Chiral effective field theory and nuclear forces
Machleidt, R
2011-01-01
We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.
Quantum Monte Carlo calculations with chiral effective field theory interactions
Energy Technology Data Exchange (ETDEWEB)
Tews, Ingo
2015-10-12
The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By
Power Counting Regime of Chiral Effective Field Theory and Beyond
Hall, J M M; Leinweber, D B
2010-01-01
Chiral effective field theory complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of chiral effective field theory, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may b...
Quantum Monte Carlo calculations with chiral effective field theory interactions.
Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A
2013-07-19
We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.
A sensitivity-enhanced field-effect chiral sensor.
Torsi, Luisa; Farinola, Gianluca M; Marinelli, Francesco; Tanese, M Cristina; Omar, Omar Hassan; Valli, Ludovico; Babudri, Francesco; Palmisano, Francesco; Zambonin, P Giorgio; Naso, Francesco
2008-05-01
Organic thin-film transistor sensors have been recently attracting the attention of the plastic electronics community for their potential exploitation in novel sensing platforms. Specificity and sensitivity are however still open issues: in this respect chiral discrimination-being a scientific and technological achievement in itself--is indeed one of the most challenging sensor bench-tests. So far, conducting-polymer solid-state chiral detection has been carried out at part-per-thousand concentration levels. Here, a novel chiral bilayer organic thin-film transistor gas sensor--comprising an outermost layer with built-in enantioselective properties-is demonstrated to show field-effect amplified sensitivity that enables differential detection of optical isomers in the tens-of-parts-per-million concentration range. The ad-hoc-designed organic semiconductor endowed with chiral side groups, the bilayer structure and the thin-film transistor transducer provide a significant step forward in the development of a high-performance and versatile sensing platform compatible with flexible organic electronic technologies.
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S; Mishra, Hiranmaya
2007-01-01
We treat the propagation of nucleon in nuclear matter by evaluating the ensemble average of the two-point function of nucleon currents in the framework of the chiral effective field theory. We first derive the effective parameters of nucleon to one loop. The resulting formula for the effective mass was known previously and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of nucleon are compared with those in the literature.
Nucleon propagation through nuclear matter in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S. [Saha Institute of Nuclear Physics, Kolkata (India); Mishra, H. [Physical Research Laboratory, Theory Divison, Ahmedabad (India)
2007-05-15
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature. (orig.)
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S.; Mishra, H.
2007-05-01
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg’s method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature.
Bayesian analysis of truncation errors in chiral effective field theory
Melendez, J.; Furnstahl, R. J.; Klco, N.; Phillips, D. R.; Wesolowski, S.
2016-09-01
In the Bayesian approach to effective field theory (EFT) expansions, truncation errors are derived from degree-of-belief (DOB) intervals for EFT predictions. By encoding expectations about the naturalness of EFT expansion coefficients for observables, this framework provides a statistical interpretation of the standard EFT procedure where truncation errors are estimated using the order-by-order convergence of the expansion. We extend and test previous calculations of DOB intervals for chiral EFT observables, examine correlations between contributions at different orders and energies, and explore methods to validate the statistical consistency of the EFT expansion parameter. Supported in part by the NSF and the DOE.
Bayesian parameter estimation for chiral effective field theory
Wesolowski, Sarah; Furnstahl, Richard; Phillips, Daniel; Klco, Natalie
2016-09-01
The low-energy constants (LECs) of a chiral effective field theory (EFT) interaction in the two-body sector are fit to observable data using a Bayesian parameter estimation framework. By using Bayesian prior probability distributions (pdfs), we quantify relevant physical expectations such as LEC naturalness and include them in the parameter estimation procedure. The final result is a posterior pdf for the LECs, which can be used to propagate uncertainty resulting from the fit to data to the final observable predictions. The posterior pdf also allows an empirical test of operator redundancy and other features of the potential. We compare results of our framework with other fitting procedures, interpreting the underlying assumptions in Bayesian probabilistic language. We also compare results from fitting all partial waves of the interaction simultaneously to cross section data compared to fitting to extracted phase shifts, appropriately accounting for correlations in the data. Supported in part by the NSF and DOE.
Ruggieri, M
2016-01-01
In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...
The Vector Meson Mass in Chiral Effective Field Theory
Hall, Jonathan M M
2014-01-01
A brief overview of Quantum Chromodynamics (QCD) as a non-Abelian gauge field theory, including symmetries and formalism of interest, will precede a focused discussion on the use of an Effective Field Theory (EFT) as a low energy perturbative expansion technique. Regularization schemes involved in Chiral Perturbation Theory (\\c{hi}PT) will be reviewed and compared with EFT. Lattices will be discussed as a useful procedure for studying large mass particles. An Effective Field Theory will be formulated, and the self energy of the \\r{ho} meson for a Finite-Range Regulated (FRR) theory will be calculated. This will be performed in both full QCD and the simpler quenched approximation (QQCD). Finite-volume artefacts, due to the finite box size on the lattice, will be quantified. Currently known lattice results will be used to calculate the \\r{ho} meson mass, and the possibility of unquenching will be explored. The aim of the research was to determine whether a stable unquenching procedure for the \\r{ho} meson could...
Tritium $\\beta$-decay in chiral effective field theory
Baroni, A; Kievsky, A; Marcucci, L E; Schiavilla, R; Viviani, M
2016-01-01
We evaluate the Fermi and Gamow-Teller (GT) matrix elements in tritium \\beta-decay by including in the charge-changing weak current the corrections up to one loop recently derived in nuclear chiral effective field theory (\\chi EFT). The trinucleon wave functions are obtained from hyperspherical-harmonics solutions of the Schrodinger equation with two- and three-nucleon potentials corresponding to either \\chi EFT (the N3LO/N2LO combination) or meson-exchange phenomenology (the AV18/UIX combination). We find that contributions due to loop corrections in the axial current are, in relative terms, as large as (and in some cases, dominate) those from one-pion exchange, which nominally occur at lower order in the power counting. We also provide values for the low-energy constants multiplying the contact axial current and three-nucleon potential, required to reproduce the experimental GT matrix element and trinucleon binding energies in the N3LO/N2LO and AV18/UIX calculations.
Weak magnetic field effects on chiral critical temperature in a nonlocal Nambu--Jona-Lasinio model
Loewe, M; Villavicencio, C; Zamora, R
2014-01-01
In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperature for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.
Delfino, A; Frederico, T
1996-01-01
The link between non-linear chiral effective Lagrangians and the Walecka model description of bulk nuclear matter [1] is questioned. This fact is by itself due to the Mean Field Approximation (MFA) which in nuclear mater makes the picture of a nucleon-nucleon interaction based on scalar(vector) meson exchange, equivalent to the description of a nuclear matter based on attractive and repulsive contact interactions. We present a linear chiral model where this link between the Walecka model and an underlying to chiral symmetry realization still holds, due to MFA.
The nucleon and Delta-resonance masses in relativistic chiral effective-field theory
Energy Technology Data Exchange (ETDEWEB)
V. Pascalutsa; M. Vanderhaeghen
2005-11-28
We study the chiral behavior of the nucleon and De-isobar masses within a manifestly covariant chiral effective-field theory, consistent with the analyticity principle. We compute the {pi} N and {pi}{Delta} one-loop contributions to the mass and field-normalization constant, and find that they can be described in terms of universal relativistic loop functions, multiplied by appropriate spin, isospin and coupling constants. We show that these relativistic one-loop corrections, when properly renormalized, obey the chiral power-counting and vanish in the chiral limit. The results including only the {pi} N-loop corrections compare favorably with the lattice QCD data for the pion-mass dependence of the nucleon and De masses, while inclusion of the {pi}/De loops tends to spoil this agreement.
Power counting for nuclear forces in chiral effective field theory
Long, Bingwei
2016-01-01
The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.
Power counting for nuclear forces in chiral effective field theory
Long, Bingwei
2016-02-01
The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.
Vector form factor of the pion in chiral effective field theory
Directory of Open Access Journals (Sweden)
D. Djukanovic
2015-03-01
Full Text Available The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied.
Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter
Energy Technology Data Exchange (ETDEWEB)
Holt, Jeremy W., E-mail: jwholt.phys@gmail.com [Department of Physics, University of Washington, Seattle, 98195 (United States); Rho, Mannque [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette (France); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany); ECT*, Villa Tambosi, I-38123 Villazzano (Italy)
2016-03-21
Chiral symmetry, first entering in nuclear physics in the 1970s for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early, germinal idea conceived with the soft-pion theorems in the pre-QCD era has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: “it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme”. Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.
Ph.D. Thesis: Chiral Effective Field Theory Beyond the Power-Counting Regime
Hall, Jonathan M M
2011-01-01
Novel techniques are presented, which identify the power-counting regime (PCR) of chiral effective field theory, and allow the use of lattice quantum chromodynamics results that extend outside the PCR. By analyzing the renormalization of low-energy coefficients of the chiral expansion of the nucleon mass, the existence of an optimal regularization scale is realized. The techniques developed for the nucleon mass renormalization are then applied to a test case: performing a chiral extrapolation without prior phenomenological bias. The robustness of the procedure for obtaining an optimal regularization scale and performing a reliable chiral extrapolation is confirmed. The procedure developed is then applied to the magnetic moment and the electric charge radius of the nucleon. The consistency of the results for the value of the optimal regularization scale provides strong evidence for the existence of an intrinsic energy scale in the nucleon-pion interaction.
Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter
Holt, Jeremy W; Weise, Wolfram
2014-01-01
Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.
Lattice calculations for A=3,4,6,12 nuclei using chiral effective field theory
Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G
2010-01-01
We present lattice calculations for the ground state energies of tritium, helium-3, helium-4, lithium-6, and carbon-12 nuclei. Our results were previously summarized in a letter publication. This paper provides full details of the calculations. We include isospin-breaking, Coulomb effects, and interactions up to next-to-next-to-leading order in chiral effective field theory.
Electric dipole moments of light nuclei from chiral effective field theory
de Vries, J.; Higa, R.; Liu, C. -P.; Mereghetti, E.; Stetcu, I.; Timmermans, R. G. E.; van Kolck, U.
2011-01-01
We set up the framework for the calculation of electric dipole moments (EDMs) of light nuclei using the systematic expansion provided by chiral effective field theory (EFT). We take into account parity (P) and timer-reversal (T) violation which, at the quark-gluon level, originates from the QCD vacu
Cutoff regulators in chiral nuclear effective field theory
Long, Bingwei
2016-01-01
Three-dimensional cutoff regulators are frequently employed in multi-nucleon calculations, but they violate chiral symmetry and Lorentz invariance. A cutoff regularization scheme is proposed to compensate systematically at subleading orders for these symmetry violations caused by regulator artifacts. This is especially helpful when a soft momentum cutoff has to be used for technical reasons. It is also shown that dimensional regularization can still be used for some Feynman (sub)diagrams while cutoff regulators are used for the rest.
Energy Technology Data Exchange (ETDEWEB)
Hilt, Marius
2011-12-13
This thesis is concerned with pion photoproduction (PPP) and pion electroproduction (PEP) in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. For that purpose two different approaches are used. Firstly, a one-loop-order calculation up to chiral order O(q{sup 4}) including pions and nucleons as degrees of freedom, is performed to describe the energy dependence of the reactions over a large range. To improve the dependence on the virtuality of the photon in PEP, in a second approach vector mesons are included as explicit degrees of freedom. The latter calculation includes one-loop contributions up to chiral order O(q{sup 3}). Only three of the four physical processes of PPP and PEP can be accessed experimentally. These reactions are measured at several different facilities, e.g. Mainz, Bonn, or Saskatoon. The data obtained there are used to explore the limits of chiral perturbation theory. This thesis is the first complete manifestly Lorentz-invariant calculation up to order O(q{sup 4}) for PPP and PEP, and the first calculation ever for these processes including vector mesons explicitly. Beside the calculation of physical observables, a partial wave decomposition is performed and the most important multipoles are analyzed. They may be extracted from the calculated amplitudes and allow one to examine the nucleon and {delta} resonances. The number of diagrams one has to calculate is very large. In order to handle these expressions, several routines were developed for the computer algebra system Mathematica. For the multipole decomposition, two different programs are used. On the one hand, a modified version of the so-called {chi}MAID has been employed. On the other hand, similar routines were developed for Mathematica. In the end, the different calculations are compared with respect to their applicability to PPP and PEP.
Chiral effective field theory beyond the power-counting regime
Hall, Jonathan M M; Young, Ross D
2011-01-01
Novel techniques are presented, which identify the chiral power-counting regime (PCR), and realize the existence of an intrinsic energy scale embedded in lattice QCD results that extend outside the PCR. The nucleon mass is considered as a benchmark for illustrating this new approach. Using finite-range regularization, an optimal regularization scale can be extracted from lattice simulation results by analyzing the renormalization of the low energy coefficients. The optimal scale allows a description of lattice simulation results that extend beyond the PCR by quantifying and thus handling any scheme-dependence. Preliminary results for the nucleon magnetic moment are also examined, and a consistent optimal regularization scale is obtained. This indicates the existence of an intrinsic scale corresponding to the finite size of the source of the pion cloud.
Field induced spin chirality and chirality switching in magnetic multilayers
Energy Technology Data Exchange (ETDEWEB)
Tartakovskaya, Elena V., E-mail: elena_tartakovskaya@yahoo.com [Institute of Magnetism NAS of Ukraine, Vernadsky blvd 36b, 03142 Kiev (Ukraine); Institute of High Technologies, Taras Shevchenko National University of Kiev, 03022 Kiev (Ukraine)
2015-05-01
The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman–Kittel–Kasuya–Yosida and the Dsyaloshinsky–Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness. - Highlights: • Field-induced spin chirality in magnetic multilayers is explained. • The roles of the RKKY, the DM and the Zeeman interactions are clarified. • Theoretical analysis of the chirality factor is in agreement with experimental data.
Electric Dipole Moments of Light Nuclei From Chiral Effective Field Theory
Higa, R.
2013-08-01
Recent calculations of EDMs of light nuclei in the framework of chiral effective field theory are presented. We argue that they can be written in terms of the leading six low-energy constants encoding CP-violating physics. EDMs of the deuteron, triton, and helion are explicitly given in order to corroborate our claim. An eventual non-zero measurement of these EDMs can be used to disentangle the different sources and strengths of CP-violation.
Chiral magnetic effect without chirality source in asymmetric Weyl semimetals
Kharzeev, Dmitri; Meyer, Rene
2016-01-01
We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source generates a non-vanishing chiral chemical potential. This is due to the different capacities of the left- and right-handed (LH and RH) chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation f...
Auxiliary-field quantum Monte Carlo simulations of neutron matter in chiral effective field theory.
Wlazłowski, G; Holt, J W; Moroz, S; Bulgac, A; Roche, K J
2014-10-31
We present variational Monte Carlo calculations of the neutron matter equation of state using chiral nuclear forces. The ground-state wave function of neutron matter, containing nonperturbative many-body correlations, is obtained from auxiliary-field quantum Monte Carlo simulations of up to about 340 neutrons interacting on a 10(3) discretized lattice. The evolution Hamiltonian is chosen to be attractive and spin independent in order to avoid the fermion sign problem and is constructed to best reproduce broad features of the chiral nuclear force. This is facilitated by choosing a lattice spacing of 1.5 fm, corresponding to a momentum-space cutoff of Λ=414 MeV/c, a resolution scale at which strongly repulsive features of nuclear two-body forces are suppressed. Differences between the evolution potential and the full chiral nuclear interaction (Entem and Machleidt Λ=414 MeV [L. Coraggio et al., Phys. Rev. C 87, 014322 (2013).
Linking Dynamical Gluon Mass to Chiral Symmetry Breaking via a QCD Low Energy Effective Field Theory
Oliveira, O; Frederico, T
2011-01-01
A low energy effective field theory model for QCD with a scalar color octet field is discussed. The model relates the gluon mass, the constituent quark masses and the quark condensate. The gluon mass comes about $\\sqrt{N_c}\\, \\Lambda_{QCD}$ with the quark condensate being proportional to the gluon mass squared. The model suggests that the restoration of chiral symmetry and the deconfinement transition occur at the same temperature and that, near the transition, the critical exponent for the condensate is twice the gluon mass one. The model also favors the decoupling like solution for the gluon propagator.
Field induced spin chirality and chirality switching in magnetic multilayers
Tartakovskaya, Elena V.
2015-05-01
The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman-Kittel-Kasuya-Yosida and the Dsyaloshinsky-Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness.
Euler-Heisenberg Lagrangian to all orders in the magnetic field and the Chiral Magnetic Effect
Mages, Simon Wolfgang; Schäfer, Andreas
2010-01-01
In high energy heavy ion collisions as well as in astrophysical objects like magnetars extreme magnetic field strengths are reached. Thus, there exists a need to calculate divers QED processes to all orders in the magnetic field. We calculate the vacuum polarization graph in second order of the electric field and all orders of the magnetic field resulting in a generalization of the Euler-Heisenberg Lagrangian. We perform the calculation in the effective Lagrangian approach of J. Schwinger as well as using modified Feynman rules. We find that both approaches give the same results provided that the different finite renormalization terms are taken into account. Our results imply that any quantitative explanation of the recently proposed Chiral Magnetic Effect has to take 'Strong QED' effects into account, because these corrections are huge.
Chiral transition with magnetic fields
Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian
2014-01-01
We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...
Chiral extrapolation of nucleon axial charge gA in effective field theory
Li, Hong-na; Wang, P.
2016-12-01
The extrapolation of nucleon axial charge gA is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated gA are all smaller than the experimental value. Supported by National Natural Science Foundation of China (11475186) and Sino-German CRC 110 (NSFC 11621131001)
Complete next-to-next-to-leading order calculation of NN → NNπ in chiral effective field theory
Directory of Open Access Journals (Sweden)
Filin A. A.
2014-01-01
Full Text Available We present the results of the pion production operator calculated up-to-and-including next-to-next-to-leading order (NNLO in chiral effective field theory. We include explicit Delta degrees of freedom and demonstrate that they provide essential contribution required to understand neutral pion production data. Analysis of chiral loops at NNLO reveals new mechanisms which are important, but haven’t been considered in phenomenological studies so far.
Lattice Simulations for Light Nuclei: Chiral Effective Field Theory at Leading Order
Borasoy, B; Krebs, H; Lee, D; Meißner, Ulf G; Borasoy, Bugra; Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Mei{\\ss}ner, Ulf-G.
2006-01-01
We discuss lattice simulations of light nuclei at leading order in chiral effective field theory. Using lattice pion fields and auxiliary fields, we include the physics of instantaneous one-pion exchange and the leading-order S-wave contact interactions. We also consider higher-derivative contact interactions which adjust the S-wave scattering amplitude at higher momenta. By construction our lattice path integral is positive definite in the limit of exact Wigner SU(4) symmetry for any even number of nucleons. This SU(4) positivity and the approximate SU(4) symmetry of the low-energy interactions play an important role in suppressing sign and phase oscillations in Monte Carlo simulations. We assess the computational scaling of the lattice algorithm for light nuclei with up to eight nucleons and analyze in detail calculations of the deuteron, triton, and helium-4.
Chiral spiral induced by a strong magnetic field
Directory of Open Access Journals (Sweden)
Abuki Hiroaki
2016-01-01
Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.
Chiral effective field theory predictions for muon capture on deuteron and $^3$He
Energy Technology Data Exchange (ETDEWEB)
Laura E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, M. Viviani
2012-01-01
The muon-capture reactions {sup 2}H({mu}{sup -}, {nu}{sub {mu}})nn and {sup 3}He({mu}{sup -},{nu}{sub {mu}}){sup 3}H are studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral effective field theory. The low-energy constants (LEC's) c{sub D} and c{sub E}, present in the three-nucleon potential and (c{sub D}) axial-vector current, are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The vector weak current is related to the isovector component of the electromagnetic current via the conserved-vector-current constraint, and the two LEC's entering the contact terms in the latter are constrained to reproduce the A=3 magnetic moments. The muon capture rates on deuteron and {sup 3}He are predicted to be 399 {+-} 3 sec{sup -1} and 1494 {+-} 21 sec{sup -1}, respectively, where the spread accounts for the cutoff sensitivity as well as uncertainties in the LEC's and electroweak radiative corrections. By comparing the calculated and precisely measured rates on {sup 3}He, a value for the induced pseudoscalar form factor is obtained in good agreement with the chiral perturbation theory prediction.
The proton-proton weak capture in chiral effective field theory
Marcucci, L E; Viviani, M
2013-01-01
The astrophysical S-factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0--100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants (LEC's) entering the weak current operators are fixed so as to reproduce the A=3 binding energies and magnetic moments, and the Gamow-Teller matrix element in tritium beta decay. Contributions from S and P partial waves in the incoming two-proton channel are retained. The S-factor at zero energy is found to be S(0)=(4.030\\pm 0.006) x 10^{-23} MeV fm^2, with a P-wave contribution of 0.020 x 10^{-23} MeV fm^2. The theoretical uncertainty is due to the fitting procedure of the LEC's and to the cutoff dependence. It is shown that polynomial fits to parametrize the energy dependence of the S-factor are inherently unstabl...
Chiral effective field theory on the lattice at next-to-leading order
Borasoy, Bugra; Krebs, Hermann; Lee, Dean; Meißner, Ulf-G
2007-01-01
We study nucleon-nucleon scattering on the lattice at next-to-leading order in chiral effective field theory. We determine phase shifts and mixing angles from the properties of two-nucleon standing waves induced by a hard spherical wall in the center-of-mass frame. At fixed lattice spacing we test model independence of the low-energy effective theory by computing next-to-leading-order corrections for two different leading-order lattice actions. The first leading-order action includes instantaneous one-pion exchange and same-site contact interactions. The second leading-order action includes instantaneous one-pion exchange and Gaussian-smeared interactions. We find that in each case the results at next-to-leading order are accurate up to corrections expected at higher order.
Electric fields and chiral magnetic effect in Cu+Au collisions
Directory of Open Access Journals (Sweden)
Wei-Tian Deng
2015-03-01
Full Text Available The non-central Cu+Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu+Au collisions at 200 GeV and their impacts on the charge-dependent two-particle correlator γq1q2=〈cos(ϕ1+ϕ2−2ψRP〉 (see main text for definition which was used for the detection of the chiral magnetic effect (CME. Compared with Au+Au collisions, we find that the in-plane electric fields in Cu+Au collisions can strongly suppress the two-particle correlator or even reverse its sign if the lifetime of the electric fields is long. Combining with the expectation that if γq1q2 is induced by elliptic-flow driven effects we would not see such strong suppression or reversion, our results suggest to use Cu+Au collisions to test CME and understand the mechanisms that underlie γq1q2.
Institute of Scientific and Technical Information of China (English)
ZHAO Xu; WANG Yan; YU Zhi-Ping
2006-01-01
@@ Current-voltage characteristics of ballistic carbon-nanotube field-effect transistors are characterized with an it-erative simulation program. The influence of carbon-nanotube chirality and diameter on the output current is considered. An analytical current-voltage expression under the quantum capacitance limit and low-voltage application is derived. Our simulation results are compared with actual measurement data.
Koelling, S; Krebs, H; Meißner, U -G
2011-01-01
We derive the leading one-loop contribution to the one-pion exchange and short-range two-nucleon electromagnetic current operator in the framework of chiral effective field theory. The derivation is carried out using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.
Koelling, S; Krebs, H; Meißner, U -G
2009-01-01
We derive the leading two-pion exchange contributions to the two-nucleon electromagnetic current operator in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.
Chiral Orbifold Construction Of Field Theories With Extra Dimensions
Hailu, G
2003-01-01
We build higher dimensional field theories which have chiral fermion zero-modes on orbifolds. We show that orbifold boundary conditions and scalar vacuum expectation values interplay to produce chiral fermions localized on fat three branes. We develop a scheme for computing field propagators in higher dimensional theories obeying chiral orbifold boundary conditions. Using this scheme we compute the loop corrections to an effective field theory in five dimensions. We find that the renormalization group running of the higher dimensional bulk theory leads to a running of the four dimensional brane couplings. We generalize an argument to verify that the chiral anomaly that arises in these chiral orbifold theories is entirely confined on and uniformly distributed over the fixed points of the orbifold, independent of the shape of the chiral zero-modes. We construct a setup in which a scalar field with appropriate profile in the extra dimension is used to address the hierarchy problem and also localize both chiral f...
Chiral spiral induced by a strong magnetic field
Abuki, H
2016-01-01
We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it totally washes the tricritical point out of the phase diagram, bringing the continent for the chiral spiral. This is the case no matter how small is the intensity of the magnetic field. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.
Effects from inhomogeneities in the chiral transition
Taketani, B G; Taketani, Bruno G.; Fraga, Eduardo S.
2006-01-01
We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density in the presence of a chiral background field which systematically incorporates effects from inhomogeneities in the chiral field through a derivative expansion. We apply the method to the case of a simple low-energy effective chiral model which is commonly used in the study of the chiral phase transition, the linear sigma-model coupled to quarks. The modifications in the effective potential and their consequences for the bubble nucleation process are discussed.
Kievsky, A; Gattobigio, M; Girlanda, L
2016-01-01
In chiral effective field theory the leading order (LO) nucleon-nucleon potential includes two contact terms, in the two spin channels $S=0,1$, and the one-pion-exchange potential. When the pion degrees of freedom are integrated out, as in the pionless effective field theory, the LO potential includes two contact terms only. In the three-nucleon system, the pionless theory includes a three-nucleon contact term interaction at LO whereas the pionful theory does not. Accordingly arbitrary differences could be observed in the LO description of three- and four-nucleon binding energies. We analyze the two theories at LO and conclude that a three-nucleon contact term is necessary at this order in both theories. In turn this implies that subleading three-nucleon contact terms should be promoted to lower orders. Furthermore this analysis shows that one single low energy constant might be sufficient to explain the large values of the singlet and triplet scattering lengths.
Parity violation in few-nucleon systems within a chiral effective field theory framework
Viviani, Michele
2016-09-01
We study the effect the nucleon-nucleon parity violation (PV) interaction, induced by the weak interaction between quarks, in few-nucleon systems. First, we discuss the derivation of the nucleon-nucleon PV interaction within a chiral effective field theory framework, in particular its extension to next-to-next-to-leading order (N2LO), recently reported in. We report on an alternative derivation of this N2LO PV interaction using our technique based on the time-ordered perturbation theory, accounting also for cancellations between the contributions of irreducible diagrams and the contributions due to non-static corrections from energy denominators of reducible diagrams. Ultraviolet divergences associated with the loop corrections are isolated in dimensional regularization. A detailed analysis of the number of independent low-energy constants (LEC's) entering the potential is carried out. Then, we investigate PV effects induced by this updated potential on several few-nucleon observables, including the p-> - p longitudinal asymmetry, the neutron spin rotation in n-> - p and n-> - d scattering, and the longitudinal asymmetry in the 3He (n-> , p)3 H charge-exchange reaction.
Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G
2008-01-01
We present lattice calculations for the ground state energy of dilute neutron matter at next-to-leading order in chiral effective field theory. This study follows a series of recent papers on low-energy nuclear physics using chiral effective field theory on the lattice. In this work we introduce an improved spin- and isospin-projected leading-order action which allows for a perturbative treatment of corrections at next-to-leading order and smaller estimated errors. Using auxiliary fields and Euclidean-time projection Monte Carlo, we compute the ground state of 8, 12, and 16 neutrons in a periodic cube, covering a density range from 2% to 10% of normal nuclear density.
Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems
Viviani, M.; Baroni, A.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.; Schiavilla, R.
2014-06-01
Background: Weak interactions between quarks induce a parity-violating (PV) component in the nucleon-nucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (χEFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the p⃗-p longitudinal asymmetry, the neutron spin rotation in n⃗-p and n⃗-d scattering, and the longitudinal asymmetry in the 3He(n⃗,p)3H charge-exchange reaction. Methods: The χEFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A =2-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from χEFT. In the case of the A =3-4 systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant hπ1 and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The χEFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.
Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems
Energy Technology Data Exchange (ETDEWEB)
Viviani, M. [National Inst. of Nuclear Physics (INFN), Pisa (Italy); Baroni, A. [Old Dominion Univ., Norfolk, VA (United States). Dept. of Physics; Girlanda, L. [Univ. of Salento and INFN-Lecce, Lecce (Italy). Dept. of Mathematical and Physics; Kievsky, A. [National Inst. of Nuclear Physics (INFN), Pisa (Italy); Marcucci, L. E. [Univ. of Pisa (Italy); National Inst. of Nuclear Physics (INFN), Pisa (Italy); Schiavilla, R. [Old Dominion Univ., Norfolk, VA (United States). Dept. of Physics; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2014-06-18
Weak interactions between quarks induce a parity-violating (PV) component in the nucleon-nucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (${\\chi }$EFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the $\\vec{p}$-p longitudinal asymmetry, the neutron spin rotation in n-p and n-d scattering, and the longitudinal asymmetry in the ^{3}He( $\\vec{n}$,p)^{3}H charge-exchange reaction. Methods: The ${\\chi }$EFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A=2-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from ${\\chi }$EFT. In the case of the A=3-4 systems, systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant h$1\\atop{π}$ and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The ${\\chi }$EFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.
Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems
Energy Technology Data Exchange (ETDEWEB)
Viviani, Michele [INFN; Baroni, Alessandro [ODU; Girlanda, Luca [Lecce U.; Kievsky, Alejandro [Pisa U,; Marcucci, Laura E. [Pisa U,; Schiavilla, Rocco [ODU, JLAB
2014-06-01
Background: Weak interactions between quarks induce a parity-violating (PV) component in the nucleonnucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (chiEFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the p-p longitudinal asymmetry, the neutron spin rotation in n-p and n-d scattering, and the longitudinal asymmetry in the {sup 3}He( {vector n},p){sup 3}H chargeexchange reaction. Methods: The chiEFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A = 2-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from chiEFT. In the case of the A = 3-4 systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant h^1_pi and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The chiEFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.
A chiral effective field theory study of hadronic parity violation in few-nucleon systems
Viviani, M; Girlanda, L; Kievsky, A; Marcucci, L E; Schiavilla, R
2014-01-01
We reconsider the derivation of the nucleon-nucleon parity-violating (PV) potential within a chiral effective field theory framework. We construct the potential up to next-to-next-to-leading order by including one-pion-exchange, two-pion-exchange, contact, and 1/M (M being the nucleon mass) terms, and use dimensional regularization to renormalize the pion-loop corrections. A detailed analysis of the number of independent low-energy constants (LEC's) entering the potential is carried out. We find that it depends on six LEC's: the pion-nucleon PV coupling constant $h^1_\\pi$ and five parameters multiplying contact interactions. We investigate PV effects induced by this potential on several few-nucleon observables, including the $\\vec{p}$-$p$ longitudinal asymmetry, the neutron spin rotation in $\\vec{n}$-$p$ and $\\vec{n}$-$d$ scattering, and the longitudinal asymmetry in the $^3$He$(\\vec{n},p)^3$H charge-exchange reaction. An estimate for the range of values of the various LEC's is provided by using available exp...
Chiral medium produced by parallel electric and magnetic fields
Ruggieri, Marco; Chernodub, Maxim
2016-01-01
We compute (pseudo)critical temperature, $T_c$, of chiral symmetry restoration for quark matter in the background of parallel electric and magnetic fields. This field configuration leads to the production of a chiral medium on a time scale $\\tau$, characterized by a nonvanishing value of the chiral density that equilibrates due to microscopic processes in the thermal bath. We estimate the relaxation time $\\tau$ to be about $\\approx 0.1-1$ fm/c around the chiral crossover; then we compute the effect of the fields and of the chiral medium on~$T_c$. We find $T_c$ to be lowered by the external fields in the chiral medium.
Ayala, Alejandro; Gutierrez, Enif; Raya, Alfredo; Sanchez, Angel
2010-01-01
We study chiral symmetry breaking for relativistic fermions, described by a parity violating Lagrangian in 2+1-dimensions, in the presence of a heat bath and a uniform external magnetic field. Working within their four-component formalism allows for the inclusion of both parity-even and -odd mass terms. Therefore, we can define two types of fermion anti-fermion condensates. For a given value of the magnetic field, there exist two different critical temperatures which would render one of these condensates identically zero, while the other would survive. Our analysis is completely general: it requires no particular simplifying hierarchy among the energy scales involved, namely, bare masses, field strength and temperature. However, we do reproduce some earlier results, obtained or anticipated in literature, corresponding to special kinematical regimes for the parity conserving case. Relating the chiral condensate to the one-loop effective Lagrangian, we also obtain the magnetization and the pair production rate ...
Uncertainty quantification for proton-proton fusion in chiral effective field theory
Acharya, B.; Carlsson, B. D.; Ekström, A.; Forssén, C.; Platter, L.
2016-09-01
We compute the S-factor of the proton-proton (pp) fusion reaction using chiral effective field theory (χEFT) up to next-to-next-to-leading order (NNLO) and perform a rigorous uncertainty analysis of the results. We quantify the uncertainties due to (i) the computational method used to compute the pp cross section in momentum space, (ii) the statistical uncertainties in the low-energy coupling constants of χEFT, (iii) the systematic uncertainty due to the χEFT cutoff, and (iv) systematic variations in the database used to calibrate the nucleon-nucleon interaction. We also examine the robustness of the polynomial extrapolation procedure, which is commonly used to extract the threshold S-factor and its energy-derivatives. By performing a statistical analysis of the polynomial fit of the energy-dependent S-factor at several different energy intervals, we eliminate a systematic uncertainty that can arise from the choice of the fit interval in our calculations. In addition, we explore the statistical correlations between the S-factor and few-nucleon observables such as the binding energies and point-proton radii of 2,3H and 3He as well as the D-state probability and quadrupole moment of 2H, and the β-decay of 3H. We find that, with the state-of-the-art optimization of the nuclear Hamiltonian, the statistical uncertainty in the threshold S-factor cannot be reduced beyond 0.7%.
Uncertainty quantification for proton-proton fusion in chiral effective field theory
Acharya, B; Ekström, A; Forssén, C; Platter, L
2016-01-01
We compute the $S$-factor of the proton-proton ($pp$) fusion reaction using chiral effective field theory ($\\chi$EFT) up to next-to-next-to-leading order (NNLO) and perform a rigorous uncertainty analysis of the results. We quantify the uncertainties due to (i) the computational method used to compute the $pp$ cross section in momentum space, (ii) the statistical uncertainties in the low-energy coupling constants of $\\chi$EFT, (iii) the systematic uncertainty due to the $\\chi$EFT cutoff, and (iv) systematic variations in the database used to calibrate the nucleon-nucleon interaction. We also examine the robustness of the polynomial extrapolation procedure, which is commonly used to extract the threshold $S$-factor and its energy-derivatives. By performing a statistical analysis of the polynomial fit of the energy-dependent $S$-factor at several different energy intervals, we eliminate a systematic uncertainty that can arise from the choice of the fit interval in our calculations. In addition, we explore the s...
Magnetic fields and chiral asymmetry in the early hot universe
Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri
2016-10-01
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.
Wendt, Kyle
2016-03-01
How large is the 48Ca nucleus? While the electric charge distribution of this nucleus was accurately measured decades ago, both experimental and ab initio descriptions of the neutron distribution are deficient. We address this question using ab initio calculations of the electric charge, neutron, and weak distributions of 48Ca based on chiral effective field theory. Historically, chiral effective field theory calculations of systems larger than 4 nucleons have been plagued by strong systematic errors which result in theoretical descriptions that are too dense and over bound. We address these errors using a novel approach that permits us to accurately reproduce binding energy and charge radius of 48Ca, and to constrain electroweak observables such as the neutron radius, electric dipole polarizability, and the weak form factor. For a full list of contributors to this work, please see ``Neutron and weak-charge distributions of the 48Ca nucleus,'' Nature Physics (2015) doi:10.1038/nphys3529.
Magnetic fields and chiral asymmetry in the early hot universe
Sidorenko, Maxim; Shtanov, Yuri
2016-01-01
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending...
Uncertainty quantification for proton–proton fusion in chiral effective field theory
Directory of Open Access Journals (Sweden)
B. Acharya
2016-09-01
Full Text Available We compute the S-factor of the proton–proton (pp fusion reaction using chiral effective field theory (χEFT up to next-to-next-to-leading order (NNLO and perform a rigorous uncertainty analysis of the results. We quantify the uncertainties due to (i the computational method used to compute the pp cross section in momentum space, (ii the statistical uncertainties in the low-energy coupling constants of χEFT, (iii the systematic uncertainty due to the χEFT cutoff, and (iv systematic variations in the database used to calibrate the nucleon–nucleon interaction. We also examine the robustness of the polynomial extrapolation procedure, which is commonly used to extract the threshold S-factor and its energy-derivatives. By performing a statistical analysis of the polynomial fit of the energy-dependent S-factor at several different energy intervals, we eliminate a systematic uncertainty that can arise from the choice of the fit interval in our calculations. In addition, we explore the statistical correlations between the S-factor and few-nucleon observables such as the binding energies and point-proton radii of 2,3H and 3He as well as the D-state probability and quadrupole moment of 2H, and the β-decay of 3H. We find that, with the state-of-the-art optimization of the nuclear Hamiltonian, the statistical uncertainty in the threshold S-factor cannot be reduced beyond 0.7%.
Directory of Open Access Journals (Sweden)
Petschauer S.
2014-06-01
Full Text Available In this proceeding results for hyperon-nucleon interactions calculated at next-to-leading order (i.e. one-loop order in SU(3 chiral effective field theory are presented. The potentials include contributions from one- and two-meson exchange, and four-baryon contact terms provided by the SU(3 chiral Lagrangian. SU(3 flavor symmetry is imposed for the low-energy constants, while explicit SU(3 symmetry breaking is included only through the physical pseudoscalar-meson and baryon masses. Calculations have been performed for hyperon-nucleon scattering cross sections using a regularized Lippmann-Schwinger equation. A good description of the available data is achieved, comparable to modern phenomenological hyperon-nucleon interaction models. These results provide a new basis for studies of hypernuclei or hyperons in nuclear matter.
Lattice chiral effective field theory with three-body interactions at next-to-next-to-leading order
Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G
2009-01-01
We consider low-energy nucleons at next-to-next-to-leading order in lattice chiral effective field theory. Three-body interactions first appear at this order, and we discuss several methods for determining three-body interaction coefficients on the lattice. We compute the energy of the triton and low-energy neutron-deuteron scattering phase shifts in the spin-doublet and spin-quartet channels using Luescher's finite volume method. In the four-nucleon system we calculate the energy of the alpha particle using auxiliary fields and projection Monte Carlo.
Chiral-field microwave antennas (Chiral microwave near fields for far-field radiation)
Kamenetskii, E O; Shavit, R
2015-01-01
In a single-element structure we obtain a radiation pattern with a squint due to chiral microwave near fields originated from a magnetostatic-mode ferrite disk. At the magnetostatic resonances, one has strong subwavelength localization of energy of microwave radiation. Magnetostatic oscillations in a thin ferrite disk are characterized by unique topological properties: the Poynting-vector vortices and the field helicity. The chiral-topology near fields allow obtaining unique phase structure distribution for far-field microwave radiation.
Resurgence in quantum field theory: nonperturbative effects in the principal chiral model.
Cherman, Aleksey; Dorigoni, Daniele; Dunne, Gerald V; Ünsal, Mithat
2014-01-17
We explain the physical role of nonperturbative saddle points of path integrals in theories without instantons, using the example of the asymptotically free two-dimensional principal chiral model (PCM). Standard topological arguments based on homotopy considerations suggest no role for nonperturbative saddles in such theories. However, the resurgence theory, which unifies perturbative and nonperturbative physics, predicts the existence of several types of nonperturbative saddles associated with features of the large-order structure of the perturbation theory. These points are illustrated in the PCM, where we find new nonperturbative "fracton" saddle point field configurations, and suggest a quantum interpretation of previously discovered "uniton" unstable classical solutions. The fractons lead to a semiclassical realization of IR renormalons in the circle-compactified theory and yield the microscopic mechanism of the mass gap of the PCM.
Magnetoelectric fields for microwave chirality discrimination in enantiomeric liquids
Hollander, E; Shavit, R
2016-01-01
Chirality discrimination is of a fundamental interest in biology, chemistry, and metamaterial studies. In optics, near-field plasmon-resonance spectroscopy with superchiral probing fields is effectively applicable for analyses of large biomolecules with chiral properties. We show possibility for microwave near-field chirality discrimination analysis based on magnon-resonance spectroscopy. Newly developed capabilities in microwave sensing using magnetoelectric (ME) probing fields originated from multiresonance magnetic-dipolar-mode (MDM) oscillations in quasi-2D yttrium-iron-garnet (YIG) disks, provide a potential for unprecedented measurements of chemical and biological objects. We report on microwave near-field chirality discrimination for aqueous D- and L-glucose solutions. The shown ME-field sensing is addressed to microwave biomedical diagnostics and pathogen detection and to deepening our understanding of microwave-biosystem interactions. It can be also important for an analysis and design of microwave c...
Chiral magnetic effect in condensed matter systems
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].
Kievsky, A.; Viviani, M.; Gattobigio, M.; Girlanda, L.
2017-02-01
In chiral effective field theory the leading order (LO) nucleon-nucleon potential includes two contact terms, in the two spin channels S =0 ,1 , and the one-pion-exchange potential. When the pion degrees of freedom are integrated out, as in the pionless effective field theory, the LO potential includes two contact terms only. In the three-nucleon system, the pionless theory includes a three-nucleon contact term interaction at LO whereas the chiral effective theory does not. Accordingly arbitrary differences could be observed in the LO description of three- and four-nucleon binding energies. We analyze the two theories at LO and conclude that a three-nucleon contact term is necessary at this order in both theories. In turn this implies that subleading three-nucleon contact terms should be promoted to lower orders. Furthermore, this analysis shows that one single low-energy constant might be sufficient to explain the large values of the singlet and triplet scattering lengths.
Institute of Scientific and Technical Information of China (English)
Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin
2011-01-01
Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with monovacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed.
The Many Uses of Chiral Effective Theories
Pallante, Elisabetta
2008-01-01
I review basic concepts of chiral effective field theories guided by an historical perspective: from the first ideas to the merging with other effective frameworks, and to the interplay with lattice field theory. The impact of recent theoretical developments on phenomenological predictions is review
Energy Technology Data Exchange (ETDEWEB)
S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani,S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani
2011-08-01
The electromagnetic charge operator in a two-nucleon system is derived in chiral effective field theory ($\\chi$EFT) up to order $e\\, Q$ (or N4LO), where $Q$ denotes the low-momentum scale and $e$ is the electric charge. The specific form of the N3LO and N4LO corrections from, respectively, one-pion-exchange and two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for the non-static terms in the corresponding potentials. We show that different prescriptions lead to unitarily equivalent potentials and accompanying charge operators. Thus, provided a consistent set is adopted, predictions for physical observables will remain unaffected by the non-uniqueness associated with these off-the-energy-shell effects.
Dilute neutron matter on the lattice at next-to-leading order in chiral effective field theory
Borasoy, Bugra; Krebs, Hermann; Lee, Dean; Meißner, Ulf-G
2007-01-01
We discuss lattice simulations of the ground state of dilute neutron matter at next-to-leading order in chiral effective field theory. In a previous paper the coefficients of the next-to-leading-order lattice action were determined by matching nucleon-nucleon scattering data for momenta up to the pion mass. Here the same lattice action is used to simulate the ground state of up to 12 neutrons in a periodic cube using Monte Carlo. We explore the density range from 2% to 8% of normal nuclear density and analyze the ground state energy as an expansion about the unitarity limit with corrections due to finite scattering length, effective range, and P-wave interactions.
The reaction pi N-> pi pi N in chiral effective field theory with explicit Delta(1232)
Siemens, D; Epelbaum, E; Krebs, H; Meißner, Ulf-G
2014-01-01
The reaction pi N -> pi pi N is studied at tree level up to next-to-leading order in the framework of manifestly covariant baryon chiral perturbation theory with explicit Delta(1232) degrees of freedom. Using total cross section data to determine the relevant low-energy constants, predictions are made for various differential as well as total cross sections at higher energies. A detailed comparison of results based on the heavy-baryon and relativistic formulations of chiral perturbation theory with and without explicit Delta degrees of freedom is given.
Chiral bosonization for non-commutative fields
Das, A; Méndez, F; López-Sarrion, J; Das, Ashok; Gamboa, Jorge; M\\'endez, Fernando; L\\'opez-Sarri\\'on, Justo
2004-01-01
A model of chiral bosons on a non-commutative field space is constructed and new generalized bosonization (fermionization) rules for these fields are given. The conformal structure of the theory is characterized by a level of the Kac-Moody algebra equal to $(1+ \\theta^2)$ where $\\theta$ is the non-commutativity parameter and chiral bosons living in a non-commutative fields space are described by a rational conformal field theory with the central charge of the Virasoro algebra equal to 1. The non-commutative chiral bosons are shown to correspond to a free fermion moving with a speed equal to $ c^{\\prime} = c \\sqrt{1+\\theta^2} $ where $c$ is the speed of light. Lorentz invariance remains intact if $c$ is rescaled by $c \\to c^{\\prime}$. The dispersion relation for bosons and fermions, in this case, is given by $\\omega = c^{\\prime} | k|$.
Chiral Magnetic Effect in Heavy Ion Collisions
Liao, Jinfeng
2016-01-01
The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.
Anomalous Hall Effect for chiral fermions
Zhang, P -M
2014-01-01
Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field, they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field a cork-screw-like, spiraling motion is found.
Energy Conservation and the Chiral Magnetic Effect
Kaplan, David B; Sen, Srimoyee
2016-01-01
We analyze the chiral magnetic effect in a neutral plasma from the point of view of energy conservation, and construct an effective potential for the growth of helical perturbations of the electromagnetic field. We show that a negative curvature at the origin of the potential, indicating instability of the plasma, is induced by a chiral asymmetry in electron Fermi energy, as opposed to number density, while the potential grows at large field value. It follows that the ground state for a plasma has zero magnetic helicity; a nonzero electron mass will allow an excited state of a plasma with nonzero helicity to relax to that ground state quickly. We conclude that a chiral plasma instability triggered by weak interactions is not a viable mechanism for explaining magnetic fields in neutron stars.
Nuclear axial current operators to fourth order in chiral effective field theory
Krebs, H; Epelbaum, E.; Meißner, U.-G
2016-01-01
We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized singl...
Spectral Density Functions and Their Sum Rules in an Effective Chiral Field Theory
Klevansky, S P
1997-01-01
The validity of Weinberg's two sum rules for massless QCD, as well as the six additional sum rules introduced into chiral perturbation theory by Gasser and Leutwyler, are investigated for the extended Nambu-Jona-Lasinio chiral model that includes vector and axial vector degrees of freedom. A detailed analysis of the vector, axial vector and coupled pion plus longitudinal axial vector modes is given. We show that, under Pauli-Villars regularization of the meson polarization amplitudes that determine the spectral density functions, all of the sum rules involving inverse moments higher than zero are automatically obeyed by the model spectral densities. By contrast, the zero moment sum rules acquire a non-vanishing right hand side that is proportional to the quark condensate density of the non-perturbative groundstate. We use selected sum rules in conjunction with other calculations to obtain explicit expressions for the scale-independent coupling constants $\\bar l_i$ of chiral perturbation theory in the combinat...
Electric dipole moments of light nuclei in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Bsaisou, Jan
2014-04-25
Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP violation from the complex phase of the Cabibbo-Kobayashi-Maskawa matrix in the Standard Model predicts EDMs that are experimentally inaccessible in the foreseeable future. The θ-term of Quantum Chromodynamics (QCD) and extensions of the Standard Model such as supersymmetry and multi-Higgs scenarios comprise P- and T-violating interactions which are capable of inducing significantly larger EDMs. The extensions of the Standard Model give rise to a set of effective non-renormalizable operators of canonical dimension six at energies Λ{sub had} >or similar 1 GeV when the heavy degrees of freedom are integrated out. The effective dimension-six operators are known as the quark EDM, the quark-chromo EDM, four-quark left-right operator, the gluon-chromo EDM and the four-quark operator. Starting from the QCD θ-term and this set of P- and T-violating effective dimension-six operators, we present a scheme to derive the induced effective Lagrangians at energies below Λ{sub QCD} ∝ 200 MeV within the framework of Chiral Perturbation Theory (ChPT) for two quark flavors in the formulation of Gasser and Leutwyler. The differences among the sources of P and T violation manifest themselves at energies below Λ{sub QCD} in specific hierarchies of coupling constants of P- and T-violating vertices. We compute the relevant coupling constants of P- and T-violating hadronic vertices which are induced by the QCD θ-term with well-defined uncertainties as functions of the parameter anti θ. The relevant coupling constants induced by the effective dimension-six operators are given as functions of yet unknown Low Energy Constants (LECs) which can not be determined within the framework of ChPT itself. Since the required supplementary input from e.g. Lattice QCD is not yet available, we present Naive
Sammarruca, Francesca
2016-01-01
We present predictions of the binding energy per nucleon and the neutron skin thickness in highly neutron-rich isotopes of Oxygen, Magnesium, and Aluminum. The calculations are carried out at and below the neutron drip line. The nuclear properties are obtained via an energy functional whose input is the equation of state of isospin-asymmetric in?finite matter. The latter is based on a microscopic derivation applying chiral few-nucleon forces. We highlight the impact of the equation of state at diff?erent orders of chiral effective fi?eld theory and discuss the role of three-neutron forces.
Nuclear axial current operators to fourth order in chiral effective field theory
Krebs, H; Meißner, U -G
2016-01-01
We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized single-, two- and three-nucleon contributions to the charge and current operators and pseudoscalar operators including the relevant relativistic corrections. We also verify explicitly the validity of the continuity equation.
Belinsky, Moisey I
2016-05-02
The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.
Field-enlarging transformations and chiral theories
Sladkowski, J
1995-01-01
A field-enlarging transformation in the chiral electrodynamics is performed. This introduces an additional gauge symmetry to the model that is unitary and anomaly-free and allows for comparison of different models discussed in the literature. The problem of superfluous degrees of freedom and their influence on quantization is discussed. Several "mysteries" are explained from this point of view.
Adam, J.; Tater, M.; Truhlík, E.; Epelbaum, E.; Machleidt, R.; Ricci, P.
2012-03-01
The doublet capture rate Λ1 / 2 of the negative muon capture in deuterium is calculated employing the nuclear wave functions generated from accurate nucleon-nucleon (NN) potentials constructed at next-to-next-to-next-to-leading order of heavy-baryon chiral perturbation theory and the weak meson exchange current operator derived within the same formalism. All but one of the low-energy constants that enter the calculation were fixed from pion-nucleon and nucleon-nucleon scattering data. The low-energy constant dˆR (cD), which cannot be determined from the purely two-nucleon data, was extracted recently from the triton β-decay and the binding energies of the three-nucleon systems. The calculated values of Λ1 / 2 show a rather large spread for the used values of the dˆR. Precise measurement of Λ1 / 2 in the future will not only help to constrain the value of dˆR, but also provide a highly nontrivial test of the nuclear chiral EFT framework. Besides, the precise knowledge of the constant dˆR will allow for consistent calculations of other two-nucleon weak processes, such as proton-proton fusion and solar neutrino scattering on deuterons, which are important for astrophysics.
Adam, J; Tater, M; Truhlik, E; Epelbaum, E; Machleidt, R; Ricci, P
2011-01-01
The doublet capture rate of the negative muon capture in deuterium is calculated employing the nuclear wave functions generated from accurate nucleon-nucleon potentials constructed at next-to-next-to-next-to-leading order of heavy-baryon chiral perturbation theory and the weak meson exchange current operator derived within the same formalism. All but one of the low-energy constants that enter the calculation were fixed from pion-nucleon and nucleon-nucleon scattering data. The low-energy constant d^R (c_D), which cannot be determined from the purely two-nucleon data, was extracted recently from the triton beta-decay and the binding energies of the three-nucleon systems. The calculated values of the doublet capture rates show a rather large spread for the used values of the d^R. Precise measurement of the doublet capture rate in the future will not only help to constrain the value of d^R, but also provide a highly nontrivial test of the nuclear chiral EFT framework. Besides, the precise knowledge of the consta...
Chiral effects in the confining QCD vacuum
Simonov, Yu A
1994-01-01
Configurations are introduced into the standard instanton vacuum model. This drastically improves theoretical properties of the vacuum: instanton size density $d(\\rho)$ stabilizes at $\\rho\\sim 0.2 fm$, all chiral effects are formulated in a gauge-invariant way and quarks are confined. An interesting interplay of chiral and confining dynamics is observed; for the realistic values of parameters the Georgi-Manohar picture emerges with chiral radius $R_{ch}\\sim \\rho\\sim 0.2 fm$ much less than confining radius $R_c\\sim$ hadron radius $\\sim 1 fm$. In the limit $R_{ch}\\ll R_c$ the chiral mass $M_{ch}(p)$ is unaffected by confinement and can be taken in the local limit $M_{ch}(p=0)$. Different types of effective chiral Lagrangians (ECL) are obtained, containing all or a part of gluon, quark and Nambu--Goldstone--meson fields. The ECL are manifestly gauge--invariant and in the limit of no gluon fields coincide with those found previously. The problem of the double role of the pion -- as a Goldstone meson or as a $q\\ba...
Chiral deformations of conformal field theories
Dijkgraaf, Robbert
1997-02-01
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W1+∞ algebra, that is treated in detail.
Chiral Deformations of Conformal Field Theories
Dijkgraaf, R
1996-01-01
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treated in detail.
Chiral deformations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Math.
1997-06-02
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W{sub 1+{infinity}} algebra, that is treated in detail. (orig.).
Chiral Deformations of Conformal Field Theories
Dijkgraaf, R.
1996-01-01
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treat...
Filin, A A; Epelbaum, E; Hanhart, C; Krebs, H; Myhrer, F
2013-01-01
A calculation of the pion-production operator up to next-to-next-to-leading order for s-wave pions is performed within chiral effective field theory. In the previous study [Phys. Rev. C 85, 054001 (2012)] we discussed the contribution of the pion-nucleon loops at the same order. Here we extend that study to include explicit Delta degrees of freedom and the 1/m_N^2 corrections to the pion-production amplitude. Using the power counting scheme where the Delta-nucleon mass difference is of the order of the characteristic momentum scale in the production process, we calculate all tree-level and loop diagrams involving Delta up to next-to-next-to-leading order. The long-range part of the Delta loop contributions is found to be of similar size to that from the pion-nucleon loops which supports the counting scheme. The net effect of pion-nucleon and Delta loops is expected to play a crucial role in understanding of the neutral pion production data.
Energy Technology Data Exchange (ETDEWEB)
Vladimir Pascalutsa; Marc Vanderhaeghen
2006-01-20
We develop an extension of chiral perturbation theory to the {Delta}(1232)-resonance energy region and apply it to investigate the pion electroproduction off the nucleon (e{sup -} N {yields} e{sup -} N {pi}). We present a complete calculation of this process, in the {Delta}-resonance region, up to next-to-leading order in the {delta}-expansion. At this order, the only free parameters are the three low-energy constants corresponding to the magnetic (M1), electric (E2), and Coulomb (C2) {gamma} N {yields} {Delta} transition strength. After fitting these parameters to a few well-known data, our calculation provides a prediction for observables and multipole amplitudes of pion electroproduction. These results compare favorably with the phenomenological multipole solutions and recent experimental results from MIT-Bates and MAMI. Our prediction for the pion-mass dependence of the {gamma}N{Delta} form factors offers an explanation for the discrepancy between the recent lattice-QCD results and the experimental value for the ''C2/M1 ratio'' at low Q{sup 2}.
Some electromagnetic properties of the nucleon from Relativistic Chiral Effective Field Theory
Pascalutsa, V
2005-01-01
Considering the magnetic moment and polarizabilities of the nucleon we emphasize the need for relativistic chiral EFT calculations. Our relativistic calculations are done via the forward-Compton-scattering sum rules, thus ensuring the correct analytic properties. The results obtained in this way are equivalent to the usual loop calculations, provided no heavy-baryon expansion or any other manipulations which lead to a different analytic structure (e.g., infrared regularization) are made. The Baldin sum rule can directly be applied to calculate the sum of nucleon polarizabilities. In contrast, the GDH sum rule is practically unsuitable for calculating the magnetic moments. The breakthrough is achieved by taking the derivatives of the sum rule with respect to the anomalous magnetic moment. As an example, we apply the derivative of the GDH sum rule to the calculation of the magnetic moment in QED and reproduce the famous Schwinger's correction from a tree-level cross-section calcualation. As far as the nucleon p...
Filin, A A; Epelbaum, E; Hanhart, C; Krebs, H; Kudryavtsev, A E; Myhrer, F
2012-01-01
A complete calculation of the pion-nucleon loops that contribute to the transition operator for $NN\\to NN\\pi$ up-to-and-including next-to-next-to-leading order (N$^2$LO) in chiral effective field theory near threshold is presented. The evaluation is based on the so-called momentum counting scheme, which takes into account the relatively large momentum of the initial nucleons inherent in pion-production reactions. We show that the significant cancellations between the loops found at next-to-leading order (NLO) in the earlier studies are also operative at N$^2$LO. In particular, the $1/m_N$ corrections (with $m_N$ being the nucleon mass) to loop diagrams cancel at N$^2$LO, as do the contributions of the pion loops involving the low-energy constants $c_i$, i=1...4. In contrast to the NLO calculation however, the cancellation of loops at N$^2$LO is incomplete, yielding a non-vanishing contribution to the transition amplitude. Together with the one-pion exchange tree-level operators, the loop contributions provide...
Haidenbauer, J.; Meißner, Ulf-G.; Petschauer, S.
2016-10-01
The strangeness S = - 2 baryon-baryon interaction is studied in chiral effective field theory up to next-to-leading order. The potential at this order consists of contributions from one- and two-pseudoscalar-meson exchange diagrams and from four-baryon contact terms without and with two derivatives. SU(3) flavor symmetry is imposed for constructing the interaction in the S = - 2 sector. Specifically, the couplings of the pseudoscalar mesons to the baryons are fixed by SU(3) symmetry and, in general, also the contact terms are related via SU(3) symmetry to those determined in a previous study of the S = - 1 hyperon-nucleon interaction. The explicit SU(3) symmetry breaking due to the physical masses of the pseudoscalar mesons (π, K, η) is taken into account. It is argued that the ΞN interaction has to be relatively weak to be in accordance with available experimental constraints. In particular, the published values and upper bounds for the Ξ- p elastic and inelastic cross sections apparently rule out a somewhat stronger attractive ΞN force and, specifically, disfavor any near-threshold deuteron-like bound states in that system.
Experimental Overview of the Search for Chiral Effects at RHIC
Wang, Gang
2017-01-01
In high-energy heavy-ion collisions, various novel transport phenomena in local chiral domains result from the interplay of quantum anomalies with magnetic field and vorticity, and could survive the expansion of the fireball and be detected in experiments. Among these phenomena are the chiral magnetic effect, the chiral vortical effect and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. This review will describe the current status of experimental studies at Relativistic Heavy Ion Collider at BNL, and outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.
Experimental results on chiral magnetic and vortical effects
Wang, Gang
2016-01-01
Various novel transport phenomena in chiral systems result from the interplay of quantum anomalies with magnetic field and vorticity in high-energy heavy-ion collisions, and could survive the expansion of the fireball and be detected in experiments. Among them are the chiral magnetic effect, the chiral vortical effect and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. The goal of this review is to describe the current status of experimental studies at Relativistic Heavy Ion Collider at BNL and the Large Hadron Collider at CERN, and to outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.
Ruggieri, M.; Peng, G. X.
2016-05-01
In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.
Energy Technology Data Exchange (ETDEWEB)
Hiraoka, Y. [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Tanaka, Y.; Oura, M. [RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Wakabayashi, Y. [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Kimura, T., E-mail: kimura@mp.es.osaka-u.ac.jp [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)
2015-06-15
Spin-chiral domain structures near a cleaved crystal face of a magnetoelectric helimagnet, Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22}, were examined after various magnetic and electric field-cooling procedures by means of the scanning resonant X-ray microdiffraction technique using circularly polarized X-rays. We have found that the application of a magnetic field (1–2 k Oe) during the field-cooling procedure stabilizes one of the handedness among the two spin-chiral states (left- or right-handed screw structure) and makes nearly a single spin-chiral domain in the vicinity of the cleaved crystal face. However, it makes the degree of the spin chirality spatially inhomogeneous even within a domain. We discuss the observed field-cooling effect in terms of possible formation of spin-chiral domains with “stripe-type” domain walls accompanied by randomly-distributed ferromagnetic islands. - Highlights: • Spin-chiral domain structures in a magnetoelectric helimagnet, Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22}, were considerably affected by the field-cooling procedure. • The field-cooling with a small magnetic field stabilizes either a left- or right-handed spin-chiral state near a cleaved crystal face perpendicular to the helical axis.
Novel Lifshitz point for chiral transition in the magnetic field
Directory of Open Access Journals (Sweden)
Toshitaka Tatsumi
2015-04-01
Full Text Available Based on the generalized Ginzburg–Landau theory, chiral phase transition is discussed in the presence of magnetic field. Considering the chiral density wave we show that chiral anomaly gives rise to an inhomogeneous chiral phase for nonzero quark-number chemical potential. Novel Lifshitz point appears on the vanishing chemical potential line, which may be directly explored by the lattice QCD simulation.
Chiral gap effect in curved space
Flachi, Antonino
2014-01-01
We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.
Dvornikov, Maxim
2014-01-01
We show that the Standard Model electroweak interaction of ultrarelativistic electrons with nucleons ($eN$ interaction) in a neutron star (NS) permeated by a seed large-scale helical magnetic field provides its growth up to $\\gtrsim 10^{15}\\thinspace\\text{G}$ during a time comparable with the ages of young magnetars $\\sim 10^4\\thinspace\\text{yr}$. The magnetic field instability originates from the parity violation in the $eN$ interaction entering the generalized Dirac equation for right and left massless electrons in an external uniform magnetic field. The averaged electric current given by the solution of the modified Dirac equation contains an extra current for right and left electrons (positrons). Such current includes both a changing chiral imbalance of electrons and the $eN$ potential given by a constant neutron density in NS. Then we derive the system of the kinetic equations for the chiral imbalance and the magnetic helicity which accounts for the $eN$ interaction. By solving this system, we show that ...
Stern-Gerlach effect goes chiral
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
@@ Prof. SUN Changpu from the CAS Institute of Theoretical Physics and coworkers from University of Basel in Switzerland have worked out a way - at least in theory - to split a beam of molecules according to their chirality. The technique involves passing the molecules through three different laser beams and is similar to the famous Stern-Gerlach effect, whereby a beam of atoms passing through a magnetic field is split in two according to the atoms' spin states (Phys. Rev. Lett. 99 130403).
Chiral-scale effective theory including a dilatonic meson
Li, Yan-Ling; Rho, Mannque
2016-01-01
A scale-invariant chiral effective Lagrangian is constructed for octet pions and a dilaton figuring as Nambu-Goldstone bosons with vector mesons incorporated as hidden gauge fields. The Lagrangian is built to the next-to-leading order in chiral-scale counting without baryon fields and then to leading order including baryons. The resulting theory is hidden scale-symmetric and local symmetric. We also discuss some possible applications of the present Lagrangian.
Electromagnetic Response of the Chiral Magnetic Effect in Weyl Semimetals
Barnes, Edwin; Minic, Djordje
2016-01-01
Weyl semimetals are predicted to realize the three-dimensional axial anomaly first discussed in particle physics. The anomaly leads to unusual transport phenomena such as the chiral magnetic effect in which an applied magnetic field induces a current parallel to the field. Here we investigate diagnostics of the axial anomaly based on the fundamental equations of axion electrodynamics. We find that materials with Weyl nodes of opposite chirality and finite energy separation immersed in a uniform magnetic field exhibit an anomaly-induced oscillatory magnetic field with a period set by the chemical potential difference of the nodes. In the case where a chemical potential imbalance is created by applying parallel electric and magnetic fields, we find a suppression of the magnetic field component parallel to the electric field inside the material for rectangular samples, suggesting that the chiral magnetic current opposes this imbalance. For cylindrical geometries, we instead find an enhancement of this magnetic f...
Experimental Results on Chiral Magnetic and Vortical Effects
Directory of Open Access Journals (Sweden)
Gang Wang
2017-01-01
Full Text Available Various novel transport phenomena in chiral systems result from the interplay of quantum anomalies with magnetic field and vorticity in high-energy heavy-ion collisions and could survive the expansion of the fireball and be detected in experiments. Among them are the chiral magnetic effect, the chiral vortical effect, and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. The goal of this review is to describe the current status of experimental studies at Relativistic Heavy-Ion Collider at BNL and the Large Hadron Collider at CERN and to outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.
Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R
2016-01-13
Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications.
Background field formalism for chiral matter and gauge fields conformally coupled to supergravity
Butter, Daniel
2009-01-01
We expand the generic model involving chiral matter, super Yang-Mills gauge fields, and supergravity to second order in the gravity and gauge prepotentials in a manifestly covariant and conformal way. Such a class of models includes conventional chiral matter coupled to supergravity via a conformal compensator. This is a first step toward calculating one-loop effects in supergravity in a way that does not require a perturbative expansion in the inverse Planck scale or a recourse to component level calculations to handle the coupling of the K\\"ahler potential to the gravity sector. We also consider a more restrictive model involving a linear superfield in the role of the conformal compensator and investigate the similarities it has to the dual chiral model.
Effects of chiral helimagnets on vortex states in a superconductor
Fukui, Saoto; Kato, Masaru; Togawa, Yoshihiko
2016-12-01
We have investigated vortex states in chiral helimagnet/superconductor bilayer systems under an applied external magnetic field {H}{appl}, using the Ginzburg-Landau equations. Effect of the chiral helimagnet on the superconductor is taken as a magnetic field {H}{CHM}, which is perpendicular to the superconductor and oscillates spatially. For {H}{appl}=0 and weak {H}{CHM}, there appear pairs of up- and down-vortices. Increasing {H}{appl}, down-vortices gradually disappear, and the number of up-vortices increases in the large magnetic field region. Then, up-vortices form parallel, triangular, or square structures.
Extended chiral transformations including diquark fields as parameters
Novozhilov, V Yu; Vasilevich, D V; Novozhilov, Yuri; Pronko, Andrei; Vassilevich, Dmitri
1994-01-01
We introduce extended chiral transformation, which depends both on pseudoscalar and diquark fields as parameters and determine its group structure. Assuming soft symmetry breaking in diquark sector, bosonisation of a quasi-Goldstone ud-diquark is performed. In the chiral limit the ud-diquark mass is defined by the gluon condensate, m_{ud}\\approx 300 MeV. The diquark charge radius is \\langle r^2_{ud}\\rangle^{1/2}\\approx 0.5 fm.
Chirality control by electric field in periodically poled MgO-doped lithium niobate
Shi, Lei; Chen, Xianfeng
2012-01-01
We study the chirality of periodically poled MgO-doped lithium niobate (MgO:PPLN) by electro-optic (EO) effect. It shows that optical propagation is reciprocal in MgO:PPLN when quasi-phase-matched (QPM) condition is satisfied, which is similar to natural optical active medium like quartz. We also demonstrate that the chirality of MgO:PPLN can be controlled by external electric field.
Collective Modes of Chiral Kinetic Theory in Magnetic Field
Stephanov, Mikhail; Yin, Yi
2015-01-01
We study collective excitations in systems described by chiral kinetic theory in external magnetic field. We consider high-temperature weak-coupling plasma, as well as high-density Landau Fermi liquid with interaction not restricted to be weak. We show that chiral magnetic wave (CMW) emerges in hydrodynamic regime (at frequencies smaller than collision relaxation rate) and the CMW velocity is determined by thermodynamic properties only. We find that in a plasma of opposite chiralities, at frequencies smaller than the chirality-flipping rate, the CMW excitation turns into a vector-like diffusion mode. In the interacting Fermi liquid, the CMW turns into the Landau zero sound mode in the high-frequency collisionless regime.
Chiral phase transition and Schwinger mechanism in a pure electric field
Cao, Gaoqing
2016-01-01
We systematically study the chiral symmetry breaking and restoration in the presence of a pure electric field in the Nambu--Jona-Lasinio (NJL) model at finite temperature and baryon chemical potential. In addition, we also study the effect of the chiral phase transition on the charged pair production due to the Schwinger mechanism. For these purposes, a general formalism for parallel electric and magnetic fields is developed at finite temperature and chemical potential for the first time. In the pure electric field limit $B\\rightarrow0$, we compute the order parameter, the transverse-to-longitudinal ratio of the Goldstone mode velocities, and the Schwinger pair production rate as functions of the electric field. The inverse catalysis effect of the electric field to chiral symmetry breaking is recovered. And the Goldstone mode is find to disperse anisotropically such that the transverse velocity is always smaller than the longitudinal one, especially at nonzero temperature and baryon chemical potential. As exp...
Chiral Symmetry in Light-Cone Field Theory
Lenz, F; Thies, M; Yazaki, K
2004-01-01
An analysis of spontaneously broken chiral symmetry in light-cone field theory is presented. The non-locality inherent to light-cone field theory requires revision of the standard procedure in the derivation of Ward-Takahashi identities. We derive the general structure of chiral Ward-Takahashi identities and construct them explicitly for various model field theories. Gell-Mann-Oakes-Renner relations and relations between fermion propagators and the structure functions of Nambu-Goldstone bosons are discussed and the necessary modifications of the Ward-Takahashi identities due to the axial anomaly are indicated.
Chiral Effective Theory of Dark Matter Direct Detection
Bishara, Fady; Grinstein, Benjamin; Zupan, Jure
2016-01-01
We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.
Chiral effective theory of dark matter direct detection
Bishara, Fady; Brod, Joachim; Grinstein, Benjamin; Zupan, Jure
2017-02-01
We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of Script O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.
Krebs, H; Meißner, U -G
2009-01-01
In this note we prove to all orders in the small scale expansion that all off-shell parameters which appear in the chiral effective Lagrangian with explicit Delta(1232) isobar degrees of freedom can be absorbed into redefinitions of certain low-energy constants and are therefore redundant.
Chiral Liquid Crystals: Structures, Phases, Effects
Directory of Open Access Journals (Sweden)
Ingo Dierking
2014-06-01
Full Text Available The introduction of chirality, i.e., the lack of mirror symmetry, has a profound effect on liquid crystals, not only on the molecular scale but also on the supermolecular scale and phase. I review these effects, which are related to the formation of supermolecular helicity, the occurrence of novel thermodynamic phases, as well as electro-optic effects which can only be observed in chiral liquid crystalline materials. In particular, I will discuss the formation of helical superstructures in cholesteric, Twist Grain Boundary and ferroelectric phases. As examples for the occurrence of novel phases the Blue Phases and Twist Grain Boundary phases are introduced. Chirality related effects are demonstrated through the occurrence of ferroelectricity in both thermotropic as well as lyotropic liquid crystals. Lack of mirror symmetry is also discussed briefly for some biopolymers such as cellulose and DNA, together with its influence on liquid crystalline behavior.
Epelbaum, E; Krebs, H; Schat, C
2014-01-01
We confirm the claim of Ref. [D.R. Phillips, C. Schat, Phys. Rev. C88 (2013) 3, 034002] that 20 operators are sufficient to represent the most general local isospin-invariant three-nucleon force and derive explicit relations between the two sets of operators suggested in Refs. [D.R. Phillips, C. Schat, Phys. Rev. C88 (2013) 3, 034002] and [H. Krebs, A.M. Gasparyan, E. Epelbaum, Phys.Rev. C87 (2013) 5, 054007]. We use the set of 20 operators to discuss the chiral expansion of the long- and intermediate-range parts of the three-nucleon force up to next-to-next-to-next-to-next-to-leading order in the standard formulation without explicit Delta(1232) degrees of freedom. We also address implications of the large-N_c expansion in QCD for the size of the various three-nucleon force contributions.
A Study of chiral property of field galaxies
Aryal, B; Saurer, W
2013-01-01
We present an analysis of the chiral property of 1,621 field galaxies having radial velocity 3,000 km/s to 5,000 km/s . A correlation between the chiral symmetry breaking and the preferred alignment of galaxies in the leading and trailing structural modes is studied using chi-square, auto-correlation and the Fourier tests. We noticed a good agreement between the random alignment of the position angle (PA) distribution and the existence of chirality in both the leading and trailing arm galaxies. Chirality is found stronger for the late-type spirals (Sc, Scd, Sd and Sm) than that of the early-types (Sa, Sab, Sb and Sbc). A significant dominance (17% $\\pm$ 8.5%) of trailing modes is noticed in the barred spirals. In addition, chirality of field galaxies is found to remain invariant under the global expansion. The PA-distribution of the total trailing arm galaxies is found to be random, whereas preferred alignment is noticed for the total leading arm galaxies. It is found that the rotation axes of leading arm gal...
Connecting an effective model of confinement and chiral symmetry to lattice QCD
Fraga, E; Fraga, Eduardo; Mocsy, Agnes
2007-01-01
We construct an effective model for the chiral field and the Polyakov loop in which we can investigate the interplay between the approximate chiral symmetry restoration and the deconfinement of color in a thermal SU(3) gauge theory with three flavors of massive quarks. The phenomenological couplings between these two sectors can then be related to the recent lattice data on the renormalized Polyakov loop and the chiral condensate close to the critical region.
Meson Effects on the Chiral Condensate at Finite Density
Institute of Scientific and Technical Information of China (English)
HUANG Mei; ZHUANG Peng-Fei; ZHAO Wei-Qin
2002-01-01
Meson corrections on the chiral condensate up to next-to-leading order in a 1/Nc expansion at finite densityare investigated in the NJL model with explicit chiral symmetry breaking. Compared with mean-field results, the chiralphase transition is still of the first order while the properties near the critical density for chiral phase transition are foundto change significantly.
Quantifying Chiral Magnetic Effect from Anomalous-Viscous Fluid Dynamics
Jiang, Yin; Yin, Yi; Liao, Jinfeng
2016-01-01
Chiral Magnetic Effect (CME) is the macroscopic manifestation of the fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as anomalous transport current in the fluid dynamics framework. Experimental observation of CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to search for CME in heavy ion collisions. Encouraging evidence of CME-induced charge separation in those collisions has been reported, albeit with ambiguity due to background contamination. Crucial for addressing such issue, is the need of quantitative predictions for CME signal with sophisticated modelings. In this paper we develop such a tool, the Anomalous Viscous Fluid Dynamics (AVFD) framework, which simulates the evolution of fermion currents in QGP on top of the data-validated VISHNU bulk hydrodynamic flow. With realistic initial conditions and magnetic field lifetime, the AVFD-predicted CME signal could be quantitatively consistent with measured ch...
Energy Technology Data Exchange (ETDEWEB)
Pastore, S. [University of South Carolina; Wiringa, Robert B. [ANL; Pieper, Steven C. [ANL; Schiavilla, Rocco [Old Dominion U., JLAB
2014-08-01
We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.
Chiral Soliton Lattice and Charged Pion Condensation in Strong Magnetic Fields
Brauner, Tomas
2016-01-01
The Chiral Soliton Lattice (CSL) is a state with a periodic array of topological solitons that spontaneously breaks parity and translational symmetries. Such a state is known to appear in chiral magnets. We show that CSL also appears as a ground state of quantum chromodynamics at nonzero chemical potential in a magnetic field. By analyzing the fluctuations of the CSL, we furthermore demonstrate that in strong but achievable magnetic fields, charged pions undergo Bose-Einstein condensation. Our results, based on a systematic low-energy effective theory, are model-independent and fully analytic.
Holographic Heavy-Light Chiral Effective Action
Liu, Yizhuang
2016-01-01
We propose a variant of the $D4$-$D8$ construction to describe the low energy effective theory of heavy-light mesons, interacting with the lowest lying pseudoscalar and vector mesons. The heavy degrees of freedom are identified with the $D8_L$-$D8_H$ string low energy modes, and are approximated near the world volume of $N_f-1$ light $D8_L$ branes, by fundamental vector field valued in $U(N_f-1)$. The effective action follows from the reduction of the bulk D-brane Born-Infeld (DBI) and Chern-Simons (CS) actions, and is shown to exhibit both chiral and heavy-quark symmetry. The action interpolates continuously between the $U(N_f)$ case with massless mesons, and the $U(N_f-1)$ case with heavy-light mesons. The heavy-light meson radial spectrum is Regge-like. The one-pion and two-pion couplings to the heavy-light multiplets are evaluated. The partial widths for the charged decays $G\\rightarrow H+\\pi$ are shown to be comparable to the recently reported full widths for both the charm and bottom mesons.
Quark Mass Correction to Chiral Separation Effect and Pseudoscalar Condensate
Guo, Er-dong
2016-01-01
We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.
External Fields and Chiral Symmetry Breaking in the Sakai-Sugimoto Model
Johnson, Clifford V
2008-01-01
Using the Sakai-Sugimoto model we study the effect of an external magnetic field on the dynamics of fundamental flavours in both the confined and deconfined phases of a large N_c gauge theory. We find that an external magnetic field promotes chiral symmetry breaking, consistent with the ``magnetic catalysis'' observed in the field theory literature, and seen in other studies using holographic duals. The external field increases the separation between the deconfinement temperature and the chiral symmetry restoring temperature. In the deconfined phase we investigate the temperature-magnetic field phase diagram and observe, for example, there exists a maximum critical temperature (at which symmetry is restored) for very large magnetic field. We find that this and certain other phenomena persist for the Sakai-Sugimoto type models with probe branes of diverse dimensions. We comment briefly on the dynamics in the presence of an external electric field.
On the chiral separation effect in a slab
Sitenko, Yu A
2016-01-01
We study an influence of boundaries on chiral effects in hot dense relativistic spinor matter in a strong magnetic field which is transverse to bounding planes. The most general set of boundary conditions ensuring the confinement of matter within the bounding planes is considered. We find that, in thermal equilibrium, the nondissipative axial current along the magnetic field is induced, depending on chemical potential and temperature, as well as on a choice of boundary conditions. As temperature increases from zero to large values, a stepwise behaviour of the axial current density as a function of chemical potential is changed to a smooth one; the choice of a boundary condition can facilitate either amplification or diminution of the chiral separation effect. This points at a significant role of boundaries for physical systems with hot dense magnetized relativistic spinor matter, e.g., compact stars, heavy-ion collisions, novel materials known as Dirac and Weyl semimetals.
Numerical study of chiral plasma instability within the classical statistical field theory approach
Buividovich, P V
2015-01-01
We report on a numerical study of the real-time dynamics of chirally imbalanced lattice Dirac fermions coupled to dynamical electromagnetic field. To this end we use the classical statistical field theory approach, in which the quantum evolution of fermions is simulated exactly, and electromagnetic fields are treated as classical. Motivated by recent experiments on chirally imbalanced Dirac semimetals, we use the Wilson-Dirac lattice Hamiltonian for fermions in order to model the emergent nature of chiral symmetry at low energies. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring large chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to decay at the expense of nonzero helicity of electromagnetic ...
Maxwell-Chern-Simons Hydrodynamics for the Chiral Magnetic Effect
Ozonder, Sener
2010-01-01
The rate of vacuum changing topological solutions of the gluon field, sphalerons, is estimated to be large at the typical temperatures of heavy-ion collisions, particularly at the Relativistic Heavy Ion Collider. Such windings in the gluon field are expected to produce parity-odd bubbles, which cause separation of positively and negatively charged quarks along the axis of the external magnetic field. This Chiral Magnetic Effect can be mimicked by Chern-Simons modified electromagnetism. Here we present a model of relativistic hydrodynamics including the effects of axial anomalies via the Chern-Simons term.
A molecular propeller effect for chiral separation and analysis
Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas
2015-07-01
Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved.
Chiral Magnetic Effect Task Force Report
Skokov, Vladimir; Koch, Volker; Schlichting, Soeren; Thomas, Jim; Voloshin, Sergei; Wang, Gang; Yee, Ho-Ung
2016-01-01
In this report, we briefly examine the current status of the study of the chiral magnetic effect including theory and experimental progress. We recommend future strategies for resolving uncertainties in interpretation including recommendations for theoretical work, recommendations for measurements based on data collected in the past five years, and recommendations for beam use in the coming years of RHIC. We have specifically investigated the case for colliding nuclear isobars (nuclei with the same mass but different charge) and find the case compelling. We recommend that a program of nuclear isobar collisions to isolate the chiral magnetic effect from background sources be placed as a high priority item in the strategy for completing the RHIC mission.
Nuclear mean field from chiral pion-nucleon dynamics
Kaiser, N; Weise, W
2002-01-01
Using the two-loop approximation of chiral perturbation theory, we calculate the momentum- and density-dependent single-particle potential of nucleons in isospin-symmetric nuclear matter. The contributions from one- and two-pion exchange diagrams give rise to a potential depth for a nucleon at rest of U(0,k sub f sub 0)=-53.2 MeV at saturation density. The momentum dependence of the real part of the single-particle potential U(p,k sub f sub 0) is nonmonotonic and can be translated into a mean effective nucleon mass of M*bar approx =0.8M. The imaginary part of the single-particle potential W(p,k sub f) is generated to that order entirely by iterated one-pion exchange. The resulting half width of a nucleon hole-state at the bottom of the Fermi sea comes out as W(0,k sub f sub 0)=29.7 MeV. The basic theorems of Hugenholtz-Van-Hove and Luttinger are satisfied in our perturbative two-loop calculation of the nuclear mean field.
Institute of Scientific and Technical Information of China (English)
CHEN Wan-Chun; CHEN Xiao-Long
2007-01-01
@@ We investigate the influence of dc electric field on chiral symmetry breaking during the growing process of NaClO3 crystal. Nucleation and growth of NaClO3 are completed from an aqueous solution by a fast cooling temperature technology. A pair of polarization microscopes are used to identify a distribution of chiral crystals. Experimental results indicate that the dc electric field has an effect on distribution of chirality, but the direction of the dc electric field is not sensitive to the chiral autocatalysis and selectivity, i.e. the nature convection driving by the gravity does not play an important role on a thin layer of NaClO3 solution. The experimental phenomena may be elucidated by the ECSN mechanism.
Chiral magnetic effect and anomalous transport from real-time lattice simulations
Mueller, Niklas; Sharma, Sayantan
2016-01-01
We present a first-principle study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian $SU(N_c)$ and Abelian $U(1)$ gauge fields. Investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating wave. We further analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark mass.
Derivative expansion for the effective action of chiral gauge fermions. The normal parity component
Energy Technology Data Exchange (ETDEWEB)
Salcedo, L.L. [Dept. de Fisica Moderna, Universidad de Granada (Spain)
2001-04-01
Explicit exact formulas are presented, up to fourth order in a strict chiral covariant derivative expansion, for the normal parity component of the Euclidean effective action of even-dimensional Dirac fermions. The bosonic background fields considered are scalar, pseudo-scalar, vector and axial vector. No assumptions are made on the internal symmetry group and, in particular, the scalar and pseudo-scalar fields need not be on the chiral circle. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Salcedo, L.L. [Dept. de Fisica Moderna, Universidad de Granada (Spain)
2001-04-01
Explicit exact formulas are presented, for the leading order term in a strict chiral covariant derivative expansion, for the abnormal parity component of the effective action of two- and four-dimensional Dirac fermions in the presence of scalar, pseudo-scalar, vector and axial vector background fields. The formulas hold for completely general internal symmetry groups and general configurations. In particular, the scalar and pseudo-scalar fields need not be on the chiral circle. (orig.)
Microstructure Effects for Casimir Forces in Chiral Metamaterials
McCauley, Alexander P; Reid, M T Homer; Rodriguez, Alejandro W; Zhou, Jiangfeng; Rosa, F S S; Joannopoulos, John D; Dalvit, D A R; Soukoulis, Costas M; Johnson, Steven G
2010-01-01
We examine a recent prediction for the chirality-dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized "omega"-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e. proximity forces and anisotropy). We find that these microstructure effects dominate the force for separations where chirality was predicted to have a strong influence. To get observations of chirality free from microstructure effects, one must go to large separations where the effect of chirality is at most $\\sim10^{-4}$ of the total force.
Chiral phase transition in a planar four-Fermi model in a tilted magnetic field
Ramos, Rudnei O
2013-01-01
We study a planar four-Fermi Gross-Neveu model in the presence of a tilted magnetic field, with components parallel and perpendicular to the system's plane. We determine how this combination of magnetic field components, when applied simultaneously, affects the phase diagram of the model. It is shown that each component of the magnetic field causes a competing effect on the chiral symmetry in these fermionic systems. While the perpendicular component of the magnetic field tends to make the chiral symmetry breaking to become stronger, the effect of the parallel component of the field in these planar systems is to weaken the chiral symmetry. We show that this competing effect, when combined also with temperature and chemical potential, can lead to a rich phase diagram, with the emergence of multiple critical points and reentrant phase transitions. We also study how the presence of these multiple critical points and reentrant phases can manifest in the quantum Hall effect. Our results provide a possible way to p...
Chiral effective theory with a light scalar and lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Soto, J., E-mail: joan.soto@ub.edu [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Talavera, P., E-mail: pere.talavera@icc.ub.edu [Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Comte Urgell 187, E-08036 Barcelona (Spain); Tarrus, J., E-mail: tarrus@ecm.ub.es [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain)
2013-01-21
We extend the usual chiral perturbation theory framework ({chi}PT) to allow the inclusion of a light dynamical isosinglet scalar. Using lattice QCD results, and a few phenomenological inputs, we explore the parameter space of the effective theory. We discuss the S-wave pion-pion scattering lengths, extract the average value of the two light quark masses and evaluate the impact of the dynamical singlet field in the low-energy constants l{sup Macron }{sub 1}, l{sup Macron }{sub 3} and l{sup Macron }{sub 4} of {chi}PT. We also show how to extract the mass and width of the sigma resonance from chiral extrapolations of lattice QCD data.
Strain induced Chiral Magnetic Effect in Weyl semimetals
Cortijo, Alberto; Landsteiner, Karl; Vozmediano, María A H
2016-01-01
We argue that strain applied to a time-reversal and inversion breaking Weyl semi-metal in a magnetic field can induce an electric current via the chiral magnetic effect. A tight binding model is used to show that strain generically changes the locations in the Brillouin zone but also the energies of the band touching points (tips of the Weyl cones). Since axial charge in a Weyl semi-metal can relax via inter-valley scattering processes the induced current will decay with a timescale given by the lifetime of a chiral quasiparticle. We estimate the strength and lifetime of the current for typical material parameters and find that it should be experimentally observable.
When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals
Chan, Ching-Kit; Lee, Patrick A.; Burch, Kenneth S.; Han, Jung Hoon; Ran, Ying
2016-01-01
The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly polarized photons with these chiral electrons generates a Hall conductivity without any applied magnetic field in the plane orthogonal to the light propagation. This phenomenon comes about because with all three Pauli matrices exhausted to form the three-dimensional linear dispersion, the Weyl nodes cannot be gapped. Rather, the net influence of chiral photons is to shift the positions of the Weyl nodes. Interestingly, the momentum shift is tightly correlated with the chirality of the node to produce a net anomalous Hall signal. Application of our proposal to the recently discovered TaAs family of Weyl semimetals leads to an order-of-magnitude estimate of the photoinduced Hall conductivity which is within the experimentally accessible range.
Kallin, Catherine; Berlinsky, John
2016-05-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.
Microstructure Effects for Casimir Forces in Chiral Metamaterials
McCauley, Alexander P.; Zhao, Rongkuo; Reid, M. T. Homer; Rodriguez, Alejandro W.; Zhou, Jiangfeng; Rosa, F. S. S.; Joannopoulos, John D; Dalvit, D. A. R.; Soukoulis, Costas M.; Johnson, Steven G.
2010-01-01
We examine a recent prediction for the chirality-dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized "omega"-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e. proximity forces and anisotropy). We find that these microstructure effe...
Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model
Alam, M Sohaib; Kundu, Arnab
2012-01-01
A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...
Pion Effect of Nuclear Matter in a Chiral Sigma Model
Institute of Scientific and Technical Information of China (English)
HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong
2009-01-01
We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.
Deconfinement and chiral transition in AdS/QCD wall models supplemented with a magnetic field
Dudal, David; Mertens, Thomas G
2016-01-01
We discuss the phenomenon of (inverse) magnetic catalysis for both the deconfinement and chiral transition. We discriminate between the hard and soft wall model, which we suitably generalize to include a magnetic field. Our findings show a critical deconfinement temperature going down, in contrast with the chiral restoration temperature growing with increasing magnetic field. This is at odds with contemporary lattice data, so the quest for a holographic QCD model capable of capturing inverse magnetic catalysis in the chiral sector remains open.
Possible splitting of deconfinement and chiral transitions in strong magnetic fields in QCD
Fraga, Eduardo S; Chernodub, M N
2010-01-01
We show that finite-temperature deconfinement and chiral transitions can split in a strong enough magnetic field. The splitting in critical temperatures of these transitions in a constant magnetic field of a typical LHC magnitude is of the order of 10 MeV. A new deconfined phase with broken chiral symmetry appears.
Microstructure effects for Casimir forces in chiral metamaterials
McCauley, Alexander P.; Zhao, Rongkuo; Reid, M. T. Homer; Rodriguez, Alejandro W.; Zhou, Jiangfeng; Rosa, F. S. S.; Joannopoulos, John D.; Dalvit, D. A. R.; Soukoulis, Costas M.; Johnson, Steven G.
2010-10-01
We examine a recent prediction for the chirality dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. Although repulsion in the metamaterial regime is rigorously impossible, it is unknown whether a reduction in the attractive force can be achieved through suitable material engineering. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized “omega”-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e., proximity forces and anisotropy). We find that these microstructure effects dominate the force for separations where chirality was predicted to have a strong influence. At separations where the homogeneous approximation is valid, in even the most ideal circumstances the effects of chirality are less than 10-4 of the total force, making them virtually undetectable in experiments.
Chen, Hong-Bo; Li, You-Quan
2016-07-01
We theoretically study the dynamics of a magnetic domain wall controlled by an electric field in the presence of the spin flexoelectric interaction. We reveal that this interaction generates an effective spin torque and results in significant changes in the current-driven domain wall motion. In particular, the electric field can stabilize the domain wall motion, leading to strong suppression of the current-induced Walker breakdown and thus allowing a higher maximum wall velocity. We can furthermore use this electric-field control to efficiently switch the chirality of a moving domain wall in the steady regime.
Dynamical evolution of the chiral magnetic effect: applications to the quark-gluon plasma
Manuel, Cristina
2015-01-01
We study the dynamical evolution of the so-called chiral magnetic effect in an electromagnetic conductor. To this end, we consider the coupled set of corresponding Maxwell and chiral anomaly equations, and we prove that these can be derived from chiral kinetic theory. After integrating the chiral anomaly equation over space in a closed volume, it leads to a quantum conservation law of the total helicity of the system. A change in the magnetic helicity density comes together with a modification of the chiral fermion density. We study in Fourier space the coupled set of anomalous equations and we obtain the dynamical evolution of the magnetic fields, magnetic helicity density, and chiral fermion imbalance. Depending on the initial conditions we observe how the helicity might be transferred from the fermions to the magnetic fields, or vice versa, and find that the rate of this transfer also depends on the scale of wavelengths of the gauge fields in consideration. We then focus our attention on the quark-gluon pl...
Detecting chirality in molecules by linearly polarized laser fields
Yachmenev, Andrey
2016-01-01
A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a {\\pi} phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic non-rigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states.
Kalaydzhyan, Tigran
2014-01-01
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.
Directory of Open Access Journals (Sweden)
Héctor Torres-Silva
2008-11-01
Full Text Available The accepted structure of space and vacuum derives from the results of relativistic cosmology and quantum field theory. It is demonstrated that a chiral interface between enantiomeric regions of a closed universe, or a (right R-Universe and (left L-Universe, related by an element of PCT symmetry along the interface, represents a construct with all the attributes required of the theoretical vacuum, in-so-far as quantum behaviour is then seen to be induced by the vacuum interface. Quantum mechanics emerges as a special case of classical mechanics, rather than the latter being a subset of the former. This removes the quantum-mechanical observational problem, explains the cosmological large-number coincidences, and accounts for the anti-matter in the cosmos.La estructura aceptada del espacio y el vacío se derivan de los resultados de la cosmología relativística y de la teoría cuántica de campo. Se demuestra que una interfaz quiral entre regiones enantioméricas de un universo cerrado, o un universo derecho y un universo izquierdo, relacionados por un elemento de simetría PCT a lo largo de la interfaz, representa un modelo con todos los atributos requeridos por el vacío teórico. Se desprende que el comportamiento cuántico es entonces visto que es inducido por la interfaz de vacío. La mecánica quántica emerge como un caso especial de la mecánica clásica, más bien que siendo la última un subconjunto de la primera. Esto resuelve el problema observacional mecánico cuántico, explica las coincidencias de los grandes números cosmológicos y toma en cuenta la antimateria en el cosmos.
Chirality-sensitive nuclear magnetic resonance effects induced by indirect spin-spin coupling
Garbacz, P.; Buckingham, A. D.
2016-11-01
It is predicted that, for two spin-1/2 nuclei coupled by indirect spin-spin coupling in a chiral molecule, chirality-sensitive induced electric polarization can be observed at the frequencies equal to the sum and difference between the spin resonance frequencies. Also, an electric field oscillating at the difference frequency can induce spin coherences which allow the direct discrimination between enantiomers by nuclear magnetic resonance. The dominant contribution to the magnitude of these expected chiral effects is proportional to the permanent electric dipole moment and to the antisymmetric part of the indirect spin-spin coupling tensor of the chiral molecule. Promising compounds for experimental tests of the predictions are derivatives of 1,3-difluorocyclopropene.
Multiple chiral doublet candidate nucleus $^{105}$Rh in a relativistic mean-field approach
Li, Jian; Meng, J; 10.1103/PhysRevC.83.037301
2011-01-01
Following the reports of two pairs of chiral doublet bands observed in $^{105}$Rh, the adiabatic and configuration-fixed constrained triaxial relativistic mean-field (RMF) calculations are performed to investigate their triaxial deformations with the corresponding configuration and the possible multiple chiral doublet (M$\\chi$D) phenomenon. The existence of M$\\chi$D phenomenon in $^{105}$Rh is highly expected.
Sekine, Akihiko; Nomura, Kentaro
2016-03-04
We search for dynamical magnetoelectric phenomena in three-dimensional correlated systems with spin-orbit coupling. We focus on the antiferromagnetic insulator phases where the dynamical axion field is realized by the fluctuation of the antiferromagnetic order parameter. It is shown that the dynamical chiral magnetic effect, an alternating current generation by magnetic fields, emerges due to such time dependences of the order parameter as antiferromagnetic resonance. It is also shown that the anomalous Hall effect arises due to such spatial variations of the order parameter as antiferromagnetic domain walls. Our study indicates that spin excitations in antiferromagnetic insulators with spin-orbit coupling can result in nontrivial charge responses. Moreover, observing the chiral magnetic effect and anomalous Hall effect in our system is equivalent to detecting the dynamical axion field in condensed matter.
Examining a possible cascade effect in chiral symmetry breaking
Fariborz, Amir H
2016-01-01
We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.
On the temperature dependence of the chiral vortical effects
Kalaydzhyan, Tigran
2014-01-01
We discuss the origins of temperature dependence of the axial vortical effect (AVE), i.e. generation of an axial current in a rotating chiral medium along the rotation axis. We show that the corresponding transport coefficient depends on the number of light weakly interacting degrees of freedom, rather than on the gravitational anomaly. We also comment on the role of low-dimensional defects in the rotating medium, and appearance of the chiral vortical effect due to them.
Su, Huimin; Guo, Yuxiang; Gao, Wensheng; Ma, Jie; Zhong, Yongchun; Tam, Wing Yim; Chan, C T; Wong, Kam Sing
2016-02-25
Based on the facts that chiral molecules response differently to left- and right-handed circular polarized light, chiroptical effects are widely employed for determining structure chirality, detecting enantiomeric excess, or controlling chemical reactions of molecules. Compared to those in natural materials, chiroptical behaviors can be significantly amplified in chiral plasmonic metamaterials due to the concentrated local fields in the structure. The on-going research towards giant chiroptical effects in metamaterial generally focus on optimizing the field-enhancement effects. However, the observed chiroptical effects in metamaterials rely on more complicated factors and various possibilities towards giant chiroptical effects remains unexplored. Here we study the optical-active second harmonic generation (SHG) behaviors in a pair of planar sawtooth gratings with mirror-imaged patterns. Significant multipolar effects were observed in the polarization-dependent SHG curves. We show that the chirality of the nanostructure not only give rise to nonzero chiral susceptibility tensor components within the electric-dipole approximation, but also lead to different levels of multipolar interactions for the two orthogonal circular polarizations that further enhance the nonlinear optical activity of the material. Our results thus indicate novel ways to optimize nonlinear plasmonic structures and achieve giant chiroptical response via multipolar interactions.
Sensing and tuning microfiber chirality with nematic chirogyral effect
Čopar, Simon; Seč, David; Aguirre, Luis E.; Almeida, Pedro L.; Dazza, Mallory; Ravnik, Miha; Godinho, Maria H.; Pieranski, Pawel; Žumer, Slobodan
2016-03-01
Microfibers with their elongated shape and translation symmetry can act as important components in various soft materials, notably for their mechanics on the microscopic level. Here we demonstrate the mechanical response of a micro-object to imposed chirality, in this case, the tilt of disclination rings in an achiral nematic medium caused by the chiral surface anchoring on an immersed microfiber. This coupling between chirality and mechanical response, used to demonstrate sensing of chirality of electrospun cellulose microfibers, is revealed in the optical micrographs due to anisotropy in the elastic response of the host medium. We provide an analytical explanation of the chirogyral effect supported with numerical simulations and perform an experiment to test the effect of the cell confinement and fiber size. We controllably twist the microfibers and demonstrate the response of the nematic medium. More generally the demonstrated study provides means for experimental discrimination of surface properties and allows mechanical control over the shape of disclination rings.
The effective chiral Lagrangian from dimension-six parity and time-reversal violation
de Vries, J.; Mereghetti, E.; Timmermans, R.G.E.; van Kolck, U.
2013-01-01
We classify the parity- and time-reversal-violating operators involving quark and gluon fields that have effective dimension six: the quark electric dipole moment, the quark and gluon chromo-electric dipole moments, and four four-quark operators. We construct the effective chiral Lagrangian with had
Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi
2017-02-23
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 10(6) A·cm(-2), or about 1 × 10(25) electrons s(-1) cm(-2). This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 10(13) electrons per cm(2) are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.
Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi
2017-01-01
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions. PMID:28230054
Ruggieri, M; Peng, G X
2016-01-01
We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.
Chirality effects on 2D phase transitions
DEFF Research Database (Denmark)
Scalas, E.; Brezesinski, G.; Möhwald, H.
1996-01-01
-nearest neighbours (NNN) and an NNN-distorted lattice is observed. At 5 degrees C, the transition pressure is 15 mN m(-1), whereas at 20 degrees C it is 18 mN m(-1). Chirality destroys this transition: the pure enantiomer always exhibits an oblique lattice with tilted molecules, and the azimuths of tilt...... and distortion continuously vary from a direction close to NN to a direction close to NNN. The nature of the phase transition and the influence of chirality on it are discussed within the framework of Landau's theory of phase transitions....
Effective Field Theories and Lattice QCD
Bernard, C
2015-01-01
I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.
Anomalous chiral superfluidity
Energy Technology Data Exchange (ETDEWEB)
Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)
2010-02-08
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.
Subtraction of power counting breaking terms in chiral perturbation theory: spinless matter fields
Du, Meng-Lin; Meißner, Ulf-G
2016-01-01
When matter fields are included in chiral perturbation theory, the nonvanishing mass in the chiral limit introduces a new energy scale so that the loop diagrams including such matter field propagators spoil the usual power counting. However, the power counting breaking terms can be absorbed into counterterms in the chiral Lagrangian. In this paper, we systematically derive these terms to leading one-loop order (next-to-next-to leading order in the chiral expansion) at once by calculating the generating functional using the path integral. They are then absorbed by counterterms in the next-to-leading order Lagrangian. The method can be extended to calculating power counting breaking terms for other matter fields.
Opportunities for chiral discrimination using high harmonic generation in tailored laser fields
Smirnova, Olga; Patchkovskii, Serguei
2015-01-01
Chiral discrimination with high harmonic generation (cHHG method) has been introduced in the recent work by R. Cireasa et al ( Nat. Phys. 11, 654 - 658, 2015). In its original implementation, the cHHG method works by detecting high harmonic emission from randomly oriented ensemble of chiral molecules driven by elliptically polarized field, as a function of ellipticity. Here we discuss future perspectives in the development of this novel method, the ways of increasing chiral dichroism using tailored laser pulses, new detection schemes involving high harmonic phase measurements, and concentration-independent approaches. Using the example of the epoxypropane molecule C$_3$H$_6$O (also known as 1,2-propylene oxide), we show theoretically that application of two-color counter-rotating elliptically polarized laser fields yields an order of magnitude enhancement of chiral dichroism compared to single color elliptical fields. We also describe how one can introduce a new functionality to cHHG: concentration-independen...
On SU(3) effective models and chiral phase-transition
Tawfik, Abdel Nasser
2015-01-01
The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...
The Chiral Bilayer Effect Stabilizes Micellar Fibers
Fuhrhop, Jürgen-Hinrich; Schnieder, Peter; Rosenberg, Jörg; Boekema, Egbert
1987-01-01
Dihelical fibers several micrometers in length and gels were obtained by spontaneous aggregation of octyl L- and D-gluconamides. The single strands have the thickness of a bimolecular layer. No fibers are formed from the racemate. The tendency of the chiral amphiphiles to aggregate to very long fibe
An Emergent Universe supported by chiral cosmological fields in Einstein--Gauss--Bonnet gravity
Chervon, Sergey V; Kubasov, Aroonkumar Beesham ans Aleksandr
2014-01-01
We propose the application of the chiral cosmological model (CCM) for the Einstein--Gauss--Bonnet (EGB) theory of gravitation with the aim of finding new models of the Emergent Universe (EmU) scenario. We analysed the EmU supported by two chiral cosmological fields for a spatially flat universe, while we have used three chiral fields when we investigated open and closed universes. To prove the validity of the EmU scenario we fixed the scale factor and found the exact solution by decomposition of EGB equations and solving the chiral field dynamics equation. To this end, we suggested the decomposition of the EGB equations in such a way that the first chiral field is responsible for the Einstein part of the model, while the second field, together with kinetic interaction term, is connected with the Gauss--Bonnet part of the theory. We proved that both fields are phantom ones under this decomposition, and that the model has a solution if the kinetic interaction between the fields equals a constant. We have presen...
Energy Technology Data Exchange (ETDEWEB)
Epelbaum, E.; Krebs, H. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Gasparyan, A.M. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Bolshaya Cheremushkinskaya 25, SSC RF ITEP, Moscow (Russian Federation); Schat, C. [Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Departamento de Fisica, FCEyN, Buenos Aires (Argentina)
2015-03-01
We confirm the claim of Phillips and Schat (Phys. Rev. C 88, 034002 (2013)) that 20 operators are sufficient to represent the most general local isospin-invariant three-nucleon force and derive explicit relations between the two sets of operators suggested in the above-mentioned work and that by Krebs et al. (Phys. Rev. C 87, 054007 (2013)). We use the set of 20 operators to discuss the chiral expansion of the long- and intermediate-range parts of the three-nucleon force up to next-to-next-to-next-to-next-to-leading order in the standard formulation without explicit Δ(1232) degrees of freedom. We also address implications of the large-N{sub c} expansion in QCD for the size of the various three-nucleon force contributions. (orig.)
On chiral magnetic effect in Weyl superfluid 3He-A
Volovik, G E
2016-01-01
In the theory of the chiral anomaly in relativistic quantum field theories (RQFT) some results depend on regularization scheme at ultraviolet. In the chiral superfluid 3He-A, which contains two Weyl points and also experiences the effects of chiral anomaly, the "trans-Planckian" physics is known and the results can be obtained without regularization. We discuss this on example of the chiral magnetic effect (CME), which has been observed in 3He-A in 90's. There are two forms of the contribution of the CME to the Chern-Simons term in free energy, perturbative and non-perturbative. The perturbative term comes from the fermions living in the vicinity of the Weyl point, where the fermions are "relativistic" and obey the Weyl equation. The non-perturbative term originates from the deep vacuum, being determined by the separation of the two Weyl points. Both terms are obtained using the Adler-Bell-Jackiw equation for chiral anomaly, and both agree with the results of the microscopic calculations in the "trans-Plancki...
Puhr, M
2016-01-01
We use exactly chiral overlap lattice fermions to investigate the Chiral Separation Effect in quenched QCD at finite density. We employ a recently developed numerical method which allows, for the first time, to address the transport properties of exactly chiral lattice fermions with non-zero chemical potential. Studying the axial current along the external magnetic field, we find a linear dependence consistent with the free fermion result for topologically trivial gauge field configurations. However, for configurations with nontrivial topology in the confinement regime the axial current is strongly suppressed due to contributions of topological modes of the Dirac operator, which suggests that non-perturbative corrections to the Chiral Separation Effect have topological origin.
Test the chiral magnetic effect with isobaric collisions
Deng, Wei-Tian; Ma, Guo-Liang; Wang, Gang
2016-01-01
The quark-gluon matter produced in relativistic heavy-ion collisions may contain local domains in which P and CP symmetries are not preserved. When coupled with an external magnetic field, such P- and CP-odd domains will generate electric currents along the magnetic field --- a phenomenon called the chiral magnetic effect (CME). Recently, the STAR Collaboration at RHIC and the ALICE Collaboration at the LHC released data of charge-dependent azimuthal-angle correlators with features consistent with the CME expectation. However, the experimental observable is contaminated with significant background contributions from elliptic-flow-driven effects, which makes the interpretation of the data ambiguous. In this Letter, we show that the collisions of isobaric nuclei, $^{96}_{44}$Ru + $^{96}_{44}$Ru and $^{96}_{40}$Zr + $^{96}_{40}$Zr, provide an ideal tool to disentangle the CME signal from the background effects. Our simulation demonstrates that the two collision types at $\\sqrt{s_{\\rm NN}}=200$ GeV have more than...
Chiral Symmetry Breaking in Planar QED in External Magnetic Fields
Cea, Paolo; Giudice, Pietro; Papa, Alessandro
2012-01-01
We investigate planar quantum electrodynamics (QED) with two degenerate staggered fermions in an external magnetic field on the lattice. We argue that in external magnetic fields there is dynamical generation of mass for two-dimensional massless Dirac fermions in the weak-coupling region. We extrapolate our lattice results to the quantum Hall effect in graphene.
Berezin, M; Shavit, R
2015-01-01
The near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have space and time symmetry breakings. Such MDM originated fields, called magnetoelectric (ME) fields, carry both spin and orbital angular momentums. By virtue of unique topology, ME fields are strongly different from free-space electromagnetic (EM) fields. In this paper, we show that because of chiral topology of ME fields in a nearfield region, far-field orbital angular momenta (OAM) can be observed, both numerically and experimentally. In a single element antenna, we obtain a radiation pattern with an angular squint. We reveal that in far field microwave radiation a crucial role is played by the ME energy distribution in the near-field region.
Mizher, A J; Fraga, E S
2010-01-01
The structure of the phase diagram for strong interactions becomes richer in the presence of a magnetic background, which enters as a new control parameter for the thermodynamics. Motivated by the relevance of this physical setting for current and future high-energy heavy ion collision experiments and for the cosmological QCD transitions, we use the linear sigma model coupled to quarks and to Polyakov loops as an effective theory to investigate how the chiral and the deconfining transitions are affected, and present a general picture for the temperature--magnetic field phase diagram. We compute and discuss each contribution to the effective potential for the approximate order parameters, and uncover new phenomena such as the paramagnetically-induced breaking of global $\\mathbb{Z}_3$ symmetry, and possible splitting of deconfinement and chiral transitions in a strong magnetic field.
Matching effective chiral Lagrangians with dimensional and lattice regularization
Niedermayer, Ferenc
2016-01-01
We compute the free energy in the presence of a chemical potential coupled to a conserved charge in effective O($n$) scalar field theory (without explicit symmetry breaking terms) to NNL order for asymmetric volumes in general $d$--dimensions, using dimensional (DR) and lattice regularizations. This yields relations between the 4-derivative couplings appearing in the effective actions for the two regularizations, which in turn allows us to translate results, e.g. the mass gap in a finite periodic box in $d=3+1$ dimensions, from one regularization to the other. Consistency is found with a new direct computation of the mass gap using DR. For the case $n=4, d=4$ the model is the low-energy effective theory of QCD with $N_{\\rm f}=2$ massless quarks. The results can thus be used to obtain estimates of low energy constants in the effective chiral Lagrangian from measurements of the low energy observables, including the low lying spectrum of $N_{\\rm f}=2$ QCD in the $\\delta$--regime using lattice simulations, as pro...
Romano, Alfonso; Cuoco, Mario; Noce, Canio; Gentile, Paola; Annunziata, Gaetano
2010-02-01
We analyze the response to a magnetic field of a two-dimensional spin-triplet superconductor with chiral order parameter when triplet pairing is closely competing with the singlet one. The study is performed via numerical solution of the Bogoliubov-de Gennes equations, assuming that the translational symmetry is broken in one direction by the presence of an interface beyond which superconducting pairing is not effective. We show that as the intensity of the magnetic field is increased above a threshold value, the system undergoes a transition to a spatially inhomogeneous state of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type where chirality disappears and a singlet-triplet mixing takes place along the direction perpendicular to the interface. Subdominant singlet components are found to accompany the triplet dominant ones in both phases. They develop close to the interface at low fields, then turning continuously into oscillating long-range ones as the field is increased. A similar behavior is found for the magnetization. It nucleates at the interface in the chiral phase, then acquiring in the FFLO phase an oscillatory behavior reaching its maximum amplitude at the sites where the dominant triplet component has a node. At these sites, the local spin-resolved density of states exhibits strong resonances, associated with the formation of Andreev bound states, which tend to broaden and decay in intensity as increasingly high magnetic fields are considered.
The Effect of the Chirality on the Fluctuation of Liquid Crystal
Fatriansyah, Jaka Fajar; Yusuf, Yusril
2016-10-01
We investigate the dynamical properties of normal fluctuation modes in chiral phase liquid crystal on the basis of hydrodynamics Ericksen-Leslie theory. We examine the effect of chiral coefficient on dynamic relaxation eigenfrequencies and the scattering intensity. We find that the chiral coefficient only affects slow fluctuation modes, while it does not affect the fast fluctuation modes. This effect of chirality depends on the magnitude of the wave number vector components.
Electric-field-induced assembly and propulsion of chiral colloidal clusters.
Ma, Fuduo; Wang, Sijia; Wu, David T; Wu, Ning
2015-05-19
Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport.
Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin
2016-08-01
It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)
Mace, Mark; Mueller, Niklas; Schlichting, Sören; Sharma, Sayantan
2017-02-01
We present a real-time lattice approach to study the nonequilibrium dynamics of vector and axial charges in S U (N )×U (1 ) gauge theories. Based on a classical description of the non-Abelian and Abelian gauge fields, we include dynamical fermions and develop operator definitions for (improved) Wilson and overlap fermions that allow us to study real-time manifestations of the axial anomaly from first principles. We present a first application of this approach to anomalous transport phenomena such as the chiral magnetic effect (CME) and the chiral separation effect (CSE) by studying the dynamics of fermions during and after a S U (N ) sphaleron transition in the presence of a U (1 ) magnetic field. We investigate the fermion mass and magnetic field dependence of the suggested signatures of the CME and the CSE and point out some important aspects which need to be accounted for in the macroscopic description of anomalous transport phenomena.
The One-Loop Effective K\\"ahler Potential. I: Chiral Multiplets
Flauger, Raphael; Schmidt-Colinet, Cornelius; Sudano, Matthew
2012-01-01
We derive a universal formula for the one-loop renormalization of the effective K\\"ahler potential that applies to general supersymmetric effective field theories of chiral multiplets, with arbitrary interactions respecting N=1 supersymmetry in four dimensions. The resulting expression depends only on the tree-level mass spectrum and the form of the regulator. This formula simplifies and generalizes existing results in the literature. We include two examples to illustrate its use.
Out-of-Equilibrium Chiral Magnetic Effect at Strong Coupling
Lin, Shu
2013-01-01
We study the charge transports originating from triangle anomaly in out-of-equilibrium conditions in the framework of AdS/CFT correspondence at strong coupling, to gain useful insights on possible charge separation effects that may happen in the very early stages of heavy-ion collisions. We first construct a gravity background of a homogeneous mass shell with a finite (axial) charge density gravitationally collapsing to a charged blackhole, which serves as a dual model for out-of-equilibrium charged plasma undergoing thermalization. We find that a finite charge density in the plasma slows down the thermalization. We then study the out-of-equilibrium properties of Chiral Magnetic Effect and Chiral Magnetic Wave in this background. As the medium thermalizes, the magnitude of chiral magnetic conductivity and the response time delay grow. We find a dynamical peak in the spectral function of retarded current correlator, which we identify as an out-of-equilibrium chiral magnetic wave. The group velocity of the out-...
Kampf, Karol; Trnka, Jaroslav
2009-01-01
We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1-- meson self-energy within the Resonance chiral theory in the chiral limit using different methods for the description of spin-one particles, namely the Proca field, antisymmetric tensor field and the first order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent to the power-counting non-renormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections...
Kramer Pesch Effect in Chiral p-Wave Superconductors
Kato, Yusuke; Hayashi, Nobuhiko
2001-11-01
The pair-potential and current density around a single vortex of the two-dimensional chiral p-wave superconductor with \\mbi{d}=\\hat{\\mbi{z}}(px ± i py) are determined self-consistently within the quasiclassical theory of superconductivity. Shrinking of the vortex core at low temperatures are considered numerically and analytically. Temperature-dependences of the spatial variation of pair-potential and circular current around the core and density of states at zero energy are the same as those in the isotropic s-wave case. When the senses of vorticity and chirality are opposite, however, we find two novel results; 1) the scattering rate due to non-magnetic impurities is considerably suppressed, compared to that in the s-wave vortex. From this observation, we expect that the chiral p-wave superconductors provide the best chance to observe the shrinking of the vortex (“Kramer Pesch effect”) experimentally. 2) The pair-potential of chiral p-wave superconductors inside vortex core recovers a combined time-reversal-Gauge symmetry, although this symmetry is broken in the region far from the vortex core. This local recovery of symmetry leads to the suppression of the impurity effect inside vortex core.
Applications Of Chiral Perturbation Theory
Mohta, V
2005-01-01
Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...
Chiral effective theory with a light scalar and lattice QCD
Soto, J; Tarrús, J
2011-01-01
We extend the usual chiral perturbation theory framework ($\\chi$PT) to allow the inclusion of a light dynamical isosinglet scalar. Using lattice QCD results, and a few phenomenological inputs, we explore the parameter space of the effective theory. The extended theory collects already at LO the ball park contribution to the pion mass and decay constant, thus achieving an accuracy that is comparable to the one of the standard $\\chi$PT at NLO results. We check explicitly that radiative corrections do not spoil this behavior and keep the theory stable under mild variations of the parameters. The parameter sets that are compatible with the current mass and width of the sigma resonance turn out to reproduce the experimental values of the S-wave pion-pion scattering lengths very accurately. We also extract the average value of the two light quark--masses and evaluate the impact of the dynamical singlet field in the low--energy constants $\\bar{l}_3$ and $\\bar{l}_4$ of $\\chi$PT. We emphasize that more accurate lattic...
Role of boundary conditions, topology, and disorder in the chiral magnetic effect in Weyl semimetals
Alavirad, Yahya; Sau, Jay D.
2016-09-01
Quantum field theory predicts Weyl semimetals to possess a peculiar response of the longitudinal current density to the application of a DC magnetic field. This peculiar response, known as the chiral magnetic effect (CME), has been proposed as one of the signatures of the unique chiral anomaly of Weyl nodes. Here we show that such a response can in principle exist in a model without Weyl nodes. On the other hand, such a CME is at odds with a general result showing the vanishing of the bulk current in an equilibrium system on any real material with a lattice in an external magnetic field. Here we resolve this apparent contradiction by introducing a model where a current flows in response to a magnetic field even without Weyl nodes. We point out that the previous derivation of a vanishing CME in the limit of vanishing real frequency is a consequence of the assumption of periodic boundary conditions of the system. Consistent with recent work, we found the finite frequency CME to be nonvanishing in general when there was a nonvanishing Berry curvature on the Fermi surface. This does not necessitate having a topological Berry flux as in the case of a Weyl node. Finally, we study how the perturbation theory in magnetic field might be more stable in the presence of disorder. We find that in a realistic disordered system, the chiral magnetic response is really a dynamical phenomena and vanishes in the DC limit.
Further Investigation on Chiral Symmetry Breaking in a Uniform External Magnetic Field
Jasinski, P
2004-01-01
We study chiral symmetry breaking in QED when a uniform external magnetic field is present. We calculate higher order corrections to the dynamically generated fermion mass and find them to be small. In so doing we correct an error in the literature regarding the matrix structure of the fermion self-energy.
Asymptotic Behavior of Soliton Solutions with a Double Spectral Parameter for Principal Chiral Field
Institute of Scientific and Technical Information of China (English)
SONG Quan-Fu; ZHOU Zi-Xiang
2005-01-01
The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speeds of the peaks in the asymptotic solutions are not constants.
Minimal extended flavor groups, matter fields chiral representations, and the flavor question
Doff, A
2000-01-01
We show the specific unusual features on chiral gauge anomalies cancellation in the minimal, necessarily 3-3-1, and the largest 3-4-1 weak isospin chiral gauge semisimple group leptoquark-bilepton extensions of the 3-2-1 conventional standard model of nuclear and electromagnetic interactions. In such models a natural explanation for the fundamental question of fermion generation replication arises from the self-consistency of a local gauge quantum field theory, which constrains the number of the QFD fermion families to the QCD color charges.
Minimal Extended Flavor Groups, Matter Fields Chiral Representations, and the Flavor Question
Doff, A.; Pisano, F.
We show the specific unusual features on chiral gauge anomalies cancellation in the minimal, necessarily 3-3-1, and the largest 3-4-1 weak isospin chiral gauge semisimple group leptoquark-bilepton extensions of the 3-2-1 conventional standard model of nuclear and electromagnetic interactions. In such models a natural answer for the fundamental question of fermion generation replication arises directly from the self-consistency of a local gauge quantum field theory, which constrains the number of the QFD fermion families to the QCD color charges.
Chiral extension of lattice field theory with Ginsparg-Wilson fermions
Lim, Kyung-Taek
In 1994, Brower, Shen and Tan proposed "chirally extended QCD" (or XQCD), and current research extends this method to incorporate fermions obeying Ginsparg-Wilson relation, e.g. Overlap fermion. The hope in this research is that the XQCD can overcome the difficulty in standard lattice approach associated with small quark mass by adding explicit fields while maintaining chiral symmetry on the lattice, and that the XQCD has desired continuum limit. I show that the 4-d Yukawa Overlap XQCD fermion action can be derived from the standard 5-d domain-wall action. I also present study on the imaginary part of the determinant of the coset XQCD Dirac operator.
Berry curvature, triangle anomalies, and the chiral magnetic effect in Fermi liquids.
Son, Dam Thanh; Yamamoto, Naoki
2012-11-02
In a three-dimensional Fermi liquid, quasiparticles near the Fermi surface may possess a Berry curvature. We show that if the Berry curvature has a nonvanishing flux through the Fermi surface, the particle number associated with this Fermi surface has a triangle anomaly in external electromagnetic fields. We show how Landau's Fermi liquid theory should be modified to take into account the Berry curvature. We show that the "chiral magnetic effect" also emerges from the Berry curvature flux.
Feng, Sheng-Qin; Sun, Fei; Zhong, Yang; Yin, Zhong-Bao
2016-01-01
It was pointed out that the Chiral Magnetic Effect is a process of charge separation with respect to the reaction plane. There is one kind of phenomenon of gauge field configurations with nonzero topological charge, which can be a sphaleron in the QCD vacuum. At high temperatures, one expects that the sphaleron process is a dominant process. One finds that left-handed quarks will become right-handed quarks, and right-handed quarks will remain right-handed in a region with negative topological charge. The strong magnetic field produced in relativistic heavy-ion collisions interacts with the magnetic moment of the quarks and locates the spins of quarks with positive (negative) electric charge to be parallel (anti-parallel) to the field direction. The Chiral Separation Effect is a similar effect in which the occurrence of a vector charge, e.g. electric charge, causes a separation of chiralities. We calculate the chiral separation effects during RHIC and LHC energy regions by studying the detailed chiral charge s...
Nuclear Dynamics with Effective Field Theories
Epelbaum, Evgeny
2013-01-01
These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.
A METRIC FOR A CHIRAL POTENTIAL FIELD UNA MÉTRICA PARA UN CAMPO POTENCIAL QUIRAL
Directory of Open Access Journals (Sweden)
Héctor Torres-Silva
2008-11-01
Full Text Available In this paper we present an example of a specific metric which geometrizes explicitly a light-like four-vector potential (chiral field. The geometrization shows that such a vector has the same geometrical structure as a gravitational Kerr field. We discuss a theoretical proposition that a rotating body generates, besides a special gravitational field, a magnetic-type gauge field which might be identified with a chiral geometrized field. This chiral field represents a novel type of field because we cannot identify it with any of the known electromagnetic fields. As an application of this theory we discuss the morphology of the planets around the sun.En este trabajo se presenta un ejemplo de una métrica especifica que geometriza explícitamente un potencial cuadrivector tipo luz (campo quiral. La geometrización muestra que tal vector tiene la misma estructura geométrica que un campo gravitacional Kerr. Se discute una proposición teórica que un cuerpo rotante genera, su gravitación y el calibre de campo tipo magnético que puede ser identificado con un campo quiral geometrizado. Este campo quiral representa un tipo novedoso de campo que no puede ser identificado con alguno de los campos electromagnéticos conocidos. Como aplicación de esta teoría se discute la morfología de los planetas alrededor del sol.
Dawin, Ute C; Osipov, Mikhail A; Giesselmann, Frank
2010-08-19
We present a study on the effect of added CsCl and of temperature variation on the chiral induction in a chiral nematic lyotropic liquid crystal (LC) composed of the surfactant cesium perfluorooctanoate (CsPFO), water, and the chiral dopant d-Leucine (d-Leu). The chiral induction was measured as the helical pitch P. The role of the additives CsCl and d-Leu on the phase behavior is investigated and discussed. The thermal stabilization effect of CsCl is shown to lead to an apparent salt effect on the pitch when the pitch is compared at a constant temperature. This apparent effect is removed by comparing the pitch measured for different salt concentrations at a temperature relative to the phase-transition temperatures; thus, the real salt effect on the pitch is described. High salt concentrations are shown to increase the pitch, that is, hinder the chiral induction. The effect is discussed in terms of a decreased solubilization of the amphiphilic chiral solute d-Leu in the micelles due to the salt-induced screening of the surfactant head groups and the consequential denser packing of the surfactants. The temperature variation of the pitch is investigated for all CsCl concentrations and is found to be essentially independent of the salt concentration. The temperature variation is analyzed and discussed in the context of a theoretical model taking into account specific properties of lyotropic liquid crystals. A hyperbolic decrease of the pitch is found with increasing temperature, which is known, from thermotropic liquid crystals, to stem from pretransitional critical fluctuations close to the lamellar phase. However, the experimental data confirmed the theoretical prediction that, at high temperature, that is, far away from the transition into the lamellar phase, the pitch is characterized by a linear temperature dependence which is determined by a combination of steric and dispersion chiral interactions. The parameters of the theoretical expression for the pitch have
Nuclear effective field theory on the lattice
Krebs, H; Epelbaum, E; Lee, D; ner, Ulf-G Mei\\ss
2008-01-01
In the low-energy region far below the chiral symmetry breaking scale (which is of the order of 1 GeV) chiral perturbation theory provides a model-independent approach for quantitative description of nuclear processes. In the two- and more-nucleon sector perturbation theory is applicable only at the level of an effective potential which serves as input in the corresponding dynamical equation. To deal with the resulting many-body problem we put chiral effective field theory (EFT) on the lattice. Here we present the results of our lattice EFT study up to next-to-next-to-leading order in the chiral expansion. Accurate description of two-nucleon phase-shifts and ground state energy ratio of dilute neutron matter up to corrections of higher orders shows that lattice EFT is a promising tool for a quantitative description of low-energy few- and many-body systems.
SAR Simulation with Magneto Chiral Effects for Human Head Radiated from Cellular Phones
Torres-Silva, H.
2008-09-01
A numerical method for a microwave signal emitted by a cellular phone, propagating in a magneto-chiral media, characterized by an extended Born-Fedorov formalism, is presented. It is shown that the use of a cell model, combined with a real model of the human head, derived from the magnetic resonance of images allows a good determination of the near fields induced in the head when the brain chirality and the battery magnetic field are considered together. The results on a 2-Dim human head model show the evolution of the specific absorption rate, (SAR coefficient) and the spatial peak specific absorption rate which are sensitives to the magneto-chiral factor, which is important in the brain layer. For GSM/PCN phones, extremely low frequency real pulsed magnetic fields (in the order of 10 to 60 milligauss) are added to the model through the whole of the user's head. The more important conclusion of our work is that the head absorption is bigger than the results for a classical model without the magneto chiral effect. Hot spots are produced due to the combination of microwave and the magnetic field produced by the phone's operation. The FDTD method was used to compute the SARs inside the MRI based head models consisting of various tissues for 1.8 GHz. As a result, we found that in the head model having more than four kinds of tissue, the localized peak SAR reaches maximum inside the head for over five tissues including skin, bone, blood and brain cells.
Influence of Chiral Mean Field on Kaon In-plane Flow in Heavy Ion Collisions
Institute of Scientific and Technical Information of China (English)
ZHENG Yu-Ming; FUCHS Christian; FAESSLER Amand; SHEKHTER Kirril; SRISAWAD Pornrad; KOBDAJ Chinorat; YAN Yu-Peng
2004-01-01
The influence of the chiral mean field on the K+ in-plane flow in heavy ion collisions at SIS energy is investigated within covariant kaon dynamics. For the kaon mesons inside the nuclear medium a quasi-particle picture including scalar and vector fields is adopted and compared to the standard treatment with a static potential. It is confirmed that a Lorentz force from spatial component of the vector field provides an important contribution to the inmedium kaon dynamics and strongly counterbalances the influence of the vector potential on the K+ in-plane flow. The calculated results show that the new FOPI data can be reasonably described using the Brown & Rho parametrization,which partly takes into account the correction of higher order contributions in the chiral expansion. This indicates that one can abstract the information on the kaon potential in a nuclear medium from the analysis of the K+ in-plane flow.
Phase diagram of 4D field theories with chiral anomaly from holography
Ammon, Martin; Macedo, Rodrigo P
2016-01-01
Within gauge/gravity duality, we study the class of four dimensional CFTs with chiral anomaly described by Einstein-Maxwell-Chern-Simons theory in five dimensions. In particular we determine the phase diagram at finite temperature, chemical potential and magnetic field. At high temperatures the solution is given by an electrically and magnetically charged AdS Reissner-Nordstroem black brane. For sufficiently large Chern-Simons coupling and at sufficiently low temperatures and small magnetic fields, we find a new phase with helical order, breaking translational invariance spontaneously. For the Chern-Simons couplings studied, the phase transition is second order with mean field exponents. Since the entropy density vanishes in the limit of zero temperature we are confident that this is the true ground state which is the holographic version of a chiral magnetic spiral.
Nieto-Vesperinas, Manuel
2016-01-01
We establish a general unified formulation which, using the optical theorem of electromagnetic helicity, shows that dichorism is a phenomenon arising in any scattering -or diffraction- process, elastic or not, of chiral electromagnetic fields by objects either chiral or achiral. It is shown how this approach paves the way to overcoming well-known limitations of standard circular dichroism, like its weak signal or the difficulties of using it with magnetodielectric particles. Based on the angular spectrum representation of optical fields with only right circular or left circular plane waves, we introduce beams with transverse elliptic polarization and posessing a longitudinal component. Then our formulation for general optical fields shows how to enhance the helicity, (and therefore the dichroism signal), versus the energy of the light scattered or emitted by a particle, or viceversa.
Hadjistasi, Christoforos A; Stavrou, Ioannis J; Stefan-Van Staden, Raluca-Ioana; Aboul-Enein, Hassan Y; Kapnissi-Christodoulou, Constantina P
2013-09-01
In this study, simple electrophoretic methods were developed for the chiral separation of the clinically important compounds fucose and pipecolic acid. In recent years, these analytes, and particularly their individual enantiomers, have attracted considerable attention due to their role in biological functions and disorders. The detectability and sensitivity of pipecolic acid and fucose were improved by reacting them with fluorenylmethyloxycarbonyl chloride (FMOC-Cl) and 5-amino-2-naphthalene-sulfonic acid (ANSA), respectively. The enantioseparation conditions were optimized by initially investigating the type of the chiral selector. Different chiral selectors, such as polymeric surfactants and cyclodextrins, were used and the most effective ones were determined with regard to resolution and analysis time. A 10-mM β-cyclodextrin was able to separate the enantiomers of ANSA-DL-fucose and the polymeric surfactant poly(sodium N-undecanoyl-LL-leucine-valinate) was able to separate the enantiomers of FMOC-DL-pipecolic acid, with resolution values of 3.45 and 2.78, respectively. Additional parameters, such as the concentration and the pH of the background electrolyte (BGE), the concentration of the chiral selector, and the addition of modifiers were examined in order to optimize the separations. The addition of the chiral ionic liquid D-alanine tert-butyl ester lactate into the BGE was also investigated, for the first time, in order to improve resolution of the enantiomers.
Ocak, Hale; Poppe, Marco; Bilgin-Eran, Belkız; Karanlık, Gürkan; Prehm, Marko; Tschierske, Carsten
2016-09-21
A bent-core compound derived from a 4-cyanoresorcinol core unit with two terephthalate based rod-like wings and carrying chiral 3,7-dimethyloctyloxy side chains has been synthesized in racemic and enantiomerically pure form and characterized by polarizing microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical investigations to study the influence of molecular chirality on the superstructural chirality and polar order in lamellar liquid crystalline phases. Herein we demonstrate that the coupling of molecular chirality with superstructural layer chirality in SmCsPF domain phases (forming energetically distinct diastereomeric pairs) can fix the tilt direction and thus stabilize synpolar order, leading to bistable ferroelectric switching in the SmC* phases of the (S)-enantiomer, whereas tristable modes determine the switching of the racemate. Moreover, the mechanism of electric field induced molecular reorganization changes from a rotation around the molecular long axis in the racemate to a rotation on the tilt-cone for the (S)-enantiomer. At high temperature the enantiomer behaves like a rod-like molecule with a chirality induced ferroelectric SmC* phase and an electroclinic effect in the SmA'* phase. At reduced temperature sterically induced polarization, due to the bent molecular shape, becomes dominating, leading to much higher polarization values, thus providing access to high polarization ferroelectric materials with weakly bent compounds having only "weakly chiral" stereogenic units. Moreover, the field induced alignment of the SmCsPF(()*()) domains gives rise to a special kind of electroclinic effect appearing even in the absence of molecular chirality. Comparison with related compounds indicates that the strongest effects of chirality appear for weakly bent molecules with a relatively short coherence length of polar order, whereas for smectic phases with long range polar order the effects of the interlayer interfaces can override
Abu-Shady, M
2015-01-01
The chiral symmetry breaking in the presence of external magnetic field is studied in the framework of logarithmic quark-sigma model. The effective logarithmic mesonic potential is employed and is numerically solved in the mean-field approximation. We find that the chiral symmetry breaking enhances in comparison with the original sigma model. Two sets of parameterization are investigated in the present model. We find that increasing coupling constant enhances the breaking symmetry while increasing sigma mass inhibits enhancing chiral broken vacuum state. A comparison with the Numbu-Jona-Lasinio model and the Schwinger-Dyson equation is discussed. We conclude that the logarithmic sigma model enhances the magnetic catalysis in comparison with the original sigma model and other models.
Directory of Open Access Journals (Sweden)
Rajalingam Agneeswari
2016-08-01
Full Text Available Two new diastereomeric chiral stationary phases (CSPs based on (+-(18-crown-6-2,3,11,12-tetracarboxylic acid as a chiral tethering group and a Π-basic chiral unit such as (R-1-(1-naphthylethylamine (CSP 1 or (S-1-(1-naphthylethylamine (CSP 2 were prepared. The two CSPs were applied to the enantiomeric separation of N-(3,5-dinitrobenzoyl-1-phenylalkylamines and N-(3,5-dinitrobenzoyl-α-amino acid derivatives using 20% isopropyl alcohol in hexane as a normal mobile phase. To elucidate the effect of the two chiral units on the chiral recognition, the chiral recognition abilities of the two CSPs were compared with each other and with that of a CSP (CSP 3 based on (R-1-(1-naphthylethylamine. From the chromatographic chiral recognition results, (R-1-(1-naphthylethylamine and (+−(18-crown-6-2,3,11,12-tetracarboxylic acid constituting CSP 1 were concluded to show a cooperative (“matched” effect on the chiral recognition while (S-1-(1-naphthylethylamine and (+-(18-crown-6-2,3,11,12-tetracarboxylic acid constituting CSP 2 were concluded to show an uncooperative (“mismatched” effect on the chiral recognition. From these results, it was concluded that (+-(18-crown-6-2,3,11,12-tetracarboxylic acid can be successfully used as a chiral tethering group for the preparation of new CSPs.
Agneeswari, Rajalingam; Sung, Ji Yeong; Jo, Eun Sol; Jeon, Hee Young; Tamilavan, Vellaiappillai; Hyun, Myung Ho
2016-08-12
Two new diastereomeric chiral stationary phases (CSPs) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid as a chiral tethering group and a Π-basic chiral unit such as (R)-1-(1-naphthyl)ethylamine (CSP 1) or (S)-1-(1-naphthyl)ethylamine (CSP 2) were prepared. The two CSPs were applied to the enantiomeric separation of N-(3,5-dinitrobenzoyl)-1-phenylalkylamines and N-(3,5-dinitrobenzoyl)-α-amino acid derivatives using 20% isopropyl alcohol in hexane as a normal mobile phase. To elucidate the effect of the two chiral units on the chiral recognition, the chiral recognition abilities of the two CSPs were compared with each other and with that of a CSP (CSP 3) based on (R)-1-(1-naphthyl)ethylamine. From the chromatographic chiral recognition results, (R)-1-(1-naphthyl)ethylamine and (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid constituting CSP 1 were concluded to show a cooperative ("matched") effect on the chiral recognition while (S)-1-(1-naphthyl)ethylamine and (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid constituting CSP 2 were concluded to show an uncooperative ("mismatched") effect on the chiral recognition. From these results, it was concluded that (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid can be successfully used as a chiral tethering group for the preparation of new CSPs.
Anomalous transport model study of chiral magnetic effects in heavy ion collisions
Sun, Yifeng; Li, Feng
2016-01-01
Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).
Nataf, Pierre; Lajkó, Miklós; Wietek, Alexander; Penc, Karlo; Mila, Frédéric; Läuchli, Andreas M.
2016-10-01
We show that, in the presence of a π /2 artificial gauge field per plaquette, Mott insulating phases of ultracold fermions with SU (N ) symmetry and one particle per site generically possess an extended chiral phase with intrinsic topological order characterized by an approximate ground space of N low-lying singlets for periodic boundary conditions, and by chiral edge states described by the SU(N ) 1 Wess-Zumino-Novikov-Witten conformal field theory for open boundary conditions. This has been achieved by extensive exact diagonalizations for N between 3 and 9, and by a parton construction based on a set of N Gutzwiller projected fermionic wave functions with flux π /N per triangular plaquette. Experimental implications are briefly discussed.
Energy Technology Data Exchange (ETDEWEB)
Cooper, F. [Los Alamos National Labs., NM (United States)
1997-09-22
This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.
The Chiral Anomaly, Dirac and Weyl Semimetals, and Force-Free Magnetic Fields
Marsh, Gerald E
2016-01-01
The chiral anomaly is a purely quantum mechanical phenomenon that has a long history dating back to the late 1960s. Surprisingly, it has recently made a macroscopic appearance in condensed matter physics. A brief introduction to the relevant features of this anomaly is given and it is shown that its appearance in condensed matter systems must involve force-free magnetic fields, which may help explain the long current relaxation times in Dirac and Weyl semimetals.
The effective chiral Lagrangian from dimension-six parity and time-reversal violation
Energy Technology Data Exchange (ETDEWEB)
Vries, J. de, E-mail: devries.jordy@gmail.com [KVI, Theory Group, University of Groningen, 9747 AA Groningen (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Mereghetti, E. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Timmermans, R.G.E. [KVI, Theory Group, University of Groningen, 9747 AA Groningen (Netherlands); Kolck, U. van [Institut de Physique Nucléaire, Université Paris Sud, CNRS/IN2P3, 91406 Orsay (France); Department of Physics, University of Arizona, Tucson, AZ 85721 (United States)
2013-11-15
We classify the parity- and time-reversal-violating operators involving quark and gluon fields that have effective dimension six: the quark electric dipole moment, the quark and gluon chromo-electric dipole moments, and four four-quark operators. We construct the effective chiral Lagrangian with hadronic and electromagnetic interactions that originate from them, which serves as the basis for calculations of low-energy observables. The form of the effective interactions depends on the chiral properties of these operators. We develop a power-counting scheme and calculate within this scheme, as an example, the parity- and time-reversal-violating pion–nucleon form factor. We also discuss the electric dipole moments of the nucleon and light nuclei. -- Highlights: •Classification of T-odd dimension-six sources based on impact on observables. •Building of the chiral Lagrangian for each dimension-six source. •Calculation of the PT-odd pion–nucleon form factor for each source. •Discussion of hadronic EDMs for each source and comparison with the theta term.
Institute of Scientific and Technical Information of China (English)
Hiroshi Yao
2016-01-01
Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold) nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD) properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R)-/(S)-2-phenylpropane-1-thiol, (R)-/(S)-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD) derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of many related
Directory of Open Access Journals (Sweden)
Hiroshi Yao
2016-10-01
Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of
Cutoff effects of Wilson fermions in the absence of spontaneous chiral symmetry breaking
Della Morte, M; Luz, Magdalena; Morte, Michele Della
2006-01-01
We simulate two dimensional QED with two degenerate Wilson fermions and plaquette gauge action. As a consequence of the Mermin-Wagner theorem, in the continuum limit chiral symmetry is realized a la Wigner. This property affects also the size of the cutoff effects. That can be understood in view of the fact that the leading lattice artifacts are described, in the continuum Symanzik effective theory, by chirality breaking terms. In particular, vacuum expectation values of non-chirality-breaking operators are expected to be O(a) improved in the chiral limit. We provide a numerical confirmation of this expectation by performing a scaling test.
Chiral assembly of weakly curled hard rods: Effect of steric chirality and polarity
Energy Technology Data Exchange (ETDEWEB)
Wensink, H. H., E-mail: wensink@lps.u-psud.fr; Morales-Anda, L. [Laboratoire de Physique des Solides–UMR 8502, Université Paris-Sud & CNRS, 91405 Orsay (France)
2015-10-14
We theoretically investigate the pitch of lyotropic cholesteric phases composed of slender rods with steric chirality transmitted via a weak helical deformation of the backbone. In this limit, the model is amenable to analytical treatment within Onsager theory and a closed expression for the pitch versus concentration and helical shape can be derived. Within the same framework, we also briefly review the possibility of alternative types of chiral order, such as twist-bend or screw-like nematic phases, finding that cholesteric order dominates for weakly helical distortions. While long-ranged or “soft” chiral forces usually lead to a pitch decreasing linearly with concentration, steric chirality leads to a much steeper decrease of quadratic nature. This reveals a subtle link between the range of chiral intermolecular interaction and the pitch sensitivity with concentration. A much richer dependence on the thermodynamic state is revealed for polar helices where parallel and anti-parallel pair alignments along the local director are no longer equivalent. It is found that weak temperature variations may lead to dramatic changes in the pitch, despite the lyotropic nature of the assembly.
Chiral field theories as models for hadron substructure
Energy Technology Data Exchange (ETDEWEB)
Kahana, S.H.
1987-03-01
A model for the nucleon as soliton of quarks interacting with classical meson fields is described. The theory, based on the linear sigma model, is renormalizable and capable of including sea quarks straightforwardly. Application to nuclear matter is made in a Wigner-Seitz approximation.
Coriolis effect and spin Hall effect of light in an inhomogeneous chiral medium.
Zhang, Yongliang; Shi, Lina; Xie, Changqing
2016-07-01
We theoretically investigate the spin Hall effect of spinning light in an inhomogeneous chiral medium. The Hamiltonian equations of the photon are analytically obtained within eikonal approximation in the noninertial orthogonal frame. Besides the usual spin curvature coupling, the chiral parameter enters the Hamiltonian as a spin-torsion-like interaction. We reveal that both terms have parallel geometric origins as the Coriolis terms of Maxwell's equations in nontrivial frames.
New Terms for Compact Form of Electroweak Chiral Lagrangian
Institute of Scientific and Technical Information of China (English)
YE Wei; ZHANG Hong-Hao; YANG Hong-Wei; YAN Wen-Bin; CHEN Na; J.K. Parry; LI Xue-Song
2008-01-01
The compact form of the electroweak chiral Lagrangian is a reformulation of its original form and is expressed in terms of chiral rotated electroweak gauge fields, which is crucial for relating the information of underlying theories to the coefficients of the low-energy effective Lagrangian. However the compact form obtained in previous works is not complete. In this letter we add several new chiral invariant terms to it and discuss the contributions of these terms to the original electroweak chiral Lagrangian.
Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates
Directory of Open Access Journals (Sweden)
Tomoya Hayata
2015-05-01
Full Text Available We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.
Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates
Energy Technology Data Exchange (ETDEWEB)
Hayata, Tomoya, E-mail: hayata@riken.jp [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Yamamoto, Arata [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)
2015-05-11
We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.
Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S.; Kappes, Manfred M.; Krupke, Ralph
2016-09-01
The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.
Consistent chiral kinetic theory in Weyl materials: chiral magnetic plasmons
Gorbar, E V; Shovkovy, I A; Sukhachov, P O
2016-01-01
We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern--Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. T...
Dreissigacker, Ingo; Lein, Manfred
2014-05-01
Motivated by recent experiments on circular dichroism in the photoelectron momentum distributions from strong-field ionization of chiral molecules [C. Lux et al., Angew. Chem. Int. Ed. 51, 5001 (2012), 10.1002/anie.201109035; C. S. Lehmann et al., J. Chem. Phys. 139, 234307 (2013), 10.1063/1.4844295], we investigate the origin of this effect theoretically. We show that it is not possible to describe photoelectron circular dichroism with the commonly used strong-field approximation due to its plane-wave nature. We therefore apply the Born approximation to the scattering state and use this as a continuum-state correction in the strong-field approximation. We obtain electron distributions for the molecules camphor and fenchone. In order to gain physical insight into the process, we study the contributions of individual molecular orientations.
Strange quark asymmetry in the proton in chiral effective theory
Wang, X G; Melnitchouk, W; Salamu, Y; Thomas, A W; Wang, P
2016-01-01
We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of $\\delta$-function contributions to the $\\bar s$ PDF at $x=0$, with a corresponding valence-like component of the $s$-quark PDF at larger $x$, which allows greater flexibility for the shape of $s-\\bar s$. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the $s$ and $\\bar s$ distributions, consistent with the chiral symmetry of QCD. We discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange quark PDFs in global QCD analysis.
Testing chiral effective theory with quenched lattice QCD
Giusti, Leonardo; Necco, S; Peña, C; Wennekers, J; Wittig, H
2008-01-01
We investigate two-point correlation functions of left-handed currents computed in quenched lattice QCD with the Neuberger-Dirac operator. We consider two lattice spacings a~0.09,0.12 fm and two different lattice extents L~ 1.5, 2.0 fm; quark masses span both the p- and the epsilon-regimes. We compare the results with the predictions of quenched chiral perturbation theory, with the purpose of testing to what extent the effective theory reproduces quenched QCD at low energy. In the p-regime we test volume and quark mass dependence of the pseudoscalar decay constant and mass; in the epsilon-regime, we investigate volume and topology dependence of the correlators. While the leading order behaviour predicted by the effective theory is very well reproduced by the lattice data in the range of parameters that we explored, our numerical data are not precise enough to test next-to-leading order effects.
Indecomposability parameters in chiral Logarithmic Conformal Field Theory
Vasseur, Romain; Saleur, Hubert
2011-01-01
Work of the last few years has shown that the key algebraic features of Logarithmic Conformal Field Theories (LCFTs) are already present in some finite lattice systems (such as the XXZ spin-1/2 chain) before the continuum limit is taken. This has provided a very convenient way to analyze the structure of indecomposable Virasoro modules and to obtain fusion rules for a variety of models such as (boundary) percolation etc. LCFTs allow for additional quantum numbers describing the fine structure of the indecomposable modules, and generalizing the `b-number' introduced initially by Gurarie for the c=0 case. The determination of these indecomposability parameters has given rise to a lot of algebraic work, but their physical meaning has remained somewhat elusive. In a recent paper, a way to measure b for boundary percolation and polymers was proposed. We generalize this work here by devising a general strategy to compute matrix elements of Virasoro generators from the numerical analysis of lattice models and their ...
A chiral route to pulling optical forces and left-handed optical torques
Canaguier-Durand, Antoine
2015-01-01
We analyze how chirality can generate pulling optical forces and left-handed torques by cross-coupling linear-to-angular momenta between the light field and the chiral object. In the dipolar regime, we reveal that such effects can emerge from a competition between non-chiral and chiral contributions to dissipative optical forces and torques, a competition balanced by the strength of chirality of the object. We extend the analysis to large chiral spheres where the interplay between chirality and multipolar resonances can give rise to a break of symmetry that flips the signs of both optical forces and torques.
Is the Chiral Vortical Effect Vanishing in Heavy Ion Collisions?
Landsteiner, Karl; Pena-Benitez, Francisco
2013-01-01
We study the frequency dependence of all the chiral vortical and magnetic conductivities for a relativistic chiral gas of free fermions and for a strongly coupled CFT with holographic dual in four dimensions. Both systems present gauge and gravitational anomalies and we compute their contribution to the conductivities. The chiral vortical conductivities and the chiral magnetic conductivity in the energy current show an unexpected frequency dependence in the form of a delta centered at zero frequency. We argue that this makes the CVE practically unobservable in heavy ion collisions. In the appendix we discuss why the CME seems to vanish in the consistent current for a particular implementation of the axial chemical potential.
Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders
Energy Technology Data Exchange (ETDEWEB)
Choi, S. Y. [Department of Physics, Chonbuk National University, 561-756, Jeonbuk (Korea, Republic of); Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States); Christensen, N. D. [Department of Physics, Illinois State University, 61790, Normal, IL (United States); Salmon, D.; Wang, X., E-mail: xiw77@pitt.edu [Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States)
2015-10-06
We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -}→P{sup +}P{sup -}→(ℓ{sup +}D{sup 0})(ℓ{sup -}D{sup -bar0}) at high-energy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -}→P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider.
Nematic twist cell: Strong chirality induced at the surfaces
Lin, Tzu-Chieh; Nemitz, Ian R.; Pendery, Joel S.; Schubert, Christopher P. J.; Lemieux, Robert P.; Rosenblatt, Charles
2013-04-01
A nematic twist cell having a thickness gradient was filled with a mixture containing a configurationally achiral liquid crystal (LC) and chiral dopant. A chiral-based linear electrooptic effect was observed on application of an ac electric field. This "electroclinic effect" varied monotonically with d, changing sign at d =d0 where the chiral dopant exactly compensated the imposed twist. The results indicate that a significant chiral electrooptic effect always exists near the surfaces of a twist cell containing molecules that can be conformationally deracemized. Additionally, this approach can be used to measure the helical twisting power (HTP) of a chiral dopant in a liquid crystal.
Chiral scale and conformal invariance in 2D quantum field theory.
Hofman, Diego M; Strominger, Andrew
2011-10-14
It is well known that a local, unitary Poincaré-invariant 2D quantum field theory with a global scaling symmetry and a discrete non-negative spectrum of scaling dimensions necessarily has both a left and a right local conformal symmetry. In this Letter, we consider a chiral situation beginning with only a left global scaling symmetry and do not assume Lorentz invariance. We find that a left conformal symmetry is still implied, while right translations are enhanced either to a right conformal symmetry or a left U(1) Kac-Moody symmetry.
Nonlinear evolution equations associated with the chiral-field spectral problem
Energy Technology Data Exchange (ETDEWEB)
Bruschi, M.; Ragnisco, O. (Istituto Nazionale di Fisica Nucleare, Roma (Italy); Dipt. di Fisica, Univ. Rome (Italy))
1985-08-11
In this paper we derive and investigate the class of nonlinear evolution equations (NEEs) associated with the linear problem psisub(x) = lambdaApsi. It turns out that many physically interesting NEEs pertain to this class: for instance, the chiral-field equation, the nonlinear Klein-Gordon equations, the Heisenberg and Papanicolau spin chain models, the modified Boussinesq equation, the Wadati-Konno-Ichikawa equations, etc. We display also the Baecklund transformations for such a class and exploit them to derive in a special case the one-soliton solution.
Anisotropic hydrodynamics, holography and the chiral magnetic effect
Energy Technology Data Exchange (ETDEWEB)
Gahramanov, Ilmar; Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik
2012-03-15
We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient {upsilon}{sub 2}. We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on {upsilon}{sub 2}. We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)
Playing with QCD I: effective field theories. Third lecture
Energy Technology Data Exchange (ETDEWEB)
Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica
2009-07-01
One can construct useful effective models to describe the deconfining transition using the Polyakov loop as the building block. This procedure was generalized to a matrix model approach, including fermions as a background field (not discussed here). The chiral transition can be described using the chiral condensate as the order parameter. Nonzero (even if small) quark masses bring non-trivial consequences to the phase structure of QCD. Are deconfinement and chiral transition closely related? Do they happen at the same T? Several effective approaches available, but physics still unclear. (author)
Heo, Changhoon; Kiselev, Nikolai S.; Nandy, Ashis Kumar; Blügel, Stefan; Rasing, Theo
2016-06-01
Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion.
Radiation and scattering from thin wires in chiral media
Jaggard, Dwight L.; Liu, John C.; Grot, Annette; Pelet, Philippe
1992-11-01
The effect of chirality on thin win antennas and scatterers in unbounded chiral material is examined through the application of fundamental principles and the examination of several canonical examples. In particular, the interplay between normalized chirality and wire length is investigated to classify radiation and scattering patterns. Chirality induces rapid decay in the currents on such wires, resulting in mountain-peak-shaped current distributions characteristic of wire antennas and bow-tie-shaped current distributions characteristic of wire scatterers of sufficient length. These current distributions, in turn, cause radiation and scattering patterns which exhibit a chirality-dependent forbidden zone for both antennas and scatterers. In this zone, the fields are greatly reduced. These distinctive results lead naturally to the classification of wire scattering and radiation into subchiral, chiral, and superchiral regimes. All results are understood from the underlying physical principles of electromagnetic chirality, and are related to values of a dimensionless parameter involving normalized chirality and normalized wire length.
Electromagnetic fields with electric and chiral magnetic conductivities in heavy ion collisions
Li, Hui; Sheng, Xin-li; Wang, Qun
2016-10-01
We derive an analytic formula for electric and magnetic fields produced by a moving charged particle in a conducting medium with the electric conductivity σ and the chiral magnetic conductivity σχ. We use the Green's function method and assume that σχ is much smaller than σ . The compact algebraic expressions for electric and magnetic fields without any integrals are obtained. They recover the Lienard-Wiechert formula at vanishing conductivities. Exact numerical solutions are also found for any values of σ and σχ and are compared with analytic results. Both numerical and analytic results agree very well for the scale of high-energy heavy ion collisions. The spacetime profiles of electromagnetic fields in noncentral Au+Au collisions have been calculated based on these analytic formula as well as exact numerical solutions.
Electromagnetic fields with electric and chiral magnetic conductivities in heavy ion collisions
Li, Hui; Wang, Qun
2016-01-01
We derive analytic formula for electric and magnetic fields produced by a moving charged particle in a conducting medium with the electric conductivity \\sigma and the chiral magnetic conductivity \\sigma_{\\chi}. We use the Green function method and assume that \\sigma_{\\chi} is much smaller than \\sigma. The compact algebraic expressions for electric and magnetic fields without any integrals are obtained. They recover the Lienard-Wiechert formula at vanishing conductivities. Exact numerical solutions are also found for any values of \\sigma and \\sigma_{\\chi} and are compared to analytic results. Both numerical and analytic results agree very well for the scale of high energy heavy ion collisions. The space-time profiles of electromagnetic fields in non-central Au+Au collisions have been calculated based on these analytic formula as well as exact numerical solutions.
Electric field induced domain-wall dynamics: Depinning and chirality switching
Upadhyaya, Pramey; Dusad, Ritika; Hoffman, Silas; Tserkovnyak, Yaroslav; Alzate, Juan G.; Amiri, Pedram Khalili; Wang, Kang L.
2013-12-01
We theoretically study the equilibrium and dynamic properties of nanoscale magnetic tunnel junctions (MTJs) and magnetic wires, in which an electric field controls the magnetic anisotropy through spin-orbit coupling. By performing micromagnetic simulations, we construct a rich phase diagram and find that, in particular, the equilibrium magnetic textures can be tuned between Néel and Bloch domain walls in an elliptical MTJ. Furthermore, we develop a phenomenological model of a quasi-one-dimensional domain wall confined by a parabolic potential and show that, near the Néel-to-Bloch-wall transition, a pulsed electric field induces precessional domain-wall motion which can be used to reverse the chirality of a Néel wall and even depin it. This domain-wall motion controlled by electric fields, in lieu of applied current, may provide a model for ultralow-power domain-wall memory and logic devices.
Tawfik, Abdel Nasser
2015-01-01
Effects of external magnetic field on various properties of the quantum chromodynamics under extreme conditions of temperature and density have been analysed. To this end, we use SU(3) Polyakov linear sigma-model and assume that the external magnetic field eB adds some restrictions to the quarks energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization. This requires an additional temperature to drive the system through the chiral phase-transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase-transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of magnetic field on chiral phase-transition. We found that both critical temperature T_c and critical chemical potential increase with increasing the magnetic f...
In-medium effective chiral lagrangians and the pion mass in nuclear matter
Wirzba, A; Wirzba, Andreas; Thorsson, Vesteinn
1995-01-01
We argue that the effective pion mass in nuclear matter obtained from chiral effective lagrangians is unique and does not depend on off-mass-shell extensions of the pion fields as e.g. the PCAC choice. The effective pion mass in isospin symmetric nuclear matter is predicted to increase slightly with increasing nuclear density, whereas the effective time-like pion decay constant and the magnitude of the density-dependent quark condensate decrease appreciably. The in-medium Gell-Mann-Oakes-Renner relation as well as other in-medium identities are studied in addition. Finally, several constraints on effective lagrangians for the description of the pion propagation in isospin symmetric, isotropic and homogenous nuclear matter are discussed. (Talk presented at the workshop ``Hirschegg '95: Hadrons in Nuclear Matter'', Hirschegg, Kleinwalsertal, Austria, January 16-21, 1995)
Radiative neutron-proton capture in effective chiral lagrangians
Park, T S; Rho, M; Park, Tae Sun; Min, Dong Pil; Rho, Mannque
1994-01-01
We calculate the cross-section for the thermal n+p\\rightarrow d+\\gamma process in chiral perturbation theory to next-to-next-to-leading order using heavy-fermion formalism. The exchange current correction is found to be (4.5\\pm 0.3)~\\% in amplitude and the chiral perturbation at one-loop order gives the cross section \\sigma_{th}^{np}=(334\\pm 2)\\ {\\mbox mb} which is in agreement with the experimental value (334.2\\pm 0.5)\\ {\\mbox mb}. Together with the axial charge transitions, this provides a strong support for the power of chiral Lagrangians for nuclear physics.
Sharma, Anshul; Mori, Taizo; Lee, Huey-Charn; Worden, Matthew; Bidwell, Eric; Hegmann, Torsten
2014-12-23
Chirality at the nanoscale, or more precisely, the chirality or chiroptical effects of chiral ligand-capped metal nanoparticles (NPs) is an intriguing and rapidly evolving field in nanomaterial research with promising applications in catalysis, metamaterials, and chiral sensing. The aim of this work was to seek out a system that not only allows the detection and understanding of NP chirality but also permits visualization of the extent of chirality transfer to a surrounding medium. The nematic liquid crystal phase is an ideal candidate, displaying characteristic defect texture changes upon doping with chiral additives. To test this, we synthesized chiral cholesterol-capped gold NPs and prepared well-dispersed mixtures in two nematic liquid crystal hosts. Induced circular dichroism spectropolarimetry and polarized light optical microscopy revealed that all three gold NPs induce chiral nematic phases, and that those synthesized in the presence of a chiral bias (disulfide) are more powerful chiral inducers than those where the NP was formed in the absence of a chiral bias (prepared by conjugation of a chiral silane to preformed NPs). Helical pitch data here visually show a clear dependence on the NP size and the number of chiral ligands bound to the NP surface, thereby supporting earlier experimental and theoretical data that smaller metal NPs made in the presence of a chiral bias are stronger chiral inducers.
Anomalous transport model study of chiral magnetic effects in heavy ion collisions
Sun, Yifeng; Ko, Che Ming; Li, Feng
2016-10-01
Using an anomalous transport model for massless quarks and antiquarks, we study the effect of a magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in noncentral heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision. The electric quadrupole moment subsequently leads to a splitting between the elliptic flows of quarks and antiquarks. The slope of the charge asymmetry dependence of the elliptic flow difference between positively and negatively charged particles is positive, which is expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the BNL Relativistic Heavy Ion Collider, only if the Lorentz force acting on the charged particles is neglected and the quark-antiquark scattering is assumed to be dominated by the chirality changing channel.
Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi
2013-05-21
We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.
Chiral Superfluidity for the Heavy Ion Collisions
Kalaydzhyan, T
2013-01-01
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate tempera...
Thermal Conductivity of Nanotubes: Effects of Chirality and Isotope Impurity
Gang, Zhang; Li, Baowen
2005-01-01
We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality and isotope impurity by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also study the dependence of thermal conductivity on tube length for t...
Tawfik, Abdel Nasser; Magdy, Niseem
2015-01-01
Effects of an external magnetic field on various properties of quantum chromodynamics (QCD) matter under extreme conditions of temperature and density (chemical potential) have been analyzed. To this end, we use SU(3) Polyakov linear-σ model and assume that the external magnetic field (e B ) adds some restrictions to the quarks' energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization, which assumes that the cyclotron orbits of charged particles in a magnetic field should be quantized. This requires an additional temperature to drive the system through the chiral phase transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities (energy density and trace anomaly) and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of the magnetic field on the chiral phase transition. We found that both critical temperature Tc and critical chemical potential increase with increasing magnetic field, e B . Last but not least, the magnetic effects of the thermal evolution of four scalar and four pseudoscalar meson states are studied. We concluded that the meson masses decrease as the temperature increases up to Tc. Then, the vacuum effect becomes dominant and rapidly increases with the temperature T . At low T , the scalar meson masses normalized to the lowest Matsubara frequency rapidly decrease as T increases. Then, starting from Tc, we find that the thermal dependence almost vanishes. Furthermore, the meson masses increase with increasing magnetic field. This gives a characteristic phase diagram of T vs external magnetic field e B . At high T , we find that the masses of almost all meson states become temperature independent. It is worthwhile to highlight that the various meson
On SU(3 Effective Models and Chiral Phase Transition
Directory of Open Access Journals (Sweden)
Abdel Nasser Tawfik
2015-01-01
Full Text Available Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL model and Polyakov linear sigma-model (PLSM has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM a gluonic sector is integrated into LSM. The hadron resonance gas (HRG model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.
Hyun, Chang Ho; Lee, Hee-Jung
2016-01-01
We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.
Nucleation in the chiral transition with an inhomogeneous background
Taketani, B G; Taketani, Bruno G.; Fraga, Eduardo S.
2007-01-01
We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density in the presence of a chiral background field which systematically incorporates effects from inhomogeneities in the chiral field through a derivative expansion. Modifications in the effective potential and their consequences for the bubble nucleation process are discussed.
Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge
Kiyohara, Naoki; Tomita, Takahiro; Nakatsuji, Satoru
2016-06-01
The external field control of antiferromagnetism is a significant subject both for basic science and technological applications. As a useful macroscopic response to detect magnetic states, the anomalous Hall effect (AHE) is known for ferromagnets, but it has never been observed in antiferromagnets until the recent discovery in Mn3Sn . Here we report another example of the AHE in a related antiferromagnet, namely, in the hexagonal chiral antiferromagnet Mn3Ge . Our single-crystal study reveals that Mn3Ge exhibits a giant anomalous Hall conductivity |σx z|˜60 Ω-1 cm-1 at room temperature and approximately 380 Ω-1 cm-1 at 5 K in zero field, reaching nearly half of the value expected for the quantum Hall effect per atomic layer with Chern number of unity. Our detailed analyses on the anisotropic Hall conductivity indicate that in comparison with the in-plane-field components |σx z| and |σz y|, which are very large and nearly comparable in size, we find |σy x| obtained in the field along the c axis to be much smaller. The anomalous Hall effect shows a sign reversal with the rotation of a small magnetic field less than 0.1 T. The soft response of the AHE to magnetic field should be useful for applications, for example, to develop switching and memory devices based on antiferromagnets.
Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders
Energy Technology Data Exchange (ETDEWEB)
Choi, S.Y. [Chonbuk National University, Department of Physics, Jeonbuk (Korea, Republic of); University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States); Christensen, N.D. [Illinois State University, Department of Physics, Normal, IL (United States); Salmon, D.; Wang, X. [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States)
2015-10-15
We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -} → P{sup +}P{sup -} → (l{sup +}D{sup 0})(l{sup +} anti D{sup 0}) at highenergy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -} → P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (nonchiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider. (orig.)
Effect of critical process parameters on the synthesis of chiral amines
DEFF Research Database (Denmark)
Pirrung, Silvia; Lima Afonso Neto, Watson; Schwarze, Daniel
equilibrium, the inhibition profiles for substrates and products but also on the possibilities for in-situ product removal (ISPR) and technologies for shifting the equilibrium. In a challenging process such as the synthesis of optically pure chiral amines using ω-transaminase, these decisions will have...... process parameters involved in the production of two chiral amines (S-methylbenzylamine and 3-amino-1-phenylbutane) (Figure 1) to demonstrate the effects of such decisions....
Emergent chiral spin liquid: fractional quantum Hall effect in a kagome Heisenberg model.
Gong, Shou-Shu; Zhu, Wei; Sheng, D N
2014-09-10
The fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems under a magnetic field is one of the most remarkable discoveries in condensed matter physics. Interestingly, it has been proposed that FQHE can also emerge in time-reversal invariant spin systems, known as the chiral spin liquid (CSL) characterized by the topological order and the emerging of the fractionalized quasiparticles. A CSL can naturally lead to the exotic superconductivity originating from the condense of anyonic quasiparticles. Although CSL was highly sought after for more than twenty years, it had never been found in a spin isotropic Heisenberg model or related materials. By developing a density-matrix renormalization group based method for adiabatically inserting flux, we discover a FQHE in a spin-½ isotropic kagome Heisenberg model. We identify this FQHE state as the long-sought CSL with a uniform chiral order spontaneously breaking time reversal symmetry, which is uniquely characterized by the half-integer quantized topological Chern number protected by a robust excitation gap. The CSL is found to be at the neighbor of the previously identified Z2 spin liquid, which may lead to an exotic quantum phase transition between two gapped topological spin liquids.
Magnetic Catalysis in Graphene Effective Field Theory
DeTar, Carleton; Zafeiropoulos, Savvas
2016-01-01
We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.
Laser Writing of Multiscale Chiral Polymer Metamaterials
Directory of Open Access Journals (Sweden)
E. P. Furlani
2012-01-01
Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.
Yu, Lang; Huang, Mei
2015-01-01
We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.
Lee, D S; Ng, Y J; Shovkovy, I A
1999-01-01
The effective potential for the composite fields responsible for chiral symmetry breaking in weakly coupled QED in a magnetic field is derived. The global minimum of the effective potential is found to acquire a non-vanishing expectation value of the composite fields that leads to generating the dynamical fermion mass by an external magnetic field. The results are compared with those for the Nambu-Jona-Lasinio model.
Huang, Yiwen; STAR Collaboration
2016-09-01
Chirality imbalance could occur in local domains inside the hot nuclear matter formed in high-energy heavy-ion collisions. In the presence of a strong magnetic field, this chirality imbalance will induce an electric charge separation along the magnetic field direction, owing to the chiral magnetic effect (CME). Previous azimuthal-angle correlation measurements with unidentified charged particles have manifested charge separation signals consistent with the predictions of the CME. But the magnitudes of the background contributions have not been understood. In this poster, we present the correlation results with identified particles (protons and pions) using STAR data of 39 GeV Au+Au collisions. The results will be compared with those from Au+Au at √{sNN} = 200GeV , as well as the published results of unidentified particles at √{sNN} = 39GeV . For the STAR Collaboration.
Chiral metamaterials: retrieval of the effective parameters with and without substrate.
Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M
2010-07-01
After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we analyze the wave propagation in chiral metamaterials and follow the regular retrieval procedure for ordinary metamaterials and apply it in chiral metamaterial slabs. Then based on the transfer matrix technique, the parameter retrieval is extended to treat samples with not only the substrate but also the top layers. After the parameter retrieval procedure, we take two examples to check our method and study how the substrate influences on the thin chiral metamaterials slabs. We find that the substrate may cause the homogeneous slab to be inhomogeneous, i.e. the reflections in forward and backward directions are different. However, the chiral metamaterial where the resonance element is embedded far away from the substrate is insensitive to the substrate.
The Chrial Magnetic Wave and Strong Field Effects in Heavy Ion Collisions
Liao, Jinfeng
2013-01-01
A number of recent progresses in the study of strong field effects in heavy ion collisions are discussed here: 1) the Chiral Magnetic Wave (CMW) and its experimental manifestation via splitting of positive/negative pions' elliptic flow; 2) the event-by-event azimuthal fluctuations of strong EM fields and its correlations with matter geometry; 3) a new mechanism for generating axial current in external electric field, the Chiral Electric Separation Effect (CESE).
Global Anomalies and Effective Field Theory
Golkar, Siavash
2015-01-01
We show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on %thermal partition functions and thermal effective field theory where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient. This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functions rather than eta invariants.
Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2017-03-01
We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern-Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields, taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also by oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. This finding suggests an efficient means of extracting the chiral shift parameter from the measurement of the plasma frequencies in Weyl materials.
Dynamic Chiral Magnetic Effect and Faraday Rotation in Macroscopically Disordered Helical Metals
Ma, J.; Pesin, D. A.
2017-03-01
We develop an effective medium theory for electromagnetic wave propagation through gapless nonuniform systems with a dynamic chiral magnetic effect. The theory allows us to calculate macroscopic-disorder-induced corrections to the values of optical, as well as chiral magnetic conductivities. In particular, we show that spatial fluctuations of the optical conductivity induce corrections to the effective value of the chiral magnetic conductivity. The absolute value of the effect varies strongly depending on the system parameters, but yields the leading frequency dependence of the polarization rotation and circular dichroism signals. Experimentally, these corrections can be observed as features in the Faraday rotation angle near frequencies that correspond to the bulk plasmon resonances of a material. Such features are not expected to be present in single-crystal samples.
On invariants and scalar chiral correlation functions in N=1 superconformal field theories
Knuth, Holger
2010-01-01
A general expression for the four-point function with vanishing total R-charge of anti-chiral and chiral superfields in N=1 superconformal theories is given. It is obtained by applying the exponential of a simple universal nilpotent differential operator to an arbitrary function of two cross ratios. To achieve this the nilpotent superconformal invariants according to Park are focused. Several dependencies between these invariants are presented, so that eight nilpotent invariants and 27 monomials of these invariants of degree d>2 are left being linearly independent. It is analyzed, how terms within the four-point function of general scalar superfields cancel in order to fulfill the chiral restrictions.
Ab initio description of continuum effects in A=11 exotic systems with chiral NN+3N forces
Calci, Angelo; Navratil, Petr; Roth, Robert; Dohet-Eraly, Jeremy; Quaglioni, Sofia; Hupin, Guillaume
2016-09-01
Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two- (NN), three- (3N) and many-nucleon interactions in a consistent and systematically improvable scheme. The rapid developments to construct divers families of chiral NN+3N interactions and the conceptual and technical improvements of ab initio many-body approaches pose a great opportunity for nuclear physics. By studying particular interesting phenomena in nuclear structure and reaction observables one can discriminate between different forces and study the predictive power of chiral EFT. The accurate description of the 11Be nucleus, in particular, the ground-state parity inversion and exceptionally strong E1 transition between its two bound states constitute an enormous challenge for the developments of nuclear forces and many-body approaches. We present a sensitivity analysis of structure and reaction observables to different NN+3N interactions in 11Be and n+10Be as well as the mirror p+10C scattering using the ab initio NCSM with continuum (NCSMC). Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW1158. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.
Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model
Institute of Scientific and Technical Information of China (English)
宗红石; 吴小华; 侯丰尧; 赵恩广
2004-01-01
A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
On invariants and scalar chiral correlation functions in N=1 superconformal field theories
Knuth, Holger
2010-01-01
A general expression for the four-point function with vanishing total R-charge of anti-chiral and chiral superfields in N=1 superconformal theories is given. It is obtained by applying the exponential of a simple universal nilpotent differential operator to an arbitrary function of two cross ratios. To achieve this the nilpotent superconformal invariants according to Park are focused. Several dependencies between these invariants are presented, so that eight nilpotent invariants and 27 monomi...
Oh, Jiyoung; Gleeson, Helen F.; Dierking, Ingo
2017-02-01
The application of an electric field to microspheres suspended in a liquid crystal causes particle translation in a plane perpendicular to the applied field direction. Depending on applied electric field amplitude and frequency, a wealth of different motion modes may be observed above a threshold, which can lead to linear, circular, or random particle trajectories. We present the stability diagram for these different translational modes of particles suspended in the isotropic and the chiral nematic phase of a liquid crystal and investigate the angular velocity, circular diameter, and linear velocity as a function of electric field amplitude and frequency. In the isotropic phase a narrow field amplitude-frequency regime is observed to exhibit circular particle motion whose angular velocity increases with applied electric field amplitude but is independent of applied frequency. The diameter of the circular trajectory decreases with field amplitude as well as frequency. In the cholesteric phase linear as well as circular particle motion is observed. The former exhibits an increasing velocity with field amplitude, while decreasing with frequency. For the latter, the angular velocity exhibits an increase with field amplitude and frequency. The rotational sense of the particles on a circular trajectory in the chiral nematic phase is independent of the helicity of the liquid crystalline structure, as is demonstrated by employing a cholesteric twist inversion compound.
Effects of surface molecular chirality on adhesion and differentiation of stem cells.
Yao, Xiang; Hu, Yiwen; Cao, Bin; Peng, Rong; Ding, Jiandong
2013-12-01
Chirality is one of the most fascinating and ubiquitous cues in nature, especially in life. The effects of chiral surfaces on stem cells have, however, not yet been revealed. Herein we examined the molecular chirality effect on stem cell behaviors. Self assembly monolayers of L- or D-cysteine (Cys) were formed on a glass surface coated with gold. Mesenchymal stem cells (MSCs) derived from bone marrow of rats exhibited more adhering preference and thus less cell spreading on the L surface than on the d one at the confluent condition. More protein adsorption was observed on the L surface after immersed in cell culture medium with fetal bovine serum. After osteogenic and adipogenic co-induction at the confluent condition, a larger proportion of cells became osteoblasts on the d surface, while the adipogenic fraction on the L surface was found to be higher than on the D surface. In order to interpret how this chirality effect worked, we fabricated Cys microislands of two sizes on the non-fouling poly(ethylene glycol) hydrogel to pre-define the spreading areas of single cells. Then the differentiation extents did not exhibit a significant difference between L and D surfaces under a given area of microislands, yet very significant differences of osteogenesis and adipogenesis were found between different areas. So, the molecular chirality influenced stem cells, probably via favored adsorption of natural proteins on the L surface, which led to more cell adhesion; and the larger cell spreading area with higher cell tension in turn favored osteogenesis rather than adipogenesis. As a result, this study reveals the molecular chirality on material surfaces as an indirect regulator of stem cells.
The effect of carbon nanotubes on chiral chemical reactions
Rance, Graham A.; Miners, Scott A.; Chamberlain, Thomas W.; Khlobystov, Andrei N.
2013-02-01
The intrinsic helicity of carbon nanotubes influences the formation of chiral molecules in chemical reactions. A racemic mixture of P and M enantiomers of nanotubes affects the enantiomeric excess of the products of the autocatalytic Soai reaction proportional to the amount of nanotubes added in the reaction mixture. An intermediate complex formed between the nanotube and the organometallic reagent is essential and explains the observed correlation between the enantiomeric distribution of products and the curvature of the carbon nanostructure. This Letter establishes a key mechanism for harnessing the helicity of nanoscale carbon surfaces for preparative organic reactions.
Chiral THz metamaterial with tunable optical activity
Energy Technology Data Exchange (ETDEWEB)
Zhou, Jiangfeng [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory; Chowdhury, Roy [Los Alamos National Laboratory; Zhao, Rongkuo [IOWA STATE UNIV; Soukoullis, Costas M [IOWA STATE UNIV
2010-01-01
Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation
Higgs Effective Field Theories - Systematics and Applications
Krause, Claudius
2016-01-01
We discuss effective field theories (EFTs) for the Higgs particle, which is not necessarily the Higgs of the Standard Model. We distinguish two different consistent expansions: EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, $\\mathcal{O}(f^{2}/\\Lambda^{2})=\\mathcal{O}(1/16\\pi^{2})$. We then compare the decoupling and the non-decoupling EFT. We also consider scenarios in which the new-physics sector is non-decoupling at a scale $f$, far above the electroweak-scale $v$. We discuss the relevance of the resulting double expansion in $\\xi=v^{2}/f^{2}$ and $f^{2}/\\Lambda^{2}$ for the data analys...
Rizzo, Antonio; Rikken, G L J A; Mathevet, R
2016-01-21
We present a systematic ab initio study of enantio-selective magnetic-field-induced second harmonic generation (MFISHG) on a set of chiral systems ((l)-alanine, (l)-arginine and (l)-cysteine; 3,4-dehydro-(l)-proline; (S)-α-phellandrene; (R,S)- and (S,S)-cystine disulphide; N-(4-nitrophenyl)-(S)-prolinol, N-(4-(2-nitrovinyl)-phenyl)-(S)-prolinol, N-(4-tricyanovinyl-phenyl)-(S)-prolinol, (R)-BINOL, (S)-BINAM and 6-(M)-helicene). The needed electronic frequency dependent cubic response calculations are performed within a density functional theory (DFT) approach. A study of the dependence of the property on the choice of electron correlation, on one-electron basis set extension and on the choice of magnetic gauge origin is carried out on a prototype system (twisted oxygen peroxide). The magnetic gauge dependence analysis is extended also to the molecules of the set. An attempt to analyze the structure-property relationships is also made, based on the results obtained for biphenyl (in a frozen twisted conformation), for prolinol and for some of their derivatives. The strength of the effect is discussed, in order to establish its measurability with a proposed experimental setup.
Intrinsic and Extrinsic Origins of the Polar Kerr Effect in a Chiral p-WAVE Superconductor
Goryo, Jun
Recently, the measurement of the polar Kerr effect (PKE) in the quasi two-dimensional superconductor Sr2RuO4, which is motivated to observe the chirality of px + ipy-wave pairing, has been reported. We clarify that the PKE has intrinsic and extrinsic (disorder-induced) origins. The extrinsic contribution would be dominant in the PKE experiment.
Separation of flow from chiral magnetic effect in U+U collisions using spectator asymmetry
Chatterjee, Sandeep
2014-01-01
We demonstrate that the prolate shape of the Uranium nucleus generates anti-correlation between spectator asymmetry and initial state ellipticity of the collision zone, providing a way to constrain the initial event shape in U+U collisions. As an application, we show that this can be used to separate the background contribution due to flow from the signals of chiral magnetic effect.
Effective field theory in the harmonic-oscillator basis
Binder, S; Hagen, G; Papenbrock, T; Wendt, K A
2015-01-01
We develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. We derive useful analytical expressions for an exact and efficient calculation of matrix elements. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leading order. Many-body coupled-cluster calculations of nuclei up to 132Sn exhibit a fast convergence of ground-state energies and radii in feasible model spaces.
Shi, Lei; Wang, Yizhan; Li, Bao; Wu, Lixin
2014-06-28
In this paper, the chiral surfactants bearing two long alkyl chains with hydroxyl groups at their terminals were synthesized and employed to encapsulate a catalytically efficient polyoxometalate through electrostatic interaction. The obtained chiral surfactant-encapsulated polyoxometalate complexes, in which a defined chiral microenvironment surrounds the inorganic cluster, were covalently immobilized into the silica matrix via a sol-gel process. Kinetic resolution of racemic aromatic alcohols was selected as the model reaction to evaluate the chiral supramolecular hybrid catalysts. Up to 89% enantiomeric excess was obtained by varying the reaction conditions. Importantly, the change of loading values of the chiral surfactant-encapsulated polyoxometalates leads to mutative inner microstructures ranging from uniform dispersion to subsequent formation of nanocrystalline domains in the silica matrix. Such a structural evolution differentiates the density and stability of the chiral microenvironment, resulting in a regular change of enantioselectivity of the prepared asymmetric catalysts. Moreover, the fixation of the chiral microenvironment surrounding the polyoxometalates by covalent immobilization was proved to have a promoting effect on enantioselectivity. The present research uncovers the unique effect of immobilization on the kinetic resolution. The strategy helps to understand the influencing factors of enantioselectivity, and provides a convenient and efficient approach for the construction of supramolecular asymmetric catalysts based on chiral surfactant-encapsulated polyoxometalate complexes.
Institute of Scientific and Technical Information of China (English)
HE Liu; JIN Shunzi; ZHANG Shufan; QI Zongneng; WANG Fosong
1996-01-01
Magnetic field-induced orientation of a chiral side chain liquid crystalline polyacrylate (P-11) was studied by using IR dichroism. For the investigated P-11, it has been shown that the magnetic alignment takes place over the entire temperature range between its melting point and clearing point and the orientation level is strongly temperature-dependent, the development with time of the magnetic orientation follows an exponential-type relation,and the smectic phase state influences the thermal relaxation process in the absence of the magnetic field.
Chiral Mott insulators, Meissner effect, and Laughlin states in quantum ladders
Petrescu, Alexandru; Le Hur, Karyn
2015-02-01
We introduce generic bosonic models exemplifying that chiral Meissner currents can persist in insulating phases of matter. We first consider interacting bosons on a two-leg ladder. The total density sector can be gapped in a bosonic Mott insulator at odd-integer filling, while the relative density sector remains superfluid due to interchain hopping. Coupling the relative density to gauge fields yields a pseudospin Meissner effect. We show that the same phase arises if the bosons are replaced by spinful fermions confined in Cooper pairs, and find a dual fermionic Mott insulator with spinon currents. We prove that, by tuning the mean density, the Mott insulator with Meissner currents turns into a low-dimensional bosonic ν =1/2 Laughlin state for strong enough repulsive interactions across the ladder rungs. We finally discuss extensions to multileg ladders and bilayers in which spinon superfluids with Meissner currents become possible. We propose two experimental realizations, one with ultracold atoms in the setup of Atala et al. [Nat. Phys. 10, 588 (2014), 10.1038/nphys2998] and another with Josephson junction arrays. We also address a Bose-Fermi mixture subject to a magnetic field in connection with the pseudogap phase of high-Tc cuprates.
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
Petschauer, Stefan; Haidenbauer, Johann; Kaiser, Norbert; Meißner, Ulf-G.; Weise, Wolfram
2017-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
Petschauer, Stefan; Kaiser, Norbert; Meißner, Ulf-G; Weise, Wolfram
2016-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the Lambda-nucleon in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the ...
Novozhilov, V Yu; Novozhilov, Victor; Novozhilov, Yuri
2002-01-01
We discuss specific features of color chiral solitons (asymptotics, possibility of confainment, quantization) at example of isolated SU(2) color skyrmions, i.e. skyrmions in a background field which is the vacuum field forming the gluon condensate.
DEFF Research Database (Denmark)
da Providëncia, J.; Jalkanen, Karl J.; Bohr, Henrik
2013-01-01
relativistic fluid of elementary particles is studied. We find that the magnetic field of spin polarized matter with densities of 2 to 30, where 0 is the equilibrium density of nuclear matter, is rather huge, of the order of 1017 Gauss. Finally we look at the chiral nature of nuclear forces and interactions...... as they possibly relate to chirality of nuclei (atoms) in molecules as a source of chirality in amino acids and hence in life. Previous works have not investigated the nuclear forces as a possible bias which initiated the bias towards L-amino acids as the building blocks on proteins, and later life....
Emerging chirality in nanoscience.
Wang, Yong; Xu, Jun; Wang, Yawen; Chen, Hongyu
2013-04-07
Chirality in nanoscience may offer new opportunities for applications beyond the traditional fields of chirality, such as the asymmetric catalysts in the molecular world and the chiral propellers in the macroscopic world. In the last two decades, there has been an amazing array of chiral nanostructures reported in the literature. This review aims to explore and categorize the common mechanisms underlying these systems. We start by analyzing the origin of chirality in simple systems such as the helical spring and hair vortex. Then, the chiral nanostructures in the literature were categorized according to their material composition and underlying mechanism. Special attention is paid to highlight systems with original discoveries, exceptional structural characteristics, or unique mechanisms.
Non-local effects at the onset of the chiral transition
Palhares, L F; Kodama, T; Krein, G; Palhares, Let\\'icia F.; Fraga, Eduardo S.; Kodama, Takeshi; Krein, Gast\\~ao
2007-01-01
Inspired by analytic results obtained for a systematic expansion of the memory kernel in dissipative quantum mechanics, we propose a phenomenological procedure to incorporate non-markovian corrections to the Langevin dynamics of an order parameter in field theory systematically. In this note, we restrict our analysis to the onset of the evolution. As an example, we consider the process of phase conversion in the chiral transition.
On Invariants and Scalar Chiral Correlation Functions in { n} = 1 Superconformal Field Theories
Knuth, Holger
A general expression for the four-point function with vanishing total R-charge of antichiral and chiral superfields in { N} = 1 superconformal theories is given. It is obtained by applying the exponential of a simple universal nilpotent differential operator to an arbitrary function of two cross-ratios. To achieve this the nilpotent superconformal invariants according to Park are focused. Several dependencies between these invariants are presented, so that eight nilpotent invariants and 27 monomials of these invariants of degree d > 1 are left being linearly independent. It is analyzed, how terms within the four-point function of general scalar superfields cancel in order to fulfill the chiral restrictions.
Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential
Braguta, V V
2016-01-01
In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.
The effect of the Polyakov loop on the chiral phase transition
Directory of Open Access Journals (Sweden)
Szép Zs.
2011-04-01
Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.
Gámiz, Beatriz; Facenda, Gracia; Celis, Rafael
2016-06-01
Although enantioselective sorption to soil particles has been proposed as a mechanism that can potentially influence the availability of individual chiral pesticide enantiomers in the environment, environmental fate studies generally overlook this possibility and assume that only biotic processes can be enantioselective, whereas abiotic processes, such as sorption, are non-enantioselective. In this work, we present direct evidence for the effect of the enantioselective sorption of a chiral pesticide in a natural soil on the availability of the single pesticide enantiomers for transport. Batch sorption experiments, with direct determination of the sorbed amounts, combined with column leaching tests confirmed previous observations that from non-racemic aqueous solutions the sorption of the chiral fungicide metalaxyl on the soil appeared to be enantioselective, and further demonstrated that the enantiomer that was sorbed to a greater extent (R-metalaxyl, Kd = 1.73 L/kg) exhibited retarded leaching compared to its optical isomer (S-metalaxyl, Kd = 1.15 L/kg). Interconversion and degradation of the pesticide enantiomers, which are potential experimental artifacts that can lead to erroneous estimates of sorption and its enantioselectivity, were discarded as possible causes of the observed enantioselective behavior. The results presented here may have very important implications for a correct assessment of the environmental fate of chiral pesticides that are incorporated into the environment as non-racemic mixtures, and also of aged chiral pesticide residues that have been transformed from racemic to non-racemic by biologically-mediated processes.
Monte-Carlo approach to particle-field interactions and the kinetics of the chiral phase transition
Greiner, Carsten; van Hees, Hendrik; Meistrenko, Alex
2015-01-01
The kinetics of the chiral phase transition is studied within a linear quark-meson-$\\sigma$ model, using a Monte-Carlo approach to semiclassical particle-field dynamics. The meson fields are described on the mean-field level and quarks and antiquarks as ensembles of test particles. Collisions between quarks and antiquarks as well as the $q\\overline{q}$ annihilation to $\\sigma$ mesons and the decay of $\\sigma$ mesons is treated, using the corresponding transition-matrix elements from the underlying quantum field theory, obeying strictly the rule of detailed balance and energy-momentum conservation. The approach allows to study fluctuations without making ad hoc assumptions concerning the statistical nature of the random process as necessary in Langevin-Fokker-Planck frameworks.
Numerically Solving Quark-Loop Effects on Dressed Gluon Propagator in Chiral Limit
Institute of Scientific and Technical Information of China (English)
FAN Xiao-Ying; WANG Jing; Alatancang; SHI Yuan-Mei; HOU Feng-Yao; SUN Wei-Min; ZONG Hong-Shi; PING Jia-Lun
2008-01-01
We do a numerical calculation on the quark-loop effects on the dressed gluon propagator in the chiral limit. It is found that the quark-loop effects on the dressed gluon propagator are significant in solving the quark propagator in the rainbow approximation of the Dyson-Schwinger equation. The approach we used here is quite general and can also be used to calculate both the chemical potential and current quark mass dependence of the dressed gluon propagator.
Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties.
Smith, Kyle W; Zhao, Hangqi; Zhang, Hui; Sánchez-Iglesias, Ana; Grzelczak, Marek; Wang, Yumin; Chang, Wei-Shun; Nordlander, Peter; Liz-Marzán, Luis M; Link, Stephan
2016-06-28
Metal nanoparticles with a dumbbell-like geometry have plasmonic properties similar to those of their nanorod counterparts, but the unique steric constraints induced by their enlarged tips result in distinct geometries when self-assembled. Here, we investigate gold dumbbells that are assembled into dimers within polymeric micelles. A single-particle approach with correlated scanning electron microscopy and dark-field scattering spectroscopy reveals the effects of dimer geometry variation on the scattering properties. The dimers are prepared using exclusively achiral reagents, and the resulting dimer solution produces no detectable ensemble circular dichroism response. However, single-particle circular differential scattering measurements uncover that this dimer sample is a racemic mixture of individual nanostructures with significant positive and negative chiroptical signals. These measurements are complemented with detailed simulations that confirm the influence of various symmetry elements on the overall peak resonance energy, spectral line shape, and circular differential scattering response. This work expands the current understanding of the influence self-assembled geometries have on plasmonic properties, particularly with regard to chiral and/or racemic samples which may have significant optical activity that may be overlooked when using exclusively ensemble characterization techniques.
Analysis of General Power Counting Rules in Effective Field Theory
Gavela, B M; Manohar, A V; Merlo, L
2016-01-01
We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.
Chiral symmetry and chiral-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Sen, Srimoyee
2016-01-01
We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.
The Fuzzy analogy of chiral diffeomorphisms in higher dimensional quantum field theories
Fassarella, L
2001-01-01
Our observation that the chiral diffeomorphisms allow an interpretation as modular groups of local operator algebras in the sense of Tomita and takesaki allows us to conclude that the higher deimensional generalizations are certain infinite dimensional groups which act in a 'fuzzy' way on the operator algebras of local quantum physics. These actions do not require any spacetime noncommutativity and are in complete harmony with causality and localization principles. The use of an appropriately defined isomorphism reprocesses these fuzzy actions into partially geometric actions on the holographic image and in this way tightens the relation with chiral structures and makes recent attempts to explain the required universal structure of a would be quantum Bekenstein law in terms of Virasoro algebra structures more palatable.
The Fuzzy Analog of Chiral Diffeomorphisms in higher dimensional Quantum Field Theories
Fassarella, L; Fassarella, Lucio; Schroer, Bert
2001-01-01
Our observation that the chiral diffeomorphisms allow an interpretation as modular groups of local operator algebras in the sense of Tomita and Takesaki allows us to conclude that the higher dimensional generalizations are certain infinite dimensional groups which act in a ``fuzzy'' way on the operator algebras of local quantum physics. These actions do not require any spacetime noncommutativity and are in complete harmony with causality and localization principles. The use of an appropriately defined holomorphic isomorphism reprocesses these fuzzy actions into partially geometric actions on the holographic image and in this way tightens the relation with chiral structures and makes recent attempts to explain the required universal structure of a would be quantum Bekenstein law in terms of Virasoro algebra structures more palatable.
The Fuzzy analogy of chiral diffeomorphisms in higher dimensional quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Fassarella, Lucio; Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: fassarel@cbpf.br; schroer@cbpf.br
2001-06-01
Our observation that the chiral diffeomorphisms allow an interpretation as modular groups of local operator algebras in the sense of Tomita and takesaki allows us to conclude that the higher deimensional generalizations are certain infinite dimensional groups which act in a 'fuzzy' way on the operator algebras of local quantum physics. These actions do not require any spacetime noncommutativity and are in complete harmony with causality and localization principles. The use of an appropriately defined isomorphism reprocesses these fuzzy actions into partially geometric actions on the holographic image and in this way tightens the relation with chiral structures and makes recent attempts to explain the required universal structure of a would be quantum Bekenstein law in terms of Virasoro algebra structures more palatable. (author)
Mesonic Chiral Rings in Calabi-Yau Cones from Field Theory
Grant, L; Grant, Lars
2007-01-01
We study the half-BPS mesonic chiral ring of the N=1 superconformal quiver theories arising from N D3-branes stacked at Y^pq and L^abc Calabi-Yau conical singularities. We map each gauge invariant operator represented on the quiver as an irreducible loop adjoint at some node, to an invariant monomial, modulo relations, in the gauged linear sigma model describing the corresponding bulk geometry. This map enables us to write a partition function at finite N over mesonic half-BPS states. It agrees with the bulk gravity interpretation of chiral ring states as cohomologically trivial giant gravitons. The quiver theories for L^aba, which have singular base geometries, contain extra operators not counted by the naive bulk partition function. These extra operators have a natural interpretation in terms of twisted states localized at the orbifold-like singularities in the bulk.
English, Niall J; Kusalik, Peter G; Woods, Sarah A
2012-03-07
Non-equilibrium molecular dynamics simulations of R and S enantiomers of 1,1-chlorofluoroethane, both for pure liquids and racemic mixtures, have been performed at 298 K in the absence and presence of both electromagnetic (e/m) and circularly polarised electric (CP) fields of varying frequency (100-2200 GHz) and intensity (0.025-0.2 V Å(-1) (rms)). Significant non-thermal field effects were noted in the coupling of rotational and translational motion; for instance, in microwave and far-infrared (MW/IR) e/m fields, marked increases in rotational and translational diffusion vis-à-vis the zero-field case took place at 0.025-0.1 V Å(-1) (rms), with a reduction in translational diffusion vis-à-vis the zero-field case above 0.1 V Å(-1) (rms) above 100 GHz. This was due to enhanced direct coupling of rotational motion with the more intense e/m field at the ideal intrinsic rotational coupling frequency (approximately 700 GHz) leading to such rapidly oscillating rotational motion that extent of translational motion was effectively reduced. In the case of CP fields, rotational and translational diffusion was also enhanced for all intensities, particularly at approximately 700 GHz. For both MW/IR and CP fields, non-linear field effects were evident above around 0.1 V Å(-1) (rms) intensity, in terms of enhancements in translational and rotational motion. Simulation of 90-10 mol. % liquid mixtures of a Lennard-Jones solvent with R and S enantiomer-solutes in MW/IR and CP fields led to more limited promotion of rotational and translational diffusion, due primarily to increased frictional effects. For both e/m and CP fields, examination of the laboratory- and inertial-frame auto- and cross-correlation functions of velocity and angular velocity demonstrated the development of explicit coupling with the external fields at the applied frequencies, especially so in the more intense fields where nonlinear effects come into play. For racemic mixtures, elements of the laboratory
Dimensional structural constants from chiral and conformal bosonization of QCD
Andrianov, A A; Ebert, D; Mann, T F; Mann, Th. Feld
1997-01-01
We derive the dimensional non-perturbative part of the QCD effective ac= tion for scalar and pseudoscalar meson fields by means of chiral and conformal bosonization. The related structural coupling constants L_5 and L_8 of th= e chiral lagrangian are estimated using general relations which are valid i= n a variety of chiral bosonization models without explicit reference to model parameters. The asymptotics for large scalar fields in QCD is elaborated,= and model-independent constraints on dimensional coupling constants of the effective meson lagrangian are evaluated. We determine also the interacti= on between scalar quarkonium and the gluon density and obtain the scalar glueball-quarkonium potential.
Effective field theory for magnetic compactifications
Buchmuller, Wilfried; Dudas, Emilian; Schweizer, Julian
2016-01-01
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of a symmetry of the six-dimensional theory by the background gauge field, with the Wilson line as Goldstone boson.
Higgs-Yukawa model in chirally-invariant lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Bulava, John [CERN, Geneva (Switzerland). Physics Department; Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [National Taiwan Univ., Taipei (China). Dept. of Physics; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; National Centre for Theoretical Sciences, Hsinchu (China). Div. of Physics; Nagai, Kei-Ichi [Nagoya Univ., Nagoya, Aichi (Japan). Kobayashi-Maskawa Institute; Ogawa, Kenji [Chung-Yuan Christian Univ., Chung-Li (China). Dept. of Physics
2012-10-15
Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.
Role of light scalar resonances in strongly interacting chiral effective Lagrangians
Abdel-Rehim, Abdou M.
We studied the role of a putative nonet of light scalar mesons in the isospin violating decay eta → 3pi. The framework is a non-linear chiral effective Lagrangian. The contributions from the scalars is found to enhance the result for the decay width by 15% at leading order. Due to cancellations among different scalar contributions, their effect is less than expected. A preliminary discussion of the related process eta' → 3pi is given. We apply the K-matrix unitarization method to the case of strongly coupled Higgs sector of the electro-weak theory. The complex pole position of the scattering amplitude of the Goldstone bosons are evaluated for the whole range of bare Higgs masses. We compare the unitarized amplitude obtained from the K-matrix to the Breit-Wigner shape for narrow resonances. We apply the same technique to study the effect of final state interactions in the gluon fusion process. Finally, the K-matrix unitarization is used to study the properties of the scalar resonances sigma(550) and f 0(980) in the framework of non-linear chiral Lagrangian. The physical mass and width of these resonances are determined from the pole position of the I = 0, J = 0 partial wave of the pipi scattering amplitude. It is found that, to a great extent, the results are very similar to those obtained in the framework of linear chiral Lagrangian unitarized by the K-matrix method or the nonlinear chiral Lagrangian approximately unitarized by a modified Breit-Wigner resonance shape. A discussion of the effect of sigma(550) and f0(980) in the I = 1, J = 1 and I = 2, J = 0 partial waves, where the rho(770) vector resonance dominates, is given.
Longitudinal and transverse pyroelectric effects in a chiral ferroelectric liquid crystal
Energy Technology Data Exchange (ETDEWEB)
Yablonskii, S. V., E-mail: yablonskii2005@yandex.ru; Bondarchuk, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Soto-Bustamante, E. A.; Romero-Hasler, P. N. [Universidad de Chile (Chile); Ozaki, M. [Osaka University, Department of Electronic Engineering, Faculty of Engineering (Japan); Yoshino, K. [Shimane Institute for Industrial Technology (Japan)
2015-04-15
In this study, we compare the results of experimental investigations of longitudinal and transverse pyroelectric effects in a chiral ferroelectric crystal. In a transverse geometry, we studied freely suspended liquid-crystal films. In both geometries, samples exhibited bistability, demonstrating stable pyroelectric signals of different polarities at zero voltage. It is shown that a bistable cell based on a freely suspended film requires 40 times less energy expenditures as compared to the conventional sandwich-type cell.
Hiroshi Yao
2016-01-01
Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and character...
Chiral supergravity and anomalies
Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.
1999-01-01
Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.
Directory of Open Access Journals (Sweden)
Nisha Shukla
2015-01-01
Full Text Available R- and S-propylene oxide (PO have been shown to interact enantiospecifically with the chiral surfaces of Au nanopar‐ ticles (NPs modified with D- or L-cysteine (cys. This enantiospecific interaction has been detected using optical polarimetry measurements made on solutions of the D- or L-cys modified Au (cys/Au NPs during addition of racemic PO. The selective adsorption of one enantiomer of the PO onto the cys/Au NP surfaces results in a net rotation of light during addition of the racemic PO to the solution. In order to optimize the conditions used for making these measurements and to quantify enantiospecific adsorption onto chiral NPs, this work has measured the effect of temperature, wavelength and Au NP size on optical rotation by solutions containing D- or L-cys/Au NPs and racemic PO. Increasing temperature, decreasing wave‐ length and decreasing NP size result in larger optical rotations.
Constraints on $s-\\bar s$ asymmetry in the proton in chiral effective theory
Wang, X G; Melnitchouk, W; Salamu, Y; Thomas, A W; Wang, P
2016-01-01
We compute the $s-\\bar s$ asymmetry in the proton in chiral effective theory, using available phenomenological constraints from existing data. Unlike previous meson cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate states, our formalism includes off-shell and contact interactions, which impact the shape of the $s-\\bar s$ difference. Using a finite-range regularization procedure that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated value of the first moment of the asymmetry to the range $-0.07 \\times 10^{-3} \\leq \\langle x(s-\\bar s) \\rangle \\leq 1.12 \\times 10^{-3}$ at a scale of $Q^2=1\\ $GeV$^2$. In contrast to some suggestions in the literature, the magnitude of this correction is too small to account for the NuTeV anomaly.
Rho, Mannque
2008-01-01
This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and
Nanoscale chirality in metal and semiconductor nanoparticles.
Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M
2016-10-18
The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.
Superconductivity in a chiral nanotube
Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.
2017-02-01
Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.
Interference Phenomenon for Different Chiral Bosonization Schemes
Abreu, Everton M C; Abreu, Everton M C; Wotzasek, Clovis
1998-01-01
We study the relationship between different chiral bosonization schemes (CBS) in the context of the soldering formalism\\cite{MS}, that considers the phenomenon of interference in the quantum field theory\\cite{ABW}. This analysis is done in the framework put forward by Siegel\\cite{WS} and by Floreanini and Jackiw\\cite{FJ} (FJ). We propose a field redefinition that discloses the presence of a noton, a non dynamical field, in Siegel's formulation for chiral bosons. The presence of a noton in the Siegel CBS is a new and surprising result, that separates dynamics from symmetry by diagonalising the Siegel action into the FJ and the noton action. While the first describes the chiral dynamics, the noton carries the symmetry contents, acquiring dynamics upon quantization and is fully responsible for the Siegel anomaly. The diagonal representation proposed here is used to study the effect of quantum interference between gauged rightons and leftons.
Meson cloud effects on the pion quark distribution function in the chiral constituent quark model
Watanabe, Akira; Suzuki, Katsuhiko
2016-01-01
We investigate the valence quark distribution function of the pion $v^{\\pi}(x,Q^2)$ in the framework of the chiral constituent quark model and evaluate the meson cloud effects on $v^{\\pi}(x,Q^2)$. We explicitly demonstrate how the meson cloud effects affect $v^{\\pi}(x,Q^2)$ in detail. We find that the meson cloud correction causes an overall 32\\% reduction of the valence quark distribution and an enhancement at the small Bjorken $x$ regime. Besides, we also find that the dressing effect of the meson cloud will make the valence quark distribution to be softer in the large $x$ region.
Sur, Shouvik; Lee, Sung-Sik
2014-07-01
A non-Fermi liquid state without time-reversal and parity symmetries arises when a chiral Fermi surface is coupled with a soft collective mode in two space dimensions. The full Fermi surface is described by a direct sum of chiral patch theories, which are decoupled from each other in the low-energy limit. Each patch includes low-energy excitations near a set of points on the Fermi surface with a common tangent vector. General patch theories are classified by the local shape of the Fermi surface, the dispersion of the critical boson, and the symmetry group, which form the data for distinct universality classes. We prove that a large class of chiral non-Fermi liquid states exists as stable critical states of matter. For this, we use a renormalization group scheme where low-energy excitations of the Fermi surface are interpreted as a collection of (1+1)-dimensional chiral fermions with a continuous flavor labeling the momentum along the Fermi surface. Due to chirality, the Wilsonian effective action is strictly UV finite. This allows one to extract the exact scaling exponents although the theories flow to strongly interacting field theories at low energies. In general, the low-energy effective theory of the full Fermi surface includes patch theories of more than one universality classes. As a result, physical responses include multiple universal components at low temperatures. We also point out that, in quantum field theories with extended Fermi surface, a noncommutative structure naturally emerges between a coordinate and a momentum which are orthogonal to each other. We show that the invalidity of patch description for Fermi liquid states is tied with the presence of UV/IR mixing associated with the emergent noncommutativity. On the other hand, UV/IR mixing is suppressed in non-Fermi liquid states due to UV insensitivity, and the patch description is valid.
Quantum-mechanical picture of peripheral chiral dynamics
Granados, C
2015-01-01
The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. The effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(M_pi)] and could be observed in form factor measurements at low momentum transfer.
Quantum-mechanical picture of peripheral chiral dynamics
Energy Technology Data Exchange (ETDEWEB)
Granados, Carlos [Uppsala Univ., Uppsala (Sweden); Weiss, Christian [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2015-08-28
The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(M_{π})] and could be observed in form factor measurements at low momentum transfer.
GLOBAL EFFECTS OF VARIOUS SOIL TREATMENTS ON TRANSFORMATIONS OF CHIRAL PESTICIDES
Many pesticides and other organic pollutants are chiral, and their enantiomers exhibit differences in biological properties, including rates of microbial degradation. We have measured by chiral GC and capillary electrophoresis the enantioselectivity of biodegradation of three pe...
Chiral effective theory methods and their application to the structure of hadrons from lattice QCD
Shanahan, P. E.
2016-12-01
For many years chiral effective theory (ChEFT) has enabled and supported lattice QCD calculations of hadron observables by allowing systematic effects from unphysical lattice parameters to be controlled. In the modern era of precision lattice simulations approaching the physical point, ChEFT techniques remain valuable tools. In this review we discuss the modern uses of ChEFT applied to lattice studies of hadron structure in the context of recent determinations of important and topical quantities. We consider muon g-2, strangeness in the nucleon, the proton radius, nucleon polarizabilities, and sigma terms relevant to the prediction of dark-matter-hadron interaction cross-sections, among others.
Chiral Effective Theory Methods and their Application to the Structure of Hadrons from Lattice QCD
Shanahan, P E
2016-01-01
For many years chiral effective theory (ChEFT) has enabled and supported lattice QCD calculations of hadron observables by allowing systematic effects from unphysical lattice parameters to be controlled. In the modern era of precision lattice simulations approaching the physical point, ChEFT techniques remain valuable tools. In this review we discuss the modern uses of ChEFT applied to lattice studies of hadron structure in the context of recent determinations of important and topical quantities. We consider muon g-2, strangeness in the nucleon, the proton radius, nucleon polarizabilities, and sigma terms relevant to the prediction of dark-matter-hadron interaction cross-sections, among others.
Gauge Invariant Effective Action in Abelian Chiral Gauge Theory on the Lattice
Suzuki, H
1999-01-01
Lüscher's recent formulation of Abelian chiral gauge theories on the lattice, in the vacuum (or perturbative) sector in infinite lattice volume, is re-interpreted in terms of the lattice covariant regularization. The gauge invariance of the effective action and the integrability of the gauge current in anomaly-free cases become transparent then. The real part of the effective action is simply one-half of that of the Dirac fermion and, when the Dirac operator has proper properties in the continuum limit, the imaginary part in the continuum limit reproduces the $\\eta$-invariant.}
Chiral charge erasure via thermal fluctuations of magnetic helicity
Long, Andrew J.; Sabancilar, Eray
2016-05-01
We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ gtrsim 1/(αμ5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δScript H ~ λT and τ ~ αλ3T2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t ~ T3/(α5μ54) until it reaches an equilibrium value Script H ~ μ5T2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ5 < T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t ~ T/(α3μ52). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.
Chiral charge erasure via thermal fluctuations of magnetic helicity
Energy Technology Data Exchange (ETDEWEB)
Long, Andrew J. [Kavli Institute for Cosmological Physics, University of Chicago,Chicago, Illinois 60637 (United States); Sabancilar, Eray [Institut de Théorie des Phénoménes Physiques, Ecole Polytechnique Fédérale de Lausanne,CH-1015 Lausanne (Switzerland)
2016-05-11
We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ≳1/(αμ{sub 5}), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ{sub 5} parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δ H∼λT and τ∼αλ{sup 3}T{sup 2} for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t∼T{sup 3}/(α{sup 5}μ{sub 5}{sup 4}) until it reaches an equilibrium value H∼μ{sub 5}T{sup 2}/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ{sub 5}
Topics in Effective Field Theory for Lattice QCD
Walker-Loud, A
2006-01-01
In this work, we extend and apply effective field theory techniques to systematically understand a subset of lattice artifacts which pollute the lattice correlation functions for a few processes of physical interest. Where possible, we compare to existing lattice QCD calculations. In particular, we extend the heavy baryon Lagrangian to the next order in partially quenched chiral perturbation theory and use it to compute the masses of the lightest spin-1/2 and spin-3/2 baryons to next-to-next-to leading order. We then construct the twisted mass chiral Lagrangian for baryons and apply it to compute the lattice spacing corrections to the baryon masses simulated with twisted mass lattice QCD. We extend computations of the nucleon electromagnetic structure to account for finite volume effects, as these observables are particularly sensitive to the finite extent of the lattice. We resolve subtle peculiarities for lattice QCD simulations of polarizabilities and we show that using background field techniques, one can...
Kaul, S. N.; Messala, Umasankar
2016-03-01
Weak itinerant-electron ferromagnet Ni3Al is driven to magnetic instability (quantum critical point, QCP, where the long-range ferromagnetic order of the bulk ceases to exist) by reducing the average crystallite size to d=50 nm. 'Zero-field' (H=0) linear and nonlinear ac-susceptibilities, measured on Ni3Al nanoparticle aggregates, with d=50 nm (S1) and d=5 nm (S2), provide strong evidence for two spin glass (SG)-like thermodynamic phase transitions: one at Ti(H = 0) ≃ 30 K (Ti† (H = 0) ≃ 230 K) and the other at a lower temperature Tp(H = 0) ≃ 8 K (Th(H = 0) ≃ 52 K) in S1 (S2). 'In-field' (H ≠ 0) linear ac-susceptibility and dc magnetization demonstrate that the thermodynamic nature of these transitions is preserved in finite fields. The presently determined H-T phase diagrams for the samples S1 and S2 are compared with those predicted by the Kotliar-Sompolinsky and Gabay-Toulouse mean-field models and Monte Carlo simulations, based on the chirality-driven spin glass (SG) ordering scenario, for a three-dimensional nearest-neighbor Heisenberg SG system with or without weak random anisotropy. Such a detailed comparison permits us to unambiguously identify various 'zero-field' and 'in-field' SG phase transitions as: (i) the simultaneous paramagnetic (PM)-chiral glass (CG) and PM-SG phase transitions at Ti(H), (ii) the PM-CG transition at Ti† (H), (iii) the replica symmetry-breaking SG transition at Tp(H), and (iv) the continuous spin-rotation symmetry-breaking SG transition at Th(H). In the presence of random anisotropy, magnetization fails to saturate even at 90 kOe in S1 whereas negligibly small anisotropy allows even fields as weak as 1 kOe to saturate magnetization and induce ferromagnetism in S2. Due to the proximity to CG/SG-QCP, magnetization and susceptibility both exhibit non-Fermi liquid behavior over a wide range at low temperatures.
Impurity effect on Kramer-Pesch core shrinkage in s-wave vortex and chiral p-wave vortex
Hayashi, Nobuhiko; Kato, Yusuke; Sigrist, Manfred
2005-04-01
The low-temperature shrinking of the vortex core (Kramer-Pesch effect) is studied for an isolated single vortex for chiral p-wave and s-wave superconducting phases. The effect of nonmagnetic impurities on the vortex core radius is numerically investigated in the Born limit by means of a quasiclassical approach. It is shown that in the chiral p-wave phase the Kramer-Pesch effect displays a certain robustness against impurities owing to a specific quantum effect, while the s-wave phase reacts more sensitively to impurity scattering. This suggests chiral p-wave superconductors as promising candidates for the experimental observation of the Kramer-Pesch effect.
Nuclear chiral dynamics and thermodynamics
Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram
2013-11-01
This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.
Enantiospecific adsorption of cysteine on a chiral Au34 cluster
Pelayo, José de Jesús; Valencia, Israel; Díaz, Gabriela; López-Lozano, Xóchitl; Garzón, Ignacio L.
2015-12-01
The interaction of biological molecules like chiral amino acids with chiral metal clusters is becoming an interesting and active field of research because of its potential impact in, for example, chiral molecular recognition phenomena. In particular, the enantiospecific adsorption (EA) of cysteine (Cys) on a chiral Au55 cluster was theoretically predicted a few years ago. In this work, we present theoretical results, based on density functional theory, of the EA of non-zwitterionic cysteine interacting with the C3-Au34 chiral cluster, which has been experimentally detected in gas phase, using trapped ion electron diffraction. Our results show that, indeed, the adsorption energy of the amino acid depends on which enantiomers participate in the formation Cys-Au34 chiral complex. EA was obtained in the adsorption modes where both the thiol, and the thiol-amino functional groups of Cys are adsorbed on low-coordinated sites of the metal cluster surface. Similarly to what was obtained for the Cys-Au55 chiral complex, in the present work, it is found that the EA is originated from the different strength and location of the bond between the COOH functional group and surface Au atoms of the Au34 chiral cluster. Calculations of the vibrational spectrum for the different Cys-Au34 diastereomeric complexes predict the existence of a vibro-enantiospecific effect, indicating that the vibrational frequencies of the adsorbed amino acid depend on its handedness.
The nonstrange dibaryon and hidden-color effect in a chiral quark model
Dai, L. R.; Zhang, Y. N.; Sun, Y. L.; Shao, S. J.
2016-09-01
The exotic nonstrange ΔΔ dibaryon with I(JP) = 0(3+) has been confirmed by the experimental data reported by WASA-at-COSY Collaboration, and the result is consistent with our theoretical prediction in the chiral SU(3) quark model and extended chiral SU(3) quark model, showing that the effect from hidden-color channel ( CC is important. In the present work, we further investigate another exotic nonstrange ΔΔ dibaryon with I(JP) = 3(0+) in the chiral SU(3) quark model that describes the energies of baryon ground states and the nucleon-nucleon (NN) scattering data satisfactorily. We perform a dynamical coupled-channel study of the ΔΔ - CC system with I(JP) = 3(0+) within the framework of resonating group method (RGM). We find that the binding energy of I(JP) = 3(0+) state is about 22.3 MeV and a root-mean-square radius (RMS) of 1.03 fm in single-channel calculation. Then we extend the model to include the CC channel to further study the I(JP) = 3(0+) state and find that the binding energy is about 31.3 MeV and RMS is 0.97 fm in coupled-channel calculation. We can see that the CC channel coupling has a relatively large effect on this state. The color screening effect is further considered and we find that the bound state property will not change much. It is shown that the binding energy of this state is stably ranged around several tens of MeV; it means that its mass is always lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ.
The nonstrange dibaryon and hidden-color effect in a chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Dai, L.R.; Zhang, Y.N.; Sun, Y.L.; Shao, S.J. [Liaoning Normal University, Department of Physics, Dalian (China)
2016-09-15
The exotic nonstrange ΔΔ dibaryon with I(J{sup P}) = 0(3{sup +}) has been confirmed by the experimental data reported by WASA-at-COSY Collaboration, and the result is consistent with our theoretical prediction in the chiral SU(3) quark model and extended chiral SU(3) quark model, showing that the effect from hidden-color channel (CC) is important. In the present work, we further investigate another exotic nonstrange ΔΔ dibaryon with I(J{sup P}) = 3(0{sup +}) in the chiral SU(3) quark model that describes the energies of baryon ground states and the nucleon-nucleon (NN) scattering data satisfactorily. We perform a dynamical coupled-channel study of the ΔΔ-CC system with I(J{sup P}) = 3(0{sup +}) within the framework of resonating group method (RGM). We find that the binding energy of I(J{sup P}) = 3(0{sup +}) state is about 22.3 MeV and a root-mean-square radius (RMS) of 1.03 fm in single-channel calculation. Then we extend the model to include the CC channel to further study the I(J{sup P}) = 3(0{sup +}) state and find that the binding energy is about 31.3 MeV and RMS is 0.97 fm in coupled-channel calculation. We can see that the CC channel coupling has a relatively large effect on this state. The color screening effect is further considered and we find that the bound state property will not change much. It is shown that the binding energy of this state is stably ranged around several tens of MeV; it means that its mass is always lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ. (orig.)
Chiral current generation in QED by longitudinal photons
Avalo, J L Acosta
2016-01-01
We report the generation of a pseudovector electric current having imbalanced chirality in an electron-positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even for vanishing chemical potential. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler-Bell-Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral...
How tetraquarks can generate a second chiral phase transition
Pisarski, Robert D
2016-01-01
We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature and quark chemical potential, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.
Kumar, Navnita; Khullar, Sadhika; Mandal, Sanjay K
2015-01-28
We describe the distinct receptor behaviour of a neutral chiral Cu(ii) complex in dimethylsulfoxide or methanol towards anions, such as F(-), Cl(-), Br(-), I(-) or OAc(-), where F(-) and OAc(-) show the most colorimetric change, through various spectroscopic techniques. Further insights into this at the molecular level come from the single crystal X-ray structures of both dimethylsulfoxide and methanol solvates which show a solvent effect on their supramolecular network formation. Both chromogenic and fluorogenic sensing of the anions indicate a 2 : 1 receptor-anion formation via anion-π as well as hydrogen bonding interactions.
Lin, Shi-Zeng; Batista, Cristian D; Reichhardt, Charles; Saxena, Avadh
2014-05-09
We show that a temperature gradient induces an ac electric current in multiferroic insulators when the sample is embedded in a circuit. We also show that a thermal gradient can be used to move magnetic Skyrmions in insulating chiral magnets: the induced magnon flow from the hot to the cold region drives the Skyrmions in the opposite direction via a magnonic spin transfer torque. Both results are combined to compute the effect of Skyrmion motion on the ac current generation and demonstrate that Skyrmions in insulators are a promising route for spin caloritronics applications.
Beam Energy Scan a Case for the Chiral Magnetic Effect in Au-Au Collisions
Energy Technology Data Exchange (ETDEWEB)
Longacre, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2014-01-05
The Chiral Magnetic Effect (CME) is predicted for Au-Au collisions at RHIC. However, many backgrounds can give signals that make the measurement hard to interpret. The STAR experiment has made measurements at different collisions energy ranging from √(s_{NN})=7.7 GeV to 62.4 GeV. In the analysis that is presented we show that the CME turns on with energy and is not present in central collisions where the induced magnetic is small.
Electrodynamics of chiral matter
Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang
2017-02-01
Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.
Chiral Thermodynamics in a finite box
Juričić, Ana
2016-01-01
Finite-volume modifications of the two-flavor chiral phase diagram are investigated within an effective quark-meson model in various mean-field approximations. The role of vacuum fluctuations and boundary conditions, their influence on higher cumulants and signatures of a possible pseudo-critical endpoint are amplified with smaller volumes.
Chiral effects in adrenocorticolytic action of o,p'-DDD (mitotane) in human adrenal cells.
Asp, V; Cantillana, T; Bergman, A; Brandt, I
2010-03-01
Adrenocortical carcinoma (ACC) is a rare malignant disease with poor prognosis. The main pharmacological choice, o,p'-DDD (mitotane), produces severe adverse effects. Since o,p'-DDD is a chiral molecule and stereoisomers frequently possess different pharmacokinetic and/or pharmacodynamic properties, we isolated the two o,p'-DDD enantiomers, (R)-(+)-o,p'-DDD and (S)-(-)-o,p'-DDD, and determined their absolute structures. The effects of each enantiomer on cell viability and on cortisol and dehydroepiandrosterone (DHEA) secretion in the human adrenocortical cell line H295R were assessed. We also assayed the o,p'-DDD racemate and the m,p'- and p,p'-isomers. The results show small but statistically significant differences in activity of the o,p'-DDD enantiomers for all parameters tested. The three DDD isomers were equally potent in decreasing cell viability, but p,p'-DDD affected hormone secretion slightly less than the o,p'- and m,p'-isomers. The small chiral differences in direct effects on target cells alone do not warrant single enantiomer administration, but might reach importance in conjunction with possible stereochemical effects on pharmacokinetic processes in vivo.
Chiral Decomposition For Non-Abelian Bosons
Braga, N R F; Braga, Nelson R. F.; Wotzasek, Clovis
1996-01-01
We study the non-abelian extension for the splitting of a scalar field into chiral components. Using this procedure we find a non ambiguous way of coupling a non abelian chiral scalar field to gravity. We start with a (non-chiral) WZW model covariantly coupled to a background metric and, after the splitting, arrive at two chiral Wess-Zumino-Witten (WZW) models coupled to gravity.
Arakawa, Naoya
2016-11-01
I propose the emergence of the spin-orbital-coupled vector chirality in a nonfrustrated Mott insulator with the strong spin-orbit coupling due to a b -plane's inversion-symmetry (IS) breaking. I derive the superexchange interactions for a t2 g-orbital Hubbard model on a square lattice with the strong spin-orbit coupling and the IS-breaking-induced hopping integrals, and explain the microscopic origins of the Dzyaloshinsky-Moriya (DM) -type and the Kitaev-type interactions. Then, by adopting the mean-field approximation to a minimal model including only the Heisenberg-type and the DM-type nearest-neighbor interactions, I show that the IS breaking causes the spin-orbital-coupled chirality as a result of stabilizing the screw state. I also highlight the limit of the hard-pseudospin approximation in discussing the stability of the screw states in the presence of both the DM-type and the Kitaev-type interactions, and discuss its meaning. I finally discuss the effects of tetragonal crystal field and Jeff=3/2 states, and the application to the iridates near the [001 ] surface of Sr2IrO4 and the interface between Sr2IrO4 and Sr3Ir2O7 .
Chiral nanophotonics chiral optical properties of plasmonic systems
Schäferling, Martin
2017-01-01
This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .
Effects of β-cyclodextrins on the enzymatical hydrolysis of chiral dichlorprop methyl ester
Institute of Scientific and Technical Information of China (English)
WEN Yue-zhong; ZHOU Shan-shan; FANG Zhao-hua; LIU Wei-ping
2005-01-01
The effect of β-cyclodextrins(β-CDs) on the enzymatical hydrolysis of chiral dichlorprop methyl ester (DCPPM) was studied.Four kinds of β-cyclodextrins(β-cyclodextrin, Partly methylated-CD( PM-β-CD), hydroxypropyl-cyclodextrin(HP-β-CD) and carboxymethylcyclodextrin(CM-β-CD) ) were used. Compared with 100% DCPPM in the absence of β-cyclodextrins, the activity of lipase decreased with the increase of β-cyclodextrin and PM-β-cyclodextrin. However, CM-β-cyclodextrin stimulated the lipase activity. The inhibition effect of β-cyclodextrin and PM-β-cyclodextrin on the hydrolysis of DCPPM is affected by many factors other than degree of the methylation blocking the active site of lipase. UV-Vis and Fourier transform infrared(FTIR) spectroscopy studies of the complexation of aqueous DCPPM with β-CDs provide fresh insight into the molecular structure of the complex and explain the effects of β-CDs on enzymatical hydrolysis of chiral DCPPM. Data showed that inclusion complexes had formed by complexation of the CM-β-CD with DCPPM and the solubility of DCPPM was increased in water, which leaded to the increased lipase activity.
Helical Ordering in Chiral Block Copolymers
Zhao, Wei; Hong, Sung Woo; Chen, Dian; Grason, Gregory; Russell, Thomas
2012-02-01
Introducing molecular chirality into the segments of block copolymers can influence the nature of the resultant morphology. Such an effect was found for poly(styrene-b-L-lactide) (PS-b-PLLA) diblock copolymers where hexagonally packed PLLA helical microdomains (H* phase) form in a PS matrix. However, molecular ordering of PLLA within the helical microdomains and the transfer of chirality from the segmental level to the mesoscale is still not well understood. We developed a field theoretic model to describe the interactions between segments of chiral blocks, which have the tendency to form a ``cholesteric'' texture. Based on the model, we calculated the bulk morphologies of chiral AB diblock copolymers using self-consistent field theory (SCFT). Experiments show that the H* phase only forms when microphase separation between PS and PLLA block happens first and crystallization of PLLA block is suppressed or happens within confined microdomain. Hence, crystalline ordering is not necessary for H* phase formation. The SCFT offers the chance to explore the range of thermodynamic stability of helical structures in the phase diagram of chiral block copolymer melts, by tuning parameters not only like the block segregation strength and composition, but also new parameters such as the ratio between preferred helical pitch to the radius of gyration and the Frank elastic constant for inter-segment distortions.
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4
Circular dichroism induced by Fano resonances in planar chiral oligomers
Hopkins, Ben; Miroshnichenko, Andrey E; Kivshar, Yuri S
2016-01-01
We present a general theory of circular dichroism induced in planar chiral nanostructures with rotational symmetry. It is demonstrated, analytically, that the handedness of the incident field's polarization can control whether a nanostructure induces either absorption or scattering losses, even when the total loss (extinction) is polarization-independent. We then show that this effect is a consequence of modal interference so that strong circular dichroism in absorption and scattering can be engineered by combining Fano resonances with chiral nanoparticle clusters.
Power Counting Regime of Chiral Extrapolation and Beyond
Leinweber, D B; Young, R D; Leinweber, Derek B; Thomas, Anthony W; Young, Ross D
2005-01-01
Finite-range regularised (FRR) chiral effective field theory is presented in the context of approximation schemes ubiquitous in modern lattice QCD calculations. Using FRR techniques, the power-counting regime (PCR) of chiral perturbation theory can be estimated. To fourth-order in the expansion at the 1% tolerance level, we find m_\\pi < 180 MeV for the PCR, extending only a small distance beyond the physical pion mass.
Nucleon polarizabilities in the perturbative chiral quark model
Dong, Y; Gutsche, T; Kuckei, J; Lyubovitskij, V E; Pumsa-ard, K; Shen, P; Faessler, Amand; Gutsche, Th.
2006-01-01
The nucleon polarizabilities alpha(E) and beta(M) are studied in the context of the perturbative chiral quark model. We demonstrate that meson cloud effects are sufficient to explain the electric polarizability of nucleon. Contributions of excite quark states to the paramagnetic polarizability are dominant and cancel the diamagnetic polarizability arising from the chiral field. The obtained results are compared to data and other theoretical predictions.
Topics in lattice QCD and effective field theory
Buchoff, Michael I.
Quantum Chromodynamics (QCD) is the fundamental theory that governs hadronic physics. However, due to its non-perturbative nature at low-energy/long distances, QCD calculations are difficult. The only method for performing these calculations is through lattice QCD. These computationally intensive calculations approximate continuum physics with a discretized lattice in order to extract hadronic phenomena from first principles. However, as in any approximation, there are multiple systematic errors between lattice QCD calculation and actual hardronic phenomena. Developing analytic formulae describing the systematic errors due to the discrete lattice spacings is the main focus of this work. To account for these systematic effects in terms of hadronic interactions, effective field theory proves to be useful. Effective field theory (EFT) provides a formalism for categorizing low-energy effects of a high-energy fundamental theory as long as there is a significant separation in scales. An example of this is in chiral perturbation theory (chiPT), where the low-energy effects of QCD are contained in a mesonic theory whose applicability is a result of a pion mass smaller than the chiral breaking scale. In a similar way, lattice chiPT accounts for the low-energy effects of lattice QCD, where a small lattice spacing acts the same way as the quark mass. In this work, the basics of this process are outlined, and multiple original calculations are presented: effective field theory for anisotropic lattices, I=2 pipi scattering for isotropic, anisotropic, and twisted mass lattices. Additionally, a combination of effective field theory and an isospin chemical potential on the lattice is proposed to extract several computationally difficult scattering parameters. Lastly, recently proposed local, chiral lattice actions are analyzed in the framework of effective field theory, which illuminates various challenges in simulating such actions.
Inoue, Yoshihisa
2004-01-01
Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S
Invariant Regularization of Supersymmetric Chiral Gauge Theory
Suzuki, H
1999-01-01
We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.
Chiral logarithms in the massless limit tamed.
Kivel, Nikolai; Polyakov, Maxim V; Vladimirov, Alexei
2008-12-31
We derive nonlinear recursion relations for the leading chiral logarithms (LLs) in massless theories. These relations not only provide a very efficient method of computation of LLs (e.g., the 33-loop contribution is calculated in a dozen of seconds on a PC) but also equip us with a powerful tool for the summation of the LLs. Our method is not limited to chiral perturbation theory only; it is pertinent to any nonrenormalizable effective field theory such as, for instance, the theory of critical phenomena, low-energy quantum gravity, etc.
Chiral damping of magnetic domain walls
Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2016-03-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Effective field theory in the harmonic oscillator basis
Binder, S.; Ekström, A.; Hagen, G.; Papenbrock, T.; Wendt, K. A.
2016-04-01
We develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. In oscillator EFT, matrix elements of EFTs formulated for continuous momenta are evaluated at the discrete momenta that stem from the diagonalization of the kinetic energy in the finite oscillator space. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leading order. Many-body coupled-cluster calculations of nuclei up to 132Sn converge fast for the ground-state energies and radii in feasible model spaces.
A Chiral Solution to the Ginsparg-Wilson Equation
Grabowska, Dorota M
2016-01-01
We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.
Chiral solution to the Ginsparg-Wilson equation
Grabowska, Dorota M.; Kaplan, David B.
2016-12-01
We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.
Chiral Dynamics of Baryons in a Lorentz Covariant Quark Model
Faessler, A; Lyubovitskij, V E; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
We develop a manifestly Lorentz covariant chiral quark model for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons. The approach is based on a non-linear chirally symmetric Lagrangian, which involves effective degrees of freedom - constituent quarks and the chiral (pseudoscalar meson) fields. In a first step, this Lagrangian can be used to perform a dressing of the constituent quarks by a cloud of light pseudoscalar mesons and other heavy states using the calculational technique of infrared dimensional regularization of loop diagrams. We calculate the dressed transition operators with a proper chiral expansion which are relevant for the interaction of quarks with external fields in the presence of a virtual meson cloud. In a second step, these dressed operators are used to calculate baryon matrix elements. Applications are worked out for the masses of the baryon octet, the meson-nucleon sigma terms, the magnetic moments of the baryon octet, the nucleon charge...
Chiral superfluidity of the quark-gluon plasma
Kalaydzhyan, Tigran
2013-01-01
In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (Tc < T < 2 Tc) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, c...
Bayesian parameter estimation for effective field theories
Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.
2016-07-01
We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
Quantifying truncation errors in effective field theory
Furnstahl, R J; Phillips, D R; Wesolowski, S
2015-01-01
Bayesian procedures designed to quantify truncation errors in perturbative calculations of quantum chromodynamics observables are adapted to expansions in effective field theory (EFT). In the Bayesian approach, such truncation errors are derived from degree-of-belief (DOB) intervals for EFT predictions. Computation of these intervals requires specification of prior probability distributions ("priors") for the expansion coefficients. By encoding expectations about the naturalness of these coefficients, this framework provides a statistical interpretation of the standard EFT procedure where truncation errors are estimated using the order-by-order convergence of the expansion. It also permits exploration of the ways in which such error bars are, and are not, sensitive to assumptions about EFT-coefficient naturalness. We first demonstrate the calculation of Bayesian probability distributions for the EFT truncation error in some representative examples, and then focus on the application of chiral EFT to neutron-pr...
Bayesian parameter estimation for effective field theories
Wesolowski, S; Furnstahl, R J; Phillips, D R; Thapaliya, A
2015-01-01
We present procedures based on Bayesian statistics for effective field theory (EFT) parameter estimation from data. The extraction of low-energy constants (LECs) is guided by theoretical expectations that supplement such information in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools are developed that analyze the fit and ensure that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems and the extraction of LECs for the nucleon mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
Hadronic Transport Coefficients from Effective Field Theories
Torres-Rincon, Juan M
2012-01-01
This dissertation focuses on the calculation of transport coefficients in the matter created in a relativistic heavy-ion collision after the chemical freeze-out. This matter can be well approximated by a pion gas out of equilibrium. We describe the theoretical framework to obtain the shear and bulk viscosities, the thermal and electrical conductivities and the flavor diffusion coefficients of a meson gas at low temperatures. To describe the interactions of the degrees of freedom, we use effective field theories with chiral and heavy quark symmetries. We introduce the unitarization methods in order to obtain a scattering amplitude that satisfies the unitarity condition exactly. We perform the calculation of the transport properties of the low temperature phase of quantum chromodynamics -the hadronic medium- that can be used in the hydrodynamic simulations of a relativistic heavy-ion collision and its subsequent evolution. We show that the shear viscosity over entropy density exhibits a minimum in a phase trans...
Changlani, Hitesh; Kumar, Krishna; Clark, Bryan; Fradkin, Eduardo
Frustrated spin systems in two dimensions provide a fertile ground for discovering exotic states of matter, often with topologically non-trivial properties. In this work, we investigate the possible existence of a chiral spin liquid state in the spin 1/2 XXZ model on the frustrated kagome lattice in the presence of a magnetic field. This model is equivalent to a hard-core bosonic one with density-density interactions at finite filling fraction. Motivated by previous field theoretic predictions utilizing a Chern-Simons theory adapted for this lattice, we focus our attention to understanding the XY limit for the 2/3 magnetization plateau (equivalent to a system of hard-core bosons at 1/6 filling with weak nearest-neighbor repulsive interactions). Performing exact or accurate numerical computations, and based on energetics and construction of minimally entangled states and associated modular matrices, we provide evidence for such a spin liquid. We study the nature of this phase and examine its stability to additional interactions. We acknowledge support from the SciDAC program under Award Number DE-FG02-12ER46875.
CHIRAL FIELD IDEAS FOR A THEORY OF MATTER IDEAS DE CAMPO QUIRAL PARA UNA TEORÍA DE LA MATERIA
Directory of Open Access Journals (Sweden)
Héctor Torres-Silva
2008-11-01
Full Text Available In this paper, a chiral approach is used for developing a unified theory of electromagnetic and gravity fields. The photons which satisfy Maxwell's equations for an electromagnetic wave are taken as the basic physical components. The goal of the theory is to unify the phenomena of relativistic invariance, wave mechanics and pair creation with Maxwell's equation to obtain an electromagnetic field theory of matter. With this theory some aspects of GPS (Global Positioning Systems systems are discussed.En este trabajo, para el desarrollo de una teoría unificada de campos electromagnéticos y gravitacionales se usa un método quiral. Los fotones que satisfacen las ecuaciones de Maxwell, para una onda electromagnética se consideran como componentes físicos básicos. El objetivo de esta teoría es unificar el fenómeno de la invarianza relativística, mecánica de onda y la creación del par electrón positrón, con las ecuaciones de Maxwell, para obtener una teoría de la materia totalmente electromagnética. Considerando esta teoría se discuten algunos aspectos de los sistemas GPS (Global Positioning Systems.
K stability and stability of chiral ring
Collins, Tristan C; Yau, Shing-Tung
2016-01-01
We define a notion of stability for chiral ring of four dimensional N=1 theory by introducing test chiral rings and generalized a maximization. We conjecture that a chiral ring is the chiral ring of a superconformal field theory if and only if it is stable. We then study N=1 field theory derived from D3 branes probing a three-fold singularity X, and show that the K stability which implies the existence of Ricci-flat conic metric on X is equivalent to the stability of chiral ring of the corresponding field theory.
Saleh, Nidal; Roisnel, Thierry; Guy, Laure; Bast, Radovan; Saue, Trond; Darquié, Benoît; Crassous, Jeanne
2015-01-01
With their rich electronic, vibrational, rotational and hyperfine structure, molecular systems have the potential to play a decisive role in precision tests of fundamental physics. For example, electroweak nuclear interactions should cause small energy differences between the two enantiomers of chiral molecules, a signature of parity symmetry breaking. Enantioenriched oxorhenium(VII) complexes S-(-)- and R-(+)-3 bearing a chiral 2-methyl-1-thio-propanol ligand have been prepared as potential candidates for probing molecular parity violation effects via high resolution laser spectroscopy of the Re=O stretching. Although the rhenium atom is not a stereogenic centre in itself, experimental vibrational circular dichroism (VCD) spectra revealed a surrounding chiral environment, evidenced by the Re=O bond stretching mode signal. The calculated VCD spectrum of the R enantiomer confirmed the position of the sulfur atom cis to the methyl, as observed in the solid-state X-ray crystallographic structure, and showed the ...
Constraints on the s - s bar asymmetry of the proton in chiral effective theory
Wang, X. G.; Ji, Chueng-Ryong; Melnitchouk, W.; Salamu, Y.; Thomas, A. W.; Wang, P.
2016-11-01
We compute the s - s bar asymmetry in the proton in chiral effective theory, using phenomenological constraints based upon existing data. Unlike previous meson cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate states alone, this work includes off-shell terms and contact interactions, which impact the shape of the s - s bar difference. We identify a valence-like component of s (x) which is balanced by a δ-function contribution to s bar (x) at x = 0, so that the integrals of s and s bar over the experimentally accessible region x > 0 are not equal. Using a regularization procedure that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated value of the second moment of the asymmetry to the range - 0.07 ×10-3 ≤ s - s bar) > ≤ 1.12 ×10-3 at a scale of Q2 = 1 GeV2. This is too small to account for the NuTeV anomaly and of the wrong sign to enhance it.
Directory of Open Access Journals (Sweden)
Masaki Kawachi
2014-01-01
Full Text Available The effects of wavenumber and chirality on the axial compressive behavior and properties of wavy carbon nanotubes (CNTs with multiple Stone-Wales defects are investigated using molecular mechanics simulations with the adaptive intermolecular reactive empirical bond-order potential. The wavy CNTs are assumed to be point-symmetric with respect to their axial centers. It is found that the wavy CNT models, respectively, exhibit a buckling point and long wavelength buckling mode regardless of the wavenumbers and chiralities examined. It is also found that the wavy CNTs have nearly the same buckling stresses as their pristine straight counterparts.
Stability and chirality effect on twist formation of collapsed double wall carbon nanotubes
Institute of Scientific and Technical Information of China (English)
XIAO Jian-liang; LIU Bin; HUANG Yong-gang; HWANG Ke-zhi; YU Min-feng
2006-01-01
This study is to reveal the effect of interlayer lattice registry on the formation of collapsed double wall carbon nanotubes (DWCNTs). It is found that collapsed carbon nanotubes can be energetically unstable,metastable or stable,depending mainly on the diameter of the CNT. A fully collapsed DWCNT can adopt different structural morphologies,such as a straight ribbon,a warping ribbon or a twisted ribbon,depending on the chirality of the CNT,which is similar to single wall carbon nanotubes (SWCNTs). Different from SWCNTs,this study also shows some unique phenomena in the formation of collapsed DWCNTs. A fully collapsed DWCNT can have different combinations of the interlayer lattice registry effect within the inner and outer tube,thus the outer tube can influence the formation of the collapsed CNT via lattice registry effect,sometimes even dominates the twist of the CNT.
Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids
Kalaydzhyan, Tigran
2016-01-01
In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark-gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in a external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density, the chiral vortical and chiral magnetic waves. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the excitation reduces to a charge diffusion mode or is completely absent. We also correct the dispersion relation for the chiral magnetic wave.
Chiral magnetic conductivity in an interacting lattice model of parity-breaking Weyl semimetal
Buividovich, P. V.; Puhr, M.; Valgushev, S. N.
2015-11-01
We report on the mean-field study of the chiral magnetic effect (CME) in static magnetic fields within a simple model of parity-breaking Weyl semimetal given by the lattice Wilson-Dirac Hamiltonian with constant chiral chemical potential. We consider both the mean-field renormalization of the model parameters and nontrivial corrections to the CME originating from resummed ladder diagrams with arbitrary number of loops. We find that onsite repulsive interactions affect the chiral magnetic conductivity almost exclusively through the enhancement of the renormalized chiral chemical potential. Our results suggest that nontrivial corrections to the chiral magnetic conductivity due to interfermion interactions are not relevant in practice since they only become important when the CME response is strongly suppressed by the large gap in the energy spectrum.
Lattice effective field theory calculations for A = 3,4,6,12 nuclei
Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G
2009-01-01
We present lattice results for the ground state energies of tritium, helium-3, helium-4, lithium-6, and carbon-12 nuclei. Our analysis includes isospin-breaking, Coulomb effects, and interactions up to next-to-next-to-leading order in chiral effective field theory.
Chiral dynamics and peripheral transverse densities
Energy Technology Data Exchange (ETDEWEB)
Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)
2014-01-01
In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.
Exact Chiral Symmetry on the Lattice
Neuberger, H
2001-01-01
Developments during the last eight years have refuted the folklore that chiral symmetries cannot be preserved on the lattice. The mechanism that permits chiral symmetry to coexist with the lattice is quite general and may work in Nature as well. The reconciliation between chiral symmetry and the lattice is likely to revolutionize the field of numerical QCD.
Chirally extended quantum chromodynamics
Brower, R C; Tan, C I; Richard C Brower; Yue Shen; Chung-I Tan
1994-01-01
We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar %\\sigma and \\pi fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investiga...
Axion Inflation with an SU(2) Gauge Field: Detectable Chiral Gravity Waves
Maleknejad, Azadeh
2016-01-01
We study a single field axion inflation model in the presence of an SU(2) gauge field with a small vev. In order to make the analysis as model-independent as possible, we consider an arbitrary potential for the axion that is able to support the slow-roll inflation. The gauge field is coupled to the axion with a Chern-Simons interaction $\\frac{\\lambda}{f}F_{\\mu\
Orientation-dependent handedness and chiral design
Efrati, Efi; Irvine, William T. M.
2013-01-01
Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in ...
Kerr Effect from Diffractive Skew Scattering in Chiral px±i py Superconductors
König, Elio J.; Levchenko, Alex
2017-01-01
We calculate the temperature dependent anomalous ac Hall conductance σH(Ω ,T ) for a two-dimensional chiral p -wave superconductor. This quantity determines the polar Kerr effect, as it was observed in Sr2RuO4 [J. Xia et al., Phys. Rev. Lett. 97, 167002 (2006)]. We concentrate on a single band model with an arbitrary isotropic dispersion relation subjected to rare, weak impurities treated in the Born approximation. As we explicitly show by detailed computation, previously omitted contributions to the extrinsic part of an anomalous Hall response, physically originating from diffractive skew scattering on quantum impurity complexes, appear to the leading order in the impurity concentration. By direct comparison with published results from the literature we demonstrate the relevance of our findings for the interpretation of the Kerr effect measurements in superconductors.
Challenges in flow background removal in search for the chiral magnetic effect
Wang, Fuqiang
2016-01-01
We investigate the effect of resonance decays on the three-particle correlator charge separation observable in search for the chiral magnetic effect, using a simple simulation with realistic inputs. We find that resonance decays can largely account for the measured signal. We suppress the elliptic flow ($v_2$) background by using zero event-by-event $v_2$ (or via the mixed-event technique). We find that the background is suppressed, but not eliminated as naively anticipated. We identify the reason to be the non-identicalness of the resonance and final-state particle's $v_2$ and the induced correlation between the transverse momentum dependent resonance $v_2$ and decay angle. We make predictions for the charge separation signal due to resonance decays in 200~GeV Au+Au collisions.
Analysis of general power counting rules in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Gavela, Belen; Merlo, Luca [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Jenkins, Elizabeth E.; Manohar, Aneesh V. [University of California at San Diego, Department of Physics, La Jolla, CA (United States); CERN TH Division, Geneva 23 (Switzerland)
2016-09-15
We derive the general counting rules for a quantum effective field theory (EFT) in d dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ power counting of EFT, not by chiral counting, even for chiral perturbation theory (χPT). The relation between Λ and f is generalized to d dimensions. We show that the naive dimensional analysis 4π counting is related to ℎ counting. The EFT counting rules are applied to χPT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT. (orig.)
Indian Academy of Sciences (India)
Susanto Chakraborty; Pranab Krishna Chanda
2006-06-01
It has been shown that the field equations for Charap's chiral invariant model of the pion dynamics pass the Painlevé test for complete integrability in the sense of Weiss et al. The truncation procedure of the same analysis leads to auto-Backlund transformation between two pairs of solutions. With the help of this transformation non-trivial exact solutions have been rediscovered.
Spiral Galaxies as Chiral Objects?
Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra
2005-01-01
Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.
Institute of Scientific and Technical Information of China (English)
Shi-ping MA; Lei-ming REN; Ding ZHAO; Zhong-ning ZHU; Miao WANG; Hai-gang LU; Li-hua DUAN
2006-01-01
Aim: To study chiral selective effects of doxazosin enantiomers on blood pressure and urinary bladder pressure in anesthetized rats. Methods: In anesthetized rats, the carotid blood pressure, left ventricular pressure of the heart and the urinary bladder pressure were recorded. Results: Administration of S-doxazosin at 0.25, 2.5, 25, and 250 nmol/kg iv produced a dose-dependent decrease in blood pressure, but its depressor effect was significantly weaker than that induced by R-doxazosin and racemic-doxazosin (rac-doxazosin), and the ED30 values (producing a 30% decrease in mean arterial pressure) of R-doxazosin, rac-doxazosin and S-doxazosin were 15.64,45.93, and 128.81, respectively. Rac-doxazosin and its enantiomers administered cumulatively in anesthetized rats induced a dose-dependent decrease in the left ventricular systolic pressure and ±dp/dtmax, and the potency order of the 3 agents was R-doxazosin ＞rac-doxazosin ＞S-doxazosin. Rac-doxazosin and its enantiomers decreased the vesical micturition pressure dose-dependently at 2.5,25, and 250 nmol/kg, and the inhibitory potency among the 3 agents was not significantly different. Conclusion: S-doxazosin decreases the carotid blood pressure and left ventricular pressure of the heart less than R-doxazosin and rac-doxazosin, but its effect on the vesical micturition pressure is similar to R-doxazosin and rac-doxazosin, indicating that S-doxazosin has chiral selectivity between cardiovascular system and urinary system in anesthetized rats.
Poynting Robertson Battery and the Chiral Magnetic Fields of AGN Jets
Kazanas, Demosthenes
2010-01-01
We propose that the magnetic fields in the accretion disks of active galactic nuclei (AGNs) are generated by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with the AGN photons (the Poynting Robertson battery). This process provides a unique relation between the polarity of the poloidal B field to the angular velocity Omega of the accretion disk (B is parallel to Omega), a relation absent in the more popular dynamo B-field generation. This then leads to a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry comes about by chance being approx.0.06 %. This lends support to the hypothesis that the universe is seeded by B fields that are generated in AGNs via this mechanism and subsequently injected into intergalactic space by the jet outflows.
Quark structure of chiral solitons
Diakonov, D
2004-01-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
Finite-size effects, pseudocritical quantities and signatures of the chiral critical endpoint of QCD
Palhares, L F; Kodama, T
2009-01-01
We investigate finite-size effects on the phase diagram of strong interactions, and discuss their influence (and utility) on experimental signatures in high-energy heavy ion collisions. We calculate the modification of the pseudocritical transition line and isentropic trajectories, and discuss how this affects proposed signatures of the chiral critical endpoint. We argue that a finite-size scaling analysis may be crucial in the process of data analysis in the Beam Energy Scan program at RHIC and in future experiments at FAIR-GSI. We propose the use of extrapolations, full scaling plots and a chi-squared method as tools for searching the critical endpoint of QCD and determining its universality class.
New possibilities for the gauging of chiral bosons
Abreu, Everton M C; Wotzasek, C; Abreu, Everton M. C.; Dutra, Alvaro de Souza; Wotzasek, Clovis
2003-01-01
We study a new mechanism for the electromagnetic gauging of chiral bosons showing that new possibilities emerge for the interacting theory of chiral scalars. We introduce a chirally coupled gauge field necessary to mod out the degree of freedom that obstructs gauge invariance in a system of two opposite chiral bosons soldering them together.
Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly
Hirono, Yuji; Yin, Yi
2015-01-01
For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current - this is the Chiral Magnetic Effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity towards the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electric and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. We devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matt...
Solnyshkov, Dmitry; Malpuech, Guillaume
2016-10-01
The optical modes of photonic structures are the so-called TE and TM modes that bring intrinsic spin-orbit coupling and chirality to these systems. This, combined with the unique flexibility of design of the photonic potential, and the possibility to mix photon states with excitonic resonances, sensitive to magnetic field and interactions, allows us to achieve many phenomena, often analogous to other solid-state systems. In this contribution, we review in a qualitative and comprehensive way several of these realizations, namely the optical spin Hall effect, the creation of spin currents protected by a non-trivial geometry, the Berry curvature for photons, and the photonic/polaritonic topological insulator.
Chiral magnetic plasmons in anomalous relativistic matter
Gorbar, E V; Shovkovy, I A; Sukhachov, P O
2016-01-01
The chiral plasmon modes of relativistic matter in background magnetic and strain-induced pseudomagnetic fields are studied in detail using the consistent chiral kinetic theory. The results reveal a number of anomalous features of these chiral magnetic and pseudomagnetic plasmons that could be used to identify them in experiment. In a system with nonzero electric (chiral) chemical potential, the background magnetic (pseudomagnetic) fields not only modify the values of the plasmon frequencies in the long wavelength limit, but also affect the qualitative dependence on the wave-vector. Similar modifications can be also induced by the chiral shift parameter in Weyl materials. Interestingly, even in the absence of the chiral shift and external fields, the chiral chemical potential alone leads to a splitting of plasmon energies at linear order in the wave vector.
Chiral extrapolation beyond the power-counting regime
Hall, J M M; Leinweber, D B; Liu, K F; Mathur, N; Young, R D; Zhang, J B
2011-01-01
Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately i...
Spin-orbit interaction in chiral carbon nanotubes probed in pulsed magnetic fields
Jhang, S.H.; Marganska, M.; Skourski, Y.; Preusche, D.; Witkamp, B.; Grifoni, M.; Van der Zant, H.; Wosnitza, J.; Strunk, C.
2010-01-01
The magnetoconductance of an open carbon nanotube (CNT)-quantum wire was measured in pulsed magnetic fields. At low temperatures, we find a peculiar split magnetoconductance peak close to the chargeneutrality point. Our analysis of the data reveals that this splitting is intimately connected to the
Topics on the Quantum Dynamics of Chiral Bosons
Abreu, Everton M C; Abreu, Everton M. C.; Wotzasek, Clovis
2004-01-01
Chiral bosons are important building blocks in the study of supergravity, string theory and quantum Hall effect. Along the last two decades many different formulations have appeared trying to describe the dynamics and the quantization of these curious objects. However two of them have gain special attention among people working on this area: the gauge invariant formulation proposed by Siegel and the noninvariant one put forward by Floreanini and Jackiw. We call these distinct analysis as chiral bosonization schemes (CBS). In this report we make a study of the relationships among many of these different chiral bosonization schemes. This is done in the context canonical framework with two different techniques known as soldering formalism and dual projection formalism. The first considers the phenomenon of interference between chiral modes and the second is able to separate dynamics from the symmetry behavior in a quantum field theory. While the soldering formalism discloses phenomena analogous to the double sli...
Experimental demonstration of spontaneous chirality in a nonlinear microresonator
Cao, Qi-Tao; Dong, Chun-Hua; Jing, Hui; Liu, Rui-Shan; Chen, Xi; Ge, Li; Gong, Qihuang; Xiao, Yun-Feng
2016-01-01
Chirality is an important concept that describes the asymmetry property of a system, which usually emerges spontaneously due to mirror symmetry breaking. Such spontaneous chirality manifests predominantly as parity breaking in modern physics, which has been studied extensively, for instance, in Higgs physics, double-well Bose-Einstein condensates, topological insulators and superconductors. In the optical domain, spontaneous chiral symmetry breaking has been elusive experimentally, especially for micro- and nano-photonics which demands multiple identical subsystems, such as photonic nanocavities, meta-molecules and other dual-core settings. Here, for the first time, we observe spontaneous emergence of a chiral field in a single ultrahigh-Q whispering- gallery microresonator. This counter-intuitive effect arises due to the inherent Kerr nonlinearity-modulated coupling between clockwise (CW) and counterclockwise (CCW) propagating waves. At an ultra-weak input threshold of a few hundred microwatts, the initial c...
Novel Topological Effects in Dense QCD in a Magnetic Field
Ferrer, E J
2015-01-01
We show that in dense QCD an axion field can be dynamically generated as the phase of the dual chiral density wave condensate that forms in the presence of a magnetic field. The coupling of the axion with the external magnetic field leads to several macroscopically observable effects. They are the generation of an anomalous uniform electric charge proportional to the magnetic field, the induction of a nondissipative anomalous Hall current, a linear magnetoelectric effect, and the formation of an axion polariton due to the fluctuations of the axion field at finite temperature. Connection to topological insulators, as well as possible observable signatures in heavy-ion collisions and neutron stars are all highlighted.
Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A
2016-02-23
Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.
Ng, Chew Hee; Chan, Cheang Wei; Lai, Jing Wei; Ooi, Ing Hong; Chong, Kok Vei; Maah, Mohd Jamil; Seng, Hoi Ling
2016-07-01
Like chiral organic drugs, the chemical and biological properties of metal complexes can be dependent on chirality. Two pairs of [Cu(phen)(ala)(H2O)]X·xH2O (phen=1.10-phenanthroline: X=NO3(-); ala: l-alanine (l-ala), 1 and d-alanine (d-ala) 2; and (X=Cl(-); ala: l-ala, 3 and d-ala, 4) complex salts (x=number of lattice water molecules) have been synthesized and characterized. The crystal structure of 3 has been determined. The same pair of enantiomeric species, viz. [Cu(phen)(l-ala)(H2O)](+) and [Cu(phen)(d-ala)(H2O)](+), have been identified to be present in the aqueous solutions of both 1 and 3, and in those of both 2 and 4 respectively. Both 3 and 4 bind more strongly to ds(AT)6 than ds(CG)6. There is no or insignificant effect of the chirality of 3 and 4 on the production of hydroxyl radicals, binding to deoxyribonucleic acid from calf thymus (CT-DNA), ds(CG)6, G-quadruplex and 17-base pair duplex, and inhibition of both topoisomerase I and proteasome. Among the three proteasome proteolytic sites, the trypsin-like site is inhibited most strongly by these complexes. However, the chirality of 3 and 4 does affect the number of restriction enzymes inhibited, and their binding constants towards ds(AT)6 and serum albumin.
Criteria of backscattering in chiral one-way photonic crystals
Cheng, Pi-Ju; Chang, Shu-Wei
2016-03-01
Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.
Energy Technology Data Exchange (ETDEWEB)
Floss, H.G. [Univ. of Washington, Seattle, WA (United States)
1994-12-01
This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.
On the gauging of chiral bosons
Wotzasek, C
1995-01-01
We study the coupling of chiral bosons to external electromagnetic fields. It is observed that a naive gauging procedure leaves the gauge invariant chirality condition incompatible with the field equations. We propose the use of this feature as a consistency test to select the appropriate way to perform the gauge coupling. We verify that among all the possible gauging schemes, only the coupling of gauge fields with chiral currents passes the consistency test. As an application, we use this gauging scheme to show how the introduction of a gauge field becomes necessary in order to sold together a right and a left chiral boson.
Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter
2016-01-01
At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Bifurcated, modular syntheses of chiral annulet triazacyclononanes.
Argouarch, Gilles; Stones, Graham; Gibson, Colin L; Kennedy, Alan R; Sherrington, David C
2003-12-21
Three chiral 2,6-disubstituted tri-N-methyl azamacrocycles have been prepared by modular methods. These macrocycles were accessed from three chiral 1,4,7-triazaheptanes intermediates that were prepared by two independent routes. The first of these routes involved the benzylamine opening of chiral tosyl aziridines followed by debenzylation but was problematic on solubility grounds. A second, more effective, route was developed which avoided debenzylation by using ammonia in the nucleophilic opening of chiral tosyl aziridines.
Doped Chiral Polymer Metamaterials
Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)
2017-01-01
Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.
Studies In Field Theories: Mhv Vertices, Twistor Space, Recursion Relations And Chiral Rings
Svrcek, P
2005-01-01
In this thesis we study different aspects of four dimensional field theories. In the first chapter we give introduction and overview of the thesis. In the second chapter we review the connection between perturbative Yang-Mills and twistor string theory. Inspired by this, we propose a new way of constructing Yang-Mills scattering amplitudes from Feynman graphs in which the vertices are off-shell continuations of the tree level MHV amplitudes. The MHV diagrams lead to simple formulas for tree-level amplitudes. We then give a heuristic derivation of the diagrams from twistor string theory. In the third chapter, we explore the twistor structure of scattering amplitudes in theories for which a twistor string theory analogous to the one for N = 4 gauge theory has not yet been proposed. We study the differential equations of one-loop amplitudes of gluons in gauge theories with reduced supersymmetry and of tree level and one-loop amplitudes of gravitons in general relativity and supergravity. We find that the scat...
Zhang, Gang; Li, Baowen
2004-01-01
We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality, isotope impurity, tube length and temperature by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also found that the tube length dependence o...
Directory of Open Access Journals (Sweden)
James Avery Sauls
2015-06-01
Full Text Available Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the class of 2D chiral superconductors spanning 3He-A to chiral superconductors with strong anisotropy. Chiral superconductors support a pair of massive Bosonic excitations of the time-reversed pairs labeled by their parity under charge conjugation. These modes are degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic modes. Selection rules and phase space considerations lead to large asymmetries in the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound Fermion pairs. We also highlight results for the excitation of the Bosonic modes by microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic chiral ground state.
2016-01-01
Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to st...
Wu, Chao; Huang, Mei
2016-01-01
By using the boundary derivative expansion formalism of fluid/gravity correspondence, we study the chiral vortical separation effect in a strongly coupled nonconformal relativistic fluid in the background of D0-D4 Sakai-Sugimoto model. The relativistic fluid of this model is nonconformal with a conserved axial vector current, and the presence of the chiral vortical separation effect is induced by the addition of a Chern-Simons term in the bulk action. Except the non-dissipative anomalous viscous coefficient and the sound speed, all other thermal and hydrodynamical quantities of first order depend on the temperature and the axial chemical potential. Stability analysis shows that this anomalous relativistic fluid is stable and the doping of smeared D0-brane will slow down the sound speed.
Dileptons and Chiral Symmetry Restoration
Hohler, P M
2015-01-01
We report on recent work relating the medium effects observed in dilepton spectra in heavy-ion collisions to potential signals of chiral symmetry restoration. The key connection remains the approach to spectral function degeneracy between the vector-isovector channel with its chiral partner, the axialvector-isovector channel. Several approaches are discussed to elaborate this connection, namely QCD and Weinberg sum rules with input for chiral order parameters from lattice QCD, and chiral hadronic theory to directly evaluate the medium effects of the axialvector channel and the pertinent pion decay constant as function of temperature. A pattern emerges where the chiral mass splitting between rho and a_1 burns off and is accompanied by a strong broadening of the spectral distributions.
Chiral anomaly and transport in Weyl metals
Burkov, A. A.
2015-03-01
We present an overview of our recent work on transport phenomena in Weyl metals, which may be connected to their nontrivial topological properties, particularly to chiral anomaly. We argue that there are two basic phenomena, which are related to chiral anomaly in Weyl metals: anomalous Hall effect (AHE) and chiral magnetic effect (CME). While AHE is in principle present in any ferromagnetic metal, we demonstrate that a magnetic Weyl metal is distinguished from an ordinary ferromagnetic metal by the absence of the extrinsic and the Fermi surface part of the intrinsic contributions to the AHE, as long as the Fermi energy is sufficiently close to the Weyl nodes. The AHE in a Weyl metal is thus shown to be a purely intrinsic, universal property, fully determined by the location of the Weyl nodes in the first Brillouin zone. In other words, a ferromagnetic Weyl metal may be thought of as the only example of a ferromagnetic metal with a purely intrinsic AHE. We further develop a fully microscopic theory of diffusive magnetotransport in Weyl metals. We derive coupled diffusion equations for the total and axial (i.e. node-antisymmetric) charge densities and show that chiral anomaly manifests as a magnetic-field-induced coupling between them. We demonstrate that an experimentally-observable consequence of CME in magnetotransport in Weyl metals is a quadratic negative magnetoresistance, which will dominate all other contributions to magnetoresistance under certain conditions and may be regarded as a smoking-gun transport characteristic, unique to Weyl metals.
Chiral damping in magnetic domain-walls (Conference Presentation)
Jue, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stéphane; Schuhl, Alain; Manchon, Aurélien; Miron, Ioan Mihai; Gaudin, Gilles
2016-10-01
The Dzyaloshinskii-Moriya interaction is responsible for chiral magnetic textures (skyrmions, spin spiral structures, …) in systems with structural inversion asymmetry and high spin-orbit coupling. It has been shown that the domain wall (DW) dynamics in such materials can be explained by chiral DWs with (partly or fully) Néel structure, whose stability derives from an interfacial DMI [1]. In this work, we show that DMI is not the only effect inducing chiral dynamics and demonstrate the existence of a chiral damping [2]. This result is supported by the study of the asymmetry induced by an in-plane magnetic field on field induced domain wall motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. Whereas the asymmetry of the DW motion is consistent with the spatial symmetries expected with the DMI, we show that this asymmetry cannot be attributed to an effective field but originates from a purely dissipative mechanism. The observation of chiral damping, not only enriches the spectrum of physical phenomena engendered by the SIA, but since it can coexist with DMI it is essential for conceiving DW and skyrmion devices. [1] A. Thiaville, et al., EPL 100, 57002 (2012) [2] E. Jué, et al., Nat. Mater., in press (doi: 10.1038/nmat4518)
Light-front representation of chiral dynamics in peripheral transverse densities
Granados, C
2015-01-01
The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances $b = O(M_\\pi^{-1})$ the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantiz...
Testa, B; Reist, M; Carrupt, P A
2000-07-01
The two enantiomers of a chiral drug may have vastly different pharmacodynamic and pharmacokinetic properties. As a result, the research and development of chiral drugs raises specific problems some of which are discussed here. Thus, various pharmacokinetic interactions may involve two enantiomers, as seen for example when one enantiomer inhibits the metabolism of the other and modifies its effects. A different situation occurs when a third compound stereoselectively inhibits the metabolism of one of the two enantiomers. Another problem examined here results from the lack of configurational stability of some chiral drugs, a little known phenomenon whose consequences can be of pharmacological or pharmaceutical significance depending on the rate of the reaction of racemization or epimerisation. In-depth investigations are needed before choosing between a eutomer or a racemate.
Chiral Nanoscience and Nanotechnology
Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao
2008-01-01
The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology describes the nanoscale appr...
Sigma(770) Resonance and the Breaking of Scale and Chiral Symmetry in Effective QCD
Svec, M
2002-01-01
CERN measurements of pi(-)p->pi(-)pi(+)n on polarized target at 17.2 GeV/c enable experimental determination of partial wave production amplitudes below 1080 MeV. The measured S-wave transversity amplitudes provide evidence for a narrow scalar resonance sigma(770). The assumption of analyticity of production amplitudes in dipion mass allows to determine S-wave helicity amplitudes S_0 and S_1. The amplitude S_1 is related to pi(-)pi(+)->pi(-)pi(+) scattering. There are four "down" solutions (1, 1bar), (2, 1bar), (1, 2bar) and (2, 2bar) selected by unitarity in pipi scattering. Ellis-Lanik relation between the mass m_sigma and partial width Gamma(sigma->pi(-)pi(+)) derived from an effective QCD theory with broken scale and chiral symmetry selects solutions (1, 1bar) and (1, 2bar) and imparts the sigma(770) resonance with a dilaton-gluonium interpretation. Weinberg's mended symmetry selects solutions (1, 1bar) and (2, 1bar). The combin ed solution (1, 1bar) has m_sigma=769 +/- 13 MeV and Gamma_sigma=154 +/- 22 M...
Indian Academy of Sciences (India)
H Weigel
2003-11-01
In this talk I review studies of hadron properties in bosonized chiral quark models for the quark ﬂavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.
Effects of gauge boson mass on chiral and deconfinement phase transitions in QED$_{3}$
Yin, Pei-Lin; Feng, Hong-Tao; Zong, Hong-Shi
2016-01-01
Based on the experimental observation that there is a coexisting region between the antiferromagnetic (AF) and $\\textit{d}$-wave superconducting ($\\textit{d}$SC) phases, the influences of gauge boson mass $m_{a}$ on chiral symmetry restoration and deconfinement phase transitions in QED$_{3}$ are investigated simultaneously within a unified framework, i.e., Dyson-Schwinger equations. The results show that the chiral symmetry restoration phase transition in the presence of the gauge boson mass $m_{a}$ is a typical second-order phase transition; the chiral symmetry restoration and deconfinement phase transitions are coincident; the critical number of fermion flavors $N^{c}_{f}$ decreases as the gauge boson mass $m_{a}$ increases and there exists a boundary that separates the $N^{c}_{f}$-$m_{a}$ plane into chiral symmetry breaking/confinement region for ($N_{f}^{c}$, $m_{a}$) below the boundary and chiral symmetry restoration/deconfinement region for ($N_{f}^{c}$, $m_{a}$) above it.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Three novel types of chiral calixarene derivatives 5, 8, and 10 were designed and synthesized by introducing chiral units to parent calixarenes. Their chiralities were confirmed by rotational analysis. Chiral recognition properties of these host compounds towards L- and D-threonine were studied by UV-Vis spectroscopy. The results indicated that calixarene derivatives 5 and 8 exhibited good chiral recognition capabilities toward L- or D-threonine. Although calixarene derivative 10 had no evident chiral recognition ability, the supramolecules of calixarene derivative 10 with L- or D-threonine showed a hypochromic effect or hyperchromic effect respectively. Therefore, calixarene derivative 10 might serve as a good chiral UV-indicator.
Enantiospecific adsorption of cysteine on a chiral Au34 cluster
de Jesús Pelayo, José; Valencia, Israel; Díaz, Gabriela; López-Lozano, Xóchitl; Garzón, Ignacio L.
2015-12-01
The interaction of biological molecules like chiral amino acids with chiral metal clusters is becoming an interesting and active field of research because of its potential impact in, for example, chiral molecular recognition phenomena. In particular, the enantiospecific adsorption (EA) of cysteine (Cys) on a chiral Au55 cluster was theoretically predicted a few years ago. In this work, we present theoretical results, based on density functional theory, of the EA of non-zwitterionic cysteine interacting with the C3-Au34 chiral cluster, which has been experimentally detected in gas phase, using trapped ion electron diffraction. Our results show that, indeed, the adsorption energy of the amino acid depends on which enantiomers participate in the formation Cys-Au34 chiral complex. EA was obtained in the adsorption modes where both the thiol, and the thiol-amino functional groups of Cys are adsorbed on low-coordinated sites of the metal cluster surface. Similarly to what was obtained for the Cys-Au55 chiral complex, in the present work, it is found that the EA is originated from the different strength and location of the bond between the COOH functional group and surface Au atoms of the Au34 chiral cluster. Calculations of the vibrational spectrum for the different Cys-Au34 diastereomeric complexes predict the existence of a vibro-enantiospecific effect, indicating that the vibrational frequencies of the adsorbed amino acid depend on its handedness. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by G. Delgado Barrio, A. Solov'Yov, P. Villarreal, R. Prosmiti.
A primer for Chiral Perturbative Theory
Energy Technology Data Exchange (ETDEWEB)
Scherer, Stefan [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schindler, Matthias R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics; George Washington Univ., Washington, DC (United States). Dept. of Physics
2012-07-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)
A primer for chiral perturbation theory
Scherer, Stefan
2012-01-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.
Effect of Single-walled Carbon Nanotubes on Cellulose Phenylcarbamate Chiral Stationary Phases
Institute of Scientific and Technical Information of China (English)
CHANG Yin-xia; REN Chao-xing; RUAN Qiong; YUAN Li-ming
2007-01-01
Single-walled carbon nanotubes(SWNTs) have a high adsorption ability and nanoscale interactions. Cellulose trisphenylcarbamates possess high enantioseparation ability in high-performance liquid chromatography(HPLC). Single-walled carbon nanotubes mixed with cellulose trisphenylcarbamate are coated on the silica gel as chiral stationary phases and higher enantioseparation factors are obtained. After a single-walled carbon nanotube is linked to the 6-position of cellulose 2,3-bisphenylcarbamate, its enantioseparation resolution increases compared to that of the cellulose trisphenylcarbamate. It is the first time that SWNTs have been applied to enantioseparation. The results indicate that the single-walled carbon nanotubes are good promoters of chiral recognition. This method can be used to improve the enantioseparation efficiency of the polysaccharide chiral stationary phases.
On Chiral Space Groups and Chiral Molecules
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.
On Chiral Space Groups and Chiral Molecules
Institute of Scientific and Technical Information of China (English)
NgSeikWng; HUSheng－Zhi
2003-01-01
This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations).For a chiral molecule,which must crystallize in a chiral space group,the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.
Skandani, A Alipour; Zeineldin, R; Al-Haik, M
2012-05-22
The ability of carbon nanotubes to enter the cell membrane acting as drug-delivery vehicles has yielded a plethora of experimental investigations, mostly with inconclusive results because of the wide spectra of carbon nanotube structures. Because of the virtual impossibility of synthesizing CNTs with distinct chirality, we report a parametric study on the use of molecular dynamics to provide better insight into the effect of the carbon nanotube chirality and the aspect ratio on the interaction with a lipid bilayer membrane. The simulation results indicated that a single-walled carbon nanotube utilizes different time-evolving mechanisms to facilitate their internalization within the membrane. These mechanisms comprise both penetration and endocytosis. It was observed that carbon nanotubes with higher aspect ratios penetrate the membrane faster whereas shorter nanotubes undergo significant rotation during the final stages of endocytosis. Furthermore, nanotubes with lower chiral indices developed significant adhesion with the membrane. This adhesion is hypothesized to consume some of the carbon nanotube energy, thus resulting in longer times for the nanotube to translocate through the membrane.
Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou
2016-08-17
Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.
Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou
2016-08-01
Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.
Chiral and continuum extrapolation of partially quenched lattice results
Energy Technology Data Exchange (ETDEWEB)
C.R. Allton; W. Armour; D.B. Leinweber; A.W. Thomas; R.D. Young
2005-04-01
The vector meson mass is extracted from a large sample of partially quenched, two-flavor lattice QCD simulations. For the first time, discretization, finite-volume and partial quenching artifacts are treated in a unified chiral effective field theory analysis of the lattice simulation results.
Shah, Syed Touseef Hussain; Syed, Aqeel A; Naqvi, Qaisar Abbas
2013-01-01
Focusing of electromagnetic plane wave from a large size paraboloidal reflector, composed of layers of chiral and/or chiral nihility metamaterials, has been studied us- ing Maslov's method. First, the transmission and reflection of electromagnetic plane wave from two parallel layers of chiral and/or chiral nihility metamaterials are cal- culated using transfer matrix method. The effects of change of angle of incidence, chirality parameters and impedances of layers are noted and discussed. Special cases by taking very large and small values of permittivity of second layer, while assuming value of corresponding chirality equal to zero, are also treated. These special cases are equivalent to reflection from a perfect electric conductor backed chiral layer and nihility backed chiral layer, respectively. Results of reflection from parallel layers have been utilized to study focusing from a large size paraboloidal reflector. The present study, on focusing from a paraboloidal re{\\deg}ector, not only unifies several ...
△△ Dibaryon Structure in Extended Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
DAI Lian-Rong
2005-01-01
@@ The structure of △△ dibaryon is studied in the extended chiral SU(3) quark model in which vector meson exchanges are included. The effect of the vector meson fields is very similar to that of the one-gluon exchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model, the resultant mass of the △△ dibaryon is lower than the threshold of the △△ channel but higher than that of the△Nπ channel.
Chiral perturbation theory approach to hadronic weak amplitudes
Energy Technology Data Exchange (ETDEWEB)
Rafael, E. de (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique 2)
1989-07-01
We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing {Delta}S=1 and {Delta}S=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3){sub Left}xSU(3){sub Right} rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI).
Infinite Chiral Symmetry in Four Dimensions
Beem, Christopher; Liendo, Pedro; Peelaers, Wolfger; Rastelli, Leonardo; van Rees, Balt C
2015-01-01
We describe a new correspondence between four-dimensional conformal field theories with extended supersymmetry and two-dimensional chiral algebras. The meromorphic correlators of the chiral algebra compute correlators in a protected sector of the four-dimensional theory. Infinite chiral symmetry has far-reaching consequences for the spectral data, correlation functions, and central charges of any four-dimensional theory with ${\\mathcal N}=2$ superconformal symmetry.
Field reparametrization in effective field theories
Passarino, Giampiero
2016-01-01
Debate topic for Effective Field Theory (EFT) is the choice of a "basis" for $\\mrdim = 6$ operators Clearly all bases are equivalent as long as they are a "basis", containing a minimal set of operators after the use of equations of motion and respecting gauge invariance. From a more formal point of view a basis is characterized by its closure with respect to renormalization. Equivalence of bases should always be understood as a statement for the S-matrix and not for the Lagrangian, as dictated by the equivalence theorem. Any phenomenological approach that misses one of these ingredients is still acceptable for a preliminar analysis, as long as it does not pretend to be an EFT. Here we revisit the equivalence theorem and its consequences for EFT when two sets of higher dimensional operators are connected by a set of non-linear, noninvariant, field reparametrizations.
Looking for a synergic effect between NHCs and chiral P-ligands.
Toselli, Nicolas; Martin, David; Buono, Gérard
2008-04-03
The issue of the added value of NHCs in asymmetric catalysis with respect to trusted chiral P-ligands was addressed: considering a prototypical asymmetric allylic alkylation reaction as a model, the association of a priori inhibiting and achiral NHCs with modular P-ligand resulted in enhancement of er up to 508% and increased rates.
Casimir effect as a source of chiral symmetry breaking in QCD
Energy Technology Data Exchange (ETDEWEB)
Floratos, E. (Crete Univ., Iraklion (Greece). Physics Dept.; European Organization for Nuclear Research, Geneva (Switzerland)); Papantonopoulos, E. (Ethnikon Metsovion Polytechneion, Athens (Greece). Physics Dept.); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))
1985-02-21
The vacuum of QCD, defined on a space-time topology T/sup 3/ x R, breaks chiral symmetry. The physical mechanism responsible is the formation of fermionic condensates due to Casimir forces. Representations of coloured fermions, which possess asymptotic freedom, stabilize the formation of these condensates through their gauge interactions. Estimates of ratios of the order parameters are given for various representations.
Chiral EFT based nuclear forces: Achievements and challenges
Machleidt, R
2016-01-01
During the past two decades, chiral effective field theory has become a popular tool to derive nuclear forces from first principles. Two-nucleon interactions have been worked out up to sixth order of chiral perturbation theory and three-nucleon forces up to fifth order. Applications of some of these forces have been conducted in nuclear few- and many-body systems---with a certain degree of success. But in spite of these achievements, we are still faced with great challenges. Among them is the issue of a proper uncertainty quantification of predictions obtained when applying these forces in {\\it ab initio} calculations of nuclear structure and reactions. A related problem is the order by order convergence of the chiral expansion. We start this review with a pedagogical introduction and then present the current status of the field of chiral nuclear forces. This is followed by a discussion of representative examples for the application of chiral two- and three-body forces in the nuclear many-body system includin...
Chiral symmetry restoration and strong CP violation in a strong magnetic background
Fraga, Eduardo S
2009-01-01
Motivated by the phenomenological scenario of the chiral magnetic effect that can be possibly found in high-energy heavy ion collisions, we study the role of very intense magnetic fields and strong CP violation in the phase structure of strong interactions and, more specifically, their influence on the nature of the chiral transition. Direct implications for the dynamics of phase conversion and its time scales are briefly discussed. Our results can also be relevant in the case of the early universe.
Chiral symmetry restoration and strong CP violation in a strong magnetic background
Fraga, Eduardo S.; Mizher, Ana Júlia
2009-01-01
Motivated by the phenomenological scenario of the chiral magnetic effect that can be possibly found in high-energy heavy ion collisions, we study the role of very intense magnetic fields and strong CP violation in the phase structure of strong interactions and, more specifically, their influence on the nature of the chiral transition. Direct implications for the dynamics of phase conversion and its time scales are briefly discussed. Our results can also be relevant in the case of the early un...
Large Enhancement of Circular Dichroism Using an Embossed Chiral Metamaterial
Mousavi, S Hamed Shams; El-Sayed, Mostafa A; Eftekhar, Ali A; Adibi, Ali
2016-01-01
In the close vicinity of a chiral nanostructure, the circular dichroism of a biomolecule could be greatly enhanced, due to the interaction with the local superchiral fields. Modest enhancement of optical activity using a planar metamaterial, with some chiral properties, and achiral nanoparticles has been previously reported. A more substantial chirality enhancement can be achieved in the local filed of a chiral nanostructure with a three-dimensional arrangement. Using an embossed chiral nanostructure designed for chiroptical sensing, we measure the circular dichroism spectra of two biomolecules, Chlorophylls A and B, at the molecular level, using a simple polarization resolved reflection measurement. This experiment is the first realization of the on-resonance surface-enhanced circular dichroism, achieved by matching the chiral resonances of a strongly chiral metamaterial with that of a chiral molecule, resulting in an unprecedentedly large differential CD spectrum from a monolayer of a chiral material.
Bringing chiral optical forces to dominance with optical nanofibers
Alizadeh, M H
2016-01-01
Transverse spin angular momentum (SAM) of light and associated transverse chiral optical forces have received tremendous attention recently as the latter may lead to an optical separation of chiral biomolecules. Previous schemes to generate chiral forces are plagued by the fact that the chiral optical forces are orders of magnitude smaller than conventional gradient and scattering forces. The relative magnitude of chiral and non-chiral forces represents a fundamental challenge for the implementation of chiral separation schemes. In this work we demonstrate that, by spatially separating the maxima of transverse spin density from the gradient of field intensity, in the vicinity of optical nanofibers and nanowires, chiral optical forces can emerge that are stronger than gradient and scattering forces. This finding has important implications for the design of improved optical separation schemes for chiral biomolecules.
Effective and fundamental quantum fields at criticality
Energy Technology Data Exchange (ETDEWEB)
Scherer, Michael
2010-10-28
We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)
Belmont, R
2016-01-01
The Chiral Magnetic Effect (CME) is a fundamental prediction of QCD and various observables have been proposed in heavy ion collisions to access this physics. Recently the CMS Collaboration \\cite{Khachatryan:2016got} has reported results from p+Pb collisions at 5.02 TeV on one such observable, the three-point correlator. The results are strikingly similar to those measured at the same particle multiplicity in Pb+Pb collisions, that have been attributed to the CME. This similarity, combined with two key assumptions about the magnetic field in p+Pb collisions, presents a major challenge to the CME picture. These two assumptions as stated in the CMS paper are (1) that the magnetic field in p+Pb collisions is smaller than that in Pb+Pb collisions and (2) that the magnetic field direction is uncorrelated with the flow angle. We test these two postulates in the Monte Carlo Glauber framework and find that the magnetic fields are not significantly smaller in central p+Pb collisions, however the magnetic field directi...
Cameron, R.P.; Cameron, J. A.; Barnett, S. M.
2016-01-01
We explain that Stegosaurus exhibited exterior chirality and observe that the largest plate in particular of USNM 4394, USNM 4714, DMNS 2818 and NHMUK R36730 appears to have tilted to the right rather than to the left in each case. Several instances in which Stegosaurus specimens have been confused with their distinct, hypothetical mirror-image forms are highlighted. We believe our findings to be consistent with the hypothesis that Stegosaurus's plates acted primarily as display structures. A...
Energy Technology Data Exchange (ETDEWEB)
Dotsenko, Vladimir S., E-mail: dotsenko@lpthe.jussieu.fr [LPTHE, CNRS, Universite Pierre et Marie Curie, Paris VI, UMR 7589, 4 place Jussieu, 75252 Paris Cedex 05 (France)
2012-10-01
We analyze, and prove, the associativity of the new Z{sub 3} parafermionic chiral algebra which has been announced some time ago, with principal parafermionic fields having the conformal dimension {Delta}{sub {psi}}=8/3. In doing so we have developed a new method for analyzing the associativity of a given chiral algebra of parafermionic type, the method which might be of a more general significance than a particular conformal field theory studied in detail in this paper. Still, even in the context of our particular chiral algebra, of Z{sub 3} parafermions with {Delta}{sub {psi}}=8/3, the new method allowed us to give a proof of associativity which we consider to be complete.
Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin
1999-01-01
We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.
Chiral quantum dot based materials
Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii
2014-05-01
Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.
Nuclear chiral dynamics and thermodynamics
Holt, J W; Weise, W
2013-01-01
This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic des...
Characterization of a chiral nematic mesoporous organosilica using NMR
Manning, Alan; Shopsowitz, Kevin; Giese, Michael; MacLachlan, Mark; Dong, Ronald; Michal, Carl
2012-10-01
Using templation with nanocrystalline cellulose, a mesoporous organosilica film with a chiral nematic pore structure has recently been developed. [1] We have used a variety of Nuclear Magnetic Resonance (NMR) techniques to characterize the pore structure. The pore size distribution has been found by analyzing the freezing point depression of absorbed water via NMR cryoporometry. The effective longitudinal and transverse pore diameters for diffusing water were investigated with Pulsed-Field Gradient (PFG) NMR and compared to a 1-D connected-pore model. Preliminary data on testing imposed chiral ordering in absorbed liquid crystals is also presented. [4pt] [1] K.E. Shopsowitz et al. JACS 134(2), 867 (2012)
The anomalous chiral Lagrangian of order $p^6$
Bijnens, J; Talavera, P
2002-01-01
We construct the effective chiral Lagrangian for chiral perturbation theory in the mesonic odd-intrinsic-parity sector at order $p^6$. The Lagrangian contains 24 in principle measurable terms and no contact terms for the general case of $N_f$ light flavors, 23 terms for three and five for two flavors. In the two flavor case we need a total of 13 terms if an external singlet vector field is included. We discuss and implement the methods used to reduce to a minimal set. The infinite parts needed for renormalization are calculated and presented as well.
Gorbar, E V; Shovkovy, I A; Vilchinskii, S
2016-01-01
By making use of a simple model that captures the key features of the anomalous Maxwell equations, we study the role of inhomogeneities on the evolution of magnetic fields in a chiral plasma. We find that inhomogeneities of the chiral asymmetry by themselves do not prevent the anomaly-driven inverse cascade and, as in the homogeneous case, the magnetic helicity is transferred from shorter to longer wavelength helical modes of the magnetic field. However, we also find that the evolution appears to be sensitive to the effects of diffusion. In the case when diffusion is negligible, the inverse cascade slows down considerably compared to the homogeneous scenario. In the case of the primordial plasma, though, we find that the diffusion is substantial and efficiently suppresses chiral asymmetry inhomogeneities. As a result, the inverse cascade proceeds practically in the same way as in the chirally homogeneous model.
Magnetohydrodynamics of Chiral Relativistic Fluids
Boyarsky, Alexey; Ruchayskiy, Oleg
2015-01-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Inhomogeneous chiral symmetry breaking in dense neutron-star matter
Energy Technology Data Exchange (ETDEWEB)
Buballa, Michael; Carignano, Stefano [Technische Universitaet Darmstadt, Theoriezentrum, Institut fuer Kernphysik, Darmstadt (Germany)
2016-03-15
An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)
Playing with QCD I: effective field theories. Second lecture
Energy Technology Data Exchange (ETDEWEB)
Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica
2009-07-01
Two relevant phase transitions in QCD associated with SSB mechanisms for different symmetries of the action. Approximate Z(Nc) symmetry and deconfinement [exact for pure gauge SU(Nc)]. Order parameter: (trace of the) Polyakov loop. Approximate chiral symmetry and chiral transition [exact for massless quarks]. Order parameter: chiral condensate. Some good estimates within a very simple framework: the bag model. Very crude, disagrees with lattice QCD on the nature of the transition, but still used in several calculations (EoS for compact stars, hydro evolution of the QGP, etc.). Going beyond: effective models (based on symmetries of SQCD). (author)
Costa, Pedro
2016-01-01
The location of the critical end point (CEP) and the isentropic trajectories in the QCD phase diagram are investigated. We use the (2+1) Nambu$-$Jona-Lasinio model with the Polyakov loop coupling for different scenarios, namely by imposing zero strange quark density, which is the case in the ultra relativistic heavy-ion collisions, and $\\beta$-equilibrium. The influence of strong magnetic fields and of the vector interaction on the isentropic trajectories around the CEP is discussed. It is shown that the vector interaction and the magnetic field, having opposite effects on the first-order transition, affect the isentropic trajectories differently: as the vector interaction increases, the first-order transition becomes weaker and the isentropes become smoother; when a strong magnetic field is considered, the first-order transition is strengthened and the isentropes are pushed to higher temperatures. No focusing of isentropes in region towards the CEP is seen.
Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry
Directory of Open Access Journals (Sweden)
Michiya Fujiki
2014-08-01
Full Text Available Controlled mirror symmetry breaking arising from chemical and physical origin is currently one of the hottest issues in the field of supramolecular chirality. The dynamic twisting abilities of solvent molecules are often ignored and unknown, although the targeted molecules and polymers in a fluid solution are surrounded by solvent molecules. We should pay more attention to the facts that mostly all of the chemical and physical properties of these molecules and polymers in the ground and photoexcited states are significantly influenced by the surrounding solvent molecules with much conformational freedom through non-covalent supramolecular interactions between these substances and solvent molecules. This review highlights a series of studies that include: (i historical background, covering chiral NaClO3 crystallization in the presence of d-sugars in the late 19th century; (ii early solvent chirality effects for optically inactive chromophores/fluorophores in the 1960s–1980s; and (iii the recent development of mirror symmetry breaking from the corresponding achiral or optically inactive molecules and polymers with the help of molecular chirality as the solvent use quantity.
The Life Story of Hydrogen Peroxide III: Chirality and Physical Effects at the Dawn of Life
Ball, Rowena; Brindley, John
2016-03-01
It is a remarkable observed fact that all life on Earth is homochiral, its biology using exclusively the D-enantiomer of ribose, the sugar moiety of the ribonucleic acids, and the L-enantiomers of the chiral amino acids. Motivated by concurrent work that elaborates further the role of hydrogen peroxide in providing an oscillatory drive for the RNA world (Ball & Brindley 2015a, J. R. Soc. Interface 12, 20150366, and Ball & Brindley 2015b, this journal, in press), we reappraise the structure and physical properties of this small molecule within this context. Hydrogen peroxide is the smallest, simplest molecule to exist as a pair of non-superimposable mirror images, or enantiomers, a fact which leads us to develop the hypothesis that its enantiospecific interactions with ribonucleic acids led to enantioselective outcomes. We propose a mechanism by which these chiral interactions may have led to amplification of D-ribonucleic acids and extinction of L-ribonucleic acids.
The long and winding road from chiral effective Lagrangians to nuclear structure
Meißner, Ulf-G
2015-01-01
I review the chiral dynamics of nuclear physics. In the first part, I discuss the new developments in the construction of the forces between two, three and four nucleons which have been partly carried out to fifth order in the chiral expansion. It is also shown that based on these forces in conjunction with the estimation of the corresponding theoretical uncertainties, the need for three-nucleon forces in few nucleon systems can be unambiguously established. I also introduce the lattice formulation of these forces, which allow for truly ab initio calculations of nuclear structure and reactions. I present some pertinent results of the nuclear lattice approach. Finally, I discuss how few-nucleon systems and nuclei can be used to explore symmetries and physics within and beyond the Standard Model.
Three-flavor chiral effective model with four baryonic multiplets within the mirror assignment
Olbrich, L; Giacosa, F
2016-01-01
We study three-flavor octet baryons by using the so-called extended Linear Sigma Model (eLSM). Within a quark-diquark picture, the requirement of a mirror assignment naturally leads to the consideration of four spin-$\\frac{1}{2}$ baryon multiplets. A reduction of the Lagrangian to the two-flavor case leaves four doublets of nucleonic states which mix to form the experimentally observed states $N(939)$, $N(1440)$, $N(1535)$ and $N(1650)$. We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of the aforementioned states. By tracing their masses when chiral symmetry is restored, we conclude that the pairs $N(939)$, $N(1535)$ and $N(1440)$, $N(1650)$ form chiral partners.
Synthesis of chiral phosphonoacetamides and their toxic effects on paramecium sp
Directory of Open Access Journals (Sweden)
Samia Guezane Lakoud
2015-02-01
Full Text Available Three chiral phosphonoacetamides were prepared by an alternative method . For this purpose, 2-(diethoxyphosphorylacetic acid was prepared from ethyl 2-bromoacetate by treatment of P(OEt 3 followed by saponification of the ester with K 2CO 3. BOP activated amidation of the 2-(diethoxyphosphorylacetic acid with (S-amino acids gave the corresponding phosphonoaceteamides. Growth inhibition of two phosphonoacetamides on Paramecium sp. were studied.
Homogenization of resonant chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten
2010-01-01
Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....
Baryon spectrum and chiral dynamics
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates.
Helmich, Floris; Lee, Cameron C; Schenning, Albertus P H J; Meijer, E W
2010-12-01
Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the coaggregates by axial ligation with a Lewis base. After this extraction, the preferred helicity observed for the aggregates containing achiral Cu porphyrins reveals a chiral memory effect that is stable and can be erased and partially restored upon subsequent heating and cooling.
Biological effects of electromagnetic fields.
Macrì, M. A.; Di Luzio, Sr.; Di Luzio, S.
2002-01-01
Nowadays, concerns about hazards from electromagnetic fields represent an alarming source for human lives in technologically developed countries. We are surrounded by electromagnetic fields everywhere we spend our working hours, rest or recreational activities. The aim of this review is to summarize the biological effects due to these fields arising from power and transmission lines, electrical cable splices, electronic devices inside our homes and work-places, distribution networks and associated devices such as cellular telephones and wireless communication tower, etc. Special care has been reserved to study the biological effects of electromagnetic fields on cell lines of the mammalian immune system about which our research group has been working for several years.
Chiral Recognition of Amino Acids by Magnetoelectrodeposited Cu Film Electrodes
Directory of Open Access Journals (Sweden)
Iwao Mogi
2011-01-01
Full Text Available Chiral behavior of magnetoelectrodeposited (MED Cu film electrodes was investigated for the electrochemical reactions of amino acids. The Cu films were electrodeposited under a magnetic field of 5 T perpendicular to the electrode surface. Such MED Cu films were employed as an electrode, and cyclic voltammograms were measured for the electrochemical reactions of several kinds of amino acids. Chiral behavior was clearly observed as oxidation current difference between the enantiomers of alanine, aspartic acid, and glutamic acid. The MED film electrodes with the thickness of 50~500 nm exhibited such chiral behavior, and their surface morphologies had network structures, which could be induced by the micro-MHD effect.
Ballistic rectification of vortex domain wall chirality at nanowire corners
Energy Technology Data Exchange (ETDEWEB)
Omari, K.; Bradley, R. C.; Broomhall, T. J.; Hodges, M. P. P.; Hayward, T. J. [Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Rosamond, M. C.; Linfield, E. H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Im, M.-Y. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 (Korea, Republic of); Fischer, P. [Materials Sciences Division, Lawrence Berkley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Santa Cruz, California 94056 (United States)
2015-11-30
The interactions of vortex domain walls with corners in planar magnetic nanowires are probed using magnetic soft X-ray transmission microscopy. We show that when the domain walls are propagated into sharp corners using applied magnetic fields above a critical value, their chiralities are rectified to either clockwise or anticlockwise circulation depending on whether the corners turn left or right. Single-shot focused magneto-optic Kerr effect measurements are then used to demonstrate how, when combined with modes of domain propagation that conserve vortex chirality, this allows us to dramatically reduce the stochasticity of domain pinning at artificial defect sites. Our results provide a tool for controlling domain wall chirality and pinning behavior both in further experimental studies and in future domain wall-based memory, logic and sensor technologies.
Energy Technology Data Exchange (ETDEWEB)
Dotsenko, Vladimir S., E-mail: dotsenko@lpthe.jussieu.fr [LPTHE, CNRS, Universite Pierre et Marie Curie, Paris VI, UMR 7589, 4 place Jussieu, 75252 Paris Cedex 05 (France)
2012-11-01
In this paper, which is the second one in a series of two papers, we shall present two more solutions, non-minimal ones, for the Z{sub 3} parafermionic chiral algebra with {Delta}{sub {psi}}={Delta}{sub {psi}{sup +}}=8/3, {psi}(z), {psi}{sup +}(z) being the principal parafermionic fields.
Corradini, Roberto; Sforza, Stefano; Tedeschi, Tullia; Marchelli, Rosangela
2007-05-05
The understanding of the interaction of chiral species with DNA or RNA is very important for the development of new tools in biology and of new drugs. Several cases in which chirality is a crucial point in determining the DNA binding mode are reviewed and discussed, with the aim of illustrating how chirality can be considered as a tool for improving the understanding of mechanisms and the effectiveness of nucleic acid recognition. The review is divided into two parts: the former describes examples of chiral species interacting with DNA: intercalators, metal complexes, and groove binders; the latter part is dedicated to chirality in DNA analogs, with discussion of phosphate stereochemistry and chirality of ribose substitutes, in particular of peptide nucleic acids (PNAs) for which a number of works have been published recently dealing with the effect of chirality in DNA recognition. The discussion is intended to show how enantiomeric recognition originates at the molecular level, by exploiting the enormous progresses recently achieved in the field of structural characterization of complexes formed by nucleic acid with their ligands by crystallographic and spectroscopic methods. Examples of application of the DNA binding molecules described and the role of chirality in DNA recognition relevant for biotechnology or medicinal chemistry are reported.
Chiral Dynamics With Wilson Fermions
Splittorff, K
2012-01-01
Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.
Rizzo, Antonio; Agren, Hans
2013-01-28
We present a systematic computational study of circular intensity difference (CID) in electric-field-induced second harmonic generation (EFISHG) of some representative chiral natural amino acids (Alanine, Arginine, Aspartic Acid, Cysteine and Tryptophan), taking into account the electric-dipole, electric-quadrupole and magnetic-dipole interactions. The calculations are performed by applying cubic response theory at both Hartree-Fock and Density Functional theory levels, the latter with the popular Becke-three parameters, Lee, Yang and Parr (B3LYP) functional. Special focus is given to the basis set, electron correlation and origin dependence of the properties. The full set of molecular parameters defined by Lam and Thirunamachandran in their reference theoretical paper published in 1982 [J. Chem. Phys., 1982, 77, 3810] is obtained and discussed. This permits the prediction of the CID observable for different possible experimental setups.
Light-front representation of chiral dynamics with Delta isobar and large-N_c relations
Granados, C
2016-01-01
Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Delta isobars and implement relations based on the large-N_c limit of QCD. We derive the wave function overlap formulas for the Delta contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguit...
Minomo, Kosho; Ogata, Kazuyuki
2015-01-01
We analyze $^{16}$O-$^{16}$O and $^{12}$C-$^{12}$C scattering with the microscopic coupled-channels method and investigate the coupled-channels and three-nucleon-force (3NF) effects on elastic and inelastic cross sections. In the microscopic coupled-channels calculation, the Melbourne g-matrix interaction modified according to the chiral 3NF effects is used. It is found that the coupled-channels and 3NF effects additively change both the elastic and inelastic cross sections. As a result, the coupled-channels calculation including the 3NF effects significantly improves the agreement between the theoretical results and the experimental data. The incident-energy dependence of the coupled-channels and 3NF effects is also discussed.
Chiral phases of fundamental and adjoint quarks
Energy Technology Data Exchange (ETDEWEB)
Natale, A. A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica - UNESP Rua Dr. Bento T. Ferraz, 271, Bl.II - 01140-070, São Paulo, SP (Brazil)
2016-01-22
We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.
A spectral route to determining chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We show how one-dimensional structured media can be used to measure chirality, via the spectral shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases, be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Using...... this mapping, we derive a first-order shift of the band gap edges with chirality. Potentially, this effect could be used for measuring enantiomeric excess....
Generalized simplicial chiral models
Alimohammadi, M
2000-01-01
Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...
Hayashi, Nobuhiko; Kurosawa, Noriyuki; Arahata, Emiko; Kato, Yusuke; Tanuma, Yasunari; Tanaka, Yukio; Golubov, Alexander A.
2013-01-01
We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer–Pesch effect) in a chiral p-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of supercondu
Chiral Nanoscience and Nanotechnology
Directory of Open Access Journals (Sweden)
Dibyendu S. Bag
2008-09-01
Full Text Available The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology describes the nanoscale approaches to chiraltechnology such as asymmetric synthesis and catalysis, chiral separation and detection, and enantiomericanalysis. Chiral sensors have also been included. The state-of-the-art chiral research at DMSRDE,Kanpur isalso presented.Defence Science Journal, 2008, 58(5, pp.626-635, DOI:http://dx.doi.org/10.14429/dsj.58.1685
Reversal of helicoidal twist handedness near point defects of confined chiral liquid crystals
Ackerman, Paul J.; Smalyukh, Ivan I.
2016-05-01
Handedness of the director twist in cholesteric liquid crystals is commonly assumed to be the same throughout the medium, determined solely by the chirality of constituent molecules or chiral additives, albeit distortions of the ground-state helicoidal configuration often arise due to the effects of confinement and external fields. We directly probe the twist directionality of liquid crystal director structures through experimental three-dimensional imaging and numerical minimization of the elastic free energy and show that spatially localized regions of handedness opposite to that of the chiral liquid crystal ground state can arise in the proximity of twisted-soliton-bound topological point defects. In chiral nematic liquid crystal confined to a film that has a thickness less than the cholesteric pitch and perpendicular surface boundary conditions, twisted solitonic structures embedded in a uniform unwound far-field background with chirality-matched handedness locally relieve confinement-imposed frustration and tend to be accompanied by point defects and smaller geometry-required, energetically costly regions of opposite twist handedness. We also describe a spatially localized structure, dubbed a "twistion," in which a twisted solitonic three-dimensional director configuration is accompanied by four point defects. We discuss how our findings may impinge on the stability of localized particlelike director field configurations in chiral and nonchiral liquid crystals.
Precise quantization of anomalous Hall effect near zero magnetic field
Energy Technology Data Exchange (ETDEWEB)
Bestwick, A. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fox, E. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kou, Xufeng [Univ. of California, Los Angeles, CA (United States); Pan, Lei [Univ. of California, Los Angeles, CA (United States); Wang, Kang L. [Univ. of California, Los Angeles, CA (United States); Goldhaber-Gordon, D. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-05-04
In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.
Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions
Institute of Scientific and Technical Information of China (English)
ZHANG XuMu
2001-01-01
@@ Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals
Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions
Institute of Scientific and Technical Information of China (English)
ZHANG; XuMu
2001-01-01
Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals ……
Spontaneous chiral symmetry breaking in the Tayler instability
Del Sordo, Fabio; Brandenburg, Axel; Mitra, Dhrubaditya
2011-01-01
The chiral symmetry breaking properties of the Tayler instability are discussed. Effective amplitude equations are determined in one case. This model has three free parameters that are determined numerically. Comparison with chiral symmetry breaking in biochemistry is made.
Zamorano, M.; Torres-Silva, H.
2006-04-01
A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.
Electromagnetic Signatures of the Chiral Anomaly in Weyl Semimetals
Barnes, Edwin; Heremans, J. J.; Minic, Djordje
2016-11-01
Weyl semimetals are predicted to realize the three-dimensional axial anomaly first discussed in particle physics. The anomaly leads to unusual transport phenomena such as the chiral magnetic effect in which an applied magnetic field induces a current parallel to the field. Here we investigate diagnostics of the axial anomaly based on the fundamental equations of axion electrodynamics. We find that materials with Weyl nodes of opposite chirality and finite energy separation immersed in a uniform magnetic field exhibit an anomaly-induced oscillatory magnetic field with a period set by the chemical potential difference of the nodes. In the case where a chemical potential imbalance is created by applying parallel electric and magnetic fields, we find a suppression of the magnetic-field component parallel to the electric field inside the material for rectangular samples, suggesting that the chiral magnetic current opposes this imbalance. For cylindrical geometries, we instead find an enhancement of this magnetic-field component along with an anomaly-induced azimuthal component. We propose experiments to detect such magnetic signatures of the axial anomaly.
Effect of an electric field on the properties of BN Möbius stripes
Energy Technology Data Exchange (ETDEWEB)
Lemos de Melo, J. [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa, PB (Brazil); Azevedo, S., E-mail: sazevedo@fisica.ufpb.br [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa, PB (Brazil); Kaschny, J.R. [Instituto Federal da Bahia, Campus Vitória da Conquista, Av. Amazonas 3150, 45075-265 Vitória da conquista, BA (Brazil)
2014-09-15
In the present work, we present a first-principles study on the effects of an external electric field on the structural stability and electronic properties of boron nitride Möbius stripes with armchair and zigzag chirality. The calculation results indicate that the gap energy can be remarkably reduced by the application of an external field. Such reduction is in principle attributed to the occurrence of Stark effect, which significance depends on the orientation of the applied field relative to the stripe axis. Moreover, the electric field produces significant changes on dipole momentum of the structure and induces a negative shift on the calculated total energy, reducing the obtained formation energy. - Highlights: • The gap energy is remarkably reduced by the application of an external field. • The electric field produces significant changes on dipole momentum. • The field induces a negative shift on the total energy due to Stark effect.