Laura; Janietz, Dietmar; Prehm, Marko; Tschierske, Carsten

    2017-01-02

    2,4-Diamino-6-phenyl-1,3,5-triazines carrying a single oligo(ethylene oxide) (EO) chain form an optically isotropic mesophase composed of a conglomerate of macroscopic chiral domains with opposite sense of chirality even though the constituent molecules are achiral. This mesophase was proposed to result from the helical packing of hydrogen-bonded triazine aggregates, providing long-range chirality synchronization. The results provide first evidence for macroscopic achiral symmetry breaking upon conglomerate formation in an amorphous isotropic phase formed by hydrogen-bonded associates of simple N-heterocycles that are related to prebiotic molecules.

  12. NH-type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications.

    Science.gov (United States)

    Bergagnini, Mackenzie; Fukushi, Kazunobu; Han, Jianlin; Shibata, Norio; Roussel, Christian; Ellis, Trevor K; Aceña, José Luis; Soloshonok, Vadim A

    2014-02-28

    The work being reported here deals with the design of a new type of "N-H" Ni(II) complexes of glycine Schiff bases and study general aspects of their reactivity. It was confirmed that the presence of NH function in these Ni(II) complexes does not interfere with the homologation of the glycine residue, rendering these derivatives of high synthetic value for the general synthesis of α-amino acids. In particular, the practical application of these NH-type complexes was demonstrated by asymmetric synthesis of various β-substituted pyroglutamic acids via Michael addition reactions with chiral Michael acceptors.

  13. Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent Nanoparticle Self-Assembly

    KAUST Repository

    Hur, Kahyun

    2012-06-13

    "Bottom up" type nanoparticle (NP) self-assembly is expected to provide facile routes to nanostructured materials for various, for example, energy related, applications. Despite progress in simulations and theories, structure prediction of self-assembled materials beyond simple model systems remains challenging. Here we utilize a field theory approach for predicting nanostructure of complex and multicomponent hybrid systems with multiple types of short- and long-range interactions. We propose design criteria for controlling a range of NP based nanomaterial structures. In good agreement with recent experiments, the theory predicts that ABC triblock terpolymer directed assemblies with ligand-stabilized NPs can lead to chiral NP network structures. Furthermore, we predict that long-range Coulomb interactions between NPs leading to simple NP lattices, when applied to NP/block copolymer (BCP) assemblies, induce NP superlattice formation within the phase separated BCP nanostructure, a strategy not yet realized experimentally. We expect such superlattices to be of increasing interest to communities involved in research on, for example, energy generation and storage, metamaterials, as well as microelectronics and information storage. © 2012 American Chemical Society.

  14. Chirality recognition in the glycidol···propylene oxide complex: a rotational spectroscopic study.

    Science.gov (United States)

    Thomas, Javix; Sunahori, Fumie X; Borho, Nicole; Xu, Yunjie

    2011-04-11

    Chirality recognition in the hydrogen-bonded glycidol···propylene oxide complex has been studied by using rotational spectroscopy and ab initio calculations. An extensive conformational search has been performed for this binary adduct at the MP2/6-311++G(d,p) level of theory and a total of 28 homo- and heterochiral conformers were identified. The eight binary conformers, built of the two dominant glycidol monomeric conformers, g-G+ and g+G-, were predicted to be the most stable ones. Jet-cooled rotational spectra of six out of the eight conformers were observed and unambiguously assigned for the first time. The experimental stability ordering has been obtained and compared with the ab initio predictions. The relative stability of the two dominant glycidol monomeric conformers is reversed in some cases when binding to propylene oxide. The contributions of monomeric energy, deformation energy, and binary intermolecular interaction energy to the relative stability of the binary conformers are discussed.

  15. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  16. Series of isostructural planar lanthanide complexes [Ln(III)4(mu3-OH)2(mdeaH)2(piv)8] with single molecule magnet behavior for the Dy4 analogue.

    Science.gov (United States)

    Abbas, Ghulam; Lan, Yanhua; Kostakis, George E; Wernsdorfer, Wolfgang; Anson, Christopher E; Powell, Annie K

    2010-09-06

    A series of five isostructural tetranuclear lanthanide complexes of formula [Ln(4)(mu(3)-OH)(2)(mdeaH)(2)(piv)(8)], (mdeaH(2) = N-methyldiethanolamine; piv = pivalate; Ln = Tb (1), Dy (2), Ho (3), Er (4), and Tm (5)) have been synthesized and characterized. These clusters have a planar "butterfly" Ln(4) core. Magnetically, the Ln(III) ions are weakly coupled in all cases; the Dy(4) compound 2 shows Single Molecule Magnet (SMM) behavior.

  17. Lanthanide-based luminescence biolabelling.

    Science.gov (United States)

    Sy, Mohamadou; Nonat, Aline; Hildebrandt, Niko; Charbonnière, Loïc J

    2016-04-14

    Luminescent lanthanide complexes display unrivalled spectroscopic properties, which place them in a special category in the luminescent toolbox. Their long-lived line-like emission spectra are the cornerstones of numerous analytical applications ranging from ultrasensitive homogeneous fluoroimmunoassays to the study of molecular interactions in living cells with multiplexed microscopy. However, achieving such minor miracles is a result of years of synthetic efforts and spectroscopic studies to understand and gather all the necessary requirements for the labels to be efficient. This feature article intends to survey these criteria and to discuss some of the most important examples reported in the literature, before explaining in detail some of the applications of luminescent lanthanide labels to bioanalysis and luminescence microscopy. Finally, the emphasis will be put on some recent applications that hold great potential for future biosensing.

  18. Ionization Energies of Lanthanides

    Science.gov (United States)

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  19. Mn(II) complexes containing the polypyridylic chiral ligand (-)-pinene[5,6]bipyridine. Catalysts for oxidation reactions.

    Science.gov (United States)

    Rich, Jordi; Rodríguez, Montserrat; Romero, Isabel; Vaquer, Lydia; Sala, Xavier; Llobet, Antoni; Corbella, Montserrat; Collomb, Marie-Noëlle; Fontrodona, Xavier

    2009-10-14

    A series of mononuclear and dinuclear chiral manganese(II) complexes containing the neutral bidentate chiral nitrogen ligand (-)-pinene[5,6]bipyridine, (-)-L, were prepared from different manganese salts. The chirality in these complexes arises from the pinene ring that has been fused to the 5,6 positions of one pyridine group of the bipyridine ligand. These complexes have been characterized through analytical, spectroscopic (IR, UV/Vis, ESI-MS) and electrochemical techniques (cyclic voltammetry). Single X-ray structure analysis revealed a five-coordinated Mn(II) ion in [{MnCl((-)-L)}2(mu-Cl)2] (2), [{Mn((-)-L)}2(mu-OAc)3](PF6) (3) and [MnCl2(H2O)((-)-L)] (4) and a six-coordinated one in [MnCl2((-)-L)2] (5), [Mn(CF3SO3)2((-)-L)2] (6) and [Mn(NO3)(H2O)((-)-L)2)](NO3) (7). The magnetic properties of the binuclear compounds 2 and 3 have been studied. Both compounds show a weak antiferromagnetic coupling (2, J = -0.22 cm(-1); 3, J = -0.85 cm(-1)). The catalytic activity of the whole set of complexes has been tested with regard to the epoxidation of aromatic alkenes with peracetic acid. In the particular case of styrene, good selectivities and moderate enantioselectivities were obtained. Furthermore, total retention of the initial cis configuration was achieved when epoxidizing cis-beta-methylstyrene with the chloride complexes. In general, the epoxidation activity of these manganese complexes is strongly dependent on the steric encumbrance of the substrates employed.

  20. Predicting Complexation Thermodynamic Parameters of β-Cyclodextrin with Chiral Guests by Using Swarm Intelligence and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Luckhana Lawtrakul

    2009-05-01

    Full Text Available The Particle Swarm Optimization (PSO and Support Vector Machines (SVMs approaches are used for predicting the thermodynamic parameters for the 1:1 inclusion complexation of chiral guests with β-cyclodextrin. A PSO is adopted for descriptor selection in the quantitative structure-property relationships (QSPR of a dataset of 74 chiral guests due to its simplicity, speed, and consistency. The modified PSO is then combined with SVMs for its good approximating properties, to generate a QSPR model with the selected features. Linear, polynomial, and Gaussian radial basis functions are used as kernels in SVMs. All models have demonstrated an impressive performance with R2 higher than 0.8.

  1. Understanding the complexation of Eu3 + with potential ligands used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle: A luminescence investigation

    Science.gov (United States)

    Sengupta, Arijit; Kadam, R. M.

    2017-02-01

    A systematic photoluminescence based investigation was carried out to understand the complexation of Eu3 + with different ligands (TBP: tri-n-butyl phosphate, DHOA: di-n-hexyl octanamide, Cyanex 923: tri-n-alkyl phosphine oxide and Cyanex 272: Bis (2,4,4 trimethyl) pentyl phosphinic acid) used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle. In case of TBP and DHOA complexes, 3 ligand molecules coordinated in monodentate fashion and 3 nitrate ion in bidentate fashion to Eu3 + to satisfy the 9 coordination of Eu. In case of Cyanex 923 and Cyanex 272 complexes, 3 ligand molecules, 3 nitrate ion and 3 water molecules coordinated to Eu3 + in monodentate fashion. The Eu complexes of TBP and DHOA were found to have D3h local symmetry while that for Cyanex 923 and Cyanex 272 were C3h. Judd-Ofelt analysis of these systems revealed that the covalency of Eusbnd O bond followed the trend DHOA > TBP > Cyanex 272 > Cyanex 923. Different photophysical properties like radiative and non-radiative life time, branching ratio for different transitions, magnetic and electric dipole moment transition probabilities and quantum efficiency were also evaluated and compared for these systems. The magnetic dipole transition probability was found to be almost independent of ligand field perturbation while electric dipole transition probability for 5D0-7F2 transition was found to be hypersensitive with ligand field with a trend DHOA > TBP > Cyanex 272 > Cyanex 923. Supplementary Table 2: Determination of inner sphere water molecules from the different empirical formulae reported in the literature.

  2. Synthetic studies on axial chiral biaryls and functional materials utilizing arene-metal complexes; aren kinzokusakutai no tokusei wo riyo shita jikufusai biariru, oyobi shinki kinosei zairyo no gosei kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, Motokazu [Osaka Prefecture University, Osaka (Japan). Faculty of Integrated Arts and Sceinces

    1999-12-16

    Axially chiral biaryls compounds are of importance not only as chiral ligands for asymmetric reactions but also as biologically active natural products, e. g., korupensamine, michellamine and vancomycin. (Arene) chromium complex exists in two enantiomeric forms based on a planar chirality. Axially chiral biaryls were stereoselectively prepared by palladium(0)-catalyzed cross-coupling of (aryl halide)Cr(CO){sub 3} complexes with arylboronic acids. This method was applied for the total synthesis of antimaralial agent korupensamine A, naphthyltetrahydro-isoquinoline alkaloid. Furthermore, chiral 1,2-diols and diamines are important compounds for asymmetric reactions. These enantionerically pure 1,2-diols and 1,2-diamines were stereoselectively prepared by pinacol coupling of planar chiral chromium complexes of benzaldehydes and benzaldimines with samarium iodide. Moreover, non-biaryl axial compounds, N,N-dialkyl 2,6-disubstituted benzamides were synthesized in enantiomerically pure form utilizing planar chiral arene chromium complex. (author)

  3. Chiral manganese (IV) complexes derived from Schiff base ligands: Synthesis, characterization, in vitro cytotoxicity and DNA/BSA interaction.

    Science.gov (United States)

    Li, Zhen; Niu, Meiju; Chang, Guoliang; Zhao, Changqiu

    2015-12-01

    Two new couples of chiral manganese (IV) complexes with Schiff-base ligands, Λ-[Mn(R-L(1))2]·2(CH3OH) (Λ-1) and Δ-[Mn(S-L(1))2]·2(CH3OH) (Δ-1), Λ-[Mn(R-L(2))2]·(H2O)2 (Λ-2) and Δ-[Mn(S-L(2))2]·(H2O)2 (Δ-2), {H2L(1)=(R/S)-(±)-1-[(1-hydroxymethyl-propylimino)-methyl]-naphthalen-2-ol, H2L(2)=(R/S)-(±)-1-[(1-Hydroxymethyl-2-phenyl-ethylimino)-methyl]-naphthalen-2-ol} have been synthesized, and fully characterized by elemental analyses, UV-Vis spectrum, circular dichroism spectrum, FT-IR spectrum, mass spectrum, and single crystal X-ray diffraction (SXRD). The interaction of the four chiral Mn (IV) complexes with CT-DNA and BSA were also investigated by various spectroscopic techniques (UV-visible, fluorescence spectroscopic). The results show that the Δ-complexes exhibit more efficient CT-DNA interaction with respect to the Λ-complexes. All the complexes could quench the intrinsic fluorescence of BSA by a static quenching process. In addition, the vitro cytotoxicity of these complexes toward four kinds of cancerous cell lines (A549, HeLa, HL-60, and Caco-2) was assayed by the MTT method, which exhibited to be selectively active against certain cell lines.

  4. Synthesis, X-ray, and Spectroscopic Study of Dissymmetric Tetrahedral Zinc(II) Complexes from Chiral Schiff Base Naphthaldiminate Ligands with Apparent Exception to the ECD Exciton Chirality.

    Science.gov (United States)

    Enamullah, Mohammed; Makhloufi, Gamall; Ahmed, Rifat; Joy, Baitul Alif; Islam, Mohammad Ariful; Padula, Daniele; Hunter, Howard; Pescitelli, Gennaro; Janiak, Christoph

    2016-07-01

    Bidentate enantiopure Schiff base ligands, (R or S)-N-1-(Ar)ethyl-2-oxo-1-naphthaldiminate (R- or S-N^O), diastereoselectively provide Λ- or Δ-chiral-at-metal four-coordinated Zn(R- or S-N^O)2 {Ar = C6H5; Zn-1R or Zn-1S and p-C6H4OMe; Zn-2R or Zn-2S}. Two R- or S-N^O-chelate ligands coordinate to the zinc(II) in a tetrahedral mode and induce Λ- or Δ-configuration at the zinc metal center. In the solid state, the R- or S-ligand diastereoselectively gives Λ- or Δ-Zn configuration, respectively, and forms enantiopure crystals. Single crystal structure determinations show two symmetry-independent molecules (A and B) in each asymmetric unit to give Z' = 2 structures. Electronic circular dichroism (ECD) spectra show the expected mirror image relationship resulting from diastereomeric excess toward the Λ-Zn for R-ligands and Δ-Zn for S-ligands in solution. ECD spectra are well reproduced by TDDFT calculations, while the application of the exciton chirality method, in the common point-dipole approximation, predicts the wrong sign for the long-wavelength couplet. A dynamic diastereomeric equilibrium (Λ vs Δ) prevails for both R- and S-ligand-metal complexes in solution, respectively, evidenced by (1)H NMR spectroscopy. Variable temperature (1)H NMR spectra show a temperature-dependent shift of the diastereomeric equilibrium and confirm Δ-Zn configuration (for S-ligand) to be the most stable one and favored at low temperature. DSC analyses provide quantitative diastereomeric excess in the solid state for Zn-2R and Zn-2S, which is comparable to the results of solution studies.

  5. Lanthanide complexes containing 5-methyl-1,2,4-triazolo[1,5-a] pyrimidin-7(4H)-one and their therapeutic potential to fight leishmaniasis and Chagas disease.

    Science.gov (United States)

    Caballero, Ana B; Rodríguez-Diéguez, Antonio; Salas, Juan M; Sánchez-Moreno, Manuel; Marín, Clotilde; Ramírez-Macías, Inmaculada; Santamaría-Díaz, Noelia; Gutiérrez-Sánchez, Ramón

    2014-09-01

    In the last years, numerous and significant advances in lanthanide coordination chemistry have been achieved. The unique chemical nature of these metal ions which is conferred by their f-electrons has led to a wide range of coordination compounds with interesting structural, physical and also biological properties. Consequently, lanthanide complexes have found applications mainly in catalysis, gas adsorption, photochemistry and as diagnostic tools. However, research on their therapeutic potential and the understanding of their mechanism of action is still taking its first steps, and there is a distinct lack of research in the parasitology field. In the present work, we describe the synthesis and physical properties of seven new lanthanide complexes with the anionic form of the bioactive ligand 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (HmtpO), namely [Ln(mtpO)3(H2O)6]·9H2O (Ln=La(III), Nd(III), Eu(III), Gd(III), Tb(III), Dy(III) and Er(III)). In addition, results on the in vitro antiproliferative activity against Leishmania spp. and Trypanosoma cruzi are described. The high activity of the new compounds against parasite proliferation and their low cytotoxicity against reference host cell lines show a great potential of this type of compounds to become a new generation of highly effective and non-toxic antiparasitic agents to fight the so considered neglected diseases leishmaniasis and Chagas disease.

  6. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate.

    Science.gov (United States)

    Coman, Daniel; Kiefer, Garry E; Rothman, Douglas L; Sherry, A Dean; Hyder, Fahmeed

    2011-12-01

    Responsive contrast agents (RCAs) composed of lanthanide(III) ion (Ln3R) complexes with a variety of1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4S) derivatives have shown great potential as molecular imaging agents for MR. A variety of LnDOTA–tetraamide complexes have been demonstrated as RCAs for molecular imaging using chemical exchange saturation transfer (CEST). The CEST method detects proton exchange between bulk water and any exchangeable sites on the ligand itself or an inner sphere of bound water that is shifted by a paramagnetic Ln3R ion bound in the core of the macrocycle. It has also been shown that molecular imaging is possible when the RCA itself is observed (i.e. not its effect on bulk water) using a method called biosensor imaging of redundant deviation in shifts (BIRDS). The BIRDS method utilizes redundant information stored in the nonexchangeable proton resonances emanating from the paramagnetic RCA for ambient factors such as temperature and/or pH.Thus, CEST and BIRDS rely on exchangeable and nonexchangeable protons, respectively, for biosensing. We posited that it would be feasible to combine these two biosensing features into the same RCA (i.e. dual CEST and BIRDS properties). A complex between europium(III) ion (Eu3R) and DOTA–tetraglycinate [DOTA–(gly)S4] was used to demonstrate that its CEST characteristics are preserved, while its BIRDS properties are also detectable. The in vitro temperature sensitivity of EuDOTA–(gly)S4 was used to show that qualitative MR contrast with CEST can be calibrated using quantitative MR mapping with BIRDS, thereby enabling quantitative molecular imaging at high spatial resolution.

  7. Asymmetric Synthesis of New Chiral Europium N,N'-Disuccinate Complexes : Shift Reagents for Aqueous Solutions and Application in the Enantiomeric Excess Determination of Amino Acids

    NARCIS (Netherlands)

    HULST, R; DEVRIES, NK; FERINGA, BL

    1994-01-01

    The synthesis of new chiral N,N'-disuccinate ligands (R,R)-8, (R,R)-9, and (S,S)-10 from (5R)- or (SS)-(menthyloxy)-2(5H)-furanone is described. These ligands, after complexation with EuCl3.6H(2)O, are highly suitable as chiral shift reagents for the enantiomeric excess determination of amino acids

  8. Complexation of biological ligands with lanthanides(III) for MRI: Structure, thermodynamic and methods; Complexation des cations lanthanides trivalents par des ligands d'origine biologique pour l'IRM: Structure, thermodynamique et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, C

    2006-07-15

    New cyclic ligands derived from sugars and amino-acids form a scaffold carrying a coordination sphere of oxygen atoms suitable to complex Ln(III) ions. In spite of their rather low molecular weights, the complexes display surprisingly high relaxivity values, especially at high field. The ACX and BCX ligands, which are acidic derivatives of modified and cyclo-dextrins, form mono and bimetallic complexes with Ln(III). The LnACX and LnBCX complexes show affinities towards Ln(III) similar to those of tri-acidic ligands. In the bimetallic Lu2ACX complex, the cations are deeply embedded in the cavity of the ligand, as shown by the X-ray structure. In aqueous solution, the number of water molecules coordinated to the cation in the LnACX complex depends on the nature and concentration of the alkali ions of the supporting electrolyte, as shown by luminescence and relaxometric measurements. There is only one water molecule coordinated in the LnBCX complex, which enables us to highlight an important second sphere contribution to relaxivity. The NMR study of the RAFT peptidic ligand shows the complexation of Ln(III), with an affinity similar to those of natural ligands derived from calmodulin. The relaxometric study also shows an important second sphere contribution to relaxivity. To better understand the intricate molecular factors affecting relaxivity, we developed new relaxometric methods based on probe solutes. These methods allow us to determine the charge of the complex, weak affinity constants, trans-metallation constants, and the electronic relaxation rate. (author)

  9. Enantioselective column coupled electrophoresis employing large bore capillaries hyphenated with tandem mass spectrometry for ultra-trace determination of chiral compounds in complex real samples.

    Science.gov (United States)

    Piešťanský, Juraj; Maráková, Katarína; Kovaľ, Marián; Havránek, Emil; Mikuš, Peter

    2015-12-01

    A new multidimensional analytical approach for the ultra-trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on-line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean-up) in a large injection volume (1-10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP - chiral CZE-QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications.

  10. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  11. Curvature of the Lanthanide Contraction: An Explanation

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth; Wellman, Daniel; Sgarlata, Carmelo; Hill, Aru

    2009-12-21

    A number of studies have shown that for isostructural series of the lanthanides (elements La through Lu), a plot of equivalent metal-ligand bond lengths versus atomic number differs significantly from linearity and can be better fit as a quadratic equation. However, for hydrogen type wave functions, it is the inverse of the average distance of the electron from the nucleus (an estimate of size) that varies linearly with effective nuclear charge. This generates an apparent quadratic dependence of radius with atomic number. Plotting the inverse of lanthanide ion radii (the observed distance minus the ligand size) as a function of effective nuclear charge gives very good linear fits for a variety of lanthanide complexes and materials. Parameters obtained from this fit are in excellent agreement with the calculated Slater shielding constant, k.

  12. Non-ionic surfactant modified ligand exchange chromatography using copper (II) complex of N,N-dimethyl-L-phenylalanine as the chiral additive for enantioselective amino acids separation

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrova, Pepa [TU Kaiserslautern, Institut fuer Thermische Verfahrenstechnik, P.O. Box 3049, Gottlieb-Daimler-Str. 44, 67653 Kaiserslautern (Germany); Bart, Hans-Joerg, E-mail: bart@mv.uni-kl.de [TU Kaiserslautern, Institut fuer Thermische Verfahrenstechnik, P.O. Box 3049, Gottlieb-Daimler-Str. 44, 67653 Kaiserslautern (Germany)

    2010-03-17

    The influence of non-ionic surfactants on the selectivity and retention in the ligand exchange chromatography for the enantioselective separation of racemic mixtures of the amino acids DL-methionine, DL-leucine, DL-valine and DL-tyrosine applying chiral mobile phases was investigated, whereas five different surfactants were tested as modifiers. The experiments were carried out using a commercially available non-chiral RP-C8 column and the copper (II) complex of N,N-dimethyl-L-phenylalanine as the chiral additive. Varying the surfactant concentrations the retention factors and the selectivity could be controlled and in general no negative influence on the separation (due to surfactant adsorption on the non-chiral stationary phase) occurred. Changing the temperature the van't Hoff plots were obtained and the thermodynamic parameters calculated. Temperature had influence on the selectivity for each surfactant and lowered the retention times as expected.

  13. Non-ionic surfactant modified ligand exchange chromatography using copper (II) complex of N,N-dimethyl-L-phenylalanine as the chiral additive for enantioselective amino acids separation.

    Science.gov (United States)

    Dimitrova, Pepa; Bart, Hans-Jörg

    2010-03-17

    The influence of non-ionic surfactants on the selectivity and retention in the ligand exchange chromatography for the enantioselective separation of racemic mixtures of the amino acids dl-methionine, dl-leucine, dl-valine and dl-tyrosine applying chiral mobile phases was investigated, whereas five different surfactants were tested as modifiers. The experiments were carried out using a commercially available non-chiral RP-C8 column and the copper (II) complex of N,N-dimethyl-l-phenylalanine as the chiral additive. Varying the surfactant concentrations the retention factors and the selectivity could be controlled and in general no negative influence on the separation (due to surfactant adsorption on the non-chiral stationary phase) occurred. Changing the temperature the van't Hoff plots were obtained and the thermodynamic parameters calculated. Temperature had influence on the selectivity for each surfactant and lowered the retention times as expected.

  14. Complexation of trivalent lanthanide cations by different chelation sites of malic and tartric acid (composition, stability and probable structure

    Directory of Open Access Journals (Sweden)

    Mohammed Riri

    2016-11-01

    Full Text Available The formation of colorless gadolinium complexes (x,y,z between x gadolinium ions, y ligands and z protons of some organic acids has been studied in aqueous solution. In this work we shall present the results of investigations on the interaction of the gadolinium ion (Gd3+ with different chelation sites of malic and tartric acid formed in dilute solution for pH values between 5.50 and 7.50. The structures of these new organometallic complexes are Gd3(C4H4O52·(NO33·nH2O and Gd3(C4H4O62·(NO33·nH2O (C4H4O52-: malate ions and C4H4O62-: tartrate ions. These colorless gadolinium complexes of malate and tartrate ions have no absorption band UV–visible, the indirect photometry detection (IPD study; have identified major tri-nuclear complexes of these dicarboxylic acids, giving for these colorless complexes a (3,2,2 and (3,2,3, respectively. Composition and apparent stability constant depends on the acidity of the medium. To complement previous results and to propose probable structures for these new complexes detected in solution FT-IR and FT-Raman spectroscopy have been conducted to identify the different chelation sites for both ligands.

  15. Five different types of η(8)-cyclooctatetraenyl-lanthanide half-sandwich complexes from one ligand set, including a "giant neodymium wheel".

    Science.gov (United States)

    Sroor, Farid M; Hrib, Cristian G; Liebing, Phil; Hilfert, Liane; Busse, Sabine; Edelmann, Frank T

    2016-09-14

    The lithium-cyclopropylethynylamidinates Li[c-C3H5-C[triple bond, length as m-dash]C-C(NR)2] (1a: R = (i)Pr, 1b: R = cyclohexyl (Cy)) have been used as precursors for the preparation of five new series of half-sandwich complexes. These complexes contain the large flat cyclooctatetraenyl ligand (C8H8(2-), commonly abbreviated as COT), and were isolated as solvated, unsolvated and inverse sandwich complexes. Treatment of the halide precursors [(COT)Pr(μ-Cl)(THF)2]2 with 1b and [(COT)Nd(μ-Cl)(THF)2]2 with 1a and 1b in THF in a 1 : 2 molar ratio, respectively, afforded (COT)Ln[μ-c-C3H5-C[triple bond, length as m-dash]C-C(NR)2]2Li(L) (2: Ln = Pr, R = Cy, L = Et2O; 3: Ln = Nd, R = (i)Pr, L = THF; 4: Ln = Nd, R = Cy, L = THF). Treatment of the dimeric cerium(iii) bis(cyclopropylethynylamidinate) complexes [{c-C3H5-C[triple bond, length as m-dash]C-C(NR)2}2Ce(μ-Cl)(THF)]2 (5: R = (i)Pr; 6: R = Cy) in situ with K2C8H8 in a 1 : 1 molar ratio in THF at room temperature afforded the inverse-sandwich complexes (μ-η(8):η(8)-COT)[Ce{c-C3H5-C[triple bond, length as m-dash]C-C(NR)2}2]2 (7: R = (i)Pr; 8: R = Cy). This reaction represents a new method for encapsulation of a planar (C8H8)(2-) ring in lanthanide complexes containing amidinate ligands in the outer decks. Novel unsolvated dinuclear lanthanide half-sandwich complexes were prepared by using the precursors 1a, 1b and COT(2-). Unlike the complexes 2-4, the reaction of [(COT)Pr(μ-Cl)(THF)2]2 with 1a afforded the unsolvated centrosymmetric complex [(COT)Pr(μ-c-C3H5-C[triple bond, length as m-dash]C-C(N(i)Pr)2)]2 (9). These dimeric structures could be also accessed by reaction of LnCl3 (Ln = Ce or Nd) with 1a or 1b and K2COT in a 1 : 1 : 1 molar ratio as a one-pot reaction to give novel [(COT)Ln(μ-c-C3H5-C[triple bond, length as m-dash]C-C(NR)2)]2 complexes (10: Ln = Ce, R = (i)Pr; 11: Ln = Ce, R = Cy; 12: Ln = Nd, R = (i)Pr). Similar treatment of HoCl3 with 1a or 1b and K2COT as three

  16. Stereoselective Michael Addition of Glycine Anions to Chiral Fischer Alkenylcarbene Complexes. Asymmetric Synthesis of beta-Substituted Glutamic Acids.

    Science.gov (United States)

    Ezquerra, Jesús; Pedregal, Concepción; Merino, Isabel; Flórez, Josefa; Barluenga, José; García-Granda, Santiago; Llorca, María-Amparo

    1999-09-03

    The reaction of lithium enolates of achiral N-protected glycine esters with chiral alkoxyalkenylcarbene complexes of chromium provided the corresponding Michael adducts with either high anti or syn selectivity depending on the nature of the nitrogen protecting group, and high diastereofacial selectivity when carbene complexes containing the (-)-8-phenylmenthyloxy group were employed. Subsequent oxidation of the metal-carbene moiety followed by deprotection of the amine group and hydrolysis of both carboxylic esters afforded enantiomerically enriched 3-substituted glutamic acids of natural as well as unnatural stereochemistry. Alternatively, when the deprotection step was performed previously to the oxidation, cyclic aminocarbene complexes were formed, which finally led to optically active 3-substituted pyroglutamic acids.

  17. Simulations of electrolytes at the liquid-liquid interface and of lanthanide cations complexes in gas phase; Simulations d'electrolytes a l'interface liquide/liquide et de complexes de cations lanthanides en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Berny, F

    2000-07-01

    Two processes related to liquid/liquid extraction of ions by extractant molecules were studied: the ion approach at the interface and the ion complexation by ligands. In the first part, the behaviour of salts at the chloroform/water interface was simulated by molecular dynamics. The aim was to understand the way these salts ions approach the interface in order to be extracted. Some ions are repelled by the interface (K{sup +}, Cl{sup -}, UO{sub 2}{sup 2+}, Na{sup +}, NO{sub 3}{sup -}) whereas others adsorb (amphiphilic molecules and also ClO{sub 4}{sup -}, SCN{sup -}, guanidinium Gu{sup +} and picrate Pic{sup -}). The surface-active counter-ions make the ion approach at the interface easier. In a perfectly homogeneous mixture of the two solvents (water and chloroform) de-mixing, the ions seem to influence the phases separation rate. Nitric acid which is known to favour liquid/liquid extraction reveals strong adsorption at the interface in its neutral form and a smaller one in its ionic form (H{sub 3}O{sup +}/NO{sub 3}{sup -}). HNO{sub 3} and H{sub 3}O{sup +} display particular orientations at the interface: hydrogen atoms are pointing in the direction of the water slab. The nature of the organic phase can also influence the ion approach at the interface. For example, Gu{sup +} and Pic{sup -} adsorb much less at the supercritical CO{sub 2}/water interface than at the chloroform/water interface. In the second part, complexes of La{sup 3+}, Eu{sup 3+} and Yb{sup 3+} with ligands such as amide, urea, thio-amide, thiourea were studied by quantum mechanics. Our calculations show that cation-ligand interactions depend on the nature of substituents on ligands, on the presence of counter-ions or on the number of ligands in the complex. Sulfur compounds seem to less interact with cations than oxygen compounds. Ureas interact as much as amides and are potentially good ligands. (author)

  18. Aqueous complexes of lanthanides(III) and actinides(III) with the carbonate and sulphate ions. Thermodynamic study by time-resolved laser-induced fluorescence spectroscopy and electro-spray-ionisation mass spectrometry; Complexes aqueux de lanthanides (3) et actinides (3) avec les ions carbonate et sulfate. Etude thermodynamique par spectrofluorimetrie laser resolue en temps et spectrometrie de masse a ionisation electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Vercouter, Th

    2005-03-15

    The prediction of the environmental impact of a possible geological disposal of radioactive wastes is supported by the thermodynamic modelling of the radionuclides behaviour in the groundwater. In this framework, the analogy between lanthanides and actinides(III) is confirmed by a critical analysis of the literature and the comparison with experimental results obtained here. The limiting complex, Eu(CO{sub 3}){sub 3}{sup 3-}, is identified by solubility measurements in Na{sub 2}CO{sub 3} solutions. Then the formation constants of the complexes Eu(CO{sub 3}){sub i}{sup 3-2i} (i=1-3) and Eu(SO{sub 4}){sub i}{sup 3-2i} (i=1-2) are measured by TRLFS. The formation of aqueous LaSO{sub 4}{sup +} is studied by ESI-MS and is in good agreement with the expected speciation. The enthalpy and entropy of the reaction Cm(CO{sub 3}){sub 2}{sup -} + CO{sub 3}{sup 2-} {r_reversible} Cm(CO{sub 3}){sub 3}{sup 3-} are deduced from TRLFS measurements of the equilibrium constant between 10 and 70 C. The ionic strength effect is calculated using the SIT formula. (author)

  19. A [Cyclentetrakis(methylene)]tetrakis[2-hydroxybenzamide]Ligand That Complexes and Sensitizes Lanthanide(III) Ions

    Energy Technology Data Exchange (ETDEWEB)

    D' Aleo, Anthony; Xu, Jide; Do, King; Muller, Gilles; Raymond, Kenneth N.

    2009-04-30

    The synthesis of a cyclen derivative containing four isophthalamide groups (L{sup 1}) is described. The spectroscopic properties of the Ln(III) complexes of L{sup 1} (Ln = Gd, Tb, Yb, Eu) reveal changes of the UV/visible absorption, circular dichroism absorption, luminescence and circularly polarized luminescence properties. It is shown that at least two metal complex species are present in solution, whose relative amounts are pH dependent. When at pH > 8.0, an intense long lived emission is observed (for [L{sup 1}Tb] and [L{sup 1}Yb]) while at pH < 8.0, a weaker, shorter-lived species predominates. Unconventional Ln(III) emitters (Pr, Nd, Sm, Dy and Tm) were sensitized in basic solution, both in the visible and in the near infra-red, to measure the emission of these ions.

  20. Synthesis, spectral properties and DNA binding and nuclease activity of lanthanide (III) complexes of 2-benzoylpyridine benzhydrazone: X-ray crystal structure, Hirshfeld studies and nitrate- interactions of cerium(III) complex

    Indian Academy of Sciences (India)

    Karreddula Raja; Akkili Suseelamma; Katreddi Hussain Reddy

    2016-01-01

    The lanthanide(III) complexes of general formula of [Ln(BPBH)2(NO3)3] (where, Ln = La, Ce, Pr, Nd and BPBH = 2-benzoylpyridine benzhydrazone) have been synthesized and characterized by elemental analysis, molar conductance, spectroscopic (UV, IR), electrochemical and single crystal X-ray diffraction studies. The coordination mode of the ligand and the geometry of [Ce(BPBH)2(NO3)3] are confirmed by single crystal X-ray studies. The crystals are monoclinic with C2/c crystallographic symmetry. The central metal is 12 coordinated and the coordination polyhedron around the cerium atom can be described as a distorted icosahedron. The existence of nitrate. . . and CH. . . stacking interactions in the [Ce(BPBH)2(NO3)3] leads to a supramolecular arrangement in its network. The binding properties of these complexes with calf-thymus DNA have been investigated by viscosity measurements. The complexes show more nuclease activity in the presences of H2O2.

  1. Thin films of metal oxides grown by chemical vapor deposition from volatile transition metal and lanthanide metal complexes

    Science.gov (United States)

    Pollard, Kimberly Dona

    1998-08-01

    This thesis describes the synthesis and characterization of novel volatile metal-organic complexes for the chemical vapor deposition (CVD) of metal oxides. Monomeric tantalum complexes, lbrack Ta(OEt)sb4(beta-diketonate)) are prepared by the acid-base reaction of lbrack Tasb2(OEt)sb{10}rbrack with a beta-diketone, (RC(O)CHsb2C(O)Rsp' for R = CHsb3, Rsp' = CFsb3; R = Rsp'=C(CHsb3)sb3; R = Csb3Fsb7,\\ Rsp'=C(CHsb3)sb3;\\ R=Rsp'=CFsb3; and R = Rsp' = CHsb3). The products are characterized spectroscopically. Thermal CVD using these complexes as precursors gave good quality Tasb2Osb5 thin films which are characterized by XPS, SEM, electrical measurements, and XRD. Factors affecting the film deposition such as the type of carrier gas and the temperature of the substrate were considered. Catalyst-enhanced CVD reactions with each of the precursors and a palladium catalyst, ((2-methylallyl)Pd(acac)), were studied as a lower temperature route to good quality Tasb2Osb5 films. The decomposition mechanism at the hot substrate surface was studied. Precursors for the formation of yttria by CVD were examined. New complexes of the form (Y(hfac)sb3(glyme)), (hfac = \\{CFsb3C(O)CHC(O)CFsb3\\}sp-,\\ glyme=CHsb3O(CHsb2CHsb2O)sb{n}CHsb3 for n = 1-4) were synthesized and characterized spectroscopically. X-ray structural determinations of three new complexes were obtained. CVD reaction conditions were determined which give YOF films and, with catalyst-enhanced CVD, reaction conditions which give selective formation of Ysb2Osb3, YOF, or YFsb3. The films were studied by XPS, SEM, and XRD. Decomposition mechanisms which lead to film formation, together with a possible route for fluorine atom transfer from the ligand to the metal resulting in fluorine incorporation, were studied by analysis of exhaust products using GC-MS. Novel precursors of the form lbrack Ce(hfac)sb3(glyme)rbrack,\\ (hfac=\\{CFsb3C(O)CHC(O)CFsb3\\}sp-,\\ glyme=CHsb3O(CHsb2CHsb2O)sb{n}CHsb3, n = 1-4) for CVD of ceria were

  2. Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Kautenburger, Ralf, E-mail: r.kautenburger@mx.uni-saarland.de [Institute of Inorganic Solid State Chemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 3-5, D-66125 Saarbrücken (Germany); Hein, Christina; Sander, Jonas M. [Institute of Inorganic Solid State Chemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 3-5, D-66125 Saarbrücken (Germany); Beck, Horst P. [Institute of Inorganic and Analytical Chemistry and Radiochemistry, Saarland University, Campus Dudweiler, Am Markt Zeile 5, D-66125 Saarbrücken (Germany)

    2014-03-01

    Highlights: • Free and complexed HA-Ln species are separated by CE-ICP-MS. • Weaker and stronger HA-binding sites for Ln-complexation can be detected. • Complexation by original and modified humic acid (HA) with blocked phenolic hydroxyl- and carboxyl-groups is compared. • Stronger HA-binding sites for Ln³⁺ can be assumed as chelating complexes. • Chelates consist of trivalent Ln and a combination of both OH- and COOH-groups. Abstract: The complexation behavior of Aldrich humic acid (AHA) and a modified humic acid (AHA-PB) with blocked phenolic hydroxyl groups for trivalent lanthanides (Ln) is compared, and their influence on the mobility of Ln(III) in an aquifer is analyzed. As speciation technique, capillary electrophoresis (CE) was hyphenated with inductively coupled plasma mass spectrometry (ICP-MS). For metal loading experiments 25 mg L⁻¹ of AHA and different concentrations (c Ln(Eu+Gd)} = 100–6000 μg L⁻¹) of Eu(III) and Gd(III) in 10 mM NaClO₄ at pH 5 were applied. By CE-ICP-MS, three Ln-fractions, assumed to be uncomplexed, weakly and strongly AHA-complexed metal can be detected. For the used Ln/AHA-ratios conservative complex stability constants log βLnAHA decrease from 6.33 (100 μg L⁻¹ Ln³⁺) to 4.31 (6000 μg L⁻¹ Ln³⁺) with growing Ln-content. In order to verify the postulated weaker and stronger humic acid binding sites for trivalent Eu and Gd, a modified AHA with blocked functional groups was used. For these experiments 500 μg L⁻¹ Eu and 25 mg L⁻¹ AHA and AHA-PB in 10 mM NaClO₄ at pH-values ranging from 3 to 10 have been applied. With AHA-PB, where 84% of the phenolic OH-groups and 40% of the COOH-groups were blocked, Eu complexation was significantly lower, especially at the strong binding sites. The log β-values decrease from 6.11 (pH 10) to 5.61 at pH 3 (AHA) and for AHA-PB from 6.01 (pH 7) to 3.94 at pH 3. As a potential consequence, particularly humic acids with a high amount of

  3. RI and Target recovery system of Lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K. H.; Park, U. J.; Jung, S. H.; Kim, J. B.; Moon, J. H.; Nam, S. S.; Jang, K. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Separation of adjacent lanthanides is complicated process to obtain pure target nuclide. Several papers have reported that the ionic character change of lanthanides with appropriate chelating agents can isolate the target lanthanides. These specific agents to the metal ion are called as complexing agents including-HIBA, tartaric acid, mandelic acid, lactic acid etc. Radioisotope research division of KAERI has developed separating technique for target lanthanides, total 20mg scale, by using complexing agents and ion-pairing agents in cold state. The reactor-produced radiolanthanides have been pivotal for development of therapeutic radiopharmaceuticals. Some radiolanthanides show excellent theranostic effects in that they have proper Let (Linear Energy Transfer) to induce apoptosis for cancer treatment and gamma ray to use as a tracer for cancer diagnosis. This system was designed for automated separation of the (n,γ) reaction product. Especially, we are focused on getting the carrier free Ho-166 which is the first attempt at KAERI. Even though we have already developed to produce c.a Ho-166(carrier added form), we did not try to develop to produce carrier free Ho-166 since the separating process is difficult as well as production process follows double (n,γ) reaction. After HANARO is re-operated, we are schedule to produce n.c.a Ho by using this recovery system.

  4. Complex Magnetism of Lanthanide Intermetallics and the Role of their Valence Electrons: Ab Initio Theory and Experiment.

    Science.gov (United States)

    Petit, L; Paudyal, D; Mudryk, Y; Gschneidner, K A; Pecharsky, V K; Lüders, M; Szotek, Z; Banerjee, R; Staunton, J B

    2015-11-13

    We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5 K kbar(-1) for GdCd confirmed by our experimental measurements of +1.6  K kbar(-1). Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. Replacing 35% of the Mg atoms with Zn removes this transition, in excellent agreement with long-standing experimental data.

  5. Unexpected formation of chiral pincer CNN nickel complexes with β-diketiminato type ligands via C-H activation: synthesis, properties, structures, and computational studies.

    Science.gov (United States)

    Lu, Zhengliang; Abbina, Srinivas; Sabin, Jared R; Nemykin, Victor N; Du, Guodong

    2013-02-04

    Reaction of lithiated chiral, unsymmetric β-diketimine type ligands HL(2a-e) containing oxazoline moiety (HL(2a-e) = 2-(2'-R(1)NH)-phenyl-4-R(2)-oxazoline) with trans-NiCl(Ph)(PPh(3))(2) afforded a series of new chiral CNN pincer type nickel complexes (3a-3e) via an unexpected cyclometalation at benzylic or aryl C-H positions. Single crystal X-ray diffraction analysis established the pincer coordination mode and the strained conformation. Chirality, and in one case, racemization of the target nickel complexes were confirmed by circular dichroism (CD) spectroscopy. Electronic structure and band assignments in experimental UV-vis and CD spectra were discussed on the basis of Density Functional Theory (DFT) and time-dependent (TD) DFT calculations.

  6. Chiral gold(I vs chiral silver complexes as catalysts for the enantioselective synthesis of the second generation GSK-hepatitis C virus inhibitor

    Directory of Open Access Journals (Sweden)

    María Martín-Rodríguez

    2011-07-01

    Full Text Available The synthesis of a GSK 2nd generation inhibitor of the hepatitis C virus, by enantioselective 1,3-dipolar cycloaddition between a leucine derived iminoester and tert-butyl acrylate, was studied. The comparison between silver(I and gold(I catalysts in this reaction was established by working with chiral phosphoramidites or with chiral BINAP. The best reaction conditions were used for the total synthesis of the hepatitis C virus inhibitor by a four step procedure affording this product in 99% ee and in 63% overall yield. The origin of the enantioselectivity of the chiral gold(I catalyst was justified according to DFT calculations, the stabilizing coulombic interaction between the nitrogen atom of the thiazole moiety and one of the gold atoms being crucial.

  7. Structural and thermodynamic study of rare earth(III) complexation by poly-hydroxylated carboxylic acids: synthesis of new extractants and outlook for the extraction of these cations; Etude structurale et thermodynamique de la complexation de lanthanides (III) par des acides carboxyliques polyhydroxyles: synthese de nouveaux extractants et perspectives pour l'extraction de ces cations

    Energy Technology Data Exchange (ETDEWEB)

    Aury, S

    2002-12-15

    The aim of this work is: to improve the knowledge on the binding sites of the poly-hydroxylated carboxylic acids with the trivalent lanthanide(III) ions by comparing them to gluconic acid (previously studied) and to molecules with different configuration and with a variable number of OH functions (threonic acid, glyceric acid, 2-hydroxy-butanoic acid, 3-hydroxy-butanoic acid). To find the best complexing agent among different acids (aldonic acids, aldaric acids, di-hydroxybenzoic acids) (determination of the set of complexes and their stability constants by potentiometry, NMR and UV-Visible spectroscopy). To synthesize hydrophobic monoamides from one lactone form of saccharic acid, to study their complexing power and their capacity to extract the trivalent lanthanide(III) ions. (author)

  8. A Pyridine-Based Ligand with Two Hydrazine Functions for Lanthanide Chelation: Remarkable Kinetic Inertness for a Linear, Bishydrated Complex.

    Science.gov (United States)

    Bonnet, Célia S; Laine, Sophie; Buron, Frédéric; Tircsó, Gyula; Pallier, Agnès; Helm, Lothar; Suzenet, Franck; Tóth, Éva

    2015-06-15

    To study the influence of hydrazine functions in the ligand skeleton, we designed the heptadentate HYD ligand (2,2',2″,2‴-(2,2'-(pyridine-2,6-diyl)bis(2-methylhydrazine-2,1,1-triyl)) tetraacetic acid) and compared the thermodynamic, kinetic, and relaxation properties of its Ln(3+) complexes to those of the parent pyridine (Py) analogues without hydrazine (Py = 2,6-pyridinebis(methanamine)-N,N,N',N'-tetraacetic acid). The protonation constants of HYD were determined by pH-potentiometric measurements, and assigned by a combination of UV-visible and NMR spectroscopies. The protonation sequence is rather unusual and illustrates that small structural changes can strongly influence ligand basicity. The first protonation step occurs on the pyridine nitrogen in the basic region, followed by two hydrazine nitrogens and the carboxylate groups at acidic pH. Contrary to Py, HYD self-aggregates through a pH-dependent process (from pH ca. 4). Thermodynamic stability constants have been obtained by pH-potentiometry and UV-visible spectrophotometry for various Ln(3+) and physiological cations (Zn(2+), Ca(2+), Cu(2+)). LnHYD stability constants show the same trend as those of LnDTPA complexes along the Ln(3+) series, with log K = 18.33 for Gd(3+), comparable to the Py analogue. CuHYD has a particularly high stability (log K > 19) preventing its determination from pH-potentiometric measurements. The stability constant of CuPy was also revisited and found to be underestimated in previous studies, highlighting that UV-visible spectrophotometry is often indispensable to obtain reliable stability constants for Cu(2+) chelates. The dissociation of GdL, assessed by studying the Cu(2+)-exchange reaction, occurs mainly via an acid-catalyzed process, with limited contribution from direct Cu(2+) attack. The kinetic inertness of GdHYD is remarkable for a linear bishydrated chelate; the 25-fold increase in the dissociation half-life with respect to the monohydrated commercial contrast agent

  9. Chiral discrimination asserted by enantiomers of Ni (II), Cu (II) and Zn (II) Schiff base complexes in DNA binding, antioxidant and antibacterial activities.

    Science.gov (United States)

    Khan, Noor-ul Hasan; Pandya, Nirali; Prathap, K Jeya; Kureshy, Rukhsana Ilays; Abdi, Sayed Hasan Razi; Mishra, Sandhya; Bajaj, Hari Chandra

    2011-10-15

    Chiral Schiff base ligands (S)-H(2)L and (R)-H(2)L and their complexes (S-Ni-L, R-Ni-L, S-Cu-L, R-Cu-L, S-Zn-L and R-Zn-L) were synthesized, characterized and examined for their DNA binding, antioxidant and antibacterial activities. The complexes showed higher binding affinity to calf thymus DNA with binding constant ranging from 2.0×10(5) to 4.5×10(6) M(-1). All the complexes also exhibited remarkable superoxide (56-99%) and hydroxyl scavenging (45-89%) activities as well as antibacterial activities against gram (+) and gram (-) bacteria. However, none of the complexes showed antifungal activity. Conclusively, S enantiomers of the complexes were found to be relatively more efficient for DNA interaction, antioxidant and antibacterial activities than their R enantiomers. This study reveals the possible utilization of chiral Schiff base complexes for pharmaceutical applications.

  10. On chirality transfer in electron donor-acceptor complexes. A prediction for the sulfinimine···BF3 system.

    Science.gov (United States)

    Rode, Joanna E; Dobrowolski, Jan Cz

    2012-01-01

    Stabilization energies of the electron donor-acceptor sulfinimine···BF(3) complexes calculated at either the B3LYP/aug-cc-pVTZ or the MP2/aug-cc-pVTZ level do not allow to judge, whether the N- or O-atom in sulfinimine is stronger electron-donor to BF(3) . The problem seems to be solvable because chirality transfer phenomenon between chiral sulfinimine and achiral BF(3) is expected to be vibrational circular dichroism (VCD) active. Moreover, the bands associated with the achiral BF(3) molecule are predicted to be the most intense in the entire spectrum. However, the VCD band robustness analyses show that most of the chirality transfer modes of BF(3) are unreliable. Conversely, variation of VCD intensity with change of intermolecular distance, angle, and selected dihedrals between the complex partners shows that to establish the robustness of chirality transfer mode. It is also necessary to determine the influence of the potential energy surface (PES) shape on the VCD intensity. At the moment, there is still no universal criterion for the chirality transfer mode robustness and the conclusions formulated based on one system cannot be directly transferred even to a quite similar one. However, it is certain that more attention should be focused on relation of PES shape and the VCD mode robustness problem.

  11. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Evan; Samuel, Amanda; Raymond, Kenneth

    2008-09-25

    Ligand-sensitized luminescent lanthanide(III) complexes are of considerable current interest due to their unique photophysical properties (micro- to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts), which make them well suited to serve as labels in fluorescence-based bioassays. The long-lived Ln(III) emission can be temporally resolved from scattered light and background fluorescence, resulting in vastly enhanced measurement sensitivity. One of the challenges in this field is the design of sensitizing ligands that provide highly emissive Ln(III) complexes that also possess sufficient stability and aqueous solubility required for practical applications. In this account we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time Resolved Fluorescence (HTRF) technology, the requirements and current use of which will be briefly discussed. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms as well as using multi-chromophore chelates to increase molar absorptivity compared to earlier examples that utilize a single pendant antenna chromophore. We have found that ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ca. 60%. Solution thermodynamic studies have indicated that these complexes are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM-chromophore, in conjunction with time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of

  12. Effect of complexation with lanthanide metal ions on the photochromism of (1,3,3-trimethyl- 5 ′ -hydroxy- 6 ′ -formyl- indoline-spiro2,2 ′ -[2h]chromene in different media

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Complexation of lanthanide ions {Ln(III ions [Tb(III, Eu(III, or Sm(III]} with the spiropyran-derived merocyanine obtained in dark and under steady irradiation of indoline spiropyran (1,3,3-trimethyl- 5 ′ -hydroxy- 6 ′ -formyl-indoline-spiro-2,2 ′ -[2H]chromene induces a noticeable hypsochromic shift of about 10–110 nm of its visible absorption band concomitant with hypochromic effect and influences its thermal bleaching in the dark. The effect of lanthanide ions and medium on photochromic, spectral-and-kinetic, and luminescence properties of the spiropyran and its complexes in solution and polymer matrix of polymethylmethacrylate (PMMA is studied. Efficient energy transfer from the spiropyran moiety results in efficient typical luminescence from the Ln(III ion that becomes more pronounced in polar nonalcoholic solvents and PMMA solid matrix. Moreover, luminescence mappings for pattern recognition analysis have been obtained from which the nature of the solvent and/or the ligand is clearly identified.

  13. Axially Chiral C2-Symmetric N-Heterocyclic Carbene (NHC) Palladium Complex-Catalyzed Asymmetric Fluorination and Amination of Oxindoles

    Institute of Scientific and Technical Information of China (English)

    张睿; 王德; 徐琴; 姜佳俊; 施敏

    2012-01-01

    Chiral C2-symmetric N-heterocyclic carbene (NHC) palladium diaquo complex 5b prepared from (S)-BINAM was found to be a fairly effective catalyst for the enantioselective asymmetric fluorination of oxindoles to give the corresponding products in moderate enantioselectivities along with good to excellent yields.

  14. New Enantiomerically Pure Alkylimido Mo-Based Complexes. Synthesis, Characterization, and Activity as Chiral Olefin Metathesis Catalysts

    Science.gov (United States)

    Pilyugina, Tatiana S.; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    Molybdenum olefin metathesis catalysts that contain aliphatic 1-phenylcyclohexylimido (NPhCy) and 2-phenyl-2-adamantylimido (NPhAd) groups and (S)-Biphen or (R)-Trip)(THF) ligands (Biphen = 3,3′-di-tert-butyl-5,5′,6,6′-tetramethyl-1,1′-biphenyl-2,2′-diolate; Trip = 3,3′-bis(2,4,6-triisopropylphenyl)-2,2′-binaphtholate) have been prepared. Their catalytic activity and enantioselectivity in desymmetrization reactions such as ring-closing metathesis of amines and lactams and ring-opening/cross-metathesis of substituted norborneols with styrene were compared to the results obtained with the only known alkylimido catalyst Mo(NAd)(CHCMe2Ph)[(S)-Biphen]. The activities and enantioselectivities provided by these new chiral complexes vary significantly, but in virtually all instances explored were not superior to the adamantylimido analogs. PMID:19079732

  15. Methyl Iodide Accelerated Asymmetric Epoxidation of Alkenes Catalyzed by Chiral Salen-Mn(Ⅲ) Complexes with Tertiary Amine Units

    Institute of Scientific and Technical Information of China (English)

    SUN,Yang; TANG,Ning

    2007-01-01

    A series of chiral salen-Mn(Ⅲ) complexes featuring two tertiary amine units were synthesized and employed in the enantioselective epoxidation of unfunctionalized alkenes in the presence of pyridine N-oxide and 2,6-dimethylpyridine N-oxide as proximal ligands, respectively. Moderate to high enantioselectivity and acceptable yields were achieved when NaClO was used as terminal oxidant under CH2Cl2/H2O biphasic media. Methyl iodide was found to be an effective additive to accelerate the epoxidation, possibly owing to the formation of quaternary ammonium units on catalysts, which may facilitate the reaction in an oil/water biphasic medium. The subsequent stimulation experiment was carried out, and the resulting ESI-HRMS analysis revealed the formation of a novel(salen)manganese(Ⅲ) intermediate featuring two quaternary ammonium units, and bearing a pyridine N-oxide and a molecule of water simultaneously axially-coordinated backbone.

  16. Chiral Pd aqua complex-catalyzed asymmetric C-C bond-forming reactions: a Brønsted acid-base cooperative system.

    Science.gov (United States)

    Sodeoka, Mikiko; Hamashima, Yoshitaka

    2009-10-21

    Chiral cationic Pd aqua complexes can function as acid-base catalysts, effectively activating active methylene and methine compounds to give chiral Pd enolates. It is noteworthy that such enolate formation occurs with concomitant formation of a strong protic acid. Although the reactivity of the Pd enolate itself is not sufficient for reactions with carbon-based electrophiles, its cooperative action with the protic acid to activate the electrophiles allows the desired C-C bond-forming reactions to proceed smoothly in a highly enantioselective manner. Based on this mechanistic feature, reactions with acetals have been developed; these are difficult to achieve using conventional basic enolate chemistry.

  17. Synthesis and spectral characterization of lanthanide complexes with 1, 2-diphenyl-4-butyl-3,5-pyrazolidinedione: Luminescent property of Tb(Ⅲ) complex

    Institute of Scientific and Technical Information of China (English)

    M.R. Anoop; P.S. Binil; S. Suma; M.R. Sudarsanakumar

    2012-01-01

    The complexes of rare earth elements with 1,2-diphenyl-4-butyl-3,5-Pyrazolidinedione (PBH,phenylbutazone) were synthesized and characterized byelemental analysis,molar conductance,IR,UV-Vis,EPR and magnetic moment measurements.Based on these studies the complexes were formulated as [Ln(PB)3(H2O)2]·nH2O,where Ln=Eu(Ⅲ),Gd(Ⅲ),Tb(Ⅲ),Dy(Ⅲ) and Er(Ⅲ).From IR spectra,it was found that PBH acted as a bidentate mono-ionic ligand coordinating through two carbonyl oxygen of the pyrazolidinedione ring.The thermal analysis of all the complexes was carried out at a heating rate of 10 ℃/min.The kinetic aspects of the complexes were evaluated.The negative entropy value of the complexes indicated a more ordered state for the activated complexes.The photoluminescence property of Tb(Ⅲ) complex was investigated.It showed all the characteristic emission peaks of Tb3+ with a life time of 0.98914 ms.

  18. Role of Lanthanide-Ligand bonding in the magnetization relaxation of mononuclear single-ion magnets: A case study on Pyrazole and Carbene ligated LnIII(Ln=Tb, Dy, Ho, Er) complexes

    Indian Academy of Sciences (India)

    TULIKA GUPTA; GUNASEKARAN VELMURUGAN; THAYALAN RAJESHKUMAR; GOPALAN RAJARAMAN

    2016-10-01

    Ab initio CASSCF+RASSI-SO+SINGLE_ANISO and DFT based NBO and QTAIM investigations were carried out on a series of trigonal prismatic M(BcMe)₃ (M = Tb(1), Dy(2), Ho(3), Er(4), [BcMe]⁻ = dihydrobis (methylimidazolyl) borate) and M(BpMe)₃ (M = Tb(1a), Dy(2a), Ho(3a), Er(4a) [BpMe]⁻ = dihydrobis (methypyrazolyl) borate) complexes to ascertain the anisotropic variations of these two ligand field environments and the influence of Lanthanide-ligand bonding on the magnetic anisotropy. Among all the complexes studied, only 1 and 2 show large Ucal (computed energy barrier for magnetization reorientation) values of 256.4 and 268.5 cm⁻¹, respectively and this is in accordance with experiment. Experimentally only frequency dependent χ” tails are observed for complex 1a and our calculation predicts a large Ucalof 229.4 cm⁻¹ for this molecule. Besides these, none of the complexes (3, 4, 2a, 3a and 4a) computed to possess large energy barrier and this is affirmed by the experiments. These observed differences in the magnetic properties are correlated to the Ln-Ligand bonding. Our calculations transpire comparatively improved Single-Ion Magnet (SIM) behaviour for carbene analogues due to the more axially compressed trigonal prismatic ligand environment. Furthermore, our detailed Mulliken charge, spin density, NBO and Wiberg bond analysis implied stronger Ln...H–BH agostic interaction for pyrazole analogues. Further, QTAIM analysis reveals the physical nature of coordination, covalent, and fine details of the agostic interactions in all the eight complexes studied. Quite interestingly, for the first time, using the Laplacian density, we are able to quantify the prolate and oblate nature of the electron clouds in lanthanides and this is expected to have a far reaching outcome beyond the examples studied.

  19. Dynamic chiral-at-metal stability of tetrakis(d/l-hfc)Ln(III) complexes capped with an alkali metal cation in solution.

    Science.gov (United States)

    Lin, Yiji; Zou, Fang; Wan, Shigang; Ouyang, Jie; Lin, Lirong; Zhang, Hui

    2012-06-14

    Chiral tetrakis(β-diketonate) Ln(III) complexes Δ-[NaLa(d-hfc)(4)(CH(3)CN)] (1) and Λ-[NaLa(l-hfc)(4) (CH(3)CN)] (2) (d/l-hfc(-) = 3-heptafluo-robutylryl-(+)/(-)-camphorate) are a pair of enantiomers and crystallize in the same Sohncke space group (P2(1)2(1)2(1)) with dodecahedral (DD) geometry. Typically positive and negative exciton splitting patterns around 320 nm were observed in the solid-state circular dichroism (CD) spectra of complexes 1 and 2, which indicate that their shell configurational chiralities are Δ and Λ, respectively. The apparent bisignate couplets in the solid-state CD spectra of [CsLn(d-hfc)(4)(H(2)O)] [Ln = La (3), Yb (5)] and [CsLn(l-hfc)(4)(H(2)O)] [Ln = La (4), Yb (6)] show that they are a pair of enantiomers and their absolute configurations are denoted Δ and Λ, respectively. The crystallographic data of 5 reveals that its coordination polyhedron is the square antiprism (SAP) geometry and it undergoes a phase transition from triclinic (α phase, P1) to monoclinic (β phase, C2) upon cooling. The difference between the two phases is brought about by the temperature dependent behaviour of the coordination water molecules, but this did not affect the configurational chirality of the Δ-SAP-[Yb(d-hfc)(4)](-) moiety. Furthermore, time-dependent CD, UV-vis and (19)F NMR were applied to study the solution behavior of these complexes. It was found that the chiral-at-metal stability of the three pairs of complexes is different and affected by both the Ln(3+) and M(+) ion size. The results show that the Cs(+) cation can retain the metal center chirality and stablize the structures of [Ln(d/l-hfc)(4)](-) or the dissociated tris(d/l-hfc)Ln(III) species in solution for a longer time than that of the Na(+) cation, and it is important that the Cs(+) ion successfully lock the configurational chirality around the Yb(3+) center of the complex species in solution. This is reasoned by the short Cs(+)···FC, Cs(+)···O-Yb and Cs(+)···Yb(3

  20. Rare earth(III) complexes for the development of new magnetic and luminescent probes; Complexes de lanthanides(III) pour le developpement de nouvelles sondes magnetiques et luminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Nonat, A

    2007-10-15

    The simultaneous optimisation of the molecular parameters determining the relaxivity (number of coordinated water molecules, water-exchange, rotation dynamics of the whole complex, electronic relaxation, Gd(III)-proton distance) is essential to prepare efficient contrast agents. The aim of this work is on the one hand to design and study complexes with a high number of bound water molecules and to understand the influence of the coordination sphere on the stability and on the electronic relaxation and on the other hand, to use the ligand as a chromophore for the development of luminescent probes for biomedical imaging. We present the structure, the stability and the relaxivity of Gd(III) complexes of two series of tripodal ligands containing picolinate units based either on the 1,4,7-tri-aza-cyclononane ring or on a tertiary amine. These complexes show high relaxivity in water and in serum and can establish a non covalent interaction with serum albumin. The interpretation of the water proton relaxivity with the help of new relaxometric methods based on an auxiliary probe solute has allowed us to show that both the presence of the picolinate groups and the 1,4,7-tri-aza-cyclononane framework can lead to Gd(III) complexes with favourable electronic relaxation properties. This ligands have also been used for Eu(III) and Tb(III) complexation leading to strong luminescence in visible light. Other complexes derived from 8-hydroxyquinoline unit which display a very high luminescence in infrared are also studied. (author)

  1. Spectrally resolved confocal microscopy using lanthanide centred near-IR emission.

    Science.gov (United States)

    Liao, Zhiyu; Tropiano, Manuel; Mantulnikovs, Konstantins; Faulkner, Stephen; Vosch, Tom; Sørensen, Thomas Just

    2015-02-11

    The narrow, near infrared (NIR) emission from lanthanide ions has attracted great interest, particularly with regard to developing tools for bioimaging, where the long lifetimes of lanthanide excited states can be exploited to address problems arising from autofluorescence and sample transparency. Despite the promise of lanthanide-based probes for near-IR imaging, few reports on their use are present in the literature. Here, we demonstrate that images can be recorded by monitoring NIR emission from lanthanide complexes using detectors, optical elements and a microscope that were primarily designed for the visible part of the spectrum.

  2. Spectrally resolved confocal microscopy using lanthanide centred near-IR emission

    DEFF Research Database (Denmark)

    Liao, Zhiyu; Tropiano, Manuel; Mantulnikovs, Konstantins

    2015-01-01

    The narrow, near infrared (NIR) emission from lanthanide ions has attracted great interest, particularly with regard to developing tools for bioimaging, where the long lifetimes of lanthanide excited states can be exploited to address problems arising from autofluorescence and sample transparency....... Despite the promise of lanthanide-based probes for near-IR imaging, few reports on their use are present in the literature. Here, we demonstrate that images can be recorded by monitoring NIR emission from lanthanide complexes using detectors, optical elements and a microscope that were primarily designed...

  3. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M; Hyder, Fahmeed

    2015-01-01

    Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging.

  4. Luminescent 1-hydroxy-2-pyridinone chelates of lanthanides

    Science.gov (United States)

    Raymond, Kenneth N.; Xu, Jide; Moore, Evan G.; Werner, Eric J.

    2013-10-15

    The present invention provides luminescent complexes between a lanthanide ion and an organic ligand which contains 1,2-hydroxypyridinone units. The complexes of the invention are stable in aqueous solutions and are useful as molecular probes, for example in medical diagnostics and bioanalytical assay systems. The invention also provides methods of using the complexes of the invention.

  5. Luminescent 1-hydroxy-2-pyridinone chelates of lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth N.; Xu, Jide; Moore, Evan G.; Werner, Eric J.

    2017-01-31

    The present invention provides luminescent complexes between a lanthanide ion and an organic ligand which contains 1,2-hydroxypyridinone units. The complexes of the invention are stable in aqueous solutions and are useful as molecular probes, for example in medical diagnostics and bioanalytical assay systems. The invention also provides methods of using the complexes of the invention.

  6. Coordination Complexes of Decamethylytterbocene with4,4'-Disubstituted Bipyridines: An Experimental Study of Spin Coupling inLanthanide Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Marc D.; Berg, David J.; Andersen, Richard A.

    2005-12-08

    The paramagnetic 1:1 coordination complexes of (C5Me5)2Ybwith a series of 4,4'-disubstituted bipyridines, bipy-X, where X is Me,tert-Bu, OMe, Ph, CO2Me, and CO2Et have been prepared. All of thecomplexes are paramagnetic and the values of the magnetic susceptibilityas a function of temperature show that these values are less thanexpected for the cation, [(C5Me5)2Yb(III)(bipy-X)]+, which have beenisolated as the cation-anion ion-pairs[(C5Me5)2Yb(III)(bipy-X)]+[(C5Me5)2YbI2]f fnfn where X is CO2Et, OMe andMe. The 1H NMR chemical shifts (293 K) for the methine resonances locatedat the 6,6' site in the bipy-X ring show a linear relationship with thevalues of chiT (300 K) for the neutral complexes which illustrates thatthe molecular behavior does not depend upon the phase with one exception,viz., (C5Me5)2Yb(bipy-Me). Single crystals of the 4,4'-dimethylbipyridinecomplex undergo an irreversible, abrupt first order phase change at 228 Kthat shatters the single crystals. The magnetic susceptibility,represented in a delta vs. T plot, on this complex, in polycrystallineform undergoes reversible abrupt changes in the temperature regime 205 -212 K, which is suggested to be due to the way the individual molec ularunits pack in the unit cell. A qualitative model is proposed thataccounts for the sub-normal magnetic moments in theseytterbocene-bipyridine complexes.

  7. Chirality of weakly bound complexes: The potential energy surfaces for the hydrogen-peroxide−noble-gas interactions

    Energy Technology Data Exchange (ETDEWEB)

    Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Pirani, F. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, V. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Instituto de Física, Universidade Federal da Bahia, 40210 Salvador (Brazil); Gargano, R. [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Departments of Chemistry and Physics, University of Florida, Quantum Theory Project, Gainesville, Florida 32611 (United States)

    2014-10-07

    We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.

  8. Lanthanide extraction with 2,5-dimethyl-2-hydroxyhexanoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. H.

    1977-12-01

    This research is concerned with the solvent extraction into chloroform of the lanthanides, using 2,5-dimethyl-2-hydroxyhexanoic acid (DMHHA). This acid is the first ..cap alpha..-hydroxy aliphatic acid to be studied as an extracting agent for the lanthanides. The chloroform-water DMHHA partition constant was determined to be 1.0 (at 0.1 M ionic strength and 25/sup 0/C). The acid dimerizes in chloroform with a constant of 56. The light lanthanides can be extracted into chloroform by forming complexes with the DMHHA anions. The extracted metal species is highly aggregated. This extraction has a solubility limit which increases with the addition of unionized acid. The resultant extract is also highly aggregated. At unionized acid-to-metal ratios greater than one, extractions first occur followed by the slow precipitation of the lanthanide. At the tracer level, neodymium is extracted primarily as NdA/sub 3/(HA)/sub 5/ and (NdA/sub 3/)/sub 2/(HA)/sub q/. Very small amounts of (NdA/sub 3/)/sub 2/ and other metal aggregates are also present. The heavy lanthanides do not extract from solutions of DMHHA and its potassium salt, but form aqueous emulsions and precipitates. In the presence of the organic soluble tetrabutylammonium ion the heavy lanthanides can be extracted, presumably as ion pairs. The stability constants of the light lanthanides and DMHHA were determined. The separation factors obtained from DMHHA extractions of the light lanthanides were also investigated and found to be comparable to those obtained employing normal aliphatic carboxylic acid.

  9. Allosteric effects in coiled-coil proteins folding and lanthanide-ion binding.

    Science.gov (United States)

    Samiappan, Manickasundaram; Alasibi, Samaa; Cohen-Luria, Rivka; Shanzer, Abraham; Ashkenasy, Gonen

    2012-10-07

    Peptide sequences modified with lanthanide-chelating groups at their N-termini, or at their lysine side chains, were synthesized, and new Ln(III) complexes were characterized. We show that partial folding of the conjugates to form trimer coiled coil structures induces coordination of lanthanides to the ligand, which in turn further stabilizes the 3D structure.

  10. New Lanthanide Alkynylamidinates and Diiminophosphinates

    Directory of Open Access Journals (Sweden)

    Farid M. Sroor

    2015-11-01

    Full Text Available This contribution reports the synthesis and structural characterization of several new lithium and lanthanide alkynylamidinate complexes. Treatment of PhC≡CLi with N,N′-diorganocarbodiimides, R–N=C=N–R (R = iPr, Cy (cyclohexyl, in THF or diethyl ether solution afforded the lithium-propiolamidinates Li[Ph–C≡C–C(NCy2] S (1: R = iPr, S = THF; 2: R = Cy, S = THF; 3: R = Cy, S = Et2O. Single-crystal X-ray diffraction studies of 1 and 2 showed the presence of typical ladder-type dimeric structures in the solid state. Reactions of anhydrous LnCl3 (Ln = Ce, Nd, Sm or Ho with 2 in a 1:3 molar ratio in THF afforded a series of new homoleptic lanthanide tris(propiolamidinate complexes, [Ph–C≡C–C(NCy2]3Ln (4: Ln = Ce; 5: Ln = Nd; 6: Ln = Sm; 7: Ln = Ho. The products were isolated in moderate to high yields (61%–89% as brightly colored, crystalline solids. The chloro-functional neodymium(III bis(cyclopropylethynylamidinate complex [{c-C3H5–C≡C–C(NiPr2}2Ln(µ-Cl(THF]2 (8 was prepared from NdCl3 and two equiv. of Li[c-C3H5–C≡C–C(NiPr2] in THF and structurally characterized. A new monomeric Ce(III-diiminophosphinate complex, [Ph2P(NSiMe32]2Ce(µ-Cl2Li(THF2 (9, has also been synthesized in a similar manner from CeCl3 and two equiv. of Li[Ph2P(NSiMe32]. Structurally, this complex resembles the well-known “ate” complexes (C5Me52Ln(µ-Cl2Li(THF2. Attempts to oxidize compound 9 using trityl chloride or phenyliodine(III dichloride did not lead to an isolable cerium(IV species.

  11. Lanthanide-halide based humidity indicators

    Science.gov (United States)

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  12. Chiroptical properties of cation complexes of chiral phenazino-18-crown-6 ether-type hosts.

    Science.gov (United States)

    Szarvas, Szilvia; Szalay, Luca; Vass, Elemér; Hollósi, Miklós; Samu, Erika; Huszthy, Péter

    2005-06-01

    Herein we report CD spectroscopic studies on complexes of (R,R)-dimethyl-, (R,R)-diisobutyl-, and (S,S)-di-sec-butyl-phenazino-18-crown-6 ligands (Scheme 1) with selected alkali (Na+, K+), alkaline earth (Mg2+, Ca2+), and transition-metal (Ag+, Zn2+, Ni2+, Cd2+, Pb2+) cations. The complexation was monitored in the 300- to 240-nm region of the CD spectra comprising mainly the 1Bb band of the heteroaromatic subunit. The CD spectra of the complexes showed an unexpected diversity. In the most characteristic 1Bb spectral region, the number, position, and intensity of band(s) depend not only on the heteroaromatic subunit and the size of the substituents but also on the diameter, ion strength, and coordination geometry of the cation. The appearance of two weak 1Bb CD bands (type-I spectra) with the sign pattern of the host is an indication of two complexes of comparable stability. The "type-II" spectra differ from that of the host in the number, sign pattern, and intensity of the bands. Complexes of transition-metal cations generally show CD spectra with more intense bands. The CD spectra of complexes of (S,S)-di-sec-butyl-phenazino-18-crown-6 ligand with Na+, K+, and Pb2+ (type III) strongly suggest exciton coupling caused by the closeness of the heteroaromatic rings of two 1:1 complex molecules.

  13. Iron complexes of chiral phenol-oxazoline ligands: Structural studies and oxidation catalysis

    NARCIS (Netherlands)

    Godbole, M.D.; Prat Puig, M.; Tanase, S.; Kooijman, H.; Spek, A.L.; Bouwman, E.

    2007-01-01

    Iron complexes of two ligands, HphoxCOOH and HphoxiPr, have been synthesized and characterized by crystal structure analyses. The complexes (HNEt3)2[Fe(phoxCOO)2](ClO4) and [Fe(phoxiPr)3] are reported. Reactions of the ligands rac-HphoxCOOH and rac- HphoxiPr with iron(II) or iron(III) perchlorate re

  14. PCN pincer palladium(II) complex catalyzed enantioselective hydrophosphination of enones: synthesis of pyridine-functionalized chiral phosphine oxides as NC(sp(3))O pincer preligands.

    Science.gov (United States)

    Hao, Xin-Qi; Huang, Juan-Juan; Wang, Tao; Lv, Jing; Gong, Jun-Fang; Song, Mao-Ping

    2014-10-17

    A series of chiral PCN pincer Pd(II) complexes VI-XIII with aryl-based aminophosphine-imidazoline or phosphinite-imidazoline ligands were synthesized and characterized. They were examined as enantioselective catalysts for the hydrophosphination of enones. Among them, complex IX, which features a Ph2PO donor as well as an imidazoline donor with (4S)-phenyl and N-Tol-p groups, was found to be the optimal catalyst. Thus, in the presence of 2-5 mol % of complex IX a wide variety of enones reacted smoothly with diarylphosphines to give the corresponding chiral phosphine derivatives in high yields with enantioselectivities of up to 98% ee. In particular, heteroaryl species such as 2-thienyl-, 2-furyl-, and 2-pyridinyl-containing enones that have a strong coordination ability to the Pd center were also appropriate substrates for the current catalytic system. For example, hydrophosphination of 2-alkenoylpyridines with diphenylphosphine followed by oxidation with H2O2 afforded the corresponding pyridine-functionalized chiral phosphine oxides in good yields with good to excellent enantioselectivities (10 examples, up to 95% ee). Furthermore, it had been demonstrated that the obtained pyridine-containing phosphine oxide acted as a tridentate ligand in the reaction with PdCl2 to form an intriguing NCsp(3)O pincer Pd(II) complex via Csp(3)-H bond activation, which to our knowledge is the first example of a chiral DCsp(3)D' Pd pincer (D ≠ D'; D and D' denote donor atoms such as P, N, etc.).

  15. Complexations of Ln(III) with SnS{sub 4}H and Sn{sub 2}S{sub 6}: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunying; Lu, Jialin; Han, Jingyu; Liu, Yun; Shen, Yali; Jia, Dingxian, E-mail: jiadingxian@suda.edu.cn

    2015-10-15

    Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ–SnS{sub 4}H)]{sub n} [Ln=La (1a), Nd (1b)] and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}nH{sub 2}O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln{sup 3+} ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]{sup 3+} units. The [SnS{sub 4}H]{sup 3−} anion chelates a [Ln(peha)]{sup 3+} unit via two S atoms and coordinates to another [Ln(peha)]{sup 3+} unit via the third S atom. As a result, the [Ln(peha)]{sup 3+} units are connected into coordination polymers [Ln(peha)(μ–SnS{sub 4}H)]{sub n} by an unprecedented tridentate μ–η{sup 1},η{sup 2}–SnS{sub 4}H bridging ligands. In 2a–2d, the Ln{sup 3+} ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]{sup 3+} units are joined by two μ–OH bridges to form a binuclear [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} unit. Behaving as a bidentate μ–η{sup 1}, η{sup 1}–Sn{sub 2}S{sub 6} bridging ligand, the Sn{sub 2}S{sub 6} unit connects [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} units into a neutral coordination polymer [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n} via the trans S atoms. The Ln{sup 3+} ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environments in [(Ln(peha)(μ–SnS{sub 4}H)]{sub n} and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a–2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV. - Graphical abstract: Lanthanide coordination polymers concerning thiostannate ligands were prepared by the solvothermal methods, and μ{sub 3}

  16. Asymmetric Glyoxylate-Ene Reactions Catalyzed by Chiral Pd(II Complexes in the Ionic Liquid [bmim][PF6

    Directory of Open Access Journals (Sweden)

    Nan Sun

    2007-06-01

    Full Text Available The room temperature ionic liquid [bmim][PF6] was employed as the reactionmedium in the asymmetric glyoxylate-ene reaction of α-methyl styrene (4a with ethylglyoxylate using chiral palladium(II complexes as the catalysts. [Pd(S-BINAP(3,5-CF3-PhCN2](SbF62 (1b showed the highest catalytic activity. Under the reaction conditionsof 40 oC, 0.5 h, and 1b/4a molar ratio of 0.05, ethyl α-hydroxy-4-phenyl-4-pentenoate wasobtained in excellent chemical yield (94 % with high enantioselectivity (70 %. Otherα-hydroxy esters can also be obtained in high chemical yields and enantioselectitiesthrough the glyoxylate-ene reactions of alkenes with glyoxylates catalyzed by 1b in[bmim][PF6]. Moreover, the ionic liquid [bmim][PF6] which contained the palladium(IIcomplex could be recycled and reused several times without significant loss of the catalyticactivity.

  17. Synthesis, Immobilization and Catalytic Activity of a Copper(II Complex with a Chiral Bis(oxazoline

    Directory of Open Access Journals (Sweden)

    Liliana Carneiro

    2014-08-01

    Full Text Available A chiral bis(oxazoline bearing CH2OH groups was synthesized from a commercial bis(oxazoline and characterized by 1H- and 13C-NMR, high resolution ESI-mass spectrometry and FTIR. The corresponding copper(II complex was immobilized onto the surface of a mesoporous carbonaceous material (Starbon® 700 in which the double bonds had been activated via conventional bromination. The materials were characterized by elemental analysis, ICP-OES, XPS, thermogravimetry and nitrogen adsorption at 77 K. The new copper(II bis(oxazoline was tested both in the homogeneous phase and once immobilized onto a carbonaceous support for the kinetic resolution of hydrobenzoin. Both were active, enantioselective and selective in the mono-benzoylation of hydrobenzoin, but better enantioselectivities were obtained in the homogeneous phase. The heterogeneous catalyst could be separated from the reaction media at the end of the reaction and reused in another catalytic cycle, but with loss of product yield and enantioselectivity.

  18. Lanthanide(III) complexes of 4,10-bis(phosphonomethyl)-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (trans-H6do2a2p) in solution and in the solid state: structural studies along the series.

    Science.gov (United States)

    Campello, M Paula C; Lacerda, Sara; Santos, Isabel C; Pereira, Giovannia A; Geraldes, Carlos F G C; Kotek, Jan; Hermann, Petr; Vanek, Jakub; Lubal, Premysl; Kubícek, Vojtech; Tóth, Eva; Santos, Isabel

    2010-07-26

    Complexes of 4,10-bis(phosphonomethyl)-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (trans-H(6)do2a2p, H(6)L) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal-ion complexes are between the corresponding values of H(4)dota and H(8)dotp complexes, as a consequence of the ligand basicity. The solid-state structures of the ligand and of nine lanthanide(III) complexes were determined by X-ray diffraction. All the complexes are present as twisted-square-antiprismatic isomers and their structures can be divided into two series. The first one involves nona-coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa-coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid-assisted dissociation of several Ln(III)-H(6)L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota-like ligands. The [Ce(L)(H(2)O)](3-) complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate-acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the (1)H NMR spectroscopic pseudo-contact shifts for the Ce-Eu and Tb-Yb series, the solution structures of the complexes reflect the structures of the [Ce(HL)(H(2)O)](2-) and [Yb(HL)](2-) anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between (31)P/(1)H lanthanide-induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N(4

  19. Analyses of polycyclic aromatic hydrocarbon (PAH) and chiral-PAH analogues-methyl-β-cyclodextrin guest-host inclusion complexes by fluorescence spectrophotometry and multivariate regression analysis

    Science.gov (United States)

    Greene, LaVana; Elzey, Brianda; Franklin, Mariah; Fakayode, Sayo O.

    2017-03-01

    The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (Kb), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated Kb and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81 × 10- 7 M for anthracene and 3.48 × 10- 8 M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a

  20. Enantioselective Conjugate Addition of Diethylzinc to Chalcones Catalysed by Chiral Ni(II) Aminoalcohol Complexes

    NARCIS (Netherlands)

    Vries, André H.M. de; Jansen, Johan F.G.A.; Feringa, Bernard

    1994-01-01

    Conjugate addition of diethylzinc to chalcones is catalysed by complexes prepared in situ from Ni(acac)2 and cis-exo-N,N-dialkyl-3-aminoisoborneols or (+)-cis-endo-N,N-dimethyl-3-aminoborneol ((+)-DAB) (13b). The products are obtained with enantioselectivities up to 84 %. When scalemic (-)-cis-exo-N

  1. ENANTIOSELECTIVE CONJUGATE ADDITION OF DIETHYLZINC TO CHALCONES CATALYZED BY CHIRAL NI(II) AMINOALCOHOL COMPLEXES

    NARCIS (Netherlands)

    DEVRIES, AHM; JANSEN, JFGA; FERINGA, BL

    1994-01-01

    Conjugate addition of diethylzinc to chalcones is catalysed by complexes prepared in situ from Ni(acac)(2) and cis-exo-N,N-dialkyl-3-aminoisoborneols or (+)-cis-endo-N,N-dimethyl-3-aminoborneol ((+)- DAB) (13b). The products are obtained with enantioselectivities up to 84 %. When scalemic (-)-cis-ex

  2. New Opportunities for Lanthanide Luminescence

    Institute of Scientific and Technical Information of China (English)

    Jean-Claude G. Bünzli; Steve Comby; Anne-Sophie Chauvin; Caroline D. B. Vandevyver

    2007-01-01

    Trivalent lanthanide ions display fascinating optical properties. The discovery of the corresponding elements and their first industrial uses were intimately linked to their optical properties. This relationship has been kept alive until today when many high-technology applications of lanthanide-containing materials such as energy-saving lighting devices, displays, optical fibers and amplifiers, lasers, responsive luminescent stains for biomedical analyses and in cellulo sensing and imaging, heavily rely on the brilliant and pure-color emission of lanthanide ions. In this review we first outlined the basics of lanthanide luminescence with emphasis on f-f transitions, the sensitization mechanisms, and the assessment of the luminescence efficiency of lanthanide-containing emissive molecular edifices. Emphasis was then put on two fast developing aspects of lanthanide luminescence: materials for telecommunications and light emitting diodes, and biomedical imaging and sensing. Recent advances in NIR-emitting materials for plastic amplifiers and waveguides were described, together with the main solutions brought by researchers to minimize non-radiative deactivation of excited states. The demonstration in 1999 that erbium tris(8-hydroxyquinolinate) displayed a bright green emission suitable for organic light emitting diodes (OLEDs) was followed by realizing that in OLEDs, 25% of the excitation energy leads to singlet states and 75% to triplet states. Since lanthanide ions are good triplet quenchers, they now also play a key role in the development of these lighting devices. Luminescence analyses of biological molecules are among the most sensitive analytical techniques known. The long lifetime of the lanthanide excited states allows time-resolved spectroscopy to be used, suppressing the sample autofluorescence and reaching very low detection limits. Not only visible lanthanide sensors are now ubiquitously provided in medical diagnosis and in cell imaging, but the

  3. A Tethered Ru-S Complex with an Axial Chiral Thiolate Ligand for Cooperative Si-H Bond Activation: Application to Enantioselective Imine Reduction.

    Science.gov (United States)

    Wübbolt, Simon; Maji, Modhu Sudan; Irran, Elisabeth; Oestreich, Martin

    2017-02-13

    An axial chiral version of the 2,6-dimesitylphenyl group attached to sulfur is reported. Its multistep preparation starts from (S)-binol, and the thiol group is established by a racemization-free thermal Newman-Kwart rearrangement. The new chiral thiolate ligand decorated with one mesityl group is used in the synthesis of a tethered ruthenium chloride complex. Its spectroscopic characterization revealed solvent-dependent epimerization at the ruthenium center. The major diastereomer is crystallographically characterized. Chloride abstraction with tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF4) yields the corresponding coordinatively unsaturated ruthenium complex with the Ru-S bond exposed. Si-H bond activation at this Ru-S bond proceeds in syn fashion but with moderate facial selectivity (d.r. = 70:30), generating diastereomeric chiral-at-ruthenium hydrosilane adducts. Their application to catalytic imine hydrosilylation led to promising enantioinduction (40% ee), thereby providing proof of concept for asymmetric catalysis involving cooperative Si-H bond activation.

  4. Construction and NIR luminescent property of hetero-bimetallic Zn Nd complexes from two chiral salen-type Schiff-base ligands

    Science.gov (United States)

    Bi, Wei-Yu; Lü, Xing-Qiang; Chai, Wen-Li; Song, Ji-Rong; Wong, Wai-Yeung; Wong, Wai-Kwok; Jones, Richard A.

    2008-11-01

    Two new near-infrared (NIR) luminescent Zn-Nd complexes [ZnL 1Nd(OAc)(NO 3) 2] ( 3) and [ZnL 2Nd(DMF) 2(NO 3) 3] ( 4) have been obtained with two salen-type Schiff-base ligands H 2L 1 and H 2L 2, ( H 2L 1 = N, N'-bis(3-methoxysalicylidene)-(1s, 2s)-(-)1,2-dipheneylethylenediamine and H 2L 2 = N, N'-bis(3-methoxysalicylidene)-(s)-2,2-diamine-1,1'-binaphthyl) from the reaction of different chiral diamines with o-vanillin. The X-ray crystal structure analysis reveals that both of them crystallize in the chiral space groups with P2(1), a = 10.1669(6), b = 19.3775(11), c = 17.4639(10) Å, β = 94.8710(10)°, V = 3428.1(3) Å 3, Z = 4 for 3, and C2, a = 22.1914(13), b = 9.7886(6), c = 22.0138(13) Å, β = 118.9590(10)°, V = 4372.5(4) Å 3, Z = 4 for 4. Complexes 3- 4 are both dinuclear Zn-Nd structures, while suitable choice of chiral Schiff-base ligands could induce the different complexions of ligands and metal ions, and the functional control of ligand character shows a potentially effective way to the fine-tuning properties of NIR luminescence from Nd ions.

  5. Lanthanide bimetallic helicates for in vitro imaging and sensing.

    Science.gov (United States)

    Bünzli, Jean-Claude G; Chauvin, Anne-Sophie; Vandevyver, Caroline D B; Bo, Song; Comby, Steve

    2008-01-01

    As the need for targeting luminescent biolabels increases, for mapping selected analytes, imaging of cells and organs, and tracking in cellulo processes, lanthanide bimetallic helicates are emerging as versatile bioprobes. The wrapping of three ligand strands around two metallic centers by self-assembly affords robust molecular edifices with tunable chemical and photophysical properties. In addition, heterometallic helical chelates can be assembled leading to bioprobes with inherent chiral properties. In this paper, we review the literature demonstrating that neutral [Ln(2)(L(CX))(3)] (x=1-3) helicates represent a viable alternative to existing chelating agents for bio-analyses, while featuring specific enhanced properties. These bimetallic chelates self-assemble in water, and at physiological pH the 2:3 (Ln:L(CX)) complex is by far the dominant species, conditional stability constants logbeta(23) being in the range 23-30. The metal ions are 9-coordinate and lie in sites with slightly distorted D(3) symmetry. Efficient protection from water interaction by the tightly wrapped ligand strands results in sizeable photophysical properties, with quantum yields up to 24% for Eu(III) and 11% for Tb(III), while the luminescence of several other visible and/or near-infrared emitting Ln(III) ions is also sensitized. Noncytotoxicity for all the helicates is established for several living cell lines including HeLa, HaCat, MCF-7, 5D10, and Jurkat. We present new data pertaining to the live cell imaging ability of [Eu(2)(L(C1))(3)] and compare the three systems with x=1-3 with respect to thermodynamic stability, photophysics, cell-permeation ability, and targeting capability for sensing in cellulo processes. Prospects of derivatization for characterizing specific biological interactions are discussed.

  6. Chiral Recognition for the Two Enantiomers of Phenylalanine and Four Amino Acid Derivatives with (S)-Phenylethylamine Derived Nickel(II) Macrocyclic Complex

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jeong Jae; Ryoo, Jae Jeong [Kyungpook National Univ., Daegu (Korea, Republic of)

    2013-11-15

    The potency of new chiral selector candidate was assessed by this simple chiral discrimination test. This experiment showed that the macrocyclic molecule can be a powerful candidate as a chiral selector to obtain optically pure amino acid or amino acid derivatives, particularly phenylalanine and N-benzoyl-phenylalanine enantiomers from racemic mixtures. This study attempted to use the chiral metal organic framework (MOF), 1, as a good chiral selector candidate for the chiral discrimination of racemic phenylalanine, N-benzoyl-alanine, N-benzoyl-phenylalanine, N-benzoyl-methionine, N-CBZ-alanine. The chiral recognition ability of the chiral macromolecule, was examined by varying the molar ratio of the macromolecule and racemates.

  7. A Ratiometric Luminescent Thermometer Co-doped with Lanthanide and Transition Metals.

    Science.gov (United States)

    Li, Zhiqiang; Hou, Zhaohui; Ha, Denghui; Li, Huanrong

    2015-12-01

    Herein, we report the fabrication of a sensitive ratiometric and colorimetric luminescent thermometer with a wide operating-temperature range, from cryogenic temperatures up to high temperatures, through the combination of lanthanide and transition metal complexes. Benefiting from the transition metal complex as a self-reference, the lanthanide content in the mixed-coordination complex, Eu0.05(Mebip-mim bromine)0.15Zn0.95(Mebip-mim bromine)1.9, was lowered to 5%.

  8. NIR-luminescence from ternary lanthanide [Ho{sup III}, Pr{sup III} and Tm{sup III}] complexes with 1-(2-naphthyl)-4,4,4-trifluoro-1,3-butanedionate

    Energy Technology Data Exchange (ETDEWEB)

    Dang Song [State Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Yu Jiangbo [State Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wang Xiaofei [State Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Sun Lining [Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444 (China); Deng Ruiping; Feng Jing [State Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Fan Weiqiang [State Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Zhang Hongjie, E-mail: hongjie@ciac.jl.cn [State Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-09-15

    The ligand 1-(2-naphthyl)-4,4,4-trifluoro-1,3-butanedionate (Htfnd) has been employed to synthesize six novel ternary-lanthanide complexes in which the synergic ligands were 1,10-phenanthroline-5,6-dione (dione) and 4,5-diazafluoren-9-one (dafone), respectively. Two series of complexes Ln(tfnd){sub 3}dione and Ln(tfnd){sub 3}dafone (Ln=Ho, Pr, Tm) were obtained. These complexes were characterized by elemental analysis, Fourier Transform Infrared spectra and diffused reflectance. After ligand-mediated excitation, Ln(tfnd){sub 3}dione and Ln(tfnd){sub 3}dafone all show the characteristic NIR luminescence of the corresponding Ln{sup 3+} ions (Ln=Ho, Pr, Tm). This can be attributed to the efficient energy transfer from ligands to central Ln{sup 3+} ions, via an antenna effect. The indirect energy transfer in the complexes has been investigated and the differences in the luminescence intensity between Ln(tfnd){sub 3}dione and Ln(tfnd){sub 3}dafone were discussed in detail. The excellent luminescent performances enable these NIR-luminescent complexes to have potential applications in optical amplification operating at 1300 or 1500 nm. - Highlights: > We study on Ln(tfnd){sub 3}dione and Ln(tfnd){sub 3}dafone complexes (Ln=Ho, Pr, Tm) based on different synergistic ligands. > Characteristic NIR luminescence of complexes has been obtained upon excitation of the ligand absorption bands. > Differences in the luminescence intensity of complexes were further discussed. > Dione ligand with lower triplet-state energy level than that of Htfnd discourage the luminescence of Ln(tfnd){sub 3}dione.

  9. Chiral-at-Metal Rh(III) Complex-Catalyzed Decarboxylative Michael Addition of β-Keto Acids with α,β-Unsaturated 2-Acyl Imidazoles or Pyridine.

    Science.gov (United States)

    Li, Shi-Wu; Gong, Jun; Kang, Qiang

    2017-03-17

    A newly prepared chiral-at-metal Rh(III) complex-catalyzed, highly efficient enantioselective decarboxylative Michael addition of β-keto acids with α,β-unsaturated 2-acyl imidazoles or pyridine has been developed, affording the corresponding adducts in 94-98% yield with up to 96% enantioselectivity. This protocol exhibits remarkable reactivity, as the complex with a Rh(III) loading as low as 0.05 mol % can catalyze the decarboxylative Michael addition on a gram scale without loss of enantioselectivity.

  10. Syntheses of methylcyclopentadienyl derivatives of lanthanides (Ln = La-Nd) and crystal structures of [(THF){sub 2}Li({mu}-Cl){sub 2}]{sub 2}[MeCpNd(THF)] and [Li(DME){sub 3}][MeCpLa(NPh{sub 2}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jingwen Guan; Songchun Jin; Yonghua Lin; Ai Shen [Changchun Institute of Applied Chemistry, Changchun (China)

    1992-07-01

    Organolanthanide chemistry has undergone rapid growth in recent years. However, much of the work has been concentrated on the smaller and later lanthanide elements. Because of the lanthanide constriction effect and coordinative unsaturation, the important precursor lanthanide cyclopentadienyl and smaller substituted cyclopentadienyl chlorides of the early lanthanides have not been easily synthesized. Now it has been found that some approaches can be used to prepare such kinds of complexes for early lanthanides. 18 refs., 2 figs., 5 tabs.

  11. Synthesis,characterization,structures and magnetic property of chiral oxalate-bridged dicopper(Ⅱ) complexes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The oxalato-bridged dicopper(II) complexes [Cu2(μ-ox)(LRR)2(H2O)2(ClO4)2] (1),[Cu2(μ-ox)(LRR)2(CH3COCH3)2(ClO4)2](1a),[Cu2(μ-ox)(LSS)2(H2O)2(ClO4)2] (2) and [Cu2(μ-ox)(LRR)(LSS)2(CH3COCH3)2(ClO4)2] (3) [LRR = (8R,10R)-(-)-[4,5]-pineno2,2′-bipyridine,LSS = (8S,10S)-(+)-[4,5]-pineno-2,2′-bipyridine;ox2= oxalate] were first prepared.A possible mechanism for the formation of the chial dicopper(II) complexes was proposed.Based on elemental analysis,conductance measurement,UV-Vis spectra,CD spectra and X-ray single-crystal diffraction,the oxalato-bridged structures of 1 and 2 were deduced to adopt two Cu(II) ions and the bridged oxalate lying in the nearly same plane.The crystal structures of 1a and 3 reveal that the coordination geometry around each Cu(II) ion is an elongated and distorted octahedron and two axial solvent molecules and two perchlorate ions are anti to each other respectively in both binuclear molecules.The solution CD spectra of 1 and 2 in the visible d-d range show very weak Cotton effects with peaks at 588 and 779 nm,which are approximately of mirror image,suggesting the optical activities may be derived from the vicinal effects of the chiragenic centers at the pinene group of LRR and LSS,respectively.Complex 1 has been characterized by variable-temperature magnetic susceptibility and the data was least-square fitted to the Blenaey-Bowers equation.The exchange integral J was found to be -338.41(4) cm-1,indicating a strong antiferromagnetic interaction between two copper(II) ions.

  12. Electrochemical chiral recognition by microparticle coatings of Pd complexes with bridging cyclometalated phosphines

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio [Departament de Quimica Analitica, Facultat de Quimica, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)], E-mail: antonio.domenech@uv.es; Koshevoy, Igor O.; Penno, Dirk; Ubeda, Maria Angeles [Departament de Quimica Inorganica, Facultat de Quimica, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)

    2008-03-10

    The palladium(II) dinuclear complex with bridging cyclometalated phosphines, {l_brace}Pd{sub 2}[{mu}-(C{sub 6}H{sub 4})PPh{sub 2}]{sub 2}({mu}-O{sub 2}CCH{sub 3}){sub 2}{r_brace} (Pd{sub 2}L{sub 2}), having a paddlewheel structure, is reversibly oxidized in CH{sub 2}Cl{sub 2} to a dinuclear palladium(III) analogue via two successive one-electron steps. Solid state voltammetry of Pd{sub 2}L{sub 2} in contact with aqueous electrolytes produce as one-electron oxidation with two competing mechanisms involving anion intercalation/anion binding between/to metal centres, chloride ions acting as inhibitors for the first pathway. R- and S-Pd{sub 2}L{sub 2} produces a significant stereoselective electrocatalytic activity with respect to the oxidation of L- and D-glutamic acid in alkaline media.

  13. Tri- and tetra-substituted cyclen based lanthanide(III) ion complexes as ribonuclease mimics: a study into the effect of log Ka, hydration and hydrophobicity on phosphodiester hydrolysis of the RNA-model 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP).

    Science.gov (United States)

    Fanning, Ann-Marie; Plush, Sally E; Gunnlaugsson, Thorfinnur

    2015-05-28

    A series of tetra-substituted 'pseudo' dipeptide ligands of cyclen (1,4,7,10,-tetraazacyclododecane) and a tri-substituted 3'-pyridine ligand of cyclen, and the corresponding lanthanide(III) complexes were synthesised and characterised as metallo-ribonuclease mimics. All complexes were shown to promote hydrolysis of the phosphodiester bond of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP, τ1/2 = 5.87 × 10(3) h), a well known RNA mimic. The La(III) and Eu(III) tri-substituted 3'-pyridine lanthanide(III) complexes being the most efficient in promoting such hydrolysis at pH 7.4 and at 37 °C; with τ1/2 = 1.67 h for La(III) and 1.74 h for Eu(III). The series was developed to provide the opportunity to investigate the consequences of altering the lanthanide(III) ion, coordination ability and hydrophobicity of a metallo-cavity on the rate of hydrolysis using the model phosphodiester, HPNP, at 37 °C. To further provide information on the role that the log Ka of the metal bound water plays in phosphodiester hydrolysis the protonation constants and the metal ion stability constants of both a tri and tetra-substituted 3'pyridine complex were determined. Our results highlighted several key features for the design of lanthanide(III) ribonucelase mimics; the presence of two metal bound water molecules are vital for pH dependent rate constants for Eu(III) complexes, optimal pH activity approximating physiological pH (∼7.4) may be achieved if the log Ka values for both MLOH and ML(OH)2 species occur in this region, small changes to hydrophobicity within the metallo cavity influence the rate of hydrolysis greatly and an amide adjacent to the metal ion capable of forming hydrogen bonds with the substrate is required for achieving fast hydrolysis.

  14. Recent Advances in Near-Infrared Luminescent Lanthanide Porphyrin Complexes%稀土卟啉近红外发光配合物在生命科学领域中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    张涛; 郑举敦; 吴云霞

    2016-01-01

    Near-Infrared luminescent lanthanide complexes are well known for their unique 3d-4f electronic structures, which exhibit special photochemical and photophysical properties such as line-like emission spectra,large stoke shift and long luminescence lifetimes (micro-to milli-second scale),which has received much attention for their highlighted value in the applications of bio-sensing and imaging analysis.However,due to Laporte-forbidden 4f → 4f transitions of LnI I i-ons,direct excitation of LnI I ions rarely yields highly luminescent materials.To this end,indirect excitation,termed sensitization or antenna effect by chromophores,has to be used.Porphyrins with exceedingly delocalized πsystems and high stability,which undoubtedly represent one of the most studied macrocyclic rings,have been widely used to sensitize NIR emission of LnI I ions.In this review,the latest developments in the field of NIR emissive porphyrin lanthanide com-plexes were summarized.And the features,advantages,designed ideas and developing trends of these NIR complexes are also demonstrated in this review.%稀土近红外发光材料具有独特的光物理性质,如发光谱带窄、较大的 Stock 位移、荧光寿命长可达毫秒级等,在医学诊断和成像、免疫分析等热门领域具有重大的应用前景。但由于跃迁选择定则,稀土离子本身的吸收系数较小,需要用特定的生色团对其进行敏化,以增强其发光性能。在众多生色团中,卟啉化合物由于其激发态能级与近红外发光的稀土离子能级较为匹配,可以较好的敏化稀土离子,获得较高的近红外发光效率,因此,近年来受到了极大的关注。本文总结了近年来近红外发光卟啉稀土配合物在生命科学领域中的应用研究进展,并对其发展前景进行了展望。

  15. Understanding stability trends along the lanthanide series.

    Science.gov (United States)

    Regueiro-Figueroa, Martín; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Platas-Iglesias, Carlos

    2014-04-01

    The stability trends across the lanthanide series of complexes with the polyaminocarboxylate ligands TETA(4-) (H4TETA=2,2',2'',2'''-(1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl)tetraacetic acid), BCAED(4-) (H4BCAED=2,2',2'',2'''-{[(1,4-diazepane-1,4-diyl)bis(ethane-2,1-diyl)]bis(azanetriyl)}tetraacetic acid), and BP18C6(2-) (H2BP18C6=6,6'-[(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)bis(methylene)]dipicolinic acid) were investigated using DFT calculations. Geometry optimizations performed at the TPSSh/6-31G(d,p) level, and using a 46+4f(n) ECP for lanthanides, provide bond lengths of the metal coordination environments in good agreement with the experimental values observed in the X-ray structures. The contractions of the Ln(3+) coordination spheres follow quadratic trends, as observed previously for different isostructural series of complexes. We show here that the parameters obtained from the quantitative analysis of these data can be used to rationalize the observed stability trends across the 4f period. The stability trends along the lanthanide series were also evaluated by calculating the free energy for the reaction [La(L)](n+/-)(sol)+Ln(3+)(sol)→[Ln(L)](n+/-)(sol)+La(3+)(sol). A parameterization of the Ln(3+) radii was performed by minimizing the differences between experimental and calculated standard hydration free energies. The calculated stability trends are in good agreement with the experimental stability constants, which increase markedly across the series for BCAED(4-) complexes, increase smoothly for the TETA(4-) analogues, and decrease in the case of BP18C6(2-) complexes. The resulting stability trend is the result of a subtle balance between the increased binding energies of the ligand across the lanthanide series, which contribute to an increasing complex stability, and the increase in the absolute values of hydration energies along the 4f period.

  16. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  17. ASYMMETRIC-SYNTHESIS OF NEW CHIRAL EUROPIUM N,N'-DISUCCINATE COMPLEXES - SHIFT-REAGENTS FOR AQUEOUS-SOLUTIONS AND APPLICATION IN THE ENANTIOMERIC EXCESS DETERMINATION OF AMINO-ACIDS

    NARCIS (Netherlands)

    HULST, R; DEVRIES, NK; FERINGA, BL

    1994-01-01

    The synthesis of new chiral N,N'-disuccinate ligands (R,R)-8, (R,R)-9, and (S,S)-10 from (5R)- or (SS)-(menthyloxy)-2(5H)-furanone is described. These ligands, after complexation with EuCl3.6H(2)O, are highly suitable as chiral shift reagents for the enantiomeric excess determination of amino acids

  18. Free-standing chiral plasmonics

    Science.gov (United States)

    Leong, Eunice Sok Ping; Deng, Jie; Wu, Siji; Khoo, Eng Huat; Liu, Yan Jun

    2014-11-01

    Chiral plasmonic nanostructures offer the ability to achieve strong optical circular dichroism (CD) activity over a broad spectral range, which has been challenging for chiral molecules. Chiral plasmonic nanostructures have been extensively studied based on top-down and bottom-up fabrication techniques. Particularly, in the top-down electron-beam lithography, 3D plasmonic nanostructure fabrication involves layer-by-layer patterning and complex alignment, which is time-consuming and causes many defects in the structures. Here, we present a free-standing 3D chiral plamonic nanostructures using the electron-beam lithography technique with much simplified fabrication processes. The 3D chiral plasmonic nanostructures consist of a free-standing ultrathin silicon nitride membrane with well-aligned L-shape metal nanostructures on one side and disk-shape ones on the other side. The free-standing membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the gap between the upper and lower layers in an array of chiral nanostructures. Such free-standing chiral plasmonic nanostructures exhibit strong CD at optical frequencies, which can be engineered by simply changing the disk size on one side of the membrane. Experimental results are in good agreement with the finite-difference time-domain simulations. Such free-standing chiral plasmonics holds great potential for chirality analysis of biomolecules, drugs, and chemicals.

  19. Synthesis and Structures of Two Lanthanide Complexes Containing a Mixed Ligand System: [Ln(Phen){sub 2}(L){sub 3}(HL)]·H{sub 2}O [Ln = La, Ce; Phen = Phenanthroline; HL = Salicylic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Iravani, Effat [UNiv. of Applied Science and Technology, Tehran (Iran, Islamic Republic of); Nami, Navabeh; Nabizadeh, Fatemeh; Bayani, Elham [Islamic Azad Univ., Mazandaran (Iran, Islamic Republic of); Neumueller, Bernhard [Philipps-Universitat Marburg, Marburg (Germany)

    2013-11-15

    The reaction of LnCl{sub 3}·7H{sub 2}O [Ln = La (1), Ce (2)] with salicylic acid (HL) and 1,10-phenanthroline (Phen) at 20 .deg. C in H{sub 2}O/ethanol gave after work-up and recrystallization two novel lanthanide complexes with general formula [Ln(Phen){sub 2}(L){sub 3}(HL)]·H{sub 2}O. Compounds 1 and 2 were characterized by IR and UV-Vis spectroscopy, TGA, CHN as well as by X-ray analysis. According to these results, compounds 1 and 2 are isostructural and contain Ln{sup 3+} ions with coordination number nine. Complexes 1 and 2 consist of two Phen, one neutral HL and three L anions (two L anions act as monodentate ligands and the third one is chelating to Ln{sup 3+}). Thermal decomposition led to primary loss of the Phen molecules. Then HL molecules and finally L moieties left the material to give Ln{sub 2}O{sub 3}.

  20. Synthesis of iridium and rhodium complexes with new chiral phosphine-NHC ligands based on 1,1'-binaphthyl framework and their application in asymmetric hydrogenation.

    Science.gov (United States)

    Gu, Peng; Zhang, Jun; Xu, Qin; Shi, Min

    2013-10-07

    The first series of chiral phosphine-imidazole carbene ligands based on a 1,1'-binaphthyl framework were synthesized from (R)-2-amine-2'-(diphenylphosphino)-1,1'-binaphthyl (1) in a four-step pathway. After deprotonation of these phosphine-imidazolium salts with LiO(t)Bu, and subsequent complexation with [Ir(COD)Cl]2 and anion exchange with NaBArF, phosphine-carbene chelated iridium complexes (R)-6a and (R)-6b were obtained. Their structures have been characterized by NMR and X-ray diffraction analysis. The NHC-phosphine rhodium complex (R)-6c has been also obtained by a similar synthetic method. These iridium complexes have been applied to catalyze the asymmetric hydrogenation of alkenes to give the corresponding products in moderate to excellent conversion (up to 99%) and moderate enantioselectivities under mild conditions (up to 61% ee).

  1. The Lanthanide Contraction beyond Coordination Chemistry.

    Science.gov (United States)

    Ferru, Geoffroy; Reinhart, Benjamin; Bera, Mrinal K; Olvera de la Cruz, Monica; Qiao, Baofu; Ellis, Ross J

    2016-05-10

    The lanthanide contraction is conceptualized traditionally through coordination chemistry. Here we break this mold in a structural study of lanthanide ions dissolved in an amphiphilic liquid. The lanthanide contraction perturbs the weak interactions between molecular aggregates that drive mesoscale assembly and emergent behavior. The weak interactions correlate with lanthanide ion transport properties, suggesting new strategies for rare-earth separation that exploit forces outside of the coordination sphere.

  2. Half-sandwich (6-arene)ruthenium(II) chiral Schiff base complexes: Analysis of the diastereomeric mixtures in solution by 2D-NMR spectroscopy

    Indian Academy of Sciences (India)

    Rakesh K Rath; G A Nagana Gowda; Akhil R Chakravarty

    2002-10-01

    2D NMR spectroscopy has been used to determine the metal configuration in solution of three complexes, viz. [($\\eta^6$--cymene)Ru(L∗)Cl] (1) and [(6--cymene)Ru(L∗)(L')] (ClO4) (L' = H2O, 2; PPh3, 3), where L∗ is the anion of ()-(1-phenylethyl)salicylaldimine. The complexes exist in two diastereomeric forms in solution. Both the (Ru, C)- and (Ru, C)-diastereomers display the presence of attractive CH/ interaction involving the phenyl group attached to the chiral carbon and the cymene ring hydrogens. This interaction restricts the rotation of the C∗-N single bond and, as a result, two structural types with either the hydrogen atom attached to the chiral carbon (C∗) or the methyl group attached to C∗ in close proximity of the cymene ring protons get stabilized. Using 2D NMR spectroscopy as a tool, the spatial interaction involving these protons are studied in order to obtain the metal configuration(s) of the diastereomeric complexes in solution. This technique has enabled us to determine the metal configuration as (Ru, C) for the major isomers of 1-3 in solution.

  3. A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(II) complexes: synthesis, theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations.

    Science.gov (United States)

    Mutti, Francesco G; Gullotti, Michele; Casella, Luigi; Santagostini, Laura; Pagliarin, Roberto; Andersson, K Kristoffer; Iozzi, Maria Francesca; Zoppellaro, Giorgio

    2011-05-28

    The new poly-imidazole N(8) ligand (S)-2-piperazinemethanamine-1,4-bis[2-((N-(1-acetoxy-3-(1-methyl-1H-imidazol-4-yl))-2-(S)-propyl)-(N-(1-methyl-1H-imidazol-2-ylmethyl)))ethyl]-N-(phenylmethyl)-N-(acetoxy), also named (S)-Pz-(C2-(HisIm))(2) (L), containing three chiral (S) centers, was obtained by a multi-step synthesis and used to prepare dinuclear [Cu(2)(L)](4+) and trinuclear [Cu(3)(L)](6+) copper(II) complexes. Low-temperature EPR experiments performed on [Cu(2)(L)](4+) demonstrated that the two S = ½ centers behaved as independent paramagnetic units, while the EPR spectra used to study the trinuclear copper complex, [Cu(3)(L)](6+), were consistent with a weakly coupled three-spin ½ system. Theoretical models for the two complexes were obtained by DFT/RI-BP86/TZVP geometry optimization, where the structural and electronic characteristics nicely supported the EPR experimental findings. In addition, the theoretical analysis unveiled that the conformational flexibility encoded in both [Cu(2)(L)](4+) and [Cu(3)(L)](6+) arises not only from the presence of several σ-bonds and the bulky residues attached to the (S)-Pz-(C2-(HisIm))(2) ligand scaffold, but also from the poor coordination ability of the tertiary amino groups located in the ligand side-chains containing the imidazole units towards the copper(II) ions. Both the dinuclear and trinuclear complexes are efficient catalysts in the stereoselective oxidation of several catechols and flavonoid compounds, yielding the corresponding quinones. The structural features of the substrate-catalyst adduct intermediates were assessed by searching the conformational space of the molecule through MMFF94/Monte Carlo (MMFF94/MC) methods. The conformational flexibility of the bound ligand in the complexes proves to be beneficial for substrate binding and recognition. For the dinuclear complex, chiral recognition of the optically active substrates derives from weak electrostatic interactions between bound substrates and

  4. Separation of lanthanides through hydroxyapatite; Separacion de lantanidos mediante hidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, F.G

    2006-07-01

    With the objective of obtaining from an independent way to each one of the lanthanides {sup 151} Pm, {sup 161} Tb, {sup 166} Ho and {sup 177} Lu free of carrier and with high specific activities starting from the indirect irradiation via, it intends in this work to determine the viability of separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu, by means of ion exchange column chromatography, using hydroxyapatite (HAp) and fluorite like absorbent material in complexing media. It is important to mention that have registered separation studies among lanthanides of the heavy group with those of the slight group, using the same mass and, in comparison with this work, quantities different from the father were used and of the son, also, that the separation studies were carried out among neighboring lanthanides. In this investigation, it was determined the effect that its have the complexing media: KSCN, sodium tartrate, sodium citrate, EDTA and aluminon, their pH and concentration, in the adsorption of the lanthanides in both minerals, in order to determine the chromatographic conditions for separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu. The work consists of five chapters, in the first one they are presented a theoretical introduction of the characteristics more important of the lanthanides, the hydroxyapatite and the fluorite; in the second, it is deepened in the ion exchange, as well as the two techniques (XRD and High Vacuum Electron Microscopy) to make the characterization of LnCI{sub 3} (Ln = Nd, Gd, Dy or Yb) synthesized. The third chapter, it describes the methodology continued in our experimental work; in the room, its are presented the obtained results of the static and dynamic method to determine the viability of separation of neighboring lanthanides; and finally, the five chapter shows the conclusions. In this study, it is concludes that the separation among neighboring lanthanides cannot be carried out in the minerals and used media; because

  5. Magnetic field alignable domains in phospholipid vesicle membranes containing lanthanides.

    Science.gov (United States)

    Beck, Paul; Liebi, Marianne; Kohlbrecher, Joachim; Ishikawa, Takashi; Rüegger, Heinz; Zepik, Helmut; Fischer, Peter; Walde, Peter; Windhab, Erich

    2010-01-14

    Magnetic fields were applied as a structuring force on phospholipid-based vesicular systems, using paramagnetic lanthanide ions as magnetic handles anchored to the vesicle membrane. Different vesicle formulations were investigated using small angle neutron scattering (SANS) in a magnetic field of up to 8 T, cryo-transmission electron microscopy (cryo-TEM), (31)P NMR spectroscopy, dynamic light scattering (DLS), and permeability measurements with a fluorescent water-soluble marker (calcein). The investigated vesicle formulations consisted usually of 80 mol % of the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 20 mol % of a chelator lipid (DMPE-DTPA; 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate) with complexed lanthanide ions (Tm(3+), Dy(3+), or La(3+)), and the total lipid concentration was 15 mM. Vesicles containing the paramagnetic lanthanide Tm(3+) or Dy(3+) exhibited a temperature-dependent response to magnetic fields, which can be explained by considering the formation of lipid domains, which upon reaching a critical size become alignable in a magnetic field. The features of this "magnetic field alignable domain model" are as follows: with decreasing temperature (from 30 to 2.5 degrees C) solid domains, consisting mainly of the higher melting phospholipid (DMPE-DTPA.lanthanide), begin to form and grow in size. The domains assemble the large magnetic moments conferred by the lanthanides and orient in magnetic fields. The direction of alignment depends on the type of lanthanide used. The domains orient with their normal parallel to the magnetic field with thulium (Tm(3+)) and perpendicular with dysprosium (Dy(3+)). No magnetic field alignable domains were observed if DMPE-DTPA is replaced either by POPE-DTPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-diethylenetriamine-pentaacetate) or by DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine).

  6. HPLC enantioseparation of racemic bupropion, baclofen and etodolac: modification of conventional ligand exchange approach by pre-column formation of chiral ligand exchange complexes.

    Science.gov (United States)

    Singh, Manisha; Bhushan, Ravi

    2016-11-01

    Separation of racemic mixture of (RS)-bupropion, (RS)-baclofen and (RS)-etodolac, commonly marketed racemic drugs, has been achieved by modifying the conventional ligand exchange approach. The Cu(II) complexes were first prepared with a few l-amino acids, namely, l-proline, l-histidine, l-phenylalanine and l-tryptophan, and to these was introduced a mixture of the enantiomer pair of (RS)-bupropion, or (RS)-baclofen or (RS)-etodolac. As a result, formation of a pair of diastereomeric complexes occurred by 'chiral ligand exchange' via the competition between the chelating l-amino acid and each of the two enantiomers from a given pair. The diastereomeric mixture formed in the pre-column process was loaded onto HPLC column. Thus, both the phases during chromatographic separation process were achiral (i.e. neither the stationary phase had any chiral structural feature of its own nor did the mobile phase have any chiral additive). Separation of diastereomers was successful using a C18 column and a binary mixture of MeCN and TEAP buffer of pH 4.0 (60:40, v/v) as mobile phase at a flow rate of 1 mL/min and UV detection at 230 nm for (RS)-Bup, 220 nm for (RS)-Bac and 223 nm for (RS)-Etd. Baseline separation of the two enantiomers was obtained with a resolution of 6.63 in <15 min. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Fixation of carbon dioxide by macrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimeric carbonato-bridged compounds with μ3-η2:η2:η2 bonding.

    Science.gov (United States)

    Bag, Pradip; Dutta, Supriya; Biswas, Papu; Maji, Swarup Kumar; Flörke, Ulrich; Nag, Kamalaksha

    2012-03-28

    A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).

  8. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  9. Features of the reaction of heterocyclic analogs of chalcone with lanthanide shift reagents

    Energy Technology Data Exchange (ETDEWEB)

    Turov, A.V.; Khilya, V.P. [Taras Shevchenko Kiev Univ. (Russian Federation)

    1994-10-01

    The PMR spectra of heterocyclic analogs of 2-hydroxychalcone containing thiazole, benzofuran, triazole, imidazole, benzodioxane, or pyridine rings in the presence of lanthanide shift reagents are studied. It is found that the most effective reagent for modifying the spectra of these compounds is Yb(fod)3. The broadening of the spectra of 2-hydroxy chalcones in the presence of lanthanide shift reagents is explained by the dynamic effects of complex formation. An example is given of the determination of the conformation of molecules of 2-hydroxychalcone by the simultaneous use of lanthanide shift reagents and the homonuclear Overhauser effect. 9 refs., 1 fig., 1 tab.

  10. Supramolecular Chirality in Dynamic Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Hiroyuki Miyake

    2014-10-01

    Full Text Available Labile metal complexes have a useful coordination bond; which is weaker than a covalent C–C bond and is reversibly and dynamically formed and dissociated. Such labile metal complexes also can be used to construct chiral shapes and offer dynamic conversion of chiral molecular shapes in response to external stimuli. This review provides recent examples of chirality induction and describes the dynamic conversion systems produced by chiral metal complexes including labile metal centers, most of which respond to external stimuli by exhibiting sophisticated conversion phenomena.

  11. Fracture-resistant lanthanide scintillators

    Science.gov (United States)

    Doty, F. Patrick

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  12. Synthetic scope and DFT analysis of the chiral binap–gold(I complex-catalyzed 1,3-dipolar cycloaddition of azlactones with alkenes

    Directory of Open Access Journals (Sweden)

    María Martín-Rodríguez

    2013-11-01

    Full Text Available The 1,3-dipolar cycloaddition between glycine-derived azlactones with maleimides is efficiently catalyzed by the dimeric chiral complex [(Sa-Binap·AuTFA]2. The alanine-derived oxazolone only reacts with tert-butyl acrylate giving anomalous regiochemistry, which is explained and supported by Natural Resonance Theory and Nucleus Independent Chemical Shifts calculations. The origin of the high enantiodiscrimination observed with maleimides and tert-butyl acrylate is analyzed using DFT computed at M06/Lanl2dz//ONIOM(b3lyp/Lanl2dz:UFF level. Several applications of these cycloadducts in the synthesis of new proline derivatives with a 2,5-trans-arrangement and in the preparation of complex fused polycyclic molecules are described.

  13. X-ray studies of crystalline complexes involving amino acids and peptides. XLIV. Invariant features of supramolecular association and chiral effects in the complexes of arginine and lysine with tartaric acid.

    Science.gov (United States)

    Selvaraj, M; Thamotharan, S; Roy, Siddhartha; Vijayan, M

    2007-06-01

    The tartaric acid complexes with arginine and lysine exhibit two stoichiometries depending upon the ionization state of the anion. The structures reported here are DL-argininium DL-hydrogen tartrate, bis(L-argininium) L-tartrate, bis(DL-lysinium) DL-tartrate monohydrate, L-lysinium D-hydrogen tartrate and L-lysinium L-hydrogen tartrate. During crystallization, L-lysine preferentially interacts with D-tartaric acid to form a complex when DL-tartaric acid is used in the experiment. The anions and the cations aggregate into separate alternating layers in four of the five complexes. In bis(L-argininium) L-tartrate, the amino acid layers are interconnected by individual tartrate ions which do not interact among themselves. The aggregation of argininium ions in the DL- and the L-arginine complexes is remarkably similar, which is in turn similar to those observed in other dicarboxylic acid complexes of arginine. Thus, argininium ions have a tendency to assume similar patterns of aggregation, which are largely unaffected by a change in the chemistry of partner molecules such as the introduction of hydroxyl groups or a change in chirality or stoichiometry. On the contrary, the lysinium ions exhibit fundamentally different aggregation patterns in the DL-DL complexes on the one hand and L-D and L-L complexes on the other. Interestingly, the pattern in the L-D complex is similar to that in the L-L complex. The lysinium ions in the DL-DL complex exhibit an aggregation pattern similar to those observed in the DL-lysine complexes involving other dicarboxylic acids. Thus, the effect of change in the chirality of a subset of the component complexes could be profound or marginal, in an unpredictable manner. The relevant crystal structures appear to indicate that the preference of L-lysine for D-tartaric acid is perhaps caused by chiral discrimination resulting from the amplification of a small energy difference.

  14. Enhancement of anion binding in lanthanide optical sensors.

    Science.gov (United States)

    Cable, Morgan L; Kirby, James P; Gray, Harry B; Ponce, Adrian

    2013-11-19

    In the design of molecular sensors, researchers exploit binding interactions that are usually defined in terms of topology and charge complementarity. The formation of complementary arrays of highly cooperative, noncovalent bonding networks facilitates protein-ligand binding, leading to motifs such as the "lock-and-key". Synthetic molecular sensors often employ metal complexes as key design elements as a way to construct a binding site with the desired shape and charge to achieve target selectivity. In transition metal complexes, coordination number, structure and ligand dynamics are governed primarily by a combination of inner-sphere covalent and outer-sphere noncovalent interactions. These interactions provide a rich variable space that researchers can use to tune structure, stability, and dynamics. In contrast, lanthanide(III)-ligand complex formation and ligand-exchange dynamics are dominated by reversible electrostatic and steric interactions, because the unfilled f shell is shielded by the larger, filled d shell. Luminescent lanthanides such as terbium, europium, dysprosium, and samarium display many photophysical properties that make them excellent candidates for molecular sensor applications. Complexes of lanthanide ions act as receptors that exhibit a detectable change in metal-based luminescence upon binding of an anion. In our work on sensors for detection of dipicolinate, the unique biomarker of bacterial spores, we discovered that the incorporation of an ancillary ligand (AL) can enhance binding constants of target anions to lanthanide ions by as much as two orders of magnitude. In this Account, we show that selected ALs in lanthanide/anion systems greatly improve sensor performance for medical, planetary science, and biodefense applications. We suggest that the observed anion binding enhancement could result from an AL-induced increase in positive charge at the lanthanide ion binding site. This effect depends on lanthanide polarizability, which can be

  15. Chiral Sensing of Various Amino Acids Using Induced Circularly Polarized Luminescence from Europium(III) Complexes of Phenanthroline Dicarboxylic Acid Derivatives.

    Science.gov (United States)

    Uchida, Taka-Aki; Nozaki, Koichi; Iwamura, Munetaka

    2016-09-06

    Circularly polarized luminescence (CPL) was observed from [Eu(dppda)2 ](-) (dppda=4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid) and [Eu(pzpda)2 ](-) (pzpda=pyrazino[2,3-f][1,10]phenanthroline-7,10-dicarboxylic acid) in aqueous solutions containing various amino acids. The selectivity of these complexes towards amino acids enabled them to be used as chiral sensors and their behavior was compared with that of [Eu(pda)2 ](-) (pda=1,10-phenanthroline-2,9-dicarboxylic acid). As these Eu(III) complexes have achiral D2d structures under ordinary conditions, there were no CPL signals in the emission assigned to f-f transitions. However, when the solutions contained particular amino acids they exhibited detectable CPL signals with glum values of about 0.1 (glum =CPL/2 TL; TL=total luminescence). On examining 13 amino acids with these three Eu(III) complexes, it was found that whether an amino acid induced a detectable CPL depended on the Eu(III) complex ligands. For example, when ornithine was used as a chiral agent, only [Eu(dppda)2 ](-) exhibited intense CPL in aqueous solutions of 10(-2)  mol dm(-3) . Steep amino acid concentration dependence suggested that CPL in [Eu(dppda)2 ](-) and [Eu(pzpda)2 ](-) was induced by the association of four or more amino acid molecules, whereas CPL in [Eu(pda)2 ](-) was induced by association of two arginine molecules.

  16. Specific chiral sensing of amino acids using induced circularly polarized luminescence of bis(diimine)dicarboxylic acid europium(III) complexes.

    Science.gov (United States)

    Okutani, Kazuhiro; Nozaki, Koichi; Iwamura, Munetaka

    2014-06-02

    The circularly polarized luminescence (CPL) from [Eu(pda)2](-) (pda = 1,10-phenanthroline-2,9-dicarboxylic acid) and [Eu(bda)2](-) (bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) in aqueous solutions containing various amino acids was investigated. The europium(III) complexes exhibited bright-red luminescence assignable to the f-f transition of the Eu(III) ion when irradiated with UV light. Although the luminescence was not circularly polarized in the solid state or in aqueous solutions, in accordance with the achiral crystal structure, the complexes exhibited detectable induced CPL (iCPL) in aqueous solutions containing chiral amino acids. In the presence of L-pyrrolidonecarboxylic acid, both [Eu(pda)2](-) and [Eu(bda)2](-) showed similar iCPL intensity (glum ∼ 0.03 for the (5)D0 → (7)F1 transition at 1 mol·dm(-3) of the amino acid). On the other hand, in the presence of L-histidine or L-arginine, [Eu(pda)2](-) exhibited intense CPL (glum ∼ 0.08 for the (5)D0 → (7)F1 transition at 0.10 mol·dm(-3) of the amino acid), whereas quite weak CPL was observed for [Eu(bda)2](-) under the same conditions (glum amino acids, [Eu(pda)2](-) was found to be a good chiral CPL probe with high sensitivity (about 10(-2) mol·dm(-3)) and high selectivity for L-histidine at pH 3 and for L-arginine at pH 7. The mechanism of iCPL was evaluated by analysis of the fine structures in the luminescence spectra and the amino acid concentration dependence of glum. For the [Eu(pda)2](-)-histidine/arginine systems, the europium(III) complexes possess coordination structures similar to that in the crystal with slight distortion to form a chiral structure due to specific interaction with two zwitterionic amino acids. This mechanism was in stark contrast to that of the europium(III) complex-pyrrolidonecarboxylic acid system in which one amino acid coordinates to the Eu(III) ion to yield an achiral coordination structure.

  17. Synthesis, spectroscopic characterization, solid state d.c. electrical conductivity and biological studies of some lanthanide(III chloride complexes with a heterocyclic Schiff base ligand

    Directory of Open Access Journals (Sweden)

    K. Mohanan

    2016-07-01

    Full Text Available Condensation of 2-hydroxy-1-naphthaldehyde with 2-amino-3-carboxyethyl-4,5-dimethylthiophene in 1:1 molar ratio, yielded a potentially tridentate Schiff base viz. 2-[N-(2′-hydroxy-1-naphthylideneamino]-3-carboxyethyl-4,5-dimethylthiophene (HNAT. This ligand formed complexes with lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III, europium(III and gadolinium(III chloride under well defined conditions. These complexes were characterized through elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, FAB mass and 1H NMR spectral studies. Analytical data showed that all the metal complexes exhibited 1:1 metal–ligand ratio. Molar conductance values adequately confirmed the non-electrolytic nature of the metal complexes. The proton NMR spectral observations supplement the IR spectral assignments. The spectral data revealed that the ligand acted as neutral tridentate, coordinating to the metal ion through azomethine nitrogen, ester carbonyl and naphtholate oxygen without deprotonation. The ligand and its lanthanum(III chloride complex were subjected to XRD studies. The lanthanum(III chloride complex has undergone a facile transesterification reaction. The solid state d.c. electrical conductivity of some selected complexes were measured as a function of temperature, indicating the semiconducting nature of the metal complexes. The antimicrobial activities were examined by disk diffusion method against some pathogenic bacterial and fungal species.

  18. Synthesis and Spectral Characterization of Lanthanide Complexes Derived from 2-[(4-Bromo-2,6-Dichloro-Phenylimino-Methyl]-4,6-Diiodo-Phenol

    Directory of Open Access Journals (Sweden)

    V. R. Rajewar

    2014-12-01

    Full Text Available The solid complexes of La(III, Pr (III, Tb(III ,Sm(III and Nd(III were prepared from bidentate Schiff base, 2-[(4-bromo-2,6-dichloro-phenylimino-methyl]-4,6-diiodo-phenol. The Schiff base ligand was synthesized from 3,5 diiodosalicylaldehyde and 4-bromo-2,6-dichlorobenzenamine . These metal complexes were characterized by molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, FTIR, 1H-NMR and UV-Vis. The analytical data of these metal complexes showed metal:ligand ratio of 1:2 La(III, Pr (III, Tb(III ,Sm(III and 1:1 for Nd(III complexes. The physico-chemical study supports the presence of octahedral geometry around La(III, Pr (III, Tb(III ,Sm(III and Nd(III ions. The IR spectral data reveal that the ligand behaves as bidentate with ON donor atom sequence towards central metal ion. The molar conductance values of metal complexes suggest their electrolyte nature except Nd(III complex. The X-ray diffraction data suggest monoclinic crystal system for Pr (III, Nd (III complexes. Thermal behavior (TG/DTA shows breakdown of complexes.

  19. X-Ray Structure of 8-Quinolinolato Lanthanide Complex:(8-Quinolinolato) bis (2,6-di-tert-butyl-4-methylphenoxo) samarium

    Institute of Scientific and Technical Information of China (English)

    YUAN,Fu-Gen(袁福根); LIU,Qing-Sheng(刘青生); WENG,Lin-Hong(翁林红)

    2002-01-01

    The heteroleptic (8-quinolinolato)bis(2,6-di-tert-butyl-4-methylphenoxo) samarium complex was synthesized and characterized by elemental analysis, IR spectrun and X-ray diffraction analysis. The complex is a five-coordinate dimer. Each 8-quinolinolato oxygen atom links two samarium atoms as a bridge and the Sm-N bond is a typical donor bond.

  20. Chiral heteropoly blues and controllable switching of achiral polyoxometalate clusters.

    Science.gov (United States)

    Wang, Yizhan; Li, Haolong; Wu, Che; Yang, Yang; Shi, Lei; Wu, Lixin

    2013-04-22

    Managing the blues: Chiral heteropoly blues of achiral polyoxometalate clusters were created through an intermolecular interaction with a chiral organic compound. Controllable chiroptical switching of the cluster complexes was possible through reversible photochromism of the polyoxometalates (see picture).

  1. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements.

  2. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  3. Crystal Structure of Chiral Acetato-bridged Binuclear Cyclopalladated complex[Pd(μ-O2CM3)(S-C6H4CHMeNH2)]2

    Institute of Scientific and Technical Information of China (English)

    杨帆; 李一平; 聂娟; 汤杰; 何鸣元

    2003-01-01

    Reaction of (S)-α-methylbenzylamine with Pd(OAc)2 in anhydrous HOAc produced the chiral complex[Pd(μ-O2CMe)(S-C6H4CHMeNH2)]2.(1).The complex was characterized by 1H NMR spectroscopy,elemental analysis and a single-crystal Xray analysis.The X-ray crystal structure analysis revealed that complex 1 has four isomers:two outer and two inner isomers.

  4. LANTHANIDE ENHANCE LUMINESCENCE (LEL) WITH ONE AND TWO PHOTON EXCITATION OF QUANTUM DYES LANTHANIDE (III) - MACROCYCLES

    Science.gov (United States)

    Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles Principal Author:Robert C. Leif, Newport InstrumentsSecondary Authors:Margie C. Becker, Phoenix Flow Systems Al Bromm, Virginia Commonw...

  5. Crystal structures of three mercury(II complexes [HgCl2L] where L is a bidentate chiral imine ligand

    Directory of Open Access Journals (Sweden)

    Guadalupe Hernández

    2015-12-01

    Full Text Available The crystal structures of three complexes [HgCl2L] were determined, namely, (S-(+-dichlorido[1-phenyl-N-(pyridin-2-ylmethylideneethylamine-κ2N,N′]mercury(II, [HgCl2(C14H14N2], (S-(+-dichlorido[1-(4-methylphenyl-N-(pyridin-2-ylmethylideneethylamine-κ2N,N′]mercury(II, [HgCl2(C15H16N2], and (1S,2S,3S,5R-(+-dichlorido[N-(pyridin-2-ylmethylideneisopinocampheylamine-κ2N,N′]mercury(II, [HgCl2(C16H22N2]. The complexes consist of a bidentate chiral imine ligand coordinating to HgCl2 and crystallize with four independent molecules in the first complex and two independent molecules in the other two. The coordination geometry of mercury is tetrahedral, with strong distortion towards a disphenoidal geometry, as a consequence of the imine bite angle being close to 70°. The Cl—Hg—Cl angles span a large range, 116.0 (2–138.3 (3°, which is related to the aggregation state in the crystals. For small Cl—Hg—Cl angles, complexes have a tendency to form dimers, via intermolecular Hg...Cl contacts. These contacts become less significant in the third complex, which features the largest intramolecular Cl—Hg—Cl angles.

  6. Solvent-mediated crystal-to-crystal interconversion between discrete lanthanide complexes and one-dimensional coordination polymers and selective sensing for small molecules.

    Science.gov (United States)

    Wu, Jin-Ji; Ye, Yu-Xin; Qiu, Ying-Yu; Qiao, Zheng-Ping; Cao, Man-Li; Ye, Bao-Hui

    2013-06-03

    Two isostructural 1D coordination polymers {[Ln(OAc)2(H2O)(OBPT)]·3H2O}n (HOBPT = 4,6-bis(2-pyridyl)-1,3,5-triazin-2-ol, Ln = Eu(3+), 1; Tb(3+), 3) and two discrete complexes [Ln(OAc)2(DMF)2(OBPT)] (Ln = Eu(3+), 2; Tb(3+), 4) have been synthesized in H2O-MeOH or DMF solvents, respectively. Their structures were identified by powder X-ray diffraction. Single-crystal X-ray studies for complexes 1 and 2 revealed that the coordination geometries of the Eu(3+) ions are similar and can be described as a distorted tricapped trigonal prism with six oxygen atoms and three nitrogen atoms. The difference between them is that one aqua ligand and one oxygen atom from the OBPT ligand complete the coordination sphere in complex 1, whereas two DMF molecules complete the coordination sphere in complex 2. Interestingly, the solvent-mediated, reversible crystal-to-crystal transformation between them was achieved by immersing the crystalline samples in the corresponding solvent (H2O or DMF) or by exposing them to solvent vapor. Complex 1 shows a highly selective luminescence enhancement in response to DMF in comparison to that observed in response to other examined solvents such as acetone, ethyl acetate, ethanol, acetonitrile, methanol, and THF.

  7. Synthesis of novel lanthanide acylpyrazolonato ligands with long aliphatic chains and immobilization of the Tb complex on the surface of silica pre-modified via hydrophobic interactions.

    Science.gov (United States)

    Pettinari, C; Marchetti, F; Pettinari, R; Belousov, Y A; Taydakov, I V; Krasnobrov, V D; Petukhov, D I; Drozdov, A A

    2015-09-01

    Five new complexes Ln(Q(C17))3(H2O)(Solv) (Ln = Y, Solv = H2O, Ln = Tb, Dy, Sm or Eu, Solv = EtOH) were synthesized with the acylpyrazolonato ligand Q(C17) bearing a long aliphatic C17H35 chain in the acyl moiety, and the crystal structure of Y(Q(C17))3(H2O)2 shows the three aliphatic chains from the coordinated ligands positioned in the same direction, affording plane layers built by Y(Q(C17))3(H2O)2 molecules connected through H-bonding interactions. The layers are stitched to each other like in "hook & loop" tapes. Luminescence of complexes was determined and the complex Tb(Q(C17))3(H2O)(EtOH) was immobilized on the surface of silica preprocessed using a C17H35CONH(CH2)3Si(OEt)3 reagent via hydrophobic interactions of long aliphatic chains. Luminescent properties and micromorphology of the obtained hybrid particles and hybrid films were investigated. Intensive green emission of the complex retains after grafting onto the silica surface. Inclusion of the complex on the surface of silica materials occurs as separate molecules, after the disruption of the H-bonding network present in the crystalline phase of the pure terbium sample.

  8. Lanthanide(III) complexes of aminoethyl-DO3A as PARACEST contrast agents based on decoordination of the weakly bound amino group.

    Science.gov (United States)

    Krchová, Tereza; Kotek, Jan; Jirák, Daniel; Havlíčková, Jana; Císařová, Ivana; Hermann, Petr

    2013-11-28

    2-Aminoethyl DOTA analogues with unsubstituted (H3L1), monomethylated (H3L2) and dimethylated (H3L3) amino groups were prepared by improved synthetic procedures. Their solid-state structures exhibit an extensive system of intramolecular hydrogen bonds, which is probably present in solution and leads to the rather high value of the last dissociation constant. The protonation sequence of H3L1 in solution corresponds to that found in the solid state. The stability constants of the H3L1 complexes with La(3+) and Gd(3+) (20.02 and 22.23, respectively) are similar to those of DO3A and the reduction of the pK(A) value of the pendant amino group from 10.51 in the free ligand to 6.06 and 5.83 in the La(3+) and Gd(3+) complexes, respectively, points to coordination of the amino group. It was confirmed in the solid state structure of the [Yb(L1)] complex, where disorder between the SA' and TSA' isomers was found. A similar situation is expected in solution, where a fast equilibration among the isomers hampers the unambiguous determination of the isomer ratio in solution. The PARACEST effect was observed in Eu(III)-H3L1/H3L2 and Yb(III)-H3L1/H3L2 complexes, being dependent on pH in the region of 4.5-7.5 and pH-independent in more alkaline solutions. The decrease of the PARACEST effect parallels with the increasing abundance of the complex protonated species, where the pendant amino group is not coordinating. Surprisingly, a small PARACEST effect was also observed in solutions of Eu(III)/Yb(III)-H3L3 complexes, where the pendant amino group is dimethylated. The effect is detectable in a narrow pH region, where both protonated and deprotonated complex species are present in equilibrium. The data points to the new mechanism of the PARACEST effect, where the slow coordination-decoordination of the pendant amine is coupled with the fast proton exchange between the free amino group and bulk water mediates the magnetization transfer. The pH-dependence of the effect was proved to be

  9. The selectivity of diglycolamide (TODGA) and bis-triazine-bipyridine (BTBP) ligands in actinide/lanthanide complexation and solvent extraction separation - a theoretical approach.

    Science.gov (United States)

    Narbutt, Jerzy; Wodyński, Artur; Pecul, Magdalena

    2015-02-14

    Theoretical calculations (density functional theory with the scalar relativistic ZORA Hamiltonian) have been performed to obtain the energy and Gibbs free energy of formation of cationic 1 : 3 complexes of americium(iii) and europium(iii) with a tri-O-dentate diglycolamide ligand TEDGA (a model of TODGA extractant), as well as the free energy of their partition between water and an organic diluent. The distribution of electron density over the atoms, bonds, and molecular orbitals was analyzed by means of Mulliken population analysis, the localization procedure of natural bond orbitals, and the Quantum Theory of Atoms-in-Molecules. The stabilities of both [M(TEDGA)(3)](3+) complexes are similar to each other. On the other hand, our recent data for a similar pair of cationic Am/Eu complexes with a softer (HSAB) tetra-N-dentate ligand C2-BTBP show that the [Am(C2-BTBP)(2)](3+) complex is significantly more stable in aqueous solution than its Eu counterpart. The decisive factor stabilizing the Am(3+) complexes over their Eu(3+) analogues is the charge transfer from the ligands, somewhat greater on the 6d(Am(III)) than on 5d(Eu(III)) orbitals. The covalency of M-N bonds in the [M(C2-BTBP)(2)](3+) complexes is greater than that of M-O bonds in [M(TEDGA)(3)](3+), but the latter is not negligible, in particular in the bonds with the oxygen atoms of the amide groups in TEDGA. The analysis of charge distribution over the whole molecules of the complexes shows that the TEDGA molecule is not hard as expected, but a relatively soft Lewis base, only slightly harder than BTBP. This conclusion has been confirmed by the calculation of the chemical hardness of the ligands. Moreover, the comparison of the results of bonding analysis with the calculated energies of complex formation in water and in the gas phase allows us to conclude that the population analysis, QTAIM topological parameters, and SOPT stabilization energy, as well as Wiberg and overlap-weighted NAO indices are the

  10. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  11. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    NgSeikWng; HUSheng-Zhi

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations).For a chiral molecule,which must crystallize in a chiral space group,the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  12. Chiral Plasmonic Nanostructures on Achiral Nanopillars

    Science.gov (United States)

    2013-10-10

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU Approved for public release; distribution is unlimited. Chiral Plasmonic Nanostructures on Achiral...Nanopillars Chirality of plasmonic films can be strongly enhanced by threedimensional (3D) out-of-plane geometries. The complexity of lithographic...methods currently used to produce such structures and other methods utilizing chiral templates impose limitations on spectral windows of chiroptical

  13. Antioxidation and DNA-binding properties of binuclear lanthanide(III) complexes with a Schiff base ligand derived from 8-hydroxyquinoline-7-carboxaldehyde and benzoylhydrazine.

    Science.gov (United States)

    Liu, Yongchun; Zhang, Kejun; Wu, Yun; Zhao, Junying; Liu, Jianning

    2012-08-01

    8-Hydroxyquinoline-7-carboxaldehyde (8-HQ-7-CA), Schiff-base ligand 8-hydroxyquinoline-7-carboxaldehyde benzoylhydrazone, and binuclear complexes [LnL(NO(3))(H(2)O)(2)](2) were prepared from the ligand and equivalent molar amounts of Ln(NO(3))·6H(2)O (Ln=La(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Dy(3+), Ho(3+), Er(3+), Yb(3+), resp.). Ligand acts as dibasic tetradentates, binding to Ln(III) through the phenolate O-atom, N-atom of quinolinato unit, and C=N and -O-C=N- groups of the benzoylhydrazine side chain. Dimerization of this monomeric unit occurs through the phenolate O-atoms leading to a central four-membered (LnO)(2) ring. Ligand and all of the Ln(III) complexes can strongly bind to CT-DNA through intercalation with the binding constants at 10(5)-10(6) M(-1). Moreover, ligand and all of the Ln(III) complexes have strong abilities of scavenging effects for hydroxyl (HO·) radicals. Both the antioxidation and DNA-binding properties of Ln(III) complexes are much better than that of ligand.

  14. Photochemical and electrochemical studies on lanthanide complexes of 6-(hydroxymethylpyridine- 2-carboxaldehyde[2- methyl-pyrimidine-4,6-diyl] bis-hydrazone

    Directory of Open Access Journals (Sweden)

    María Alejandra Fernandez

    2014-01-01

    Full Text Available Herein we report the synthesis of the 6-(hydroxymethylpyridine-2- carboxaldehyde[2-methyl-pyrimidine- 4,6-diyl]bis-hydrazone by a condensation reaction between 6-(hydroxymethyl picolinaldehyde with 4,6-(bis-hydrazino-2- methylpyrimidine. This bis-hydrazone can be visualized as a two-arm system which exhibits photochemical induced [E,E]/[E,Z]/[Z,Z’] isomerizations and double coordination to metal centers. Configurational changes, upon UV light irradiation, were followed over time by 1 H NMR, establishing that isomerization, in both arms, is a consecutive reaction that follows first-order kinetics (k1 = 4.06 x 10-4 s-1 and k2 = 2.80 x 10-4 s-1. Furthermore, the synthesis of bis-hydrazone metal complexes with La (III and Sm (III ions was achieved; subsequently, the absorption and emission properties of these complexes were studied, determining the fluorescence quantum yields, La= 0.2024 and Sm= 0.1413. Electrochemical studies of the complexes were conducted by square wave voltammetry, demonstrating that the bis-hydrazone and its complexes are electroactive species between +1.5 and -2.5 V.

  15. Syntheses, characterization, and luminescence of two lanthanide complexes [Ln2(acetate)6(H2O)4]·4H2O (Ln=Tb(1), Sm(2))

    Institute of Scientific and Technical Information of China (English)

    YU Qiongyan; ZHOU Xiuxia; LIU Maosheng; CHEN Jianqiao; ZHOU Zhengyuan; YIN Xia; CAI Yuepeng

    2008-01-01

    Two dinuclear compounds [Ln2(acetate)6(H2O)4]·4H2O (Ln=Tb(1), Sm(2)) were obtained by the hydrothermal reaction of Ln2O3 with malonic acid at 150 ℃. Both compounds were characterized by elemental analyses, infrared spectra, and single crystal X-ray diffraction. The results showed that complexes 1 and 2 were isomorphous and crystallize in triclinic space group P(-1). The coordination geometry around Ln(III) ions in the complexes 1 and 2 was a distorted tricapped trigonal prism with a nine coordination. In the crystal, the molecular organization was further stabilized by well-defined weak hydrogen bonding interactions between the neutral dinuclear molecular units that led to the formation of a three-dimensional network. The fluorescence properties of the two complexes 1 and 2 in organic solvents were also studied. The results show that the ligand acetate favored energy transfer to the emitting energy level of Tb(III) in complex 1. Some factors that influence the fluorescent intensity were also discussed in the article.

  16. Asymmetric transfer hydrogenation of ketones in aqueous solution catalyzed by Rhodium(III) complexes with C2-symmetric fluorene-ligands containing chiral (1R,2R)-cyclohexane-1,2-diamine

    Energy Technology Data Exchange (ETDEWEB)

    Montalvo-Gonzalez, Ruben [Universidad Autonoma de Nayarit, Tepic, Nay (Mexico). Unidad Academica de Ciencias Quimico Biologicas y Farmaceuticas; Chavez, Daniel; Aguirre, Gerardo; Parra-Hake, Miguel; Somanathan, Ratnasamy, E-mail: somanatha@sundown.sdsu.ed [Instituto Tecnologico de Tijuana, B.C. (Mexico). Centro de Graduados e Investigacion

    2010-07-01

    Two C{sub 2}-symmetric bis(sulfonamide) ligands containing fluorene-chiral (1R, 2R)-cyclohexane-1,2-diamine were complexed to Rh{sup III}(Cp{sup *}) and used as catalyst to reduce aromatic ketones. The corresponding chiral secondary alcohols were obtained in 87-100% ee and 85-99% yield, under asymmetric transfer hydrogenation (ATH) conditions using aqueous sodium formate as the hydride source. With acetophenone, 94% ee and 86-97% yield was achieved with substrate/catalyst (S/C) ratio of 10,000. (author)

  17. Bifunctional Zn(II)Ln(III) dinuclear complexes combining field induced SMM behavior and luminescence: enhanced NIR lanthanide emission by 9-anthracene carboxylate bridging ligands.

    Science.gov (United States)

    Palacios, María A; Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Pope, Simon J A; Brechin, Euan K; Colacio, Enrique

    2014-02-03

    There were new dinuclear Zn(II)-Ln(III) complexes of general formulas [Zn(μ-L)(μ-OAc)Ln(NO3)2] (Ln(III) = Tb (1), Dy (2), Er (3), and Yb (4)), [Zn(μ-L)(μ-NO3)Er(NO3)2] (5), [Zn(H2O)(μ-L)Nd(NO3)3]·2CH3OH (6), [Zn(μ-L)(μ-9-An)Ln(NO3)2]·2CH3CN (Ln(III) = Tb (7), Dy (8), Er (9), Yb(10)), [Zn(μ-L)(μ-9-An)Yb(9-An)(NO3)3]·3CH3CN (11), [Zn(μ-L)(μ-9-An)Nd(9-An)(NO3)3]·2CH3CN·3H2O (12), and [Zn(μ-L)(μ-9-An)Nd(CH3OH)2(NO3)]ClO4·2CH3OH (13) prepared from the reaction of the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L), with ZnX2·nH2O (X = NO3(-) or OAc(-)) salts, Ln(NO3)3·nH2O, and, in some instances, 9-anthracenecarboxylate anion (9-An). In all these complexes, the Zn(II) ions invariably occupy the internal N3O2 site whereas the Ln(III) ions show preference for the O4 external site, giving rise to a Zn(μ-diphenoxo)Ln bridging fragment. Depending on the Zn(II) salt and solvent used in the reaction, a third bridge can connect the Zn(II) and Ln(III) metal ions, giving rise to triple-bridged diphenoxoacetate in complexes 1-4, diphenoxonitrate in complex 5, and diphenoxo(9-anthracenecarboxylate) in complexes 8-13. Dy(III) and Er(III) complexes 2, 8 and 3, 5, respectively, exhibit field induced single molecule magnet (SMM) behavior, with Ueff values ranging from 11.7 (3) to 41(2) K. Additionally, the solid-state photophysical properties of these complexes are presented showing that ligand L(2-) is able to sensitize Tb(III)- and Dy(III)-based luminescence in the visible region through an energy transfer process (antenna effect). The efficiency of this process is much lower when NIR emitters such as Er(III), Nd(III), and Yb(III) are considered. When the luminophore 9-anthracene carboxylate is incorporated into these complexes, the NIR luminescence is enhanced which proves the efficiency of this bridging ligand to act as antenna group. Complexes 2, 3, 5, and 8 can be considered as dual materials

  18. New lanthanide complexes for sensitized visible and near-IR light emission: synthesis, 1H NMR, and X-ray structural investigation and photophysical properties.

    Science.gov (United States)

    Quici, Silvio; Marzanni, Giovanni; Forni, Alessandra; Accorsi, Gianluca; Barigelletti, Francesco

    2004-02-23

    We describe the syntheses, the 1H NMR studies in CD3OD and D2O as solvent, the X-ray characterization, and the luminescence properties in D2O solution of the two complexes Eu.1 and Er.1, where 1 is a dipartite ligand that includes (i) a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) unit serving as hosting site for the metal center; and (ii) a phenanthroline unit which plays the role of light antenna for the sensitization process of the metal centered luminescence. In a previous report (Inorg. Chem. 2002, 41, 2777), we have shown that for Eu.1 there are no water molecules within the first coordination sphere. X-ray and 1H NMR results reported here are consistent with full saturation of the nine coordination sites within the Eu.1 and Er.1 complexes. In addition, these studies provide important details regarding the conformations, square antiprism (SAP) and twisted square antiprism (TSAP), adopted in solution by these complexes. The luminescence results are consistent with both an effective intersystem crossing (ISC) at the light absorbing phenanthroline unit (lambda(exc) = 278 nm) and an effective energy transfer (en) process from the phenanthroline donor to the cation acceptor (with unit or close to unit efficiency for both steps). In D2O solvent, the overall sensitization efficiency, phi(se), is 0.3 and 5 x 10(-6), for Eu.1 (main luminescence peaks at 585, 612, 699 nm) and Er.1 (luminescence peak at 1530 nm), respectively. The photophysical properties of both complexes are discussed with reference to their structural features as elucidated by the obtained 1H NMR and X-ray results.

  19. 3,2-HOPO Complexes of Near-Infra-Red (NIR) Emitting Lanthanides: Sensitization of Ho(III) and Pr(III) in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Evan G.; Szigethy, Geza; Xu, Jide; Palsson, Lars-Olof; Beeby, Andrew; Raymond, Kenneth N.

    2008-05-19

    There is a growing interest in Near Infra-Red (NIR) emission originating from organic complexes of Ln{sup III} cations. As a major impetus, biological tissues are considerably more transparent at these low energy wavelengths when compared to visible radiation, which facilitates deeper penetration of incident and emitted light. Furthermore, the long luminescence lifetimes of Ln{sup III} complexes (eg. Yb{sup III}, {tau}{sub rad} {approx} 1 ms) when compared to typical organic molecules can be utilized to vastly improve signal to noise ratios by employing time-gating techniques. While the improved quantum yield of Yb{sub III} complexes when compared to other NIR emitters favors their use for bioimaging applications, there has also been significant interest in the sensitized emission from other 4f metals such as Ln = Nd, Ho, Pr and Er which have well recognized applications as solid state laser materials (eg. Nd {approx} 1.06 {micro}m, Ho {approx} 2.09 {micro}m), and in telecommunications (eg. Er {approx} 1.54 {micro}m) where they can be used for amplification of optical signals. As a result of their weak (Laporte forbidden) f-f absorptions, the direct excitation of Ln{sup III} cations is inefficient, and sensitization of the metal emission is more effectively achieved using the so-called antenna effect. We have previously examined the properties of several Eu{sup III} complexes which feature 1-hydroxypyridin-2-one (Fig. 1) as the light harvesting chromophore. While the 1,2-HOPO isomer was found to strongly sensitize Eu{sup III}, we noted the analogous Me-3,2-HOPO isomer does not, which prompted further investigation of the properties of this chromophore with other metals.

  20. Magnetic molecular materials with paramagnetic lanthanide ions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The diverse magnetic properties of lanthanide-based magnetic molecular materials are introduced in the following organization.First,the general aspects of magnetic molecular materials and electronic states of lanthanide ions are introduced.Then the structures and magnetic properties are described and analyzed for molecules with one lanthanide ion,4f-4f,4f-3d and 4f-p magnetic coupling interactions.In each section,magnetic coupling,magnetic ordering and magnetic relaxation phenomenon are briefly reviewed using some examples.Finally,some possibilities of developing magnetic molecular materials containing lanthanide ions are discussed in the outlook part.

  1. Extraction and coordination studies of a carbonyl-phosphine oxide scorpionate ligand with uranyl and lanthanide(III) nitrates: structural, spectroscopic and DFT characterization of the complexes.

    Science.gov (United States)

    Matveeva, Anna G; Vologzhanina, Anna V; Goryunov, Evgenii I; Aysin, Rinat R; Pasechnik, Margarita P; Matveev, Sergey V; Godovikov, Ivan A; Safiulina, Alfiya M; Brel, Valery K

    2016-03-28

    Hybrid scorpionate ligand (OPPh2)2CHCH2C(O)Me (L) was synthesized and characterized by spectroscopic methods and X-ray diffraction. The selected coordination chemistry of L with UO2(NO3)2 and Ln(NO3)3 (Ln = La, Nd, Lu) has been evaluated. The isolated mono- and binuclear complexes, namely, [UO2(NO3)2L] (1), [{UO2(NO3)L}2(μ2-O2)]·EtOH (2), [La(NO3)3L2]·2.33MeCN (3), [Nd(NO3)3L2]·3MeCN (4), [Nd(NO3)2L2]+·(NO3)−·EtOH (5) and [Lu(NO3)3L2] (6) have been characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray structures have been determined for complexes 1-5. Intramolecular intraligand π-stacking interactions between two phenyl fragments of the coordinated ligand(s) were observed in all complexes 1-5. The π-stacking interaction energy was estimated from Bader's AIM theory calculations performed at the DFT level. Solution properties have been examined using IR and multinuclear ((1)H, (13)C, and (31)P) NMR spectroscopy in CD3CN and CDCl3. Coordination modes of L vary with the coordination polyhedron of the metal and solvent nature showing many coordination modes: P(O),P(O), P(O),P(O),C(O), P(O),C(O), and P(O). Preliminary extraction studies of U(VI) and Ln(III) (Ln = La, Nd, Ho, Yb) from 3.75 M HNO3 into CHCl3 show that scorpionate L extracts f-block elements (especially uranium) better than its unmodified prototype (OPPh2)2CH2.

  2. De novo design, synthesis and spectroscopic characterization of chiral benzimidazole-derived amino acid Zn(II) complexes: Development of tryptophan-derived specific hydrolytic DNA artificial nuclease agent

    Science.gov (United States)

    Parveen, Shazia; Arjmand, Farukh

    2012-01-01

    Novel ternary dizinc(II) complexes 1- 3, derived from 1,2-bis(1H-benzimidazol-2-yl)ethane-1,2-diol and L-form of amino acids (viz., tryptophan, leucine and valine) were synthesized and characterized by spectroscopic (IR, 1H NMR, UV-vis, ESI-MS) and other analytical methods. To evaluate the biological preference of chiral drugs for inherently chiral target DNA, interaction of 1- 3 with calf thymus DNA in Tris-HCl buffer was studied by various biophysical techniques which reveal that all these complexes bind to CT DNA non-covalently via electrostatic interaction. The higher Kb value of L-tryptophan complex 1 suggested greater DNA binding propensity. Further, to evaluate the mode of action at the molecular level, interaction studies of complexes 1 and 2 with nucleotides (5'-GMP and 5'-TMP) were carried out by UV-vis titrations, 1H and 31P NMR which implicates the preferential selectivity of these complexes to N3 of thymine rather than N7 of guanine. Furthermore, complex 1 exhibits efficient DNA cleavage with supercoiled pBR322. The complex 1 cleaves DNA efficiently involving hydrolytic cleavage pathway. Such chiral synthetic hydrolytic nucleases with asymmetric centers are gaining considerable attention owing to their importance in biotechnology and drug design, in particular to cleave DNA with sequence selectivity different from that of the natural enzymes.

  3. Enrichment of lanthanides in aragonite

    Institute of Scientific and Technical Information of China (English)

    瞿成利; 路波; 刘刚

    2009-01-01

    Using the constant addition technique,the coprecipitation of lanthanum,gadolinium,and lutetium with aragonite in seawater was experimentally investigated at 25 ℃.Their concentrations in aragonite overgrowths were determined by inductive coupled plasma mass spectrometer.All these lanthanides were strongly enriched in aragonite overgrowths.The amount of lanthanum,gadolinium,and lutetium incorporated into aragonite accounted for 57%-99%,50%-89%,and 40%-91% of their initial total amount,respectively.With the in...

  4. Two new complexes of Lanthanide(III) ion with the N3O2-donor Schiff base ligand: Synthesis, crystal structure, and magnetic properties

    Science.gov (United States)

    Gao, Xu-Sheng; Jiang, Xia; Yao, Cheng

    2016-12-01

    Two rare earth coordination complexes, [Dy(DAPBH)NO3(H2O)2]ṡ(NO3)2 (1), La(DAPBH)(NO3)3 (2) (where DAPBH = 2, 6-diacetylpyridine benzoyhydrazone), have been synthesized and characterized. Single crystal structural analysis revealed that the Dy3+ ion is nine-coordinated with three N-atoms and two O-atoms from pentadentate DAPBH ligand, two O-atoms from one nitrate and other two O-atoms from two water molecules, and the coordination sphere features as a capped tetragonal antiprism in 1, while the La3+ ion is bound to six O atoms from three nitrate counter ions, three N-atoms and two O-atoms from a pentadentate DAPBH ligand to form a tricapped tetragonal antiprism coordination geometry in 2. Variable-temperature magnetic susceptibility measurements showed the existence of weak antiferromagnetic interaction in 1.

  5. Nano-filtration assisted by complexation: A promising process for the separation of trivalent long-lived minor actinides from lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Favre-Reguillon, A. [Conservatoire National des Arts et Metiers, Laboratoire de chimie organique, UMR CNRS 7084, 75 - Paris (France); Sorin, A.; Pellet-Rostaing, St.; Lemaire, M. [Lyon-1 Univ. Claude-Bernard, Laboratoire de Catalyse et Synthese Organique, UMR CNRS 5181, CPE, 69 - Villeurbanne (France); Bernier, G. [CEA Valrho, DEN/DRCP/SCPS/LCSE, 30 - Marcoule (France)

    2007-10-15

    For the Am/Eu separation, the chelating agent diethylene-triamine-pentaacetic acid (DTPA) was used to selectively decrease the permeability of Am across the nano-filtration membrane Desal GH. Using an Am/Eu/DTPA mixture, we have showed that the difference of permeability can be explained by the chemical speciation in solution. The membrane selectivity is thus determined by the difference of the stability constants of the 1:1 complexes of Am and Eu with DTPA. The influence of DTPA concentration on the separation factor (SF) was then investigated. The SF determined with an Eu/Am initial ratio of 3700 varied within the range of 1.2-3.5. (authors)

  6. Stegosaurus chirality

    OpenAIRE

    Cameron, R.P.; Cameron, J. A.; Barnett, S. M.

    2016-01-01

    We explain that Stegosaurus exhibited exterior chirality and observe that the largest plate in particular of USNM 4394, USNM 4714, DMNS 2818 and NHMUK R36730 appears to have tilted to the right rather than to the left in each case. Several instances in which Stegosaurus specimens have been confused with their distinct, hypothetical mirror-image forms are highlighted. We believe our findings to be consistent with the hypothesis that Stegosaurus's plates acted primarily as display structures. A...

  7. Molecular modeling on the recognition of DNA sequence and conformational repair of sheared DNA by novel chiral metal complex D, L-[Co(phen)2hpip]3+

    Institute of Scientific and Technical Information of China (English)

    WU; Yanbo; ZHANG; Cuiping

    2006-01-01

    A study on the recognition of DNA sequence and conformational repair of sheared DNA by Novel Chiral Metal complex D,L-[Co(phen)2hpip]3+ (phen=1,10 phenanthroline, hpip=2-[2-hydroxyphenyl] imidazole [4,5-f][1,10] phenanthroline) is carried out with molecular simulations. The results reveal that two isomers of the complex could both recognize the normal DNA in the minor groove orientation, while recognize the sheared DNA in the major groove orientation and both isomers could convert the conformation of mismatched bases from sheared form to parallel form. Further analysis shows that the steric details of complex's intercalation to base stack determine the results of recognition, which is induced by the steric collision among ancillary ligand phen, bases and DNA backbone, and by the steric crowding occurring in the process of structural expansion of bases and DNA backbone. Detailed analysis reveals that the conformational repair of mismatched bases relates not only to the steric interactions, but also to the π-π stack among normal bases, mismatched bases and hpip ligand.

  8. Employment of methyl 2-pyridyl ketone oxime in 3d/4f-metal chemistry: dinuclear nickel(II)/lanthanide(III) species and complexes containing the metals in separate ions.

    Science.gov (United States)

    Polyzou, Christina D; Nikolaou, Helen; Papatriantafyllopoulou, Constantina; Psycharis, Vassilis; Terzis, Aris; Raptopoulou, Catherine P; Escuer, Albert; Perlepes, Spyros P

    2012-11-28

    The use of methyl 2-pyridyl ketone oxime (mpkoH) for the synthesis of Ni(II)/Ln(III) (Ln = lanthanide) complexes, using "one-pot" reactions in the absence of an external base, is described. Depending on the reaction and crystallization conditions employed, two families of complexes have been obtained. The first family consists of true heterometallic species and involves complexes [NiLn(mpko)(3)(mpkoH)(3)](ClO(4))(2), where Ln = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er. The second family contains the pseudo heterometallic complexes [Ni(mpkoH)(3)](2)[Ln(NO(3))(6)](ClO(4)), where Ln = La, Ce, Pr, Nd and Sm. The crystal structures of [NiCe(mpko)(3)(mpkoH)(3)](ClO(4))(2) (1), [NiDy(mpko)(3)(mpkoH)(3)](ClO(4))(2) (8) and [Ni(mpkoH)(3)](2)[La(NO(3))(6)](ClO(4)) (11) have been determined by single-crystal, X-ray crystallography. Complexes 1·1.2MeOH·0.6H(2)O and 8·1.2MeOH·0.6H(2)O crystallise in the monoclinic space group P2(1)/a and are isomorphous; there are two crystallographically independent cations in the unit cell, but their interatomic distances and angles differ little. The Ni(II) and Ln(III) ions are bridged by three oximate groups belonging to the η(1):η(1):η(1):μ mpko(-) ligands. The Ni(II) centre is octahedrally coordinated by the six nitrogen atoms of the mpko(-) ligands in a facial arrangement. The Ln(III) centre is bound to an (O(oximate))(3)N(6) set of donor atoms, the nitrogen atoms belonging to the three N,N'-bidentate chelating mpkoH ligands. The stereochemistry of the Ln(III) atoms has been evaluated by means of continuous shape measures (CShM). The two crystallographically independent Ce(III) atoms in 1 have tricapped trigonal prismatic and capped square antiprismatic coordination geometries, while the polyhedra of the Dy(III) atoms in 8 are both close to a tricapped trigonal prism. The octahedral Ni(II) atoms in 11 are both facially bound to a N(6) set of donor atoms from three N,N'-bidentate chelating mpkoH ligands, while the 12-coordinate

  9. Stabilization of molecular lanthanide polysulfides by bulky scorpionate ligands.

    Science.gov (United States)

    Kühling, Marcel; McDonald, Robert; Liebing, Phil; Hilfert, Liane; Ferguson, Michael J; Takats, Josef; Edelmann, Frank T

    2016-07-07

    Well-defined lanthanide polysulfide complexes containing S4(2-) and S5(2-) ligands, the samarium(iii) pentasulfide complex Sm(Tp(iPr2))(κ(1)-3,5-(i)Pr2Hpz)(S5) and the tetrasulfide-bridged binuclear ytterbium(iii) complex (μ-S4)[Yb(Tp(iPr2))(κ(1)-3,5-(i)Pr2Hpz)(κ(2)-3,5-(i)Pr2pz)]2 (Tp(iPr2) = hydro-tris(3,5-diisopropylpyrazolyl)borate), have been synthesized and structurally characterized by single-crystal X-ray diffraction.

  10. 双核稀土配合物的合成表征及其光学性能%Synthesis, Characterization and Luminescence Properties of Dinuclear Lanthanide Complexes

    Institute of Scientific and Technical Information of China (English)

    颜剑波; 豆丽靖; 段春光; 王云友; 孙波

    2010-01-01

    Two new complexes of Eu(Ⅲ) and Tb(Ⅲ) chelated with bis(β-diketone) terephthaloyl-diacetophenone (TDAP) were successfully synthesized. The samples were characterized by the element analysis, infrared spectra, UV-Vis spectra, 1H NMR and fluorescence spectra. The results indicated that their compositions are Eu2(TDAP)3· (H2O)2 and Tb2 (TDAP)3 · (H2O)6, respectively. Photoluminescence measurement indicated that TDAP is a good indigo emitter under UV radiation. The average triplet state energy of the ligand was obtained by analyzing the phos-phorescence spectrum of TDAP. The Eu(Ⅲ) complexes display characteristic metal-centered luminescence, while the ligand emissions are completely quenched. The results indicated that the efficient ligand-to-metal energy transfer (antenna effect) occurs. The characteristic red emission appears due to the 5D0 → 7Fj transitions of the 4f electrons of the central Eu3+ ions. Tb2(TDAP)3 ·(H2O)6 has poor fluorescence property, this is because the triplet state energy of the ligand does not match with the lowest excited state energy of Tb3+ ions. The possible energy transfer mechanism was investigated.%合成了一种新的双β二酮配体1,4-二苯甲酰乙酰苯(TDAP),并成功合成了它的两个双核稀土配合物Eu2(TDAP)3·(H2O)z和Tb2(TDAP)3·(H2O)6.通过元素分析、红外光谱、紫外可见光谱和荧光光谱对配合物进行了表征与性能研究.荧光分析表明,在紫外灯下配体本身就发出蓝紫色荧光,通过对配体 TDAP的磷光光谱分析计算得到了配体的平均三重态能级.配合物Eu2(TDAP)3·(H2O):的发射光谱分析表明,配体自身的发射几乎完全被淬灭,能量成功传递给了中心离子,因此配合物发出了明显的特征峰,主发射峰为Eu3+的5D0-7F2发射.由荧光分析知,配合物Eu2(TDAP)3·(H2O)2的激发光谱与配体发射光谱的重叠,这验证了配体TDAP对于Eu3+能量传递的有效性.此外,还详细分析了两种配合物的能

  11. Chiral vanadium(V) complexes with 2-aminoglucose Schiff-base ligands and their solution configurations: synthesis, structures, and DFT calculations.

    Science.gov (United States)

    Mohammadnezhad, Gholamhossein; Böhme, Michael; Geibig, Daniel; Burkhardt, Anja; Görls, Helmar; Plass, Winfried

    2013-09-01

    The sugar-modified Schiff-base ligands derived from benzyl 2-deoxy-2-salicylideneamino-α-D-glucopyranoside (H2L(5-Br) and H2L(3-OMe)) were used to prepare the chiral oxidovanadium(V) complexes [VO(L(5-Br))(OMe)] (1) and [VO(L(3-OMe))(OMe)] (2) which can be isolated from a methanol solution as the six-coordinate complexes with an additional methanol ligand [VO(L(5-Br))(OMe)(MeOH)] (1-MeOH) and [VO(L(3-OMe))(OMe) (MeOH)] (2-MeOH). Both complexes crystallize in the orthorhombic space group P2(1)2(1)2(1) together with two solvent molecules of methanol as 1-MeOH·2MeOH and 1-MeOH·2MeOH. In both crystal structures, only diastereomers with A configuration at the chiral vanadium centre (OC-6-24-A) are observed which corresponds to an cis configuration of the oxido group at the vanadium centre and the benzyl group at the anomeric carbon of the sugar backbone. Upon recrystallization of 2-MeOH from chloroform, the five-coordinate complex 2 was obtained which crystallizes in the monoclinic space group P2(1) with one co-crystallized chloroform molecule (2·CHCl3). For the chiral vanadium centre in 2·CHCl3, a C configuration (SPY-5-43-C) is observed which corresponds to an trans structure as far as the orientations of the oxido and benzyl groups are concerned. (1)H and (51)V NMR spectra of 1 and 2 indicate the presence of two diastereomers in solution. Their absolute configurations can be assigned based on the magnetic anisotropy effect of the oxidovanadium group. This effect leads to significant differences for the (1)H NMR chemical shifts of the H-2 (1.1 ppm) and H-3 protons (0.3 ppm) of the glucose backbone of the two diastereomers, with the downfield shift observed for the H-2 proton of the C-configured and the H-3 proton of the A-configured diastereomer at the vanadium centre. For 1 and 2 the difference between the (51)V NMR chemical shifts of the two diastereomers is 30 and 28 ppm, respectively. Also in the (13)C NMR significant chemical shift differences between the

  12. A sensitive fluorescent sensor of lanthanide ions

    CERN Document Server

    Bekiari, V; Lianos, P

    2003-01-01

    A fluorescent probe bearing a diazostilbene chromophore and a benzo-15-crown-5 ether moiety is a very efficient sensor of lanthanide ions. The ligand emits strong fluorescence only in the presence of specific ions, namely lanthanide ions, while the emission wavelength is associated with a particular ion providing high sensitivity and resolution.

  13. A series of tetrathiafulvalene-based lanthanide complexes displaying either single molecule magnet or luminescence-direct magnetic and photo-physical correlations in the ytterbium analogue.

    Science.gov (United States)

    Pointillart, Fabrice; Le Guennic, Boris; Cauchy, Thomas; Golhen, Stéphane; Cador, Olivier; Maury, Olivier; Ouahab, Lahcène

    2013-05-20

    The reaction between (4,5-bis(2-pyridyl-N-oxidemethylthio)-4',5')-ethylenedithiotetrathiafulvene (L(1)) or -methyldithiotetrathiafulvene (L(2)) ligands and Ln(hfac)3·nH2O precursors (Ln(III) = Pr, Tb, Dy, Er, and Yb) leads to the formation of seven dinuclear complexes of formula [Ln2(hfac)6(H2O)x(L(y))2] (x = 2 and y = 1 for Ln(III) = Pr (1); x = 0 and y = 1 for Ln(III) = Tb (2), Dy (3), Er (4) and Yb (5); x = 0 and y = 2 for Ln(III) = Tb (6) and Dy (7)). Their X-ray structures reveal that the coordination environment of each Ln(III) center is filled by two N-oxide groups coming from two different ligands L(y). UV-visible absorption properties have been experimentally measured and rationalized by TD-DFT calculations. The temperature dependences of static magnetic measurements have been fitted. The ground state corresponds to the almost pure |M(J) = ±13/2〉 while the first excited state (±0.77|±11/2〉 ± 0.50|±3/2〉 ± 0.39|±5/2〉) is located at 19 cm(-1) and 26.9 cm(-1) respectively for 3 and 7. Upon irradiation at 77 K and at room temperature, in the range 25,000-20,835 cm(-1), both compounds 4 and 5 display a metal-centered luminescence attributed to (4)I(13/2) → (4)I(15/2) (6660 cm(-1)) and (2)F(5/2) → (2)F(7/2) (9972 cm(-1)) transitions, respectively. Emission spectroscopy provides a direct probe of the |±5/2〉 ground state multiplet splitting, which has been confronted to magnetic data. The energy separation of 225 cm(-1) between the ground state and the first excited level (M(J) = ±3/2) fits exactly the second emission line (234 cm(-1)). While no out-phase-signal is detected for 3, the change of ligand L(1) → L(2) induces a change of coordination sphere symmetry around the Dy(III) increasing the energy splitting between the ground and first excited states, and 7 displays a single molecule magnet behavior.

  14. Application of chiral thiazolidine ligands to asymmetric hydrosilation

    Institute of Scientific and Technical Information of China (English)

    李弘; 姚金水; 何炳林

    1997-01-01

    Seven chiral thiazolidines bound rhodium complexes were synthesized and their catalytic asymmetric hydrosilation properties were investigated It was found through investigation that the configuration of newly formed chiral centre C2 of substituted chiral thiazolidines prepared from L-cysteine or its esters has no effect on the final results of catalytic asymmetric hydrosilation.The direct reason for causing this phenomenon is reported by the present quantitative results for the first time:the rapid racemation of chiral center C2 of chiral thiazolidine ligands takes place under the catalysis of rhodium(Ⅰ) complex [Rh(COD)CI]2

  15. Normal coordinate analysis and DFT calculations of the vibrational spectra for lanthanide(III) complexes with 3-bromo-4-methoxy-2,6-lutidine N-oxide: LnCl 3(3Br4CH 3OC 7H 7NO) 3 (Ln=Pr, Nd, Sm, Eu, Gd, Dy)

    Science.gov (United States)

    Godlewska, P.; Ban-Oganowska, H.; Macalik, L.; Hanuza, J.; Oganowski, W.; Roszak, S.; Lipkowski, P.

    2006-01-01

    The results of the FT-Raman and FT-IR studies of the LnCl 3(LNO) 3 type complexes (where Ln=Pr, Nd, Sm, Eu, Gd, Dy and LNO=3-Br-4-CH 3OC 7H 7NO) are presented. The spectral contours observed in the regions of the lanthanide-oxygen, lanthanide-chlorine and nitrogen-oxygen vibrations are employed in the discussion of the molecular structure of the complex ions and the local symmetry of the LnCl 3(ON) 3 polyhedron. The discussion of the vibrational spectra is based on the classical normal coordinate analysis and its results are compared to the results of DFT quantum chemical calculations performed for complete molecule. The normal coordinate analysis has been performed for PrCl 3(ON) 3 and DyCl 3(ON) 3 molecular systems, which have been treated as a different 'isotopic units'. Basing on the predominant PED contributions of the respective internal coordinates the assignment of the normal vibrations has been proposed.

  16. Metal-ligand interaction of lanthanides with coumarin derivatives. Part I. Complexation of 3-(1-aminoethylidene)-2H-chromene-2,4(3H)-dione with La(III), Ce(III), Nd(III) and Ho(III).

    Science.gov (United States)

    Swiatek, Mirosława; Kufelnicki, Aleksander

    2012-01-01

    Solutions of lanthanum(III), cerium(III), neodymium(III) and holmium(III) nitrates with 3-(1-aminoethylidene)-2H-chromene-2,4(3H)-dione (1) in 10% v/v dioxane-water medium were used. Coordination modes of 1 with the selected lanthanides have been examined. Hydroxo-complexes with deprotonated water molecules from the inner coordination sphere have been stated in basic medium. Stability constants of the forming complex species were determined by potentiometric titrations using Superquad and Hyperquad2003 programs. The most stable complexes are formed with La(III). The UV-Vis spectra of the Nd(III)-1 system confirmed the L:M = 1:1 stoichiometry evaluated potentiometrically.

  17. Method of loading organic materials with group III plus lanthanide and actinide elements

    Science.gov (United States)

    Bell, Zane W.; Huei-Ho, Chuen; Brown, Gilbert M.; Hurlbut, Charles

    2003-04-08

    Disclosed is a composition of matter comprising a tributyl phosphate complex of a group 3, lanthanide, actinide, or group 13 salt in an organic carrier and a method of making the complex. These materials are suitable for use in solid or liquid organic scintillators, as in x-ray absorption standards, x-ray fluorescence standards, and neutron detector calibration standards.

  18. Interactions Between Metal Ions and Carbohydrates: Coordination Behavior of D-Ribose to Lanthanide Ions

    Institute of Scientific and Technical Information of China (English)

    苏允兰; 杨丽敏; 翁诗甫; 吴瑾光

    2002-01-01

    Lanthanum chloride α-D-ribopyranose pentahydrate complex was prepared and speculated its structure from the similar IR spectra of corresponding praseodymium and neodymium-D-ribose complexes, which reveal the coordination behavior of D-ribose to lanthanide ions and give us a model of the interactions between metal ions and carbohydrates.

  19. Diverse lanthanide coordination polymers tuned by the flexibility of ligands and the lanthanide contraction effect: syntheses, structures and luminescence.

    Science.gov (United States)

    Zhou, Xiaoyan; Guo, Yanling; Shi, Zhaohua; Song, Xueqin; Tang, Xiaoliang; Hu, Xiong; Zhu, Zhentong; Li, Pengxuan; Liu, Weisheng

    2012-02-14

    Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2 : 3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.

  20. Chiral Nanoscience and Nanotechnology

    Directory of Open Access Journals (Sweden)

    Dibyendu S. Bag

    2008-09-01

    Full Text Available The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale approaches to chiraltechnology such as asymmetric synthesis and catalysis, chiral separation and detection, and enantiomericanalysis. Chiral sensors have also been included. The state-of-the-art chiral research at DMSRDE,Kanpur isalso presented.Defence Science Journal, 2008, 58(5, pp.626-635, DOI:http://dx.doi.org/10.14429/dsj.58.1685

  1. Prototypes of Lanthanide(III) Agents Responsive to Enzymatic Activities in Three Complementary Imaging Modalities: Visible/Near-Infrared Luminescence, PARACEST-, and T1-MRI.

    Science.gov (United States)

    He, Jiefang; Bonnet, Célia S; Eliseeva, Svetlana V; Lacerda, Sara; Chauvin, Thomas; Retailleau, Pascal; Szeremeta, Frederic; Badet, Bernard; Petoud, Stéphane; Tóth, Éva; Durand, Philippe

    2016-03-09

    We report first prototypes of responsive lanthanide(III) complexes that can be monitored independently in three complementary imaging modalities. Through the appropriate choice of lanthanide(III) cations, the same reactive ligand can be used to form complexes providing detection by (i) visible (Tb(3+)) and near-infrared (Yb(3+)) luminescence, (ii) PARACEST- (Tb(3+), Yb(3+)), or (iii) T1-weighted (Gd(3+)) MRI. The use of lanthanide(III) ions of different natures for these imaging modalities induces only a minor change in the structure of complexes that are therefore expected to have a single biodistribution and cytotoxicity.

  2. Using lanthanide chelates and uranyl compounds for diagnostic by fluoroimmunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Elen G.; Tomiyama, Claudia S.; Kodaira, Claudia A.; Felinto, Maria C.F.C., E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lourenco, Ana V. S.; Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f; Brito, Maria E.F., E-mail: britomef@cpqam.fiocruz.b [Centro de Pesquisas Aggeu Magalhaes (CPqAM/Fiocruz), Recife, PE (Brazil)

    2009-07-01

    The importance of the luminescence of lanthanide ions and UO{sub 2}{sup 2+} is related to its peculiar characteristics, e.g. long lifetime and line-like emission bands in the visible, which make these ions unique among the species that are known to luminescence. Recent developments in the field of supramolecular chemistry have allowed the design of ligands capable of encapsulating lanthanide ions, thus forming kinetically inert complexes. By introduction of chromophoric groups in these ligands, an intense luminescence of the ion can be obtained via the 'antenna effect', defined as a light conversion process involving distinct absorbing (ligand) and emitting (metal ion) components. In such a process, the quantities that contribute to the luminescence intensity are the efficiency of the absorption, the efficiency of the ligand-metal energy transfer, and the efficiency of the metal luminescence. Encapsulation of lanthanide ions with suitable ligands may therefore give rise to 'molecular devices' capable to emit strong, long-lived luminescence. Besides the intrinsic interest in their excited state properties, compounds of lanthanide ions, in particular of the Eu{sup 3+} and Tb{sup 3+} ions, and now UO{sub 2}{sup 2+} are important for their potential use as luminescent labels for biological species in fluoroimmunoassays (FIAs). This is most interesting because fluorimetric labeling represents an alternative method to the use of radioactive labels, which has long been the most common way of quantifying immunoreactions. In this article we report information about luminescent materials, which gave a good signal to quantify biological molecules by TR-FIA, DELFIA , DSLFIA, RIA and FRET. (author)

  3. Selective extraction of trivalent actinides from lanthanides with dithiophosphinic acids and tributylphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.; Barrans, R.; Schroeder, N.; Wade, K.; Jones, M.; Smith, B.F. [Los Alamos National Lab., NM (United States); Mills, J.; Howard, G. [Texas Tech Univ., Lubbock, TX (United States); Freiser, H.; Muralidharan, S. [Arizona Univ., Tucson, AZ (United States)

    1995-01-01

    A variety of chemical systems have been developed to separate trivalent actinides from lanthanides based on the slightly stronger complexation of the trivalent actinides with ligands that contain soft donor atoms. The greater stability of the actinide complexes in these systems has often been attributed to a slightly greater covalent bonding component for the actinide ions relative to the lanthanide ions. The authors have investigated several synergistic extraction systems that use ligands with a combination of oxygen and sulfur donor atoms that achieve a good group separation of the trivalent actinides and lanthanides. For example, the combination of dicyclohexyldithiophosphinic acid and tributylphosphate has shown separation factors of up to 800 for americium over europium in a single extraction stage. Such systems could find application in advanced partitioning schemes for nuclear waste.

  4. Incorporation of trinuclear lanthanide(III) hydroxo bridged clusters in macrocyclic frameworks.

    Science.gov (United States)

    Kobyłka, Michał J; Ślepokura, Katarzyna; Acebrón Rodicio, Maria; Paluch, Marta; Lisowski, Jerzy

    2013-11-18

    A cluster of lanthanide(III) or yttrium(III) ions, Ln3(μ3-OH)2, (Ln(III) = Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Yb(III), or Y(III)) can be bound in the center of a chiral macrocyclic amines H3L1(R), H3L1(S), and H3L2(S) obtained in a reduction of a 3 + 3 condensation product of (1R,2R)- or (1S,2S)-1,2-diaminocyclohexane and 2,6-diformyl-4-methylphenol or 2,6-diformyl-4-tertbutylphenol. X-ray crystal structures of the Nd(III), Sm(III), Gd(III), Dy(III), and Y(III) complexes reveal trinuclear complexes with Ln(III) ions bridged by the phenolate oxygen atoms of the macrocycle as well as by μ3-hydroxo bridges. In the case of the Nd(III) ion, another complex form can be obtained, whose X-ray crystal structure reveals two trinuclear macrocyclic units additionally bridged by hydroxide anions, corresponding to a [Ln3(μ3-OH)]2(μ2-OH)2 cluster encapsulated by two macrocycles. The formation of trinuclear complexes is confirmed additionally by (1)H NMR, electrospray ionization mass spectrometry (ESI MS), and elemental analyses. Titrations of free macrocycles with Sm(III) or Y(III) salts and KOH also indicate that a trinuclear complex is formed in solution. On the other hand, analogous titrations with La(III) salt indicate that this kind of complex is not formed even with the excess of La(III) salt. The magnetic data for the trinuclear Gd(III) indicate weak antiferromagnetic coupling (J = -0.17 cm(-1)) between the Gd(III) ions. For the trinuclear Dy(III) and Tb(III) complexes the χ(M)T vs T plots indicate a more complicated dependence, resulting from the combination of thermal depopulation of mJ sublevels, magnetic anisotropy, and possibly weak antiferromagnetic and ferromagnetic interactions.

  5. Design and Synthesis of Chiral Zn2+ Complexes Mimicking Natural Aldolases for Catalytic C–C Bond Forming Reactions in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Susumu Itoh

    2014-01-01

    Full Text Available Extending carbon frameworks via a series of C–C bond forming reactions is essential for the synthesis of natural products, pharmaceutically active compounds, active agrochemical ingredients, and a variety of functional materials. The application of stereoselective C–C bond forming reactions to the one-pot synthesis of biorelevant compounds is now emerging as a challenging and powerful strategy for improving the efficiency of a chemical reaction, in which some of the reactants are subjected to successive chemical reactions in just one reactor. However, organic reactions are generally conducted in organic solvents, as many organic molecules, reagents, and intermediates are not stable or soluble in water. In contrast, enzymatic reactions in living systems proceed in aqueous solvents, as most of enzymes generally function only within a narrow range of temperature and pH and are not so stable in less polar organic environments, which makes it difficult to conduct chemoenzymatic reactions in organic solvents. In this review, we describe the design and synthesis of chiral metal complexes with Zn2+ ions as a catalytic factor that mimic aldolases in stereoselective C–C bond forming reactions, especially for enantioselective aldol reactions. Their application to chemoenzymatic reactions in aqueous solution is also presented.

  6. Enantiopure tetranuclear iron(III) complexes using chiral reduced Schiff base ligands: synthesis, structure, spectroscopy, magnetic properties, and DFT studies.

    Science.gov (United States)

    Singh, Reena; Banerjee, Atanu; Colacio, Enrique; Rajak, Kajal Krishna

    2009-06-01

    Four new tetranuclear iron(III) complexes of formula [{Fe(L)(2)}(3)Fe], 1-4, have been prepared by reacting [Fe(ClO(4))(3)].6H(2)O with H(2)L in methanol. Here, L(2-) is the deprotonated form of N-(2-hyrdoxybenzyl)-l-valinol (H(2)L(1)), N-(2-hyrdoxybenzyl)-l-leucinol (H(2)L(2)), N-(5-chloro-2-hyrdoxybenzyl)-l-leucinol (H(2)L(3)), and N-(2-hyrdoxybenzyl)-l-phenylalaninol (H(2)L(4)). The complexes are prepared in an enantiomeric pure form. The complexes have been characterized with the help of IR, UV-vis, circular dichroism (CD), (1)H, and elemental analyses. The complex [{Fe(L(2))(2)}(3)Fe].CH(3)OH.2H(2)O, 2.CH(3)OH.2H(2)O, crystallizes in enantiomeric pure form containing a propeller-like Fe(4)O(6) core. (1)H and CD spectral studies of the four species are consistent with the structural similarities of the complexes in solution. Variable-temperature magnetic susceptibility of one case shows an intramolecular antiferromagnetic coupling between the Fe(III) ions. Magnetic measurements are in accord with the S = 5 ground state and suggest single molecular magnet behavior. The magnetic exchange coupling constant between the iron centers within the molecule is interpreted using broken-symmetry density functional theory calculation.

  7. How strongly are the magnetic anisotropy and coordination numbers correlated in lanthanide based molecular magnets?

    Indian Academy of Sciences (India)

    Tulika Gupta; Gopalan Rajaraman

    2014-09-01

    Ab initio CASSCF+RASSI-SO investigations on a series of lanthanide complexes [LnIII = Dy(1), Tb(2), Ce(3), Nd(4), Pr(5) and Sm(6)] have been undertaken and in selected cases (for 1, 2, 3 and 4) coordination number (C.N.) around the LnIII ion has been gradually varied to ascertain the effect of C.N. on the magnetic anisotropy. Our calculations reveal that complex 3 possesses the highest barrier height for reorientation of magnetisation (Ueff) and predict that 3 is likely to exhibit Single Molecule Magnet (SMM) behaviour. Complex 5 on the other hand is predicted to preclude any SMM behaviour as there is no intrinsic barrier for reorientation of magnetization. Ground state anisotropy of all the complexes show mixed behaviour ranging from pure Ising type to fully rhombic behaviour. Coordination number around the lanthanide ion is found to alter the magnetic behaviour of all the lanthanide complexes studied and this is contrary to the general belief that the lanthanide ions are inert and exert small ligand field interaction.High symmetric low-coordinate LnIII complexes are found to yield large Ueff values and thus should be the natural targets for achieving very large blocking temperatures.

  8. Periodic behavior of lanthanide coordination within reverse micelles.

    Science.gov (United States)

    Ellis, Ross J; Meridiano, Yannick; Chiarizia, Renato; Berthon, Laurence; Muller, Julie; Couston, Laurent; Antonio, Mark R

    2013-02-18

    Trends in lanthanide(III) (Ln(III)) coordination were investigated within nanoconfined solvation environments. Ln(III) ions were incorporated into the cores of reverse micelles (RMs) formed with malonamide amphiphiles in n-heptane by contact with aqueous phases containing nitrate and Ln(III); both insert into pre-organized RM units built up of DMDOHEMA (N,N'-dimethyl-N,N'-dioctylhexylethoxymalonamide) that are either relatively large and hydrated or small and dry, depending on whether the organic phase is acidic or neutral, respectively. Structural aspects of the Ln(III) complex formation and the RM morphology were obtained by use of XAS (X-ray absorption spectroscopy) and SAXS (small-angle X-ray scattering). The Ln(III) coordination environments were determined through use of L(3)-edge XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure), which provide metrical insights into the chemistry across the period. Hydration numbers for the Eu species were measured using TRLIFS (time-resolved laser-induced fluorescence spectroscopy). The picture that emerges from a system-wide perspective of the Ln-O interatomic distances and number of coordinating oxygen atoms for the extracted complexes of Ln(III) in the first half of the series (i.e., Nd, Eu) is that they are different from those in the second half of the series (i.e., Tb, Yb): the number of coordinating oxygen atoms decrease from 9O for early lanthanides to 8O for the late ones--a trend that is consistent with the effect of the lanthanide contraction. The environment within the RM, altered by either the presence or absence of acid, also had a pronounced influence on the nitrate coordination mode; for example, the larger, more hydrated, acidic RM core favors monodentate coordination, whereas the small, dry, neutral core favors bidentate coordination to Ln(III). These findings show that the coordination chemistry of lanthanides within nanoconfined environments is neither

  9. Chiral mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  10. Isonitrile iron(II) complexes with chiral N2P2 macrocycles in the enantioselective transfer hydrogenation of ketones.

    Science.gov (United States)

    Bigler, Raphael; Mezzetti, Antonio

    2014-12-19

    Bis(isonitrile) iron(II) complexes bearing a C2-symmetric N2P2 macrocyclic ligand, which are easily prepared from the corresponding bis(acetonitrile) analogue, catalyze the asymmetric transfer hydrogenation (ATH) of a broad scope of ketones in excellent yields (up to 98%) and with high enantioselectivity (up to 91% ee).

  11. Molecular chirality at surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Karl-Heinz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Organic Chemistry Institute, University Zurich, 8057 Zuerich (Switzerland)

    2012-11-15

    With the adsorption of larger molecules being increasingly tackled by surface scientists, the aspect of chirality often plays a role. This paper gives a topical review of molecular chirality at surfaces and gives a phenomenological overview of different aspects of adsorption and self-assembly of chiral and prochiral molecules and the principles of mirror-symmetry breaking at a surface. After a brief introduction into the history of molecular chirality and the important role it played for understanding the spatial structure of molecules, definitions of chirality are presented. Topics treated here are principle ways to create single chiral adsorbates, chiral ensembles, and monolayers by achiral molecules, adsorption of intrinsically chiral molecules at achiral and chiral surfaces, long-range symmetry breaking in two-dimensional (2D) crystals due to additional chiral bias, chiral restructuring of solid surfaces under the influence of chiral molecules, switching the handedness of adsorbates, and chirality at the liquid/air interface. An outlook onto further potential research directions and recommendations for further reading, including nonsurface-related sources of chiral topics completes this paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Lessons learned from dinuclear lanthanide nano-magnets.

    Science.gov (United States)

    Habib, Fatemah; Murugesu, Muralee

    2013-04-21

    The quest for higher density information storage has led to the investigation of Single-Molecule Magnets (SMMs) as potential molecules to be applied in materials such as hard discs. In order for this to occur, one must first design metal complexes which can retain magnetic information at temperatures where these applications become possible. This can only be achieved through answering and understanding fundamental questions regarding the observed physical properties of SMMs. While mononuclear lanthanide complexes have shown promise in obtaining high energy barriers for the reversal of the magnetisation they are limited to Single-Ion Magnet behaviour intrinsic to one metal centre with a limited number of unpaired electrons. As a way of increasing the effective anisotropic barrier, systems with higher nuclearity have been sought to increase the spin ground state of the molecule. Dinuclear complexes are presented as key compounds in studying and understanding the nature of magnetic interactions between metal ions. This tutorial review will span a number of dinuclear 4f complexes which have been critical in our understanding of the way in which lanthanide centres in a complex interact magnetically. It will examine key bridging moieties from the more common oxygen-based groups to newly discovered radical-based bridges and draw conclusions regarding the most effective superexchange pathways allowing the most efficient intracomplex interactions.

  13. Highly enantioselective transfer hydrogenation of ketones with chiral (NH)2 P2 macrocyclic iron(II) complexes.

    Science.gov (United States)

    Bigler, Raphael; Huber, Raffael; Mezzetti, Antonio

    2015-04-20

    Bis(isonitrile) iron(II) complexes bearing a C2 -symmetric diamino (NH)2 P2 macrocyclic ligand efficiently catalyze the hydrogenation of polar bonds of a broad scope of substrates (ketones, enones, and imines) in high yield (up to 99.5 %), excellent enantioselectivity (up to 99 % ee), and with low catalyst loading (generally 0.1 mol %). The catalyst can be easily tuned by modifying the substituents of the isonitrile ligand.

  14. Mesomorphism of Lanthanide(Ⅲ) 4-Hexyloxybenzoates

    Institute of Scientific and Technical Information of China (English)

    Liesbet Jongen; Bart Goderis; Igor P Dolbnya; Koen Binnemans

    2004-01-01

    The 4-alkoxybenzoic acids are well-known liquid crystals showing several mesophases(nematic,smectic C phase or both)depending on the alkoxy chain length and whereby the rigid core of the mesogen is formed by intermolecular hydrogen bonds.In this paper it is shown that the thermal behaviour of lanthanide salts of 4-hexyloxybenzoic acids depends on the lanthanide ion(Ln=La,Pr,Nd,Sm,Eu).The lanthanum(Ⅲ)and praseodymium(Ⅲ)4-hexyloxybenzoates exhibit a smectic A mesophase.No mesophase is found for the corresponding compounds of heavier lanthanides.The thermal properties of the lanthanide(Ⅲ)4-hexyloxybenzoates were investigated by differential scanning calorimetry(DSC),polarising thermo-optical microscopy and synchrotron X-ray radiation.

  15. Chiral conducting polymers.

    Science.gov (United States)

    Kane-Maguire, Leon A P; Wallace, Gordon G

    2010-07-01

    This critical review describes the preparation and properties of a relatively new class of chiral macromolecules, namely chiral conducting polymers. It focuses in particular on examples based on polypyrrole, polythiophene and polyaniline. They possess remarkable properties, combining not only chirality with electrical conductivity but also the ability to undergo facile redox and pH switching. These unique properties have opened up a range of exciting new potential applications, including as chiral sensors, as novel stationary phases for chiral separations, and as chiral electrodes for electrochemical asymmetric synthesis (153 references).

  16. Monomeric Cu(Ⅱ) Complex Containing Chiral Phase-transfer Catalyst as Ligand and Its Asymmetrically Catalytic Reaction

    Institute of Scientific and Technical Information of China (English)

    QU Zhi-Rong; XIONG Ren-Gen

    2008-01-01

    The thermal treatment of CuCl2 with N-(4'-vinylbenzyl)cinchonidinitim chloride(L1)afforded a monomeric discrete homochiral copper(Ⅱ)complex N-4'-(vinylbenzyl)cinchonidinium trichlorocoprate(Ⅱ)(1).Their applications to the enantioselectively catalytic alkylation reaction of N-(diphenylmethylidene)glycine tert-butyl ester(3)show that the higher ee value observed in catalyst 1 than that in the corresponding free ligand L1 is probably due to the rigidity enhancement after the coordination of N atom of quinoline ring to the copper ion.

  17. White-Light-Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties.

    Science.gov (United States)

    Chen, Pangkuan; Li, Qiaochu; Grindy, Scott; Holten-Andersen, Niels

    2015-09-16

    We have developed model light-emitting metallogels functionalized with lanthanide metal-ligand coordination complexes via a terpyridyl-end-capped four-arm poly(ethylene glycol) polymer. The optical properties of these highly luminescent polymer networks are readily modulated over a wide spectrum, including white-light emission, simply by tuning of the lanthanide metal ion stoichiometry. Furthermore, the dynamic nature of the Ln-N coordination bonding leads to a broad variety of reversible stimuli-responsive properties (mechano-, vapo-, thermo-, and chemochromism) of both sol-gel systems and solid thin films. The versatile functional performance combined with the ease of assembly suggests that this lanthanide coordination polymer design approach offers a robust pathway for future engineering of multi-stimuli-responsive polymer materials.

  18. Multifunctional Composites of Chiral Valine Derivative Schiff Base Cu(II Complexes and TiO2

    Directory of Open Access Journals (Sweden)

    Yuki Takeshita

    2015-02-01

    Full Text Available We have prepared four new Cu(II complexes containing valine moieties with imidazole ligands at the fourth coordination sites and examined their photo-induced reactions with TiO2 in order of understanding the reaction mechanisms. Under a nitrogen atmosphere, the intermolecular electron transfer reactions (essentially supramolecular interactions of these systems, which resulted in the reduction of Cu(II species to Cu(I ones, occurred after UV light irradiation. In this study, we have investigated the conditions of the redox reactions in view of substituent effects of aldehyde moieties. The results of cyclic voltammetry (CV on an rotating ring-disk electrode (RRDE suggested that the substitution effects and redox potentials were correlated. Density functional theory (DFT and time-dependent DFT (TD-DFT calculations were also performed to simulate the UV–Vis and circular dichroism (CD spectra; the results revealed a reasonably good correlation between the substituent effects and the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals (HOMO-LUMO gaps associated with the most intense transition bands. In addition, we summarized the substitution effects of Cu(II complexes for their corresponding UV light-induced reactions.

  19. Multifunctional composites of chiral valine derivative Schiff base Cu(II) complexes and TiO2.

    Science.gov (United States)

    Takeshita, Yuki; Takakura, Kazuya; Akitsu, Takashiro

    2015-02-12

    We have prepared four new Cu(II) complexes containing valine moieties with imidazole ligands at the fourth coordination sites and examined their photo-induced reactions with TiO2 in order of understanding the reaction mechanisms. Under a nitrogen atmosphere, the intermolecular electron transfer reactions (essentially supramolecular interactions) of these systems, which resulted in the reduction of Cu(II) species to Cu(I) ones, occurred after UV light irradiation. In this study, we have investigated the conditions of the redox reactions in view of substituent effects of aldehyde moieties. The results of cyclic voltammetry (CV) on an rotating ring-disk electrode (RRDE) suggested that the substitution effects and redox potentials were correlated. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were also performed to simulate the UV-Vis and circular dichroism (CD) spectra; the results revealed a reasonably good correlation between the substituent effects and the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals (HOMO-LUMO) gaps associated with the most intense transition bands. In addition, we summarized the substitution effects of Cu(II) complexes for their corresponding UV light-induced reactions.

  20. Spontaneous Planar Chiral Symmetry Breaking in Cells

    Science.gov (United States)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  1. Spectral intensities in trivalent lanthanide systems

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, Roberto [Facultad de Ingenieria, Universidad Mayor, Avenida Manuel Montt 367, Postal code 7500994, Providencia, Santiago (Chile)], E-mail: roberto.acevedo@umayor.cl; Soto-Bubert, Andres; Bosch, Paul [Instituto de Ciencias Basicas, Facultad de Ingenieria, Universidad Diego Portales, Avenida Ejercito 441, Casilla 298-V, Santiago (Chile); Strek, Wieslaw [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okoelna 2, 50-422 Wroclaw (Poland)

    2008-08-11

    The main goal of this research work is to rationalize the rich vibronic structure of lanthanide type crystals, such as Cs{sub 2}NaDyCl{sub 6} and Cs{sub 2}NaHoCl{sub 6}, in the space group Fm3m(O{sub h}{sup 5}). These systems are known to be highly relativistic and as a consequence, major corrections to previous model calculations should be taken into account so as to explain from a semi-quantitative viewpoint, the observed spectral intensities. We have decided to tackle this study taking special care, of both the physics and the chemistry involved with special emphasis on the theoretical model to be employed as well as, in the strategy to be followed to rationalize the available experimental data. This paper aims to advance our understanding of the intensity mechanisms, associated with observed radiative transitions, say for complex highly relativistic systems, in the solid state physics. The spectral intensities associated with superpositions (juxtapositions) of peaks and/or bands in the absortion and emission spectra are considered in detail and a preliminary working methodology is put forward with reference to the Cs{sub 2}NaDyCl{sub 6} and Cs{sub 2}NaHoCl{sub 6} crystals.

  2. Synthesis of Chiral Building Blocks for Use in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Rustum S. Boyce

    2004-05-01

    Full Text Available In the past decade there has been a significant growth in the sales of pharmaceutical drugs worldwide, but more importantly there has been a dramatic growth in the sales of single enantiomer drugs. The pharmaceutical industry has a rising demand for chiral intermediates and research reagents because of the continuing imperative to improve drug efficacy. This in turn impacts on researchers involved in preclinical discovery work. Besides traditional chiral pool and resolution of racemates as sources of chiral building blocks, many new synthetic methods including a great variety of catalytic reactions have been developed which facilitate the production of complex chiral drug candidates for clinical trials. The most ambitious technique is to synthesise homochiral compounds from non-chiral starting materials using chiral metal catalysts and related chemistry. Examples of the synthesis of chiral building blocks from achiral materials utilizing asymmetric hydrogenation and asymmetric epoxidation are presented.

  3. Thermodynamic modelling of the extraction of nitrates of lanthanides by CMPO and by CMPO-like calixarene in concentrated nitric acid medium. Application in the optimization of the separation of lanthanides and actinides/lanthanides; Modelisation thermodynamique de l'extraction de nitrates de lanthanides par le CMPO et par un calixarene-CMPO en milieu acide nitrique concentre. Application a l'optimisation de la separation des lanthanides et des actinides/lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Belair, S

    2003-07-01

    The separation minor actinides / lanthanides in nitric acid medium is as one of problems of separative chemistry the most delicate within the framework of the processes allowing the recovery of long life radioelements present in the solutions of fission products. Previous studies showed that CMPO-substituted calix[4]arenes presents a better affinity for actinides than for lanthanides. To optimize the operating conditions of separation and to take into account the degree of non-ideality for the concentrated nitric solutions, we adopted a thermodynamic approach. The methodology taken to determine the number and the stoichiometry of the complexes formed in organic phase base on MIKULIN-SERGIEVSKII's model used through a software of data processing of experimental extraction isotherms. These tools are exploited at first on an extraction system engaging the CMPO, extractant reagent of actinides and lanthanides in concentrated nitric medium. The modelling of the system Ln(NO{sub 3}){sub 3}-HNO{sub 3}-H{sub 2}O/CMPO comes to confirm the results of several studies. At the same time, they allow to establish working hypotheses aiming at limiting the investigations of our researches towards the most stable complexes formed between lanthanides and CMPO-like calixarene to which the same method is then applied. An analytical expression of the selectivity of separation by the calixarene is established to determine the parameters and physico-chemical variables on which it depends. So, the ratio of the constants of extraction and the value of the activity of water of the system fixes the selectivity of separation of 2 elements. The exploitation of this relation allows to preview the influence of a variation of the concentration of nitric acid. Experiments of extraction confirm these forecasts and inform about the affinity of the calixarene with respect to lanthanides elements and to the americium. (author)

  4. Octahedral Complexes with Predetermined Helical Chirality: Xylene-Bridged Bis([4,5]-pineno-2,2'-bipyridine) Ligands (Chiragen[o-, m-, p-xyl]) with Ruthenium(II).

    Science.gov (United States)

    Mürner, Hansruedi; von Zelewsky, Alex; Stoeckli-Evans, Helen

    1996-06-19

    Tetradentate ligands are obtained by joining two optically active [4,5]-pineno-2,2'-bipyridine molecules in a stereoselective reaction, where two new stereogenic centers are created. These ligands are new members of the chiragen family that form OC-6 complexes with predetermined helical chirality. Ru(II) complexes with 4,4'-dimethyl-2,2'-bipyridine occupying the remaining coordination sites have been synthesized with all three new ligands. Characterization of the ruthenium complexes by NMR spectroscopy confirm C(2)-symmetric structures in solution. CD spectra show that the complexes are composed of only one helical diastereomer with the expected absolute configurations. In addition, a strong chiral amplification is observed, if precursors of low enantiomeric purity are used. This is due to the inability of ligands that are heterochiral in the two bpy moieties to coordinate to one center. X-ray structural data were obtained for the complex Delta-[RuCG[o-xyl](4,4'-DMbpy)](PF(6))(2). Crystal data (Mo Kalpha, 298 K): trigonal, space group R3, a = 52.986(4) Å, c = 10.545(1) Å, V = 25639(4) Å(3), Z = 18, R1 = 0.087, and wR2 = 0.0986 for 2609 observed reflections.

  5. Speciation and gene flow between snails of opposite chirality.

    Directory of Open Access Journals (Sweden)

    Angus Davison

    2005-09-01

    Full Text Available Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent "single-gene speciation" or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be

  6. Coordination Chemistry and Asymmetric Catalysis with a Chiral Diphosphonite

    NARCIS (Netherlands)

    Vlugt, Jarl Ivar; Paulusse, Jos M.J.; Zijp, Eric J.; Tijmensen, Jason A.; Mills, Allison M.; Spek, Anthony L.; Claver, Carmen; Vogt, Dieter

    2004-01-01

    The improved synthesis of the chiral diphosphonite, XantBino (1), based on a xanthene backbone and bearing chiral binaphthyl groups on both P-atoms is described together with its PdII and RhI complexes. The 31P NMR spectra of both complexes point out that the two phosphorus atoms are chemically ineq

  7. Insights on some chiral smectic phases

    Indian Academy of Sciences (India)

    B Pansu

    2003-08-01

    Combining layered positional order as smectic order and chirality can generate complex architectures since twist parallel to the layers is not allowed. This paper will review some new experimental results on different phases resulting from the competition between smectic positional order and twist orientational order. It concerns the TGBA and the NL*, that is the liquid line phase as well as the SmQ phase. Chiral effects in the isotropic phase will also be discussed.

  8. Chiral quantum optics.

    Science.gov (United States)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  9. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  10. Chiral Rotational Spectroscopy

    CERN Document Server

    Cameron, Robert P; Barnett, Stephen M

    2015-01-01

    We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.

  11. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  12. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  13. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Science.gov (United States)

    Guo, Zhen; Du, Yu; Liu, Xianbin; Ng, Siu-Choon; Chen, Yuan; Yang, Yanhui

    2010-04-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  14. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2010-04-23

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  15. Ruthenium and osmium complexes of hemilabile chiral monophosphinite ligands derived from 1D-pinitol or 1D-chiro-inositol as catalysts for asymmetric hydrogenation reactions.

    Science.gov (United States)

    Slade, Angela T; Lensink, Cornelis; Falshaw, Andrew; Clark, George R; Wright, L James

    2014-12-07

    The monophosphinite ligands, 1D-1,2;5,6-di-O-cyclopentylidene-3-O-methyl-4-O-diphenylphosphino-chiro-inositol (D-P1), 1D-1,2;5,6-di-O-isopropylidene-3-O-methyl-4-O-diphenylphosphino-chiro-inositol (D-P2), 1D-1,2;5,6-di-O-cyclohexylidene-3-O-methyl-4-O-diphenylphosphino-chiro-inositol (D-P3), and 1D-1,2;5,6-di-O-cyclopentylidene-3-O-ethyl-4-O-diphenylphosphino-chiro-inositol (D-P4), can be conveniently prepared from the chiral natural products 1D-pinitol or 1D-chiro-inositol. On treatment of toluene solutions of RuCl2(PPh3)3 with two mole equivalents of the ligands D-PY (Y = 1-4) the complexes RuCl2(D-P1)2 (1), RuCl2(D-P2)2 (4), RuCl2(D-P3)2 (5), or RuCl2(D-P4)2 (6), respectively, are formed. Similarly, treatment of OsCl2(PPh3)3 with D-P1 gives OsCl2(D-P1)2 (7). The single crystal X-ray structure determination of 1 reveals that each D-P1 ligand coordinates to ruthenium through phosphorus and the oxygen atom of the methoxyl group. Treatment of 1 with excess LiBr or LiI results in metathesis of the chloride ligands and RuBr2(D-P1)2 (2) or RuI2(D-P1)2 (3), respectively, are formed. Exposure of a solution of 1 to carbon monoxide results in the very rapid formation of RuCl2(CO)2(D-P1)2 (8), thereby demonstrating the ease with which the oxygen donors are displaced from the metal and hence the hemilabile nature of the two bidentate D-P1 ligands in 1. Preliminary studies indicate that 1-7 act as catalysts for the asymmetric hydrogenation reactions of acetophenone and 3-quinuclidinone to give the corresponding alcohols in generally high conversions but low enantiomeric excesses.

  16. Reducible chiral metamaterials

    CERN Document Server

    Ciattoni, Alessandro; Rizza, Carlo

    2016-01-01

    We introduce the concept of 3D reducible metamaterials whose constituent permittivity can be modelled by a factorized profile. The separated cartesian coordinates dependence, easily achieved in all-optical reconfigurable materials, allows to physically regard a reducible metamaterial as a superposition of three fictitious 1D generating media. We prove that, in the long-wavelength limit, the electromagnetic response of reducible metamaterials can be reconstructed from the properties of the 1D generating media whose interplay provides large freedom to control the electromagnetic chirality. Our approach introduces an unprecedented decomposition strategy in metamaterial science which allows the full ab-initio and flexible design of a complex 3D bianisotropic response by using 1D metamaterials as basic building blocks.

  17. Synthetic rubbers prepared by lanthanide coordination catalysts

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China is rich in rare earth resources. Rare earth elements, also named lanthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coordination compounds. In the early 1960s, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAC) found the catalytic activities of lanthanide compounds in stereospecific polymerization of conjugated dienes, and published the first paper on this topic in 1964. On the basis of this finding, CIAC launched extensive research activities on lanthanide compounds as diene polymerization catalysts, from a series of fundamental research to the efforts of industrializing the rare earth catalyzed cis-1,4-polybutatine rubber and cis-1,4-polyisoprene rubber. This review aims to summarize the progress in this field in the past half century.

  18. Extrinsic electromagnetic chirality in metamaterials

    OpenAIRE

    Plum, E.; Fedotov, V. A.; Zheludev, N. I.

    2009-01-01

    Three- and two-dimensional chirality arising from the mutual orientation of non-chiral planar metamaterial structures and the incident electromagnetic wave (extrinsic chirality) lead to pronounced optical activity, circular dichroism and asymmetric transmission indistinguishable from those seen in media consisting of three- and two-dimensionally chiral molecules (intrinsic chirality).

  19. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  20. Chiral extraction of ketoprofen enantiomers with chiral selector tartaric esters

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dan; LIU Jia-jia; TANG Ke-wen; HUANG Ke-long

    2007-01-01

    Distribution behavior of ketoprofen enantiomers was examined in methanol aqueous and organic solvent mixture containing tartaric esters. The influence of length of alkyl chain of tartaric esters, concentration of L-tartaric esters and methanol aqueous, kind of organic solvent on partition ratio and separation factors was investigated. The results show that L-tartaric and D-tartaric esters have different chiral recognition abilities. S-ketoprofen is easily extracted by L-tartaric esters, and R-ketoprofen is easily extracted by D-tartaric esters. L-tartaric esters form more stable diastereomeric complexes with S-enantiomer than that with R-enantiomer. This distribution behavior is consistent with chiral recognition mechanism. With the increase of the concentration of tartaric ester from 0 to 0.3 mol/L, partition coefficient K and separation factor α increase. Also, the kind of organic solvent and the concentration of the methanol aqueous have significant influence on K and α.