WorldWideScience

Sample records for chiral effective theory

  1. Chiral effective field theory and nuclear forces

    CERN Document Server

    Machleidt, R

    2011-01-01

    We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.

  2. Is SU(3) Chiral Perturbation Theory an Effective Field Theory?

    OpenAIRE

    Holstein, Barry R.

    1998-01-01

    We argue that the difficulties associated with the convergence properties of conventional SU(3) chiral perturbation theory can be ameliorated by use of a cutoff, which suppresses the model-dependent short distance effects in such calculations.

  3. Random Lattice QCD and chiral effective theories

    OpenAIRE

    Pavlovsky, O. V.

    2004-01-01

    Resent developments in the Random Matrix and Random Lattice Theories give a possibility to find low-energy theorems for many physical models in the Born-Infeld form. In our approach that based on the Random Lattice regularization of QCD we try to used the similar ideas in the low-energy baryon physics for finding of the low-energy theory for the chiral fields in the strong-coupling regime.

  4. pi K scattering in effective chiral theory of mesons

    OpenAIRE

    Li, Bing An; Gao, Dao-Neng; Yan, Mu-Lin

    1998-01-01

    In the framework of an effective chiral theory of mesons, pi K scattering is stydied. The scattering lengths, phase shifts, and cross sections are calculated. Theoretical results agree well with data. There is no new parameter in this study.

  5. Nuclear forces from chiral effective field theory: a primer

    OpenAIRE

    Epelbaum, Evgeny

    2010-01-01

    This paper is a write-up of introductory lectures on the modern approach to the nuclear force problem based on chiral effective field theory given at the 2009 Joliot-Curie School, Lacanau, France, 27 September - 3 October 2009.

  6. Quantum Monte Carlo calculations with chiral effective field theory interactions

    International Nuclear Information System (INIS)

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  7. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  8. Power Counting Regime of Chiral Effective Field Theory and Beyond

    CERN Document Server

    Hall, J M M; Leinweber, D B

    2010-01-01

    Chiral effective field theory complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of chiral effective field theory, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may b...

  9. Nuclear Axial Currents in Chiral Effective Field Theory

    OpenAIRE

    Baroni, A.; Girlanda, L.; Pastore, S.; Schiavilla, R.; Viviani, M

    2015-01-01

    Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory, and accounts for cancellations between the contributions of irreducible diagrams and the contributions due to non-static corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and...

  10. Orthonormalization procedure for chiral effective nuclear field theory

    CERN Document Server

    Krebs, H; Meißner, Ulf G; Mei{\\ss}ner, Ulf-G.

    2005-01-01

    We show that the Q-box expansion of nuclear many-body physics can be applied in nuclear effective field theory with explicit pions and external sources. We establish the corresponding power counting and give an algorithm for the construction of a hermitean and energy-independent potential for arbitrary scattering processes on nucleons and nuclei to a given order in the chiral expansion. Various examples are discussed in some detail.

  11. Spin of the proton in chiral effective field theory

    Science.gov (United States)

    Li, Hongna; Wang, P.; Leinweber, D. B.; Thomas, A. W.

    2016-04-01

    Proton spin is investigated in chiral effective field theory through an examination of the singlet axial charge, a0, and the two nonsinglet axial charges, a3 and a8. Finite-range regularization is considered as it provides an effective model for estimating the role of disconnected sea-quark loop contributions to baryon observables. Baryon octet and decuplet intermediate states are included to enrich the spin and flavor structure of the nucleon, redistributing spin under the constraints of chiral symmetry. In this context, the proton spin puzzle is well understood with the calculation describing all three of the axial charges reasonably well. The strange quark contribution to the proton spin is negative with magnitude 0.01. With appropriate Q2 evolution, we find the singlet axial charge at the experimental scale to be â0=0 .31-0.05+0.04 , consistent with the range of current experimental values.

  12. Chiral perturbation theory

    International Nuclear Information System (INIS)

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  13. Pion momentum distributions in the nucleon in chiral effective theory

    CERN Document Server

    Burkardt, M; Ji, Chueng-Ryong; Melnitchouk, W; Thomas, A W

    2012-01-01

    We compute the light-cone momentum distributions of pions in the nucleon in chiral effective theory using both pseudovector and pseudoscalar pion-nucleon couplings. For the pseudovector coupling we identify \\delta-function contributions associated with end-point singularities arising from the pion-nucleon rainbow diagrams, as well as from pion tadpole diagrams which are not present in the pseudoscalar model. Gauge invariance is demonstrated, to all orders in the pion mass, with the inclusion of Weinberg-Tomozawa couplings involving operator insertions at the \\pi NN vertex. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  14. Power counting regime of chiral effective field theory and beyond

    International Nuclear Information System (INIS)

    Chiral effective field theory (χEFT) complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of χEFT, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may be used in a nonperturbative manner to describe lattice simulation results outside of the PCR. Positive results that improve on the current optimistic application of chiral perturbation theory (χPT) beyond the PCR are reported.

  15. Links between the quantum Hall effect, chiral boson theories and string theory

    International Nuclear Information System (INIS)

    Chiral boson theory is introduced and its relevance to the quantum Hall effect is explained. It is shown that the chiral boson theory admits mode expansions which are essentially those which appear and are made use of in bosonic string theories. This immediately leads to a way of quantizing the theory. Restrictions on various parameters appearing in the model can be imposed in a natural way. Finally, it is suggested that some of these ideas have important applications to other geometries which could give rise to new types of physical behavior. (author)

  16. Baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  17. Baryon chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2011-01-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order ${\\cal O}(q^6)$ and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  18. Baryon chiral perturbation theory

    Science.gov (United States)

    Scherer, S.

    2012-03-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order Script O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  19. Holographic Schwinger Effect and Chiral condensate in SYM Theory

    CERN Document Server

    Ghoroku, Kazuo

    2016-01-01

    We study the instability, for the supersymmetric Yang-Mills (SYM) theories, caused by the external electric field through the imaginary part of the action of the D7 probe brane, which is embedded in the background of type IIB theory. This instability is related to the Schwinger effect, namely to the quark pair production due to the external electric field, for the $SU(N_c)$ SYM theories. In this holographic approach, it is possible to calculate the Schwinger effect for various phases of the theories. Here we give the calculation for ${\\cal N}=2$ SYM theory and the analysis is extended to the finite temperature deconfinement and the zero temperature confinement phases of the Yang-Mills (YM) theory. By comparing the obtained production rates with the one of the supersymmetric case, the dynamical quark mass is estimated and we find how it varies with the chiral condensate. Based on this analysis, we give a speculation on the extension of the Nambu-Jona-Lasinio model to the finite temperature YM theory, and four ...

  20. Proton-Proton Weak Capture in Chiral Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Marcucci, Laura Elisa [Pisa U., INFN-Pisa; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, MIchele [INFN-Pisa

    2013-05-01

    The astrophysical $S$-factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0--100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants (LEC's) entering the weak current operators are fixed so as to reproduce the $A=3$ binding energies and magnetic moments, and the Gamow-Teller matrix element in tritium $\\beta$ decay. Contributions from $S$ and $P$ partial waves in the incoming two-proton channel are retained. The $S$-factor at zero energy is found to be $S(0)=(4.030 \\pm 0.006)\\times 10^{-23}$ MeV fm$^2$, with a $P$-wave contribution of $0.020\\times 10^{-23}$ MeV fm$^2$. The theoretical uncertainty is due to the fitting procedure of the LEC's and to the cutoff dependence. It is shown that polynomial fits to parametrize the energy dependence of the $S$-factor are inherently unstable.

  1. Deuteron Magnetic Quadrupole Moment From Chiral Effective Field Theory

    CERN Document Server

    Liu, C -P; Mereghetti, E; Timmermans, R G E; van Kolck, U

    2012-01-01

    We calculate the magnetic quadrupole moment (MQM) of the deuteron at leading order in the systematic expansion provided by chiral effective field theory. We take into account parity and time-reversal violation which, at the quark-gluon level, results from the QCD vacuum angle and dimension-six operators that originate from physics beyond the Standard Model. We show that the deuteron MQM can be expressed in terms of five low-energy constants that appear in the parity- and time-reversal-violating nuclear potential and electromagnetic current, four of which also contribute to the electric dipole moments of light nuclei. We conclude that the deuteron MQM has an enhanced sensitivity to the QCD vacuum angle and that its measurement would be complementary to the proposed measurements of light-nuclear EDMs.

  2. Chiral effective theory with a light scalar and lattice QCD

    CERN Document Server

    Soto, J; Tarrús, J

    2011-01-01

    We extend the usual chiral perturbation theory framework ($\\chi$PT) to allow the inclusion of a light dynamical isosinglet scalar. Using lattice QCD results, and a few phenomenological inputs, we explore the parameter space of the effective theory. The extended theory collects already at LO the ball park contribution to the pion mass and decay constant, thus achieving an accuracy that is comparable to the one of the standard $\\chi$PT at NLO results. We check explicitly that radiative corrections do not spoil this behavior and keep the theory stable under mild variations of the parameters. The parameter sets that are compatible with the current mass and width of the sigma resonance turn out to reproduce the experimental values of the S-wave pion-pion scattering lengths very accurately. We also extract the average value of the two light quark--masses and evaluate the impact of the dynamical singlet field in the low--energy constants $\\bar{l}_3$ and $\\bar{l}_4$ of $\\chi$PT. We emphasize that more accurate lattic...

  3. Tritium $\\beta$-decay in chiral effective field theory

    CERN Document Server

    Baroni, A; Kievsky, A; Marcucci, L E; Schiavilla, R; Viviani, M

    2016-01-01

    We evaluate the Fermi and Gamow-Teller (GT) matrix elements in tritium \\beta-decay by including in the charge-changing weak current the corrections up to one loop recently derived in nuclear chiral effective field theory (\\chi EFT). The trinucleon wave functions are obtained from hyperspherical-harmonics solutions of the Schrodinger equation with two- and three-nucleon potentials corresponding to either \\chi EFT (the N3LO/N2LO combination) or meson-exchange phenomenology (the AV18/UIX combination). We find that contributions due to loop corrections in the axial current are, in relative terms, as large as (and in some cases, dominate) those from one-pion exchange, which nominally occur at lower order in the power counting. We also provide values for the low-energy constants multiplying the contact axial current and three-nucleon potential, required to reproduce the experimental GT matrix element and trinucleon binding energies in the N3LO/N2LO and AV18/UIX calculations.

  4. Nucleon electromagnetic form factors on the lattice and in chiral effective field theory

    International Nuclear Information System (INIS)

    We compute the electromagnetic form factors of the nucleon in quenched lattice QCD, using non-perturbatively improved Wilson fermions, and compare the results with phenomenology and chiral effective field theory. (orig.)

  5. Nucleon electromagnetic form factors on the lattice and in chiral effective field theory

    International Nuclear Information System (INIS)

    We compute the electromagnetic form factors of the nucleon in quenched lattice QCD, using nonperturbatively improved Wilson fermions, and compare the results with phenomenology and chiral effective field theory

  6. Symmetry energy, neutron skin, and neutron star radius from chiral effective field theory interactions

    OpenAIRE

    Hebeler, K.; Schwenk, A.

    2014-01-01

    We discuss neutron matter calculations based on chiral effective field theory interactions and their predictions for the symmetry energy, the neutron skin of 208 Pb, and for the radius of neutron stars.

  7. Photo- and pion electroproduction in chiral effective field theory; Photo- und Elektropionproduktion in chiraler effektiver Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Hilt, Marius

    2011-12-13

    This thesis is concerned with pion photoproduction (PPP) and pion electroproduction (PEP) in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. For that purpose two different approaches are used. Firstly, a one-loop-order calculation up to chiral order O(q{sup 4}) including pions and nucleons as degrees of freedom, is performed to describe the energy dependence of the reactions over a large range. To improve the dependence on the virtuality of the photon in PEP, in a second approach vector mesons are included as explicit degrees of freedom. The latter calculation includes one-loop contributions up to chiral order O(q{sup 3}). Only three of the four physical processes of PPP and PEP can be accessed experimentally. These reactions are measured at several different facilities, e.g. Mainz, Bonn, or Saskatoon. The data obtained there are used to explore the limits of chiral perturbation theory. This thesis is the first complete manifestly Lorentz-invariant calculation up to order O(q{sup 4}) for PPP and PEP, and the first calculation ever for these processes including vector mesons explicitly. Beside the calculation of physical observables, a partial wave decomposition is performed and the most important multipoles are analyzed. They may be extracted from the calculated amplitudes and allow one to examine the nucleon and {delta} resonances. The number of diagrams one has to calculate is very large. In order to handle these expressions, several routines were developed for the computer algebra system Mathematica. For the multipole decomposition, two different programs are used. On the one hand, a modified version of the so-called {chi}MAID has been employed. On the other hand, similar routines were developed for Mathematica. In the end, the different calculations are compared with respect to their applicability to PPP and PEP.

  8. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    CERN Document Server

    Holt, Jeremy W; Weise, Wolfram

    2014-01-01

    Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  9. Chiral symmetry and finite temperature effects in quantum theories

    International Nuclear Information System (INIS)

    A computer simulation of the harmonic oscillator at finite temperature has been carried out, using the Monte Carlo Metropolis algorithm. Accurate results for the energy and fluctuations have been obtained, with special attention to the manifestation of the temperature effects. Varying the degree of symmetry breaking, the finite temperature behaviour of the asymmetric linear model in a linearized mean field approximation has been studied. In a study of the effects of chiral symmetry on baryon mass splittings, reasonable agreement with experiment has been obtained in a non-relativistic harmonic oscillator model

  10. Vector form factor of the pion in chiral effective field theory

    International Nuclear Information System (INIS)

    The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied

  11. Vector form factor of the pion in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, D. [Helmholtz Institute Mainz, Johannes Gutenberg University Mainz, D-55099 Mainz (Germany); Gegelia, J., E-mail: jgegelia@hotmail.com [Institut für Theoretische Physik II, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, 44780 Bochum (Germany); Tbilisi State University, 0186 Tbilisi, Georgia (United States); Keller, A.; Scherer, S.; Tiator, L. [Institute for Nuclear Physics, Johannes Gutenberg University Mainz, D-55099 Mainz (Germany)

    2015-03-06

    The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied.

  12. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)

    2016-01-15

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)

  13. Power counting for nuclear forces in chiral effective field theory

    CERN Document Server

    Long, Bingwei

    2016-01-01

    The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.

  14. Ph.D. Thesis: Chiral Effective Field Theory Beyond the Power-Counting Regime

    CERN Document Server

    Hall, Jonathan M M

    2011-01-01

    Novel techniques are presented, which identify the power-counting regime (PCR) of chiral effective field theory, and allow the use of lattice quantum chromodynamics results that extend outside the PCR. By analyzing the renormalization of low-energy coefficients of the chiral expansion of the nucleon mass, the existence of an optimal regularization scale is realized. The techniques developed for the nucleon mass renormalization are then applied to a test case: performing a chiral extrapolation without prior phenomenological bias. The robustness of the procedure for obtaining an optimal regularization scale and performing a reliable chiral extrapolation is confirmed. The procedure developed is then applied to the magnetic moment and the electric charge radius of the nucleon. The consistency of the results for the value of the optimal regularization scale provides strong evidence for the existence of an intrinsic energy scale in the nucleon-pion interaction.

  15. Collisions in Chiral Kinetic Theory.

    Science.gov (United States)

    Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A

    2015-07-10

    Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order O(ℏ), which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the H function obeying Boltzmann's H theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing the chiral vortical effect. PMID:26207458

  16. Collisions in Chiral Kinetic Theory

    CERN Document Server

    Chen, Jing-Yuan; Stephanov, Mikhail A

    2015-01-01

    Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order $\\mathcal O(\\hbar)$ which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the $H$-function obeying Boltzmann's $H$-theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing chiral vortical effect.

  17. Phases of chiral gauge theories

    International Nuclear Information System (INIS)

    We discuss the behavior of two non-supersymmetric chiral SU(N) gauge theories, involving fermions in the symmetric and antisymmetric two-index tensor representations respectively. In addition to global anomaly matching, we employ a recently proposed inequality constraint on the number of effective low energy (massless) degrees of freedom of a theory, based on the thermodynamic free energy. Several possible zero temperature phases are consistent with the constraints. A simple picture for the phase structure emerges if these theories choose the phase, consistent with global anomaly matching, that minimizes the massless degree of freedom count defined through the free energy. This idea suggests that confinement with the preservation of the global symmetries through the formation of massless composite fermions is in general not preferred. While our discussion is restricted mainly to bilinear condensate formation, higher dimensional condensates are considered for one case. We conclude by commenting briefly on two related supersymmetric chiral theories. (c) 2000 The American Physical Society

  18. Cutoff regulators in chiral nuclear effective field theory

    CERN Document Server

    Long, Bingwei

    2016-01-01

    Three-dimensional cutoff regulators are frequently employed in multi-nucleon calculations, but they violate chiral symmetry and Lorentz invariance. A cutoff regularization scheme is proposed to compensate systematically at subleading orders for these symmetry violations caused by regulator artifacts. This is especially helpful when a soft momentum cutoff has to be used for technical reasons. It is also shown that dimensional regularization can still be used for some Feynman (sub)diagrams while cutoff regulators are used for the rest.

  19. Structure of A = 7 - 8 nuclei with two- plus three-nucleon interactions from chiral effective field theory

    OpenAIRE

    Maris, Pieter; Vary, James P.; Navratil, Petr

    2012-01-01

    We solve the ab initio no-core shell model (NCSM) in the complete Nmax = 8 basis for A = 7 and A = 8 nuclei with two-nucleon and three-nucleon interactions derived within chiral effective field theory (EFT). We find that including the chiral EFT three-nucleon interaction in the Hamiltonian improves overall good agreement with experimental binding energies, excitation spectra, transitions and electromagnetic moments. We predict states that exhibit sensitivity to including the chiral EFT three-...

  20. Is the chiral U(1) theory trivial?

    International Nuclear Information System (INIS)

    The chiral U(1) theory differs from the corresponding vector theory by an imaginary contribution to the effective action which amounts to a phase factor in the partition function. The vector theory, i.e. QED, is known to be trivial in the continuum limit. It is argued that the presence of the phase factor will not alter this result and the chiral theory is non-interacting as well. (orig.)

  1. Foundations of Strangeness Nuclear Physics derived from chiral Effective Field Theory

    CERN Document Server

    Meißner, Ulf-G

    2016-01-01

    Dense compact objects like neutron stars or black holes have always been one of Gerry Brown's favorite research topics. This is closely related to the effects of strangeness in nuclear physics. Here, we review the chiral Effective Field Theory approach to interactions involving nucleons and hyperons, the possible existence of strange dibaryons, the fate of hyperons in nuclear matter and the present status of three-body forces involving hyperons and nucleons.

  2. Chiral effective field theory beyond the power-counting regime

    CERN Document Server

    Hall, Jonathan M M; Young, Ross D

    2011-01-01

    Novel techniques are presented, which identify the chiral power-counting regime (PCR), and realize the existence of an intrinsic energy scale embedded in lattice QCD results that extend outside the PCR. The nucleon mass is considered as a benchmark for illustrating this new approach. Using finite-range regularization, an optimal regularization scale can be extracted from lattice simulation results by analyzing the renormalization of the low energy coefficients. The optimal scale allows a description of lattice simulation results that extend beyond the PCR by quantifying and thus handling any scheme-dependence. Preliminary results for the nucleon magnetic moment are also examined, and a consistent optimal regularization scale is obtained. This indicates the existence of an intrinsic scale corresponding to the finite size of the source of the pion cloud.

  3. Strangeness $S=-1$ hyperon-nucleon scattering in covariant chiral effective field theory

    OpenAIRE

    Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bing-Wei

    2016-01-01

    Motivated by the successes of covariant baryon chiral perturbation theory in one-baryon systems and in heavy-light systems, we study relevance of relativistic effects in hyperon-nucleon interactions with strangeness $S=-1$. In this exploratory work, we follow the covariant framework developed by Epelbaum and Gegelia to calculate the $YN$ scattering amplitude at leading order. By fitting the five low-energy constants to the experimental data, we find that the cutoff dependence is mitigated, co...

  4. Chiral extrapolation of nucleon axial charge $g_A$ in effective field theory

    CERN Document Server

    Li, Hongna

    2016-01-01

    The extrapolation of nucleon axial charge $g_A$ is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated $g_A$ are all smaller than the experimental value.

  5. Chiral gauge theories on a lattice

    International Nuclear Information System (INIS)

    The authors formulate a chiral gauge invariant theory of lattice fermions by introducing extra degrees of freedom. It is applied to the chiral U(1) gauge theories in two and four dimensions and the effective actions of the gauge fields are calculated which indicate the mass generation of the gauge bosons. The difficulty is pointed out to execute the perturbation with a finite gauge boson mass in four dimensions

  6. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    B Ananthanarayan

    2003-11-01

    A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  7. Chiral Effective Theory Methods and their Application to the Structure of Hadrons from Lattice QCD

    CERN Document Server

    Shanahan, P E

    2016-01-01

    For many years chiral effective theory (ChEFT) has enabled and supported lattice QCD calculations of hadron observables by allowing systematic effects from unphysical lattice parameters to be controlled. In the modern era of precision lattice simulations approaching the physical point, ChEFT techniques remain valuable tools. In this review we discuss the modern uses of ChEFT applied to lattice studies of hadron structure in the context of recent determinations of important and topical quantities. We consider muon g-2, strangeness in the nucleon, the proton radius, nucleon polarizabilities, and sigma terms relevant to the prediction of dark-matter-hadron interaction cross-sections, among others.

  8. Virtual decuplet effects on octet baryon masses in covariant baryon chiral perturbation theory

    OpenAIRE

    Ren, Xiu-Lei; Geng, Lisheng; Meng, Jie; Toki, Hiroshi

    2013-01-01

    We extend a previous analysis of the lowest-lying octet baryon masses in covariant baryon chiral perturbation theory (ChPT) by explicitly taking into account the contribution of the virtual decuplet baryons. Up to next-to-next-to-next-to-leading order (N$^3$LO), the effects of these heavier degrees of freedom are systematically studied. Their effects on the light-quark mass dependence of the octet baryon masses are shown to be relatively small and can be absorbed by the available low-energy c...

  9. Deuteron electromagnetic form factors in a renormalizable formulation of chiral effective field theory

    International Nuclear Information System (INIS)

    We calculate the deuteron electromagnetic form factors in a modified version of Weinberg's chiral effective field theory approach to the two-nucleon system. We derive renormalizable integral equations for the deuteron without partial wave decomposition. Deuteron form factors are extracted by applying the Lehmann-Symanzik-Zimmermann reduction formalism to the three-point correlation function of deuteron interpolating fields and the electromagnetic current operator. Numerical results of a leading-order calculation with removed cutoff regularization agree well with experimental data. (orig.)

  10. Finite-volume effects on octet-baryon masses in covariant baryon chiral perturbation theory

    OpenAIRE

    Geng, Li-Sheng; Ren, Xiu-Lei; Martin-Camalich, J.; Weise, W.

    2011-01-01

    We study finite-volume effects on the masses of the ground-state octet baryons using covariant baryon chiral perturbation theory (ChPT) up to next-to-leading order by analyzing the latest $n_f=2+1$ lattice Quantum ChromoDynamics (LQCD) results from the NPLQCD collaboration. Contributions of virtual decuplet baryons are taken into account using the "consistent" coupling scheme. We compare our results with those obtained from heavy baryon ChPT and show that, although both approaches can describ...

  11. $\\bar d - \\bar u$ asymmetry in the proton in chiral effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Salamu, Yusupujiang [Institute of High Energy Physics, CAS, Beijing (China); Ji, Chueng -Ryong [North Carolina State Univ., Raleigh, NC (United States); Melnitchouk, W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, P. [Institute of High Energy Physics, Beijing (China); Theoretical Physics Center for Science Facilities, CAS, Beijing (China)

    2015-03-25

    We compute the $\\bar d - \\bar u$ asymmetry in the proton in chiral effective theory, including both nucleon and Δ degrees of freedom, within both relativistic and heavy baryon frameworks. In addition to the distribution at $x>0$, we estimate the correction to the integrated asymmetry arising from zero momentum contributions from pion rainbow and bubble diagrams at $x=0$, which have not been accounted for in previous analyses. In conclusion, we find that the empirical $x$ dependence of $\\bar d - \\bar u$ as well as the integrated asymmetry can be well reproduced in terms of a transverse momentum cutoff parameter.

  12. Complete next-to-next-to-leading order calculation of NN → NNπ in chiral effective field theory

    Directory of Open Access Journals (Sweden)

    Filin A. A.

    2014-01-01

    Full Text Available We present the results of the pion production operator calculated up-to-and-including next-to-next-to-leading order (NNLO in chiral effective field theory. We include explicit Delta degrees of freedom and demonstrate that they provide essential contribution required to understand neutral pion production data. Analysis of chiral loops at NNLO reveals new mechanisms which are important, but haven’t been considered in phenomenological studies so far.

  13. A chiral D=4, N=1 string vacuum with a finite low energy effective field theory

    International Nuclear Information System (INIS)

    Supersymmetric N=1, D=4 string vacua are known to be finite in perturbation theory. However, the effective low energy D=4, N=1 field theory lagrangian does not yield in general finite theories. In this note we present the first (to our knowledge) such an example. It may be constructed in three dual ways: i) as a Z3, SO(32) heterotic orbifold; ii) as a Type -IIB, Z3 orientifold with only ninebranes and a Wilson line or iii) as a Type-IIB, Z6 orientifold with only fivebranes. The gauge group is SU(4)3 with three chiral generations. Although chiral, a subsector of the model is continuously connected to a model with global N=4 supersymmetry. From the Z6, Type IIB orientifold point of view the above connection may be understood as a transition of four dynamical fivebranes from a fixed point to the bulk. The N=1 model is thus also expected to be S-dual. We also remark that, using the untwisted dilaton and moduli fields of these constructions as spurion fields, yields soft SUSY-breaking terms which preserve finiteness even for N=0. (author)

  14. Tests of Chiral Perturbation Theory with COMPASS

    CERN Document Server

    Friedrich, Jan

    2010-01-01

    The COMPASS experiment at the CERN SPS studies with high precision pion-photon induced reactions via the Primakoff effect on nuclear targets. This offers the test of chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the long-standing question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.

  15. Tests of Chiral Perturbation Theory with COMPASS

    International Nuclear Information System (INIS)

    The COMPASS experiment at CERN studies with high precision pion-photon induced reactions on nuclear targets via the Primakoff effect. This offers the possibility to test chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the longstanding question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.

  16. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  17. Chiral effective field theory predictions for muon capture on deuteron and $^3$He

    Energy Technology Data Exchange (ETDEWEB)

    Laura E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, M. Viviani

    2012-01-01

    The muon-capture reactions {sup 2}H({mu}{sup -}, {nu}{sub {mu}})nn and {sup 3}He({mu}{sup -},{nu}{sub {mu}}){sup 3}H are studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral effective field theory. The low-energy constants (LEC's) c{sub D} and c{sub E}, present in the three-nucleon potential and (c{sub D}) axial-vector current, are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The vector weak current is related to the isovector component of the electromagnetic current via the conserved-vector-current constraint, and the two LEC's entering the contact terms in the latter are constrained to reproduce the A=3 magnetic moments. The muon capture rates on deuteron and {sup 3}He are predicted to be 399 {+-} 3 sec{sup -1} and 1494 {+-} 21 sec{sup -1}, respectively, where the spread accounts for the cutoff sensitivity as well as uncertainties in the LEC's and electroweak radiative corrections. By comparing the calculated and precisely measured rates on {sup 3}He, a value for the induced pseudoscalar form factor is obtained in good agreement with the chiral perturbation theory prediction.

  18. ${{\\bar{d}} - {\\bar{u}}}$ Flavor Asymmetry in the Proton in Chiral Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Salamu, Y. [Institute of High Energy Physics, CAS, Beijing, 100049, China; Ji, Cheung-Ryong [North Carolina State University, Raleigh, NC; Melnitchouk, Wally [Jefferson Lab, Newport News, VA; Wang, P. [Theoretical Physics Center for Science Facilities, CAS, Beijing, 100049, China

    2015-09-01

    The ${\\bar d - \\bar u}$ flavor asymmetry in the proton arising from pion loops is computed using chiral effective field theory. The calculation includes both nucleon and Δ intermediate states, and uses both the fully relativistic and heavy baryon frameworks. The x dependence of ${\\bar d - \\bar u}$ extracted from the Fermilab E866 Drell–Yan data can be well reproduced in terms of a single transverse momentum cutoff parameter regulating the ultraviolet behavior of the loop integrals. In addition to the distribution at x > 0, corrections to the integrated asymmetry from zero momentum contributions are computed, which arise from pion rainbow and bubble diagrams at x = 0. These have not been accounted for in previous analyses, and can make important contributions to the lowest moment of ${\\bar d-\\bar u}$ .

  19. Electromagnetic currents and magnetic moments in chiral effective field theory (χEFT)

    International Nuclear Information System (INIS)

    A two-nucleon potential and consistent electromagnetic currents are derived in chiral effective field theory (χEFT) at, respectively, Q2 (or N2LO) and eQ (or N3LO), where Q generically denotes the low-momentum scale and e is the electric charge. Dimensional regularization is used to renormalize the pion-loop corrections. A simple expression is derived for the magnetic dipole (M1) operator associated with pion loops, consisting of two terms, one of which is determined, uniquely, by the isospin-dependent part of the two-pion-exchange potential. This decomposition is also carried out for the M1 operator arising from contact currents, in which the unique term is determined by the contact potential. Finally, the low-energy constants entering the N2LO potential are fixed by fits to the np S- and P-wave phase shifts up to 100 MeV laboratory energies.

  20. Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation

    International Nuclear Information System (INIS)

    We derive the leading two-pion-exchange contributions to the two-nucleon electromagnetic current operator in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  1. Staggered chiral random matrix theory

    International Nuclear Information System (INIS)

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  2. Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality

    Science.gov (United States)

    Ciattoni, Alessandro; Rizza, Carlo

    2015-05-01

    We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with nonmagnetic inclusions in the long-wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that the effective medium permittivity tensor and the first- and second-order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly varying fields, each satisfying electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achiral, i.e., it is indistinguishable from its mirror image, it shows pseudo-chiral-omega electromagnetic chirality if the rotation needed to restore the dielectric profile after the reflection is either a 0∘ or 90∘ rotation around an axis orthogonal to the reflection plane. These two symmetric situations encompass two-dimensional and one-dimensional metamaterials with chiral response. As an example admitting full analytical description, we discuss one-dimensional metamaterials whose single chirality parameter is shown to be directly related to the metamaterial dielectric profile by quadratures.

  3. Green's Function Monte Carlo Calculations with Two- and Three-Nucleon Interactions from Chiral Effective Field Theory

    CERN Document Server

    Lynn, J E

    2015-01-01

    I discuss our recent work on Green's function Monte Carlo (GFMC) calculations of light nuclei using local nucleon-nucleon interactions derived from chiral effective field theory (EFT) up to next-to-next-to-leading order (N$^2$LO). I present the natural extension of this work to include the consistent three-nucleon (3N) forces at the same order in the chiral expansion. I discuss our choice of observables to fit the two low-energy constants which enter in the 3N sector at N$^2$LO and present some results for light nuclei.

  4. Green's Function Monte Carlo Calculations with Two- and Three-Nucleon Interactions from Chiral Effective Field Theory

    Science.gov (United States)

    Lynn, J. E.

    2016-03-01

    I discuss our recent work on Green's function Monte Carlo (GFMC) calculations of light nuclei using local nucleon-nucleon interactions derived from chiral effective field theory (EFT) up to next-to-next-to-leading order (N2LO). I present the natural extension of this work to include the consistent three-nucleon (3N) forces at the same order in the chiral expansion. I discuss our choice of observables to fit the two low-energy constants which enter in the 3N sector at N2LO and present some results for light nuclei.

  5. Green’s Function Monte Carlo Calculations with Two- and Three-Nucleon Interactions from Chiral Effective Field Theory

    Directory of Open Access Journals (Sweden)

    Lynn J. E.

    2016-01-01

    Full Text Available I discuss our recent work on Green’s function Monte Carlo (GFMC calculations of light nuclei using local nucleon-nucleon interactions derived from chiral effective field theory (EFT up to next-to-next-to-leading order (N2LO. I present the natural extension of this work to include the consistent three-nucleon (3N forces at the same order in the chiral expansion. I discuss our choice of observables to fit the two low-energy constants which enter in the 3N sector at N2LO and present some results for light nuclei.

  6. On the one-loop effective potential in the higher-derivative four-dimensional chiral superfield theory with a nonconventional kinetic term

    International Nuclear Information System (INIS)

    We explicitly calculate the one-loop effective potential for a higher-derivative four-dimensional chiral superfield theory with a nonconventional kinetic term. We consider the cases of minimal and nonminimal general Lagrangians. In particular, we find that in the minimal case the divergent part of the one-loop effective potential vanishes by reason of the chirality.

  7. Chiral perturbation theory for nucleon generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik

    2006-08-15

    We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)

  8. Low-Energy Constants from Resonance Chiral Theory

    OpenAIRE

    Pich, Antonio

    2008-01-01

    I discuss the recent attempts to build an effective chiral Lagrangian incorporating massive resonance states. A useful approximation scheme to organize the resonance Lagrangian is provided by the large-Nc limit of QCD. Integrating out the resonance fields, one recovers the usual chiral perturbation theory Lagrangian with explicit values for the low-energy constants, parameterized in terms of resonance masses and couplings. The resonance chiral theory generates Green functions that interpolate...

  9. In-Medium Effective Pion Mass from Heavy-Baryon Chiral Perturbation Theory

    CERN Document Server

    Park, T S; Min, D P; Park, Tae-Sun; Jung, Hong; Min, Dong-Pil

    2002-01-01

    Using heavy-baryon chiral perturbation theory, we have calculated all the diagrams up to two-loop order which contribute to the S-wave pion self-energy in symmetric nuclear matter. Some subtleties related to the definition of pion fields are discussed. The in-medium pion mass is turned out to be increased by only (6 - 7) per cents in normal nuclear matter density, without any off-shell ambiguity.

  10. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    1998-01-01

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral powe

  11. Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems

    Energy Technology Data Exchange (ETDEWEB)

    Viviani, Michele [INFN; Baroni, Alessandro [ODU; Girlanda, Luca [Lecce U.; Kievsky, Alejandro [Pisa U,; Marcucci, Laura E. [Pisa U,; Schiavilla, Rocco [ODU, JLAB

    2014-06-01

    Background: Weak interactions between quarks induce a parity-violating (PV) component in the nucleonnucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (chiEFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the p-p longitudinal asymmetry, the neutron spin rotation in n-p and n-d scattering, and the longitudinal asymmetry in the {sup 3}He( {vector n},p){sup 3}H chargeexchange reaction. Methods: The chiEFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A = 2–-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from chiEFT. In the case of the A = 3–-4 systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant h^1_pi and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The chiEFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.

  12. Parity violation in proton-proton scattering from chiral effective field theory

    International Nuclear Information System (INIS)

    We present a calculation of the parity-violating longitudinal asymmetry in proton-proton scattering. The calculation is performed in the framework of chiral effective field theory which is applied systematically to both the parity-conserving and parity-violating interactions. The asymmetry is calculated up to next-to-leading order in the parity-odd nucleon-nucleon potential. At this order the asymmetry depends on two parity-violating low-energy constants: the weak pion-nucleon coupling constant hπ and one four-nucleon contact coupling. By comparison with the existing data, we obtain a rather large range for hπ=(1.1±2).10-6. This range is consistent with theoretical estimations and experimental limits, but more data are needed to pin down a better constrained value. We conclude that an additional measurement of the asymmetry around 125MeV lab energy would be beneficial to achieve this goal. (orig.)

  13. Uncertainty quantification for proton-proton fusion in chiral effective field theory

    Science.gov (United States)

    Acharya, B.; Carlsson, B. D.; Ekström, A.; Forssén, C.; Platter, L.

    2016-09-01

    We compute the S-factor of the proton-proton (pp) fusion reaction using chiral effective field theory (χEFT) up to next-to-next-to-leading order (NNLO) and perform a rigorous uncertainty analysis of the results. We quantify the uncertainties due to (i) the computational method used to compute the pp cross section in momentum space, (ii) the statistical uncertainties in the low-energy coupling constants of χEFT, (iii) the systematic uncertainty due to the χEFT cutoff, and (iv) systematic variations in the database used to calibrate the nucleon-nucleon interaction. We also examine the robustness of the polynomial extrapolation procedure, which is commonly used to extract the threshold S-factor and its energy-derivatives. By performing a statistical analysis of the polynomial fit of the energy-dependent S-factor at several different energy intervals, we eliminate a systematic uncertainty that can arise from the choice of the fit interval in our calculations. In addition, we explore the statistical correlations between the S-factor and few-nucleon observables such as the binding energies and point-proton radii of 2,3H and 3He as well as the D-state probability and quadrupole moment of 2H, and the β-decay of 3H. We find that, with the state-of-the-art optimization of the nuclear Hamiltonian, the statistical uncertainty in the threshold S-factor cannot be reduced beyond 0.7%.

  14. Uncertainty quantification for proton-proton fusion in chiral effective field theory

    CERN Document Server

    Acharya, B; Ekström, A; Forssén, C; Platter, L

    2016-01-01

    We compute the $S$-factor of the proton-proton ($pp$) fusion reaction using chiral effective field theory ($\\chi$EFT) up to next-to-next-to-leading order (NNLO) and perform a rigorous uncertainty analysis of the results. We quantify the uncertainties due to (i) the computational method used to compute the $pp$ cross section in momentum space, (ii) the statistical uncertainties in the low-energy coupling constants of $\\chi$EFT, (iii) the systematic uncertainty due to the $\\chi$EFT cutoff, and (iv) systematic variations in the database used to calibrate the nucleon-nucleon interaction. We also examine the robustness of the polynomial extrapolation procedure, which is commonly used to extract the threshold $S$-factor and its energy-derivatives. By performing a statistical analysis of the polynomial fit of the energy-dependent $S$-factor at several different energy intervals, we eliminate a systematic uncertainty that can arise from the choice of the fit interval in our calculations. In addition, we explore the s...

  15. A primer for Chiral Perturbative Theory

    International Nuclear Information System (INIS)

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  16. A primer for Chiral Perturbative Theory

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Stefan [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schindler, Matthias R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics; George Washington Univ., Washington, DC (United States). Dept. of Physics

    2012-07-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  17. A primer for chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.

  18. Chiral effective field theory with vector mesons. From the electromagnetic form factor until the virtual Compton scattering

    International Nuclear Information System (INIS)

    This thesis is concerned with modelling electromagnetic and hadronic processes in the low-energy regime, employing a manifestly lorentz-invariant chiral effective field theory with dynamical vector mesons. This effective theory serves as an approximation of the more fundamental quantum chromodynamics at low energies. Focusing on power counting and renormalization, a consistent description of different processes up to approximately 1GeV is possible. The key ingredient of the power counting is a large-Nc argument, which implies an equivalent treatment of Goldstone bosons (pions) and resonances (rho and omega mesons). A suitable renormalization scheme is the complex-mass scheme (a generalization of the extended on-mass-shell scheme) which - combined with the BPHZ renormalization method (named after Bogoliubov, Parasiuk, Hepp, and Zimmermann) - yields a powerful framework for the computation of quantum corrections in chiral effective theories. All calculations contain contributions up to and including fourth chiral order at the one-loop level. Analyzed quantities are, besides others, the vector form factor of the pion in the timelike region and real Compton scattering (respectively photon fusion) in the neutral and charged channels. In addition, virtual Compton scattering off the pion, embedded into electron-positron annihilation, is discussed. Furthermore, experimental data of various observables are used to extract the values of all contributing low-energy coupling constants. The developed methods - especially the technical implementations - are of very general nature and, therefore, straightforward to adapt to additional problems in low-energy quantum chromodynamics.

  19. Random Matrix Theory and Chiral Logarithms

    OpenAIRE

    Berbenni-Bitsch, M. E.; Göckeler, M.; Hehl, H.; Meyer, S.; Rakow, P. E. L.; Schäfer, A.; Wettig, T.

    1999-01-01

    Abstract: Recently, the contributions of chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that a detailed comparison of random matrix theory and lattice calculations allows for a precise determination of such corrections. We estimate the relative size of the m log(m), m, and m^2 corrections to the chiral condensate for quenched SU(2).

  20. Relativistic Chiral Theory of Nuclear Matter and QCD Constraints

    OpenAIRE

    Chanfray, G.; Ericson, M.

    2009-01-01

    Talk given by G. Chanfray at PANIC 08, Eilat (Israel), november 10-14, 2008 We present a relativistic chiral theory of nuclear matter which includes the effect of confinement. Nuclear binding is obtained with a chiral invariant scalar background field associated with the radial fluctuations of the chiral condensate Nuclear matter stability is ensured once the scalar response of the nucleon depending on the quark confinement mechanism is properly incorporated. All the parameters are fixed o...

  1. Nonlocal homogenization theory in metamaterials: effective electromagnetic spatial dispersion and artificial chirality

    CERN Document Server

    Ciattoni, Alessandro

    2015-01-01

    We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with non-magnetic inclusions in the long wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that medium effective permittivity tensor and the first and second order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly-varying fields each satysifing electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achi...

  2. Chiral rings and anomalies in supersymmetric gauge theory

    International Nuclear Information System (INIS)

    Motivated by recent work of Dijkgraaf and Vafa, we study anomalies and the chiral ring structure in a supersymmetric U(N) gauge theory with an adjoint chiral superfield and an arbitrary superpotential. A certain generalization of the Konishi anomaly leads to an equation which is identical to the loop equation of a bosonic matrix model. This allows us to solve for the expectation values of the chiral operators as functions of a finite number of 'integration constants'. From this, we can derive the Dijkgraaf-Vafa relation of the effective superpotential to a matrix model. Some of our results are applicable to more general theories. For example, we determine the classical relations and quantum deformations of the chiral ring of N=1 super Yang-Mills theory with SU(N) gauge group, showing, as one consequence, that all supersymmetric vacua of this theory have a nonzero chiral condensate. (author)

  3. Vanishing chiral couplings in the large-Nc resonance theory

    OpenAIRE

    Portolés, Jorge; Rosell, Ignasi; Ruiz Femenía, Pedro

    2007-01-01

    The construction of a resonance theory involving hadrons requires implementing the information from higher scales into the couplings of the effective Lagrangian. We consider the large-Nc chiral resonance theory incorporating scalars and pseudoscalars, and we find that, by imposing LO short-distance constraints on form factors of QCD currents constructed within this theory, the chiral low-energy constants satisfy resonance saturation at NLO in the 1/Nc expansion.

  4. Calculation of Doublet Capture Rate for Muon Capture in Deuterium within Chiral Effective Field Theory

    CERN Document Server

    Adam, J; Tater, M; Truhlik, E; Epelbaum, E; Machleidt, R; Ricci, P

    2011-01-01

    The doublet capture rate of the negative muon capture in deuterium is calculated employing the nuclear wave functions generated from accurate nucleon-nucleon potentials constructed at next-to-next-to-next-to-leading order of heavy-baryon chiral perturbation theory and the weak meson exchange current operator derived within the same formalism. All but one of the low-energy constants that enter the calculation were fixed from pion-nucleon and nucleon-nucleon scattering data. The low-energy constant d^R (c_D), which cannot be determined from the purely two-nucleon data, was extracted recently from the triton beta-decay and the binding energies of the three-nucleon systems. The calculated values of the doublet capture rates show a rather large spread for the used values of the d^R. Precise measurement of the doublet capture rate in the future will not only help to constrain the value of d^R, but also provide a highly nontrivial test of the nuclear chiral EFT framework. Besides, the precise knowledge of the consta...

  5. Target Spaces from Chiral Gauge Theories

    CERN Document Server

    Melnikov, Ilarion V; Sethi, Savdeep; Stern, Mark

    2012-01-01

    Chiral gauge theories in two dimensions with (0,2) supersymmetry are central in the study of string compactifications. Remarkably little is known about generic (0,2) theories. We consider theories with branches on which multiplets with a net gauge anomaly become massive. The simplest example is a relevant perturbation of the gauge theory that flows to the CP(n) model. To compute the effective action, we derive a useful set of Feynman rules for (0,2) supergraphs. From the effective action, we see that the infra-red geometry reflects the gauge anomaly by the presence of a boundary at finite distance. In generic examples, there are boundaries, fluxes and branes; the resulting spaces are non-Kahler.

  6. Coherent neutrinoproduction of photons and pions in a chiral effective field theory for nuclei

    Science.gov (United States)

    Zhang, Xilin; Serot, Brian D.

    2012-09-01

    Background: The neutrinoproduction of photons and pions from nucleons and nuclei is relevant to the background analysis in neutrino-oscillation experiments [for example, the MiniBooNE; MiniBooNE Collaboration, A. A. Aquilar-Arevalo , Phys. Rev. Lett.0031-900710.1103/PhysRevLett.100.032301 100, 032301 (2008)]. The production from nucleons and incoherent production with Eν⩽0.5GeV have been studied in B. D. Serot and X. Zhang, Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.86.015501 86, 015501 (2012); and X. Zhang and B. D. Serot, Phys. Rev. C1110-865710.1103/PhysRevC.86.035502 86, 035502 (2012).Purpose: Study coherent productions with Eν⩽0.5GeV. Also address the contributions of two contact terms in neutral current (NC) photon production that are partially related to the proposed anomalous ω(ρ), Z boson, and photon interactions.Methods: We work in the framework of a Lorentz-covariant effective field theory (EFT), which contains nucleons, pions, the Δ (1232) (Δs), isoscalar scalar (σ) and vector (ω) fields, and isovector vector (ρ) fields, and incorporates a nonlinear realization of (approximate) SU(2)L⊗SU(2)R chiral symmetry. A revised version of the so-called “optimal approximation” is applied, where one-nucleon interaction amplitude is factorized out and the medium-modifications and pion wave function distortion are included. The calculation is tested against the coherent pion photoproduction data.Results: The computation shows an agreement with the pion photoproduction data, although precisely determining the Δ modification is entangled with one mentioned contact term. The uncertainty in the Δ modification leads to uncertainties in both pion and photon neutrinoproductions. In addition, the contact term plays a significant role in NC photon production.Conclusions: First, the contact term increases NC photon production by ˜10% assuming a reasonable range of the contact coupling, which however seems not significant enough to explain the Mini

  7. Microscopically-constrained Fock energy density functionals from chiral effective field theory. I. Two-nucleon interactions

    OpenAIRE

    Gebremariam, B.; Bogner, S. K.; Duguet, T.

    2010-01-01

    The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyme-like energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in arXiv:0910.4979 by Gebremariam {\\it et al.} to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions a...

  8. Electric dipole moments of light nuclei in chiral effective field theory

    International Nuclear Information System (INIS)

    Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP violation from the complex phase of the Cabibbo-Kobayashi-Maskawa matrix in the Standard Model predicts EDMs that are experimentally inaccessible in the foreseeable future. The θ-term of Quantum Chromodynamics (QCD) and extensions of the Standard Model such as supersymmetry and multi-Higgs scenarios comprise P- and T-violating interactions which are capable of inducing significantly larger EDMs. The extensions of the Standard Model give rise to a set of effective non-renormalizable operators of canonical dimension six at energies Λhad >or similar 1 GeV when the heavy degrees of freedom are integrated out. The effective dimension-six operators are known as the quark EDM, the quark-chromo EDM, four-quark left-right operator, the gluon-chromo EDM and the four-quark operator. Starting from the QCD θ-term and this set of P- and T-violating effective dimension-six operators, we present a scheme to derive the induced effective Lagrangians at energies below ΛQCD ∝ 200 MeV within the framework of Chiral Perturbation Theory (ChPT) for two quark flavors in the formulation of Gasser and Leutwyler. The differences among the sources of P and T violation manifest themselves at energies below ΛQCD in specific hierarchies of coupling constants of P- and T-violating vertices. We compute the relevant coupling constants of P- and T-violating hadronic vertices which are induced by the QCD θ-term with well-defined uncertainties as functions of the parameter anti θ. The relevant coupling constants induced by the effective dimension-six operators are given as functions of yet unknown Low Energy Constants (LECs) which can not be determined within the framework of ChPT itself. Since the required supplementary input from e.g. Lattice QCD is not yet available, we present Naive Dimensional

  9. Chiral Dynamics of Baryons from String Theory

    CERN Document Server

    Hong, D K; Yee, H U; Yi, P; Hong, Deog Ki; Rho, Mannque; Yee, Ho-Ung; Yi, Piljin

    2007-01-01

    We study baryons in an AdS/CFT model of QCD by Sakai and Sugimoto, realized as small instantons with fundamental string hairs. We introduce an effective field theory of the baryons in the five-dimensional setting, and show that the instanton interpretation implies a particular magnetic coupling. Dimensional reduction to four dimensions reproduces the usual chiral effective action, and in particular we estimate the axial coupling $g_A$ between baryons and pions and the magnetic dipole moments, both of which are proportional to $N_c$. We extrapolate to finite $N_c$ and discuss subleading corrections.

  10. Radiative meson decays in chiral perturbation theory

    International Nuclear Information System (INIS)

    Radiative meson decays are a fertile field for chiral perturbation theory. Chiral symmetry together with gauge invariance yield stringent constraints on radiative decay amplitudes. In addition to predicting decay rates and spectra, the chiral approach allows for a unified description of CP violation in radiative K decays. The chiral viewpoint in the recent controversy over the magnitude of two-photon exchange in the decay KL→ π0e+e- is exposed. The radiative decay η→π0γγ is discussed as an intriguing case where the leading result of chiral perturbation theory seems to be too small by two orders of magnitude in rate. 32 refs., 3 figs. (Author)

  11. Chiral Magnetic Effect and Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    FU Wei-Jie; LIU Yu-Xin; WU Yue-Liang

    2011-01-01

    We study the influence of the chiral phase transition on the chiral magnetic effect.The azimuthal chargeparticle correlations as functions of the temperature are calculated.It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition.It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value.We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.

  12. Unphysical phases in staggered chiral perturbation theory

    Science.gov (United States)

    Aubin, Christopher; Colletti, Katrina; Davila, George

    2016-04-01

    We study the phase diagram for staggered quarks using chiral perturbation theory. In beyond-the-standard-model simulations using a large number (>8 ) of staggered fermions, unphysical phases appear for coarse enough lattice spacing. We argue that chiral perturbation theory can be used to interpret one of these phases. In addition, we show that only three broken phases for staggered quarks exist, at least for lattice spacings in the regime a2≪ΛQCD2 .

  13. Tests of Chiral perturbation theory with COMPASS

    Directory of Open Access Journals (Sweden)

    Friedrich Jan M.

    2014-06-01

    Full Text Available The COMPASS experiment at CERN accesses pion-photon reactions via the Primakoff effect., where high-energetic pions react with the quasi-real photon field surrounding the target nuclei. When a single real photon is produced, pion Compton scattering is accessed and from the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from ChPT. In the same experimental data taking, reactions with neutral and charged pions in the final state are measured and analyzed in the context of chiral perturbation theory.

  14. Staggered Heavy Baryon Chiral Perturbation Theory

    CERN Document Server

    Bailey, Jon A

    2007-01-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms the order of the cubed pion mass, which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms the order of the squared lattice spacing. The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in d...

  15. Chiral perturbation theory for lattice QCD

    International Nuclear Information System (INIS)

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  16. Chiral perturbation theory for lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Oliver

    2010-07-21

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  17. Hadronic Lorentz Violation in Chiral Perturbation Theory

    CERN Document Server

    Kamand, Rasha; Schindler, Matthias R

    2016-01-01

    Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-four Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. The resulting bounds on four pion parameters are at the $10^{-23}$ level, representing improvements of ten orders of magnitude.

  18. Chiral dynamics in U(3) unitary chiral perturbation theory

    International Nuclear Information System (INIS)

    We perform a complete one-loop calculation of meson-meson scattering, and of the scalar and pseudoscalar form factors in U(3) chiral perturbation theory with the inclusion of explicit resonance fields. This effective field theory takes into account the low-energy effects of the QCD UA(1) anomaly explicitly in the dynamics. The calculations are supplied by non-perturbative unitarization techniques that provide the final results for the meson-meson scattering partial waves and the scalar form factors considered. We present thorough analyses on the scattering data, resonance spectroscopy, spectral functions, Weinberg-like sum rules and semi-local duality. The last two requirements establish relations between the scalar spectrum with the pseudoscalar and vector ones, respectively. The NC extrapolation of the various quantities is studied as well. The fulfillment of all these non-trivial aspects of the QCD dynamics by our results gives a strong support to the emerging picture for the scalar dynamics and its related spectrum.

  19. Staggered heavy baryon chiral perturbation theory

    Science.gov (United States)

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  20. Chiral symmetry and lattice gauge theory

    International Nuclear Information System (INIS)

    I review the problem of formulating chiral symmetry in lattice gauge theory. I discuss recent approaches involving an infinite tower of additional heavy states to absorb Fermion doublers. For hadronic physics this provides a natural scheme for taking quark masses to zero without requiring a precise tuning of parameters. A mirror Fermion variation provides a possible way of extending the picture to chirally coupled light Fermions

  1. Effective action in general chiral superfield model

    OpenAIRE

    Petrov, A. Yu.

    2000-01-01

    The effective action in general chiral superfield model with arbitrary k\\"{a}hlerian potential $K(\\bar{\\Phi},\\Phi)$ and chiral (holomorphic) potential $W(\\Phi)$ is considered. The one-loop and two-loop contributions to k\\"{a}hlerian effective potential and two-loop (first non-zero) contribution to chiral effective potential are found for arbitrary form of functions $K(\\bar{\\Phi},\\Phi)$ and $W(\\Phi)$. It is found that despite the theory is non-renormalizable in general case two-loop contributi...

  2. Two-nucleon electromagnetic charge operator in chiral effective field theory (χEFT) up to one loop

    International Nuclear Information System (INIS)

    The electromagnetic charge operator in a two-nucleon system is derived in chiral effective field theory (χEFT) up to order e Q[or next-to-next-to-next-to-next-to-leading order (N4LO)], where Q denotes the low-momentum scale and e is the electric charge. The specific form of the N3LO and N4LO corrections from, respectively, one-pion-exchange and two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for the nonstatic terms in the corresponding potentials. We show that different prescriptions lead to unitarily equivalent potentials and accompanying charge operators. Thus, provided a consistent set is adopted, predictions for physical observables will remain unaffected by the nonuniqueness associated with these off-the-energy-shell effects.

  3. The two-nucleon electromagnetic charge operator in chiral effective field theory ($\\chi$EFT) up to one loop

    Energy Technology Data Exchange (ETDEWEB)

    S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani,S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani

    2011-08-01

    The electromagnetic charge operator in a two-nucleon system is derived in chiral effective field theory ($\\chi$EFT) up to order $e\\, Q$ (or N4LO), where $Q$ denotes the low-momentum scale and $e$ is the electric charge. The specific form of the N3LO and N4LO corrections from, respectively, one-pion-exchange and two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for the non-static terms in the corresponding potentials. We show that different prescriptions lead to unitarily equivalent potentials and accompanying charge operators. Thus, provided a consistent set is adopted, predictions for physical observables will remain unaffected by the non-uniqueness associated with these off-the-energy-shell effects.

  4. Chiral perturbation theory and U(3)L x U(3)R chiral theory of mesons

    International Nuclear Information System (INIS)

    In terms of the path integration theory, we examine U(3)L x U(3)R chiral theory of mesons (Li model) through integrating out fields of vector and axial-vector mesons. The corresponding effective Lagrangian for pseudoscalar mesons at order p4 have been obtained, and five quark-mass independent coupling constants Li(i = 1, 2, 3, 9, 10) in it have been calculated. It has been found that they are in good agreement with the values of χPT's at μ = mp. (author). 12 refs, 1 tab

  5. d¯ − u¯ Flavor Asymmetry in the Proton in Chiral Effective Field Theory

    International Nuclear Information System (INIS)

    The d¯ − u¯ flavor asymmetry in the proton arising from pion loops is computed using chiral effective field theory. The calculation includes both nucleon and Δ intermediate states, and uses both the fully relativistic and heavy baryon frameworks. The x dependence of d¯ − u¯ extracted from the Fermilab E866 Drell–Yan data can be well reproduced in terms of a single transverse momentum cutoff parameter regulating the ultraviolet behavior of the loop integrals. In addition to the distribution at x > 0, corrections to the integrated asymmetry from zero momentum contributions are computed, which arise from pion rainbow and bubble diagrams at x = 0. These have not been accounted for in previous analyses, and can make important contributions to the lowest moment of d¯ − u¯. (author)

  6. Nuclear saturation in lowest-order Brueckner theory with two- and three-nucleon forces in view of chiral effective field theory

    CERN Document Server

    Kohno, M

    2015-01-01

    The nuclear saturation mechanism is discussed in terms of two-nucleon and three-nucleon interactions in chiral effective field theory (Ch-EFT), using the framework of lowest-order Brueckner theory. After the Coester band, which is observed in calculating saturation points with various nucleon-nucleon (NN) forces, is revisited using modern NN potentials and their low-momentum equivalent interactions, detailed account of the saturation curve of the Ch-EFT interaction is presented. The three-nucleon force (3NF) is treated by reducing it to an effective two-body interaction by folding the third nucleon degrees of freedom. Uncertainties due to the choice of the 3NF low-energy constants $c_D$ and $c_E$ are discussed. The reduction of the cutoff-energy dependence of the NN potential is explained by demonstrating the effect of the 3NF in the $^1$S$_0$ and $^3$S$_1$ states.

  7. Nuclear saturation in lowest-order Brueckner theory with two- and three-nucleon forces in view of chiral effective field theory

    Science.gov (United States)

    Kohno, M.

    2015-12-01

    The nuclear saturation mechanism is discussed in terms of two-nucleon and three-nucleon interactions in chiral effective field theory (Ch-EFT), using the framework of lowest-order Brueckner theory. After the Coester band, which is observed in calculating saturation points with various nucleon-nucleon (NN) forces, is revisited using modern NN potentials and their low-momentum equivalent interactions, a detailed account of the saturation curve of the Ch-EFT interaction is presented. The three-nucleon force (3NF) is treated by reducing it to an effective two-body interaction by folding the third nucleon degrees of freedom. Uncertainties due to the choice of the 3NF low-energy constants c_D and c_E are discussed. The reduction of the cutoff-energy dependence of the NN potential is explained by demonstrating the effect of the 3NF in the ^1S_0 and ^3S_1 states.

  8. SU(3) Chiral Symmetry in Non-Relativistic Field Theory

    CERN Document Server

    Ouellette, S M

    2001-01-01

    Applications imposing SU(3) chiral symmetry on non-relativistic field theory are considered. The first example is a calculation of the self-energy shifts of the spin-3/2 decuplet baryons in nuclear matter, from the chiral effective Lagrangian coupling octet and decuplet baryon fields. Special attention is paid to the self-energy of the delta baryon near the saturation density of nuclear matter. We find contributions to the mass shifts from contact terms in the effective Lagrangian with coefficients of unknown value. As a second application, we formulate an effecive field theory with manifest SU(2) chiral symmetry for the interactions of K and eta mesons with pions at low energy. SU(3) chiral symmetry is imposed on the effective field theory by a matching calculation onto three-flavor chiral perturbation theory. The effective Lagrangian for the pi-K and pi-eta sectors is worked out to order Q^4; the effective Lagrangian for the K-K sector is worked out to order Q^2 with contact interactions to order Q^4. As an...

  9. Applications of chiral perturbation theory to lattice QCD

    CERN Document Server

    Golterman, Maarten

    2011-01-01

    These notes contain the written version of lectures given at the 2009 Les Houches Summer School "Modern perspectives in lattice QCD: Quantum field theory and high performance computing." The goal is to provide a pedagogical introduction to the subject, and not a comprehensive review. Topics covered include a general introduction, the inclusion of scaling violations in chiral perturbation theory, partial quenching and mixed actions, chiral perturbation theory with heavy kaons, and the effects of finite volume, both in the p- and epsilon-regimes.

  10. Vector and axial currents in Wilson chiral perturbation theory

    International Nuclear Information System (INIS)

    We reconsider the construction of the vector and axial-vector currents in Wilson Chiral Perturbation Theory, the low-energy effective theory for lattice QCD with Wilson fermions. We discuss in detail the finite renormalization of the currents that has to be taken into account in order to properly match the currents. We explicitly show that imposing the chiral Ward identities on the currents does, in general, affect the axial-vector current at O(a). As an application of our results we compute the pion decay constant to one loop in the two-flavor theory. Our result differs from previously published ones.

  11. Auxiliary-Field Quantum Monte Carlo Simulations of Neutron Matter in Chiral Effective Field Theory

    CERN Document Server

    Wlazłowski, G; Moroz, S; Bulgac, A; Roche, K J

    2014-01-01

    We present variational Monte Carlo calculations of the neutron matter equation of state using chiral nuclear interactions. The ground-state wavefunction of neutron matter, containing non-perturbative many-body correlations, is obtained from auxiliary-field quantum Monte Carlo simulations of up to about 340 neutrons interacting on a 10^3 discretized lattice. The evolution Hamiltonian is chosen to be attractive and spin-independent in order to avoid the fermion sign problem and is constructed to best reproduce broad features of chiral nuclear forces. This is facilitated by choosing a lattice spacing of 1.5 fm, corresponding to a momentum-space cutoff of 414 MeV/c, a resolution scale at which strongly repulsive features of nuclear two-body forces are suppressed. Differences between the evolution potential and the full chiral nuclear interaction are then treated perturbatively. Our results for the equation of state are compared to previous quantum Monte Carlo simulations which employed chiral two-body forces at n...

  12. Calculation of doublet capture rate for muon capture in deuterium within chiral effective field theory

    Czech Academy of Sciences Publication Activity Database

    Adam, Jiří; Tater, Miloš; Truhlík, Emil; Epelbaum, E.; Machleidt, R.; Ricci, P.

    2012-01-01

    Roč. 709, 1-2 (2012), s. 93-100. ISSN 0370-2693 R&D Projects: GA MŠk LC06002; GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : negative muon capture * deuteron * effective field theory * meson exchange currents Subject RIV: BE - Theoretical Physics Impact factor: 4.569, year: 2012

  13. Impact of the neutron and nuclear matter equations of state on neutron skin and neutron drip lines in chiral effective field theory

    CERN Document Server

    Sammarruca, Francesca

    2016-01-01

    We present predictions of the binding energy per nucleon and the neutron skin thickness in highly neutron-rich isotopes of Oxygen, Magnesium, and Aluminum. The calculations are carried out at and below the neutron drip line. The nuclear properties are obtained via an energy functional whose input is the equation of state of isospin-asymmetric in?finite matter. The latter is based on a microscopic derivation applying chiral few-nucleon forces. We highlight the impact of the equation of state at diff?erent orders of chiral effective fi?eld theory and discuss the role of three-neutron forces.

  14. Relating lattice QCD and chiral perturbation theory

    International Nuclear Information System (INIS)

    We present simulation results for lattice QCD using chiral lattice fermions, which obey the Ginsparg Wilson relation. After discuss first conceptual issues, and then numerical results. In the epsilon regime we evaluated the low lying modes in Dirac spectrum and the axial correlation functions for very light quarks. These provide information about the leading low energy constants in chiral perturbation theory: the pion decay constant and the scalar condensate. In the p regime we measured light meson masses, the PCAC quark mass and the renormalisation constant ZA

  15. The chiral anomaly from M theory

    CERN Document Server

    Gursoy, U; Portugues, R; Gursoy, Umut; Hartnoll, Sean A.; Portugues, Ruben

    2003-01-01

    We argue that the chiral anomaly of $\\Ncal = 1$ super Yang-Mills theory admits a dual description as spontaneous symmetry breaking in M theory on $G_2$ holonomy manifolds. We identify an angle of the $G_2$ background dual to the anomalous $U(1)_R$ current in field theory. This angle is not an isometry of the metric and we therefore develop a theory of ``massive isometry'' to describe fluctuations about such angles. Another example of a massive isometry occurs in the Atiyah-Hitchin metric.

  16. Chiral symmetry restoration in effective Lagrangian models

    International Nuclear Information System (INIS)

    The restoration is studied of chiral symmetry in dense baryon matter using effective lagrangian models of QCD, in which baryons are described as topological solitons. Starting from the breaking of scale invariance and chiral symmetry in the QCD vacuum, the foundations are discussed of effective lagrangians and their relevance for applications to dense matter. Soliton models, such a the Skyrme model, show a phase transition at high densities, whose order parameter is the average scalar field. The properties are investigated of the two phases of the effective theory and show that the phase transition corresponds to the restoration of the chiral symmetry of QCD. It is argued that it should not be understood as deconfinement. The author then considers this phase transition in the context of the Cheshire Cat principle, which provides the link to the underlying quarks of QCD. An analogue of the Cheshire Cat property of this chiral bag model for baryons is found in solitons of effective lagrangians with a scalar glueball field. The Cheshire Cat interpretation of the results of effective lagrangians provides a consistent picture of chiral symmetry restoration at high densities. To verify this interpretation explicitly, the author finally generalizes the effective lagrangian approach to dense matter to a chiral bag model description with quark degrees of freedom

  17. Nonperturbative Regulator for Chiral Gauge Theories?

    Science.gov (United States)

    Grabowska, Dorota M; Kaplan, David B

    2016-05-27

    We propose a nonperturbative gauge-invariant regulator for d-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in d+1 dimensions with quantum gauge fields that reside on one d-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local d-dimensional interpretation only if the chiral fermion representation is anomaly free. A physical realization of this construction would imply the existence of mirror fermions in the standard model that are invisible except for interactions induced by vacuum topology, and which could gravitate differently than conventional matter. PMID:27284646

  18. A Nonperturbative Regulator for Chiral Gauge Theories

    CERN Document Server

    Grabowska, Dorota M

    2015-01-01

    We propose a nonperturbative gauge invariant regulator for $d$-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in $d+1$ dimensions with quantum gauge fields that reside on one $d$-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local $d$-dimensional interpretation if and only if the chiral fermion representation is anomaly free. A physical realization of this construction leads to mirror fermions in the Standard Model with soft form factors for gauge fields and gravity. These mirror particles could evade detection except by sensitive probes at extremely low energy, and yet still affect vacuum topology, and could gravitate differently than conventional matter.

  19. Nonperturbative Regulator for Chiral Gauge Theories?

    Science.gov (United States)

    Grabowska, Dorota M.; Kaplan, David B.

    2016-05-01

    We propose a nonperturbative gauge-invariant regulator for d -dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in d +1 dimensions with quantum gauge fields that reside on one d -dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local d -dimensional interpretation only if the chiral fermion representation is anomaly free. A physical realization of this construction would imply the existence of mirror fermions in the standard model that are invisible except for interactions induced by vacuum topology, and which could gravitate differently than conventional matter.

  20. Microscopic optical potential for exotic isotopes from chiral effective field theory

    Science.gov (United States)

    Holt, J. W.; Kaiser, N.; Miller, G. A.

    2016-06-01

    We compute the isospin-asymmetry dependence of microscopic optical model potentials from realistic chiral two- and three-body interactions over a range of resolution scales Λ ≃400 -500 MeV. We show that at moderate projectile energies, E =110 -200 MeV, the real isovector part of the optical potential changes sign, a phenomenon referred to as isospin inversion. We also extract the strength and energy dependence of the imaginary isovector optical potential and find no evidence for an analogous phenomenon over the range of energies, E ≤200 MeV, considered in the present work. Finally, we compute for the first time the leading (quadratic) corrections to the Lane parametrization for the isospin-asymmetry dependence of the optical potential and observe an enhanced importance at low scattering energies.

  1. Neutral B Mixing in Staggered Chiral Perturbation Theory

    CERN Document Server

    Bernard, C

    2013-01-01

    I calculate, at one loop in staggered chiral perturbation theory, the matrix elements of the complete set of five local operators that may contribute to B mixing both in the Standard Model and in beyond-the-Standard-Model theories. Lattice computations of these matrix elements by the Fermilab Lattice/MILC collaborations (and earlier by the HPQCD collaboration) convert a light staggered quark into a naive quark, and construct the relevant 4-quark operators as local products of two local bilinears, each involving the naive light quark and the heavy quark. This particular representation of the operators turns out to be important in the chiral calculation, and it results in the presence of "wrong-spin" operators, whose contributions however vanish in the continuum limit. If the matrix elements of all five operators are computed on the lattice, then no additional low energy constants are required to describe wrong-spin chiral effects.

  2. The chiral magnetic effect in hydrodynamical approach

    OpenAIRE

    Sadofyev, A. V.; Isachenkov, M. V.

    2010-01-01

    In quark-gluon plasma nonzero chirality can be induced by the chiral anomaly. When a magnetic field is applied to a system with nonzero chirality an electromagnetic current is induced along the magnetic field. This phenomenon is called the chiral magnetic effect. In this paper appearance of the chiral magnetic effect in hydrodynamical approximation is shown. We consider a hydrodynamical model for chiral liquid with two independent currents of left and right handed particles in the presence of...

  3. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.

    Science.gov (United States)

    Govorov, Alexander O; Fan, Zhiyuan; Hernandez, Pedro; Slocik, Joseph M; Naik, Rajesh R

    2010-04-14

    Our calculations show that a nonchiral nanocrystal is able to dramatically change the circular dichroism (CD) of a chiral molecule when the nanocrystal and molecule form a complex and couple via dipole and multipole Coulomb interactions. Plasmon resonances of metal nanocrystals in the nanocrystal-molecule complex result in both the resonant enhancement of CD signals of molecules and the appearance of new spectral structures. Two mechanisms, in which a nanocrystal can influence the CD effect, have been identified. The first mechanism is the plasmon-induced change in the electromagnetic field inside the chiral molecule. The second is the optical absorption of the nanocrystal-molecule complex due to the chiral currents inside the metal nanocrystal induced by the dipole of the chiral molecule. The first mechanism creates a change in the angle between the effective electric and magnetic dipoles of the molecule. This mechanism can lead to symmetry breaking and to a plasmon-induced CD signal of the nonchiral molecule. Both mechanisms create interesting Fano-like shapes in the CD spectra. Importantly, the second mechanism gives the main contribution to the CD signal at the plasmon frequency when the absorption band of the chiral molecule is far from the plasmon resonance. This may happen in many cases since many biomolecules are optically active in the UV range, whereas plasmon resonances in commonly used nanometals are found at longer wavelengths. As concrete examples, the paper describes alpha-helix and calixarene ligand molecules coupled with metal nanocrystals. The above results are also applied to complexes incorporating semiconductor nanocrystals. The results obtained here can be used to design a variety of hybrid nanostructures with enhanced and tailored optical chirality in the visible wavelength range. PMID:20184381

  4. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    E Oset; D Cabrera; H C Chiang; C Garcia Recio; S Hirenzaki; S S Kamalov; J Nieves; Y Okumura; A Ramos; H Toki; M J Vicente Vacas

    2001-08-01

    In this talk we briefly describe some basic elements of chiral perturbation theory, , and how the implementation of unitarity and other novel elements lead to a better expansion of the -matrix for meson–meson and meson–baryon interactions. Applications are then done to the interaction in nuclear matter in the scalar and vector channels, antikaons in nuclei and - atoms, and how the meson properties are changed in a nuclear medium.

  5. CP breaking in lattice chiral gauge theories

    International Nuclear Information System (INIS)

    The CP symmetry is not manifestly implemented for the local and doubler-free Ginsparg-Wilson operator in lattice chiral gauge theory. We precisely identify where the effects of this CP breaking appear. We show that they appear in: (I) Overall constant phase of the fermion generating functional. (II) Overall constant coefficient of the fermion generating functional. (III) Fermion propagator appearing in external fermion lines and the propagator connected to Yukawa vertices. The first effect appears from the transformation of the path integral measure and it is absorbed into a suitable definition of the constant phase factor for each topological sector; in this sense there appears no 'CP anomaly'. The second constant arises from the explicit breaking in the action and it is absorbed by the suitable weights with which topological sectors are summed. The last one in the propagator is inherent to this formulation and cannot be avoided by a mere modification of the projection operator, for example, in the framework of the Ginsparg-Wilson operator. This breaking emerges as an (almost) contact term in the propagator when the Higgs field, which is treated perturbatively, has no vacuum expectation value. In the presence of the vacuum expectation value, however, a completely new situation arises and the breaking becomes intrinsically non-local, though this breaking may still be removed in a suitable continuum limit. This non-local CP breaking is expected to persist for a non-perturbative treatment of the Higgs coupling. (author)

  6. Concise theory of chiral lipid membranes

    CERN Document Server

    Tu, Z C

    2007-01-01

    A theory of chiral lipid membranes is proposed on the basis of a concise free energy density which includes the contributions of the bending and the surface tension of membranes, as well as the chirality and orientational variation of tilting molecules. This theory is consistent with the previous experiments [J.M. Schnur \\textit{et al.}, Science \\textbf{264}, 945 (1994); M.S. Spector \\textit{et al.}, Langmuir \\textbf{14}, 3493 (1998); Y. Zhao, \\textit{et al.}, Proc. Natl. Acad. Sci. USA \\textbf{102}, 7438 (2005)] on self-assembled chiral lipid membranes of DC$_{8,9}$PC. A torus with the ratio between its two generated radii larger than $\\sqrt{2}$ is predicted from the Euler-Lagrange equations. It is found that tubules with helically modulated tilting state are not admitted by the Euler-Lagrange equations, and that they are less energetically favorable than helical ripples in tubules. The pitch angles of helical ripples are theoretically estimated to be about 0$^\\circ$ and 35$^\\circ$, which are close to the mo...

  7. Chiral heat wave and mixed waves in kinetic theory

    CERN Document Server

    Frenklakh, D

    2016-01-01

    We study collective excitations in hot rotating chiral media in presence of magnetic field in kinetic theory, namely Chiral Heat Wave and its' mixings with Chiral Vortical Wave and Chiral Magnetic Wave. Our results for velocities of these waves have slight alterations from those obtained earlier. We explain the origin of these alterations and also give the most general expressions for the velocities of all these waves in hydrodynamic approach.

  8. Absence of equilibrium chiral magnetic effect

    CERN Document Server

    Zubkov, M A

    2016-01-01

    We analyse the $3+1$ D equilibrium chiral magnetic effect (CME). We apply derivative expansion to the Wigner transform of the two - point Green function. This technique allows us to express the response of electric current to external electromagnetic field strength through the momentum space topological invariant. We consider the wide class of the lattice regularizations of quantum field theory (that includes, in particular, the regularization with Wilson fermions) and also certain lattice models of solid state physics (including those of Dirac semimetals). It appears, that in these models the mentioned topological invariant vanishes identically at nonzero chiral chemical potential. That means, that the bulk equilibrium CME is absent in those systems.

  9. The chiral perturbation theory: theoretical aims and experimental perspectives; La theorie des perturbations chirales: enjeux theoriques et perspectives experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1996-12-31

    Chiral perturbation theory enables to link some hadronic processes at low energy involving {pi},K and {eta} pseudo scalar mesons with some non-perturbative QCD observables which reflect chiral symmetry breaking. The possibilities of investigating the chiral structure of QCD emptiness in several experimental projects within the field of hadronic physics are reviewed 44 refs.

  10. Chiral Quark Meson Theory for N and Δ

    International Nuclear Information System (INIS)

    The Chiral Quark Meson Theory (CQMT) is a theory of effective interaction designed to describe the action of quantum chromodynamics in the ground state of the nucleon (N) and delta (Δ). It is conjectured that N and Δ are describable satisfactorily in terms of independently moving quarks. The quark wave function is restricted to be a single determinant. This precludes the possibility of describing a single nucleon. The theory must deal with a linear combination of N and Δ. The role of octet gluon towers was examined, with the finding that it can be simulated at the mean field level by a chiral invariant quark-meson lagrangian. Various nucleon properties were calculated. 24 refs., 5 figs., 2 tabs

  11. Nonequilibrium Chiral Dynamics and Effective Lagrangians

    CERN Document Server

    Nicola, A G

    2001-01-01

    We review our recent work on Chiral Lagrangians out of thermal equilibrium, which are introduced to analyse the pion gas formed after a Relativistic Heavy Ion Collision. Chiral Perturbation Theory is extended by letting $\\fpi$ be time dependent and allows to describe explosive production of pions in parametric resonance. This mechanism could be relevant if hadronization occurs at the chiral phase transition.

  12. On integration over Fermi fields in chiral and supersymmetric theories

    International Nuclear Information System (INIS)

    Chiral and supersymmetric theories are considered which cannot be formulated directly in Euclidean space or regularized by means of massive fields in a manifestly gauge invariant fashion. In case of so called real representations a simple recipe is proposed which allows for unambiguous evaluation of the fermionic determinant circumventing the difficulties mentioned. As application of the general technique the effective fermionic interactions induced by instantons of small size within simplest chiral and supesymmetric theories are calculated (SU(2) as the gauge group and one doublet of Weyl spinors or a triplet of Majorana spinors, respectively). In the latter case the effective Lagrangian violates explicitly invariance under supersymmetric transformations on the fermionic and vector fields defined in standard way

  13. Sigma Terms and Strangeness Contents of Baryon Octet in Modified Chiral Perturbation Theory

    International Nuclear Information System (INIS)

    In the frame work of chiral perturbation theory, a modified effective Lagrangian for meson-baryon system is constructed, where the SU(3) breaking effect for meson is considered. The difference between physical and chiral limit decay constants is taken into account. Calculated to one loop at O(p3), the sigma terms and strangeness contents of baryon octet are obtained.

  14. Testing Lorentz Symmetry using Chiral Perturbation Theory

    CERN Document Server

    Noordmans, J P

    2016-01-01

    We consider the low-energy effects of a selected set of Lorentz- and CPT-violating quark and gluon operators by deriving the corresponding chiral effective lagrangian. Using this effective lagrangian, low-energy hadronic observables can be calculated. We apply this to magnetometer experiments and derive the best bounds on some of the Lorentz-violating coefficients. We point out that progress can be made by studying the nucleon-nucleon potential, and by considering storage-ring experiments for deuterons and other light nuclei.

  15. Holographic Chiral Electric Separation Effect

    OpenAIRE

    Pu, Shi; Wu, Shang-Yu; Yang, Di-Lun

    2014-01-01

    We investigate the chiral electric separation effect, where an axial current is induced by an electric field in the presence of both vector and axial chemical potentials, in a strongly coupled plasma via the Sakai-Sugimoto model with an $U(1)_R\\times U(1)_L$ symmetry. By introducing different chemical potentials in $U(1)_R$ and $U(1)_L$ sectors, we compute the axial direct current (DC) conductivity stemming from the chiral current and the normal DC conductivity. We find that the axial conduct...

  16. Double chiral logarithms of Generalized Chiral Perturbation Theory for low-energy pi-pi scattering

    OpenAIRE

    L. GirlandaPadua U. & INFN

    2015-01-01

    We express the two-massless-flavor Gell-Mann--Oakes--Renner ratio in terms of low-energy pi-pi observables, including the O(p^6) double chiral logarithms of generalized chiral perturbation theory. Their contribution is sizeable and tends to compensate the one from the single chiral logarithms. However it is not large enough to spoil the convergence of the chiral expansion. As a signal of reduced theoretical uncertainty, we find that the scale dependence from the one-loop single logarithms is ...

  17. Three-nucleon scattering by using chiral perturbation theory potential

    International Nuclear Information System (INIS)

    Three-nucleon scattering problems are studied by using two-nucleon and three-nucleon potentials derived from chiral perturbation theory. The three-nucleon term is shown to appear in the effective potential of the rank of next-to-next-to-leading order (NNLO). New three-nucleon forces are taken into consideration in addition to the conventional Fujita-Miyazawa (FM) type three-nucleon potential. Two-nucleon potential of the chiral perturbation theory is as precise as the conventional ones in low energy region. The FM type three-nucleon force which explains Sagara discrepancy in high energy region is introduced automatically. Concerning the Ay puzzle, the results seems to behave as if the puzzle has been solved at the level of NLO, but at the NNLO (without three-nucleon force) level the result is similar to the cases of conventional potential indicating the need of three-nucleon force. In contrast to the FM type three-nucleon force, five free parameters exist in the new D and E type three-nucleon forces introduced by the NNLO, but they are reduced to two independent parameters by antisymmetrization, which are found to be sensitive to the coupling energy of tritons and to the nd scattering length (spin doublet state). Parameters determined from them cannot give satisfactory answer to the Ay puzzle. It seems, however, too hasty to conclude that Ay puzzle cannot be solved by the chiral perturbation theory. (S. Funahashi)

  18. Chiral gap effect in curved space

    CERN Document Server

    Flachi, Antonino

    2014-01-01

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  19. Fermion-boson metamorphosis in a chiral invariant theory

    International Nuclear Information System (INIS)

    A chiral invariant theory in two dimensions with massless fermions is examined in its Bose form. Dynamical generation of mass occurs via boson transmutation, which preserves the chiral symmetry of the massless theory and is independent of the number of fermions. Several new features of the fermion theory, such as hidden symmetry, duality and triality symmetries are discovered. Some interesting connections with other two-dimensional models are also presented. (orig.)

  20. One-loop Chiral Perturbation Theory with two fermion representations

    CERN Document Server

    DeGrand, Thomas; Neil, Ethan T; Shamir, Yigal

    2016-01-01

    We develop Chiral Perturbation Theory for chirally broken theories with fermions in two different representations of the gauge group. Any such theory has a non-anomalous singlet $U(1)_A$ symmetry, yielding an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone boson, as well as for the two condensates. The results can be generalized to more than two representations.

  1. The non chiral fusion rules in rational conformal field theories

    CERN Document Server

    Rida, A

    1999-01-01

    We introduce a general method to construct the non chiral fusion rules in rational conformal field theories. We are particularly interested by the models of the complementary series or like-D series which are solutions of modular invariant partition function. The form proposed of the non chiral fusion rules has a structure of Zn grading.

  2. Chiral Boson Theory on the Light-Front

    CERN Document Server

    Srivastava, P P

    1999-01-01

    The {\\it front form} framework for describing the quantized theory of chiral boson is discussed. It avoids the conflict with the requirement of the principle of microcausality as is found in the conventional equal- time treatment. The discussion of the Floreanini-Jackiw model and its modified version for describing the chiral boson becomes very transparent on the light-front.

  3. On the overlap formulation of chiral gauge theory

    International Nuclear Information System (INIS)

    The overlap formula proposed by Narayanan and Neuberger in chiral gauge theories is examined. The free chiral and Dirac Green's functions are constructed in this formalism. Four dimensional anomalies are calculated and the usual anomaly cancellation for one standard family of quarks and leptons is verified. (author). 4 refs

  4. Chiral Magnetic Effect Task Force Report

    CERN Document Server

    Skokov, Vladimir; Koch, Volker; Schlichting, Soeren; Thomas, Jim; Voloshin, Sergei; Wang, Gang; Yee, Ho-Ung

    2016-01-01

    In this report, we briefly examine the current status of the study of the chiral magnetic effect including theory and experimental progress. We recommend future strategies for resolving uncertainties in interpretation including recommendations for theoretical work, recommendations for measurements based on data collected in the past five years, and recommendations for beam use in the coming years of RHIC. We have specifically investigated the case for colliding nuclear isobars (nuclei with the same mass but different charge) and find the case compelling. We recommend that a program of nuclear isobar collisions to isolate the chiral magnetic effect from background sources be placed as a high priority item in the strategy for completing the RHIC mission.

  5. Chiral magnetic effect in the PNJL model

    CERN Document Server

    Fukushima, Kenji; Gatto, Raoul

    2010-01-01

    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $\\mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $\\mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.

  6. Applications Of Chiral Perturbation Theory To Lattice Qcd

    CERN Document Server

    Van de Water, R S

    2005-01-01

    Quantum chromodynamics (QCD) is the fundamental theory that describes the interaction of quarks and gluons. Thus, in principle, one should be able to calculate all properties of hadrons from the QCD Lagrangian. It turns out, however, that such calculations can only be performed numerically on a computer using the nonperturbative method of lattice QCD, in which QCD is simulated on a discrete spacetime grid. Because lattice simulations use unphysically heavy quark masses (for computational reasons), lattice results must be connected to the real world using expressions calculated in chiral perturbation theory (χPT), the low-energy effective theory of QCD. Moreover, because real spacetime is continuous, they must be extrapolated to the continuum using an extension of χPT that includes lattice discretization effects, such as staggered χPT. This thesis is organized as follows. We motivate the need for lattice QCD and present the basic methodology in Chapter 1. We describe a common approximat...

  7. Masses and Sigma Terms of Pentaquarks in Chiral Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ya; L(U) Xiao-Fu

    2006-01-01

    Assuming that the recently θ+ and other exotic resonances belong to the pentaquark (-1-0) of SU(3)f with JP= 1/2, we constructed a relativistic effective lagrangian in the frame work of baryon chiral perturbation theory.The masses of pentaquarks under isospin symmetry is determined by calculating the propagator to one loop, where the extended on-mass-shell renormalization scheme is applied. Using the experimental data for masses of θ+, (I) and N, we estimated the mass of Σ. And the σ terms.

  8. Neutral pion electroproduction off light nuclei in chiral perturbation theory

    International Nuclear Information System (INIS)

    Threshold pion electroproduction on tri-nucleon systems is investigated in the framework of baryon Chiral Perturbation Theory (ChPT) at next-to-leading one-loop order O(q4) in the chiral expansion. To this order in small momenta, the production operator is a sum of one- and two-nucleon terms. While the one-nucleon terms resemble the impulse approximation, the two-nucleon contributions represent corrections due to the relevant nuclear interactions, e.g. pion-exchange interactions, which prove to be dominant, and due to recoil effects of the participating nucleons, which appear to be negligible. We calculate the expectation value of the production operator using chiral wave functions in a three-dimensional approach without partial wave expansion. The resulting integrals are evaluated using adaptive Monte Carlo integration, the VEGAS algorithm of Lepage. We obtain results for the threshold production multipoles E0+ and L0+ on 3He and 3H and comment on the sensitivity to the fundamental neutron amplitude E0+π0n. 3He appears to be a particularly promising target to extract information about the neutron amplitude. This idea is usually invoked for spin-dependent quantities since the 3He wave function is strongly dominated by the principal S-state component which suggests that its spin is largely driven by the one of the neutron.

  9. Chiral Bosons as solutions of the BV master equation 2D chiral gauge theories

    OpenAIRE

    Braga, N. R. F.; Montani, H.

    1994-01-01

    We construct the chiral Wess-Zumino term as a solution for the Batalin-Vilkovisky master equation for anomalous two-dimensional gauge theories, working in an extended field-antifield space, where the gauge group elements are introduced as additional degrees of freedom. We analyze the Abelian and the non-Abelian cases, calculating in both cases the BRST generator in order to show the physical equivalence between this chiral solution for the master equation and the usual (non-chiral) one.

  10. Quantum Monte Carlo calculations of electromagnetic moments and transitions in A{<=}9 nuclei including meson-exchange currents derived from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Saori Pastore, S.C. Pieper, Rocco Schiavilla, Robert Wiringa

    2013-03-01

    Quantum Monte Carlo calculations of electromagnetic moments and transitions are reported for A{<=}9 nuclei. The realistic Argonne v{sub 18} two-nucleon and Illinois-7 three-nucleon potentials are used to generate the nuclear wave functions. Contributions of two-body meson-exchange current (MEC) operators are included for magnetic moments and M1 transitions. The MEC operators have been derived in both a standard nuclear physics approach and a chiral effective field theory formulation with pions and nucleons including up to one-loop corrections. The two-body MEC contributions provide significant corrections and lead to very good agreement with experiment. Their effect is particularly pronounced in the A=9, T=3/2 systems, in which they provide up to ~20% (~40%) of the total predicted value for the {sup 9}Li ({sup 9}C) magnetic moment.

  11. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  12. D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories

    CERN Document Server

    Franco, Sebastian; Uranga, Angel

    2015-01-01

    Systems of D3-branes at orientifold singularities can receive non-perturbative D-brane instanton corrections, inducing field theory operators in the 4d effective theory. In certain non-chiral examples, these systems have been realized as the infrared endpoint of a Seiberg duality cascade, in which the D-brane instanton effects arise from strong gauge theory dynamics. We present the first UV duality cascade completion of chiral D3-brane theories, in which the D-brane instantons arise from gauge theory dynamics. Chiral examples are interesting because the instanton fermion zero mode sector is topologically protected, and therefore lead to more robust setups. As an application of our results, we provide a UV completion of certain D-brane orientifold systems recently claimed to produce conformal field theories with conformal invariance broken only by D-brane instantons.

  13. Hadronic interactions from effective chiral Lagrangians of quarks and gluons

    International Nuclear Information System (INIS)

    We discuss the combined used of the techniques of effective chiral field theory and the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between the nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of the nuclear matter using this formalism. (author). 9 refs., 2 figs

  14. Chiral magnetic effect in ZrTe5

    Science.gov (United States)

    Li, Qiang; Kharzeev, Dmitri E.; Zhang, Cheng; Huang, Yuan; Pletikosić, I.; Fedorov, A. V.; Zhong, R. D.; Schneeloch, J. A.; Gu, G. D.; Valla, T.

    2016-06-01

    The chiral magnetic effect is the generation of an electric current induced by chirality imbalance in the presence of a magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin 1/2 particles with a definite projection of spin on momentum)--a remarkable phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasiparticles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the measurement of magnetotransport in zirconium pentatelluride, ZrTe5, that provides strong evidence for the chiral magnetic effect. Our angle-resolved photoemission spectroscopy experiments show that this material’s electronic structure is consistent with a three-dimensional Dirac semimetal. We observe a large negative magnetoresistance when the magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. The observed phenomenon stems from the effective transmutation of a Dirac semimetal into a Weyl semimetal induced by parallel electric and magnetic fields that represent a topologically non-trivial gauge field background. We expect that the chiral magnetic effect may emerge in a wide class of materials that are near the transition between the trivial and topological insulators.

  15. Chiral pumping effect induced by rotating electric fields

    Science.gov (United States)

    Ebihara, Shu; Fukushima, Kenji; Oka, Takashi

    2016-04-01

    We propose an experimental setup using 3D Dirac semimetals to access a novel phenomenon induced by the chiral anomaly. We show that the combination of a magnetic field and a circularly polarized laser induces a finite charge density with an accompanying axial current. This is because the circularly polarized laser breaks time-reversal symmetry and the Dirac point splits into two Weyl points, which results in an axial-vector field. We elucidate the appearance of the axial-vector field with the help of the Floquet theory by deriving an effective Hamiltonian for high-frequency electric fields. This anomalous charge density, i.e., the chiral pumping effect, is a phenomenon reminiscent of the chiral magnetic effect with a chiral chemical potential. We explicitly compute the pumped density and the axial-current expectation value. We also take account of coupling to the chiral magnetic effect to calculate a balanced distribution of charge and chirality in a material that behaves as a chiral battery.

  16. A Wilson-Majorana regularization for lattice chiral gauge theories

    International Nuclear Information System (INIS)

    We discuss the regularization of chiral gauge theories on the lattice introducing only physical degrees of freedom. This is obtained by writing the Wilson term in a Majorana form, at the expense of the U(1) symmetry related to fermion number conservation. The idea of restoring chiral invariance in the continuum by introducing a properly chosen set of counterterms to be added to the tree level action is checked against one-loop perturbative calculations. (orig.)

  17. Regularized path integrals and anomalies -- U(1) chiral gauge theory

    OpenAIRE

    Kopper, Christoph; Lévêque, Benjamin

    2011-01-01

    We analyse the origin of the Adler anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [1]. Here we analyse U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-p...

  18. U(1) chiral gauge theory on lattice with gauge-fixed domain wall fermions

    International Nuclear Information System (INIS)

    We investigate a U(1) lattice chiral gauge theory (LξGT) with domain wall fermions and gauge fixing. In the reduced model limit, our perturbative and numerical investigations at Yukawa coupling y = 1 show that there are no extra mirror chiral modes. The longitudinal gauge degrees of freedom have no effect on the free domain wall fermion spectrum consisting of opposite chiral modes at the domain wall and the anti-domain wall which have an exponentially damped overlap. Our numerical investigation at small Yukawa couplings (y << 1) also leads to similar conclusions as above

  19. Improved description of the πN-scattering phenomenology in covariant baryon chiral perturbation theory

    Directory of Open Access Journals (Sweden)

    Alarcón Jose Manuel

    2014-06-01

    Full Text Available We highlight some of the recent advances in the application of chiral effective field theory (chiral EFT with baryons to the πN scattering process. We recall some problems that cast doubt on the applicability of chiral EFT to πN and show how the relativistic formalism, once the Δ(1232-resonance is included as an explicit degree of freedom, solves these issues. Finally it is shown how this approach can be used to extract the σ-terms from phenomenological information.

  20. Disoriented chiral condensate: Theory and phenomenology

    International Nuclear Information System (INIS)

    These notes are an abbreviated version of lectures given at the 1997 Zakopane School. They contain two topics. The first is a description in elementary terms of the basic ideas underlying the speculative hypothesis that pieces of strong-interaction vacuum with a rotated chiral order parameter, disoriented chiral condensate or DCC, might be produced in high energy elementary particle collisions. The second topic is a discussion of the phenomenological techniques which may be applied to data in order to experimentally search for the existence of DCC

  1. Heavy-tailed chiral random matrix theory

    CERN Document Server

    Kanazawa, Takuya

    2016-01-01

    We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.

  2. Stability of topological defects in chiral superconductors: London theory

    International Nuclear Information System (INIS)

    This paper examines the thermodynamic stability of chiral domain walls and vortices-topological defects which can exist in chiral superconductors. Using London theory it is demonstrated that at sufficiently small applied and chiral fields the existence of domain walls and vortices in the sample is not favored and the sample's configuration is a single domain. The particular chirality of the single-domain configuration is neither favored nor disfavored by the applied field. Increasing the field leads to an entry of a domain-wall loop or a vortex into the sample. The formation of a straight domain wall is never preferred in equilibrium. Values of the entry (critical) fields for both types of defects, as well as the equilibrium size of the domain-wall loop, are calculated. We also consider a mesoscopic chiral sample and calculate its zero-field magnetization, susceptibility, and a change in the magnetic moment due to a vortex or a domain-wall entry. We show that in the case of a soft domain wall whose energetics is dominated by the chiral current (and not by the surface tension) its behavior in mesoscopic samples is substantially different from that in the bulk case and can be used for a controllable transfer of edge excitations. The applicability of these results to Sr2RuO4 - a tentative chiral superconductor - is discussed.

  3. Tumbling and complementarity in a chiral gauge theory

    International Nuclear Information System (INIS)

    We consider in detail a chiral SU(N) gauge theory which undergoes multiple tumbling. An extension of the notion of complementarity is used which allows us to deduce the set of massless fermions, in the confining phase of the theory, which we needed for anomaly matching. The liklehood of this confining phase ever being realized in practice is discussed. (orig.)

  4. Chiral magnetic effect and holography

    International Nuclear Information System (INIS)

    The chiral magnetic effect (CME) is a highly discussed effect in heavy-ion collisions stating that, in the presence of a magnetic field B, an electric current is generated in the background of topologically nontrivial gluon fields. We present a holographic (AdS/CFT) description of the CME in terms of a fluid-gravity model which is dual to a strongly-coupled plasma with multiple anomalous U(1) currents. In the case of two U(1) charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We will holographically compute this coefficient at strong coupling and compare it with the hydrodynamic result. Finally, we will discuss an anisotropic variant of the model and study a possible dependence of the CME on the elliptic flow coefficient ν2.

  5. Chiral magnetic effect and holography

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Ingo; Kalaydzhyan, Tigran

    2013-01-15

    The chiral magnetic effect (CME) is a highly discussed effect in heavy-ion collisions stating that, in the presence of a magnetic field B, an electric current is generated in the background of topologically nontrivial gluon fields. We present a holographic (AdS/CFT) description of the CME in terms of a fluid-gravity model which is dual to a strongly-coupled plasma with multiple anomalous U(1) currents. In the case of two U(1) charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We will holographically compute this coefficient at strong coupling and compare it with the hydrodynamic result. Finally, we will discuss an anisotropic variant of the model and study a possible dependence of the CME on the elliptic flow coefficient {nu}{sub 2}.

  6. Landau Theory and the Emergence of Chirality in Viral Capsids

    CERN Document Server

    Dharmavaram, Sanjay; Klug, William; Rudnick, Joseph; Bruinsma, Robijn

    2016-01-01

    We present a generalized Landau-Brazovskii theory for the solidification of chiral molecules on a spherical surface. With increasing sphere radius one encounters first intervals where robust achiral density modulations appear with icosahedral symmetry via first-order transitions. Next, one en- counters intervals where fragile but stable icosahedral structures still can be constructed but only by superposition of multiple irreducible representations. Chiral icoshedral structures appear via continuous or very weakly first-order transitions. Outside these parameter intervals, icosahedral symmetry is broken along a three-fold axis or a five-fold axis. The predictions of the theory are compared with recent numerical simulations.

  7. Dissipative Field Theory with Caldeira-Leggett Method and its Application to Disoriented Chiral Condensation

    CERN Document Server

    Yabu, H; Suzuki, T; Yabu, Hiroyuki; Nozawa, Satoshi; Suzuki, Toru

    1998-01-01

    The effective field theory including the dissipative effect is developed based on the Caldeira-Leggett theory at the classical level. After the integration of the small field fluctuations considered as the field radiation, the integro-differential field equation is given and shown to include the dissipative effects. In that derivation, special cares should be taken for the boundary condition of the integration. Application to the linear sigma model is given, and the decay process of the chiral condensate is calculated with it, both analytically in the linear approximation and numerically. With these results, we discuss the stability of chiral condensates within the quenched approximation.

  8. Chiral anomalies in higher-derivative supersymmetric 6D gauge theories

    International Nuclear Information System (INIS)

    We show that the recently constructed higher-derivative 6D SYM theory involves internal chiral anomaly breaking gauge invariance. The anomaly is cancelled when adding to the theory an adjoint matter hyper-multiplet. One shows that as the effective charge grows at high energies, the theories are not consistently defined nonperturbatively. Constructing a nontrivial 6D theory that would be internally consistent both perturbatively and nonperturbatively remains a major challenge. (author)

  9. Chiral perturbation theory analysis of baryon temperature mass shifts

    CERN Document Server

    Bedaque, P F

    1995-01-01

    We compute the finite temperature pole mass shifts of the octet and decuplet baryons using heavy baryon chiral perturbation theory and the 1/N_c expansion, where N_c is the number of QCD colors. We consider the temperatures of the order of the pion mass m_\\pi, and expand truncate the chiral and 1/N_c expansions assuming that m_\\pi \\sim 1/N_c. There are three scales in the problem: the temperature T, the pion mass m_\\pi, and the octet--decuplet mass difference. Therefore, the result is not simply a power series in T. We find that the nucleon and \\Delta temperature mass shifts are opposite in sign, and that their mass difference changes by 20% in the temperature range 90 MeV < T < 130 MeV, that is the range where the freeze out in relativistic heavy ion collisions is expected to occur. We argue that our results are insensitive to the neglect of 1/N_c- supressed effects; the main purpose of the 1/N_c expansion in this work is to justify our treatment of the decuplet states.

  10. On SU(3) effective models and chiral phase-transition

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...

  11. Phases of N=1 Supersymmetric Chiral Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Nathaniel; /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Essig, Rouven; /Princeton, Inst. Advanced Study /YITP, Stony Brook /SLAC /Stanford U., Phys. Dept.; Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2012-02-17

    We analyze the phases of supersymmetric chiral gauge theories with an antisymmetric tensor and (anti)fundamental flavors, in the presence of a classically marginal superpotential deformation. Varying the number of flavors that appear in the superpotential reveals rich infrared chiral dynamics and novel dualities. The dualities are characterized by an infinite family of magnetic duals with arbitrarily large gauge groups describing the same fixed point, correlated with arbitrarily large classical global symmetries that are truncated nonperturbatively. At the origin of moduli space, these theories exhibit a phase with confinement and chiral symmetry breaking, an interacting nonabelian Coulomb phase, and phases where an interacting sector coexists with a sector that either s-confines or is in a free magnetic phase. Properties of these intriguing 'mixed phases' are studied in detail using duality and a-maximization, and the presence of superpotential interactions provides further insights into their formation.

  12. Magnetic moments of charm baryons in chiral perturbation theory

    International Nuclear Information System (INIS)

    Magnetic moments of the charm baryons of the sextet and of the 3*-plet are re-evaluated in the framework of Heavy Hadron Chiral Perturbation Theory (HHCPT). NRQM and broken SU(4) unitary symmetry model are used to obtain tree-level magnetic moments. Calculations of a unitary symmetry part of one-loop contributions to magnetic moments of the charm baryons are performed in detail in terms of the SU(4) couplings of charm baryons to Goldstone bosons. The relations between the magnetic moments of the sextet 1/2 baryons with the one-loop corrections are shown to coincide with the NRQM relations. The correspondence between HHCPT results and those of NRQM and unitary symmetry model is discussed. It is shown that one-loop corrections can effectively be absorbed into the tree-level formulae for the magnetic moments of the charm baryons in the broken SU(4) unitary symmetry model and partially in the NRQM. (author)

  13. Chiral perturbation theory of muonic-hydrogen Lamb shift: polarizability contribution

    OpenAIRE

    Alarcón, Jose Manuel; Lensky, Vadim; Pascalutsa, Vladimir

    2014-01-01

    The proton polarizability effect in the muonic-hydrogen Lamb shift comes out as a prediction of baryon chiral perturbation theory at leading order and our calculation yields ΔE(pol)(2P-2S)=8-1+3μ eV. This result is consistent with most of evaluations based on dispersive sum rules, but it is about a factor of 2 smaller than the recent result obtained in heavy-baryon chiral perturbation theory. We also find that the effect of Δ(1232) -resonance excitation on the Lamb shift is suppressed, as is ...

  14. Regularized path integrals and anomalies: U(1) chiral gauge theory

    International Nuclear Information System (INIS)

    We analyze the origin of the Adler-Bell-Jackiw anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [Kopper, C. and Mueller, V. F., 'Renormalization of spontaneously broken SU(2) Yang-Mills theory with flow equations', Rev. Math. Phys. 21, 781 (2009)]. Here we analyze U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-photon amplitude leads to a violation of the Slavnov-Taylor identities which cannot be restored on taking the UV limit in the renormalized theory. We point out that this fact is related to the nonanalyticity of this amplitude in the infrared region.

  15. A Review of Heavy-Quark and Chiral Perturbation Theory

    CERN Document Server

    Naboulsi, R

    2003-01-01

    In this paper we discuss the relations between various decays that can be obtained by combining heavy-quark perturbation theory and chiral perturbation theory for the emission of soft pseudoscalar particles. In the heavy-quark limit of QCD the interactions of the heavy quark Q are simplified because of a new set of symmetries not manifestly present in the full QCD. This fact is usually used in the construction of the new effective theory where the heavy-quark mass goes to infinity $(m_Q\\gg \\Lambda_{QCD})$ with its four-velocity fixed. The spin-flavor symmetry group of this new theory with N heavy quarks is SU(2N) because the interactions of the heavy quarks are independent of their spins and flavors. This fact is widely used in the description of the semileptonic decays of $B$ mesons to $D$ and $D^\\ast$ mesons where heavy-quark symmetry allows a parameterization of the decay amplitudes in terms of the single Isgur-Wise function [1].

  16. Three-nucleon force at large distances: Insights from chiral effective field theory and the large-Nc expansion

    International Nuclear Information System (INIS)

    We confirm the claim of Phillips and Schat (Phys. Rev. C 88, 034002 (2013)) that 20 operators are sufficient to represent the most general local isospin-invariant three-nucleon force and derive explicit relations between the two sets of operators suggested in the above-mentioned work and that by Krebs et al. (Phys. Rev. C 87, 054007 (2013)). We use the set of 20 operators to discuss the chiral expansion of the long- and intermediate-range parts of the three-nucleon force up to next-to-next-to-next-to-next-to-leading order in the standard formulation without explicit Δ(1232) degrees of freedom. We also address implications of the large-Nc expansion in QCD for the size of the various three-nucleon force contributions. (orig.)

  17. Supergravity for Effective Theories

    OpenAIRE

    Daniel Baumann; Daniel Green(Stanford Institute for Theoretical Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, U.S.A.)

    2011-01-01

    Higher-derivative operators are central elements of any effective field theory. In supersymmetric theories, these operators include terms with derivatives in the K\\"ahler potential. We develop a toolkit for coupling such supersymmetric effective field theories to supergravity. We explain how to write the action for minimal supergravity coupled to chiral superfields with arbitrary numbers of derivatives and curvature couplings. We discuss two examples in detail, showing how the component actio...

  18. Quantum theory of spin waves in finite chiral spin chains

    OpenAIRE

    Roldán-Molina, A.; Santander, M. J.; Núñez, A.S.; Fernández Rossier, Joaquín

    2013-01-01

    We calculate the effect of spin waves on the properties of finite-size spin chains with a chiral spin ground state observed on biatomic Fe chains deposited on iridium(001). The system is described with a Heisenberg model supplemented with a Dzyaloshinskii-Moriya coupling and a uniaxial single ion anisotropy that presents a chiral spin ground state. Spin waves are studied using the Holstein-Primakoff boson representation of spin operators. Both the renormalized ground state and the elementary ...

  19. (Pi+Pi-) Atom in Chiral Perturbation Theory

    OpenAIRE

    Ivanov, M. A.; Lyubovitskij, V. E.; Lipartia, E. Z.; Rusetsky, A. G.

    1998-01-01

    Hadronic (Pi+Pi-) atom is studied in the relativistic perturbative approach based on the Bethe-Salpeter equation. The general expression for the atom lifetime is derived. Lowest-order corrections to the relativistic Deser-type formula for the atom lifetime are evaluated within the Chiral Perturbation Theory.

  20. Soliton solutions of Chiral Born-Infeld Theory and baryons

    OpenAIRE

    Pavlovsky, Oleg V.

    2003-01-01

    Finite-energy topological spherically symmetrical solutions of Chiral Born-Infeld Theory are studied. Properties of these solution are obtained, and a possible physical interpretation is also given. We compute static properties of baryons (mass,main radius, magnetic main radius, axial coupling constant) whose solutions can be interpreted as the baryons of QCD.

  1. Chiral random matrix theory for two-color QCD at high density

    OpenAIRE

    Kanazawa, Takuya; Wettig, Tilo; Yamamoto, Naoki

    2009-01-01

    We identify a non-Hermitian chiral random matrix theory that corresponds to two-color QCD at high density. We show that the partition function of the random matrix theory coincides with the partition function of the finite-volume effective theory at high density, and that the Leutwyler-Smilga-type spectral sum rules of the random matrix theory are identical to those derived from the effective theory. The microscopic Dirac spectrum of the theory is governed by the BCS gap, rather than the conv...

  2. Quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be with meson-exchange currents derived from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, S. [University of South Carolina; Wiringa, Robert B. [ANL; Pieper, Steven C. [ANL; Schiavilla, Rocco [Old Dominion U., JLAB

    2014-08-01

    We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.

  3. Nuclear chiral and magnetic rotation in covariant density functional theory

    Science.gov (United States)

    Meng, Jie; Zhao, Pengwei

    2016-05-01

    Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC–CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in 133Ce and 103Rh are discussed.

  4. Chiral symmetry aspects in supersymmetric confining gauge theories

    International Nuclear Information System (INIS)

    We provide a detailed analysis of the interplay between chiral symmetry and supersymmetry within the context of supersymmetric confining gauge theories. We describe a general method leading to exact results on quark mass dependences of physical quantities such as bound-state masses, bilinear condensates,... We also establish the commutation relations satisfied by the supersymmetric and chiral charges in presence of the soft breaking due to quark masses. We show that, if the chiral limit is unique, the global SUsub(L)(Nsub(f)) x SUsub(R)(Nsub(f)) symmetry is not spontaneously broken. If this limit is not unique, a spontaneous breakdown of the axial symmetry is allowed, but only at the cost of a simultaneous breakdown of the vector symmetry

  5. Nuclear chiral and magnetic rotation in covariant density functional theory

    CERN Document Server

    Meng, Jie

    2016-01-01

    Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of tilted axis cranking CDFT and its application for magnetic and antimagnetic rotation phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets (M\\c{hi}D) in 133Ce and 103Rh are discussed.

  6. Chiral effective model with the Polyakov loop

    OpenAIRE

    Fukushima, Kenji

    2003-01-01

    We discuss how the simultaneous crossovers of deconfinement and chiral restoration can be realized. We propose a dynamical mechanism assuming that the effective potential gives a finite value of the chiral condensate if the Polyakov loop vanishes. Using a simple model, we demonstrate that our idea works well for small quark mass, though there should be further constraints to reach the perfect locking of two phenomena.

  7. Effective action for composite operators and chiral symmetry breakdown in asymptotically free and non-asymptotically free gauge theories

    International Nuclear Information System (INIS)

    An essential distinction in the relaization of the PCAC dynamics in asymptotically free and non-asymptotically free (with a non-trivial ultraviolet-stable fixed point) gauge theories is revealed. For the latter theories an analytical expressions for the condensate is obtained in the two-loop approximation and arguments of support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed. Besides, the mass relations for pseudoscalar mesons in arbitrary Θ-sector are obtained in the first order in fermion bare masses and the impossibility for spontaneous P and CP-symmetries breaking in vector-like gauge theories at Θ=0 is shown

  8. Chiral Magnetic Effect in Hydrodynamic Approximation

    CERN Document Server

    Zakharov, Valentin I

    2012-01-01

    We review derivations of the chiral magnetic effect (ChME) in hydrodynamic approximation. The reader is assumed to be familiar with the basics of the effect. The main challenge now is to account for the strong interactions between the constituents of the fluid. The main result is that the ChME is not renormalized: in the hydrodynamic approximation it remains the same as for non-interacting chiral fermions moving in an external magnetic field. The key ingredients in the proof are general laws of thermodynamics and the Adler-Bardeen theorem for the chiral anomaly in external electromagnetic fields. The chiral magnetic effect in hydrodynamics represents a macroscopic manifestation of a quantum phenomenon (chiral anomaly). Moreover, one can argue that the current induced by the magnetic field is dissipation free and talk about a kind of "chiral superconductivity". More precise description is a ballistic transport along magnetic field taking place in equilibrium and in absence of a driving force. The basic limitat...

  9. Chiral Magnetic Effect in Heavy Ion Collisions

    CERN Document Server

    Liao, Jinfeng

    2016-01-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.

  10. Scaling behaviour of the effective chiral action and stability of the chiral soliton

    International Nuclear Information System (INIS)

    The effective chiral action is evaluated within a novel improved heat-kernel expansion, which includes gradients of the chiral field in a non-perturbative way. The exact scaling behaviour of the effective action of a localized chiral field with respect to changing its spatial size is found. From this it is proved that the radiatively induced derivative terms cannot absolutely stabilize the chiral soliton against collapsing. The collapsing of the soliton is, however, accompanied by a vanishing of the baryon charge. It is argued that the effective chiral action constrained to a fixed baryon number may still admit stable soliton configurations. (orig.)

  11. SU(N) chiral gauge theories on the lattice

    International Nuclear Information System (INIS)

    We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-Abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the Abelian case. The new ingredient allowing us to deal with the non-Abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-Abelian group (which we will take to be SU(N)) down to its maximal Abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining Abelian gauge symmetry. This modifies the equivariant Becchi-Rouet-Stora-Tyutin (BRST) identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the Abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be added to the lattice gauge-fixing action in order to have access to the desired critical point in the phase diagram. We argue that gauge invariance is restored in the continuum limit by adjusting a finite number of counter terms. We emphasize that weak-coupling perturbation theory applies at the critical point which defines the continuum limit of our lattice chiral gauge theory

  12. Chiral rings and phases of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    We solve for the expectation values of chiral operators in supersymmetric U(N) gauge theories with matter in the adjoint, fundamental and anti-fundamental representations. A simple geometric picture emerges involving a description by a meromorphic one-form on a Riemann surface. The equations of motion are equivalent to a condition on the integrality of periods of this form. The solution indicates that all semiclassical phases with the same number of U(1) factors are continuously connected. (author)

  13. Chiral kinetic theory and anomalous hydrodynamics in even spacetime dimensions

    CERN Document Server

    Dwivedi, Vatsal

    2016-01-01

    We study the hydrodynamics of a gas of noninteracting Weyl fermions coupled to the electromagnetic field in $(2N + 1) + 1$ spacetime dimensions using the chiral kinetic theory, which encodes the gauge anomaly in the Chern character of the nonabelian Berry connection over the Fermi surface. We derive the anomalous contributions to the relativistic hydrodynamic currents in equilibrium and at a finite temperature, which agree with and provides an approach complementary to the results derived previously using thermodynamic constraints.

  14. Anomalous Chiral Superfluidity

    OpenAIRE

    Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail

    2009-01-01

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...

  15. Anomalies of the Entanglement Entropy in Chiral Theories

    CERN Document Server

    Iqbal, Nabil

    2015-01-01

    We study entanglement entropy in theories with gravitational or mixed U(1) gauge-gravitational anomalies in two, four and six dimensions. In such theories there is an anomaly in the entanglement entropy: it depends on the choice of reference frame in which the theory is regulated. We discuss subtleties regarding regulators and entanglement entropies in anomalous theories. We then study the entanglement entropy of free chiral fermions and self-dual bosons and show that in sufficiently symmetric situations this entanglement anomaly comes from an imbalance in the flux of modes flowing through the boundary, controlled by familiar index theorems. In two and four dimensions we use anomalous Ward identities to find general expressions for the transformation of the entanglement entropy under a diffeomorphism. (In the case of a mixed anomaly there is an alternative presentation of the theory in which the entanglement entropy is not invariant under a U(1) gauge transformation. The free-field manifestation of this pheno...

  16. Chiral algebra of Argyres-Douglas theory from M5 brane

    CERN Document Server

    Xie, Dan; Yau, Shing-Tung

    2016-01-01

    We study chiral algebras associated with Argyres-Douglas theories engineered from M5 brane. For the theory engineered using 6d $(2,0)$ type $J$ theory on a sphere with a single irregular singularity (without mass parameter), its chiral algebra is the minimal model of W algebra of $J$ type. For the theory engineered using an irregular singularity and a regular full singularity, its chiral algebra is the affine Kac-Moody algebra of $J$ type. We can obtain the Schur index of these theories by computing the vacua character of the corresponding chiral algebra.

  17. Anomalous Hall effect for semiclassical chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengming, E-mail: zhpm@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Horváthy, P.A., E-mail: horvathy@lmpt.univ-tours.fr [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Laboratoire de Mathématiques et de Physique Théorique, Université de Tours (France)

    2015-03-06

    Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field, instead, spiraling motion is found. Motion in Hall-type perpendicular electric and magnetic fields is also studied. - Highlights: • Chiral fermions exhibit an anomalous spin-Hall effect. • Transverse shift appears in a pure electric field. • In a pure magnetic field spiraling motion is found.

  18. Chiral Extrapolations of light resonances from dispersion relations and Chiral Perturbation Theory

    OpenAIRE

    Ríos, Guillermo; Nicola, Ángel Gómez; Hanhart, Christoph; Peláez, José Ramón

    2009-01-01

    We review our recent study of the pion mass dependence of the rho and sigma resonances generated from one-loop SU(2) Chiral Perturbation Theory (ChPT) with the Inverse Amplitude Method (IAM) which was modified to properly account for the Adler zero. The method is based on analyticity, elastic unitarity and ChPT at low energies, thus yielding the pion mass dependence of the resonance pole positions from the ChPT series up to a given order. We find that the rho-pi-pi coupling constant is almost...

  19. Regularized path integrals and anomalies: U(1) chiral gauge theory

    Science.gov (United States)

    Kopper, Christoph; Lévêque, Benjamin

    2012-02-01

    We analyze the origin of the Adler-Bell-Jackiw anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [Kopper, C. and Müller, V. F., "Renormalization of spontaneously broken SU(2) Yang-Mills theory with flow equations," Rev. Math. Phys. 21, 781 (2009)], 10.1142/S0129055X0900375X. Here we analyze U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-photon amplitude leads to a violation of the Slavnov-Taylor identities which cannot be restored on taking the UV limit in the renormalized theory. We point out that this fact is related to the nonanalyticity of this amplitude in the infrared region.

  20. aryon chiral perturbation theory with Wilson fermions up to (a2) and discretization effects of latest nf=2+1 LQCD octet baryon masses

    OpenAIRE

    Ren, Xiu-LeiSchool of Physics and Nuclear Energy Engineering, Beihang University, 100191, Beijing, China; Geng, Li-Sheng; Meng, Jie

    2014-01-01

    We construct the chiral Lagrangians relevant in studies of the ground-state octet baryon masses up to (a2) by taking into account discretization effects. We calculate the masses up to (p4) in the extended-on-mass-shell scheme. As an application, we study the latest nf=2+1 LQCD data on the ground-state octet baryon masses from the PACS-CS, QCDSF-UKQCD, HSC, and NPLQCD Collaborations. It is shown that the discretization effects for the studied LQCD simulations are at the order of 1–2 % for la...

  1. Fermions in two (1+1)-dimensional anomalous gauge theories: The chiral Schwinger model and the chiral quantum gravity

    International Nuclear Information System (INIS)

    The fermion in the gauge invariant formulation of the chiral Schwinger model and its relation to the fermion in the anomalous formulation is studied. A gauge invariant fermion operator is constructed that does not give rise to an asymptotic fermion field. It fits in the scheme prepared by generalized Schwinger models. Singularities in the short-distance limit of the chiral Schwinger model in the anomalous formulation lead to the conclusion that it is not a promising starting point for investigations towards realistic (3+1)-dimensional gauge theories with chiral fermion content. A new anomalous (1+1)-dimensional model is studied, the chiral quantum gravity. It is proven to be consistent if only a limited number of chiral fermions couple. The fermion propagator behaves analogously to the one in the massless Thirring model. A general rule is derived for the change of the fermion operator, which is induced by the breakdown of a gauge symmetry. (orig.)

  2. Effective Field Theory and $\\chi$pt

    OpenAIRE

    Holstein, Barry R.

    2000-01-01

    A brief introduction to the subject of chiral perturbation theory ($\\chi$pt) is given, including a discussion of effective field theory and application to the upcoming Bates virtual Compton scattering measurement.

  3. Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    Science.gov (United States)

    Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven

    2011-03-01

    Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.

  4. Removal of chiral anomalies in abelian gauge theories

    International Nuclear Information System (INIS)

    It is shown that chiral anomalies can be removed in abelian gauge theories. After a discussion of the two dimensional case where exact solutions are available we study the four dimensional theory. We use perturbation theory, i.e. analyse the triangle Feynman integrals, and determine the general subtraction structure of the gauge current. Then we show that gauges exist for which current conservation holds and the theory is gauge invariant. As far as the generating functional is concerned the anomaly is employed first as gauge fixing condition. After rewriting the interaction in a gauge invariant form the gauge fixing condition can be imposed as usual. In our approach the integration over the gauge group remains trivial. (author)

  5. On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes referred to as defects. By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking intoaccount the action of the electromagnetic field, i.e., the incorporation of the electromagnetic field into the description of the so-called microspin (chirality also forms the underlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three-dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the completemicrospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing microspin phenomena in a fully geometric way.

  6. On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes re- ferred to as defects . By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking into ac- count the action of the electromagnetic field, i.e., the incorporation of the electromag- netic field into the description of the so-called microspin ( chirality also forms the un- derlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three- dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the complete mi- crospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing mi- crospin phenomena in a fully geometric way.

  7. Group Theory of Circular-Polarization Effects in Chiral Photonic Crystals with Four-Fold Rotation Axes, Applied to the Eight-Fold Intergrowth of Gyroid Nets

    CERN Document Server

    Saba, Matthias; Mecke, Klaus; Gu, Min; Schröder-Turk, Gerd E

    2013-01-01

    We use group or representation theory and scattering matrix calculations to derive analytical results for the band structure topology and the scattering parameters, applicable to any chiral photonic crystal with body-centered cubic symmetry I432 for circularly-polarised incident light. We demonstrate in particular that all bands along the cubic [100] direction can be identi?ed with the irreducible representations E+/-,A and B of the C4 point group. E+ and E- modes represent the only transmission channels for plane waves with wave vector along the ? line, and can be identi?ed as non-interacting transmission channels for right- (E-) and left-circularly polarised light (E+), respectively. Scattering matrix calculations provide explicit relationships for the transmission and reflectance amplitudes through a ?nite slab which guarantee equal transmission rates for both polarisations and vanishing ellipticity below a critical frequency, yet allowing for ?nite rotation of the polarisation plane. All results are veri?...

  8. Electroweak Interactions in a Chiral Effective Lagrangian for Nuclei

    OpenAIRE

    Serot, Brian D.; Zhang, Xilin(Department of Physics, University of Washington, Seattle, WA, USA)

    2012-01-01

    We have studied electroweak (EW) interactions in quantum hadrodynamics (QHD) effective field theory (EFT). The Lorentz-covariant EFT contains nucleon, pion, $\\Delta$, isoscalar scalar ($\\sigma$) and vector ($\\omega$) fields, and isovector vector ($\\rho$) fields. The lagrangian exhibits a nonlinear realization of (approximate) $SU(2)_L \\otimes SU(2)_R$ chiral symmetry and incorporates vector meson dominance. First, we discuss the EW interactions at the quark level. Then we include EW interacti...

  9. Tests of Chiral perturbation theory with COMPASS

    OpenAIRE

    Friedrich Jan M.

    2014-01-01

    The COMPASS experiment at CERN accesses pion-photon reactions via the Primakoff effect., where high-energetic pions react with the quasi-real photon field surrounding the target nuclei. When a single real photon is produced, pion Compton scattering is accessed and from the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from ChPT. In ...

  10. Anomalous Hall Effect for chiral fermions

    CERN Document Server

    Zhang, P -M

    2014-01-01

    Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field, they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field a cork-screw-like, spiraling motion is found.

  11. Renormalization of the low-energy constants of chiral perturbation theory from loops with dynamical vector mesons

    Science.gov (United States)

    Terschlüsen, Carla; Leupold, Stefan

    2016-07-01

    Starting from a relativistic Lagrangian for pseudoscalar Goldstone bosons and vector mesons in the antisymmetric tensor representation, a one-loop calculation is performed to pin down the divergent structures that appear for the effective low-energy action at chiral orders Q2 and Q4 . The corresponding renormalization-scale dependencies of all low-energy constants up to chiral order Q4 are determined. Calculations are carried out for both the pseudoscalar octet and the pseudoscalar nonet, the latter in the framework of chiral perturbation theory in the limit of a large number of colors.

  12. Decuplet baryon masses in covariant baryon chiral perturbation theory

    OpenAIRE

    Ren, Xiu-Lei; Geng, Li-Sheng; Meng, Jie

    2013-01-01

    We present an analysis of the lowest-lying decuplet baryon masses in the covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. In order to determine the $14$ low-energy constants, we perform a simultaneous fit of the $n_f=2+1$ lattice QCD data from the PACS-CS, QCDSF-UKQCD, and HSC Collaborations, taking finite-volume corrections into account self-consistently. We show that up to next-to-next-to-next-to-leading order on...

  13. CHIRAL perturbation theory and off-shell electromagnetic form factors

    International Nuclear Information System (INIS)

    The off-shell electromagnetic vertex of pions and kaons is calculated to 0(p4) in the momentum expansion within the framework of chiral perturbation theory to one loop. The formalism of Gasser and Leutwyler is extended to accommodate the most general form for off-shell Green's functions in the pseudoscalar meson sector. To that end we identify the structures at 0(p4) which were initially removed by using the equation of motion of the lowest order lagrangian. (authors). 5 refs

  14. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  15. Comparison of Theory and Observations of the Chirality of Filaments within a Dispersing Activity Complex

    Science.gov (United States)

    Mackay, D. H.; Gaizauskas, V.; van Ballegooijen, A. A.

    2000-12-01

    We investigate the origin of the hemispheric pattern of filaments and filament channels by comparing theoretical predictions with observations of the chirality of filament channels within a dispersing activity complex. Our aim is to determine how the chirality of each specific channel arises so that general principles underlying the hemispheric pattern can be recognized. We simulate the field lines representing the filaments in the activity complex by applying a model of global flux transport to an initial magnetic configuration. The model combines the surface effects of differential rotation, meridional flows, and supergranular diffusion along with a magnetofrictional relaxation method in the overlying corona. The simulations are run with and without injecting axial magnetic fields at polarity inversion lines in the dispersing activity complex for four successive solar rotations. When the initial magnetic configuration, based on synoptic magnetic maps, is set to a potential field at the beginning of each rotation, the simulations poorly predict the chirality of the filament channels and filaments. The cases that predict the correct chirality correspond to an initial polarity inversion line, which is north-south the wrong chirality arises when the initial polarity inversion lines lie east-west. Results improve when field-line connectivities at low latitudes are retained and allowed to propagate to higher latitudes without resetting the field to a potential configuration between each rotation. When axial flux emergence exceeding 1×1019 Mx day-1 is included at the location of each filament, an excellent agreement is obtained between the theory and observations. In additon to predicting the correct chirality in all cases, axial flux emergence allows more readily the production of inverse-polarity dipped field lines needed to support filamentary mass. An origin for the hemispheric pattern as a result of the combined effects of flux transport, axial flux emergence, and

  16. Universality of spontaneous chiral symmetry breaking in gauge theories

    International Nuclear Information System (INIS)

    We investigate one-flavor QCD with an additional chiral scalar field. For a large domain in the space of coupling constants, this model belongs to the same universality class as QCD, and the effects of the scalar become unobservable. This is connected to a 'bound-state fixed point' of the renormalization flow for which all memory of the microscopic scalar interactions is lost. The QCD domain includes a microscopic scalar potential with minima at a nonzero field. On the other hand, for a scalar mass term m2 below a critical value mc2, the universality class is characterized by perturbative spontaneous chiral symmetry breaking which renders the quarks massive. Our renormalization group analysis shows how this universality class is continuously connected with the QCD universality class

  17. From chiral Lagrangians to Landau Fermi liquid theory of nuclear matter

    International Nuclear Information System (INIS)

    A simple relation between the effective parameters of chiral Lagrangians in medium as predicted by BR scaling and Landau Fermi liquid parameters is derived. This provides a link between an effective theory of QCD at mean-field level and many-body theory of nuclear matter. It connects in particular the scaling vector-meson mass probed by dileptons produced in heavy-ion collisions (e.g., CERES of CERN-SPS) to the scaling nucleon-mass relevant for low-energy spectroscopic properties, e.g., the nuclear gyromagnetic ratios δg1 and the effective axial-vector constant g*A. (orig.)

  18. SU(N) chiral gauge theories on the lattice

    CERN Document Server

    Golterman, M F L; Golterman, Maarten; Shamir, Yigal

    2004-01-01

    We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the abelian case. The new ingredient allowing us to deal with the non-abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-abelian group (which we will take to be SU(N)) down to its maximal abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining abelian gauge symmetry. This modifies the equivariant BRST identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be ad...

  19. Baryon chiral perturbation theory withWilson fermions up to O(a2) and discretization effects of latest nf = 2 + 1 LQCD octet baryon masses

    International Nuclear Information System (INIS)

    We construct the chiral Lagrangians relevant in studies of the ground-state octet baryon masses up to O(a2) by taking into account discretization effects. We calculate the masses up to O(p4) in the extended-on-mass-shell scheme. As an application, we study the latest nf = 2+1 LQCD data on the ground-state octet baryon masses from the PACS-CS, QCDSF-UKQCD, HSC, and NPLQCD Collaborations. It is shown that the discretization effects for the studied LQCD simulations are at the order of 1-2 % for lattice spacings up to 0.15 fm and the pion mass up to 500 MeV. (orig.)

  20. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    Science.gov (United States)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  1. The relation between random matrix theory, chiral perturbation theory and lattice-QCD; Die Beziehungen zwischen Random-Matrix-Theorie, chiraler Stoerungstheorie und Gitter-QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hehl, H.

    2002-07-01

    This thesis has studied the range of validity of the chiral random matrix theory in QCD on the example of the quenched staggered Dirac operator. The eigenvalues of this operator in the neighbourhood of zero are essential for the understanding of the spontaneous breaking of the chiral symmetry and the phase transition connected with this. The phase transition cannot be understood in the framework of perturbation theory, so that the formulation of QCD on the lattice has been chosen as the only non-perturbative approach. In order to circumvent both the problem of the fermion doubling and to study chiral properties on the lattice with acceptable numerical effort, quenched Kogut-Susskind fermions have been applied. The corresponding Dirac operator can be completely diagonalized by the Lanczos procedure of Cullum and Willoughby. Monte carlo simulations on hypercubic lattice have been performed and the Dirac operators of very much configurations diagonalized at different lattice lengths and coupling constants. The eigenvalue correlations on the microscopic scale are completely described by the chiral random matrix theory for the topological sector zero, which has been studied by means of the distribution of the smallest eigenvalue, the microscopic spectral density and the corresponding 2-point correlation function. The found universal behaviour shows, that on the scale of the lowest eigenvalue only completely general properties of the theory are important, but not the full dynamics. In order to determine the energy scale, from which the chiral random matrix theory losses its validity, - the Thouless energy - with the scalar susceptibilities observables have been analyzed, which are because of their spectral mass dependence sensitive on this. For each combination of the lattice parameter so the deviation point has been identified.

  2. Lattice regularization of chiral gauge theories to all orders of perturbation theory

    OpenAIRE

    Lüscher, Martin

    2000-01-01

    In the framework of perturbation theory, it is possible to put chiral gauge theories on the lattice without violating the gauge symmetry or other fundamental principles, provided the fermion representation of the gauge group is anomaly-free. The basic elements of this construction (which starts from the Ginsparg-Wilson relation) are briefly recalled and the exact cancellation of the gauge anomaly, at any fixed value of the lattice spacing and for any compact gauge group, is then proved rigoro...

  3. The pseudo chiral magnetic effect in QED3

    CERN Document Server

    Mizher, A J; Villavicencio, C

    2016-01-01

    Chiral magnetic effect (CME) has been suggested to take place during peripheral relativistic heavy ion collisions. However, signals of its realization are not yet independent of ambiguities and thus probing the non-trivial topological vacua of quantum chromodynamics (QCD) is still an open issue. Weyl materials, particularly graphene, on the other hand, are effectively described at low energies by the degrees of freedom of quantum electrodynamics in two spatial dimensions, QED3. This theory shares with QCD some interesting features, like confinement and chiral symmetry breaking and also possesses a non-trivial vacuum structure. In this regard, an analog of the CME is proposed to take place in graphene under the influence of an in-plane magnetic field in which the pseudo-spin or flavor label of charge carriers is participant of the effect, rather than the actual spin. In this contribution, we review the parallelisms and differences between the CME and the so-called pseudo chiral magnetic effect, PCME.

  4. Features of a 2d Gauge Theory with Vanishing Chiral Condensate

    OpenAIRE

    Landa-Marbán, David; Bietenholz, Wolfgang; Hip, Ivan

    2013-01-01

    The Schwinger model with $N_f \\geq 2$ flavors is a simple example for a fermionic model with zero chiral condensate Sigma (in the chiral limit). We consider numerical data for two light flavors, based on simulations with dynamical chiral lattice fermions. We test properties and predictions that were put forward in the recent literature for models with Sigma = 0, which include IR conformal theories. In particular we probe the decorrelation of low lying Dirac eigenvalues, and we discuss the mas...

  5. KTeV Results on Chiral Perturbation Theory

    CERN Document Server

    Cheu, E

    2006-01-01

    The KTeV experiment has carried out a broad program of studies of rare kaon decays. In this paper we present results on KL -> pi0 gamma gamma, KL -> pi0 e+ e- gamma and KL -> pi0 pi0 gamma. These decays provide a window for testing chiral perturbation theory at O(p^6). We find BR(KL-> pi0 pi0 gamma) = (1.30 +/- 0.03 +/- 0.04)E-6, BR(KL-> pi0 e+ e- gamma) = (1.90 +/- 0.16 +/- 0.12)E-8, and set the limit BR(KL->pi0 pi0 gamma)< 2.32E-7. The KTeV measurements are competitive with or better than the world's best results in these decays.

  6. Chiral superconductors

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  7. Consistency tests of Ampcalculator and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial-based approach

    International Nuclear Information System (INIS)

    Ampcalculator (AMPC) is a Mathematica copyright based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p 4)) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G27. Another illustrative set of amplitudes at tree level we provide is in the context of τ-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics. (orig.)

  8. Consistency tests of Ampcalculator and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial-based approach

    Science.gov (United States)

    Ananthanarayan, B.; Das, Diganta; Sentitemsu Imsong, I.

    2012-10-01

    Ampcalculator (AMPC) is a Mathematica © based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O( p 4) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G 27. Another illustrative set of amplitudes at tree level we provide is in the context of τ-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics.

  9. Nucleon magnetic form factors with non-local chiral effective Lagrangian

    International Nuclear Information System (INIS)

    Chiral perturbation theory is a useful method to investigate the hadron properties. We apply the non-local chiral effective Lagrangian to study the nucleon magnetic form factors. The octet and decuplet intermediate states are included in the one-loop calculation. With the modified propagators and non-local interaction, the loop integral is convergent. The obtained proton and neutron magnetic form factors are both reasonable up to relatively large Q2. (orig.)

  10. Microscopic Dirac Spectrum in a 2d Gauge Theory with Zero Chiral Condensate

    OpenAIRE

    Bietenholz, Wolfgang; Hip, Ivan; Landa-Marbán, David

    2013-01-01

    Fermionic theories with a vanishing chiral condensate (in the chiral limit) have recently attracted considerable interest; in particular variants of multi-flavour QCD are candidates for this behaviour. Here we consider the 2-flavour Schwinger model as a simple theory with this property. Based on simulations with light dynamical overlap fermions, we test the hypothesis that in such models the low lying Dirac eigenvalues could be decorrelated. That has been observed in 4d Yang-Mills theories at...

  11. Perturbative analysis of the Gauss-law anomaly in chiral gauge theories

    International Nuclear Information System (INIS)

    We discuss the Gauss-law constraint in chiral gauge theories. A unitarity condition for the Gauss constraint is introduced and shown to be equivalent to the diagrammatic form of the Ward identities. We give a simple derivation of the chiral anomaly and relate it to the breakdown of the unitarity condition

  12. Mathematical Derivation of Chiral Anomaly in Lattice Gauge Theory with Wilson's Action

    CERN Document Server

    Hattori, T G; Hattori, Tetsuya; Watanabe, Hiroshi

    1998-01-01

    Chiral U(1) anomaly is derived with mathematical rigor for a Euclidean fermion coupled to a smooth external U(1) gauge field on an even dimensional torus as a continuum limit of lattice regularized fermion field theory with the Wilson term in the action. The present work rigorously proves for the first time that the Wilson term correctly reproduces the chiral anomaly.

  13. The Chiral Magnetic Effect and Anomaly-Induced Transport

    CERN Document Server

    Kharzeev, Dmitri E

    2013-01-01

    The Chiral Magnetic Effect (CME) is the phenomenon of electric charge separation along the external magnetic field that is induced by the chirality imbalance. The CME is a macroscopic quantum effect - it is a manifestation of the chiral anomaly creating a collective motion in Dirac sea. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of systems possessing chiral fermions, from the quark-gluon plasma to chiral materials. The goal of the present review is to provide an elementary introduction into the main ideas underlying the physics of CME, a historical perspective, and a guide to the rapidly growing literature on this topic.

  14. Six-dimensional regularization of chiral gauge theories

    CERN Document Server

    Fukaya, Hidenori; Yamamoto, Shota; Yamamura, Ryo

    2016-01-01

    We propose a non-perturbative regularization of four dimensional chiral gauge theories. In our formulation, we consider a Dirac fermion in six dimensions with two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain-walls. One domain-wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six-dimensions to the gauge anomaly in four-dimensions. Another domain-wall mediates a similar inflow of the global anomalies. The anomaly free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is a massive vector-like theory, a non-perturbative regularization is possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently p...

  15. Theory and spectroscopy of parity violation in chiral molecules

    International Nuclear Information System (INIS)

    Full text: Parity violation plays a crucial role in the 'Standard Model of Particle Physics' and according to current understanding it has crucial connections to fundamental symmetry violations in general and to such fundamental phenomena as the existence of mass of the elementary particles. In chemistry, one important consequence is a 'parity violating energy difference' ΔPVE of the ground state energies of enantiomers of chiral molecules, corresponding to a non zero enthalpy of stereomutation or enantiomerization ΔRH00 = NAΔPVE, which would be exactly zero if perfect inversion symmetry were true. An experiment to measure this very small energy difference in the sub-femto-eV (or atto-eV) range, typically, has been proposed some time ago. Recent improved theory predicts parity violating potentials to be larger by about two orders of magnitude for the prototype compound H2O2 and related molecules, as compared to older theories, and this large increase has been confirmed by subsequent independent theoretical results in several groups. Thus the prospects for successful experiments look brighter today than ever before. In the lecture we will discuss the current status of the field and report in some detail on the various spectroscopic approaches, which can be used, as well as the current challenges of these experiments. If time permits, even more fundamental symmetry violations such as CP and CPT violation will be discussed. (author)

  16. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  17. Nuclear Dynamics with Effective Field Theories

    OpenAIRE

    Epelbaum, Evgeny; Krebs, Hermann

    2013-01-01

    These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.

  18. The axial charge of the nucleon: lattice results compared with chiral perturbation theory

    International Nuclear Information System (INIS)

    We present recent Monte Carlo data for the axial charge of the nucleon obtained by the QCDSF-UKQCD collaboration for Nf=2 dynamical quarks. A comparison with chiral perturbation theory in finite and infinite volume is attempted

  19. Ab initio Nuclear structure Theory with chiral two- plus three-nucleon interactions

    International Nuclear Information System (INIS)

    Low-energy nuclear theory has entered an era of ab initio nuclear structure and reaction calculations based on input from QCD. One of the most promising paths from QCD to nuclear observables employs Hamiltonians constructed within chiral effective field theory as consistent starting point for precise ab initio nuclear structure and reaction studies. However, the full inclusion of chiral two- plus three-nucleon (NN+3N) interactions in exact and approximate many-body calculations still poses a formidable challenge. We discuss recent developments towards this goal, ranging from consistent Similarity Renormalization Group evolutions of NN+3N Hamiltonians to large-scale ab initio calculations for ground states and spectra in the Importance-Truncated No-Core Shell Model with full 3N interactions. We highlight recent achievements and discuss open issues and future perspectives for nuclear structure theory with QCD-based interactions. Moreover, we discuss successful steps towards merging ab initio structure and reaction theory and show applications to low-energy reactions in the p-shell relevant for astrophysics.

  20. Octet baryon masses and sigma terms in covariant baryon chiral perturbation theory

    OpenAIRE

    Ren, Xiu-Lei; Geng, Li-Sheng; Meng, Jie

    2015-01-01

    We report on a recent study of the ground-state octet baryon masses and sigma terms in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. To take into account lattice QCD artifacts, the finite-volume corrections and finite lattice spacing discretization effects are carefully examined. We performed a simultaneous fit of all the $n_f = 2+1$ lattice octet baryon masses and found that the various lattice simulations are ...

  1. Consistency between SU(3) and SU(2) chiral perturbation theory for the nucleon mass

    OpenAIRE

    Ren, Xiu-Lei; Alvarez-Ruso, L.; Geng, Li-Sheng; Ledwig, T.; Meng, Jie; Vacas, M. J. Vicente

    2016-01-01

    Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~\\cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants...

  2. Systematic 1/M expansion for spin 3/2 particles in baryon chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Hemmert, T.R.; Holstein, B.R. [Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astronomy; Kambor, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1995-12-31

    Starting from a relativistic formulation of the pion-nucleon-delta system, the most general structure of 1/M corrections for a heavy baryon chiral Lagrangian including spin 3/2 resonances is given. The heavy components of relativistic nucleon and delta fields are integrated out and their contributions to the next-to-leading order Lagrangians are constructed explicitly. The effective theory obtained admits a systematic expansion in terms of soft momenta, the pion mass m{sub {pi}} and the delta-nucleon mass difference {Delta}. As an application, neutral pion photoproduction at threshold to third order in this small scale expansion is discussed. (author). 14 refs.

  3. The reaction $\\pi N \\to \\pi \\pi N$ above threshold in chiral perturbation theory

    CERN Document Server

    Bernard, V; Meißner, Ulf G

    1997-01-01

    Single pion production off nucleons is studied in the framework of relativistic baryon chiral perturbation theory at tree level with the inclusion of the terms from the dimension two effective pion-nucleon Lagrangian. The five appearing low-energy constants are fixed from pion-nucleon scattering data. Despite the simplicity of the approach, most of the existing data for total and differential cross sections as well as for the angular correlation functions for incoming pion kinetic energies up to 400 MeV can be satisfactorily described.

  4. Chiral Electroweak Currents in Nuclei

    CERN Document Server

    Riska, D O

    2016-01-01

    The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  5. Leading logarithms in N-flavour mesonic Chiral Perturbation Theory

    International Nuclear Information System (INIS)

    We extend earlier work on leading logarithms in the massive nonlinear O(n) sigma model to the case of SU(N)×SU(N)/SU(N) which coincides with mesonic Chiral Perturbation Theory for N flavours of light quarks. We discuss the leading logarithms for the mass and decay constant to six loops and for the vacuum expectation value 〈q¯q〉 to seven loops. For dynamical quantities the expressions grow extremely large much faster such that we only quote the leading logarithms to five loops for the vector and scalar form factor and for meson–meson scattering. The last quantity we consider is the vector–vector to meson–meson amplitude where we quote results up to four loops for a subset of quantities, in particular for the pion polarizabilities. As a side result we provide an elementary proof that the factors of N appearing at each loop order are odd or even depending on the order and the remaining traces over external flavours

  6. Chiral assembly of weakly curled hard rods: Effect of steric chirality and polarity

    Energy Technology Data Exchange (ETDEWEB)

    Wensink, H. H., E-mail: wensink@lps.u-psud.fr; Morales-Anda, L. [Laboratoire de Physique des Solides–UMR 8502, Université Paris-Sud & CNRS, 91405 Orsay (France)

    2015-10-14

    We theoretically investigate the pitch of lyotropic cholesteric phases composed of slender rods with steric chirality transmitted via a weak helical deformation of the backbone. In this limit, the model is amenable to analytical treatment within Onsager theory and a closed expression for the pitch versus concentration and helical shape can be derived. Within the same framework, we also briefly review the possibility of alternative types of chiral order, such as twist-bend or screw-like nematic phases, finding that cholesteric order dominates for weakly helical distortions. While long-ranged or “soft” chiral forces usually lead to a pitch decreasing linearly with concentration, steric chirality leads to a much steeper decrease of quadratic nature. This reveals a subtle link between the range of chiral intermolecular interaction and the pitch sensitivity with concentration. A much richer dependence on the thermodynamic state is revealed for polar helices where parallel and anti-parallel pair alignments along the local director are no longer equivalent. It is found that weak temperature variations may lead to dramatic changes in the pitch, despite the lyotropic nature of the assembly.

  7. Chiral magnetic effect by synthetic gauge fields

    CERN Document Server

    Hayata, Tomoya

    2016-01-01

    We study the dynamical generation of the chiral chemical potential in a Weyl metal constructed from a three-dimensional optical lattice and subject to synthetic gauge fields. By numerically solving the Boltzmann equation with the Berry curvature in the presence of parallel synthetic electric and magnetic fields, we find that the spectral flow and the ensuing chiral magnetic current emerge. We show that the spectral flow and the chiral chemical potential can be probed by time-of-flight imaging.

  8. Microstructure effects for Casimir forces in chiral metamaterials

    International Nuclear Information System (INIS)

    We examine a recent prediction for the chirality dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. Although repulsion in the metamaterial regime is rigorously impossible, it is unknown whether a reduction in the attractive force can be achieved through suitable material engineering. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized ''omega''-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e., proximity forces and anisotropy). We find that these microstructure effects dominate the force for separations where chirality was predicted to have a strong influence. At separations where the homogeneous approximation is valid, in even the most ideal circumstances the effects of chirality are less than 10-4 of the total force, making them virtually undetectable in experiments.

  9. pi-pi and pi-K scatterings in three-flavour resummed chiral perturbation theory

    CERN Document Server

    Descotes-Genon, S

    2008-01-01

    The (light but not-so-light) strange quark may play a special role in the low-energy dynamics of QCD. The presence of strange quark pairs in the sea may have a significant impact of the pattern of chiral symmetry breaking : in particular large differences can occur between the chiral limits of two and three massless flavours (i.e., whether m_s is kept at its physical value or sent to zero). This may induce problems of convergence in three-flavour chiral expansions. To cope with such difficulties, we introduce a new framework, called Resummed Chiral Perturbation Theory. We exploit it to analyse pi-pi and pi-K scatterings and match them with dispersive results in a frequentist framework. Constraints on three-flavour chiral order parameters are derived.

  10. On Yang--Mills Theories with Chiral Matter at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M.; /Minnesota U., Theor. Phys. Inst. /Saclay, SPhT; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.

    2008-08-20

    Strong coupling dynamics of Yang-Mills theories with chiral fermion content remained largely elusive despite much effort over the years. In this work, we propose a dynamical framework in which we can address non-perturbative properties of chiral, non-supersymmetric gauge theories, in particular, chiral quiver theories on S{sub 1} x R{sub 3}. Double-trace deformations are used to stabilize the center-symmetric vacuum. This allows one to smoothly connect smaller(S{sub 1}) to larger(S{sub 1}) physics (R{sub 4} is the limiting case) where the double-trace deformations are switched off. In particular, occurrence of the mass gap in the gauge sector and linear confinement due to bions are analytically demonstrated. We find the pattern of the chiral symmetry realization which depends on the structure of the ring operators, a novel class of topological excitations. The deformed chiral theory, unlike the undeformed one, satisfies volume independence down to arbitrarily small volumes (a working Eguchi-Kawai reduction) in the large N limit. This equivalence, may open new perspectives on strong coupling chiral gauge theories on R{sub 4}.

  11. Chiral symmetry breaking in QCD-like gauge theories with a confining propagator and dynamical gauge boson mass generation

    OpenAIRE

    Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil); Machado, F. A.; Natale, A. A.

    2011-01-01

    We study chiral symmetry breaking in QCD-like gauge theories introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamical gauge boson mass generation. The effective confining propagator has the form $1/(k^2+m^2)^2$ and we study the bifurcation equation finding limits on $m$ below which a satisfactory fermion mass solution is generated. Since the coupling constant and gauge boson propagator are damped in the infrared, due to the presen...

  12. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    CERN Document Server

    Yao, De-Liang; Bernard, V; Epelbaum, E; Gasparyan, A M; Gegelia, J; Krebs, H; Meißner, Ulf-G

    2016-01-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the $S$- and $P$-partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the $D$ and $F$ waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in ...

  13. An Analytic Approach to Sunset Diagrams in Chiral Perturbation Theory: Theory and Practice

    CERN Document Server

    Ananthanarayan, B; Ghosh, Shayan; Hebbar, Aditya

    2016-01-01

    We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two-mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files, which may serve as pedagogical supplements to the methods described in this paper.

  14. Partially conserved axial-vector current and model chiral field theories in nuclear physics

    International Nuclear Information System (INIS)

    We comment on the relation between the two standard approaches to chiral symmetry--namely, the current algebra/partially conserved axial-vector current approach and the chiral Lagrangian method--in a manner intended to clarify recent and probable future applications of this symmetry in nuclear physics. Specifically, we show that in explicit chiral field theories the canonical πN scattering amplitude does not have the famed ''Adler zero'' unless partial conservation of axial-vector current holds as an operator equation. This implies that there are a number of familiar chiral models in which the ''Adler self-consistency'' condition does not apply to the canonical pion field. Among the problems of current interest for which our remarks are relevant are the studies of the pion-nucleus optical potential, pion condensation, and the attempts to formulate a model field theory having both reasonable nuclear saturation and good low energy pion phenomenology

  15. Consistency tests of AMPCALCULATOR and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial based approach

    CERN Document Server

    Ananthanarayan, B; Imsong, I Sentitemsu

    2012-01-01

    AMPCALCULATOR is a mathematica-based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes upto $O(p^4)$ in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and nonleptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against some well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity nonleptonic decay sector involving the coupling $G_{27}$. Another illustrative set of amplitudes at tree level we provide is in the context of $\\tau$-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes ha...

  16. Ward identities and gauge independence in general chiral gauge theories

    CERN Document Server

    Anselmi, Damiano

    2015-01-01

    Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized $\\Gamma $ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized $\\Gamma $ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on...

  17. The magnetic moments and electromagnetic form factors of the decuplet baryons in chiral perturbation theory

    CERN Document Server

    Li, Hao-Song; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin

    2016-01-01

    We have systematically investigated the magnetic moments and magnetic form factors of the decuplet baryons to the next-to-next-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. We also calculate the charge and magnetic dipole form factors of the decuplet baryons. Our results may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.

  18. New lessons from the nucleon mass, lattice QCD and heavy baryon chiral perturbation theory

    OpenAIRE

    Walker-Loud, Andre

    2008-01-01

    I will review heavy baryon chiral perturbation theory for the nucleon delta degrees of freedom and then examine the recent dynamical lattice calculations of the nucleon mass from the BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD and RBC/UKQCD Collaborations. Performing the chiral extrapolations of these results, one finds remarkable agreement with the physical nucleon mass, from each lattice data set. However, a careful examination of the lattice data and the resulting extrapolatio...

  19. The role of the Delta isobar in chiral perturbation theory and hedgehog soliton models

    OpenAIRE

    Cohen, Thomas D.; Broniowski, Wojciech

    1992-01-01

    Hedgehog model predictions for the leading nonanalytic behavior (in $m^{2}_{\\pi }$) of certain observables are shown to agree with the predictions of chiral perturbation theory up to an overall factor which depends on the operator. This factor can be understood in terms of contributions of the $\\Delta$ isobar in chiral loops. These physically motivated contributions are analyzed in an expansion in which both $m_{\\pi}$ and $M_{\\Delta}-M_N$ are taken as small parameters, and are shown to yield ...

  20. Mass Spectra of Heavy-Light Mesons in Heavy Hadron Chiral Perturbation Theory

    CERN Document Server

    Alhakami, Mohammad H

    2016-01-01

    We study the masses of the low-lying charm and bottom mesons within the framework of heavy- hadron chiral perturbation theory. We work to third order in the chiral expansion, where meson loops contribute. In contrast to previous approaches, we use physical meson masses in evaluating these loops. This ensures that their imaginary parts are consistent with the observed widths of the D-mesons. The lowest odd- and even-parity, strange and nonstrange charm mesons provide enough constraints to determine only certain linear combinations of the low-energy constants (LECs) in the effective Lagrangian. We comment on how lattice QCD could provide further information to disentangle these constants. Then we use the results from the charm sector to predict the spectrum of odd- and even-parity of the bottom mesons. The predicted masses from our theory are in good agreement with experimentally measured masses for the case of the odd-parity sector. For the even-parity sector, the B-meson states have not yet been observed; thu...

  1. Microscopic Dirac Spectrum in a 2d Gauge Theory with Zero Chiral Condensate

    CERN Document Server

    Bietenholz, Wolfgang; Landa-Marbán, David

    2013-01-01

    Fermionic theories with a vanishing chiral condensate (in the chiral limit) have recently attracted considerable interest; in particular variants of multi-flavour QCD are candidates for this behaviour. Here we consider the 2-flavour Schwinger model as a simple theory with this property. Based on simulations with light dynamical overlap fermions, we test the hypothesis that in such models the low lying Dirac eigenvalues could be decorrelated. That has been observed in 4d Yang-Mills theories at high temperature, but it cannot be confirmed for the 2-flavour Schwinger model. We also discuss subtleties in the evaluation of the mass anomalous dimension and its IR extrapolation.

  2. Spectrum of the SU(3) Dirac operator on the lattice Transition from random matrix theory to chiral perturbation theory

    CERN Document Server

    Göckeler, M; Rakow, P E L; Schäfer, A; Wettig, T

    2002-01-01

    We calculate complete spectra of the Kogut-Susskind Dirac operator on the lattice in quenched SU(3) gauge theory for various values of coupling constant and lattice size. From these spectra we compute the connected and disconnected scalar susceptibilities and find agreement with chiral random matrix theory up to a certain energy scale, the Thouless energy. The dependence of this scale on the lattice volume is analyzed. In the case of the connected susceptibility this dependence is anomalous, and we explain the reason for this. We present a model of chiral perturbation theory that is capable of describing the data beyond the Thouless energy and that has a common range of applicability with chiral random matrix theory.

  3. The Subtleties of the Wigner Function Formulation of the Chiral Magnetic Effect

    CERN Document Server

    Wu, Yan; Ren, Hai-cang

    2016-01-01

    We assess the applicability of the Wigner function formulation for the chiral Magnetic Effect and noted some issues regarding the conservation and the consistency of the electric current in the presence of a inhomogeneous and transient axial chemical potential. The problems are rooted in the ultraviolet divergence of the underlying field theory associated with axial anomaly.

  4. Chiral Superfluidity for QCD

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  5. Three-nucleon force at large distances: Insights from chiral effective field theory and the large-N{sub c} expansion

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, E.; Krebs, H. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Gasparyan, A.M. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Bolshaya Cheremushkinskaya 25, SSC RF ITEP, Moscow (Russian Federation); Schat, C. [Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Departamento de Fisica, FCEyN, Buenos Aires (Argentina)

    2015-03-01

    We confirm the claim of Phillips and Schat (Phys. Rev. C 88, 034002 (2013)) that 20 operators are sufficient to represent the most general local isospin-invariant three-nucleon force and derive explicit relations between the two sets of operators suggested in the above-mentioned work and that by Krebs et al. (Phys. Rev. C 87, 054007 (2013)). We use the set of 20 operators to discuss the chiral expansion of the long- and intermediate-range parts of the three-nucleon force up to next-to-next-to-next-to-next-to-leading order in the standard formulation without explicit Δ(1232) degrees of freedom. We also address implications of the large-N{sub c} expansion in QCD for the size of the various three-nucleon force contributions. (orig.)

  6. Renormalization-Group Evolution and Nonperturbative Behavior of Chiral Gauge Theories with Fermions in Higher-Dimensional Representations

    CERN Document Server

    Shi, Yan-Liang

    2015-01-01

    We study the ultraviolet to infrared evolution and nonperturbative behavior of a simple set of asymptotically free chiral gauge theories with an SU($N$) gauge group and an anomaly-free set of $n_{S_k}$ copies of chiral fermions transforming as the symmetric rank-$k$ tensor representation, $S_k$, and $n_{\\bar A_\\ell}$ copies of fermions transforming according to the conjugate antisymmetric rank-$\\ell$ tensor representation, $\\bar A_\\ell$, of this group with $k, \\ \\ell \\ge 2$. As part of our study, we prove a general theorem guaranteeing that a low-energy effective theory resulting from the dynamical breaking of an anomaly-free chiral gauge theory is also anomaly-free. We analyze the theories with $k=\\ell=2$ in detail and show that there are only a finite number of these. Depending on the specific theory, the ultraviolet to infrared evolution may lead to a non-Abelian Coulomb phase, or may involve confinement with massless composite fermions, or fermion condensation with dynamical gauge and global symmetry brea...

  7. Effect of molecular structure of tartrates on chiral recognition of tartrate-boric acid complex chiral selectors in chiral microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Hu, Shao-Qiang; Chen, Yong-Lei; Zhu, Hua-Dong; Shi, Hai-Jun; Yan, Na; Chen, Xing-Guo

    2010-08-20

    Eight l-tartrates and a d-tartrate with different alcohol moieties were used as chiral oils to prepare chiral microemulsions, which were utilized in conjunction with borate buffer to separate the enantiomers of beta-blockers or structurally related compounds by the chiral microemulsion electrokinetic chromatography (MEEKC) method. Among them, six were found to have a relatively good chiral separation performance and their chiral recognition effect in terms of both enantioselectivity and resolution increases linearly with the number of carbon atoms in the alkyl group of alcohol moiety. The tartrates containing alkyl groups of different structures but the same number of carbon atoms, i.e. one of straight chain and one of branched chain, provide similar enantioseparations. The trend was elucidated according to the changes in the difference of the steric matching between the molecules of two enantiomers and chiral selector. Furthermore, it was demonstrated for the first time that a water insoluble solid compound, di-i-butyl l-tartrate (mp. 73.5 degrees C), can be used as an oil to prepare a stable microemulsion to be used in the chiral MEEKC successfully. And a critical effect of the microemulsion for chiral separation, which has never been reported before, was found in this experiment, namely providing a hydrophobic environment to strengthen the interactions between the chiral selector and enantiomers. PMID:20638068

  8. Mesoscopic Hall effect driven by chiral spin order

    OpenAIRE

    Ohe, Jun-ichiro; Ohtsuki, Tomi; Kramer, Bernhard

    2006-01-01

    A Hall effect due to spin chirality in mesoscopic systems is predicted. We consider a 4-terminal Hall system including local spins with geometry of a vortex domain wall, where strong spin chirality appears near the center of vortex. The Fermi energy of the conduction electrons is assumed to be comparable to the exchange coupling energy where the adiabatic approximation ceases to be valid. Our results show a Hall effect where a voltage drop and a spin current arise in the transverse direction....

  9. On the temperature dependence of the chiral vortical effects

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We discuss the origins of temperature dependence of the axial vortical effect (AVE), i.e. generation of an axial current in a rotating chiral medium along the rotation axis. We show that the corresponding transport coefficient depends on the number of light weakly interacting degrees of freedom, rather than on the gravitational anomaly. We also comment on the role of low-dimensional defects in the rotating medium, and appearance of the chiral vortical effect due to them.

  10. Dynamical evolution of the chiral magnetic effect: applications to the quark-gluon plasma

    CERN Document Server

    Manuel, Cristina

    2015-01-01

    We study the dynamical evolution of the so-called chiral magnetic effect in an electromagnetic conductor. To this end, we consider the coupled set of corresponding Maxwell and chiral anomaly equations, and we prove that these can be derived from chiral kinetic theory. After integrating the chiral anomaly equation over space in a closed volume, it leads to a quantum conservation law of the total helicity of the system. A change in the magnetic helicity density comes together with a modification of the chiral fermion density. We study in Fourier space the coupled set of anomalous equations and we obtain the dynamical evolution of the magnetic fields, magnetic helicity density, and chiral fermion imbalance. Depending on the initial conditions we observe how the helicity might be transferred from the fermions to the magnetic fields, or vice versa, and find that the rate of this transfer also depends on the scale of wavelengths of the gauge fields in consideration. We then focus our attention on the quark-gluon pl...

  11. Examining a possible cascade effect in chiral symmetry breaking

    CERN Document Server

    Fariborz, Amir H

    2016-01-01

    We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.

  12. Sensing and tuning microfiber chirality with nematic chirogyral effect

    Science.gov (United States)

    Čopar, Simon; Seč, David; Aguirre, Luis E.; Almeida, Pedro L.; Dazza, Mallory; Ravnik, Miha; Godinho, Maria H.; Pieranski, Pawel; Žumer, Slobodan

    2016-03-01

    Microfibers with their elongated shape and translation symmetry can act as important components in various soft materials, notably for their mechanics on the microscopic level. Here we demonstrate the mechanical response of a micro-object to imposed chirality, in this case, the tilt of disclination rings in an achiral nematic medium caused by the chiral surface anchoring on an immersed microfiber. This coupling between chirality and mechanical response, used to demonstrate sensing of chirality of electrospun cellulose microfibers, is revealed in the optical micrographs due to anisotropy in the elastic response of the host medium. We provide an analytical explanation of the chirogyral effect supported with numerical simulations and perform an experiment to test the effect of the cell confinement and fiber size. We controllably twist the microfibers and demonstrate the response of the nematic medium. More generally the demonstrated study provides means for experimental discrimination of surface properties and allows mechanical control over the shape of disclination rings.

  13. Consistency between SU(3) and SU(2) chiral perturbation theory for the nucleon mass

    CERN Document Server

    Ren, Xiu-Lei; Geng, Li-Sheng; Ledwig, T; Meng, Jie; Vacas, M J Vicente

    2016-01-01

    Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~\\cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants in the SU(2) sector~\\cite{Alvarez-Ruso:2013fza}. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.~\\cite{Alvarez-Ruso:2013fza}.

  14. Axial anomaly, Dirac sea, and the chiral magnetic effect

    OpenAIRE

    Kharzeev, Dmitri E.

    2010-01-01

    Gribov viewed the axial anomaly as a manifestation of the collective motion of charged fermions with arbitrarily high momenta in the vacuum. In the presence of an external magnetic field and a chirality imbalance, this collective motion becomes directly observable in the form of the electric current - this is the chiral magnetic effect (CME). I give an elementary introduction into the physics of CME, and discuss some recent developments.

  15. Electromagnetic Response of the Chiral Magnetic Effect in Weyl Semimetals

    OpenAIRE

    Barnes, Edwin; Heremans, J. J.; Minic, Djordje

    2016-01-01

    Weyl semimetals are predicted to realize the three-dimensional axial anomaly first discussed in particle physics. The anomaly leads to unusual transport phenomena such as the chiral magnetic effect in which an applied magnetic field induces a current parallel to the field. Here we investigate diagnostics of the axial anomaly based on the fundamental equations of axion electrodynamics. We find that materials with Weyl nodes of opposite chirality and finite energy separation immersed in a unifo...

  16. Ward identities and gauge independence in general chiral gauge theories

    Science.gov (United States)

    Anselmi, Damiano

    2015-07-01

    Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized Γ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized Γ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.

  17. Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups

    CERN Document Server

    Shi, Yan-Liang

    2016-01-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  18. Gold-plated moments of nucleon structure functions in baryon chiral perturbation theory

    CERN Document Server

    Lensky, Vadim; Pascalutsa, Vladimir

    2014-01-01

    We obtain leading- and next-to-leading order predictions of chiral perturbation theory for several prominent moments of nucleon structure functions. These free-parameter free results turn out to be in overall agreement with the available empirical information on all of the considered moments, in the region of low-momentum transfer ($Q^2 < 0.3$ GeV$^2$). Especially surprising is the situation for the $\\delta_{LT}$ moment, which thus far was not reproducible for proton and neutron simultaneously in chiral perturbation theory. This problem, known as the "$\\delta_{LT}$ puzzle," is not seen in the present calculation.

  19. Massive chiral fermions: a natural account of chiral phenomenology in the framework of Dirac's fermion theory

    International Nuclear Information System (INIS)

    We assume a strictly invariant definition of the Dirac parity operator under fermion ↔ antifermion exchange. We see that the opposite-intrinsic-parity condition then requires two opposite-mass Dirac equations for the fermion and the antifermion. This leads us to introduce an asymptotically left-handed (fermion) and right-handed (antifermion) chiral field, as just an alternative basis in the internal space spanned by the new pair of charge-conjugate Dirac fields. Hence a dual intrinsic model of a spin - 1/2 massive fermion is drawn: it predicts the coexistence of two anticommuting general varieties of conserved charges, namely a scalar variety, responsible for parity-invariant phenomenology, plus a pseudoscalar one, responsible for chiral phenomenology. In this light, CP-symmetry is seen to be nothing but P-symmetry; and a spontaneous CP-violation mechanism is also derived, that should work in any single process occurring via both scalar-and pseudoscalar-charge interactions. We show, at last, that our scheme automatically yields Weyl's one for a merely left-handed neutrino and a merely right-handed antineutrino, further assigning them the special meaning of pure pseudoscalar-charge objects. Some general consequences as regards magnetic monopoles are briefly discussed too

  20. An ultraviolet chiral theory of the top for the fundamental composite (Goldstone) Higgs

    OpenAIRE

    Giacomo Cacciapaglia; Francesco Sannino(Syracuse Univ., Univ. ``Federico II'' & INFN)

    2016-01-01

    We introduce a scalar-less anomaly free chiral gauge theory that serves as natural ultraviolet completion of models of fundamental composite (Goldstone) Higgs dynamics. The new theory is able to generate the top mass and furthermore features a built-in protection mechanism that naturally suppresses the bottom mass. At low energies the theory predicts new fractionally charged fermions, and a number of four-fermion operators that, besides being relevant for the generation of the top mass, also ...

  1. Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach

    CERN Document Server

    Novitsky, Andrey V; Zhukovsky, Sergei V

    2010-01-01

    The electronic Lorentz theory is employed to determine the electromagnetic response of planar split-ring metamaterials. Starting from the dynamics of individual free carriers, the effective permittivity tensor of the metamaterial is calculated. Whenever the split ring lacks in-plane mirror symmetry, the corresponding permit- tivity tensor has a crystallographic structure of an elliptically dichroic medium, and the metamaterial exhibits optical properties of planar chiral structures. Its transmission spectra are different for right-handed vs. left- handed circular polarization of the incident wave, so the structure changes its transmittance when the direction of incidence is reversed. The magnitude of this change is shown to be related to the geometric parameters of the split ring. The proposed approach can be straightforwardly generalized to a wide variety of metal-dielectric metamaterial geometries.

  2. Punctuated Chirality

    Science.gov (United States)

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  3. Punctuated Chirality

    CERN Document Server

    Gleiser, Marcelo; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  4. Effective action for supersymmetrical chiral anomaly

    International Nuclear Information System (INIS)

    It is proved that the consistency conditions of the type of Wess-Zumino conditions are necessary and sufficient for local integrability of supersymmetrical chiral anomaly. The global integrability condition implies discreteness of the coefficient in anomalous action. Explicit formulas for consistent anomalies and corresponding functional depending on superfields of various types are obtained

  5. Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory

    International Nuclear Information System (INIS)

    The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)

  6. Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Torsten

    2009-05-13

    The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)

  7. Chiral magnetic and vortical effects in high-energy nuclear collisions-A status report

    Science.gov (United States)

    Kharzeev, D. E.; Liao, J.; Voloshin, S. A.; Wang, G.

    2016-05-01

    The interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark-gluon plasma. Among them is the Chiral Magnetic Effect (CME)-the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark-gluon plasma, and can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data.

  8. Color confinement, quark pair creation and dynamical chiral-symmetry breaking in the dual Ginzburg-Landau theory

    International Nuclear Information System (INIS)

    We study the color confinement, the qq pair creation and the dynamical chiral-symmetry breaking of nonperturbative QCD by using the dual Ginzburg-Landau theory, where the dual Higgs mechanism plays an essential role in the nonperturbative dynamics in the infrared region. As a result of the dual Meissner effect, the linear static quark potential, which characterizes the quark confinement, is obtained in the long distance within the quenched approximation. We obtain a simple expression for the string tension similar to the energy per unit length of a vortex in the superconductivity physics. The dynamical effect of light quarks on the quark confining potential is investigated in terms of the infrared screening effect due to the qq pair creation or the cut of the hadronic string. The screening length of the potential is estimated by using the Schwinger formula for the qq pair creation. We introduce the corresponding infrared cutoff to the strong long-range correlation factor in the gluon propagator as a dynamical effect of light quarks, and obtain a compact formula for the quark potential including the screening effect in the infrared region. We investigate the dynamical chiral-symmetry breaking by using the Schwinger-Dyson equation in the dual Ginzburg-Landau theory, where the gluon propagator includes the nonperturbative effect related to the color confinement. We find a large enhancement of the chiral-symmetry breaking by the dual Higgs mechanism, which supports the close relation between the color confinement and the chiral-symmetry breaking. The dynamical quark mass, the pion decay constant and the quark condensate are well reproduced by using the consistent values of the gauge coupling constant and the QCD scale parameter with the perturbative QCD and the quark confining potential. The light-quark confinement is also roughly examined in terms of the disappearance of physical poles in the light-quark propagator by using the smooth extrapolation of the quark mass

  9. The width of the $\\Delta$-resonance at two loop order in baryon chiral perturbation theory

    CERN Document Server

    Gegelia, Jambul; Siemens, Dmitrij; Yao, De-Liang

    2016-01-01

    We calculate the width of the delta resonance at leading two-loop order in baryon chiral perturbation theory. This gives a correlation between the leading pion-nucleon-delta and pion-delta couplings, which is relevant for the analysis of pion-nucleon scattering and other processes.

  10. The decoupling of right-handed neutrinos in chiral lattice gauge theories

    International Nuclear Information System (INIS)

    The decoupling of the right-handed fermion in the continuum limit is proved for a class of chiral lattice gauge theories for which the right-handed fermion transforms trivially under the gauge group. No tuning is necessary. The theorem follows from a new fermion shift symmetry. (orig.)

  11. Renormalization of the baryon axial vector current in large-Nc chiral perturbation theory

    International Nuclear Information System (INIS)

    The baryon axial vector current is considered within the combined framework of large-Nc baryon chiral perturbation theory (where Nc is the number of colors) and the baryon axial vector couplings are extracted. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis

  12. Determination of low-energy constants of Wilson chiral perturbation theory

    International Nuclear Information System (INIS)

    By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W6', W8' and their linear combination c2. We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.

  13. Analysis of General Power Counting Rules in Effective Field Theory

    OpenAIRE

    Gavela, B. M.; Jenkins, E. E.; Manohar, A. V.; Merlo, L.

    2016-01-01

    We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\...

  14. Random matrix theory and higher genus integrability: the quantum chiral Potts model

    International Nuclear Information System (INIS)

    We perform a random matrix theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L 8. Our analysis gives clear evidence of a Gaussian orthogonal ensemble (GOE) statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore, a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of 'higher genus integrability'. (author)

  15. Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen; Roxanne Springer

    2005-03-01

    We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.

  16. Dynamical chiral symmetry breaking and weak nonperturbative renormalization group equation in gauge theory

    CERN Document Server

    Aoki, Ken-Ichi; Sato, Daisuke

    2016-01-01

    We analyze the dynamical chiral symmetry breaking in gauge theory with the nonperturbative renormalization group equation (NPRGE), which is a first order nonlinear partial differential equation (PDE). In case that the spontaneous chiral symmetry breaking occurs, the NPRGE encounters some non-analytic singularities at the finite critical scale even though the initial function is continuous and smooth. Therefore there is no usual solution of the PDE beyond the critical scale. In this paper, we newly introduce the notion of a weak solution which is the global solution of the weak NPRGE. We show how to evaluate the physical quantities with the weak solution.

  17. A numerical solution to the local cohomology problem in U(1) chiral gauge theories

    Science.gov (United States)

    Kadoh, Daisuke; Kikukawa, Yoshio

    2005-01-01

    We consider a numerical method to solve the local cohomology problem related to the gauge anomaly cancellation in U(1) chiral gauge theories. In the cohomological analysis of the chiral anomaly, it is required to carry out the differentiation and the integration of the anomaly with respect to the continuous parameter for the interpolation of the admissible gauge fields. In our numerical approach, the differentiation is evaluated explicitly through the rational approximation of the overlap Dirac operator with Zolotarev optimization. The integration is performed with a Gaussian Quadrature formula, which turns out to show rather good convergence. The Poincaré lemma is reformulated for the finite lattice and is implemented numerically. We compute the current associated with the cohomologically trivial part of the chiral anomaly in two-dimensions and check its locality properties.

  18. A numerical solution to the local cohomology problem in U(1) chiral gauge theories

    CERN Document Server

    Kadoh, D; Kadoh, Daisuke; Kikukawa, Yoshio

    2005-01-01

    We consider a numerical method to solve the local cohomology problem related to the gauge anomaly cancellation in U(1) chiral gauge theories. In the cohomological analysis of the chiral anomaly, it is required to carry out the differentiation and the integration of the anomaly with respect to the continuous parameter for the interpolation of the admissible gauge fields. In our numerical approach, the differentiation is evaluated explicitly through the rational approximation of the overlap Dirac operator with Zolotarev optimization. The integration is performed with a Gaussian Quadrature formula, which turns out to show rather good convergence. The Poincare lemma is reformulated for the finite lattice and is implemented numerically. We compute the current associated with the cohomologically trivial part of the chiral anomaly in two-dimensions and check its locality properties.

  19. A numerical solution to the local cohomology problem in U(1) chiral gauge theories

    International Nuclear Information System (INIS)

    We consider a numerical method to solve the local cohomology problem related to the gauge anomaly cancellation in U(1) chiral gauge theories. In the cohomological analysis of the chiral anomaly, it is required to carry out the differentiation and the integration of the anomaly with respect to the continuous parameter for the interpolation of the admissible gauge fields. In our numerical approach, the differentiation is evaluated explicitly through the rational approximation of the overlap Dirac operator with Zolotarev optimization. The integration is performed with a Gaussian Quadrature formula, which turns out to show rather good convergence. The Poincare lemma is reformulated for the finite lattice and is implemented numerically. We compute the current associated with the cohomologically trivial part of the chiral anomaly in two-dimensions and check its locality properties. (author)

  20. Centre vortices underpin dynamical chiral symmetry breaking in $\\mathrm{SU}(3)$ gauge theory

    CERN Document Server

    Trewartha, Daniel; Leinweber, Derek

    2015-01-01

    The link between dynamical chiral symmetry breaking and centre vortices in the gauge fields of pure $\\mathrm{SU}(3)$ gauge theory is studied using the overlap-fermion quark propagator in Lattice QCD. Overlap fermions provide a lattice realisation of chiral symmetry and consequently offer a unique opportunity to explore the interplay of centre vortices, instantons and dynamical mass generation. Simulations are performed on gauge fields featuring the removal of centre vortices, identified through gauge transformations maximising the center of the gauge group. In contrast to previous results using the staggered-fermion action, the overlap-fermion results illustrate a loss of dynamical chiral symmetry breaking coincident with vortex removal. This result is linked to the overlap-fermion's sensitivity to the subtle manner in which instanton degrees of freedom are compromised through the process of centre vortex removal. Backgrounds consisting solely of the identified centre vortices are also investigated. After smo...

  1. Chiral observables and S-duality in N = 2* U(N) gauge theories

    CERN Document Server

    Ashok, S K; Dell'Aquila, E; Frau, M; Lerda, A; Moskovic, M; Raman, M

    2016-01-01

    We study N = 2* theories with gauge group U(N) and use equivariant localization to calculate the quantum expectation values of the simplest chiral ring elements. These are expressed as an expansion in the mass of the adjoint hypermultiplet, with coefficients given by quasi-modular forms of the S-duality group. Under the action of this group, we construct combinations of chiral ring elements that transform as modular forms of definite weight. As an independent check, we confirm these results by comparing the spectral curves of the associated Hitchin system and the elliptic Calogero-Moser system. We also propose an exact and compact expression for the 1-instanton contribution to the expectation value of the chiral ring elements.

  2. A numerical solution to the local cohomology problem in U(1) chiral gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Kadoh, Daisuke; Kikukawa, Yoshio [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)]. E-mail: kikukawa@eken.phys.nagoya-u.ac.jp

    2005-01-01

    We consider a numerical method to solve the local cohomology problem related to the gauge anomaly cancellation in U(1) chiral gauge theories. In the cohomological analysis of the chiral anomaly, it is required to carry out the differentiation and the integration of the anomaly with respect to the continuous parameter for the interpolation of the admissible gauge fields. In our numerical approach, the differentiation is evaluated explicitly through the rational approximation of the overlap Dirac operator with Zolotarev optimization. The integration is performed with a Gaussian Quadrature formula, which turns out to show rather good convergence. The Poincare lemma is reformulated for the finite lattice and is implemented numerically. We compute the current associated with the cohomologically trivial part of the chiral anomaly in two-dimensions and check its locality properties. (author)

  3. Numerical study of chiral plasma instability within the classical statistical field theory approach

    Science.gov (United States)

    Buividovich, P. V.; Ulybyshev, M. V.

    2016-07-01

    We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.

  4. Effective chiral restoration in the hadronic spectrum and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Thomas D. [Department of Physics, University of Maryland, College Park, MD 20742-4111 (United States)]. E-mail: cohen@physics.umd.edu

    2006-08-21

    Effective chiral restoration in the hadronic spectrum has been conjectured as an explanation of nearly degenerate multiplets seen in highly excited hadrons. The conjecture depends on the states being insensitive to the dynamics of spontaneous chiral symmetry breaking. A key question is whether this concept is well defined in QCD. This paper shows that it is by means of an explicit formal construction. This construction allows one to characterize this sensitivity for any observable calculable in QCD in Euclidean space via a functional integral. The construction depends on a generalization of the Banks-Casher theorem. It exploits the fact that all dynamics sensitive to spontaneous chiral symmetry breaking observables in correlation functions arise from fermion modes of zero virtuality (in the infinite volume limit), while such modes make no contribution to any of the dynamics which preserves chiral symmetry. In principle this construction can be implemented in lattice QCD. The prospect of a practical lattice implementation yielding a direct numerical test of the concept of effective chiral restoration is discussed.

  5. An Ultraviolet Chiral Theory of the Top for the Fundamental Composite (Goldstone) Higgs

    CERN Document Server

    Cacciapaglia, Giacomo

    2015-01-01

    We introduce a scalar-less anomaly free chiral gauge theory that serves as natural ultraviolet completion of models of fundamental composite (Goldstone) Higgs dynamics. The new theory is able to generate the top mass and furthermore features a built-in protection mechanism that naturally suppresses the bottom mass. At low energies the theory predicts new fractionally charged fermions, and a number of four-fermion operators that, besides being relevant for the generation of the top mass, also lead to an intriguing phenomenology for the new states predicted by the theory.

  6. Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics

    International Nuclear Information System (INIS)

    By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3)F symmetry breaking effects are estimated and, if possible, confronted with experiment. ((orig.))

  7. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  8. Electromagnetic Response of the Chiral Magnetic Effect in Weyl Semimetals

    CERN Document Server

    Barnes, Edwin; Minic, Djordje

    2016-01-01

    Weyl semimetals are predicted to realize the three-dimensional axial anomaly first discussed in particle physics. The anomaly leads to unusual transport phenomena such as the chiral magnetic effect in which an applied magnetic field induces a current parallel to the field. Here we investigate diagnostics of the axial anomaly based on the fundamental equations of axion electrodynamics. We find that materials with Weyl nodes of opposite chirality and finite energy separation immersed in a uniform magnetic field exhibit an anomaly-induced oscillatory magnetic field with a period set by the chemical potential difference of the nodes. In the case where a chemical potential imbalance is created by applying parallel electric and magnetic fields, we find a suppression of the magnetic field component parallel to the electric field inside the material for rectangular samples, suggesting that the chiral magnetic current opposes this imbalance. For cylindrical geometries, we instead find an enhancement of this magnetic f...

  9. The effective action approach applied to nuclear chiral sigma model

    International Nuclear Information System (INIS)

    The nuclear chiral sigma model of nuclear matter is considered by means of the Cornwall-Jackiw-tomboulis (CTJ) effective action. The method provides a very general framework for investigating many important problems: chiral symmetry in nuclear medium, energy density of nuclear ground state, nuclear Schwinger-Dyson (SD) equations, etc. It is shown that the SD equations for sigma-omega mixing are actually not present in this formalism. For numerical computation purposes the Hartree-Fock (HF) approximation for ground state energy density is also presented. (author). 26 refs

  10. Baryon chiral perturbation theory with Wilson fermions up to $\\mathcal{O}(a^2)$ and discretization effects of latest $n_f=2+1$ LQCD octet baryon masses

    OpenAIRE

    Ren, Xiu-Lei; Geng, Li-Sheng; Meng, Jie

    2013-01-01

    We construct the chiral Lagrangians relevant in studies of the ground-state octet baryon masses up to O(a2) by taking into account discretization effects. We calculate the masses up to O(p4) in the extended-on-mass-shell scheme. As an application, we study the latest nf=2+1 LQCD data on the ground-state octet baryon masses from the PACS-CS, QCDSF-UKQCD, HSC, and NPLQCD Collaborations. It is shown that the discretization effects for the studied LQCD simulations are at the order of 1–2 % for la...

  11. 6d strings from new chiral gauge theories

    CERN Document Server

    Kim, Hee-Cheol; Park, Jaemo

    2016-01-01

    We study the 6d $\\mathcal{N}=(1,0)$ superconformal field theory with smallest non-Higgsable gauge symmetry $SU(3)$. In particular, we propose new 2d gauge theory descriptions of its self-dual strings in the tensor branch. We use our gauge theories to compute the elliptic genera of the self-dual strings, which completely agree with the partial data known from topological strings. We further study the strings of the $(E_6,E_6)$ conformal matter by generalizing our 2d gauge theories. We also show that anomalies of all our gauge theories agree with the self-dual string anomalies computed by inflows from 6d.

  12. Chiral dynamics in QED and QCD in a magnetic background and nonlocal noncommutative field theories

    International Nuclear Information System (INIS)

    We study the connection of the chiral dynamics in QED and QCD in a strong magnetic field with noncommutative field theories (NCFT). It is shown that these dynamics determine complicated nonlocal NCFT. In particular, although the interaction vertices for electrically neutral composites in these gauge models can be represented in the space with noncommutative spatial coordinates, there is no field transformation that could put the vertices in the conventional form considered in the literature. It is unlike the Nambu-Jona-Lasinio (NJL) model in a magnetic field where such a field transformation can be found, with a cost of introducing an exponentially damping form factor in field propagators. The crucial distinction between these two types of models is in the characters of their interactions, being short-range in the NJL-like models and long-range in gauge theories. The relevance of the NCFT connected with the gauge models for the description of the quantum Hall effect in condensed matter systems with long-range interactions is briefly discussed

  13. The Kaon B-parameter in mixed action chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, C.; /Columbia U.; Laiho, Jack; Van de Water, Ruth S.; /Fermilab

    2006-09-01

    We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an {Omicron}(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of {Omicron}(a{sup 2}). This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B{sub K} for pure G-W lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.

  14. Chiral all-organic nitroxide biradical liquid crystals showing remarkably large positive magneto-LC effects.

    Science.gov (United States)

    Suzuki, Katsuaki; Takemoto, Yusa; Takaoka, Shohei; Taguchi, Koji; Uchida, Yoshiaki; Mazhukin, Dmitrii G; Grigor'ev, Igor A; Tamura, Rui

    2016-03-11

    The liquid crystalline chiral nitroxide biradical (S,S,S,S)-3 synthesized has shown much larger 'positive magneto-LC effects' in the chiral nematic (N*) phase than the monoradical (S,S)-1. PMID:26871609

  15. CHIRAL RING OF Sp(N) AND SO(N) SUPERSYMMETRIC GAUGE THEORY IN FOUR DIMENSIONS

    Institute of Scientific and Technical Information of China (English)

    E. WITTEN

    2003-01-01

    The chiral ring of classical supersymmetric Yang-Mills theory with gauge group Sp(N) or SO(N) is computed, extending previous work (of Cachazo, Douglas, Seiberg, and the author)for SU(N). The result is that, as has been conjectured, the ring is generated by the usualglueball superfield S ~ Tr WαWα, with the relation Sh = 0, h being the dual Coxeter number.Though this proposition has important implications for the behavior of the quantum theory,the statement and (for the most part) the proofs amount to assertions about Lie groups withno direct reference to gauge theory.

  16. The Study of Electromagnetic Scattering by a Non-perfectly Conductor in Chiral Media by Potential Theory

    Institute of Scientific and Technical Information of China (English)

    GAO TIAN-LING; LIU QIANG; Ma Fu-ming

    2012-01-01

    This paper is concerned with the electromagnetic scattering by a nonperfectly conductor obstacle in chiral environment.A two-dimensional mathematical model is established.The existence and uniqueness of the problem are discussed by potential theory.

  17. Wess-Zumino-Witten action and photons from the Chiral Magnetic Effect

    OpenAIRE

    Fukushima, Kenji; Mameda, Kazuya

    2012-01-01

    We revisit the Chiral Magnetic Effect (CME) using the chiral Lagrangian. We demonstrate that the electric-current formula of the CME is derived immediately from the contact part of the Wess-Zumino-Witten action. This implies that the CME could be, if observed, a signature for the local parity violation, but a direct evidence for neither quark deconfinement nor chiral restoration. We also discuss the reverse Chiral Magnetic Primakoff Effect, i.e. the real photon production through the vertex a...

  18. Predictions of covariant chiral perturbation theory for nucleon polarisabilities and polarised Compton scattering

    CERN Document Server

    Lensky, Vadim; Pascalutsa, Vladimir

    2015-01-01

    We update the predictions of the SU(2) baryon chiral perturbation theory for the dipole polarisabilities of the proton, $\\{\\alpha_{E1},\\,\\beta_{M1}\\}_p=\\{11.2(0.7),\\,3.9(0.7)\\}\\times10^{-4}$fm$^3$, and obtain the corresponding predictions for the quadrupole, dispersive, and spin polarisabilities: $\\{\\alpha_{E2},\\,\\beta_{M2}\\}_p=\\{17.3(3.9),\\,-15.5(3.5)\\}\\times10^{-4}$fm$^5$, $\\{\\alpha_{E1\

  19. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Directory of Open Access Journals (Sweden)

    Biernat Elmar P.

    2016-01-01

    Full Text Available We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.

  20. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, A; Gross, F

    2015-01-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  1. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Science.gov (United States)

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, A.; Gross, F.

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.

  2. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  3. Determination of low-energy constants of Wilson chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Herdoiza, Gregorio [Mainz Univ. (Germany). Inst fuer Kernphysik, PRISMA Cluster of Excellence; Univ. Autonoma de Madrid, Contoblanco (Spain). Dept. de Fisica Teorica; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Univ. Cyprus, Nicosia (Cyprus). Dept. of Physics; Michael, Chris [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Ottnad, Konstantin; Urbach, Carsten [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen und Kernphysik; Univ. Bonn (Germany). Bethe Center for Theoretical Physics; Collaboration: European Twisted Mass Collaboration

    2013-03-15

    By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W{sub 6}{sup '}, W{sub 8}{sup '} and their linear combination c{sub 2}. We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.

  4. Chiral four-dimensional F-theory compactifications with SU(5) and multiple U(1)-factors

    Science.gov (United States)

    Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; Piragua, Hernan

    2014-04-01

    We develop geometric techniques to determine the spectrum and the chiral indices of matter multiplets for four-dimensional F-theory compactifications on elliptic Calabi-Yau fourfolds with rank two Mordell-Weil group. The general elliptic fiber is the Calabi-Yau onefold in dP 2. We classify its resolved elliptic fibrations over a general base B. The study of singularities of these fibrations leads to explicit matter representations, that we determine both for U(1) × U(1) and SU(5) × U(1) × U(1) constructions. We determine for the first time certain matter curves and surfaces using techniques involving prime ideals. The vertical cohomology ring of these fourfolds is calculated for both cases and general formulas for the Euler numbers are derived. Explicit calculations are presented for a specific base B = ℙ3. We determine the general G 4-flux that belongs to of the resolved Calabi-Yau fourfolds. As a by-product, we derive for the first time all conditions on G 4-flux in general F-theory compactifications with a non-holomorphic zero section. These conditions have to be formulated after a circle reduction in terms of Chern-Simons terms on the 3D Coulomb branch and invoke M-theory/F-theory duality. New Chern-Simons terms are generated by Kaluza-Klein states of the circle compactification. We explicitly perform the relevant field theory computations, that yield non-vanishing results precisely for fourfolds with a non-holomorphic zero section. Taking into account the new Chern-Simons terms, all 4D matter chiralities are determined via 3D M-theory/F-theory duality. We independently check these chiralities using the subset of matter surfaces we determined. The presented techniques are general and do not rely on toric data.

  5. Octet baryon masses and sigma terms in covariant baryon chiral perturbation theory

    CERN Document Server

    Ren, Xiu-Lei; Meng, Jie

    2015-01-01

    We report on a recent study of the ground-state octet baryon masses and sigma terms in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. To take into account lattice QCD artifacts, the finite-volume corrections and finite lattice spacing discretization effects are carefully examined. We performed a simultaneous fit of all the $n_f = 2+1$ lattice octet baryon masses and found that the various lattice simulations are consistent with each other. Although the finite lattice spacing discretization effects up to $\\mathcal{O}(a^2)$ can be safely ignored, but the finite volume corrections cannot even for configurations with $M_\\phi L>4$. As an application, we predicted the octet baryon sigma terms using the Feynman-Hellmann theorem. In particular, the pion- and strangeness-nucleon sigma terms are found to be $\\sigma_{\\pi N} = 55(1)(4)$ MeV and $\\sigma_{sN} = 27(27)(4)$ MeV, respectively.

  6. The vector manifestation and effective degrees of freedom at chiral restoration

    International Nuclear Information System (INIS)

    The role of effective degrees of freedom on the vector and axial-vector susceptibilities and the pion velocity at chiral restoration is analyzed. We consider two possible scenarios, one in which pions are considered to be the only low-lying degrees of freedom - that we shall refer to as 'standard' - and the other in which pions, vector mesons and constituent quarks (or quasiquarks in short) are the relevant low-lying degrees of freedom - that we shall refer to as 'vector manifestation (VM)'. We show at one-loop order in chiral perturbation theory with hidden local symmetry Lagrangian that while in the standard scenario, the pion velocity vanishes at the chiral transition, it instead approaches unity in the VM scenario. If the VM is realized in nature, the chiral phase structure of hadronic matter can be much richer than that in the standard one and the phase transition will be a smooth crossover: Sharp vector and scalar excitations are expected in the vicinity of the critical point. Some indirect indications that lend support to the VM scenario, and in consequence to BR scaling, are discussed. (author)

  7. Quark Matter in a Parallel Electric and Magnetic Field Background: Equilibrated Chiral Density Effect on Chiral Phase Transition

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...

  8. The effect of central and planar chirality on the electrochemical and chiral sensing properties of ferrocenyl urea H-bonding receptors.

    Science.gov (United States)

    Mulas, Andrea; Willener, Yasmine; Carr-Smith, James; Joly, Kevin M; Male, Louise; Moody, Christopher J; Horswell, Sarah L; Nguyen, Huy V; Tucker, James H R

    2015-04-28

    A new series of chiral ureas containing one or two redox-active ferrocene units was synthesised and studied in order to investigate the effect of planar chirality and central chirality on electrochemical chiral sensing. Binding of chiral carboxylate anions in organic solvents through H-bond formation caused a negative shift in the potentials of the ferrocene/ferrocenium (Fc/Fc(+)) couples of the receptors, demonstrating their use as electrochemical sensors in solution. While the presence of two ferrocene units gave no marked improvement in the chiral sensing capabilities of these systems, the introduction of planar chirality, in addition to central chirality, switched the enantiomeric binding preference of the system and also caused an interesting change in the appearance of some voltammograms, with unusual two-wave behaviour observed upon binding a protected prolinate guest. PMID:25791522

  9. SIMP model at NNLO in chiral perturbation theory

    DEFF Research Database (Denmark)

    Hansen, Martin Rasmus Lundquist; Langaeble, K.; Sannino, F.

    2015-01-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 to 2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By...... phenomenological constraints challenging the viability of the simplest realisation of the strongly interacting massive particle (SIMP) paradigm....

  10. Classifying the Phases of Gauge Theories by Spectral Density of Probing Chiral Quarks

    CERN Document Server

    Alexandru, Andrei

    2015-01-01

    We describe our recent proposal that distinct phases of gauge theories with fundamental quarks translate into specific types of low-energy behavior in Dirac spectral density. The resulting scenario is built around new evidence substantiating the existence of a phase characterized by bimodal (anomalous) density, and corresponding to deconfined dynamics with broken valence chiral symmetry. We argue that such anomalous phase occurs quite generically in these theories, including in "real world" QCD above the crossover temperature, and in zero-temperature systems with many light flavors.

  11. Effective field theories for QCD with rooted staggered fermions

    International Nuclear Information System (INIS)

    Even highly improved variants of lattice QCD with staggered fermions show significant violations of taste symmetry at currently accessible lattice spacings. In addition, the 'rooting trick' is used in order to simulate with the correct number of light sea quarks, and this makes the lattice theory nonlocal, even though there is good reason to believe that the continuum limit is in the correct universality class. In order to understand scaling violations, it is thus necessary to extend the construction of the Symanzik effective theory to include rooted staggered fermions. We show how this can be done, starting from a generalization of the renormalization-group approach to rooted staggered fermions recently developed by one of us. We then explain how the chiral effective theory follows from the Symanzik action, and show that it leads to 'rooted' staggered chiral perturbation theory as the correct chiral theory for QCD with rooted staggered fermions. We thus establish a direct link between the renormalization-group based arguments for the correctness of the continuum limit and the success of rooted staggered chiral perturbation theory in fitting numerical results obtained with the rooting trick. In order to develop our argument, we need to assume the existence of a standard partially-quenched chiral effective theory for any local partially-quenched theory. Other technical, but standard, assumptions are also required.

  12. Baryon masses at second order in large-N chiral perturbation theory

    International Nuclear Information System (INIS)

    We consider flavor breaking in the octet and decuplet baryon masses at second order in large-N chiral perturbation theory, where N is the number of QCD colors. We assume that 1/N∼1/NF∼ms/Λ>mu,d/Λ,αEM, where NF is the number of light quark flavors, and mu,d,s/Λ are the parameters controlling SU(NF) flavor breaking in chiral perturbation theory. We consistently include nonanalytic contributions to the baryon masses at orders mq3/2, m2qlnmq, and (mqlnmq)/N. The mq3/2 corrections are small for the relations that follow from SU(NF) symmetry alone, but the corrections to the large-N relations are large and have the wrong sign. Chiral power counting and large-N consistency allow a two-loop contribution at order m2qlnmq, and a nontrivial explicit calculation is required to show that this contribution vanishes. At second order in the expansion, there are eight relations that are nontrivial consequences of the 1/N expansion, all of which are well satisfied within the experimental errors. The average deviation at this order is 7 MeV for the ΔI=0 mass differences and 0.35 MeV for the ΔI≠0 mass differences, consistent with the expectation that the error is of order 1/N2∼10%. copyright 1996 The American Physical Society

  13. Chiral expansion and Macdonald deformation of two-dimensional Yang-Mills theory

    CERN Document Server

    Kokenyesi, Zoltan; Szabo, Richard J

    2016-01-01

    We derive the analog of the large $N$ Gross-Taylor holomorphic string expansion for the refinement of $q$-deformed $U(N)$ Yang-Mills theory on a compact oriented Riemann surface. The derivation combines Schur-Weyl duality for quantum groups with the Etingof-Kirillov theory of generalized quantum characters which are related to Macdonald polynomials. In the unrefined limit we reproduce the chiral expansion of $q$-deformed Yang-Mills theory derived by de Haro, Ramgoolam and Torrielli. In the classical limit $q=1$, the expansion defines a new $\\beta$-deformation of Hurwitz theory wherein the refined partition function is a generating function for certain parameterized Euler characters, which reduce in the unrefined limit $\\beta=1$ to the orbifold Euler characteristics of Hurwitz spaces of holomorphic maps. We discuss the geometrical meaning of our expansions in relation to quantum spectral curves and $\\beta$-ensembles of matrix models arising in refined topological string theory.

  14. What $\\pi-\\pi$ Scattering Tells Us About Chiral Perturbation Theory

    CERN Document Server

    Stern, J; Fuchs, N

    1993-01-01

    We describe a rearrangement of the standard expansion of the symmetry breaking part of the QCD effective Lagrangian that includes into each order additional terms which in the standard chiral perturbation theory ($\\chi$PT) are relegated to higher orders. The new expansion represents a systematic and unambiguous generalization of the standard $\\chi$PT, and is more likely to converge rapidly. It provides a consistent framework for a measurement of the importance of additional ``higher order'' terms whose smallness is usually assumed but has never been checked. A method of measuring, among other quantities, the QCD parameters $\\hat{m}\\langle\\bar{q}q\\rangle$ and the quark mass ratio $m_s/\\hat{m}$ is elaborated in detail. The method is illustrated using various sets of available data. Both of these parameters might be considerably smaller than their respective leading order standard $\\chi$PT values. The importance of new, more accurate, experimental information on low-energy $\\pi-\\pi$ scattering is stressed.

  15. Phase diagram of 4D field theories with chiral anomaly from holography

    Science.gov (United States)

    Ammon, Martin; Leiber, Julian; Macedo, Rodrigo P.

    2016-03-01

    Within gauge/gravity duality, we study the class of four dimensional CFTs with chiral anomaly described by Einstein-Maxwell-Chern-Simons theory in five dimensions. In particular we determine the phase diagram at finite temperature, chemical potential and magnetic field. At high temperatures the solution is given by an electrically and magnetically charged AdS Reissner-Nordstroem black brane. For sufficiently large Chern-Simons coupling and at sufficiently low temperatures and small magnetic fields, we find a new phase with helical order, breaking translational invariance spontaneously. For the Chern-Simons couplings studied, the phase transition is second order with mean field exponents. Since the entropy density vanishes in the limit of zero temperature we are confident that this is the true ground state which is the holographic version of a chiral magnetic spiral.

  16. Chiral symmetry and π -π scattering in the covariant spectator theory

    Science.gov (United States)

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz

    2014-11-01

    The π -π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the covariant spectator theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similar to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward-Takahashi identity to the CST π -π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. The Adler self-consistency zero for π -π scattering in the chiral limit emerges as the result for this sum.

  17. Chiral symmetry and pi-pi scattering in the Covariant Spectator Theory

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz

    2014-01-01

    The pi-pi scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward-Takahashi identity to the CST pi-pi scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. The Adler self-consistency zero for pi-pi scattering in the chiral limit emerges as the result for this sum.

  18. Chiral Perturbation Theory and the $\\bar B \\bar B$ Strong Interaction

    CERN Document Server

    Liu, Zhan-Wei; Zhu, Shi-Lin

    2012-01-01

    We have calculated the potentials of the heavy (charmed or bottomed) pseudoscalar mesons up to $O(\\epsilon^2)$ with the heavy meson chiral perturbation theory. We take into account the contributions from the football, triangle, box, and crossed diagrams with the 2$\\phi$ exchange and one-loop corrections to the contact terms. We notice that the total 2$\\phi$-exchange potential alone is attractive in the small momentum region in the channel ${\\bar B \\bar B}^{I=1}$, ${\\bar B_s \\bar B_s}^{I=0}$, or ${\\bar B \\bar B_s}^{I=1/2}$, while repulsive in the channel ${\\bar B \\bar B}^{I=0}$. Hopefully the analytical chiral structures of the potentials may be useful in the extrapolation of the heavy meson interaction from lattice QCD simulation.

  19. Phase diagram of 4D field theories with chiral anomaly from holography

    CERN Document Server

    Ammon, Martin; Macedo, Rodrigo P

    2016-01-01

    Within gauge/gravity duality, we study the class of four dimensional CFTs with chiral anomaly described by Einstein-Maxwell-Chern-Simons theory in five dimensions. In particular we determine the phase diagram at finite temperature, chemical potential and magnetic field. At high temperatures the solution is given by an electrically and magnetically charged AdS Reissner-Nordstroem black brane. For sufficiently large Chern-Simons coupling and at sufficiently low temperatures and small magnetic fields, we find a new phase with helical order, breaking translational invariance spontaneously. For the Chern-Simons couplings studied, the phase transition is second order with mean field exponents. Since the entropy density vanishes in the limit of zero temperature we are confident that this is the true ground state which is the holographic version of a chiral magnetic spiral.

  20. On the chiral separation effect in a slab

    CERN Document Server

    Sitenko, Yu A

    2016-01-01

    We study an influence of boundaries on chiral effects in hot dense relativistic spinor matter in a strong magnetic field which is transverse to bounding planes. The most general set of boundary conditions ensuring the confinement of matter within the bounding planes is considered. We find that, in thermal equilibrium, the nondissipative axial current along the magnetic field is induced, depending on chemical potential and temperature, as well as on a choice of boundary conditions. As temperature increases from zero to large values, a stepwise behaviour of the axial current density as a function of chemical potential is changed to a smooth one; the choice of a boundary condition can facilitate either amplification or diminution of the chiral separation effect. This points at a significant role of boundaries for physical systems with hot dense magnetized relativistic spinor matter, e.g., compact stars, heavy-ion collisions, novel materials known as Dirac and Weyl semimetals.

  1. Chiral Colloidal Molecules And Observation of The Propeller Effect

    Science.gov (United States)

    2013-01-01

    Chiral molecules play an important role in biological and chemical processes, but physical effects due to their symmetry-breaking are generally weak. Several physical chiral separation schemes which could potentially be useful, including the propeller effect, have therefore not yet been demonstrated at the molecular scale. However, it has been proposed that complex nonspherical colloidal particles could act as “colloidal molecules” in mesoscopic model systems to permit the visualization of molecular phenomena that are otherwise difficult to observe. Unfortunately, it is difficult to synthesize such colloids because surface minimization generally favors the growth of symmetric particles. Here we demonstrate the production of large numbers of complex colloids with glancing angle physical vapor deposition. We use chiral colloids to demonstrate the Baranova and Zel’dovich (BaranovaN. B.Zel’dovichB. Y.Chem. Phys. Lett.1978, 57, 435) propeller effect: the separation of a racemic mixture by application of a rotating field that couples to the dipole moment of the enantiomers and screw propels them in opposite directions. The handedness of the colloidal suspensions is monitored with circular differential light scattering. An exact solution for the colloid’s propulsion is derived, and comparisons between the colloidal system and the corresponding effect at the molecular scale are made. PMID:23883328

  2. Baryon chiral perturbation theory withWilson fermions up to O(a{sup 2}) and discretization effects of latest n{sub f} = 2 + 1 LQCD octet baryon masses

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiu-Lei [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Beihang University, International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Geng, Li-Sheng [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Beihang University, International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meng, Jie [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Beihang University, International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2014-02-15

    We construct the chiral Lagrangians relevant in studies of the ground-state octet baryon masses up to O(a{sup 2}) by taking into account discretization effects. We calculate the masses up to O(p{sup 4}) in the extended-on-mass-shell scheme. As an application, we study the latest n{sub f} = 2+1 LQCD data on the ground-state octet baryon masses from the PACS-CS, QCDSF-UKQCD, HSC, and NPLQCD Collaborations. It is shown that the discretization effects for the studied LQCD simulations are at the order of 1-2 % for lattice spacings up to 0.15 fm and the pion mass up to 500 MeV. (orig.)

  3. Test the chiral magnetic effect with isobaric collisions

    OpenAIRE

    Deng, Wei-Tian; Huang, Xu-Guang; Ma, Guo-Liang; Wang, Gang

    2016-01-01

    The quark-gluon matter produced in relativistic heavy-ion collisions may contain local domains in which P and CP symmetries are not preserved. When coupled with an external magnetic field, such P- and CP-odd domains will generate electric currents along the magnetic field --- a phenomenon called the chiral magnetic effect (CME). Recently, the STAR Collaboration at RHIC and the ALICE Collaboration at the LHC released data of charge-dependent azimuthal-angle correlators with features consistent...

  4. On gravitational dressing of 2D field theories in chiral gauge

    International Nuclear Information System (INIS)

    After giving a pedagogical review of the chiral gauge approach to 2D gravity, with particular emphasis on the derivation of the gravitational Ward identities, we discuss in some detail the interpretation of matter correlation functions coupled to gravity in chiral gauge. We argue that in chiral gauge no explicit gravitational dressing factor, analogue to the Liouville exponential in conformal gauge, is necessary for left-right symmetric matter operators. In particular, we examine the gravitationally dressed four-point correlation function of products of left and right fermions. We solve the corresponding gravitational Ward identity exactly: in the presence of gravity this four-point function exhibits a logarithmic short-distance singularity, instead of the power-law singularity in the absence of gravity. This rather surprising effect is non-perturbative in the gravitational coupling and is a sign for logarithms in the gravitationally dressed operator product expansions. We also discuss some perturbative evidence that the chiral Gross-Neveu model may remain integrable when coupled to gravity. (orig.)

  5. Electrolyte effects on the chiral induction and on its temperature dependence in a chiral nematic lyotropic liquid crystal.

    Science.gov (United States)

    Dawin, Ute C; Osipov, Mikhail A; Giesselmann, Frank

    2010-08-19

    We present a study on the effect of added CsCl and of temperature variation on the chiral induction in a chiral nematic lyotropic liquid crystal (LC) composed of the surfactant cesium perfluorooctanoate (CsPFO), water, and the chiral dopant d-Leucine (d-Leu). The chiral induction was measured as the helical pitch P. The role of the additives CsCl and d-Leu on the phase behavior is investigated and discussed. The thermal stabilization effect of CsCl is shown to lead to an apparent salt effect on the pitch when the pitch is compared at a constant temperature. This apparent effect is removed by comparing the pitch measured for different salt concentrations at a temperature relative to the phase-transition temperatures; thus, the real salt effect on the pitch is described. High salt concentrations are shown to increase the pitch, that is, hinder the chiral induction. The effect is discussed in terms of a decreased solubilization of the amphiphilic chiral solute d-Leu in the micelles due to the salt-induced screening of the surfactant head groups and the consequential denser packing of the surfactants. The temperature variation of the pitch is investigated for all CsCl concentrations and is found to be essentially independent of the salt concentration. The temperature variation is analyzed and discussed in the context of a theoretical model taking into account specific properties of lyotropic liquid crystals. A hyperbolic decrease of the pitch is found with increasing temperature, which is known, from thermotropic liquid crystals, to stem from pretransitional critical fluctuations close to the lamellar phase. However, the experimental data confirmed the theoretical prediction that, at high temperature, that is, far away from the transition into the lamellar phase, the pitch is characterized by a linear temperature dependence which is determined by a combination of steric and dispersion chiral interactions. The parameters of the theoretical expression for the pitch have

  6. Strain induced Chiral Magnetic Effect in Weyl semimetals

    CERN Document Server

    Cortijo, Alberto; Landsteiner, Karl; Vozmediano, María A H

    2016-01-01

    We argue that strain applied to a time-reversal and inversion breaking Weyl semi-metal in a magnetic field can induce an electric current via the chiral magnetic effect. A tight binding model is used to show that strain generically changes the locations in the Brillouin zone but also the energies of the band touching points (tips of the Weyl cones). Since axial charge in a Weyl semi-metal can relax via inter-valley scattering processes the induced current will decay with a timescale given by the lifetime of a chiral quasiparticle. We estimate the strength and lifetime of the current for typical material parameters and find that it should be experimentally observable.

  7. Evidence that centre vortices underpin dynamical chiral symmetry breaking in SU (3) gauge theory

    Science.gov (United States)

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek

    2015-07-01

    The link between dynamical chiral symmetry breaking and centre vortices in the gauge fields of pure SU (3) gauge theory is studied using the overlap-fermion quark propagator in Lattice QCD. Overlap fermions provide a lattice realisation of chiral symmetry and consequently offer a unique opportunity to explore the interplay of centre vortices, instantons and dynamical mass generation. Simulations are performed on gauge fields featuring the removal of centre vortices, identified through gauge transformations maximising the center of the gauge group. In contrast to previous results using the staggered-fermion action, the overlap-fermion results illustrate a loss of dynamical chiral symmetry breaking coincident with vortex removal. This result is linked to the overlap-fermion's sensitivity to the subtle manner in which instanton degrees of freedom are compromised through the process of centre vortex removal. Backgrounds consisting solely of the identified centre vortices are also investigated. After smoothing the vortex-only gauge fields, we observe dynamical mass generation on the vortex-only backgrounds consistent within errors with the original gauge-field ensemble following the same smoothing. Through visualizations of the instanton-like degrees of freedom in the various gauge-field ensembles, we find evidence of a link between the centre vortex and instanton structure of the vacuum. While vortex removal destabilizes instanton-like objects under O (a4)-improved cooling, vortex-only backgrounds provide gauge-field degrees of freedom sufficient to create instantons upon cooling.

  8. Equation of state of imbalanced cold matter from chiral perturbation theory

    CERN Document Server

    Carignano, Stefano; Mannarelli, Massimo

    2016-01-01

    We study the thermodynamic properties of matter at vanishing temperature for non-extreme values of the isospin chemical potential and of the strange quark chemical potential. From the leading order pressure obtained by maximizing the static chiral Lagrangian density we derive a simple expression for the equation of state in the pion condensed phase and in the kaon condensed phase. We find an analytical expression for the maximum of the ratio between the chiral perturbation energy density and the Stefan-Boltzmann energy density as well as for the isospin chemical potential at the peak in good agreement with lattice simulations of quantum chromodynamics. We speculate on the location of the crossover from the Bose-Einstein condensate state to the Bardeen-Cooper-Schrieffer state by a simple analysis of the thermodynamic properties of the system. For $\\mu_I \\gtrsim 2 m_\\pi$ the leading order chiral perturbation theory breaks down; as an example it underestimates the energy density of the system and leads to a wron...

  9. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    CERN Document Server

    Siemens, D; Epelbaum, E; Gasparyan, A; Krebs, H; Meißner, Ulf-G

    2016-01-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant $\\beta$-functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide a clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the $\\Delta$-resonance. The explicit inclusion of the leading contributions of the $\\Delta$-isobar is demonstrat...

  10. New lessons from the nucleon mass, lattice QCD and heavy baryon chiral perturbation theory

    CERN Document Server

    Walker-Loud, A

    2008-01-01

    I will review heavy baryon chiral perturbation theory for the nucleon delta degrees of freedom and then examine the recent dynamical lattice calculations of the nucleon mass from the BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD and RBC/UKQCD Collaborations. Performing the chiral extrapolations of these results, one finds remarkable agreement with the physical nucleon mass, from each lattice data set. However, a careful examination of the lattice data and the resulting extrapolation functions reveals some unexpected results, serving to highlight the significant challenges in performing chiral extrapolations of baryon quantities. All the N_f=2+1 dynamical results can be quantitatively described by theoretically unmotivated fit function linear in the pion mass with m_pi ~ 750 -190 MeV. When extrapolated to the physical point, the results are in striking agreement with the physical nucleon mass. I will argue that knowledge of each lattice datum of the nucleon mass is required at the 1-2% level, includ...

  11. Magnetic Catalysis in Graphene Effective Field Theory

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.

  12. Electromagnetic pion production in manifestly Lorentz invariant baryonic chiral perturbation theory

    International Nuclear Information System (INIS)

    This thesis is concerned with electromagnetic pion production within manifestly Lorentz-invariant chiral perturbation theory using the assumption of isospin symmetry. In a one-loop calculation up to the chiral order O(q4), 105 Feynman diagrams contribute, consisting of 20 tree graphs and 85 loop diagrams. The tree graphs are classified as 16 pole diagrams and 4 contact graphs. Of the 85 loop diagrams, 50 diagrams are of order three and 35 diagrams are of fourth order. To calculate the pion production amplitude algorithms are developed on the basis of the Mathematica package FeynCalc. The one-photon-exchange approximation allows one to parametrise the pion production amplitude as the product of the polarisation vector of the (virtual) photon and the matrix element of the transition current. The polarisation vector is related to the leptonic vertex and the photon propagator and is well-known from QED. The dependence of the amplitude on the strong interaction is contained in the matrix element of the transition current, and we use chiral perturbation theory to describe this matrix element. The transition current can be expressed in terms of six gauge invariant amplitudes, each of which can again be decomposed into three isospin amplitudes. Linear combinations of these amplitudes allow us to describe the physical amplitudes. The one-loop integrals appearing within this calculation are determined numerically by the program LoopTools. In the case of tensorial integrals it is required to perform the method of Passarino and Veltman first. Furthermore, we apply the reformulated infrared regularisation which ensures that the results fulfill the chiral power counting. For this purpose algorithms are developed which determine the subtraction terms automatically. The obtained isospin amplitudes are integrated in the program MAID. As tests the s-wave multipoles E0+ and L0+ (using results up to chiral order O(q3)) are calculated in the threshold region. Within the estimated

  13. $\\eta$-$\\eta'$ mixing in large-$N_c$ chiral perturbation theory: discussion, phenomenology, and prospects

    CERN Document Server

    Bickert, Patricia; Scherer, Stefan

    2015-01-01

    A systematic study of the $\\eta$-$\\eta'$ mixing in Large-$N_c$ chiral perturbation theory is presented with special emphasis on the role of the next-to-next-to-leading-order contributions in the combined momentum, quark-mass, and $1/N_c$ expansions. At this order, loop corrections as well as OZI-rule-violating pieces need to be included. Mixing angles as well as pseudoscalar decay constants are discussed within this framework. The results are compared with recent phenomenological approaches.

  14. New tests of the gauge-fixing approach to lattice chiral gauge theories

    International Nuclear Information System (INIS)

    We report on recent progress with the gauge-fixing approach to lattice chiral gauge theories. The bosonic sector of the gauge-fixing approach is studied with fully dynamical U(1) gauge fields. We demonstrate that it is important to formulate the Lorentz gauge-fixing action such that the dense set of lattice Gribov copies is removed, and the gauge-fixing action has a unique absolute minimum. We then show that the spectrum in the continuum limit contains only the desired massless photon, as expected

  15. Lowest-lying octet baryon masses in covariant baryon chiral perturbation theory

    OpenAIRE

    Ren, Xiu-Lei; Geng, Lisheng; Meng, Jie; Toki, Hiroshi

    2013-01-01

    We report on a systematic study of the ground-state octet baryon masses in the covariant baryon chiral perturbation theory with the extended-on-mass-shell renormalization scheme up to next-to-next-to-next-to-leading order, taking into account the contributions of the virtual decuplet baryons. A reasonable description of the lattice results is achieved by fitting simultaneously all the publicly available $n_f = 2+1$ lattice QCD data. It confirms that the various lattice simulations are consist...

  16. The width of the Roper resonance in baryon chiral perturbation theory

    CERN Document Server

    Gegelia, Jambul; Yao, De-Liang

    2016-01-01

    We calculate the width of the Roper resonance at next-to-leading order in a systematic expansion of baryon chiral perturbation theory with pions, nucleons, and the delta and Roper resonances as dynamical degrees of freedom. Three unknown low-energy constants contribute up to the given order. One of them can be fixed by reproducing the empirical value for the width of the Roper decay into a pion and a nucleon. Assuming that the remaining two couplings of the Roper interaction take values equal to those of the nucleon, the result for the width of the Roper decaying into a nucleon and two pions is consistent with the experimental value.

  17. Chiral symmetry and pi-pi scattering in the Covariant Spectator Theory

    OpenAIRE

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz

    2014-01-01

    The pi-pi scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similar to what happens within the Bethe-Salpeter formalism, applica...

  18. Radiative and Nonradiative Muon Capture on the Proton in Heavy-Baryon Chiral Perturbation Theory

    CERN Document Server

    Fearing, Harold W; Mobed, N; Scherer, S; Fearing, Harold W.; Lewis, Randy; Mobed, Nader; Scherer, Stefan

    1997-01-01

    We have evaluated the amplitude for muon capture by a proton, mu + p --> n + nu, to O(p^3) within the context of heavy baryon chiral perturbation theory (HBChPT) using the new O(p^3) Lagrangian of Ecker and Mojzis (E&M). We obtain expressions for the standard muon capture form factors and determine three of the coefficients of the E&M Lagrangian, namely, b_7, b_{19}, and b_{23}. We describe progress on the next step, a calculation of the radiative muon capture process, mu + p --> n + nu + gamma.

  19. Solving the local cohomology problem in U(1) chiral gauge theories within a finite lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kadoh, Daisuke; Nakayama, Yoichi; Kikukawa, Yoshio [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)]. E-mail: kikukawa@eken.phys.nagoya-u.ac.jp

    2004-12-01

    In the gauge-invariant construction of abelian chiral gauge theories on the lattice based on the Ginsparg-Wilson relation, the gauge anomaly is topological and its cohomologically trivial part plays the role of the local counter term. We give a prescription to solve the local cohomology problem within a finite lattice by reformulating the Poincare lemma so that it holds true on the finite lattice up to exponentially small corrections. We then argue that the path-integral measure of Weyl fermions can be constructed directly from the quantities defined on the finite lattice. (author)

  20. Chiral four-dimensional F-theory compactifications with SU(5) and multiple U(1)-factors

    OpenAIRE

    Mirjam Cvetič; Antonella Grassi; Denis Klevers; Hernan Piragua

    2014-01-01

    We develop geometric techniques to determine the spectrum and the chiral indices of matter multiplets for four-dimensional F-theory compactifications on elliptic Calabi-Yau fourfolds with rank two Mordell-Weil group. The general elliptic fiber is the Calabi-Yau onefold in dP 2 . We classify its resolved elliptic fibrations over a general base B . The study of singularities of these fibrations leads to explicit matter representations, that we determine both for U(1) × U(1) and SU(5) × U(1) × U...

  1. Chiral separation of the clinically important compounds fucose and pipecolic acid using CE: determination of the most effective chiral selector.

    Science.gov (United States)

    Hadjistasi, Christoforos A; Stavrou, Ioannis J; Stefan-Van Staden, Raluca-Ioana; Aboul-Enein, Hassan Y; Kapnissi-Christodoulou, Constantina P

    2013-09-01

    In this study, simple electrophoretic methods were developed for the chiral separation of the clinically important compounds fucose and pipecolic acid. In recent years, these analytes, and particularly their individual enantiomers, have attracted considerable attention due to their role in biological functions and disorders. The detectability and sensitivity of pipecolic acid and fucose were improved by reacting them with fluorenylmethyloxycarbonyl chloride (FMOC-Cl) and 5-amino-2-naphthalene-sulfonic acid (ANSA), respectively. The enantioseparation conditions were optimized by initially investigating the type of the chiral selector. Different chiral selectors, such as polymeric surfactants and cyclodextrins, were used and the most effective ones were determined with regard to resolution and analysis time. A 10-mM β-cyclodextrin was able to separate the enantiomers of ANSA-DL-fucose and the polymeric surfactant poly(sodium N-undecanoyl-LL-leucine-valinate) was able to separate the enantiomers of FMOC-DL-pipecolic acid, with resolution values of 3.45 and 2.78, respectively. Additional parameters, such as the concentration and the pH of the background electrolyte (BGE), the concentration of the chiral selector, and the addition of modifiers were examined in order to optimize the separations. The addition of the chiral ionic liquid D-alanine tert-butyl ester lactate into the BGE was also investigated, for the first time, in order to improve resolution of the enantiomers. PMID:23757267

  2. Chiral-symmetry breaking and pion structure in the Covariant Spectator Theory

    CERN Document Server

    Biernat, Elmar P; Gross, Franz; Stadler, Alfred; Ribeiro, Emílio

    2016-01-01

    We introduce a covariant approach in Minkowski space for the description of quarks and mesons that exhibits both chiral-symmetry breaking and confinement. In a simple model for the interquark interaction the quark mass function is obtained and used in the calculation of the pion form factor. We study the effects of the mass function and of the different quark pole contributions on the pion form factor.

  3. A Chiral Magnetic Effect from AdS/CFT with Flavor

    CERN Document Server

    Hoyos, Carlos; O'Bannon, Andy

    2011-01-01

    For (3+1)-dimensional fermions, a net axial charge and external magnetic field can lead to a current parallel to the magnetic field. This is the chiral magnetic effect. We use gauge-gravity duality to study the chiral magnetic effect in large-Nc, strongly-coupled N=4 supersymmetric SU(Nc) Yang-Mills theory coupled to a number Nf << Nc of N=2 hypermultiplets in the Nc representation of SU(Nc), i.e. flavor fields. Specifically, we introduce an external magnetic field and a time-dependent phase for the mass of the flavor fields, which is equivalent to an axial chemical potential for the flavor fermions, and we compute holographically the resulting chiral magnetic current. For massless flavors we find that the current takes the value determined by the axial anomaly. For massive flavors the current appears only in the presence of a condensate of pseudo-scalar mesons, and has a smaller value than for massless flavors, dropping to zero for sufficiently large mass or magnetic field. The axial symmetry in our sy...

  4. Pion Effect of Nuclear Matter in a Chiral Sigma Model

    Institute of Scientific and Technical Information of China (English)

    HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong

    2009-01-01

    We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.

  5. Comment on "Analysis of General Power Counting Rules in Effective Field Theory"

    CERN Document Server

    Buchalla, G; Celis, A; Krause, C

    2016-01-01

    In a recent paper [1] a master formula has been presented for the power counting of a general effective field theory. We first show that this master formula follows immediately from the concept of chiral dimensions (loop counting), together with standard dimensional analysis. Subsequently, [1] has disputed the relevance of chiral counting for chiral Lagrangians, and in particular for the electroweak chiral Lagrangian including a light Higgs boson. As an alternative, a power counting based on `primary dimensions' has been proposed. The difficulties encountered with this scheme led the authors to suggest that even the leading order of the electroweak chiral Lagrangian could not be clearly defined. Here we demonstrate that the concept of primary dimensions is irrelevant for the organization of chiral Lagrangians. We re-emphasize that the correct counting is based on chiral dimensions, or the counting of loop orders, and show how the problems encountered in [1] are resolved.

  6. Effective theories of universal theories

    Science.gov (United States)

    Wells, James D.; Zhang, Zhengkang

    2016-01-01

    It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. In the effective field theory (EFT) framework, the oblique parameters should not be associated with Wilson coefficients in a particular operator basis, unless restrictions have been imposed on the EFT so that it describes universal theories. We work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16 parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hf f , hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order y f 2 . All these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.

  7. Photovoltaic chiral magnetic effect in Weyl semimetals

    Science.gov (United States)

    Taguchi, Katsuhisa; Imaeda, Tatsushi; Sato, Masatoshi; Tanaka, Yukio

    2016-05-01

    We theoretically predict current generation in Weyl semimetals when circularly polarized light is applied. The electric field of the light can drive an effective magnetic field on the order of 10 T. For lower-frequency light, a nonequilibrium spin distribution is formed near the Fermi surface. Spin-momentum locking induces a giant electric current proportional to the effective magnetic field. In contrast, higher-frequency light realizes a quasistatic Floquet state with no induced electric current. We discuss the relevant materials and estimate the order of magnitude of the induced current.

  8. Fermat Surface and Group Theory in Symmetry of Rapidity Family in Chiral Potts Model

    CERN Document Server

    Roan, Shi-shyr

    2013-01-01

    The present paper discusses various mathematical aspects about the rapidity symmetry in chiral Potts model (CPM) in the context of algebraic geometry and group theory . We re-analyze the symmetry group of a rapidity curve in $N$-state CPM, explore the universal group structure for all $N$, and further enlarge it to modular symmetries of the complete rapidity family in CPM. As will be shown in the article that all rapidity curves in $N$-state CPM constitute a Fermat hypersurface in $\\PZ^3$ of degree 2N as the natural generalization of the Fermat K3 elliptic surface $(N=2)$, we conduct a thorough algebraic geometry study about the rapidity fibration of Fermat surface and its reduced hyperelliptic fibration via techniques in algebraic surface theory. Symmetries of rapidity family in CPM and hyperelliptic family in $\\tau^{(2)}$-model are exhibited through the geometrical representation of the universal structural group in mathematics.

  9. Impact of the Delta (1232) resonance on neutral pion photoproduction in chiral perturbation theory

    CERN Document Server

    Cawthorne, Lloyd W

    2015-01-01

    We present an ongoing project to assess the importance of D-waves and the $\\Delta (1232)$ resonance for descriptions of neutral pion photoproduction in Heavy Baryon Chiral Perturbation Theory. This research has been motivated by data published by the A2 and CB-TAPS collaborations at MAMI [1]. This data has reached unprecedented levels of accuracy from threshold through to the $\\Delta$ resonance. Accompanying the experimental work, there has also been a series of publications studying the theory that show that, to go beyond an energy of $E_\\gamma=170$ MeV, it is necessary to include other aspects, in particular the $\\Delta (1232)$ as a degree of freedom [2] and possibly higher partial waves [3].

  10. Partially quenched chiral perturbation theory in the epsilon regime at next-to-leading order

    International Nuclear Information System (INIS)

    We calculate the partition function of partially quenched chiral perturbation theory in the epsilon regime at next-to-leading order using the supersymmetry method in the formulation without a singlet particle. We include a nonzero imaginary chemical potential and show that the finite-volume corrections to the low-energy constants Σ and F for the partially quenched partition function, and hence for spectral correlation functions of the Dirac operator, are the same as for the unquenched partition function. We briefly comment on how to minimize these corrections in lattice simulations of QCD. As a side result, we show that the zero-momentum integral in the formulation without a singlet particle agrees with previous results from random matrix theory.

  11. The quest for chirality

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.A. [Department of Chemistry Stanford University, Stanford, California 94305 (United States)

    1996-07-01

    The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)

  12. Anisotropic hydrodynamics, holography and the chiral magnetic effect

    International Nuclear Information System (INIS)

    We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient υ2. We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on υ2. We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)

  13. The effective chiral Lagrangian from the theta term

    International Nuclear Information System (INIS)

    We construct the effective chiral Lagrangian involving hadronic and electromagnetic interactions originating from the QCD θ-bar term. We impose vacuum alignment at both quark and hadronic levels, including field redefinitions to eliminate pion tadpoles. We show that leading time-reversal-violating (TV) hadronic interactions are related to isospin-violating interactions that can in principle be determined from charge-symmetry-breaking experiments. We discuss the complications that arise from TV electromagnetic interactions. Some implications of the expected sizes of various pion-nucleon TV interactions are presented, and the pion-nucleon form factor is used as an example.

  14. Analysis of General Power Counting Rules in Effective Field Theory

    CERN Document Server

    Gavela, B M; Manohar, A V; Merlo, L

    2016-01-01

    We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.

  15. Chiral Seismic Attenuation with Acoustic Metamaterials

    OpenAIRE

    Hector Torres-Silva; Diego Torres Cabezas

    2013-01-01

    We study the analogy between the linear elasticity theory equations and classical Maxwell equation with chiral effects and we propose a new method of an earthquake-resistant design to support conventional aseismic designs using acoustic metamaterials. We suggest a simple and practical method to reduce the amplitude of a seismic wave exponentially. Our device is like an attenuator of a chiral seismic wave. Constructing a cylindrical shell-type waveguide that creates a stop-band for the chiral...

  16. Effective theories of universal theories

    CERN Document Server

    Wells, James D

    2015-01-01

    It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably $S$ and $T$ parameters) are only applicable to a special class of new physics scenarios known as universal theories. In the effective field theory (EFT) framework, the oblique parameters should not be associated with Wilson coefficients in a particular operator basis, unless restrictions have been imposed on the EFT so that it describes universal theories. We work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16 parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the $h^3$, $hff$, $hVV$ vertices, 3 parameters for $hVV$ vertices absent in the Standard Model, and 1 four-fermion coupling of order $y_f^2$. All these parameters are defined in an unambiguous and basis-indepen...

  17. Adsorption and ring-opening of lactide on the chiral metal surface Pt(321){sup S} studied by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Franke, J.-H.; Kosov, D. S. [Department of Physics, Campus Plaine - CP 231, Universite Libre de Bruxelles, 1050 Brussels (Belgium)

    2015-01-28

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321){sup S}. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.

  18. Effects of chiral imbalance and magnetic field on pion superfluidity and color superconductivity

    OpenAIRE

    Cao, Gaoqing; Zhuang, Pengfei

    2015-01-01

    The effects of chiral imbalance and external magnetic field on pion superfluidity and color superconductivity are investigated in extended Nambu--Jona-Lasinio models. We take Schwinger approach to treat the interaction between charged pion condensate and magnetic field at finite isospin density and include simultaneously the chiral imbalance and magnetic field at finite baryon density. For the superfluidity, the chiral imbalance and magnetic field lead to catalysis and inverse catalysis effec...

  19. Dynamical chiral symmetry breaking and confinement : its interrelation and effects on the hadron mass spectrum

    International Nuclear Information System (INIS)

    Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author)

  20. Anomalous Maxwell equations for inhomogeneous chiral plasma

    CERN Document Server

    Gorbar, E V; Vilchinskii, S; Rudenok, I; Boyarsky, A; Ruchayskiy, O

    2016-01-01

    Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous relativistic plasma. We also derive equations for the electric and chiral charge chemical potentials that close the Maxwell equations in such a plasma. The analysis is done in the regimes with and without a drift of the plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as well as Ohm's current) we derive several new terms associated with inhomogeneities of the plasma. Apart from various diffusion-like terms, we find also new dissipation-less terms that are independent of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic theory.

  1. Coriolis effect and spin Hall effect of light in an inhomogeneous chiral medium.

    Science.gov (United States)

    Zhang, Yongliang; Shi, Lina; Xie, Changqing

    2016-07-01

    We theoretically investigate the spin Hall effect of spinning light in an inhomogeneous chiral medium. The Hamiltonian equations of the photon are analytically obtained within eikonal approximation in the noninertial orthogonal frame. Besides the usual spin curvature coupling, the chiral parameter enters the Hamiltonian as a spin-torsion-like interaction. We reveal that both terms have parallel geometric origins as the Coriolis terms of Maxwell's equations in nontrivial frames. PMID:27367104

  2. Universality in random matrix theory and chiral symmetry breaking in QCD

    International Nuclear Information System (INIS)

    In this work we review the topic of random matrix model universality with particular stress on its application to the study of chiral symmetry breaking in QCD. We highlight the role of microscopic and macroscopic matrix model correlation functions played in the description of the deep infrared eigenvalue spectrum of the Dirac operator. The universal microscopic correlation functions are presented for all three chiral symmetry breaking patterns, and the corresponding random matrix universality proofs are given for massless and massive fermions in a unified way. These analytic results have been widely confirmed from QCD lattice data and we present a comparison with the most recent analytic calculations describing data for dynamical SU(2) staggered fermions. The microscopic matrix model results are then re-expressed in terms of the finite-volume partition functions of Leutwyler and Smilga, where some of these expressions have been recently obtained using field theory only. The macroscopic random matrix universality is reviewed for the most simplest examples of bosonic and supersymmetric models. We also give an example for a non-universal deformation of a random matrix model - the restricted trace ensemble. (orig.)

  3. Pion properties at finite nuclear density based on in-medium chiral perturbation theory

    CERN Document Server

    Goda, Soichiro

    2013-01-01

    The in-medium pion properties, {\\it i.e.} the temporal pion decay constant $f_t$, the pion mass $m_\\pi^*$ and the wave function renormalization, in symmetric nuclear matter are calculated in an in-medium chiral perturbation theory up to the next-to-leading order of the density expansion $O(k_F^4)$. The chiral Lagrangian for the pion-nucleon interaction is determined in vacuum, and the low energy constants are fixed by the experimental observables. We carefully define the in-medium state of the pion and find that the pion wave function plays an essential role for the in-medium pion properties. We show that the linear density correction is dominated and the next-leading corrections is not so large at the saturation density, while their contributions can be significant in higher densities. The main contribution of the next-leading order comes from the double scattering term. We also discuss whether the low energy theorems, the Gell-Mann--Oakes--Renner relation and the Glashow--Weinberg relation, are satisfied in...

  4. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  5. Electromagnetic pion production in manifestly Lorentz invariant baryonic chiral perturbation theory; Elektromagnetische Pionproduktion in manifest Lorentz-invarianter baryonischer chiraler Stoerungstheorie

    Energy Technology Data Exchange (ETDEWEB)

    Lehnhart, B.C.

    2007-05-15

    This thesis is concerned with electromagnetic pion production within manifestly Lorentz-invariant chiral perturbation theory using the assumption of isospin symmetry. In a one-loop calculation up to the chiral order O(q{sup 4}), 105 Feynman diagrams contribute, consisting of 20 tree graphs and 85 loop diagrams. The tree graphs are classified as 16 pole diagrams and 4 contact graphs. Of the 85 loop diagrams, 50 diagrams are of order three and 35 diagrams are of fourth order. To calculate the pion production amplitude algorithms are developed on the basis of the Mathematica package FeynCalc. The one-photon-exchange approximation allows one to parametrise the pion production amplitude as the product of the polarisation vector of the (virtual) photon and the matrix element of the transition current. The polarisation vector is related to the leptonic vertex and the photon propagator and is well-known from QED. The dependence of the amplitude on the strong interaction is contained in the matrix element of the transition current, and we use chiral perturbation theory to describe this matrix element. The transition current can be expressed in terms of six gauge invariant amplitudes, each of which can again be decomposed into three isospin amplitudes. Linear combinations of these amplitudes allow us to describe the physical amplitudes. The one-loop integrals appearing within this calculation are determined numerically by the program LoopTools. In the case of tensorial integrals it is required to perform the method of Passarino and Veltman first. Furthermore, we apply the reformulated infrared regularisation which ensures that the results fulfill the chiral power counting. For this purpose algorithms are developed which determine the subtraction terms automatically. The obtained isospin amplitudes are integrated in the program MAID. As tests the s-wave multipoles E{sub 0+} and L{sub 0+} (using results up to chiral order O(q{sup 3})) are calculated in the threshold region

  6. Testing a generalized cooling procedure in the complex Langevin simulation of chiral Random Matrix Theory

    CERN Document Server

    Nagata, Keitaro; Shimasaki, Shinji

    2015-01-01

    The complex Langevin method has been attracting much attention as a solution to the sign problem since the method was shown to work in finite density QCD in the deconfined phase by using the so-called gauge cooling procedure. Whether it works also in the confined phase with light quarks is still an open question, though. In order to shed light on this question, we apply the method to the chiral Random Matrix Theory, which describes the epsilon regime of finite density QCD. Earlier works reported that a naive implementation of the method fails to reproduce the known exact results and that the problem can be solved by choosing a suitable coordinate. In this work we stick to the naive implementation, and show that a generalized gauge cooling procedure can be used to avoid the problem.

  7. Chiral perturbation theory for vertical bar ΔI vertical bar = (3(2)) hyperon decays

    International Nuclear Information System (INIS)

    We study the vertical bar ΔI vertical bar = (3(2)) amplitudes of hyperon non-leptonic decays of the form B → B'π in the context of chiral perturbation theory. The lowest-order predictions are determined in terms of only one unknown parameter and are consistent within errors with current data. We investigate the theoretical uncertainty of these predictions by calculating the leading non-analytic corrections. We also present an estimate for the size of the S-wave Λ and Ξ decays which vanish at leading order. We find that the corrections to the lowest-order predictions are within the expectations of naive power counting and, therefore, that this picture can be tested more accurately with improved measurements

  8. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. Y. [Department of Physics, Chonbuk National University, 561-756, Jeonbuk (Korea, Republic of); Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States); Christensen, N. D. [Department of Physics, Illinois State University, 61790, Normal, IL (United States); Salmon, D.; Wang, X., E-mail: xiw77@pitt.edu [Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States)

    2015-10-06

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -}→P{sup +}P{sup -}→(ℓ{sup +}D{sup 0})(ℓ{sup -}D{sup -bar0}) at high-energy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -}→P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider.

  9. A molecular propeller effect for chiral separation and analysis

    OpenAIRE

    Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas

    2015-01-01

    Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to c...

  10. Concerning the proofs of spontaneous chiral symmetry breaking in Q.C.D. from the effective lagrangian point of view

    International Nuclear Information System (INIS)

    Claims that spontaneous chiral symmetry breaking in Q.C.D. is mediated by the U(1) axial anomaly are examined from the viewpoint of effective chiral lagrangians. The proofs are seen to arise from a use of effective chiral lagrangians in which the U(1) axial symmetry is explicitly broken by effects of the anomaly. A U(1) axial invariant chiral lagrangian (to be presented) offers no such proof. (author)

  11. Effect of interlayer exchange coupling on magnetic chiral structures

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. P.; Kwon, H. Y.; Kim, H. S.; Shim, J. H.; Won, C. [Department of Physics, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-07-28

    We numerically investigated the effect of interlayer exchange coupling on magnetic chiral structures, such as a helical/cycloidal spin structure and magnetic skyrmion crystal (SkX), which are produced in a magnetic system involving the Dzyaloshinskii-Moriya interaction (DMI). We report the existence of a phase transition where the length scale of magnetic structure discontinuously changes, and that there can be a novel magnetic structure around the phase boundary that exhibits double-ordering lengths of magnetic structure. Therefore, the system has multiple ground phases determined by the ratio of interlayer exchange coupling strength and DMI strength. Furthermore, we investigated the critical condition of the external perpendicular field required for the SkX. The critical field is significantly reduced under the effect of interlayer exchange coupling, which can stabilize the SkX without the external field.

  12. Chiral symmetry breaking from two-loop effective potential of the holographic non-local NJL model

    International Nuclear Information System (INIS)

    We calculate the two-loop effective potential of the non-local Nambu–Jona–Lasinio (NJL) model derived from the Sakai–Sugimoto model in string theory. In contrast to the conventional NJL with 4-fermion contact interaction, the chiral symmetry was previously found to be dynamically broken for an arbitrary weak coupling at the one-loop level. As a confirmation, the approximate numerical solutions to the gap equation at the one-loop level are explicitly demonstrated for weak couplings. We then calculate the one- and two-loop contributions to the effective potential of the non-local NJL model and found that the two-loop contribution is negative. The two-loop potential for the chiral-symmetric vacuum is also negative but larger than the combined effective potential of the chiral broken vacuum at the two-loop level. The chiral symmetry breaking thus persists for the arbitrary weak coupling at the two-loop level. (paper)

  13. Low-energy pi-pi and pi-K scatterings revisited in three-flavour resummed chiral perturbation theory

    CERN Document Server

    Descotes-Genon, S

    2007-01-01

    Chiral symmetry breaking may exhibit significantly different patterns in two chiral limits: N_f=2 massless flavours (m_u=m_d=0, m_s physical) and N_f=3 massless flavours (m_u=m_d=0=m_s=0). Such a difference may arise due to vacuum fluctuations of s-bar{s} pairs related to the violation of the Zweig rule in the scalar sector, and could yield a numerical competition between contributions counted as leading order and next-to-leading in the chiral expansions of observables. We recall and extend Resummed Chiral Perturbation Theory (ReChPT), a framework that we introduced previously to deal with such instabilities: it requires a more careful definition of the relevant observables and their one-loop chiral expansions. We analyse the amplitudes for low-energy pi-pi and pi-K scatterings within ReChPT, which we match in subthreshold regions with dispersive representations obtained from the solutions Roy and Roy-Steiner equations. Using a frequentist approach, we constrain the quark mass ratio as well as the quark conde...

  14. Thimble regularization at work: From toy models to chiral random matrix theories

    Science.gov (United States)

    Di Renzo, F.; Eruzzi, G.

    2015-10-01

    We apply the Lefschetz thimble formulation of field theories to a couple of different problems. We first address the solution of a complex zero-dimensional ϕ4 theory. Although very simple, this toy model makes us appreciate a few key issues of the method. In particular, we will solve the model by a correct accounting of all the thimbles giving a contribution to the partition function and we will discuss a number of algorithmic solutions to simulate this (simple) model. We will then move to a chiral random matrix (CRM) theory. This is a somehow more realistic setting, giving us once again the chance to tackle the same couple of fundamental questions: How many thimbles contribute to the solution? How can we make sure that we correctly sample configurations on the thimble? Since the exact result is known for the observable we study (a condensate), we can verify that, in the region of parameters we studied, only one thimble contributes and that the algorithmic solution that we set up works well, despite its very crude nature. The deviation of results from phase quenched ones highlights that in a certain region of parameter space there is a quite important sign problem. In view of this, the success of our thimble approach is quite a significant one.

  15. Thimble regularization at work: from toy models to chiral random matrix theories

    CERN Document Server

    Di Renzo, Francesco

    2015-01-01

    We apply the Lefschetz thimble formulation of field theories to a couple of different problems. We first address the solution of a complex 0-dimensional phi^4 theory. Although very simple, this toy-model makes us appreciate a few key issues of the method. In particular, we will solve the model by a correct accounting of all the thimbles giving a contribution to the partition function and we will discuss a number of algorithmic solutions to simulate this (simple) model. We will then move to a chiral random matrix (CRM) theory. This is a somehow more realistic setting, giving us once again the chance to tackle the same couple of fundamental questions: how many thimbles contribute to the solution? how can we make sure that we correctly sample configurations on the thimble? Since the exact result is known for the observable we study (a condensate), we can verify that, in the region of parameters we studied, only one thimble contributes and that the algorithmic solution that we set up works well, despite its very ...

  16. Complete Leading Order Analysis in Chiral Perturbation Theory of the Decays $K_L \\to \\gamma\\gamma$ and $K_L \\to \\ell^+ \\ell^- \\gamma$

    CERN Document Server

    Goity, J L; Zhang, Longzhe

    1997-01-01

    The decays $K_L\\to \\gamma\\gamma$ and $K_L \\to \\ell^+ \\ell^- \\gamma$ are studied at the leading order p^6 in Chiral Perturbation Theory. One-loop contributions stemming from the odd intrinsic parity $\\mid \\Delta S\\mid =1$ effective Lagrangian of order p^4 are included and shown to be of possible relevance. They affect the decay $K_L \\to \\gamma\\gamma$ adding to the usual pole terms a piece free of counterterm uncertainties. In the case of the $K_L dilepton invariant mass requires a counterterm. The form factor may receive a sizeable contribution from chiral logarithms. Including considerations from the $K_L \\to \\pi^+ \\pi^- \\gamma$ direct emission amplitude, we obtain two consistent scenarios. In one scenario the long distance contributions from the one-loop terms are important, while in the other they are marginal. In both cases the counterterm is shown to be significant.

  17. The Low Energy Constants of $SU(2)$ Partially Quenched Chiral Perturbation Theory from $N_{f}=2+1$ Domain Wall QCD

    CERN Document Server

    Boyle, P A; Garron, N; Jung, C; Jüttner, A; Kelly, C; Mawhinney, R D; McGlynn, G; Murphy, D J; Ohta, S; Portelli, A; Sachrajda, C T

    2015-01-01

    We have performed fits of the pseudoscalar masses and decay constants, from a variety of RBC-UKQCD domain wall fermion ensembles, to $SU(2)$ partially quenched chiral perturbation theory at next-to leading order (NLO) and next-to-next-to leading order (NNLO). We report values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low energy constants, which we compare to other lattice and phenomenological determinations. We discuss the size of successive terms in the chiral expansion and use our large set of low energy constants to make predictions for mass splittings due to QCD isospin breaking effects and the S-wave $\\pi \\pi$ scattering lengths. We conclude that, for the range of pseudoscalar masses explored in this work, $115~\\mathrm{MeV} \\lesssim m_{\\rm PS} \\lesssim 430~\\mathrm{MeV}$, the NNLO $SU(2)$ expansion is quite robust and can fit lattice data with percent-scale accuracy.

  18. Anisotropic hydrodynamics, holography and the chiral magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Gahramanov, Ilmar; Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik

    2012-03-15

    We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient {upsilon}{sub 2}. We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on {upsilon}{sub 2}. We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)

  19. Chiral symmetry effect on the pion-nucleon coupling constant

    International Nuclear Information System (INIS)

    In this work we study the effects of chiral symmetry in the pion-nucleon coupling constant in the context of the linear σ- model. First, we introduce the linear σ-model and we discuss the phenomenological hypothesis of CVC and PCAC. Next, we calculate the coupling constant g+πNN(q2) and the nucleon pionic mean square radius considering the contribution of all the diagrams up to one-loop in the framework of the linear σ-model for different values of the mass of the sigma meson and we compare them with the phenomenological form factors. Finally we make an extension of the linear σ-model that consists of taking into account the mass differences of ions and nucleons into the Lagrangian of the model, to study the change dependence of gπnn (q2) and of the mean square radius. (author)

  20. Two-loop effective potentials in general N=2, d=3 chiral superfield model

    International Nuclear Information System (INIS)

    We study local superspace contributions to the low-energy effective action in general chiral three-dimensional superfield model. The effective Kähler and chiral potentials are computed in an explicit form up to the two-loop order. In accordance with the non-renormalization theorem, the ultraviolet divergences appear only in the full superspace while the effective chiral potential receives only finite quantum contributions in the massless case. As an application, the two-loop effective scalar potential is found for the three-dimensional N=2 supersymmetric Wess-Zumino model.

  1. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    OpenAIRE

    Xu-Guang Huang

    2016-01-01

    The chiral magnetic and chiral separation effects---quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma---have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud alon...

  2. Global Currents, Phase Transitions, and Chiral Symmetry Breaking in Large N_c Gauge Theory

    CERN Document Server

    Albash, T; Johnson, C V; Kundu, A; Albash, Tameem; Filev, Veselin; Johnson, Clifford V.; Kundu, Arnab

    2006-01-01

    We study the finite temperature dynamics of SU(N_c) gauge theory for large N_c, with fundamental quark flavours in a quenched approximation, in the presence of a fixed charge under a global current. We observe several notable phenomena. There is a first order phase transition where the quark condensate jumps discontinuously at finite quark mass, generalizing similar transitions seen at zero charge. We find a non-zero condensate at zero quark mass above a critical value of the charge, corresponding to an analogue of spontaneous chiral symmetry breaking at finite number density. We find that the spectrum of mesons contains the expected associated Goldstone (``pion'') degrees of freedom with a mass dependence on the quark mass that is consistent with the Gell-Mann-Oakes-Renner relation. Our tool in these studies is holography, the string dual of the gauge theory being the geometry of $N_c$ spinning D3-branes at finite temperature, probed by a D7-brane.

  3. Chiral Four-Dimensional F-Theory Compactifications With SU(5) and Multiple U(1)-Factors

    CERN Document Server

    Cvetič, Mirjam; Klevers, Denis; Piragua, Hernan

    2013-01-01

    We develop geometric techniques to determine the spectrum and the chiral indices of matter multiplets for four-dimensional F-theory compactifications on elliptic Calabi-Yau fourfolds with rank two Mordell-Weil group. The general elliptic fiber is the Calabi-Yau onefold in dP_2. We classify its resolved elliptic fibrations over a general base B. The study of singularities of these fibrations leads to explicit matter representations, that we determine both for U(1)xU(1) and SU(5)xU(1)xU(1) constructions. We determine for the first time certain matter curves and surfaces using techniques involving prime ideals. The vertical cohomology ring of these fourfolds is calculated for both cases and general formulas for the Euler numbers are derived. Explicit calculations are presented for a specific base B=P^3. We determine the general G_4-flux that belongs to H^{(2,2)}_V of the resolved Calabi-Yau fourfolds. As a by-product, we derive for the first time all conditions on G_4-flux in general F-theory compactifications w...

  4. Effective field theory in the harmonic-oscillator basis

    CERN Document Server

    Binder, S; Hagen, G; Papenbrock, T; Wendt, K A

    2015-01-01

    We develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. We derive useful analytical expressions for an exact and efficient calculation of matrix elements. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leading order. Many-body coupled-cluster calculations of nuclei up to 132Sn exhibit a fast convergence of ground-state energies and radii in feasible model spaces.

  5. Effective field theories

    CERN Document Server

    Petrov, Alexey A

    2016-01-01

    This book is a broad-based text intended to help the growing student body interested in topics such as gravitational effective theories, supersymmetric effective theories, applications of effective theory techniques to problems in condensed matter physics (superconductivity) and quantum chromodynamics (such as soft-collinear effective theory). It begins with a review of the use of symmetries to identify the relevant degrees of freedom in a problem, and then presents a variety of methods that can be used to solve physical problems. A detailed discussion of canonical examples of effective field theories with increasing complexity is then conducted. Special cases such as supersymmetry and lattice EFT are discussed, as well as recently-found applications to problems in gravitation and cosmology. An appendix includes various factoids from group theory and other topics that are used throughout the text, in an attempt to make the book self-contained.

  6. The superfield method for the calculation of effective potentials applied to chiral superfields: Wess-Zumino and O'Raifeartaigh models

    International Nuclear Information System (INIS)

    The superfield method is applied to the effective potential calculation in supersymmetric models. The Weinberg and Jackiw methods are discussed in the context of supersymmetric field theories, highlighting the greater simplicity obtained when the Feynman super diagrams are used. The chiral superfield propagators are derived and their relations with components field are commented. (L.C.J.A.)

  7. Chiral Perturbation Theory, the 1/N_c expansion and Regge behavior determine the structure of the lightest scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, J. R. [Univ. Complutense Madrid (Spain); Pennington, Michael R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); de Elvira, J. Ruiz [Univ. Complutense Madrid (Spain); Wilson, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2011-11-01

    The leading 1/N{sub c} behavior of Unitarized Chiral Perturbation Theory distinguishes the nature of the {rho} and the {sigma}. At one loop order the {rho} is a {bar q}q meson, while the {sigma} is not. However, semi-local duality between resonances and Regge behaviour cannot be satisfied for larger N{sub c}, if such a distinction holds. While the {sigma} at N{sub c}= 3 is inevitably dominated by its di-pion component, Unitarised Chiral Perturbation Theory beyond one loop order reveals that as N{sub c} increases above 6-8, the {sigma} has a sub-dominant {bar q}q fraction up at 1.2 GeV. Remarkably this ensures semi-local duality is fulfilled for the range of N{sub c} {approx}< 15-30, where the unitarization procedure adopted applies.

  8. Nuclear structure with accurate chiral perturbation theory nucleon-nucleon potential: Application to 6Li and 10B

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Caurier, E

    2003-10-14

    The authors calculate properties of A = 6 system using the accurate charge-dependent nucleon-nucleon (NN) potential at fourth order of chiral perturbation theory. By application of the ab initio no-core shell model (NCSM) and a variational calculation in the harmonic oscillator basis with basis size up to 16 {h_bar}{Omega} they obtain the {sup 6}Li binding energy of 28.5(5) MeV and a converged excitation spectrum. Also, they calculate properties of {sup 10}B using the same NN potential in a basis space of up to 8 {h_bar}{Omega}. The results are consistent with results obtained by standard accurate NN potentials and demonstrate a deficiency of Hamiltonians consisting of only two-body terms. At this order of chiral perturbation theory three-body terms appear. It is expected that inclusion of such terms in the Hamiltonian will improve agreement with experiment.

  9. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.Y. [Chonbuk National University, Department of Physics, Jeonbuk (Korea, Republic of); University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States); Christensen, N.D. [Illinois State University, Department of Physics, Normal, IL (United States); Salmon, D.; Wang, X. [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States)

    2015-10-15

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -} → P{sup +}P{sup -} → (l{sup +}D{sup 0})(l{sup +} anti D{sup 0}) at highenergy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -} → P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (nonchiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider. (orig.)

  10. Chiral Transition Within Effective Quark Models under Strong Magnetic Fields

    CERN Document Server

    Garcia, Andre Felipe

    2013-01-01

    In the recently years it has been argued that spectators in heavy ion collisions are responsible for creating a strong magnetic field that could play an important role in the QCD phase transition. In this work we use the SU(2) Nambu--Jona-Lasinio (NJL) model in order to study the chiral transition in quark matter subject to a strong magnetic field. We show some results involving the breaking of chiral symmetry and its restoration at finite temperature and density.

  11. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases.

    Science.gov (United States)

    Huang, Xu-Guang

    2016-01-01

    The chiral magnetic and chiral separation effects-quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma-have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084

  12. Test the chiral magnetic effect with isobaric collisions

    CERN Document Server

    Deng, Wei-Tian; Ma, Guo-Liang; Wang, Gang

    2016-01-01

    The quark-gluon matter produced in relativistic heavy-ion collisions may contain local domains in which P and CP symmetries are not preserved. When coupled with an external magnetic field, such P- and CP-odd domains will generate electric currents along the magnetic field --- a phenomenon called the chiral magnetic effect (CME). Recently, the STAR Collaboration at RHIC and the ALICE Collaboration at the LHC released data of charge-dependent azimuthal-angle correlators with features consistent with the CME expectation. However, the experimental observable is contaminated with significant background contributions from elliptic-flow-driven effects, which makes the interpretation of the data ambiguous. In this Letter, we show that the collisions of isobaric nuclei, $^{96}_{44}$Ru + $^{96}_{44}$Ru and $^{96}_{40}$Zr + $^{96}_{40}$Zr, provide an ideal tool to disentangle the CME signal from the background effects. Our simulation demonstrates that the two collision types at $\\sqrt{s_{\\rm NN}}=200$ GeV have more than...

  13. On lattice extraction of $K \\to \\pi \\pi$ amplitudes to $O(p^{4})$ in Chiral Perturbation Theory

    CERN Document Server

    Laiho, J; Laiho, Jack; Soni, Amarjit

    2002-01-01

    We show that lattice calculation of $K\\to\\pi\\pi$ and $\\epe$ amplitudes for (8,1) and (27,1) operators to $O(p^4)$ in chiral perturbation theory is feasible when one uses $K\\to\\pi\\pi$ computations at the two unphysical kinematics allowed by the Maiani-Testa theorem, along with the usual (computable) two and three point functions, namely $K\\to0$, $K\\to\\pi$ (with momentum) and $K-\\bar K$.

  14. Two-nucleon one-loop corrections to pion double charge exchange within heavy baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    One-loop corrections at the two-nucleon level to pion double charge exchange scattering off a nuclear target at threshold are calculated within the framework of heavy baryon chiral perturbation theory. An estimate for the (two-nucleon) one-loop correction is obtained in the static limit and using an impulse approximation. We find a small (1.6%) increase relative to the leading order tree graphs. (c) 2000 The American Physical Society

  15. Manifestation of chiral symmetry and the effective potential in a strong color-electromagnetic field

    International Nuclear Information System (INIS)

    We study the manifestation of chiral symmetry and the effective potential in an external color-electromagnetic field, using the Nambu-Jona-Lasinio model. We derive the effective potential, the dynamical quark mass and the q-anti q pair creation rate for the covariantly-constant color-electromagnetic field. In the flux-tube picture, chiral symmetry restoration would occur inside mesons and at the early stage of ultra-relativistic heavy-ion collisions. (orig.)

  16. Polarization-sensitive effects of solgel materials containing various chiral media.

    Science.gov (United States)

    Tao, Wei-dong; Bai, Gui-ru; Lu, Zu-kang

    2004-04-15

    The polarization-sensitive effects of solgel materials containing various chiral media were measured experimentally. The results show that the solgel material displays optical activity when it contains organic chiral molecules and manifests depolarization when it contains inorganic chiral microcrystals with a particle size of 70 microm. Solgel material containing glass powder that also has a particle size of 70 microm displays a polarization held characteristic (i.e., the polarization of the output light is the same as that of the input light). PMID:15119408

  17. Chiral magnetic effect and anomalous transport from real-time lattice simulations

    CERN Document Server

    Mueller, Niklas; Sharma, Sayantan

    2016-01-01

    We present a first-principle study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian $SU(N_c)$ and Abelian $U(1)$ gauge fields. Investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating wave. We further analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark mass.

  18. Parity-violating $\\pi NN$ coupling constant from the flavor-conserving effective weak chiral Lagrangian

    CERN Document Server

    Hyun, Chang Ho; Lee, Hee-Jung

    2016-01-01

    We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.

  19. Derivation of Chiral Lagrangians from Random Lattice QCD

    CERN Document Server

    Pavlovsky, O V

    2004-01-01

    In our work we extend the ideas of the derivation of the chiral effective theory from the lattice QCD [1] to the case of the random lattice regularization of QCD. Such procedure allows in principle to find contribution of any order into the chiral effective lagrangian. It is shown that an infinite subseries of the chiral perturbation can be summed up into tne Born-Infeld term and the logarithmic correction to them.

  20. Effect of the Wood-Saxon nuclear distribution on the chiral magnetic field in Relativistic Heavy-ion Collisions

    CERN Document Server

    Mo, Yu-Jun; Shi, Ya-Fei

    2013-01-01

    The formation of the QCD vacuum with nonzero winding number $Q_w$ during relativistic heavy-ion collisions breaks the parity and charge-parity symmetry. A new kind of field configuration can separate charge in the presence of a background magnetic field-the "chiral magnetic effect". The strong magnetic field and the QCD vacuum can both completely be produced in the noncentral nuclear-nuclear collision. Basing on the theory of Kharzeev,Mclerran and Warringa, we use the Wood-Saxon nucleon distribution to replace that of the uniform distribution to improve the magnetic field calculation method of the noncentral collision. The chiral magnetic field distribution at LHC(Large Hadron Collider) energy regions are predicted. We also consider the contributions to the magnetic field of the total charge given by the produced quarks.

  1. Wess-Zumino-Witten action and photons from the Chiral Magnetic Effect

    CERN Document Server

    Fukushima, Kenji

    2012-01-01

    We revisit the Chiral Magnetic Effect (CME) using the chiral Lagrangian. We demonstrate that the electric-current formula of the CME is derived immediately from the contact part of the Wess-Zumino-Witten action. This implies that the CME could be, if observed, a signature for the local parity violation, but a direct evidence for neither quark deconfinement nor chiral restoration. We also discuss the reverse Chiral Magnetic Primakoff Effect, i.e. the real photon production through the vertex associated with the CME, which is kinematically possible for space-time inhomogeneous magnetic field and the strong theta angle. We make a semi-quantitative estimate for the photon yield to find that it could be on the observable level as compared to the thermal photon.

  2. A renormalizable effective theory for leading logarithms in ChPT

    OpenAIRE

    Bissegger, Moritz; Fuhrer, Andreas

    2007-01-01

    We argue that the linear sigma model at small external momenta is an effective theory for the leading logarithms of chiral perturbation theory. Based on this assumption an attempt is made to sum these leading logarithms using the standard renormalization group techniques, which are valid in renormalizable quantum field theories.

  3. Effects of chiral restoration on the behaviour of the Polyakov loop at strong coupling

    OpenAIRE

    Fukushima, Kenji

    2002-01-01

    We discuss the relation between the Polyakov loop and the chiral order parameter at finite temperature. For that purpose we analyse an effective model proposed by Gocksch and Ogilvie, which is constructed by the double expansion of strong coupling and large dimensionality. We make improvements in dealing with the model and then obtain plausible results for the behaviours of both the Polyakov loop and the chiral scalar condensate. The pseudo-critical temperature read from the Polyakov loop tur...

  4. Effective quantum field theories

    International Nuclear Information System (INIS)

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  5. A Lattice Non-Perturbative Definition of an SO(10) Chiral Gauge Theory and Its Induced Standard Model

    OpenAIRE

    Wen, Xiao-Gang

    2013-01-01

    The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently. The standard model is defined perturbatively and describes all elementary particles (except gravitons) very well. However, for a long time, we do not know if we can have a non-perturbative definition of the standard model as a Hamiltonian quantum mechanical theory. Here we propose a way to give a modified standard model (with 48 two-component Weyl fermions) a non...

  6. A lattice non-perturbative definition of an SO(10) chiral gauge theory and its induced standard model

    OpenAIRE

    Wen, Xiao-Gang

    2013-01-01

    The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently. The standard model is defined perturbatively and describes all elementary particles (except gravitons) very well. However, for a long time, we do not know if we can have a non-perturbative definition of standard model as a Hamiltonian quantum mechanical theory. In this paper, we propose a way to give a modified standard model (with 48 two-component Weyl fermions)...

  7. Chiral Magnetic Effect in High-Energy Nuclear Collisions --- A Status Report

    CERN Document Server

    Kharzeev, D E; Voloshin, S A; Wang, G

    2015-01-01

    The interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark-gluon plasma. Among them is the Chiral Magnetic Effect (CME) -- the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark-gluon plasma, and can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the ...

  8. Finite Volume for Three-Flavour Partially Quenched Chiral Perturbation Theory through NNLO in the Meson Sector

    CERN Document Server

    Bijnens, Johan

    2015-01-01

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark-flow technique. Partial analytical results can be found in the appendices. Some examples of cases relevant to lattice QCD are studied numerically. Numerical programs for all results are available as part of the CHIRON package.

  9. Torons, chiral symmetry breaking and U(1) problem in σ-model and gauge theories. Part 2

    International Nuclear Information System (INIS)

    The main point of this work is the physical consenquences of the existence of fractional charge in the σ-models and espesially in the physically interesting theory QCD. It is shown that the corresponding fluctuations ensure spontaneous breaking of the chiral symmetry and give a nonzero contribution to the chiral condensate. Toron solution is determined on the manifold with boundary. In this case many questions arise such as: global boundary conditions, the stability of the solution, self-adjointness of Dirac operator, single-valuedness of the physical values and so on. These questions are interconnected and turn out to be self cobsistent only for the special choice of the topological number (Q=1/2 for SU(2)). It is shown that in the Dirac's spectrum of the quarks the gap between zero and the continuum is absent. 50 refs.; 10 figs

  10. Mechanical separation of chiral dipoles by chiral light

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.

  11. The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes

    CERN Document Server

    Yu, Lang; Huang, Mei

    2015-01-01

    We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.

  12. Nuclear Forces from Effective Field Theory

    International Nuclear Information System (INIS)

    Chiral effective field theory allows for a systematic and model-independent derivation of the forces between nucleons in harmony with the symmetries of the quantum chromodynamics. After a brief review on the current status in the development of the chiral nuclear forces I will focus on the role of the Δ-resonance contributions in the nuclear dynamics.We find improvement in the convergence of the chiral expansion of the nuclear forces if we explicitly take into account the Δ-resonance degrees of freedom. The overall results for two-nucleon forces with and without explicit Δ-resonance degrees of freedom are remarkably similar. We discussed the long- and shorter-range N3LO contributions to chiral three-nucleon forces. No additional free parameters appear at this order. There are five different topology classes which contribute to the forces. Three of them describe long-range contributions which constitute the first systematic corrections to the leading 2π exchange that appear at N2LO. Another two contributions are of a shorter range and include, additionally to an exchange of pions, also one short-range contact interaction and all corresponding 1/m corrections. The requirement of renormalizability leads to unique expressions for N3LO contributions to the three-nucleon force (except for 1/m-corrections). We presented the complete N2LO analysis of the nuclear forces with explicit Δ-isobar degrees of freedom. Although the overall results in the isospin-conserving case are very similar in the Δ-less and Δ-full theories, we found a much better convergence in all peripheral partial waves once Δ-resonance is explicitly taken into account. The leading CSB contributions to nuclear forces are proportional to nucleon- and Δ-mass splittings. There appear strong cancellations between the two contributions which at leading order yield weaker VIII potentials. This effect is, however, entirely compensated at subleading order such that the results in the theories with and

  13. Chiral Effective Lagrangian Description of Nuclear Matter with in-Medium Pion Effect

    Institute of Scientific and Technical Information of China (English)

    张小兵; 宁平治

    2003-01-01

    By including the in-medium pion effect, we study the description of nuclear matter based on the non-linear chiral Lagrangian at the leading order. An in-medium effective Lagrangian is constructed without the necessity of introducing the phenomenological scalar-isoscalar field. At the mean-field level, the in-medium Lagrangian description of nuclear matter is shown to be compatible with that obtained from the Brown-Rho scaled model.

  14. Dirac brackets for the chiral Schwinger model with chiral constraint

    International Nuclear Information System (INIS)

    Dirac brackets for the chiral Schwinger model with chiral constraint are derived perturbatively from the correlation function by the BJL limit method. The results show that the Poissons brackets are not consistent in this theory. (author)

  15. Effective field theories

    International Nuclear Information System (INIS)

    Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low utraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically, the idea is to integrate out the high frequency components of fields. This requires the choice of a 'blockspin', i.e. the specification af a low frequency field as a function of the fundamental fields. These blockspins will be fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspin in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels A from coarse to fine grid in addition to the averaging kernels C which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The special case of a 'lattice' with a single site (the constraint effective potential) is of particular interest. In a higgs model, the effective action reduces in this case to the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data. (orig.)

  16. Trigonometrical sums connected with the chiral Potts model, Verlinde dimension formula, two-dimensional resistor network, and number theory

    International Nuclear Information System (INIS)

    We have recently developed methods for obtaining exact two-point resistance of the complete graph minus N edges. We use these methods to obtain closed formulas of certain trigonometrical sums that arise in connection with one-dimensional lattice, in proving Scott’s conjecture on permanent of Cauchy matrix, and in the perturbative chiral Potts model. The generalized trigonometrical sums of the chiral Potts model are shown to satisfy recursion formulas that are transparent and direct, and differ from those of Gervois and Mehta. By making a change of variables in these recursion formulas, the dimension of the space of conformal blocks of SU(2) and SO(3) WZW models may be computed recursively. Our methods are then extended to compute the corner-to-corner resistance, and the Kirchhoff index of the first non-trivial two-dimensional resistor network, 2×N. Finally, we obtain new closed formulas for variant of trigonometrical sums, some of which appear in connection with number theory. -- Highlights: • Alternative derivation of certain trigonometrical sums of the chiral Potts model are given. • Generalization of these trigonometrical sums satisfy recursion formulas. • The dimension of the space of conformal blocks may be computed from these recursions. • Exact corner-to-corner resistance, the Kirchhoff index of 2×N are given

  17. Predictions of covariant chiral perturbation theory for nucleon polarisabilities and polarised Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); University of Manchester, Theoretical Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); McGovern, Judith A. [University of Manchester, Theoretical Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Pascalutsa, Vladimir [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2015-12-15

    We update the predictions of the SU(2) baryon chiral perturbation theory for the dipole polarisabilities of the proton, {α_E_1, β_M_1}{sub p} = {11.2(0.7), 3.9(0.7)} x 10{sup -4} fm{sup 3}, and obtain the corresponding predictions for the quadrupole, dispersive, and spin polarisabilities: {α_E_2, β_M_2}{sub p} = {17.3(3.9),.15.5(3.5)} x 10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub p} = {-1.3(1.0), 7.1(2.5)} x 10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1, γ_E_1_M_2, γ_M_1_E_2}{sub p} = {-3.3(0.8), 2.9(1.5), 0.2(0.2), 1.1 (0.3)} x 10{sup -4} fm{sup 4}. The results for the scalar polarisabilities are in significant disagreement with semi-empirical analyses based on dispersion relations; however, the results for the spin polarisabilities agree remarkably well. Results for proton Compton-scattering multipoles and polarised observables up to the Delta(1232) resonance region are presented too. The asymmetries Σ{sub 3} and Σ{sub 2x} reproduce the experimental data from LEGS and MAMI. Results for Σ{sub 2z} agree with a recent sum rule evaluation in the forward kinematics. The asymmetry Σ{sub 1z} near the pion production threshold shows a large sensitivity to chiral dynamics, but no data is available for this observable. We also provide the predictions for the polarisabilities of the neutron, the numerical values being {α_E_1, β_M_1}{sub n} = {13.7(3.1), 4.6(2.7)} x 10{sup -4} fm{sup 3}, {α_E_2, β_M_2}{sub n} = {16.2(3.7),.15.8(3.6)} x 10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub n} = {0.1(1.0), 7.2(2.5)} x 10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1, γ_E_1_M_2, γ_M_1_E_2}{sub n} = {-4.7(1.1), 2.9(1.5), 0.2(0.2), 1.6(0.4)} x 10{sup -4} fm{sup 4}. The neutron dynamical polarisabilities and multipoles are examined too. We also discuss subtleties related to matching the dynamical and static polarisabilities. (orig.)

  18. Predictions of covariant chiral perturbation theory for nucleon polarisabilities and polarised Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim, E-mail: lensky@itep.ru [Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg Universität Mainz, 55128, Mainz (Germany); Institute for Theoretical and Experimental Physics, 117218, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow (Russian Federation); Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, M13 9PL, Manchester (United Kingdom); McGovern, Judith A. [Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, M13 9PL, Manchester (United Kingdom); Pascalutsa, Vladimir [Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg Universität Mainz, 55128, Mainz (Germany)

    2015-12-19

    We update the predictions of the SU(2) baryon chiral perturbation theory for the dipole polarisabilities of the proton, {α_E_1, β_M_1}{sub p}={11.2(0.7), 3.9(0.7)}×10{sup -4} fm{sup 3}, and obtain the corresponding predictions for the quadrupole, dispersive, and spin polarisabilities: {α_E_2, β_M_2}{sub p}={17.3(3.9), -15.5(3.5)}×10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub p}={-1.3(1.0), 7.1(2.5)}×10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1,γ_E_1_M_2, γ_M_1_E_2}{sub p}={-3.3(0.8), 2.9(1.5), 0.2(0.2),1.1(0.3)}×10{sup -4} fm{sup 4}. The results for the scalar polarisabilities are in significant disagreement with semi-empirical analyses based on dispersion relations; however, the results for the spin polarisabilities agree remarkably well. Results for proton Compton-scattering multipoles and polarised observables up to the Delta(1232) resonance region are presented too. The asymmetries Σ{sub 3} and Σ{sub 2x} reproduce the experimental data from LEGS and MAMI. Results for Σ{sub 2z} agree with a recent sum rule evaluation in the forward kinematics. The asymmetry Σ{sub 1z} near the pion production threshold shows a large sensitivity to chiral dynamics, but no data is available for this observable. We also provide the predictions for the polarisabilities of the neutron, the numerical values being {α_E_1, β_M_1}{sub n}={13.7(3.1), 4.6(2.7)}×10{sup -4} fm{sup 3}, {α_E_2, β_M_2}{sub n}={16.2(3.7), -15.8(3.6)}×10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub n}={0.1(1.0), 7.2(2.5)}×10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1, γ_E_1_M_2, γ_M_1_E_2}{sub n}={-4.7(1.1),2.9(1.5), 0.2(0.2), 1.6(0.4)}×10{sup -4} fm{sup 4}. The neutron dynamical polarisabilities and multipoles are examined too. We also discuss subtleties related to matching the dynamical and static polarisabilities.

  19. Chiral logarithms in the massless limit tamed.

    Science.gov (United States)

    Kivel, Nikolai; Polyakov, Maxim V; Vladimirov, Alexei

    2008-12-31

    We derive nonlinear recursion relations for the leading chiral logarithms (LLs) in massless theories. These relations not only provide a very efficient method of computation of LLs (e.g., the 33-loop contribution is calculated in a dozen of seconds on a PC) but also equip us with a powerful tool for the summation of the LLs. Our method is not limited to chiral perturbation theory only; it is pertinent to any nonrenormalizable effective field theory such as, for instance, the theory of critical phenomena, low-energy quantum gravity, etc. PMID:19437635

  20. Effect of diameter and chirality on the structure and electronic properties of BC{sub 2}N nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Akhavan, Mojdeh, E-mail: m.akhavan@ipm.ir [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Jalili, Seifollah [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Chemistry, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Schofield, Jeremy [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6 (Canada)

    2015-07-09

    Highlights: • BC{sub 2}N nanotubes with different diameters and four chirality types are studied. • Two lowest-diameter zigzag BC{sub 2}N tubes are metallic and others are semiconducting. • Band gap of zigzag tubes is more sensitive to diameter compared to armchair tubes. • Even–odd oscillation is observed for the band gap of one kind of zigzag tubes. • The energy and band gap for large-diameter tubes converge to BC{sub 2}N sheet values. - Abstract: Density functional theory calculations are used to investigate a series of BC{sub 2}N nanotubes with a wide range of diameters. Two types of zigzag and two types of armchair nanotubes are studied to survey the effect of diameter and chirality on energetics and electronic properties of nanotubes. Two nanotubes are found to be metallic and others show semiconducting behavior. The diameter is shown to have a greater impact on the band gap of zigzag nanotubes than those of armchair tubes. (n, 0) zigzag nanotubes show an even–odd band gap oscillation, which can be explained by the electron density distribution of the lowest unoccupied crystalline orbital. The stability of the nanotubes is also assessed using strain energies and it is shown that the strain energy does not depend on nanotube type and chirality. In the limit of large diameters, the geometry and band gap of all nanotubes converge to BC{sub 2}N sheet data.

  1. Nuclear forces from chiral EFT: The unfinished business

    OpenAIRE

    Machleidt, R.; Entem, D.R.

    2010-01-01

    In spite of the great progress we have seen in recent years in the derivation of nuclear forces from chiral effective field theory (EFT), some important issues are still unresolved. In this contribution, we discuss the open problems which have particular relevance for microscopic nuclear structure, namely, the proper renormalization of chiral nuclear potentials and sub-leading many-body forces.

  2. Bayesian parameter estimation for effective field theories

    CERN Document Server

    Wesolowski, S; Furnstahl, R J; Phillips, D R; Thapaliya, A

    2015-01-01

    We present procedures based on Bayesian statistics for effective field theory (EFT) parameter estimation from data. The extraction of low-energy constants (LECs) is guided by theoretical expectations that supplement such information in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools are developed that analyze the fit and ensure that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems and the extraction of LECs for the nucleon mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.

  3. Bayesian parameter estimation for effective field theories

    Science.gov (United States)

    Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.

    2016-07-01

    We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.

  4. Five chiral Cd(II) complexes with dual chiral components: Effect of positional isomerism, luminescence and SHG response

    International Nuclear Information System (INIS)

    Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of (1R,2R)–N1,N2-bis(pyridinylmethyl)cyclohexane-1,2-diamine ligands with different N-positions of pyridyl rings and Cd(NO3)2. The circular dichroism (CD) spectra and second-harmonic generation (SHG) efficiency measurements confirmed that they are of structural chirality in the bulk samples. The luminescent properties indicated that they may have potential applications as optical materials. The formation of discrete mononuclear and binuclear complexes, and one-dimensional chains may be attributed to positional isomerism of the ligands. - Graphical abstract: Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of chiral ligands with different N-positions of pyridyl rings. - Highlights: • Five chiral Cd(II) complexes with dual chiral components have been synthesized. • CD spectra and SHG efficiency of the bulk samples have been measured. • The complexes display luminescent properties

  5. Five chiral Cd(II) complexes with dual chiral components: Effect of positional isomerism, luminescence and SHG response

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lin, E-mail: lcheng@seu.edu.cn [Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189 (China); Wang, Jun; Yu, Hai-Yan; Zhang, Xiu-Ying [Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Gou, Shao-Hua, E-mail: sgou@seu.edu.cn [Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189 (China); Fang, Lei [Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189 (China)

    2015-01-15

    Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of (1R,2R)–N{sup 1},N{sup 2}-bis(pyridinylmethyl)cyclohexane-1,2-diamine ligands with different N-positions of pyridyl rings and Cd(NO{sub 3}){sub 2}. The circular dichroism (CD) spectra and second-harmonic generation (SHG) efficiency measurements confirmed that they are of structural chirality in the bulk samples. The luminescent properties indicated that they may have potential applications as optical materials. The formation of discrete mononuclear and binuclear complexes, and one-dimensional chains may be attributed to positional isomerism of the ligands. - Graphical abstract: Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of chiral ligands with different N-positions of pyridyl rings. - Highlights: • Five chiral Cd(II) complexes with dual chiral components have been synthesized. • CD spectra and SHG efficiency of the bulk samples have been measured. • The complexes display luminescent properties.

  6. Trace Formulae of Characteristic Polynomial and Cayley-Hamilton's Theorem, and Applications to Chiral Perturbation Theory and General Relativity

    International Nuclear Information System (INIS)

    By using combinatorics, we give a new proof for the recurrence relations of the characteristic polynomial coefficients, and we further obtain an explicit expression for the generic term of the coefficient sequence, which yields the trace formulae of the Cayley-Hamilton's theorem with all coefficients explicitly given. This implies a byproduct, a complete expression for the determinant of any finite-dimensional matrix in terms of the traces of its successive powers. And we discuss some of their applications to chiral perturbation theory and general relativity

  7. Symmetry breaking in covalent chiral bond Hsub2, according to accurate vibrational levels from Kratzer bond theory

    CERN Document Server

    Van Hooydonk, G

    2009-01-01

    Symmetry breaking in Hsub2, quantified with Kratzer bond theory, leads to vibrational levels with errors of only 0,00008 %. For quanta, 0,0011 % errors are smaller than with any ab initio QM method. Chiral behavior of covalent bond Hsub2 implies bonding between left- and right-handed atoms HsubL and HsubR or between hydrogen H and antihydrogen Hbar. This generic Hsub2 asymmetry is given away by a Hund-type Mexican hat curve, invisible in QM.

  8. Next to Leading Order Chiral Perturbation theory of $K \\pi \\to \\pi$ and $K\\to\\pi\\pi$ amplitudes

    OpenAIRE

    Kim, Changhoan

    2008-01-01

    It is shown that the low energy coefficients of the next-to-leading order (NLO) chiral perturbation theory needed to determine $\\Delta I=1/2$, $K\\to\\pi\\pi$ decay amplitudes can be fixed by calculating $K\\pi\\to\\pi$ amplitudes on lattice. Unlike using NLO $K\\to\\pi\\pi$ amplitudes proposed by Laiho and Soni, simulating $K\\pi\\to\\pi$ transitions on lattice does not require evaluations of s-channel disconnected diagrams which have been an obstacle in practice.

  9. CHIRAL MULTIPHOTON ABSORPTION AND INVERSE SKIN EFFECT IN WLAN SYSTEMS

    OpenAIRE

    Héctor Torres Silva; Mario Zamorano Lucero

    2005-01-01

    A model formed by chiral bioplasma with a set of macromolecules of DNA, which represents the human head inner structure, makes possible to analyze its behavior, when it is radiated by a microwave electromagnetic field from cellular phones and WLAN's at frequencies of 2.4 and 5.2 GHz is presented. The finite difference time domain, FDTD, numeric technique is used under multiphoton regime deduced from Maxwell equations. The numerical results of the Specific Absorption Rate, SAR, show the SAR be...

  10. Topics in Effective Field Theory for Lattice QCD

    CERN Document Server

    Walker-Loud, A

    2006-01-01

    In this work, we extend and apply effective field theory techniques to systematically understand a subset of lattice artifacts which pollute the lattice correlation functions for a few processes of physical interest. Where possible, we compare to existing lattice QCD calculations. In particular, we extend the heavy baryon Lagrangian to the next order in partially quenched chiral perturbation theory and use it to compute the masses of the lightest spin-1/2 and spin-3/2 baryons to next-to-next-to leading order. We then construct the twisted mass chiral Lagrangian for baryons and apply it to compute the lattice spacing corrections to the baryon masses simulated with twisted mass lattice QCD. We extend computations of the nucleon electromagnetic structure to account for finite volume effects, as these observables are particularly sensitive to the finite extent of the lattice. We resolve subtle peculiarities for lattice QCD simulations of polarizabilities and we show that using background field techniques, one can...

  11. Two-parameter scaling theory of the longitudinal magnetoconductivity in a Weyl metal phase: Chiral anomaly, weak disorder, and finite temperature

    Science.gov (United States)

    Kim, Kyoung-Min; Shin, Dongwoo; Sasaki, M.; Kim, Heon-Jung; Kim, Jeehoon; Kim, Ki-Seok

    2016-08-01

    It is at the heart of modern condensed matter physics to investigate the role of a topological structure in anomalous transport phenomena. In particular, chiral anomaly turns out to be the underlying mechanism for the negative longitudinal magnetoresistivity in a Weyl metal phase. The existence of a dissipationless current channel causes enhancement of electric currents along the direction of a pair of Weyl points or applied magnetic fields (B ). However, temperature (T ) dependence of the negative longitudinal magnetoresistivity has not been understood yet in the presence of disorder scattering since it is not clear at all how to introduce effects of disorder scattering into the topological-in-origin transport coefficient at finite temperatures. The calculation based on the Kubo formula of the current-current correlation function is simply not known for this anomalous transport coefficient. Combining the renormalization group analysis with the Boltzmann transport theory to encode the chiral anomaly, we reveal how disorder scattering renormalizes the distance between a pair of Weyl points and such a renormalization effect modifies the topological-in-origin transport coefficient at finite temperatures. As a result, we find breakdown of B /T scaling, given by B /T1 +η with 0 structure in a Weyl metal phase.

  12. Two-parameter scaling theory of the longitudinal magnetoconductivity in a Weyl metal phase: Chiral anomaly, weak disorder, and finite temperature

    Science.gov (United States)

    Kim, Kyoung-Min; Shin, Dongwoo; Sasaki, M.; Kim, Heon-Jung; Kim, Jeehoon; Kim, Ki-Seok

    2016-08-01

    It is at the heart of modern condensed matter physics to investigate the role of a topological structure in anomalous transport phenomena. In particular, chiral anomaly turns out to be the underlying mechanism for the negative longitudinal magnetoresistivity in a Weyl metal phase. The existence of a dissipationless current channel causes enhancement of electric currents along the direction of a pair of Weyl points or applied magnetic fields (B ). However, temperature (T ) dependence of the negative longitudinal magnetoresistivity has not been understood yet in the presence of disorder scattering since it is not clear at all how to introduce effects of disorder scattering into the topological-in-origin transport coefficient at finite temperatures. The calculation based on the Kubo formula of the current-current correlation function is simply not known for this anomalous transport coefficient. Combining the renormalization group analysis with the Boltzmann transport theory to encode the chiral anomaly, we reveal how disorder scattering renormalizes the distance between a pair of Weyl points and such a renormalization effect modifies the topological-in-origin transport coefficient at finite temperatures. As a result, we find breakdown of B /T scaling, given by B /T1 +η with 0 <η <1 . This breakdown may be regarded to be a fingerprint of the interplay between disorder scattering and topological structure in a Weyl metal phase.

  13. Dynamical generation of extended objects in a (1+1)-dimensional chiral field theory: Nonperturbative Dirac operator resolvent analysis

    International Nuclear Information System (INIS)

    We analyze the (1+1)-dimensional Nambu - Jona-Lasinio (NJL) model nonperturbatively. In addition to its simple ground-state saddle points, the effective action of this model has a rich collection of nontrivial saddle points in which the composite fields σ(x)=left-angle bar ψψ right-angle and π(x)=left-angle bar ψiγ5ψ right-angle form static space-dependent configurations because of nontrivial dynamics. These configurations may be viewed as one-dimensional chiral open-quotes bags.close quotes We start our analysis of such configurations by asking what kind of initially static {σ(x),π(x)} background configurations will remain so under fermionic back reaction. By simply looking at the asymptotic spatial behavior of the expectation value of the fermion number current we show, independently of the large-N limit, that a necessary condition for this situation to occur is that {σ(x),π(x)} give rise to a reflectionless Dirac operator. We provide an explicit formula for the diagonal resolvent of the Dirac operator in a reflectionless {σ(x),π(x)} background which produces a prescribed number of bound states. We analyze in detail the cases of a single as well as two bound states. We explicitly check that these reflectionless backgrounds may be tuned such that the large- N saddle-point condition is satisfied. Thus, in the case of the NJL model, reflectionlessness is also sufficient to assure the time independence of the background. In our view, these facts make our work conceptually simpler than the previous work of Shei and of Dashen, Hasslacher, and Neveu which were based on the inverse scattering formalism. Our method of finding such nontrivial static configurations may be applied to other (1+1)-dimensional field theories. copyright 1997 The American Physical Society

  14. Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Galynsky, Vladimir M.; Zhukovsky, Sergei

    2012-01-01

    The electronic Lorentz theory is employed to explain the optical properties of planar split-ring metamaterials. Starting from the dynamics of individual free carriers, the electromagnetic response of an individual split-ring meta-atom is determined, and the effective permittivity tensor of the...

  15. Chiral two-body currents in nuclei: Gamow-Teller transitions and neutrinoless double-beta decay

    OpenAIRE

    Menéndez, J.; Gazit, D.; Schwenk, A.

    2011-01-01

    We show that chiral effective field theory (EFT) two-body currents provide important contributions to the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the momentum-transfer dependence that is probed in neutrinoless double-beta decay. We then calculate for the first time the neutrinoless double-beta decay operator based on chiral EFT currents and study the nuclear matrix elements at successive orders. The contributions from chiral two-body currents...

  16. Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    宗红石; 吴小华; 侯丰尧; 赵恩广

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.

  17. Density-dependent effective baryon-baryon interaction from chiral three-baryon forces

    CERN Document Server

    Petschauer, Stefan; Kaiser, Norbert; Meißner, Ulf-G; Weise, Wolfram

    2016-01-01

    A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the Lambda-nucleon in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the ...

  18. Holographic effective field theories

    Science.gov (United States)

    Martucci, Luca; Zaffaroni, Alberto

    2016-06-01

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  19. Holographic Effective Field Theories

    CERN Document Server

    Martucci, Luca

    2016-01-01

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  20. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  1. Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model

    OpenAIRE

    Rebhan, Anton; Schmitt, Andreas; Stricker, Stefan A.

    2009-01-01

    In the chiral magnetic effect an imbalance in the number of left- and right-handed quarks gives rise to an electromagnetic current parallel to the magnetic field produced in noncentral heavy-ion collisions. The chiral imbalance may be induced by topologically nontrivial gluon configurations via the QCD axial anomaly, while the resulting electromagnetic current itself is a consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain limit is dual to large-N_c QCD, we discuss...

  2. Deconfinement and chiral symmetry restoration in an SU(3) gauge theory with adjoint fermions

    International Nuclear Information System (INIS)

    We analyze the finite temperature phase diagram of QCD with fermions in the adjoint representation. The simulations performed with four dynamical Majorana fermions show that the deconfinement and chiral phase transitions occur at two distinct temperatures. While the deconfinement transition is first-order at Td we find evidence for a continuous chiral transition at a higher temperature Tc ≅ 8 Td. We observe a rapid change of bulk thermodynamic observables at Td which reflects the increase in the number of degrees of freedom. However, these show little variation at Tc, where the fermion condensate vanishes. We also analyze the potential between static fundamental and adjoint charges in all three phases and extract the corresponding screening masses above Td

  3. Assuming Regge trajectories in holographic QCD: from OPE to chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Cappiello, Luigi; Greynat, David [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Naples (Italy); INFN-Sezione di Napoli, Naples (Italy); D' Ambrosio, Giancarlo [INFN-Sezione di Napoli, Naples (Italy); CERN Theory Division, Geneva 23 (Switzerland)

    2015-10-15

    The soft wall model in holographic QCD has Regge trajectories but wrong operator product expansion (OPE) for the two-point vectorial QCD Green function. We modify the dilaton potential to comply with the OPE. We study also the axial two-point function using the same modified dilaton field and an additional scalar field to address chiral symmetry breaking. OPE is recovered adding a boundary term and low energy chiral parameters, F{sub π} and L{sub 10}, are well described analytically by the model in terms of Regge spacing and QCD condensates. The model nicely supports and extends previous theoretical analyses advocating Digamma function to study QCD two-point functions in different momentum regions. (orig.)

  4. Chiral String-Soliton Model for the light chiral baryons

    CERN Document Server

    Pavlovsky, Oleg

    2010-01-01

    The Chiral String-Soliton Model is a joining of the two notions about the light chiral baryons: the chiral soliton models (like the Skyrme model) and the Quark-Gluon String models. The ChSS model is based on the Effective Chiral Lagrangian which was proposed in [arXiv:hep-ph/0306216]. We have studied the physical properties of the light chiral baryon within the framework of this ChSS model.

  5. Effect of Born and unitary impurity scattering on the Kramer–Pesch shrinkage of a vortex core in a chiral p-wave superconductor

    International Nuclear Information System (INIS)

    Highlights: •We theoretically study an impurity scattering effect on the vortex core structure in a chiral p-wave superconductor. •A low-temperature vortex core shrinkage (or Kramer–Pesch effect) is investigated. •The robustness of the Kramer–Pesch effect against an impurity scattering in the Born limit is lost in the unitary limit. -- Abstract: We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer–Pesch effect) in a chiral p-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of superconductivity. We find that the robustness of the Kramer–Pesch effect against the impurity scattering in the Born limit is lost in the unitary limit

  6. Effect of Born and unitary impurity scattering on the Kramer–Pesch shrinkage of a vortex core in a chiral p-wave superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Nobuhiko, E-mail: n-hayashi@21c.osakafu-u.ac.jp [NanoSquare Research Center (N2RC), Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570 (Japan); Kurosawa, Noriyuki [Department of Basic Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Arahata, Emiko [Institute of Industrial Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8505 (Japan); Kato, Yusuke [Department of Basic Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Tanuma, Yasunari [Faculty of Engineering and Resource Science, Akita University, Akita 010-8502 (Japan); Tanaka, Yukio [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Golubov, Alexander A. [Faculty of Science and Technology and MESA Institute for Nanotechnology, University of Twente, 7500 AE Enshede (Netherlands)

    2013-11-15

    Highlights: •We theoretically study an impurity scattering effect on the vortex core structure in a chiral p-wave superconductor. •A low-temperature vortex core shrinkage (or Kramer–Pesch effect) is investigated. •The robustness of the Kramer–Pesch effect against an impurity scattering in the Born limit is lost in the unitary limit. -- Abstract: We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer–Pesch effect) in a chiral p-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of superconductivity. We find that the robustness of the Kramer–Pesch effect against the impurity scattering in the Born limit is lost in the unitary limit.

  7. MAXWELL’S THEORY WITH CHIRAL CURRENTS TEORÍA DE MAXWELL CON CORRIENTES QUIRALES

    OpenAIRE

    Héctor Torres-Silva

    2008-01-01

    The energy and momentum content of an electromagnetic field can be expressed entirely in terms of the fields through the energy-momentum tensor with no mention of the sources creating the fields. This tensor is defined such that chiral currents are introduced. In the case of free force we have and . This approach allows for a very symmetric derivation of the energy and momentum content of the fields with . This configuration is essential to the unification of electromagnetism and gravity, obt...

  8. Chiral symmetry and eta, eta' → 3π decays. Grand unified theories

    International Nuclear Information System (INIS)

    Two different topics related to symmetry breaking are discussed. First the eta, eta' → 3π decays are presented. The amplitudes eta, eta' → 3π are calculated with the square root threshold singularity induced by the strong pion-pion final state interaction properly taken into account. It is shown that the eta' → 3π decay rate depends sensitively upon an improved treatment of the pseudoscalar nonet mass matrix. Then symmetry-breaking effects in grand unified theories are discussed. The threshold effects in a spontaneously broken gauge theory are studied. In particular a computation of the symmetry-breaking effects in the SU(5) grand unified theory including those of the breaking of SU(2)xU(1) is presented. As an application a precise value of the superheavy gauge boson mass Mx is given. It is possible in SU(5) to define a natural effective weak angle theta w(μ) for any scale μ, below as well as above Mw, and the predicted curve for sin2 theta w(μ) is given

  9. Chiral-particle Approach to Hadrons in an Extended Chiral ($\\sigma,\\pi,\\omega$) Mean-Field Model

    CERN Document Server

    Uechi, Schun T

    2010-01-01

    The chiral nonlinear ($\\sigma,\\pi,\\omega$) mean-field model is an extension of the conserving nonlinear (nonchiral) $\\sigma$-$\\omega$ hadronic mean-field model which is thermodynamically consistent, relativistic and Lorentz-covariant mean-field theory of hadrons. In the extended chiral ($\\sigma,\\pi,\\omega$) mean-field model, all the masses of hadrons are produced by chiral symmetry breaking mechanism, which is different from other conventional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, the effects of chiral symmetry breaking to the mass of $\\sigma$-meson, coefficients of nonlinear interactions, coupling ratios of hyperons to nucleons and Fermi-liquid properties are investigated in nuclear matter, hyperonic matter, and neutron stars.

  10. Chiral Invariance of Massive Fermions

    OpenAIRE

    Das, A.(University of Arizona, Tucson, AZ, 85721, USA); Hott, M

    1994-01-01

    We show that a massive fermion theory, while not invariant under the conventional chiral transformation, is invariant under a $m$-deformed chiral transformation. These transformations and the associated conserved charges are nonlocal but reduce to the usual transformations and charges when $m=0$. The $m$-deformed charges commute with helicity and satisfy the conventional chiral algebra.

  11. Separation of flow from chiral magnetic effect in U+U collisions using spectator asymmetry

    CERN Document Server

    Chatterjee, Sandeep

    2014-01-01

    We demonstrate that the prolate shape of the Uranium nucleus generates anti-correlation between spectator asymmetry and initial state ellipticity of the collision zone, providing a way to constrain the initial event shape in U+U collisions. As an application, we show that this can be used to separate the background contribution due to flow from the signals of chiral magnetic effect.

  12. Intrinsic and Extrinsic Origins of the Polar Kerr Effect in a Chiral p-WAVE Superconductor

    Science.gov (United States)

    Goryo, Jun

    Recently, the measurement of the polar Kerr effect (PKE) in the quasi two-dimensional superconductor Sr2RuO4, which is motivated to observe the chirality of px + ipy-wave pairing, has been reported. We clarify that the PKE has intrinsic and extrinsic (disorder-induced) origins. The extrinsic contribution would be dominant in the PKE experiment.

  13. CHIRAL MULTIPHOTON ABSORPTION AND INVERSE SKIN EFFECT IN WLAN SYSTEMS

    Directory of Open Access Journals (Sweden)

    Héctor Torres Silva

    2005-12-01

    Full Text Available A model formed by chiral bioplasma with a set of macromolecules of DNA, which represents the human head inner structure, makes possible to analyze its behavior, when it is radiated by a microwave electromagnetic field from cellular phones and WLAN's at frequencies of 2.4 and 5.2 GHz is presented. The finite difference time domain, FDTD, numeric technique is used under multiphoton regime deduced from Maxwell equations. The numerical results of the Specific Absorption Rate, SAR, show the SAR behavior in function of input power and the chirality factor. The main conclusions of our work are: a the microwave absorption from cellular phones or WLAN's is enhanced, compared with classical models, when values of the normalized chiral factor are of order of one which appear under multiphoton regime ; b a phenomena like an “inverse skin effect” in 5.2 GHz, with respect to a 2.4 GHz source, was observed. c In the metamaterial region we show that the absorption rate always is positive.Un modelo formado por bioplasma quiral con un conjunto de macromoléculas de ADN, que representa la estructura interna de la cabeza humana, hace posible analizar su comportamiento, cuando es irradiada por campos electromagnéticos de microondas de teléfonos celulares o sistemas WLAN a frecuencias de 2.4 y 5.2 GHz. El método de diferencias finitas en el dominio del tiempo, FDTD, en régimen de multifotones deducido de las ecuaciones de Maxwell es usado. Los resultados numéricos de la taza de absorción específica SAR, muestran el comportamiento de la SAR en función de la potencia de entrada y del factor quiral. Las principales conclusiones de nuestro trabajo son: a la absorción de microondas es aumentada comparada con modelos clásicos, cuando valores del factor quiral normalizado son del orden de la unidad, que aparecen bajo régimen multifotónico; b Un fenómeno de efecto pelicular inverso en 5.2 GHz con respecto a una fuente de 2.4 GHz fue observado; c En la regi

  14. Sigma(770) Resonance and the Breaking of Scale and Chiral Symmetry in Effective QCD

    CERN Document Server

    Svec, M

    2002-01-01

    CERN measurements of pi(-)p->pi(-)pi(+)n on polarized target at 17.2 GeV/c enable experimental determination of partial wave production amplitudes below 1080 MeV. The measured S-wave transversity amplitudes provide evidence for a narrow scalar resonance sigma(770). The assumption of analyticity of production amplitudes in dipion mass allows to determine S-wave helicity amplitudes S_0 and S_1. The amplitude S_1 is related to pi(-)pi(+)->pi(-)pi(+) scattering. There are four "down" solutions (1, 1bar), (2, 1bar), (1, 2bar) and (2, 2bar) selected by unitarity in pipi scattering. Ellis-Lanik relation between the mass m_sigma and partial width Gamma(sigma->pi(-)pi(+)) derived from an effective QCD theory with broken scale and chiral symmetry selects solutions (1, 1bar) and (1, 2bar) and imparts the sigma(770) resonance with a dilaton-gluonium interpretation. Weinberg's mended symmetry selects solutions (1, 1bar) and (2, 1bar). The combin ed solution (1, 1bar) has m_sigma=769 +/- 13 MeV and Gamma_sigma=154 +/- 22 M...

  15. Chirality in Nonlinear Optics

    Science.gov (United States)

    Haupert, Levi M.; Simpson, Garth J.

    2009-05-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.

  16. Power Counting Regime of Chiral Extrapolation and Beyond

    CERN Document Server

    Leinweber, D B; Young, R D; Leinweber, Derek B; Thomas, Anthony W; Young, Ross D

    2005-01-01

    Finite-range regularised (FRR) chiral effective field theory is presented in the context of approximation schemes ubiquitous in modern lattice QCD calculations. Using FRR techniques, the power-counting regime (PCR) of chiral perturbation theory can be estimated. To fourth-order in the expansion at the 1% tolerance level, we find m_\\pi < 180 MeV for the PCR, extending only a small distance beyond the physical pion mass.

  17. Repulsive Casimir Force in Chiral Metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E.N.; Soukoulis, C.M.

    2009-09-04

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  18. Repulsive Casimir Force in Chiral Metamaterials

    OpenAIRE

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2009-01-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  19. The effective QCD theory at low energy; La theorie effective de QCD a basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1995-12-31

    Quantum chromodynamics is studied here in the range of low energies. The Chiral perturbation theory is presented, this theory is based on a thorough study of QCD symmetry, of general field theory principles and of S-matrices. Ward identities are defined within the scope of current algebras and by using functional method. Their consequences on Chiral structure of QCD emptiness and on strong interaction at low energies are studied. The pion-pion diffusion at low energies is treated as an example. (A.C.) 70 refs.

  20. CHIRAL FIELD IDEAS FOR A THEORY OF MATTER IDEAS DE CAMPO QUIRAL PARA UNA TEORÍA DE LA MATERIA

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available In this paper, a chiral approach is used for developing a unified theory of electromagnetic and gravity fields. The photons which satisfy Maxwell's equations for an electromagnetic wave are taken as the basic physical components. The goal of the theory is to unify the phenomena of relativistic invariance, wave mechanics and pair creation with Maxwell's equation to obtain an electromagnetic field theory of matter. With this theory some aspects of GPS (Global Positioning Systems systems are discussed.En este trabajo, para el desarrollo de una teoría unificada de campos electromagnéticos y gravitacionales se usa un método quiral. Los fotones que satisfacen las ecuaciones de Maxwell, para una onda electromagnética se consideran como componentes físicos básicos. El objetivo de esta teoría es unificar el fenómeno de la invarianza relativística, mecánica de onda y la creación del par electrón positrón, con las ecuaciones de Maxwell, para obtener una teoría de la materia totalmente electromagnética. Considerando esta teoría se discuten algunos aspectos de los sistemas GPS (Global Positioning Systems.

  1. The Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading Order

    CERN Document Server

    Mereghetti, E; Hockings, W H; Maekawa, C M; van Kolck, U

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD theta term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the theta term, the expected lower bound on the deuteron electric dipole moment is |d_d| > 1.4 10^(-4) \\theta e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation ---appearing, in particular, in the radius of the form factor--- is the pion mass.

  2. The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order

    International Nuclear Information System (INIS)

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD θ-bar term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the θ-bar term, the expected lower bound on the deuteron electric dipole moment is |dd|≥1.4.10-4θ-bar e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation-appearing, in particular, in the radius of the form factor-is the pion mass.

  3. Low energy analysis of $\\pi N$ scattering and the pion-nucleon sigma term with covariant baryon chiral perturbation theory

    CERN Document Server

    Alarcón, J M; Oller, J A

    2013-01-01

    The pion-nucleon sigma term ($\\sigma_{\\pi N}$) is an observable of fundamental importance because embodies information about the internal scalar structure of the nucleon. Nowadays this quantity has triggered renewed interest because it is a key input for a reliable estimation of the dark matter-nucleon spin independent elastic scattering cross section. In this proceeding we present how this quantity can be reliably extracted by employing only experimental information with the use covariant baryon chiral perturbation theory. We also contrast our extraction with updated phenomenology related to $\\sigma_{\\pi N}$ and show how this phenomenology favours a relatively large value of $\\sigma_{\\pi N}$. Finally, we extract a value of $\\sigma_{\\pi N}=59(7)$ MeV from modern partial wave analyses data.

  4. Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model

    International Nuclear Information System (INIS)

    The third moment d2 of the twist-3 part of the nucleon spin structure function g2 is generalized to arbitrary momentum transfer Q2 and is evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order Ο(p4) and in a unitary isobar model (MAID). We show how to link d2 as well as higher moments of the nucleon spin structure functions g1 and g2 to nucleon spin polarizabilities. We compare our results with the most recent experimental data, and find a good description of these available data within the unitary isobar model. We proceed to extract the twist-4 matrix element f2 which appears in the 1/Q2 suppressed term in the twist expansion of the spin structure function g1 for proton and neutron

  5. MAXWELL’S THEORY WITH CHIRAL CURRENTS TEORÍA DE MAXWELL CON CORRIENTES QUIRALES

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available The energy and momentum content of an electromagnetic field can be expressed entirely in terms of the fields through the energy-momentum tensor with no mention of the sources creating the fields. This tensor is defined such that chiral currents are introduced. In the case of free force we have and . This approach allows for a very symmetric derivation of the energy and momentum content of the fields with . This configuration is essential to the unification of electromagnetism and gravity, obtaining a force-free configuration for the electron. To obtain this unification the Rainich geometrization under chiral conditions is discussed.El contenido de energía y momento de un campo electromagnético puede ser expresado enteramente, en términos de los campos a través del tensor energía momento, sin mención de las fuentes que crean los campos. Este tensor es definido introduciendo corrientes quirales. En el caso de sin fuerza se tiene y . Este método permite una muy simétrica derivación del contenido de energía y momento de los campos con . Esta configuración es esencial para la unificación del electromagnetismo y la gravedad, obteniendo una configuración de fuerza cero para el electrón. Para obtener esta unificación se discute la geometrización de Rainich bajo condiciones quirales.

  6. Chiral Symmetry Restoration, Naturalness and the Absence of Fine-Tuning I: Global Theories

    CERN Document Server

    Lynn, Bryan W

    2013-01-01

    The Standard Model (SM), and the scalar sector of its zero-gauge-coupling limit -- the chiral-symmetric limit of the Gell Mann-Levy Model (GML) -- have been shown not to suffer from a Higgs Fine-Tuning (FT) problem. All ultraviolet quadratic divergences (UVQD) are absorbed into the mass-squared of pseudo Nambu-Goldstone (pNGB) bosons, in GML. Since chiral SU(2)_{L-R} symmetry is restored as the pNGB mass-squared or as the Higgs vacuum expectation value (VEV) are taken to 0, small values of these quantities and of the Higgs mass are natural, and therefore not Fine-Tuned. In this letter, we extend our results on the absence of FT to a wide class of high-mass-scale (M_{Heavy}>>m_{Higgs}) extensions to a simplified SO(2) version of GML. We explicitly demonstrate naturalness and no-FT for two examples of heavy physics, both SO(2) singlets: a heavy (M_S >> m_{Higgs}) real scalar field (with or without a VEV); and a right-handed Type 1 See-Saw Majorana neutrino with M_R >> m_{Higgs}. We prove that for |q^2| <<...

  7. Effective field theory in the harmonic oscillator basis

    Science.gov (United States)

    Binder, S.; Ekström, A.; Hagen, G.; Papenbrock, T.; Wendt, K. A.

    2016-04-01

    We develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. In oscillator EFT, matrix elements of EFTs formulated for continuous momenta are evaluated at the discrete momenta that stem from the diagonalization of the kinetic energy in the finite oscillator space. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leading order. Many-body coupled-cluster calculations of nuclei up to 132Sn converge fast for the ground-state energies and radii in feasible model spaces.

  8. Effects of carrier gas dynamics on single wall carbon nanotube chiral distributions during laser vaporization synthesis.

    Science.gov (United States)

    Landi, Brian J; Raffaelle, Ryne P

    2007-03-01

    We report on the utility of modifying the carrier gas dynamics during laser vaporization synthesis to alter the single wall carbon nanotube (SWNT) chiral distribution. SWNTs produced from an Alexandrite laser using conventional Ni/Co catalysts demonstrate marked differences in chiral distributions due to effects of helium gas and reactor chamber pressure, in comparison to conventional subambient pressures and argon gas. Optical absorption and Raman spectroscopies confirm that the SWNT diameter distribution decreases under higher pressure and with helium gas as opposed to argon. Fluorescence mapping of the raw soots in sodium dodecylbenzene sulfonate (SDBS)-D2O was used to estimate the relative (n, m)-SWNT content of the semiconducting types. A predominance of type II structures for each synthesis condition was observed. The distribution of SWNT chiral angles was observed to shift away from near-armchair configurations under higher pressure and with helium gas. These results illustrate the importance of gas type and pressure on the condensation/cooling rate, which allows for synthesis of specific SWNT chiral distributions. PMID:17450850

  9. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  10. Nuclear Chiral EFT in the Precision Era

    CERN Document Server

    Epelbaum, Evgeny

    2015-01-01

    Chiral effective field theory has established itself as the method of choice to study nuclear forces and low-energy nuclear dynamics. I review the status and prospects of this approach and discuss ongoing efforts to advance the precision frontier for ab initio description of few-nucleon systems. Special emphasis is put on the precise determination of the two-nucleon force at fifth order in the chiral expansion, role of the chiral symmetry, the convergence pattern of the chiral expansion and the quantification of the theoretical uncertainties. The discussed topics are essential for ongoing studies towards elucidating the structure of the three-nucleon force which will be briefly addressed as well.

  11. Recent developments in effective field theory

    CERN Document Server

    Scherer, Stefan

    2007-01-01

    We will give a short introduction to the one-nucleon sector of chiral perturbation theory and will address the issue of a consistent power counting and renormalization. We will discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order O(q^6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors.

  12. Chiral Nuclear Dynamics II

    CERN Document Server

    Rho, Mannque

    2008-01-01

    This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and

  13. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  14. Influence of damping on the vanishing of the electro-optic effect in chiral isotropic media

    OpenAIRE

    Agarwal, G. S.; Boyd, Robert W.

    2002-01-01

    Using first principles, it is demonstrated that radiative damping alone cannot lead to a nonvanishing electro-optic effect in a chiral isotropic medium. This conclusion is in contrast with that obtained by a calculation in which damping effects are included using the standard phenomenological model. We show that these predictions differ because the phenomenological damping equations are valid only in regions where the frequencies of the applied electromagnetic fields are nearly resonant with ...

  15. Evidence for the effect of sorption enantioselectivity on the availability of chiral pesticide enantiomers in soil.

    Science.gov (United States)

    Gámiz, Beatriz; Facenda, Gracia; Celis, Rafael

    2016-06-01

    Although enantioselective sorption to soil particles has been proposed as a mechanism that can potentially influence the availability of individual chiral pesticide enantiomers in the environment, environmental fate studies generally overlook this possibility and assume that only biotic processes can be enantioselective, whereas abiotic processes, such as sorption, are non-enantioselective. In this work, we present direct evidence for the effect of the enantioselective sorption of a chiral pesticide in a natural soil on the availability of the single pesticide enantiomers for transport. Batch sorption experiments, with direct determination of the sorbed amounts, combined with column leaching tests confirmed previous observations that from non-racemic aqueous solutions the sorption of the chiral fungicide metalaxyl on the soil appeared to be enantioselective, and further demonstrated that the enantiomer that was sorbed to a greater extent (R-metalaxyl, Kd = 1.73 L/kg) exhibited retarded leaching compared to its optical isomer (S-metalaxyl, Kd = 1.15 L/kg). Interconversion and degradation of the pesticide enantiomers, which are potential experimental artifacts that can lead to erroneous estimates of sorption and its enantioselectivity, were discarded as possible causes of the observed enantioselective behavior. The results presented here may have very important implications for a correct assessment of the environmental fate of chiral pesticides that are incorporated into the environment as non-racemic mixtures, and also of aged chiral pesticide residues that have been transformed from racemic to non-racemic by biologically-mediated processes. PMID:27060281

  16. Extension of the chiral perturbation theory meson Lagrangian to order p6

    International Nuclear Information System (INIS)

    We have derived the most general chirally invariant Lagrangian L6 for the meson sector at order p6. The result provides an extension of the standard Gasser-Leutwyler Lagrangian L4 to one higher order, including as well all the odd intrinsic parity terms in the Lagrangian. The most difficult part of the derivation was developing a systematic strategy so as to get all of the independent terms and eliminate the redundant ones in an efficient way. The equation of motion terms, which are redundant in the sense that they can be transformed away via field transformations, are separated out explicitly. The resulting Lagrangian has been separated into groupings of terms contributing to increasingly more complicated processes, so that one does not have to deal with the full result when calculating p6 contributions to simple processes. (author). 53 refs., 10 tabs

  17. Punctuated Chirality

    OpenAIRE

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high int...

  18. The two-photon exchange contribution to muonic hydrogen from chiral perturbation theory

    International Nuclear Information System (INIS)

    We compute the spin-dependent and spin-independent structure functions of the forward virtual-photon Compton tensor of the proton at O(p3) using heavy baryon effective theory including the Delta particle. We compare with previous results when existing. Using these results we obtain the leading hadronic contributions, associated to the pion and Delta particles, to the Wilson coefficients of the lepton–proton four fermion operators in NRQED. The spin-independent coefficient yields a pure prediction for the two-photon exchange contribution to the muonic hydrogen Lamb shift, ΔETPE(π and Δ)=34(13) μeV. We also compute the charge, 〈rn〉, and Zemach, 〈rn〉(2), moments for n≥3. Finally, we discuss the spin-dependent case, for which we compute the difference between the four-fermion Wilson coefficients relevant for hydrogen and muonic hydrogen

  19. In search of chiral magnetic effect: separating flow-driven background effects and quantifying anomaly-induced charge separations

    CERN Document Server

    Huang, Xu-Guang; Liao, Jinfeng

    2015-01-01

    We report our recent progress on the search of Chiral Magnetic Effect (CME) by developing new measurements as well as by hydrodynamic simulations of CME and background effects, with both approaches addressing the pressing issue of separating flow-driven background contributions and possible CME signal in current heavy ion collision measurements.

  20. Covariant Effective Field Theory for Nuclear Structure and Currents

    CERN Document Server

    Serot, B D

    2004-01-01

    Recent progress in Lorentz-covariant quantum field theories of the nuclear many-body problem (quantum hadrodynamics or QHD) is discussed. The effective field theory studied here contains nucleons, pions, isoscalar scalar (\\sigma) and vector (\\omega) fields, and isovector vector (\\rho) fields. The theory exhibits a nonlinear realization of spontaneously broken SU(2) \\times SU(2) chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the nuclear currents and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of QCD, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for normal nuclear systems, it is possible to expand the effective lagrangian systematically in powers of the meson fields (and their derivatives) and to truncate the expansion reliably after the first few orders. Using a mean-field versio...