WorldWideScience

Sample records for chiral effective field

  1. Chiral magnetic effect by synthetic gauge fields

    CERN Document Server

    Hayata, Tomoya

    2016-01-01

    We study the dynamical generation of the chiral chemical potential in a Weyl metal constructed from a three-dimensional optical lattice and subject to synthetic gauge fields. By numerically solving the Boltzmann equation with the Berry curvature in the presence of parallel synthetic electric and magnetic fields, we find that the spectral flow and the ensuing chiral magnetic current emerge. We show that the spectral flow and the chiral chemical potential can be probed by time-of-flight imaging.

  2. Chiral pumping effect induced by rotating electric fields

    Science.gov (United States)

    Ebihara, Shu; Fukushima, Kenji; Oka, Takashi

    2016-04-01

    We propose an experimental setup using 3D Dirac semimetals to access a novel phenomenon induced by the chiral anomaly. We show that the combination of a magnetic field and a circularly polarized laser induces a finite charge density with an accompanying axial current. This is because the circularly polarized laser breaks time-reversal symmetry and the Dirac point splits into two Weyl points, which results in an axial-vector field. We elucidate the appearance of the axial-vector field with the help of the Floquet theory by deriving an effective Hamiltonian for high-frequency electric fields. This anomalous charge density, i.e., the chiral pumping effect, is a phenomenon reminiscent of the chiral magnetic effect with a chiral chemical potential. We explicitly compute the pumped density and the axial-current expectation value. We also take account of coupling to the chiral magnetic effect to calculate a balanced distribution of charge and chirality in a material that behaves as a chiral battery.

  3. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  4. Quantum Monte Carlo calculations with chiral effective field theory interactions

    International Nuclear Information System (INIS)

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  5. Power Counting Regime of Chiral Effective Field Theory and Beyond

    CERN Document Server

    Hall, J M M; Leinweber, D B

    2010-01-01

    Chiral effective field theory complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of chiral effective field theory, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may b...

  6. Nuclear Axial Currents in Chiral Effective Field Theory

    OpenAIRE

    Baroni, A.; Girlanda, L.; Pastore, S.; Schiavilla, R.; Viviani, M

    2015-01-01

    Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory, and accounts for cancellations between the contributions of irreducible diagrams and the contributions due to non-static corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and...

  7. Orthonormalization procedure for chiral effective nuclear field theory

    CERN Document Server

    Krebs, H; Meißner, Ulf G; Mei{\\ss}ner, Ulf-G.

    2005-01-01

    We show that the Q-box expansion of nuclear many-body physics can be applied in nuclear effective field theory with explicit pions and external sources. We establish the corresponding power counting and give an algorithm for the construction of a hermitean and energy-independent potential for arbitrary scattering processes on nucleons and nuclei to a given order in the chiral expansion. Various examples are discussed in some detail.

  8. Effects of chiral imbalance and magnetic field on pion superfluidity and color superconductivity

    OpenAIRE

    Cao, Gaoqing; Zhuang, Pengfei

    2015-01-01

    The effects of chiral imbalance and external magnetic field on pion superfluidity and color superconductivity are investigated in extended Nambu--Jona-Lasinio models. We take Schwinger approach to treat the interaction between charged pion condensate and magnetic field at finite isospin density and include simultaneously the chiral imbalance and magnetic field at finite baryon density. For the superfluidity, the chiral imbalance and magnetic field lead to catalysis and inverse catalysis effec...

  9. Proton-proton weak capture in chiral effective field theory.

    Science.gov (United States)

    Marcucci, L E; Schiavilla, R; Viviani, M

    2013-05-10

    The astrophysical S factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0-100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants entering the weak current operators are fixed so as to reproduce the A=3 binding energies and magnetic moments and the Gamow-Teller matrix element in tritium β decay. Contributions from S and P partial waves in the incoming two-proton channel are retained. The S factor at zero energy is found to be S(0)=(4.030±0.006)×10(-23) MeV fm(2), with a P-wave contribution of 0.020×10(-23) MeV fm(2). The theoretical uncertainty is due to the fitting procedure of the low-energy constants and to the cutoff dependence. PMID:23705703

  10. Proton-Proton Weak Capture in Chiral Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Marcucci, Laura Elisa [Pisa U., INFN-Pisa; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, MIchele [INFN-Pisa

    2013-05-01

    The astrophysical $S$-factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0--100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants (LEC's) entering the weak current operators are fixed so as to reproduce the $A=3$ binding energies and magnetic moments, and the Gamow-Teller matrix element in tritium $\\beta$ decay. Contributions from $S$ and $P$ partial waves in the incoming two-proton channel are retained. The $S$-factor at zero energy is found to be $S(0)=(4.030 \\pm 0.006)\\times 10^{-23}$ MeV fm$^2$, with a $P$-wave contribution of $0.020\\times 10^{-23}$ MeV fm$^2$. The theoretical uncertainty is due to the fitting procedure of the LEC's and to the cutoff dependence. It is shown that polynomial fits to parametrize the energy dependence of the $S$-factor are inherently unstable.

  11. Deuteron Magnetic Quadrupole Moment From Chiral Effective Field Theory

    CERN Document Server

    Liu, C -P; Mereghetti, E; Timmermans, R G E; van Kolck, U

    2012-01-01

    We calculate the magnetic quadrupole moment (MQM) of the deuteron at leading order in the systematic expansion provided by chiral effective field theory. We take into account parity and time-reversal violation which, at the quark-gluon level, results from the QCD vacuum angle and dimension-six operators that originate from physics beyond the Standard Model. We show that the deuteron MQM can be expressed in terms of five low-energy constants that appear in the parity- and time-reversal-violating nuclear potential and electromagnetic current, four of which also contribute to the electric dipole moments of light nuclei. We conclude that the deuteron MQM has an enhanced sensitivity to the QCD vacuum angle and that its measurement would be complementary to the proposed measurements of light-nuclear EDMs.

  12. Quark Matter in a Parallel Electric and Magnetic Field Background: Equilibrated Chiral Density Effect on Chiral Phase Transition

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...

  13. The Vector Meson Mass in Chiral Effective Field Theory

    CERN Document Server

    Hall, Jonathan M M

    2014-01-01

    A brief overview of Quantum Chromodynamics (QCD) as a non-Abelian gauge field theory, including symmetries and formalism of interest, will precede a focused discussion on the use of an Effective Field Theory (EFT) as a low energy perturbative expansion technique. Regularization schemes involved in Chiral Perturbation Theory (\\c{hi}PT) will be reviewed and compared with EFT. Lattices will be discussed as a useful procedure for studying large mass particles. An Effective Field Theory will be formulated, and the self energy of the \\r{ho} meson for a Finite-Range Regulated (FRR) theory will be calculated. This will be performed in both full QCD and the simpler quenched approximation (QQCD). Finite-volume artefacts, due to the finite box size on the lattice, will be quantified. Currently known lattice results will be used to calculate the \\r{ho} meson mass, and the possibility of unquenching will be explored. The aim of the research was to determine whether a stable unquenching procedure for the \\r{ho} meson could...

  14. Wormholes from Chiral Fields

    International Nuclear Information System (INIS)

    In this paper, Lorentzian wormholes with a phantom field and chiral matter fields have been obtained. In addition, it is shown that for different values of the gravitational coupling of the chiral fields, the wormhole geometry changes. Finally, the stability of the corresponding wormholes is studied and it is shown that are unstable (eg. Ellis's wormhole instability)

  15. Tritium $\\beta$-decay in chiral effective field theory

    CERN Document Server

    Baroni, A; Kievsky, A; Marcucci, L E; Schiavilla, R; Viviani, M

    2016-01-01

    We evaluate the Fermi and Gamow-Teller (GT) matrix elements in tritium \\beta-decay by including in the charge-changing weak current the corrections up to one loop recently derived in nuclear chiral effective field theory (\\chi EFT). The trinucleon wave functions are obtained from hyperspherical-harmonics solutions of the Schrodinger equation with two- and three-nucleon potentials corresponding to either \\chi EFT (the N3LO/N2LO combination) or meson-exchange phenomenology (the AV18/UIX combination). We find that contributions due to loop corrections in the axial current are, in relative terms, as large as (and in some cases, dominate) those from one-pion exchange, which nominally occur at lower order in the power counting. We also provide values for the low-energy constants multiplying the contact axial current and three-nucleon potential, required to reproduce the experimental GT matrix element and trinucleon binding energies in the N3LO/N2LO and AV18/UIX calculations.

  16. Weak magnetic field effects on chiral critical temperature in a nonlocal Nambu--Jona-Lasinio model

    CERN Document Server

    Loewe, M; Villavicencio, C; Zamora, R

    2014-01-01

    In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperature for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.

  17. Nucleon electromagnetic form factors on the lattice and in chiral effective field theory

    International Nuclear Information System (INIS)

    We compute the electromagnetic form factors of the nucleon in quenched lattice QCD, using non-perturbatively improved Wilson fermions, and compare the results with phenomenology and chiral effective field theory. (orig.)

  18. Nucleon electromagnetic form factors on the lattice and in chiral effective field theory

    International Nuclear Information System (INIS)

    We compute the electromagnetic form factors of the nucleon in quenched lattice QCD, using nonperturbatively improved Wilson fermions, and compare the results with phenomenology and chiral effective field theory

  19. Symmetry energy, neutron skin, and neutron star radius from chiral effective field theory interactions

    OpenAIRE

    Hebeler, K.; Schwenk, A.

    2014-01-01

    We discuss neutron matter calculations based on chiral effective field theory interactions and their predictions for the symmetry energy, the neutron skin of 208 Pb, and for the radius of neutron stars.

  20. Power counting for nuclear forces in chiral effective field theory

    CERN Document Server

    Long, Bingwei

    2016-01-01

    The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.

  1. Vector form factor of the pion in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, D. [Helmholtz Institute Mainz, Johannes Gutenberg University Mainz, D-55099 Mainz (Germany); Gegelia, J., E-mail: jgegelia@hotmail.com [Institut für Theoretische Physik II, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, 44780 Bochum (Germany); Tbilisi State University, 0186 Tbilisi, Georgia (United States); Keller, A.; Scherer, S.; Tiator, L. [Institute for Nuclear Physics, Johannes Gutenberg University Mainz, D-55099 Mainz (Germany)

    2015-03-06

    The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied.

  2. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    CERN Document Server

    Holt, Jeremy W; Weise, Wolfram

    2014-01-01

    Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  3. Ph.D. Thesis: Chiral Effective Field Theory Beyond the Power-Counting Regime

    CERN Document Server

    Hall, Jonathan M M

    2011-01-01

    Novel techniques are presented, which identify the power-counting regime (PCR) of chiral effective field theory, and allow the use of lattice quantum chromodynamics results that extend outside the PCR. By analyzing the renormalization of low-energy coefficients of the chiral expansion of the nucleon mass, the existence of an optimal regularization scale is realized. The techniques developed for the nucleon mass renormalization are then applied to a test case: performing a chiral extrapolation without prior phenomenological bias. The robustness of the procedure for obtaining an optimal regularization scale and performing a reliable chiral extrapolation is confirmed. The procedure developed is then applied to the magnetic moment and the electric charge radius of the nucleon. The consistency of the results for the value of the optimal regularization scale provides strong evidence for the existence of an intrinsic energy scale in the nucleon-pion interaction.

  4. The chiral magnetic effect in hydrodynamical approach

    OpenAIRE

    Sadofyev, A. V.; Isachenkov, M. V.

    2010-01-01

    In quark-gluon plasma nonzero chirality can be induced by the chiral anomaly. When a magnetic field is applied to a system with nonzero chirality an electromagnetic current is induced along the magnetic field. This phenomenon is called the chiral magnetic effect. In this paper appearance of the chiral magnetic effect in hydrodynamical approximation is shown. We consider a hydrodynamical model for chiral liquid with two independent currents of left and right handed particles in the presence of...

  5. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)

    2016-01-15

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)

  6. Lattice calculations for A=3,4,6,12 nuclei using chiral effective field theory

    CERN Document Server

    Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G

    2010-01-01

    We present lattice calculations for the ground state energies of tritium, helium-3, helium-4, lithium-6, and carbon-12 nuclei. Our results were previously summarized in a letter publication. This paper provides full details of the calculations. We include isospin-breaking, Coulomb effects, and interactions up to next-to-next-to-leading order in chiral effective field theory.

  7. Cutoff regulators in chiral nuclear effective field theory

    Science.gov (United States)

    Long, Bingwei; Mei, Ying

    2016-04-01

    Three-dimensional cutoff regulators are frequently employed in multinucleon calculations, but they violate chiral symmetry and Lorentz invariance. A cutoff regularization scheme is proposed to compensate systematically at subleading orders for these symmetry violations caused by regulator artifacts. This is especially helpful when a soft momentum cutoff has to be used for technical reasons. It is also shown that dimensional regularization can still be used for some Feynman (sub)diagrams while cutoff regulators are used for the rest.

  8. Cutoff regulators in chiral nuclear effective field theory

    CERN Document Server

    Long, Bingwei

    2016-01-01

    Three-dimensional cutoff regulators are frequently employed in multi-nucleon calculations, but they violate chiral symmetry and Lorentz invariance. A cutoff regularization scheme is proposed to compensate systematically at subleading orders for these symmetry violations caused by regulator artifacts. This is especially helpful when a soft momentum cutoff has to be used for technical reasons. It is also shown that dimensional regularization can still be used for some Feynman (sub)diagrams while cutoff regulators are used for the rest.

  9. Photo- and pion electroproduction in chiral effective field theory; Photo- und Elektropionproduktion in chiraler effektiver Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Hilt, Marius

    2011-12-13

    This thesis is concerned with pion photoproduction (PPP) and pion electroproduction (PEP) in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. For that purpose two different approaches are used. Firstly, a one-loop-order calculation up to chiral order O(q{sup 4}) including pions and nucleons as degrees of freedom, is performed to describe the energy dependence of the reactions over a large range. To improve the dependence on the virtuality of the photon in PEP, in a second approach vector mesons are included as explicit degrees of freedom. The latter calculation includes one-loop contributions up to chiral order O(q{sup 3}). Only three of the four physical processes of PPP and PEP can be accessed experimentally. These reactions are measured at several different facilities, e.g. Mainz, Bonn, or Saskatoon. The data obtained there are used to explore the limits of chiral perturbation theory. This thesis is the first complete manifestly Lorentz-invariant calculation up to order O(q{sup 4}) for PPP and PEP, and the first calculation ever for these processes including vector mesons explicitly. Beside the calculation of physical observables, a partial wave decomposition is performed and the most important multipoles are analyzed. They may be extracted from the calculated amplitudes and allow one to examine the nucleon and {delta} resonances. The number of diagrams one has to calculate is very large. In order to handle these expressions, several routines were developed for the computer algebra system Mathematica. For the multipole decomposition, two different programs are used. On the one hand, a modified version of the so-called {chi}MAID has been employed. On the other hand, similar routines were developed for Mathematica. In the end, the different calculations are compared with respect to their applicability to PPP and PEP.

  10. Structure of A = 7 - 8 nuclei with two- plus three-nucleon interactions from chiral effective field theory

    OpenAIRE

    Maris, Pieter; Vary, James P.; Navratil, Petr

    2012-01-01

    We solve the ab initio no-core shell model (NCSM) in the complete Nmax = 8 basis for A = 7 and A = 8 nuclei with two-nucleon and three-nucleon interactions derived within chiral effective field theory (EFT). We find that including the chiral EFT three-nucleon interaction in the Hamiltonian improves overall good agreement with experimental binding energies, excitation spectra, transitions and electromagnetic moments. We predict states that exhibit sensitivity to including the chiral EFT three-...

  11. Chiral effective field theory beyond the power-counting regime

    CERN Document Server

    Hall, Jonathan M M; Young, Ross D

    2011-01-01

    Novel techniques are presented, which identify the chiral power-counting regime (PCR), and realize the existence of an intrinsic energy scale embedded in lattice QCD results that extend outside the PCR. The nucleon mass is considered as a benchmark for illustrating this new approach. Using finite-range regularization, an optimal regularization scale can be extracted from lattice simulation results by analyzing the renormalization of the low energy coefficients. The optimal scale allows a description of lattice simulation results that extend beyond the PCR by quantifying and thus handling any scheme-dependence. Preliminary results for the nucleon magnetic moment are also examined, and a consistent optimal regularization scale is obtained. This indicates the existence of an intrinsic scale corresponding to the finite size of the source of the pion cloud.

  12. Field induced spin chirality and chirality switching in magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovskaya, Elena V., E-mail: elena_tartakovskaya@yahoo.com [Institute of Magnetism NAS of Ukraine, Vernadsky blvd 36b, 03142 Kiev (Ukraine); Institute of High Technologies, Taras Shevchenko National University of Kiev, 03022 Kiev (Ukraine)

    2015-05-01

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman–Kittel–Kasuya–Yosida and the Dsyaloshinsky–Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness. - Highlights: • Field-induced spin chirality in magnetic multilayers is explained. • The roles of the RKKY, the DM and the Zeeman interactions are clarified. • Theoretical analysis of the chirality factor is in agreement with experimental data.

  13. Foundations of Strangeness Nuclear Physics derived from chiral Effective Field Theory

    CERN Document Server

    Meißner, Ulf-G

    2016-01-01

    Dense compact objects like neutron stars or black holes have always been one of Gerry Brown's favorite research topics. This is closely related to the effects of strangeness in nuclear physics. Here, we review the chiral Effective Field Theory approach to interactions involving nucleons and hyperons, the possible existence of strange dibaryons, the fate of hyperons in nuclear matter and the present status of three-body forces involving hyperons and nucleons.

  14. Auxiliary-Field Quantum Monte Carlo Simulations of Neutron Matter in Chiral Effective Field Theory

    CERN Document Server

    Wlazłowski, G; Moroz, S; Bulgac, A; Roche, K J

    2014-01-01

    We present variational Monte Carlo calculations of the neutron matter equation of state using chiral nuclear interactions. The ground-state wavefunction of neutron matter, containing non-perturbative many-body correlations, is obtained from auxiliary-field quantum Monte Carlo simulations of up to about 340 neutrons interacting on a 10^3 discretized lattice. The evolution Hamiltonian is chosen to be attractive and spin-independent in order to avoid the fermion sign problem and is constructed to best reproduce broad features of chiral nuclear forces. This is facilitated by choosing a lattice spacing of 1.5 fm, corresponding to a momentum-space cutoff of 414 MeV/c, a resolution scale at which strongly repulsive features of nuclear two-body forces are suppressed. Differences between the evolution potential and the full chiral nuclear interaction are then treated perturbatively. Our results for the equation of state are compared to previous quantum Monte Carlo simulations which employed chiral two-body forces at n...

  15. Chiral extrapolation of nucleon axial charge $g_A$ in effective field theory

    CERN Document Server

    Li, Hongna

    2016-01-01

    The extrapolation of nucleon axial charge $g_A$ is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated $g_A$ are all smaller than the experimental value.

  16. Chiral magnetic effect without chirality source in asymmetric Weyl semimetals

    CERN Document Server

    Kharzeev, Dmitri; Meyer, Rene

    2016-01-01

    We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source generates a non-vanishing chiral chemical potential. This is due to the different capacities of the left- and right-handed (LH and RH) chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation f...

  17. Field induced spin chirality and chirality switching in magnetic multilayers

    Science.gov (United States)

    Tartakovskaya, Elena V.

    2015-05-01

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman-Kittel-Kasuya-Yosida and the Dsyaloshinsky-Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness.

  18. Chiral transition with magnetic fields

    CERN Document Server

    Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian

    2014-01-01

    We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...

  19. Complete next-to-next-to-leading order calculation of NN → NNπ in chiral effective field theory

    Directory of Open Access Journals (Sweden)

    Filin A. A.

    2014-01-01

    Full Text Available We present the results of the pion production operator calculated up-to-and-including next-to-next-to-leading order (NNLO in chiral effective field theory. We include explicit Delta degrees of freedom and demonstrate that they provide essential contribution required to understand neutral pion production data. Analysis of chiral loops at NNLO reveals new mechanisms which are important, but haven’t been considered in phenomenological studies so far.

  20. Lattice Simulations for Light Nuclei: Chiral Effective Field Theory at Leading Order

    CERN Document Server

    Borasoy, B; Krebs, H; Lee, D; Meißner, Ulf G; Borasoy, Bugra; Epelbaum, Evgeny; Krebs, Hermann; Lee, Dean; Mei{\\ss}ner, Ulf-G.

    2006-01-01

    We discuss lattice simulations of light nuclei at leading order in chiral effective field theory. Using lattice pion fields and auxiliary fields, we include the physics of instantaneous one-pion exchange and the leading-order S-wave contact interactions. We also consider higher-derivative contact interactions which adjust the S-wave scattering amplitude at higher momenta. By construction our lattice path integral is positive definite in the limit of exact Wigner SU(4) symmetry for any even number of nucleons. This SU(4) positivity and the approximate SU(4) symmetry of the low-energy interactions play an important role in suppressing sign and phase oscillations in Monte Carlo simulations. We assess the computational scaling of the lattice algorithm for light nuclei with up to eight nucleons and analyze in detail calculations of the deuteron, triton, and helium-4.

  1. Chiral magnetic effect in the PNJL model

    CERN Document Server

    Fukushima, Kenji; Gatto, Raoul

    2010-01-01

    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $\\mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $\\mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.

  2. Chiral effective field theory predictions for muon capture on deuteron and {3}He.

    Science.gov (United States)

    Marcucci, L E; Kievsky, A; Rosati, S; Schiavilla, R; Viviani, M

    2012-02-01

    The muon-capture reactions {2}H(μ{-},ν{μ})nn and {3}He(μ{-},ν{μ}){3}H are studied with nuclear potentials and charge-changing weak currents, derived in chiral effective field theory. The low-energy constants (LECs) c{D} and c{E}, present in the three-nucleon potential and (c{D}) axial-vector current, are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The muon-capture rates on deuteron and {3}He are predicted to be 399±3  sec{-1} and 1494±21  sec{-1}, respectively. The spread accounts for the cutoff sensitivity, as well as uncertainties in the LECs and electroweak radiative corrections. By comparing the calculated and precisely measured rates on {3}He, a value for the induced pseudoscalar form factor is obtained in good agreement with the chiral perturbation theory prediction. PMID:22400928

  3. Chiral effective field theory predictions for muon capture on deuteron and $^3$He

    Energy Technology Data Exchange (ETDEWEB)

    Laura E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, M. Viviani

    2012-01-01

    The muon-capture reactions {sup 2}H({mu}{sup -}, {nu}{sub {mu}})nn and {sup 3}He({mu}{sup -},{nu}{sub {mu}}){sup 3}H are studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral effective field theory. The low-energy constants (LEC's) c{sub D} and c{sub E}, present in the three-nucleon potential and (c{sub D}) axial-vector current, are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The vector weak current is related to the isovector component of the electromagnetic current via the conserved-vector-current constraint, and the two LEC's entering the contact terms in the latter are constrained to reproduce the A=3 magnetic moments. The muon capture rates on deuteron and {sup 3}He are predicted to be 399 {+-} 3 sec{sup -1} and 1494 {+-} 21 sec{sup -1}, respectively, where the spread accounts for the cutoff sensitivity as well as uncertainties in the LEC's and electroweak radiative corrections. By comparing the calculated and precisely measured rates on {sup 3}He, a value for the induced pseudoscalar form factor is obtained in good agreement with the chiral perturbation theory prediction.

  4. The proton-proton weak capture in chiral effective field theory

    CERN Document Server

    Marcucci, L E; Viviani, M

    2013-01-01

    The astrophysical S-factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0--100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants (LEC's) entering the weak current operators are fixed so as to reproduce the A=3 binding energies and magnetic moments, and the Gamow-Teller matrix element in tritium beta decay. Contributions from S and P partial waves in the incoming two-proton channel are retained. The S-factor at zero energy is found to be S(0)=(4.030\\pm 0.006) x 10^{-23} MeV fm^2, with a P-wave contribution of 0.020 x 10^{-23} MeV fm^2. The theoretical uncertainty is due to the fitting procedure of the LEC's and to the cutoff dependence. It is shown that polynomial fits to parametrize the energy dependence of the S-factor are inherently unstabl...

  5. Chiral effective field theory on the lattice at next-to-leading order

    CERN Document Server

    Borasoy, Bugra; Krebs, Hermann; Lee, Dean; Meißner, Ulf-G

    2007-01-01

    We study nucleon-nucleon scattering on the lattice at next-to-leading order in chiral effective field theory. We determine phase shifts and mixing angles from the properties of two-nucleon standing waves induced by a hard spherical wall in the center-of-mass frame. At fixed lattice spacing we test model independence of the low-energy effective theory by computing next-to-leading-order corrections for two different leading-order lattice actions. The first leading-order action includes instantaneous one-pion exchange and same-site contact interactions. The second leading-order action includes instantaneous one-pion exchange and Gaussian-smeared interactions. We find that in each case the results at next-to-leading order are accurate up to corrections expected at higher order.

  6. Electric fields and chiral magnetic effect in Cu+Au collisions

    Directory of Open Access Journals (Sweden)

    Wei-Tian Deng

    2015-03-01

    Full Text Available The non-central Cu+Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu+Au collisions at 200 GeV and their impacts on the charge-dependent two-particle correlator γq1q2=〈cos⁡(ϕ1+ϕ2−2ψRP〉 (see main text for definition which was used for the detection of the chiral magnetic effect (CME. Compared with Au+Au collisions, we find that the in-plane electric fields in Cu+Au collisions can strongly suppress the two-particle correlator or even reverse its sign if the lifetime of the electric fields is long. Combining with the expectation that if γq1q2 is induced by elliptic-flow driven effects we would not see such strong suppression or reversion, our results suggest to use Cu+Au collisions to test CME and understand the mechanisms that underlie γq1q2.

  7. ${{\\bar{d}} - {\\bar{u}}}$ Flavor Asymmetry in the Proton in Chiral Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Salamu, Y. [Institute of High Energy Physics, CAS, Beijing, 100049, China; Ji, Cheung-Ryong [North Carolina State University, Raleigh, NC; Melnitchouk, Wally [Jefferson Lab, Newport News, VA; Wang, P. [Theoretical Physics Center for Science Facilities, CAS, Beijing, 100049, China

    2015-09-01

    The ${\\bar d - \\bar u}$ flavor asymmetry in the proton arising from pion loops is computed using chiral effective field theory. The calculation includes both nucleon and Δ intermediate states, and uses both the fully relativistic and heavy baryon frameworks. The x dependence of ${\\bar d - \\bar u}$ extracted from the Fermilab E866 Drell–Yan data can be well reproduced in terms of a single transverse momentum cutoff parameter regulating the ultraviolet behavior of the loop integrals. In addition to the distribution at x > 0, corrections to the integrated asymmetry from zero momentum contributions are computed, which arise from pion rainbow and bubble diagrams at x = 0. These have not been accounted for in previous analyses, and can make important contributions to the lowest moment of ${\\bar d-\\bar u}$ .

  8. Electromagnetic currents and magnetic moments in chiral effective field theory (χEFT)

    International Nuclear Information System (INIS)

    A two-nucleon potential and consistent electromagnetic currents are derived in chiral effective field theory (χEFT) at, respectively, Q2 (or N2LO) and eQ (or N3LO), where Q generically denotes the low-momentum scale and e is the electric charge. Dimensional regularization is used to renormalize the pion-loop corrections. A simple expression is derived for the magnetic dipole (M1) operator associated with pion loops, consisting of two terms, one of which is determined, uniquely, by the isospin-dependent part of the two-pion-exchange potential. This decomposition is also carried out for the M1 operator arising from contact currents, in which the unique term is determined by the contact potential. Finally, the low-energy constants entering the N2LO potential are fixed by fits to the np S- and P-wave phase shifts up to 100 MeV laboratory energies.

  9. Two-nucleon electromagnetic current in chiral effective field theory: one-pion exchange and short-range contributions

    CERN Document Server

    Koelling, S; Krebs, H; Meißner, U -G

    2011-01-01

    We derive the leading one-loop contribution to the one-pion exchange and short-range two-nucleon electromagnetic current operator in the framework of chiral effective field theory. The derivation is carried out using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  10. Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation

    CERN Document Server

    Koelling, S; Krebs, H; Meißner, U -G

    2009-01-01

    We derive the leading two-pion exchange contributions to the two-nucleon electromagnetic current operator in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  11. Modelling of Chirality-Dependent Current-Voltage Characteristics of Carbon-Nanotube Field-Effect Transistors

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xu; WANG Yan; YU Zhi-Ping

    2006-01-01

    @@ Current-voltage characteristics of ballistic carbon-nanotube field-effect transistors are characterized with an it-erative simulation program. The influence of carbon-nanotube chirality and diameter on the output current is considered. An analytical current-voltage expression under the quantum capacitance limit and low-voltage application is derived. Our simulation results are compared with actual measurement data.

  12. Green's Function Monte Carlo Calculations with Two- and Three-Nucleon Interactions from Chiral Effective Field Theory

    CERN Document Server

    Lynn, J E

    2015-01-01

    I discuss our recent work on Green's function Monte Carlo (GFMC) calculations of light nuclei using local nucleon-nucleon interactions derived from chiral effective field theory (EFT) up to next-to-next-to-leading order (N$^2$LO). I present the natural extension of this work to include the consistent three-nucleon (3N) forces at the same order in the chiral expansion. I discuss our choice of observables to fit the two low-energy constants which enter in the 3N sector at N$^2$LO and present some results for light nuclei.

  13. Green's Function Monte Carlo Calculations with Two- and Three-Nucleon Interactions from Chiral Effective Field Theory

    Science.gov (United States)

    Lynn, J. E.

    2016-03-01

    I discuss our recent work on Green's function Monte Carlo (GFMC) calculations of light nuclei using local nucleon-nucleon interactions derived from chiral effective field theory (EFT) up to next-to-next-to-leading order (N2LO). I present the natural extension of this work to include the consistent three-nucleon (3N) forces at the same order in the chiral expansion. I discuss our choice of observables to fit the two low-energy constants which enter in the 3N sector at N2LO and present some results for light nuclei.

  14. Green’s Function Monte Carlo Calculations with Two- and Three-Nucleon Interactions from Chiral Effective Field Theory

    Directory of Open Access Journals (Sweden)

    Lynn J. E.

    2016-01-01

    Full Text Available I discuss our recent work on Green’s function Monte Carlo (GFMC calculations of light nuclei using local nucleon-nucleon interactions derived from chiral effective field theory (EFT up to next-to-next-to-leading order (N2LO. I present the natural extension of this work to include the consistent three-nucleon (3N forces at the same order in the chiral expansion. I discuss our choice of observables to fit the two low-energy constants which enter in the 3N sector at N2LO and present some results for light nuclei.

  15. Chiral spiral induced by a strong magnetic field

    CERN Document Server

    Abuki, H

    2016-01-01

    We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it totally washes the tricritical point out of the phase diagram, bringing the continent for the chiral spiral. This is the case no matter how small is the intensity of the magnetic field. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  16. Implications of Efimov physics for the chiral effective field theory description of three and four nucleons

    CERN Document Server

    Kievsky, A; Gattobigio, M; Girlanda, L

    2016-01-01

    In chiral effective field theory the leading order (LO) nucleon-nucleon potential includes two contact terms, in the two spin channels $S=0,1$, and the one-pion-exchange potential. When the pion degrees of freedom are integrated out, as in the pionless effective field theory, the LO potential includes two contact terms only. In the three-nucleon system, the pionless theory includes a three-nucleon contact term interaction at LO whereas the pionful theory does not. Accordingly arbitrary differences could be observed in the LO description of three- and four-nucleon binding energies. We analyze the two theories at LO and conclude that a three-nucleon contact term is necessary at this order in both theories. In turn this implies that subleading three-nucleon contact terms should be promoted to lower orders. Furthermore this analysis shows that one single low energy constant might be sufficient to explain the large values of the singlet and triplet scattering lengths.

  17. Ground state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory

    CERN Document Server

    Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G

    2008-01-01

    We present lattice calculations for the ground state energy of dilute neutron matter at next-to-leading order in chiral effective field theory. This study follows a series of recent papers on low-energy nuclear physics using chiral effective field theory on the lattice. In this work we introduce an improved spin- and isospin-projected leading-order action which allows for a perturbative treatment of corrections at next-to-leading order and smaller estimated errors. Using auxiliary fields and Euclidean-time projection Monte Carlo, we compute the ground state of 8, 12, and 16 neutrons in a periodic cube, covering a density range from 2% to 10% of normal nuclear density.

  18. Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems

    Science.gov (United States)

    Viviani, M.; Baroni, A.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.; Schiavilla, R.

    2014-06-01

    Background: Weak interactions between quarks induce a parity-violating (PV) component in the nucleon-nucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (χEFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the p⃗-p longitudinal asymmetry, the neutron spin rotation in n⃗-p and n⃗-d scattering, and the longitudinal asymmetry in the 3He(n⃗,p)3H charge-exchange reaction. Methods: The χEFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A =2-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from χEFT. In the case of the A =3-4 systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant hπ1 and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The χEFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.

  19. Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems

    Energy Technology Data Exchange (ETDEWEB)

    Viviani, M. [National Inst. of Nuclear Physics (INFN), Pisa (Italy); Baroni, A. [Old Dominion Univ., Norfolk, VA (United States). Dept. of Physics; Girlanda, L. [Univ. of Salento and INFN-Lecce, Lecce (Italy). Dept. of Mathematical and Physics; Kievsky, A. [National Inst. of Nuclear Physics (INFN), Pisa (Italy); Marcucci, L. E. [Univ. of Pisa (Italy); National Inst. of Nuclear Physics (INFN), Pisa (Italy); Schiavilla, R. [Old Dominion Univ., Norfolk, VA (United States). Dept. of Physics; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-06-18

    Weak interactions between quarks induce a parity-violating (PV) component in the nucleon-nucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (${\\chi }$EFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the $\\vec{p}$-p longitudinal asymmetry, the neutron spin rotation in n-p and n-d scattering, and the longitudinal asymmetry in the 3He( $\\vec{n}$,p)3H charge-exchange reaction. Methods: The ${\\chi }$EFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A=2-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from ${\\chi }$EFT. In the case of the A=3-4 systems, systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant h$1\\atop{π}$ and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The ${\\chi }$EFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.

  20. A chiral effective field theory study of hadronic parity violation in few-nucleon systems

    CERN Document Server

    Viviani, M; Girlanda, L; Kievsky, A; Marcucci, L E; Schiavilla, R

    2014-01-01

    We reconsider the derivation of the nucleon-nucleon parity-violating (PV) potential within a chiral effective field theory framework. We construct the potential up to next-to-next-to-leading order by including one-pion-exchange, two-pion-exchange, contact, and 1/M (M being the nucleon mass) terms, and use dimensional regularization to renormalize the pion-loop corrections. A detailed analysis of the number of independent low-energy constants (LEC's) entering the potential is carried out. We find that it depends on six LEC's: the pion-nucleon PV coupling constant $h^1_\\pi$ and five parameters multiplying contact interactions. We investigate PV effects induced by this potential on several few-nucleon observables, including the $\\vec{p}$-$p$ longitudinal asymmetry, the neutron spin rotation in $\\vec{n}$-$p$ and $\\vec{n}$-$d$ scattering, and the longitudinal asymmetry in the $^3$He$(\\vec{n},p)^3$H charge-exchange reaction. An estimate for the range of values of the various LEC's is provided by using available exp...

  1. Chiral Cosmological Models: Dark Sector Fields Description

    CERN Document Server

    Chervon, S V

    2014-01-01

    The present review is devoted to a Chiral Cosmological Model as the self-gravitating nonlinear sigma model with the potential of (self)interactions employed in cosmology. The chiral cosmological model has successive applications in descriptions of the inflationary epoch of the Universe evolution; the present accelerated expansion of the Universe also can be described by the chiral fields multiplet as the dark energy in wide sense. To be more illustrative we are often addressed to the two-component chiral cosmological model. Namely, the two-component chiral cosmological model describing the phantom field with interaction to a canonical scalar field is analyzed in details. New generalized model of quintom character is proposed and exact solutions are founded out. In the review we represented the perturbation theory for chiral cosmological model with the aim to describe the structure formation using the progress achieved in the inflation theory. It was shown that cosmological perturbations from chiral fields can...

  2. Chiral medium produced by parallel electric and magnetic fields

    CERN Document Server

    Ruggieri, Marco; Chernodub, Maxim

    2016-01-01

    We compute (pseudo)critical temperature, $T_c$, of chiral symmetry restoration for quark matter in the background of parallel electric and magnetic fields. This field configuration leads to the production of a chiral medium on a time scale $\\tau$, characterized by a nonvanishing value of the chiral density that equilibrates due to microscopic processes in the thermal bath. We estimate the relaxation time $\\tau$ to be about $\\approx 0.1-1$ fm/c around the chiral crossover; then we compute the effect of the fields and of the chiral medium on~$T_c$. We find $T_c$ to be lowered by the external fields in the chiral medium.

  3. Chiral Magnetic Effect and Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    FU Wei-Jie; LIU Yu-Xin; WU Yue-Liang

    2011-01-01

    We study the influence of the chiral phase transition on the chiral magnetic effect.The azimuthal chargeparticle correlations as functions of the temperature are calculated.It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition.It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value.We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.

  4. Uncertainty quantification for proton-proton fusion in chiral effective field theory

    CERN Document Server

    Acharya, B; Ekström, A; Forssén, C; Platter, L

    2016-01-01

    We compute the $S$-factor of the proton-proton ($pp$) fusion reaction using chiral effective field theory ($\\chi$EFT) up to next-to-next-to-leading order (NNLO) and perform a rigorous uncertainty analysis of the results. We quantify the uncertainties due to (i) the computational method used to compute the $pp$ cross section in momentum space, (ii) the statistical uncertainties in the low-energy coupling constants of $\\chi$EFT, (iii) the systematic uncertainty due to the $\\chi$EFT cutoff, and (iv) systematic variations in the database used to calibrate the nucleon-nucleon interaction. We also examine the robustness of the polynomial extrapolation procedure, which is commonly used to extract the threshold $S$-factor and its energy-derivatives. By performing a statistical analysis of the polynomial fit of the energy-dependent $S$-factor at several different energy intervals, we eliminate a systematic uncertainty that can arise from the choice of the fit interval in our calculations. In addition, we explore the s...

  5. Uncertainty quantification for proton-proton fusion in chiral effective field theory

    Science.gov (United States)

    Acharya, B.; Carlsson, B. D.; Ekström, A.; Forssén, C.; Platter, L.

    2016-09-01

    We compute the S-factor of the proton-proton (pp) fusion reaction using chiral effective field theory (χEFT) up to next-to-next-to-leading order (NNLO) and perform a rigorous uncertainty analysis of the results. We quantify the uncertainties due to (i) the computational method used to compute the pp cross section in momentum space, (ii) the statistical uncertainties in the low-energy coupling constants of χEFT, (iii) the systematic uncertainty due to the χEFT cutoff, and (iv) systematic variations in the database used to calibrate the nucleon-nucleon interaction. We also examine the robustness of the polynomial extrapolation procedure, which is commonly used to extract the threshold S-factor and its energy-derivatives. By performing a statistical analysis of the polynomial fit of the energy-dependent S-factor at several different energy intervals, we eliminate a systematic uncertainty that can arise from the choice of the fit interval in our calculations. In addition, we explore the statistical correlations between the S-factor and few-nucleon observables such as the binding energies and point-proton radii of 2,3H and 3He as well as the D-state probability and quadrupole moment of 2H, and the β-decay of 3H. We find that, with the state-of-the-art optimization of the nuclear Hamiltonian, the statistical uncertainty in the threshold S-factor cannot be reduced beyond 0.7%.

  6. Magnetic fields and chiral asymmetry in the early hot universe

    Science.gov (United States)

    Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  7. Strangeness $S=-1$ hyperon-nucleon scattering in covariant chiral effective field theory

    OpenAIRE

    Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bing-Wei

    2016-01-01

    Motivated by the successes of covariant baryon chiral perturbation theory in one-baryon systems and in heavy-light systems, we study relevance of relativistic effects in hyperon-nucleon interactions with strangeness $S=-1$. In this exploratory work, we follow the covariant framework developed by Epelbaum and Gegelia to calculate the $YN$ scattering amplitude at leading order. By fitting the five low-energy constants to the experimental data, we find that the cutoff dependence is mitigated, co...

  8. Magnetic fields and chiral asymmetry in the early hot universe

    CERN Document Server

    Sidorenko, Maxim; Shtanov, Yuri

    2016-01-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending...

  9. Uncertainty quantification for proton–proton fusion in chiral effective field theory

    Directory of Open Access Journals (Sweden)

    B. Acharya

    2016-09-01

    Full Text Available We compute the S-factor of the proton–proton (pp fusion reaction using chiral effective field theory (χEFT up to next-to-next-to-leading order (NNLO and perform a rigorous uncertainty analysis of the results. We quantify the uncertainties due to (i the computational method used to compute the pp cross section in momentum space, (ii the statistical uncertainties in the low-energy coupling constants of χEFT, (iii the systematic uncertainty due to the χEFT cutoff, and (iv systematic variations in the database used to calibrate the nucleon–nucleon interaction. We also examine the robustness of the polynomial extrapolation procedure, which is commonly used to extract the threshold S-factor and its energy-derivatives. By performing a statistical analysis of the polynomial fit of the energy-dependent S-factor at several different energy intervals, we eliminate a systematic uncertainty that can arise from the choice of the fit interval in our calculations. In addition, we explore the statistical correlations between the S-factor and few-nucleon observables such as the binding energies and point-proton radii of 2,3H and 3He as well as the D-state probability and quadrupole moment of 2H, and the β-decay of 3H. We find that, with the state-of-the-art optimization of the nuclear Hamiltonian, the statistical uncertainty in the threshold S-factor cannot be reduced beyond 0.7%.

  10. Lattice chiral effective field theory with three-body interactions at next-to-next-to-leading order

    CERN Document Server

    Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G

    2009-01-01

    We consider low-energy nucleons at next-to-next-to-leading order in lattice chiral effective field theory. Three-body interactions first appear at this order, and we discuss several methods for determining three-body interaction coefficients on the lattice. We compute the energy of the triton and low-energy neutron-deuteron scattering phase shifts in the spin-doublet and spin-quartet channels using Luescher's finite volume method. In the four-nucleon system we calculate the energy of the alpha particle using auxiliary fields and projection Monte Carlo.

  11. Strangeness S =-1 hyperon-nucleon scattering in covariant chiral effective field theory

    Science.gov (United States)

    Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bingwei

    2016-07-01

    Motivated by the successes of covariant baryon chiral perturbation theory in one-baryon systems and in heavy-light systems, we study relevance of relativistic effects in hyperon-nucleon interactions with strangeness S =-1 . In this exploratory work, we follow the covariant framework developed by Epelbaum and Gegelia to calculate the Y N scattering amplitude at leading order. By fitting the five low-energy constants to the experimental data, we find that the cutoff dependence is mitigated, compared with the heavy-baryon approach. Nevertheless, the description of the experimental data remains quantitatively similar at leading order.

  12. The Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields

    CERN Document Server

    Poulikakos, Lisa V; McPeak, Kevin M; Burger, Sven; Niegemann, Jens; Hafner, Christian; Norris, David J

    2016-01-01

    To optimize the interaction between chiral matter and highly twisted light, quantities that can help characterize chiral electromagnetic fields near nanostructures are needed. Here, by analogy with Poynting's theorem, we formulate the time-averaged conservation law of optical chirality in lossy dispersive media and identify the optical chirality flux as an ideal far-field observable for characterizing chiral optical near fields. Bounded by the conservation law, we show that it provides precise information, unavailable from circular dichroism spectroscopy, on the magnitude and handedness of highly twisted fields near nanostructures.

  13. Generalized electromagnetic fields in a chiral medium

    Science.gov (United States)

    Bisht, P. S.; Singh, Jivan; Negi, O. P. S.

    2007-09-01

    The time-dependent Dirac-Maxwell's equations in the presence of electric and magnetic sources are reformulated in a chiral medium, and the solutions for the classical problem are obtained in a unique, simple and consistent manner. The quaternion reformulation of generalized electromagnetic fields in the chiral medium has also been discussed in a compact, simple and consistent manner.

  14. Generalized Electromagnetic fields in Chiral Medium

    OpenAIRE

    Bisht, P. S.; Singh, Jivan; Negi, O. P. S.

    2007-01-01

    The time dependent Dirac-Maxwell's Equations in presence of electric and magnetic sources are written in chiral media and the solutions for the classical problem are obtained in unique simple and consistent manner. The quaternion reformulation of generalized electromagnetic fields in chiral media has also been developed in compact, simple and consistent manner.

  15. Generalized electromagnetic fields in a chiral medium

    Energy Technology Data Exchange (ETDEWEB)

    Bisht, P S [Department of Physics, Kumaun University, Soban Singh Jeena Campus, Almora-263601 (Uttarakhand) (India); Singh, Jivan [Department of Physics, Govt. Post Graduate College, Pithoragarh (Uttarakhand) (India); Negi, O P S [Department of Physics, Kumaun University, Soban Singh Jeena Campus, Almora-263601 (Uttarakhand) (India)

    2007-09-14

    The time-dependent Dirac-Maxwell's equations in the presence of electric and magnetic sources are reformulated in a chiral medium, and the solutions for the classical problem are obtained in a unique, simple and consistent manner. The quaternion reformulation of generalized electromagnetic fields in the chiral medium has also been discussed in a compact, simple and consistent manner.

  16. Magnetoelectric fields for microwave chirality discrimination in enantiomeric liquids

    CERN Document Server

    Hollander, E; Shavit, R

    2016-01-01

    Chirality discrimination is of a fundamental interest in biology, chemistry, and metamaterial studies. In optics, near-field plasmon-resonance spectroscopy with superchiral probing fields is effectively applicable for analyses of large biomolecules with chiral properties. We show possibility for microwave near-field chirality discrimination analysis based on magnon-resonance spectroscopy. Newly developed capabilities in microwave sensing using magnetoelectric (ME) probing fields originated from multiresonance magnetic-dipolar-mode (MDM) oscillations in quasi-2D yttrium-iron-garnet (YIG) disks, provide a potential for unprecedented measurements of chemical and biological objects. We report on microwave near-field chirality discrimination for aqueous D- and L-glucose solutions. The shown ME-field sensing is addressed to microwave biomedical diagnostics and pathogen detection and to deepening our understanding of microwave-biosystem interactions. It can be also important for an analysis and design of microwave c...

  17. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

    CERN Document Server

    Tian, Xiaorui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of...

  18. Anomalous Hall effect for semiclassical chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengming, E-mail: zhpm@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Horváthy, P.A., E-mail: horvathy@lmpt.univ-tours.fr [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Laboratoire de Mathématiques et de Physique Théorique, Université de Tours (France)

    2015-03-06

    Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field, instead, spiraling motion is found. Motion in Hall-type perpendicular electric and magnetic fields is also studied. - Highlights: • Chiral fermions exhibit an anomalous spin-Hall effect. • Transverse shift appears in a pure electric field. • In a pure magnetic field spiraling motion is found.

  19. Chiral Magnetic Effect in Hydrodynamic Approximation

    CERN Document Server

    Zakharov, Valentin I

    2012-01-01

    We review derivations of the chiral magnetic effect (ChME) in hydrodynamic approximation. The reader is assumed to be familiar with the basics of the effect. The main challenge now is to account for the strong interactions between the constituents of the fluid. The main result is that the ChME is not renormalized: in the hydrodynamic approximation it remains the same as for non-interacting chiral fermions moving in an external magnetic field. The key ingredients in the proof are general laws of thermodynamics and the Adler-Bardeen theorem for the chiral anomaly in external electromagnetic fields. The chiral magnetic effect in hydrodynamics represents a macroscopic manifestation of a quantum phenomenon (chiral anomaly). Moreover, one can argue that the current induced by the magnetic field is dissipation free and talk about a kind of "chiral superconductivity". More precise description is a ballistic transport along magnetic field taking place in equilibrium and in absence of a driving force. The basic limitat...

  20. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    Institute of Scientific and Technical Information of China (English)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with monovacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed.

  1. The reaction pi N-> pi pi N in chiral effective field theory with explicit Delta(1232)

    CERN Document Server

    Siemens, D; Epelbaum, E; Krebs, H; Meißner, Ulf-G

    2014-01-01

    The reaction pi N -> pi pi N is studied at tree level up to next-to-leading order in the framework of manifestly covariant baryon chiral perturbation theory with explicit Delta(1232) degrees of freedom. Using total cross section data to determine the relevant low-energy constants, predictions are made for various differential as well as total cross sections at higher energies. A detailed comparison of results based on the heavy-baryon and relativistic formulations of chiral perturbation theory with and without explicit Delta degrees of freedom is given.

  2. Dilute neutron matter on the lattice at next-to-leading order in chiral effective field theory

    CERN Document Server

    Borasoy, Bugra; Krebs, Hermann; Lee, Dean; Meißner, Ulf-G

    2007-01-01

    We discuss lattice simulations of the ground state of dilute neutron matter at next-to-leading order in chiral effective field theory. In a previous paper the coefficients of the next-to-leading-order lattice action were determined by matching nucleon-nucleon scattering data for momenta up to the pion mass. Here the same lattice action is used to simulate the ground state of up to 12 neutrons in a periodic cube using Monte Carlo. We explore the density range from 2% to 8% of normal nuclear density and analyze the ground state energy as an expansion about the unitarity limit with corrections due to finite scattering length, effective range, and P-wave interactions.

  3. Two-nucleon electromagnetic charge operator in chiral effective field theory (χEFT) up to one loop

    International Nuclear Information System (INIS)

    The electromagnetic charge operator in a two-nucleon system is derived in chiral effective field theory (χEFT) up to order e Q[or next-to-next-to-next-to-next-to-leading order (N4LO)], where Q denotes the low-momentum scale and e is the electric charge. The specific form of the N3LO and N4LO corrections from, respectively, one-pion-exchange and two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for the nonstatic terms in the corresponding potentials. We show that different prescriptions lead to unitarily equivalent potentials and accompanying charge operators. Thus, provided a consistent set is adopted, predictions for physical observables will remain unaffected by the nonuniqueness associated with these off-the-energy-shell effects.

  4. The two-nucleon electromagnetic charge operator in chiral effective field theory ($\\chi$EFT) up to one loop

    Energy Technology Data Exchange (ETDEWEB)

    S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani,S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani

    2011-08-01

    The electromagnetic charge operator in a two-nucleon system is derived in chiral effective field theory ($\\chi$EFT) up to order $e\\, Q$ (or N4LO), where $Q$ denotes the low-momentum scale and $e$ is the electric charge. The specific form of the N3LO and N4LO corrections from, respectively, one-pion-exchange and two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for the non-static terms in the corresponding potentials. We show that different prescriptions lead to unitarily equivalent potentials and accompanying charge operators. Thus, provided a consistent set is adopted, predictions for physical observables will remain unaffected by the non-uniqueness associated with these off-the-energy-shell effects.

  5. Chiral Magnetic Effect in Heavy Ion Collisions

    CERN Document Server

    Liao, Jinfeng

    2016-01-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.

  6. Chiral magnetic effect and holography

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Ingo; Kalaydzhyan, Tigran

    2013-01-15

    The chiral magnetic effect (CME) is a highly discussed effect in heavy-ion collisions stating that, in the presence of a magnetic field B, an electric current is generated in the background of topologically nontrivial gluon fields. We present a holographic (AdS/CFT) description of the CME in terms of a fluid-gravity model which is dual to a strongly-coupled plasma with multiple anomalous U(1) currents. In the case of two U(1) charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We will holographically compute this coefficient at strong coupling and compare it with the hydrodynamic result. Finally, we will discuss an anisotropic variant of the model and study a possible dependence of the CME on the elliptic flow coefficient {nu}{sub 2}.

  7. Anomalous Hall Effect for chiral fermions

    CERN Document Server

    Zhang, P -M

    2014-01-01

    Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field, they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field a cork-screw-like, spiraling motion is found.

  8. SU(3) Chiral Symmetry in Non-Relativistic Field Theory

    CERN Document Server

    Ouellette, S M

    2001-01-01

    Applications imposing SU(3) chiral symmetry on non-relativistic field theory are considered. The first example is a calculation of the self-energy shifts of the spin-3/2 decuplet baryons in nuclear matter, from the chiral effective Lagrangian coupling octet and decuplet baryon fields. Special attention is paid to the self-energy of the delta baryon near the saturation density of nuclear matter. We find contributions to the mass shifts from contact terms in the effective Lagrangian with coefficients of unknown value. As a second application, we formulate an effecive field theory with manifest SU(2) chiral symmetry for the interactions of K and eta mesons with pions at low energy. SU(3) chiral symmetry is imposed on the effective field theory by a matching calculation onto three-flavor chiral perturbation theory. The effective Lagrangian for the pi-K and pi-eta sectors is worked out to order Q^4; the effective Lagrangian for the K-K sector is worked out to order Q^2 with contact interactions to order Q^4. As an...

  9. Absence of equilibrium chiral magnetic effect

    CERN Document Server

    Zubkov, M A

    2016-01-01

    We analyse the $3+1$ D equilibrium chiral magnetic effect (CME). We apply derivative expansion to the Wigner transform of the two - point Green function. This technique allows us to express the response of electric current to external electromagnetic field strength through the momentum space topological invariant. We consider the wide class of the lattice regularizations of quantum field theory (that includes, in particular, the regularization with Wilson fermions) and also certain lattice models of solid state physics (including those of Dirac semimetals). It appears, that in these models the mentioned topological invariant vanishes identically at nonzero chiral chemical potential. That means, that the bulk equilibrium CME is absent in those systems.

  10. Impact of the neutron and nuclear matter equations of state on neutron skin and neutron drip lines in chiral effective field theory

    CERN Document Server

    Sammarruca, Francesca

    2016-01-01

    We present predictions of the binding energy per nucleon and the neutron skin thickness in highly neutron-rich isotopes of Oxygen, Magnesium, and Aluminum. The calculations are carried out at and below the neutron drip line. The nuclear properties are obtained via an energy functional whose input is the equation of state of isospin-asymmetric in?finite matter. The latter is based on a microscopic derivation applying chiral few-nucleon forces. We highlight the impact of the equation of state at diff?erent orders of chiral effective fi?eld theory and discuss the role of three-neutron forces.

  11. Nuclear axial current operators to fourth order in chiral effective field theory

    CERN Document Server

    Krebs, H; Meißner, U -G

    2016-01-01

    We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized single-, two- and three-nucleon contributions to the charge and current operators and pseudoscalar operators including the relevant relativistic corrections. We also verify explicitly the validity of the continuity equation.

  12. {sup 14}C dating beta decay with chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Jeremy; Kaiser, Norbert; Weise, Wolfram [Technische Universitaet Muenchen, Muenchen (Germany)

    2009-07-01

    The anomalously long beta-decay lifetime of {sup 14}C, which is essential for the science of radiocarbon dating, has long been a challenge for nuclear structure theory. Here we present a shell model calculation of this decay, treating the initial and final nuclear states as two p-holes in an {sup 16}O core. Employing the low-momentum nucleon-nucleon (NN) interaction V{sub low-k} only, we find that the Gamow-Teller transition matrix element is too large to describe the known lifetime of {sup 14}C. As a novel approach to this problem, we invoke the chiral three-nucleon force (3NF) at leading order and derive from it a density-dependent in-medium NN interaction. After including these in-medium contributions, we find that the Gamow-Teller matrix element vanishes at a nuclear density close to that of saturated nuclear matter. The genuine short-range part of the 3NF is identified as the most important contribution leading to the observed suppression, and we find that although individual terms arising from the long- and medium-range parts of the chiral 3NF can be large, they significantly cancel.

  13. Microscopic optical potential for exotic isotopes from chiral effective field theory

    Science.gov (United States)

    Holt, J. W.; Kaiser, N.; Miller, G. A.

    2016-06-01

    We compute the isospin-asymmetry dependence of microscopic optical model potentials from realistic chiral two- and three-body interactions over a range of resolution scales Λ ≃400 -500 MeV. We show that at moderate projectile energies, E =110 -200 MeV, the real isovector part of the optical potential changes sign, a phenomenon referred to as isospin inversion. We also extract the strength and energy dependence of the imaginary isovector optical potential and find no evidence for an analogous phenomenon over the range of energies, E ≤200 MeV, considered in the present work. Finally, we compute for the first time the leading (quadratic) corrections to the Lane parametrization for the isospin-asymmetry dependence of the optical potential and observe an enhanced importance at low scattering energies.

  14. The Chiral Magnetic Effect and Anomaly-Induced Transport

    CERN Document Server

    Kharzeev, Dmitri E

    2013-01-01

    The Chiral Magnetic Effect (CME) is the phenomenon of electric charge separation along the external magnetic field that is induced by the chirality imbalance. The CME is a macroscopic quantum effect - it is a manifestation of the chiral anomaly creating a collective motion in Dirac sea. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of systems possessing chiral fermions, from the quark-gluon plasma to chiral materials. The goal of the present review is to provide an elementary introduction into the main ideas underlying the physics of CME, a historical perspective, and a guide to the rapidly growing literature on this topic.

  15. Pion production in nucleon-nucleon collisions in chiral effective field theory with Delta(1232)-degrees of freedom

    CERN Document Server

    Filin, A A; Epelbaum, E; Hanhart, C; Krebs, H; Myhrer, F

    2013-01-01

    A calculation of the pion-production operator up to next-to-next-to-leading order for s-wave pions is performed within chiral effective field theory. In the previous study [Phys. Rev. C 85, 054001 (2012)] we discussed the contribution of the pion-nucleon loops at the same order. Here we extend that study to include explicit Delta degrees of freedom and the 1/m_N^2 corrections to the pion-production amplitude. Using the power counting scheme where the Delta-nucleon mass difference is of the order of the characteristic momentum scale in the production process, we calculate all tree-level and loop diagrams involving Delta up to next-to-next-to-leading order. The long-range part of the Delta loop contributions is found to be of similar size to that from the pion-nucleon loops which supports the counting scheme. The net effect of pion-nucleon and Delta loops is expected to play a crucial role in understanding of the neutral pion production data.

  16. Experimental results on chiral magnetic and vortical effects

    CERN Document Server

    Wang, Gang

    2016-01-01

    Various novel transport phenomena in chiral systems result from the interplay of quantum anomalies with magnetic field and vorticity in high-energy heavy-ion collisions, and could survive the expansion of the fireball and be detected in experiments. Among them are the chiral magnetic effect, the chiral vortical effect and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. The goal of this review is to describe the current status of experimental studies at Relativistic Heavy Ion Collider at BNL and the Large Hadron Collider at CERN, and to outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.

  17. Pion production in nucleon-nucleon collisions in chiral effective field theory: next-to-next-to-leading order contributions

    CERN Document Server

    Filin, A A; Epelbaum, E; Hanhart, C; Krebs, H; Kudryavtsev, A E; Myhrer, F

    2012-01-01

    A complete calculation of the pion-nucleon loops that contribute to the transition operator for $NN\\to NN\\pi$ up-to-and-including next-to-next-to-leading order (N$^2$LO) in chiral effective field theory near threshold is presented. The evaluation is based on the so-called momentum counting scheme, which takes into account the relatively large momentum of the initial nucleons inherent in pion-production reactions. We show that the significant cancellations between the loops found at next-to-leading order (NLO) in the earlier studies are also operative at N$^2$LO. In particular, the $1/m_N$ corrections (with $m_N$ being the nucleon mass) to loop diagrams cancel at N$^2$LO, as do the contributions of the pion loops involving the low-energy constants $c_i$, i=1...4. In contrast to the NLO calculation however, the cancellation of loops at N$^2$LO is incomplete, yielding a non-vanishing contribution to the transition amplitude. Together with the one-pion exchange tree-level operators, the loop contributions provide...

  18. Strangeness S = -2 baryon-baryon interaction at next-to-leading order in chiral effective field theory

    Science.gov (United States)

    Haidenbauer, J.; Meißner, Ulf-G.; Petschauer, S.

    2016-10-01

    The strangeness S = - 2 baryon-baryon interaction is studied in chiral effective field theory up to next-to-leading order. The potential at this order consists of contributions from one- and two-pseudoscalar-meson exchange diagrams and from four-baryon contact terms without and with two derivatives. SU(3) flavor symmetry is imposed for constructing the interaction in the S = - 2 sector. Specifically, the couplings of the pseudoscalar mesons to the baryons are fixed by SU(3) symmetry and, in general, also the contact terms are related via SU(3) symmetry to those determined in a previous study of the S = - 1 hyperon-nucleon interaction. The explicit SU(3) symmetry breaking due to the physical masses of the pseudoscalar mesons (π, K, η) is taken into account. It is argued that the ΞN interaction has to be relatively weak to be in accordance with available experimental constraints. In particular, the published values and upper bounds for the Ξ- p elastic and inelastic cross sections apparently rule out a somewhat stronger attractive ΞN force and, specifically, disfavor any near-threshold deuteron-like bound states in that system.

  19. Quark matter in a parallel electric and magnetic field background: Chiral phase transition and equilibration of chiral density

    Science.gov (United States)

    Ruggieri, M.; Peng, G. X.

    2016-05-01

    In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.

  20. Chiral gap effect in curved space

    CERN Document Server

    Flachi, Antonino

    2014-01-01

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  1. Chiral magnetic effect in ZrTe5

    Science.gov (United States)

    Li, Qiang; Kharzeev, Dmitri E.; Zhang, Cheng; Huang, Yuan; Pletikosić, I.; Fedorov, A. V.; Zhong, R. D.; Schneeloch, J. A.; Gu, G. D.; Valla, T.

    2016-06-01

    The chiral magnetic effect is the generation of an electric current induced by chirality imbalance in the presence of a magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin 1/2 particles with a definite projection of spin on momentum)--a remarkable phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasiparticles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the measurement of magnetotransport in zirconium pentatelluride, ZrTe5, that provides strong evidence for the chiral magnetic effect. Our angle-resolved photoemission spectroscopy experiments show that this material’s electronic structure is consistent with a three-dimensional Dirac semimetal. We observe a large negative magnetoresistance when the magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. The observed phenomenon stems from the effective transmutation of a Dirac semimetal into a Weyl semimetal induced by parallel electric and magnetic fields that represent a topologically non-trivial gauge field background. We expect that the chiral magnetic effect may emerge in a wide class of materials that are near the transition between the trivial and topological insulators.

  2. Novel Lifshitz point for chiral transition in the magnetic field

    Directory of Open Access Journals (Sweden)

    Toshitaka Tatsumi

    2015-04-01

    Full Text Available Based on the generalized Ginzburg–Landau theory, chiral phase transition is discussed in the presence of magnetic field. Considering the chiral density wave we show that chiral anomaly gives rise to an inhomogeneous chiral phase for nonzero quark-number chemical potential. Novel Lifshitz point appears on the vanishing chemical potential line, which may be directly explored by the lattice QCD simulation.

  3. Magnetic field instability in a neutron star driven by electroweak electron-nucleon interaction versus chiral magnetic effect

    CERN Document Server

    Dvornikov, Maxim

    2014-01-01

    We show that the Standard Model electroweak interaction of ultrarelativistic electrons with nucleons ($eN$ interaction) in a neutron star (NS) permeated by a seed large-scale helical magnetic field provides its growth up to $\\gtrsim 10^{15}\\thinspace\\text{G}$ during a time comparable with the ages of young magnetars $\\sim 10^4\\thinspace\\text{yr}$. The magnetic field instability originates from the parity violation in the $eN$ interaction entering the generalized Dirac equation for right and left massless electrons in an external uniform magnetic field. The averaged electric current given by the solution of the modified Dirac equation contains an extra current for right and left electrons (positrons). Such current includes both a changing chiral imbalance of electrons and the $eN$ potential given by a constant neutron density in NS. Then we derive the system of the kinetic equations for the chiral imbalance and the magnetic helicity which accounts for the $eN$ interaction. By solving this system, we show that ...

  4. Stern-Gerlach effect goes chiral

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Prof. SUN Changpu from the CAS Institute of Theoretical Physics and coworkers from University of Basel in Switzerland have worked out a way - at least in theory - to split a beam of molecules according to their chirality. The technique involves passing the molecules through three different laser beams and is similar to the famous Stern-Gerlach effect, whereby a beam of atoms passing through a magnetic field is split in two according to the atoms' spin states (Phys. Rev. Lett. 99 130403).

  5. Absence of equilibrium chiral magnetic effect

    Science.gov (United States)

    Zubkov, M. A.

    2016-05-01

    We analyze the (3 +1 )D equilibrium chiral magnetic effect (CME). We apply derivative expansion to the Wigner transform of the two-point Green function. This technique allows us to express the response of electric current to the external electromagnetic field strength through the momentum space topological invariant. We consider the wide class of the lattice regularizations of quantum field theory (that includes, in particular, the regularization with Wilson fermions) and also certain lattice models of solid state physics (including those of Dirac semimetals). It appears that in these models the mentioned topological invariant vanishes identically at nonzero chiral chemical potential. That means that the bulk equilibrium CME is absent in those systems.

  6. Microscopically constrained mean-field models from chiral nuclear thermodynamics

    Science.gov (United States)

    Rrapaj, Ermal; Roggero, Alessandro; Holt, Jeremy W.

    2016-06-01

    We explore the use of mean-field models to approximate microscopic nuclear equations of state derived from chiral effective field theory across the densities and temperatures relevant for simulating astrophysical phenomena such as core-collapse supernovae and binary neutron star mergers. We consider both relativistic mean-field theory with scalar and vector meson exchange as well as energy density functionals based on Skyrme phenomenology and compare to thermodynamic equations of state derived from chiral two- and three-nucleon forces in many-body perturbation theory. Quantum Monte Carlo simulations of symmetric nuclear matter and pure neutron matter are used to determine the density regimes in which perturbation theory with chiral nuclear forces is valid. Within the theoretical uncertainties associated with the many-body methods, we find that select mean-field models describe well microscopic nuclear thermodynamics. As an additional consistency requirement, we study as well the single-particle properties of nucleons in a hot/dense environment, which affect e.g., charged-current weak reactions in neutron-rich matter. The identified mean-field models can be used across a larger range of densities and temperatures in astrophysical simulations than more computationally expensive microscopic models.

  7. Chiral-scale effective theory including a dilatonic meson

    CERN Document Server

    Li, Yan-Ling; Rho, Mannque

    2016-01-01

    A scale-invariant chiral effective Lagrangian is constructed for octet pions and a dilaton figuring as Nambu-Goldstone bosons with vector mesons incorporated as hidden gauge fields. The Lagrangian is built to the next-to-leading order in chiral-scale counting without baryon fields and then to leading order including baryons. The resulting theory is hidden scale-symmetric and local symmetric. We also discuss some possible applications of the present Lagrangian.

  8. Electromagnetic Response of the Chiral Magnetic Effect in Weyl Semimetals

    OpenAIRE

    Barnes, Edwin; Heremans, J. J.; Minic, Djordje

    2016-01-01

    Weyl semimetals are predicted to realize the three-dimensional axial anomaly first discussed in particle physics. The anomaly leads to unusual transport phenomena such as the chiral magnetic effect in which an applied magnetic field induces a current parallel to the field. Here we investigate diagnostics of the axial anomaly based on the fundamental equations of axion electrodynamics. We find that materials with Weyl nodes of opposite chirality and finite energy separation immersed in a unifo...

  9. Electromagnetic Response of the Chiral Magnetic Effect in Weyl Semimetals

    CERN Document Server

    Barnes, Edwin; Minic, Djordje

    2016-01-01

    Weyl semimetals are predicted to realize the three-dimensional axial anomaly first discussed in particle physics. The anomaly leads to unusual transport phenomena such as the chiral magnetic effect in which an applied magnetic field induces a current parallel to the field. Here we investigate diagnostics of the axial anomaly based on the fundamental equations of axion electrodynamics. We find that materials with Weyl nodes of opposite chirality and finite energy separation immersed in a uniform magnetic field exhibit an anomaly-induced oscillatory magnetic field with a period set by the chemical potential difference of the nodes. In the case where a chemical potential imbalance is created by applying parallel electric and magnetic fields, we find a suppression of the magnetic field component parallel to the electric field inside the material for rectangular samples, suggesting that the chiral magnetic current opposes this imbalance. For cylindrical geometries, we instead find an enhancement of this magnetic f...

  10. Axial anomaly, Dirac sea, and the chiral magnetic effect

    OpenAIRE

    Kharzeev, Dmitri E.

    2010-01-01

    Gribov viewed the axial anomaly as a manifestation of the collective motion of charged fermions with arbitrarily high momenta in the vacuum. In the presence of an external magnetic field and a chirality imbalance, this collective motion becomes directly observable in the form of the electric current - this is the chiral magnetic effect (CME). I give an elementary introduction into the physics of CME, and discuss some recent developments.

  11. The non chiral fusion rules in rational conformal field theories

    CERN Document Server

    Rida, A

    1999-01-01

    We introduce a general method to construct the non chiral fusion rules in rational conformal field theories. We are particularly interested by the models of the complementary series or like-D series which are solutions of modular invariant partition function. The form proposed of the non chiral fusion rules has a structure of Zn grading.

  12. Effective action in general chiral superfield model

    OpenAIRE

    Petrov, A. Yu.

    2000-01-01

    The effective action in general chiral superfield model with arbitrary k\\"{a}hlerian potential $K(\\bar{\\Phi},\\Phi)$ and chiral (holomorphic) potential $W(\\Phi)$ is considered. The one-loop and two-loop contributions to k\\"{a}hlerian effective potential and two-loop (first non-zero) contribution to chiral effective potential are found for arbitrary form of functions $K(\\bar{\\Phi},\\Phi)$ and $W(\\Phi)$. It is found that despite the theory is non-renormalizable in general case two-loop contributi...

  13. Nuclear saturation in lowest-order Brueckner theory with two- and three-nucleon forces in view of chiral effective field theory

    CERN Document Server

    Kohno, M

    2015-01-01

    The nuclear saturation mechanism is discussed in terms of two-nucleon and three-nucleon interactions in chiral effective field theory (Ch-EFT), using the framework of lowest-order Brueckner theory. After the Coester band, which is observed in calculating saturation points with various nucleon-nucleon (NN) forces, is revisited using modern NN potentials and their low-momentum equivalent interactions, detailed account of the saturation curve of the Ch-EFT interaction is presented. The three-nucleon force (3NF) is treated by reducing it to an effective two-body interaction by folding the third nucleon degrees of freedom. Uncertainties due to the choice of the 3NF low-energy constants $c_D$ and $c_E$ are discussed. The reduction of the cutoff-energy dependence of the NN potential is explained by demonstrating the effect of the 3NF in the $^1$S$_0$ and $^3$S$_1$ states.

  14. Nuclear saturation in lowest-order Brueckner theory with two- and three-nucleon forces in view of chiral effective field theory

    Science.gov (United States)

    Kohno, M.

    2015-12-01

    The nuclear saturation mechanism is discussed in terms of two-nucleon and three-nucleon interactions in chiral effective field theory (Ch-EFT), using the framework of lowest-order Brueckner theory. After the Coester band, which is observed in calculating saturation points with various nucleon-nucleon (NN) forces, is revisited using modern NN potentials and their low-momentum equivalent interactions, a detailed account of the saturation curve of the Ch-EFT interaction is presented. The three-nucleon force (3NF) is treated by reducing it to an effective two-body interaction by folding the third nucleon degrees of freedom. Uncertainties due to the choice of the 3NF low-energy constants c_D and c_E are discussed. The reduction of the cutoff-energy dependence of the NN potential is explained by demonstrating the effect of the 3NF in the ^1S_0 and ^3S_1 states.

  15. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces.

    Science.gov (United States)

    Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R

    2016-01-13

    Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications.

  16. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces.

    Science.gov (United States)

    Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R

    2016-01-13

    Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications. PMID:26666399

  17. Background field formalism for chiral matter and gauge fields conformally coupled to supergravity

    CERN Document Server

    Butter, Daniel

    2009-01-01

    We expand the generic model involving chiral matter, super Yang-Mills gauge fields, and supergravity to second order in the gravity and gauge prepotentials in a manifestly covariant and conformal way. Such a class of models includes conventional chiral matter coupled to supergravity via a conformal compensator. This is a first step toward calculating one-loop effects in supergravity in a way that does not require a perturbative expansion in the inverse Planck scale or a recourse to component level calculations to handle the coupling of the K\\"ahler potential to the gravity sector. We also consider a more restrictive model involving a linear superfield in the role of the conformal compensator and investigate the similarities it has to the dual chiral model.

  18. Chirality of electrodeposits grown in a magnetic field.

    Science.gov (United States)

    Mhíocháin, T R Ní; Coey, J M D

    2004-06-01

    Electrodeposits grown around a point cathode in a flat, horizontal electrochemical cell have fractal form. When grown in the presence of a perpendicular applied magnetic field, the deposits develop a spiral structure with chirality which reverses on switching the field direction. These structures are modeled numerically using biased variants of the diffusion limited aggregation (DLA) model. The effects of electric and magnetic fields are modeled successfully by varying the probabilities that a random walker will move in a given direction as a result of a Coulomb force and the Lorentz force-induced flow of electrolyte past the deposit surface. By contrast, a numerical model which considers only the effect of the Lorentz force on individual ions, without reference to the surface of the growing deposit, produces spiral structures with incorrect chirality. The modified DLA model is related to the differential equations for diffusion, migration, and convection. Length scales in the problem are understood by associating the step length of the random walker with the diffusion layer thickness, the lookup radius with the hydrodynamic boundary layer thickness and a point on the numerical deposit with a nucleation center for growth of a crystallite. PMID:15244565

  19. Chiral effective model with the Polyakov loop

    OpenAIRE

    Fukushima, Kenji

    2003-01-01

    We discuss how the simultaneous crossovers of deconfinement and chiral restoration can be realized. We propose a dynamical mechanism assuming that the effective potential gives a finite value of the chiral condensate if the Polyakov loop vanishes. Using a simple model, we demonstrate that our idea works well for small quark mass, though there should be further constraints to reach the perfect locking of two phenomena.

  20. Extended chiral transformations including diquark fields as parameters

    CERN Document Server

    Novozhilov, V Yu; Vasilevich, D V; Novozhilov, Yuri; Pronko, Andrei; Vassilevich, Dmitri

    1994-01-01

    We introduce extended chiral transformation, which depends both on pseudoscalar and diquark fields as parameters and determine its group structure. Assuming soft symmetry breaking in diquark sector, bosonisation of a quasi-Goldstone ud-diquark is performed. In the chiral limit the ud-diquark mass is defined by the gluon condensate, m_{ud}\\approx 300 MeV. The diquark charge radius is \\langle r^2_{ud}\\rangle^{1/2}\\approx 0.5 fm.

  1. Lateral Chirality-sorting Optical Spin Forces in Evanescent Fields

    CERN Document Server

    Hayat, Amaury; Capasso, Federico

    2014-01-01

    The unusual transverse component of the spin angular momentum of evanescent waves gives rise to lateral forces on chiral particles, which have the surprising property of acting in a direction in which there is neither a field gradient nor wave propagation. The direction of these forces is opposite for particles with opposite helicities, such that they may be useful for optically-induced enantiomer separation with a single beam, and the reliance on an evanescent field makes them a natural choice for sorting within an integrated optical circuit. The magnitude of these forces substantially exceeds those of the recently predicted sideways optical forces acting on non-chiral objects in evanescent fields and on chiral objects in propagating fields near a surface, such that they may more readily offer an experimental confirmation of lateral optical forces.

  2. Chiral Effective Theory of Dark Matter Direct Detection

    CERN Document Server

    Bishara, Fady; Grinstein, Benjamin; Zupan, Jure

    2016-01-01

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.

  3. Chiral phase transition and Schwinger mechanism in a pure electric field

    CERN Document Server

    Cao, Gaoqing

    2016-01-01

    We systematically study the chiral symmetry breaking and restoration in the presence of a pure electric field in the Nambu--Jona-Lasinio (NJL) model at finite temperature and baryon chemical potential. In addition, we also study the effect of the chiral phase transition on the charged pair production due to the Schwinger mechanism. For these purposes, a general formalism for parallel electric and magnetic fields is developed at finite temperature and chemical potential for the first time. In the pure electric field limit $B\\rightarrow0$, we compute the order parameter, the transverse-to-longitudinal ratio of the Goldstone mode velocities, and the Schwinger pair production rate as functions of the electric field. The inverse catalysis effect of the electric field to chiral symmetry breaking is recovered. And the Goldstone mode is find to disperse anisotropically such that the transverse velocity is always smaller than the longitudinal one, especially at nonzero temperature and baryon chemical potential. As exp...

  4. Electroweak Interactions in a Chiral Effective Lagrangian for Nuclei

    OpenAIRE

    Serot, Brian D.; Zhang, Xilin(Department of Physics, University of Washington, Seattle, WA, USA)

    2012-01-01

    We have studied electroweak (EW) interactions in quantum hadrodynamics (QHD) effective field theory (EFT). The Lorentz-covariant EFT contains nucleon, pion, $\\Delta$, isoscalar scalar ($\\sigma$) and vector ($\\omega$) fields, and isovector vector ($\\rho$) fields. The lagrangian exhibits a nonlinear realization of (approximate) $SU(2)_L \\otimes SU(2)_R$ chiral symmetry and incorporates vector meson dominance. First, we discuss the EW interactions at the quark level. Then we include EW interacti...

  5. Lattice Gauge Field Interpolation for Chiral Gauge Theories

    CERN Document Server

    Hernández, Pilar; Hernandez, Pilar; Sundrum, Raman

    1996-01-01

    The importance of lattice gauge field interpolation for our recent non-perturbative formulation of chiral gauge theory is emphasized. We illustrate how the requisite properties are satisfied by our recent four-dimensional non-abelian interpolation scheme, by going through the simpler case of $U(1)$ gauge fields in two dimensions.

  6. Redundancy of the off-shell parameters in chiral effective field theory with explicit spin-3/2 degrees of freedom

    CERN Document Server

    Krebs, H; Meißner, U -G

    2009-01-01

    In this note we prove to all orders in the small scale expansion that all off-shell parameters which appear in the chiral effective Lagrangian with explicit Delta(1232) isobar degrees of freedom can be absorbed into redefinitions of certain low-energy constants and are therefore redundant.

  7. Chiral selection and frequency response of spiral waves in reaction-diffusion systems under a chiral electric field

    Science.gov (United States)

    Li, Bing-Wei; Cai, Mei-Chun; Zhang, Hong; Panfilov, Alexander V.; Dierckx, Hans

    2014-05-01

    Chirality is one of the most fundamental properties of many physical, chemical, and biological systems. However, the mechanisms underlying the onset and control of chiral symmetry are largely understudied. We investigate possibility of chirality control in a chemical excitable system (the Belousov-Zhabotinsky reaction) by application of a chiral (rotating) electric field using the Oregonator model. We find that unlike previous findings, we can achieve the chirality control not only in the field rotation direction, but also opposite to it, depending on the field rotation frequency. To unravel the mechanism, we further develop a comprehensive theory of frequency synchronization based on the response function approach. We find that this problem can be described by the Adler equation and show phase-locking phenomena, known as the Arnold tongue. Our theoretical predictions are in good quantitative agreement with the numerical simulations and provide a solid basis for chirality control in excitable media.

  8. Three-nucleon force at large distances: Insights from chiral effective field theory and the large-N_c expansion

    CERN Document Server

    Epelbaum, E; Krebs, H; Schat, C

    2014-01-01

    We confirm the claim of Ref. [D.R. Phillips, C. Schat, Phys. Rev. C88 (2013) 3, 034002] that 20 operators are sufficient to represent the most general local isospin-invariant three-nucleon force and derive explicit relations between the two sets of operators suggested in Refs. [D.R. Phillips, C. Schat, Phys. Rev. C88 (2013) 3, 034002] and [H. Krebs, A.M. Gasparyan, E. Epelbaum, Phys.Rev. C87 (2013) 5, 054007]. We use the set of 20 operators to discuss the chiral expansion of the long- and intermediate-range parts of the three-nucleon force up to next-to-next-to-next-to-next-to-leading order in the standard formulation without explicit Delta(1232) degrees of freedom. We also address implications of the large-N_c expansion in QCD for the size of the various three-nucleon force contributions.

  9. Integrability of a master chiral quantum field model

    International Nuclear Information System (INIS)

    The paper deals with solution of a master chiral field model in two-dimensional space-time using the quantum method of inverse problem. A dominant role in the approach is played by the idea of relativistic model production on the basis of magnetic model in the scaling limit at S→ infinity. L-M pair of a master chiral field model is discussed. Formulae for regularized quantum Hamiltonian and Bethe-Ansatz above pseudovacuum are derived. The description of excitations and Dirac filling for the ground state is given. Continuous limit from magnetic model above physical vacuum is considered

  10. Chiral vortical effect in Fermi liquid

    Energy Technology Data Exchange (ETDEWEB)

    Khaidukov, Z.V.; Kirilin, V.P. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Sadofyev, A.V., E-mail: sadofyev@itep.ru [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2012-10-31

    In this Letter we consider rotating Fermi liquid in the presence of Berry curvature. We argue that there appears an analogue of chiral vortical effect in the liquid if Berry curvature has a non-vanishing flux through sheets of Fermi surfaces and corresponding chemical potentials are different. We discuss correspondence between relativistic and non-relativistic dispersion type in vicinity of degeneracy points. We also claim that quantum anomalies in condensed matter context provide a theoretical and experimental testing ground for the origin of chiral effects, their carriers etc.

  11. A Study of chiral property of field galaxies

    CERN Document Server

    Aryal, B; Saurer, W

    2013-01-01

    We present an analysis of the chiral property of 1,621 field galaxies having radial velocity 3,000 km/s to 5,000 km/s . A correlation between the chiral symmetry breaking and the preferred alignment of galaxies in the leading and trailing structural modes is studied using chi-square, auto-correlation and the Fourier tests. We noticed a good agreement between the random alignment of the position angle (PA) distribution and the existence of chirality in both the leading and trailing arm galaxies. Chirality is found stronger for the late-type spirals (Sc, Scd, Sd and Sm) than that of the early-types (Sa, Sab, Sb and Sbc). A significant dominance (17% $\\pm$ 8.5%) of trailing modes is noticed in the barred spirals. In addition, chirality of field galaxies is found to remain invariant under the global expansion. The PA-distribution of the total trailing arm galaxies is found to be random, whereas preferred alignment is noticed for the total leading arm galaxies. It is found that the rotation axes of leading arm gal...

  12. 1/N/sup 2/ expansion of the mean field for lattice chiral and gauge models

    Energy Technology Data Exchange (ETDEWEB)

    Brihaye, Y.; Taormina, A.

    1985-08-21

    For lattice chiral and gauge models the authors develop an /sup 1//N/sup 2/ expansion of the mean-field approximation. Special attention is paid to the free energy for which the effect of fluctuations around the mean-field solution is presented as an /sup 1//N/sup 2/ expansion. The differences between U(N) and SU(N) are pointed out. Finally, for the chiral model the mean-field saddle-point technique is applied to compute the two-point correlation function. (author).

  13. Mobility inhibition of 1-phenylethanol chiral molecules in strong magnetic fields

    Science.gov (United States)

    Kozlova, Svetlana G.; Kompankov, Nikolay B.; Ryzhikov, Maxim R.; Slepkov, Vladimir A.

    2015-12-01

    Experimental evidences are first obtained to demonstrate the effect of external magnetic field on the mobility of 1-phenylethanol molecules characterized by conjugated ring bonds. Enantiomers of these molecules are shown to have different mobilities in chiral polarized mediums composed of these enantiomers taken in various proportions. The difference diminishes when the external magnetic field increases.

  14. Test the chiral magnetic effect with isobaric collisions

    OpenAIRE

    Deng, Wei-Tian; Huang, Xu-Guang; Ma, Guo-Liang; Wang, Gang

    2016-01-01

    The quark-gluon matter produced in relativistic heavy-ion collisions may contain local domains in which P and CP symmetries are not preserved. When coupled with an external magnetic field, such P- and CP-odd domains will generate electric currents along the magnetic field --- a phenomenon called the chiral magnetic effect (CME). Recently, the STAR Collaboration at RHIC and the ALICE Collaboration at the LHC released data of charge-dependent azimuthal-angle correlators with features consistent...

  15. Mechanical separation of chiral dipoles by chiral light

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.

  16. Quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be with meson-exchange currents derived from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, S. [University of South Carolina; Wiringa, Robert B. [ANL; Pieper, Steven C. [ANL; Schiavilla, Rocco [Old Dominion U., JLAB

    2014-08-01

    We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.

  17. A molecular propeller effect for chiral separation and analysis

    OpenAIRE

    Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas

    2015-01-01

    Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to c...

  18. Chiral Soliton Lattice and Charged Pion Condensation in Strong Magnetic Fields

    CERN Document Server

    Brauner, Tomas

    2016-01-01

    The Chiral Soliton Lattice (CSL) is a state with a periodic array of topological solitons that spontaneously breaks parity and translational symmetries. Such a state is known to appear in chiral magnets. We show that CSL also appears as a ground state of quantum chromodynamics at nonzero chemical potential in a magnetic field. By analyzing the fluctuations of the CSL, we furthermore demonstrate that in strong but achievable magnetic fields, charged pions undergo Bose-Einstein condensation. Our results, based on a systematic low-energy effective theory, are model-independent and fully analytic.

  19. Quark Mass Correction to Chiral Separation Effect and Pseudoscalar Condensate

    CERN Document Server

    Guo, Er-dong

    2016-01-01

    We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.

  20. On the chiral separation effect in a slab

    CERN Document Server

    Sitenko, Yu A

    2016-01-01

    We study an influence of boundaries on chiral effects in hot dense relativistic spinor matter in a strong magnetic field which is transverse to bounding planes. The most general set of boundary conditions ensuring the confinement of matter within the bounding planes is considered. We find that, in thermal equilibrium, the nondissipative axial current along the magnetic field is induced, depending on chemical potential and temperature, as well as on a choice of boundary conditions. As temperature increases from zero to large values, a stepwise behaviour of the axial current density as a function of chemical potential is changed to a smooth one; the choice of a boundary condition can facilitate either amplification or diminution of the chiral separation effect. This points at a significant role of boundaries for physical systems with hot dense magnetized relativistic spinor matter, e.g., compact stars, heavy-ion collisions, novel materials known as Dirac and Weyl semimetals.

  1. Maxwell-Chern-Simons Hydrodynamics for the Chiral Magnetic Effect

    CERN Document Server

    Ozonder, Sener

    2010-01-01

    The rate of vacuum changing topological solutions of the gluon field, sphalerons, is estimated to be large at the typical temperatures of heavy-ion collisions, particularly at the Relativistic Heavy Ion Collider. Such windings in the gluon field are expected to produce parity-odd bubbles, which cause separation of positively and negatively charged quarks along the axis of the external magnetic field. This Chiral Magnetic Effect can be mimicked by Chern-Simons modified electromagnetism. Here we present a model of relativistic hydrodynamics including the effects of axial anomalies via the Chern-Simons term.

  2. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    OpenAIRE

    Xu-Guang Huang

    2016-01-01

    The chiral magnetic and chiral separation effects---quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma---have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud alon...

  3. Chiral Magnetic Effect Task Force Report

    CERN Document Server

    Skokov, Vladimir; Koch, Volker; Schlichting, Soeren; Thomas, Jim; Voloshin, Sergei; Wang, Gang; Yee, Ho-Ung

    2016-01-01

    In this report, we briefly examine the current status of the study of the chiral magnetic effect including theory and experimental progress. We recommend future strategies for resolving uncertainties in interpretation including recommendations for theoretical work, recommendations for measurements based on data collected in the past five years, and recommendations for beam use in the coming years of RHIC. We have specifically investigated the case for colliding nuclear isobars (nuclei with the same mass but different charge) and find the case compelling. We recommend that a program of nuclear isobar collisions to isolate the chiral magnetic effect from background sources be placed as a high priority item in the strategy for completing the RHIC mission.

  4. Anomalous Chiral Superfluidity

    OpenAIRE

    Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail

    2009-01-01

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...

  5. Torsional Chiral Magnetic Effect in a Weyl Semimetal with a Topological Defect.

    Science.gov (United States)

    Sumiyoshi, Hiroaki; Fujimoto, Satoshi

    2016-04-22

    We propose a torsional response raised by a lattice dislocation in Weyl semimetals akin to a chiral magnetic effect; i.e., a fictitious magnetic field arising from a screw or edge dislocation induces a charge current. We demonstrate that, in sharp contrast to the usual chiral magnetic effect that vanishes in real solid state materials, the torsional chiral magnetic effect exists even for realistic lattice models, which implies the experimental detection of the effect via superconducting quantum interference device or nonlocal resistivity measurements in Weyl semimetal materials. PMID:27152814

  6. Meson loop effect on high density chiral phase transition

    CERN Document Server

    Sakaguchi, T; Kouno, H; Yahiro, M; Sakaguchi, Tomohiko; Matsuzaki, Masayuki; Kouno, Hiroaki; Yahiro, Masanobu

    2006-01-01

    We test the stability of the mean-field solution in the Nambu--Jona-Lasinio model. For stable solutions with respect to both the \\sigma and \\pi directions, we investigate effects of the mesonic loop corrections of 1/N_c, which correspond to the next-to-leading order in the 1/N_c expansion, on the high density chiral phase transition. The corrections weaken the first order phase transition and shift the critical chemical potential to a lower value. At N_c=3, however, instability of the mean field effective potential prevents us from determining the minimum of the corrected one.

  7. Electric-field-driven alignment of chiral conductive polymer thin films.

    Science.gov (United States)

    Tassinari, Francesco; Mathew, Shinto P; Fontanesi, Claudio; Schenetti, Luisa; Naaman, Ron

    2014-04-29

    We investigated the effect of an electric field on the alignment and structural properties of thin films of a chiral polybithiophene-based conductive polymer, functionalized with a protected l-cysteine amino acid. Thin films were obtained by exploiting both drop-casting and spin-coating procedures. The electric properties, the polarized Raman spectrum, the UV-vis spectrum, and the CD spectra were measured as a function of the electric field intensity applied during film formation. It was found that beyond the enhancement of the conductivity observed when the electric field aligns the polymer, the electric field significantly affects the chiral properties and the effect depends on the method of deposition. PMID:24731141

  8. Chiral magnetic effect and anomalous transport from real-time lattice simulations

    CERN Document Server

    Mueller, Niklas; Sharma, Sayantan

    2016-01-01

    We present a first-principle study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian $SU(N_c)$ and Abelian $U(1)$ gauge fields. Investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating wave. We further analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark mass.

  9. Relativistic Chiral Mean Field Model for Finite Nuclei

    OpenAIRE

    Ogawa, Yoko; Toki, Hiroshi; Tamenaga, Setsuo; Haga, Akihiro

    2012-01-01

    We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{pi}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{pi} = 0^{-} ...

  10. Chiral Symmetry Breaking During Growing Process of NaClO3 Crystal under Direct-Current Electric Field

    Institute of Scientific and Technical Information of China (English)

    CHEN Wan-Chun; CHEN Xiao-Long

    2007-01-01

    @@ We investigate the influence of dc electric field on chiral symmetry breaking during the growing process of NaClO3 crystal. Nucleation and growth of NaClO3 are completed from an aqueous solution by a fast cooling temperature technology. A pair of polarization microscopes are used to identify a distribution of chiral crystals. Experimental results indicate that the dc electric field has an effect on distribution of chirality, but the direction of the dc electric field is not sensitive to the chiral autocatalysis and selectivity, i.e. the nature convection driving by the gravity does not play an important role on a thin layer of NaClO3 solution. The experimental phenomena may be elucidated by the ECSN mechanism.

  11. When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals

    Science.gov (United States)

    Chan, Ching-Kit; Lee, Patrick A.; Burch, Kenneth S.; Han, Jung Hoon; Ran, Ying

    2016-01-01

    The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly polarized photons with these chiral electrons generates a Hall conductivity without any applied magnetic field in the plane orthogonal to the light propagation. This phenomenon comes about because with all three Pauli matrices exhausted to form the three-dimensional linear dispersion, the Weyl nodes cannot be gapped. Rather, the net influence of chiral photons is to shift the positions of the Weyl nodes. Interestingly, the momentum shift is tightly correlated with the chirality of the node to produce a net anomalous Hall signal. Application of our proposal to the recently discovered TaAs family of Weyl semimetals leads to an order-of-magnitude estimate of the photoinduced Hall conductivity which is within the experimentally accessible range.

  12. When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals.

    Science.gov (United States)

    Chan, Ching-Kit; Lee, Patrick A; Burch, Kenneth S; Han, Jung Hoon; Ran, Ying

    2016-01-15

    The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly polarized photons with these chiral electrons generates a Hall conductivity without any applied magnetic field in the plane orthogonal to the light propagation. This phenomenon comes about because with all three Pauli matrices exhausted to form the three-dimensional linear dispersion, the Weyl nodes cannot be gapped. Rather, the net influence of chiral photons is to shift the positions of the Weyl nodes. Interestingly, the momentum shift is tightly correlated with the chirality of the node to produce a net anomalous Hall signal. Application of our proposal to the recently discovered TaAs family of Weyl semimetals leads to an order-of-magnitude estimate of the photoinduced Hall conductivity which is within the experimentally accessible range. PMID:26824561

  13. Strain induced Chiral Magnetic Effect in Weyl semimetals

    CERN Document Server

    Cortijo, Alberto; Landsteiner, Karl; Vozmediano, María A H

    2016-01-01

    We argue that strain applied to a time-reversal and inversion breaking Weyl semi-metal in a magnetic field can induce an electric current via the chiral magnetic effect. A tight binding model is used to show that strain generically changes the locations in the Brillouin zone but also the energies of the band touching points (tips of the Weyl cones). Since axial charge in a Weyl semi-metal can relax via inter-valley scattering processes the induced current will decay with a timescale given by the lifetime of a chiral quasiparticle. We estimate the strength and lifetime of the current for typical material parameters and find that it should be experimentally observable.

  14. The pseudo chiral magnetic effect in QED3

    CERN Document Server

    Mizher, A J; Villavicencio, C

    2016-01-01

    Chiral magnetic effect (CME) has been suggested to take place during peripheral relativistic heavy ion collisions. However, signals of its realization are not yet independent of ambiguities and thus probing the non-trivial topological vacua of quantum chromodynamics (QCD) is still an open issue. Weyl materials, particularly graphene, on the other hand, are effectively described at low energies by the degrees of freedom of quantum electrodynamics in two spatial dimensions, QED3. This theory shares with QCD some interesting features, like confinement and chiral symmetry breaking and also possesses a non-trivial vacuum structure. In this regard, an analog of the CME is proposed to take place in graphene under the influence of an in-plane magnetic field in which the pseudo-spin or flavor label of charge carriers is participant of the effect, rather than the actual spin. In this contribution, we review the parallelisms and differences between the CME and the so-called pseudo chiral magnetic effect, PCME.

  15. Chiral Colloidal Molecules And Observation of The Propeller Effect

    Science.gov (United States)

    2013-01-01

    Chiral molecules play an important role in biological and chemical processes, but physical effects due to their symmetry-breaking are generally weak. Several physical chiral separation schemes which could potentially be useful, including the propeller effect, have therefore not yet been demonstrated at the molecular scale. However, it has been proposed that complex nonspherical colloidal particles could act as “colloidal molecules” in mesoscopic model systems to permit the visualization of molecular phenomena that are otherwise difficult to observe. Unfortunately, it is difficult to synthesize such colloids because surface minimization generally favors the growth of symmetric particles. Here we demonstrate the production of large numbers of complex colloids with glancing angle physical vapor deposition. We use chiral colloids to demonstrate the Baranova and Zel’dovich (BaranovaN. B.Zel’dovichB. Y.Chem. Phys. Lett.1978, 57, 435) propeller effect: the separation of a racemic mixture by application of a rotating field that couples to the dipole moment of the enantiomers and screw propels them in opposite directions. The handedness of the colloidal suspensions is monitored with circular differential light scattering. An exact solution for the colloid’s propulsion is derived, and comparisons between the colloidal system and the corresponding effect at the molecular scale are made. PMID:23883328

  16. Chiral Magnetic Effect in High-Energy Nuclear Collisions --- A Status Report

    CERN Document Server

    Kharzeev, D E; Voloshin, S A; Wang, G

    2015-01-01

    The interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark-gluon plasma. Among them is the Chiral Magnetic Effect (CME) -- the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark-gluon plasma, and can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the ...

  17. Chiral plasmonic near-field sources : control of chiral electromagnetic fields for chiroptical spectroscopies

    OpenAIRE

    Schäferling, Martin

    2016-01-01

    Die vorliegende Arbeit untersucht die chirale Nahfeldantwort plasmonischer Nanostrukturen. Die chiralen Eigenschaften elektromagnetischer Felder können über die sogenannte optische Chiralität - ein Wert, der sich direkt aus den bekannten elektromagnetischen Feldgrößen berechnen lässt - quantifiziert werden: Je höher die optische Chiralität, desto stärker interagiert das Feld mit chiralen Molekülen. Felder mit besonders hoher optischer Chiralität erlauben es prinzipiell, die Händigkeit vo...

  18. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases.

    Science.gov (United States)

    Huang, Xu-Guang

    2016-01-01

    The chiral magnetic and chiral separation effects-quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma-have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084

  19. Pion Effect of Nuclear Matter in a Chiral Sigma Model

    Institute of Scientific and Technical Information of China (English)

    HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong

    2009-01-01

    We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.

  20. Chiral symmetry and finite temperature effects in quantum theories

    International Nuclear Information System (INIS)

    A computer simulation of the harmonic oscillator at finite temperature has been carried out, using the Monte Carlo Metropolis algorithm. Accurate results for the energy and fluctuations have been obtained, with special attention to the manifestation of the temperature effects. Varying the degree of symmetry breaking, the finite temperature behaviour of the asymmetric linear model in a linearized mean field approximation has been studied. In a study of the effects of chiral symmetry on baryon mass splittings, reasonable agreement with experiment has been obtained in a non-relativistic harmonic oscillator model

  1. Equilibrium instability of chiral mesons in external electromagnetic field via AdS/CFT

    Science.gov (United States)

    Taghavi, Seyed Farid; Vahedi, Ali

    2016-06-01

    We study the equilibrium instability of chiral quarkonia in a plasma in the presence of constant magnetic and electric field and at finite axial chemical potential using AdS/CFT duality. The model in use is a supersymmetric QCD at large 't Hooft coupling and number of colors. We show that the presence of the magnetic field and the axial chemical potential even in the absence of the electric field make the system unstable. In a gapped system, a stable/unstable equilibrium state phase transition is observed and the initial transition amplitude of the equilibrium state to the non-equilibrium state is investigated. We demonstrate that at zero temperature and large magnetic field the instability grows linearly by increasing the quarkonium binding energy. In the constant electric and magnetic field, the system is in a equilibrium state if the Ohm's law and the chiral magnetic effect cancel their effects. This happens in a sub-space of ( E, B, T, μ 5) space with constraint equation σ B B = - σE, where σ and σ B are electric and chiral magnetic conductivity, respectively. We analyze the decay rate of a gapless system when this constraint is slightly violated.

  2. Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model

    CERN Document Server

    Alam, M Sohaib; Kundu, Arnab

    2012-01-01

    A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...

  3. The effective chiral Lagrangian from the theta term

    International Nuclear Information System (INIS)

    We construct the effective chiral Lagrangian involving hadronic and electromagnetic interactions originating from the QCD θ-bar term. We impose vacuum alignment at both quark and hadronic levels, including field redefinitions to eliminate pion tadpoles. We show that leading time-reversal-violating (TV) hadronic interactions are related to isospin-violating interactions that can in principle be determined from charge-symmetry-breaking experiments. We discuss the complications that arise from TV electromagnetic interactions. Some implications of the expected sizes of various pion-nucleon TV interactions are presented, and the pion-nucleon form factor is used as an example.

  4. Effect of interlayer exchange coupling on magnetic chiral structures

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. P.; Kwon, H. Y.; Kim, H. S.; Shim, J. H.; Won, C. [Department of Physics, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-07-28

    We numerically investigated the effect of interlayer exchange coupling on magnetic chiral structures, such as a helical/cycloidal spin structure and magnetic skyrmion crystal (SkX), which are produced in a magnetic system involving the Dzyaloshinskii-Moriya interaction (DMI). We report the existence of a phase transition where the length scale of magnetic structure discontinuously changes, and that there can be a novel magnetic structure around the phase boundary that exhibits double-ordering lengths of magnetic structure. Therefore, the system has multiple ground phases determined by the ratio of interlayer exchange coupling strength and DMI strength. Furthermore, we investigated the critical condition of the external perpendicular field required for the SkX. The critical field is significantly reduced under the effect of interlayer exchange coupling, which can stabilize the SkX without the external field.

  5. Electric-field-controlled suppression of Walker breakdown and chirality switching in magnetic domain wall motion

    Science.gov (United States)

    Chen, Hong-Bo; Li, You-Quan

    2016-07-01

    We theoretically study the dynamics of a magnetic domain wall controlled by an electric field in the presence of the spin flexoelectric interaction. We reveal that this interaction generates an effective spin torque and results in significant changes in the current-driven domain wall motion. In particular, the electric field can stabilize the domain wall motion, leading to strong suppression of the current-induced Walker breakdown and thus allowing a higher maximum wall velocity. We can furthermore use this electric-field control to efficiently switch the chirality of a moving domain wall in the steady regime.

  6. Wess-Zumino-Witten action and photons from the Chiral Magnetic Effect

    CERN Document Server

    Fukushima, Kenji

    2012-01-01

    We revisit the Chiral Magnetic Effect (CME) using the chiral Lagrangian. We demonstrate that the electric-current formula of the CME is derived immediately from the contact part of the Wess-Zumino-Witten action. This implies that the CME could be, if observed, a signature for the local parity violation, but a direct evidence for neither quark deconfinement nor chiral restoration. We also discuss the reverse Chiral Magnetic Primakoff Effect, i.e. the real photon production through the vertex associated with the CME, which is kinematically possible for space-time inhomogeneous magnetic field and the strong theta angle. We make a semi-quantitative estimate for the photon yield to find that it could be on the observable level as compared to the thermal photon.

  7. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    CERN Document Server

    Gitman, D M

    1996-01-01

    The phase structure of d=3 Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the 1/N-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the gravitational field.

  8. Dynamical evolution of the chiral magnetic effect: applications to the quark-gluon plasma

    CERN Document Server

    Manuel, Cristina

    2015-01-01

    We study the dynamical evolution of the so-called chiral magnetic effect in an electromagnetic conductor. To this end, we consider the coupled set of corresponding Maxwell and chiral anomaly equations, and we prove that these can be derived from chiral kinetic theory. After integrating the chiral anomaly equation over space in a closed volume, it leads to a quantum conservation law of the total helicity of the system. A change in the magnetic helicity density comes together with a modification of the chiral fermion density. We study in Fourier space the coupled set of anomalous equations and we obtain the dynamical evolution of the magnetic fields, magnetic helicity density, and chiral fermion imbalance. Depending on the initial conditions we observe how the helicity might be transferred from the fermions to the magnetic fields, or vice versa, and find that the rate of this transfer also depends on the scale of wavelengths of the gauge fields in consideration. We then focus our attention on the quark-gluon pl...

  9. Chiral Effective Lagrangian Description of Nuclear Matter with in-Medium Pion Effect

    Institute of Scientific and Technical Information of China (English)

    张小兵; 宁平治

    2003-01-01

    By including the in-medium pion effect, we study the description of nuclear matter based on the non-linear chiral Lagrangian at the leading order. An in-medium effective Lagrangian is constructed without the necessity of introducing the phenomenological scalar-isoscalar field. At the mean-field level, the in-medium Lagrangian description of nuclear matter is shown to be compatible with that obtained from the Brown-Rho scaled model.

  10. Chiral Electroweak Currents in Nuclei

    CERN Document Server

    Riska, D O

    2016-01-01

    The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  11. Detecting Chirality in Molecules by Linearly Polarized Laser Fields

    Science.gov (United States)

    Yachmenev, Andrey; Yurchenko, Sergei N.

    2016-07-01

    A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a π phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic nonrigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states.

  12. Detecting chirality in molecules by linearly polarized laser fields

    CERN Document Server

    Yachmenev, Andrey

    2016-01-01

    A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a {\\pi} phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic non-rigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states.

  13. Chiral Superfluidity for QCD

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  14. CHIRAL UNIVERSES AND QUANTUM EFFECTS PRODUCED BY ELECTROMAGNETIC FIELDS UNIVERSOS QUIRALES Y EFECTOS CUÁNTICOS PRODUCIDOS POR CAMPOS ELECTROMAGNÉTICOS

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available The accepted structure of space and vacuum derives from the results of relativistic cosmology and quantum field theory. It is demonstrated that a chiral interface between enantiomeric regions of a closed universe, or a (right R-Universe and (left L-Universe, related by an element of PCT symmetry along the interface, represents a construct with all the attributes required of the theoretical vacuum, in-so-far as quantum behaviour is then seen to be induced by the vacuum interface. Quantum mechanics emerges as a special case of classical mechanics, rather than the latter being a subset of the former. This removes the quantum-mechanical observational problem, explains the cosmological large-number coincidences, and accounts for the anti-matter in the cosmos.La estructura aceptada del espacio y el vacío se derivan de los resultados de la cosmología relativística y de la teoría cuántica de campo. Se demuestra que una interfaz quiral entre regiones enantioméricas de un universo cerrado, o un universo derecho y un universo izquierdo, relacionados por un elemento de simetría PCT a lo largo de la interfaz, representa un modelo con todos los atributos requeridos por el vacío teórico. Se desprende que el comportamiento cuántico es entonces visto que es inducido por la interfaz de vacío. La mecánica quántica emerge como un caso especial de la mecánica clásica, más bien que siendo la última un subconjunto de la primera. Esto resuelve el problema observacional mecánico cuántico, explica las coincidencias de los grandes números cosmológicos y toma en cuenta la antimateria en el cosmos.

  15. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    OpenAIRE

    Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.

    1996-01-01

    The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...

  16. pi K scattering in effective chiral theory of mesons

    OpenAIRE

    Li, Bing An; Gao, Dao-Neng; Yan, Mu-Lin

    1998-01-01

    In the framework of an effective chiral theory of mesons, pi K scattering is stydied. The scattering lengths, phase shifts, and cross sections are calculated. Theoretical results agree well with data. There is no new parameter in this study.

  17. Quaternionic Analysis and Formulation of Generalized Electromagnetic fields in Chiral Media

    Science.gov (United States)

    Bisht, P. S.; Singh, Jivan; Negi, O. P. S.

    2007-10-01

    The time dependent Dirac-Maxwell's Equations in presence of electric and magnetic sources are written in chiral media and the solutions for the classical problem are obtained in unique simple and consistent manner. The quaternion reformulation of generalized electromagnetic fields in chiral media has also been developed in compact, simple and consistent manner.

  18. Examining a possible cascade effect in chiral symmetry breaking

    CERN Document Server

    Fariborz, Amir H

    2016-01-01

    We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.

  19. On the temperature dependence of the chiral vortical effects

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We discuss the origins of temperature dependence of the axial vortical effect (AVE), i.e. generation of an axial current in a rotating chiral medium along the rotation axis. We show that the corresponding transport coefficient depends on the number of light weakly interacting degrees of freedom, rather than on the gravitational anomaly. We also comment on the role of low-dimensional defects in the rotating medium, and appearance of the chiral vortical effect due to them.

  20. Mesoscopic Hall effect driven by chiral spin order

    OpenAIRE

    Ohe, Jun-ichiro; Ohtsuki, Tomi; Kramer, Bernhard

    2006-01-01

    A Hall effect due to spin chirality in mesoscopic systems is predicted. We consider a 4-terminal Hall system including local spins with geometry of a vortex domain wall, where strong spin chirality appears near the center of vortex. The Fermi energy of the conduction electrons is assumed to be comparable to the exchange coupling energy where the adiabatic approximation ceases to be valid. Our results show a Hall effect where a voltage drop and a spin current arise in the transverse direction....

  1. Chiral magnetic and vortical effects in high-energy nuclear collisions-A status report

    Science.gov (United States)

    Kharzeev, D. E.; Liao, J.; Voloshin, S. A.; Wang, G.

    2016-05-01

    The interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark-gluon plasma. Among them is the Chiral Magnetic Effect (CME)-the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark-gluon plasma, and can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data.

  2. Multipolar Effects in the Optical Active Second Harmonic Generation from Sawtooth Chiral Metamaterials.

    Science.gov (United States)

    Su, Huimin; Guo, Yuxiang; Gao, Wensheng; Ma, Jie; Zhong, Yongchun; Tam, Wing Yim; Chan, C T; Wong, Kam Sing

    2016-02-25

    Based on the facts that chiral molecules response differently to left- and right-handed circular polarized light, chiroptical effects are widely employed for determining structure chirality, detecting enantiomeric excess, or controlling chemical reactions of molecules. Compared to those in natural materials, chiroptical behaviors can be significantly amplified in chiral plasmonic metamaterials due to the concentrated local fields in the structure. The on-going research towards giant chiroptical effects in metamaterial generally focus on optimizing the field-enhancement effects. However, the observed chiroptical effects in metamaterials rely on more complicated factors and various possibilities towards giant chiroptical effects remains unexplored. Here we study the optical-active second harmonic generation (SHG) behaviors in a pair of planar sawtooth gratings with mirror-imaged patterns. Significant multipolar effects were observed in the polarization-dependent SHG curves. We show that the chirality of the nanostructure not only give rise to nonzero chiral susceptibility tensor components within the electric-dipole approximation, but also lead to different levels of multipolar interactions for the two orthogonal circular polarizations that further enhance the nonlinear optical activity of the material. Our results thus indicate novel ways to optimize nonlinear plasmonic structures and achieve giant chiroptical response via multipolar interactions.

  3. Sensing and tuning microfiber chirality with nematic chirogyral effect

    Science.gov (United States)

    Čopar, Simon; Seč, David; Aguirre, Luis E.; Almeida, Pedro L.; Dazza, Mallory; Ravnik, Miha; Godinho, Maria H.; Pieranski, Pawel; Žumer, Slobodan

    2016-03-01

    Microfibers with their elongated shape and translation symmetry can act as important components in various soft materials, notably for their mechanics on the microscopic level. Here we demonstrate the mechanical response of a micro-object to imposed chirality, in this case, the tilt of disclination rings in an achiral nematic medium caused by the chiral surface anchoring on an immersed microfiber. This coupling between chirality and mechanical response, used to demonstrate sensing of chirality of electrospun cellulose microfibers, is revealed in the optical micrographs due to anisotropy in the elastic response of the host medium. We provide an analytical explanation of the chirogyral effect supported with numerical simulations and perform an experiment to test the effect of the cell confinement and fiber size. We controllably twist the microfibers and demonstrate the response of the nematic medium. More generally the demonstrated study provides means for experimental discrimination of surface properties and allows mechanical control over the shape of disclination rings.

  4. Effective Chiral Symmetry Restoration for Heavy-Light Mesons

    CERN Document Server

    Sazonov, V K; Wagenbrunn, R F

    2014-01-01

    We study the spectrum of heavy-light mesons within a model with linear instantaneous confining potential. The single-quark Green function and spontaneous breaking of chiral symmetry are obtained from the Schwinger-Dyson (gap) equation. For the meson spectrum we derive a Bethe-Salpeter equation (BSE). We solve thiss equation numerically in the heavy-light limit and obtain effective restoration of chiral and $U(1)_A$ symmetries at large spins.

  5. On SU(3) effective models and chiral phase-transition

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...

  6. Chiral symmetry

    CERN Document Server

    Ecker, G

    1999-01-01

    Broken chiral symmetry has become the basis for a unified treatment of hadronic interactions at low energies. After reviewing mechanisms for spontaneous chiral symmetry breaking, I outline the construction of the low--energy effective field theory of the Standard Model called chiral perturbation theory. The loop expansion and the renormalization procedure for this nonrenormalizable quantum field theory are developed. Evidence for the standard scenario with a large quark condensate is presented, in particular from high--statistics lattice calculations of the meson mass spectrum. Elastic pion--pion scattering is discussed as an example of a complete calculation to O(p^6) in the low--energy expansion. The meson--baryon system is the subject of the last lecture. After a short summary of heavy baryon chiral perturbation theory, a recent analysis of pion--nucleon scattering to O(p^3) is reviewed. Finally, I describe some very recent progress in the chiral approach to the nucleon--nucleon interaction.

  7. The influence of chiral chemical potential, parallel electric and magnetic fields on the critical temperature of QCD

    CERN Document Server

    Ruggieri, M; Peng, G X

    2016-01-01

    We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.

  8. Anomalous chiral superfluidity

    Energy Technology Data Exchange (ETDEWEB)

    Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2010-02-08

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.

  9. Partially conserved axial-vector current and model chiral field theories in nuclear physics

    International Nuclear Information System (INIS)

    We comment on the relation between the two standard approaches to chiral symmetry--namely, the current algebra/partially conserved axial-vector current approach and the chiral Lagrangian method--in a manner intended to clarify recent and probable future applications of this symmetry in nuclear physics. Specifically, we show that in explicit chiral field theories the canonical πN scattering amplitude does not have the famed ''Adler zero'' unless partial conservation of axial-vector current holds as an operator equation. This implies that there are a number of familiar chiral models in which the ''Adler self-consistency'' condition does not apply to the canonical pion field. Among the problems of current interest for which our remarks are relevant are the studies of the pion-nucleus optical potential, pion condensation, and the attempts to formulate a model field theory having both reasonable nuclear saturation and good low energy pion phenomenology

  10. Subtraction of power counting breaking terms in chiral perturbation theory: spinless matter fields

    CERN Document Server

    Du, Meng-Lin; Meißner, Ulf-G

    2016-01-01

    When matter fields are included in chiral perturbation theory, the nonvanishing mass in the chiral limit introduces a new energy scale so that the loop diagrams including such matter field propagators spoil the usual power counting. However, the power counting breaking terms can be absorbed into counterterms in the chiral Lagrangian. In this paper, we systematically derive these terms to leading one-loop order (next-to-next-to leading order in the chiral expansion) at once by calculating the generating functional using the path integral. They are then absorbed by counterterms in the next-to-leading order Lagrangian. The method can be extended to calculating power counting breaking terms for other matter fields.

  11. Opportunities for chiral discrimination using high harmonic generation in tailored laser fields

    CERN Document Server

    Smirnova, Olga; Patchkovskii, Serguei

    2015-01-01

    Chiral discrimination with high harmonic generation (cHHG method) has been introduced in the recent work by R. Cireasa et al ( Nat. Phys. 11, 654 - 658, 2015). In its original implementation, the cHHG method works by detecting high harmonic emission from randomly oriented ensemble of chiral molecules driven by elliptically polarized field, as a function of ellipticity. Here we discuss future perspectives in the development of this novel method, the ways of increasing chiral dichroism using tailored laser pulses, new detection schemes involving high harmonic phase measurements, and concentration-independent approaches. Using the example of the epoxypropane molecule C$_3$H$_6$O (also known as 1,2-propylene oxide), we show theoretically that application of two-color counter-rotating elliptically polarized laser fields yields an order of magnitude enhancement of chiral dichroism compared to single color elliptical fields. We also describe how one can introduce a new functionality to cHHG: concentration-independen...

  12. The Subtleties of the Wigner Function Formulation of the Chiral Magnetic Effect

    CERN Document Server

    Wu, Yan; Ren, Hai-cang

    2016-01-01

    We assess the applicability of the Wigner function formulation for the chiral Magnetic Effect and noted some issues regarding the conservation and the consistency of the electric current in the presence of a inhomogeneous and transient axial chemical potential. The problems are rooted in the ultraviolet divergence of the underlying field theory associated with axial anomaly.

  13. Numerical study of chiral plasma instability within the classical statistical field theory approach

    Science.gov (United States)

    Buividovich, P. V.; Ulybyshev, M. V.

    2016-07-01

    We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.

  14. Effective Field Theories and Lattice QCD

    CERN Document Server

    Bernard, C

    2015-01-01

    I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.

  15. One-loop renormalization of the chiral Lagrangian for spinless matter fields in the SU(N) fundamental representation

    CERN Document Server

    Du, Meng-Lin; Meißner, Ulf-G

    2016-01-01

    We perform the leading one-loop renormalization of the chiral Lagrangian for spinless matter fields living in the fundamental representation of SU(N). The Lagrangian can also be applied to any theory with a spontaneous symmetry breaking of $SU(N)_L\\times SU(N)_R$ to $SU(N)_V$ and spinless matter fields in the fundamental representation. For QCD, the matter fields can be kaons or pseudoscalar heavy mesons. Using the background field method and heat kernel expansion techniques, the divergences of the one-loop effective generating functional for correlation functions of single matter fields are calculated up to $\\mathcal{O}(p^3)$. They are absorbed by counterterms not only from the third order but also from the second order chiral Lagrangian.

  16. Chiral Magnetic "Superfluidity"

    CERN Document Server

    Sadofyev, Andrey V

    2015-01-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will {\\it not} contribute to the drag experienced by an impurity. We argue on very general basis that those systems with a strong magnetic field would exhibit the behavior of 'superfluidity" -- the motion of the heavy impurity is frictionless, in analog to the case of a superfluid. However, this "superfluidity" exists even for chiral media at finite temperature and only in the directional longitudinal with the magnetic field, in contrast to the ordinary superfluid. We will call this novel phenomenon as the Chiral Magnetic "Superfluidity". We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion ...

  17. Opportunities for chiral discrimination using high harmonic generation in tailored laser fields

    Science.gov (United States)

    Smirnova, Olga; Mairesse, Yann; Patchkovskii, Serguei

    2015-12-01

    Chiral discrimination with high harmonic generation (cHHG method) has been introduced in the recent work by R Cireasa et al (2015 Nat. Phys. 11 654-8). In its original implementation, the cHHG method works by detecting high harmonic emission from randomly oriented ensemble of chiral molecules driven by elliptically polarized field, as a function of ellipticity. Here we discuss future perspectives in the development of this novel method, the ways of increasing chiral dichroism using tailored laser pulses, new detection schemes involving high harmonic phase measurements, and concentration-independent approaches. Using the example of the epoxypropane molecule CH3CHCH2O (also known as 1,2-propylene oxide), we show theoretically that application of two-color counter-rotating elliptically polarized laser fields yields an order of magnitude enhancement of chiral dichroism compared to single color elliptical fields. We also describe how one can introduce a new functionality to cHHG: concentration-independent measurement of the enatiomeric excess in a mixture of randomly oriented left-handed and right-handed molecules. Finally, for arbitrary configurations of laser fields, we connect the observables of the cHHG method to the amplitude and phase of chiral response, providing a basis for reconstructing wide range of chiral dynamics from cHHG measurements, with femtosecond to sub-femtosecond temporal resolution.

  18. Effective Field Theory and $\\chi$pt

    OpenAIRE

    Holstein, Barry R.

    2000-01-01

    A brief introduction to the subject of chiral perturbation theory ($\\chi$pt) is given, including a discussion of effective field theory and application to the upcoming Bates virtual Compton scattering measurement.

  19. Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model

    OpenAIRE

    Rebhan, Anton; Schmitt, Andreas; Stricker, Stefan A.

    2009-01-01

    In the chiral magnetic effect an imbalance in the number of left- and right-handed quarks gives rise to an electromagnetic current parallel to the magnetic field produced in noncentral heavy-ion collisions. The chiral imbalance may be induced by topologically nontrivial gluon configurations via the QCD axial anomaly, while the resulting electromagnetic current itself is a consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain limit is dual to large-N_c QCD, we discuss...

  20. Effective chiral restoration in the hadronic spectrum and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Thomas D. [Department of Physics, University of Maryland, College Park, MD 20742-4111 (United States)]. E-mail: cohen@physics.umd.edu

    2006-08-21

    Effective chiral restoration in the hadronic spectrum has been conjectured as an explanation of nearly degenerate multiplets seen in highly excited hadrons. The conjecture depends on the states being insensitive to the dynamics of spontaneous chiral symmetry breaking. A key question is whether this concept is well defined in QCD. This paper shows that it is by means of an explicit formal construction. This construction allows one to characterize this sensitivity for any observable calculable in QCD in Euclidean space via a functional integral. The construction depends on a generalization of the Banks-Casher theorem. It exploits the fact that all dynamics sensitive to spontaneous chiral symmetry breaking observables in correlation functions arise from fermion modes of zero virtuality (in the infinite volume limit), while such modes make no contribution to any of the dynamics which preserves chiral symmetry. In principle this construction can be implemented in lattice QCD. The prospect of a practical lattice implementation yielding a direct numerical test of the concept of effective chiral restoration is discussed.

  1. An Emergent Universe with Dark Sector Fields in a Chiral Cosmological Model

    OpenAIRE

    Beesham, A.; Chervon, S. V.; S. D. Maharaj; Kubasov, A. S.

    2013-01-01

    We consider the emergent universe scenario supported by a chiral cosmological model with two interacting dark sector fields: phantom and canonical. We investigate the general properties of the evolution of the kinetic and potential energies as well as the development of the equation of state with time. We present three models based on asymptotic solutions and investigate the phantom part of the potential and chiral metric components. The exact solution corresponding to a global emergent unive...

  2. Three-nucleon force at large distances: Insights from chiral effective field theory and the large-N{sub c} expansion

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, E.; Krebs, H. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Gasparyan, A.M. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Bolshaya Cheremushkinskaya 25, SSC RF ITEP, Moscow (Russian Federation); Schat, C. [Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Departamento de Fisica, FCEyN, Buenos Aires (Argentina)

    2015-03-01

    We confirm the claim of Phillips and Schat (Phys. Rev. C 88, 034002 (2013)) that 20 operators are sufficient to represent the most general local isospin-invariant three-nucleon force and derive explicit relations between the two sets of operators suggested in the above-mentioned work and that by Krebs et al. (Phys. Rev. C 87, 054007 (2013)). We use the set of 20 operators to discuss the chiral expansion of the long- and intermediate-range parts of the three-nucleon force up to next-to-next-to-next-to-next-to-leading order in the standard formulation without explicit Δ(1232) degrees of freedom. We also address implications of the large-N{sub c} expansion in QCD for the size of the various three-nucleon force contributions. (orig.)

  3. Artificial gauge fields and chiral edge states for ultracold fermions in synthetic dimensions

    Science.gov (United States)

    Fallani, Leonardo

    2015-05-01

    I will report on very recent experiments performed at LENS with ultracold 173Yb Fermi gases in artificial gauge fields. We have engineered Raman transitions between different 173Yb nuclear spin states to synthesize an effective lattice dynamics in a finite-sized ``extra dimension,'' which is encoded in the internal degree of freedom of the atoms. By using this innovative approach, we have realized synthetic magnetic fields for effectively-charged fermions in ladder geometries with a variable number of legs. Direct imaging of the individual legs allowed us to demonstrate the emergence of chiral edge currents and to observe edge-cyclotron orbits propagating along the edges of the system, thus providing a direct evidence of a fundamental feature of quantum Hall physics in condensed-matter systems.

  4. Test the chiral magnetic effect with isobaric collisions

    CERN Document Server

    Deng, Wei-Tian; Ma, Guo-Liang; Wang, Gang

    2016-01-01

    The quark-gluon matter produced in relativistic heavy-ion collisions may contain local domains in which P and CP symmetries are not preserved. When coupled with an external magnetic field, such P- and CP-odd domains will generate electric currents along the magnetic field --- a phenomenon called the chiral magnetic effect (CME). Recently, the STAR Collaboration at RHIC and the ALICE Collaboration at the LHC released data of charge-dependent azimuthal-angle correlators with features consistent with the CME expectation. However, the experimental observable is contaminated with significant background contributions from elliptic-flow-driven effects, which makes the interpretation of the data ambiguous. In this Letter, we show that the collisions of isobaric nuclei, $^{96}_{44}$Ru + $^{96}_{44}$Ru and $^{96}_{40}$Zr + $^{96}_{40}$Zr, provide an ideal tool to disentangle the CME signal from the background effects. Our simulation demonstrates that the two collision types at $\\sqrt{s_{\\rm NN}}=200$ GeV have more than...

  5. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  6. The effective action approach applied to nuclear chiral sigma model

    International Nuclear Information System (INIS)

    The nuclear chiral sigma model of nuclear matter is considered by means of the Cornwall-Jackiw-tomboulis (CTJ) effective action. The method provides a very general framework for investigating many important problems: chiral symmetry in nuclear medium, energy density of nuclear ground state, nuclear Schwinger-Dyson (SD) equations, etc. It is shown that the SD equations for sigma-omega mixing are actually not present in this formalism. For numerical computation purposes the Hartree-Fock (HF) approximation for ground state energy density is also presented. (author). 26 refs

  7. Chiral Anomaly in Euclidean (2+1)-DIMENSIONAL Space and AN Application to the Quantum Hall Effect

    Science.gov (United States)

    Bracken, Paul

    The chiral anomaly in (2+1)-dimensions and its relationship to the zero mode of the Dirac equation in the massless case is studied. Solutions are obtained for the Dirac equation under a vector potential which generates a constant magnetic field. It is shown that there is an anomaly term associated with the corresponding chiral transformation. It can be calculated by using the regularization procedure of Fujikawa. The results are applied to the quantum Hall effect.

  8. Holographic Schwinger effect and chiral condensate in SYM theory

    Science.gov (United States)

    Ghoroku, Kazuo; Ishihara, Masafumi

    2016-09-01

    We study the instability, for the supersymmetric Yang-Mills (SYM) theories, caused by the external electric field through the imaginary part of the action of the D7 probe brane, which is embedded in the background of type IIB theory. This instability is related to the Schwinger effect, namely to the quark pair production due to the external electric field, for the SU( N c ) SYM theories. In this holographic approach, it is possible to calculate the Schwinger effect for various phases of the theories. Here we give the calculation for N=2 SYM theory and the analysis is extended to the finite temperature deconfinement and the zero temperature confinement phases of the Yang-Mills (YM) theory. By comparing the obtained production rates with the one of the supersymmetric case, the dynamical quark mass is estimated and we find how it varies with the chiral condensate. Based on this analysis, we give a speculation on the extension of the Nambu-Jona-Lasinio model to the finite temperature YM theory, and four fermi coupling is evaluated in the confinement theory.

  9. The Effect of the Chirality on the Fluctuation of Liquid Crystal

    Science.gov (United States)

    Fatriansyah, Jaka Fajar; Yusuf, Yusril

    2016-10-01

    We investigate the dynamical properties of normal fluctuation modes in chiral phase liquid crystal on the basis of hydrodynamics Ericksen-Leslie theory. We examine the effect of chiral coefficient on dynamic relaxation eigenfrequencies and the scattering intensity. We find that the chiral coefficient only affects slow fluctuation modes, while it does not affect the fast fluctuation modes. This effect of chirality depends on the magnitude of the wave number vector components.

  10. Wess-Zumino-Witten action and photons from the Chiral Magnetic Effect

    OpenAIRE

    Fukushima, Kenji; Mameda, Kazuya

    2012-01-01

    We revisit the Chiral Magnetic Effect (CME) using the chiral Lagrangian. We demonstrate that the electric-current formula of the CME is derived immediately from the contact part of the Wess-Zumino-Witten action. This implies that the CME could be, if observed, a signature for the local parity violation, but a direct evidence for neither quark deconfinement nor chiral restoration. We also discuss the reverse Chiral Magnetic Primakoff Effect, i.e. the real photon production through the vertex a...

  11. Chiral magnetic microspheres purified by centrifugal field flow fractionation and microspheres magnetic chiral chromatography for benzoin racemate separation

    OpenAIRE

    Tian, Ailin; Qi, Jing; Liu, Yating; Wang, Fengkang; Ito, Yoichiro; Wei, Yun

    2013-01-01

    Separation of enantiomers still remains a challenge due to their identical physical and chemical properties in a chiral environment, and the research on specific chiral selector along with separation techniques continues to be conducted to resolve individual enantiomers. In our laboratory the promising magnetic chiral microspheres Fe3O4@SiO2@cellulose-2, 3-bis (3, 5-dimethylphenylcarbamate) have been developed to facilitate the resolution using both its magnetic property and chiral recognitio...

  12. Out-of-Equilibrium Chiral Magnetic Effect at Strong Coupling

    CERN Document Server

    Lin, Shu

    2013-01-01

    We study the charge transports originating from triangle anomaly in out-of-equilibrium conditions in the framework of AdS/CFT correspondence at strong coupling, to gain useful insights on possible charge separation effects that may happen in the very early stages of heavy-ion collisions. We first construct a gravity background of a homogeneous mass shell with a finite (axial) charge density gravitationally collapsing to a charged blackhole, which serves as a dual model for out-of-equilibrium charged plasma undergoing thermalization. We find that a finite charge density in the plasma slows down the thermalization. We then study the out-of-equilibrium properties of Chiral Magnetic Effect and Chiral Magnetic Wave in this background. As the medium thermalizes, the magnitude of chiral magnetic conductivity and the response time delay grow. We find a dynamical peak in the spectral function of retarded current correlator, which we identify as an out-of-equilibrium chiral magnetic wave. The group velocity of the out-...

  13. Chiral electric field in relativistic heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin

    2016-08-01

    It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)

  14. The One-Loop Effective K\\"ahler Potential. I: Chiral Multiplets

    CERN Document Server

    Flauger, Raphael; Schmidt-Colinet, Cornelius; Sudano, Matthew

    2012-01-01

    We derive a universal formula for the one-loop renormalization of the effective K\\"ahler potential that applies to general supersymmetric effective field theories of chiral multiplets, with arbitrary interactions respecting N=1 supersymmetry in four dimensions. The resulting expression depends only on the tree-level mass spectrum and the form of the regulator. This formula simplifies and generalizes existing results in the literature. We include two examples to illustrate its use.

  15. Influence of damping on the vanishing of the electro-optic effect in chiral isotropic media

    OpenAIRE

    Agarwal, G. S.; Boyd, Robert W.

    2002-01-01

    Using first principles, it is demonstrated that radiative damping alone cannot lead to a nonvanishing electro-optic effect in a chiral isotropic medium. This conclusion is in contrast with that obtained by a calculation in which damping effects are included using the standard phenomenological model. We show that these predictions differ because the phenomenological damping equations are valid only in regions where the frequencies of the applied electromagnetic fields are nearly resonant with ...

  16. Chiral Electronics

    OpenAIRE

    Kharzeev, Dmitri E.; Yee, Ho-Ung

    2012-01-01

    We consider the properties of electric circuits involving Weyl semimetals. The existence of the anomaly-induced chiral magnetic current in a Weyl semimetal subjected to magnetic field causes an interesting and unusual behavior of such circuits. We consider two explicit examples: i) a circuit involving the "chiral battery" and ii) a circuit that can be used as a "quantum amplifier" of magnetic field. The unique properties of these circuits stem from the chiral anomaly and may be utilized for c...

  17. The effect of central and planar chirality on the electrochemical and chiral sensing properties of ferrocenyl urea H-bonding receptors.

    Science.gov (United States)

    Mulas, Andrea; Willener, Yasmine; Carr-Smith, James; Joly, Kevin M; Male, Louise; Moody, Christopher J; Horswell, Sarah L; Nguyen, Huy V; Tucker, James H R

    2015-04-28

    A new series of chiral ureas containing one or two redox-active ferrocene units was synthesised and studied in order to investigate the effect of planar chirality and central chirality on electrochemical chiral sensing. Binding of chiral carboxylate anions in organic solvents through H-bond formation caused a negative shift in the potentials of the ferrocene/ferrocenium (Fc/Fc(+)) couples of the receptors, demonstrating their use as electrochemical sensors in solution. While the presence of two ferrocene units gave no marked improvement in the chiral sensing capabilities of these systems, the introduction of planar chirality, in addition to central chirality, switched the enantiomeric binding preference of the system and also caused an interesting change in the appearance of some voltammograms, with unusual two-wave behaviour observed upon binding a protected prolinate guest. PMID:25791522

  18. Renormalization and additional degrees of freedom within the chiral effective theory for spin-1 resonances

    CERN Document Server

    Kampf, Karol; Trnka, Jaroslav

    2009-01-01

    We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1-- meson self-energy within the Resonance chiral theory in the chiral limit using different methods for the description of spin-one particles, namely the Proca field, antisymmetric tensor field and the first order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent to the power-counting non-renormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections...

  19. Chirality effects on 2D phase transitions

    DEFF Research Database (Denmark)

    Scalas, E.; Brezesinski, G.; Möhwald, H.;

    1996-01-01

    investigated pressures. However, at both temperatures, there is a sharp phase transition from a low-pressure phase, in which the molecules are tilted towards nearest neighbours (NN) and the distortion azimuth also points towards NN, to a high-pressure phase, in which the molecules are tilted towards next......Monolayers of the racemate and pure enantiomers of 1-hexadecyl-glycerol were investigated by grazing incidence X-ray diffraction (GID) at 5 and 20 degrees C on compression from 0 mN m(-1) to pressures greater than 30 mN m(-1). The racemate Lattice is centred-rectangular for both temperatures at all......-nearest neighbours (NNN) and an NNN-distorted lattice is observed. At 5 degrees C, the transition pressure is 15 mN m(-1), whereas at 20 degrees C it is 18 mN m(-1). Chirality destroys this transition: the pure enantiomer always exhibits an oblique lattice with tilted molecules, and the azimuths of tilt...

  20. Chiral dynamics in QED and QCD in a magnetic background and nonlocal noncommutative field theories

    International Nuclear Information System (INIS)

    We study the connection of the chiral dynamics in QED and QCD in a strong magnetic field with noncommutative field theories (NCFT). It is shown that these dynamics determine complicated nonlocal NCFT. In particular, although the interaction vertices for electrically neutral composites in these gauge models can be represented in the space with noncommutative spatial coordinates, there is no field transformation that could put the vertices in the conventional form considered in the literature. It is unlike the Nambu-Jona-Lasinio (NJL) model in a magnetic field where such a field transformation can be found, with a cost of introducing an exponentially damping form factor in field propagators. The crucial distinction between these two types of models is in the characters of their interactions, being short-range in the NJL-like models and long-range in gauge theories. The relevance of the NCFT connected with the gauge models for the description of the quantum Hall effect in condensed matter systems with long-range interactions is briefly discussed

  1. Reversible "triple-Q" elastic field structures in a chiral magnet.

    Science.gov (United States)

    Hu, Yangfan; Wang, Biao

    2016-01-01

    The analytical solution of the periodic elastic fields in chiral magnets caused by presence of periodically distributed eigenstrains is obtained. For the skyrmion phase, both the periodic displacement field and the stress field are composed of three "triple-Q" structures with different wave numbers. The periodic displacement field, obtained by combining the three "triple-Q" displacement structures, is found to have the same lattice vectors with the magnetic skyrmion lattice. We find that for increasing external magnetic field, one type of "triple-Q" displacement structure and stress structure undergo a "configurational reversal", where the initial and the final field configuration share similar pattern but with opposite direction of all the field vectors. The solution obtained is of fundamental significance for understanding the emergent mechanical properties of skyrmions in chiral magnets. PMID:27457629

  2. Reversible “triple-Q” elastic field structures in a chiral magnet

    Science.gov (United States)

    Hu, Yangfan; Wang, Biao

    2016-01-01

    The analytical solution of the periodic elastic fields in chiral magnets caused by presence of periodically distributed eigenstrains is obtained. For the skyrmion phase, both the periodic displacement field and the stress field are composed of three “triple-Q” structures with different wave numbers. The periodic displacement field, obtained by combining the three “triple-Q” displacement structures, is found to have the same lattice vectors with the magnetic skyrmion lattice. We find that for increasing external magnetic field, one type of “triple-Q” displacement structure and stress structure undergo a “configurational reversal”, where the initial and the final field configuration share similar pattern but with opposite direction of all the field vectors. The solution obtained is of fundamental significance for understanding the emergent mechanical properties of skyrmions in chiral magnets. PMID:27457629

  3. The effect of confinement on the stability of field induced states and on supercooling in antiferro-ferroelectric phase transitions in chiral smectic liquid crystals

    OpenAIRE

    VIJ, JAGDISH

    2009-01-01

    PUBLISHED We investigate both the supercooling and the hysteresis phenomena of the phase transitions between the smectic C* and the smectic C *Aphases driven by temperature and electric field, respectively. These two phenomena show similar characteristics for the dependence of transmittance on both the cell thickness and the applied field. The mechanisms for large supercooling and large hysteresis in thin cells are shown to correspond to the suppression of the propagation of solitary wave ...

  4. Study of the correlation of charge separation of the chiral magnetic effect in Relativistic Heavy-ion Collisions

    CERN Document Server

    Feng, Sheng-Qin; Sun, Fei; Zhong, Yang; Yin, Zhong-Bao

    2016-01-01

    It was pointed out that the Chiral Magnetic Effect is a process of charge separation with respect to the reaction plane. There is one kind of phenomenon of gauge field configurations with nonzero topological charge, which can be a sphaleron in the QCD vacuum. At high temperatures, one expects that the sphaleron process is a dominant process. One finds that left-handed quarks will become right-handed quarks, and right-handed quarks will remain right-handed in a region with negative topological charge. The strong magnetic field produced in relativistic heavy-ion collisions interacts with the magnetic moment of the quarks and locates the spins of quarks with positive (negative) electric charge to be parallel (anti-parallel) to the field direction. The Chiral Separation Effect is a similar effect in which the occurrence of a vector charge, e.g. electric charge, causes a separation of chiralities. We calculate the chiral separation effects during RHIC and LHC energy regions by studying the detailed chiral charge s...

  5. Electrolyte effects on the chiral induction and on its temperature dependence in a chiral nematic lyotropic liquid crystal.

    Science.gov (United States)

    Dawin, Ute C; Osipov, Mikhail A; Giesselmann, Frank

    2010-08-19

    We present a study on the effect of added CsCl and of temperature variation on the chiral induction in a chiral nematic lyotropic liquid crystal (LC) composed of the surfactant cesium perfluorooctanoate (CsPFO), water, and the chiral dopant d-Leucine (d-Leu). The chiral induction was measured as the helical pitch P. The role of the additives CsCl and d-Leu on the phase behavior is investigated and discussed. The thermal stabilization effect of CsCl is shown to lead to an apparent salt effect on the pitch when the pitch is compared at a constant temperature. This apparent effect is removed by comparing the pitch measured for different salt concentrations at a temperature relative to the phase-transition temperatures; thus, the real salt effect on the pitch is described. High salt concentrations are shown to increase the pitch, that is, hinder the chiral induction. The effect is discussed in terms of a decreased solubilization of the amphiphilic chiral solute d-Leu in the micelles due to the salt-induced screening of the surfactant head groups and the consequential denser packing of the surfactants. The temperature variation of the pitch is investigated for all CsCl concentrations and is found to be essentially independent of the salt concentration. The temperature variation is analyzed and discussed in the context of a theoretical model taking into account specific properties of lyotropic liquid crystals. A hyperbolic decrease of the pitch is found with increasing temperature, which is known, from thermotropic liquid crystals, to stem from pretransitional critical fluctuations close to the lamellar phase. However, the experimental data confirmed the theoretical prediction that, at high temperature, that is, far away from the transition into the lamellar phase, the pitch is characterized by a linear temperature dependence which is determined by a combination of steric and dispersion chiral interactions. The parameters of the theoretical expression for the pitch have

  6. Electrolyte effects on the chiral induction and on its temperature dependence in a chiral nematic lyotropic liquid crystal.

    Science.gov (United States)

    Dawin, Ute C; Osipov, Mikhail A; Giesselmann, Frank

    2010-08-19

    We present a study on the effect of added CsCl and of temperature variation on the chiral induction in a chiral nematic lyotropic liquid crystal (LC) composed of the surfactant cesium perfluorooctanoate (CsPFO), water, and the chiral dopant d-Leucine (d-Leu). The chiral induction was measured as the helical pitch P. The role of the additives CsCl and d-Leu on the phase behavior is investigated and discussed. The thermal stabilization effect of CsCl is shown to lead to an apparent salt effect on the pitch when the pitch is compared at a constant temperature. This apparent effect is removed by comparing the pitch measured for different salt concentrations at a temperature relative to the phase-transition temperatures; thus, the real salt effect on the pitch is described. High salt concentrations are shown to increase the pitch, that is, hinder the chiral induction. The effect is discussed in terms of a decreased solubilization of the amphiphilic chiral solute d-Leu in the micelles due to the salt-induced screening of the surfactant head groups and the consequential denser packing of the surfactants. The temperature variation of the pitch is investigated for all CsCl concentrations and is found to be essentially independent of the salt concentration. The temperature variation is analyzed and discussed in the context of a theoretical model taking into account specific properties of lyotropic liquid crystals. A hyperbolic decrease of the pitch is found with increasing temperature, which is known, from thermotropic liquid crystals, to stem from pretransitional critical fluctuations close to the lamellar phase. However, the experimental data confirmed the theoretical prediction that, at high temperature, that is, far away from the transition into the lamellar phase, the pitch is characterized by a linear temperature dependence which is determined by a combination of steric and dispersion chiral interactions. The parameters of the theoretical expression for the pitch have

  7. A METRIC FOR A CHIRAL POTENTIAL FIELD UNA MÉTRICA PARA UN CAMPO POTENCIAL QUIRAL

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available In this paper we present an example of a specific metric which geometrizes explicitly a light-like four-vector potential (chiral field. The geometrization shows that such a vector has the same geometrical structure as a gravitational Kerr field. We discuss a theoretical proposition that a rotating body generates, besides a special gravitational field, a magnetic-type gauge field which might be identified with a chiral geometrized field. This chiral field represents a novel type of field because we cannot identify it with any of the known electromagnetic fields. As an application of this theory we discuss the morphology of the planets around the sun.En este trabajo se presenta un ejemplo de una métrica especifica que geometriza explícitamente un potencial cuadrivector tipo luz (campo quiral. La geometrización muestra que tal vector tiene la misma estructura geométrica que un campo gravitacional Kerr. Se discute una proposición teórica que un cuerpo rotante genera, su gravitación y el calibre de campo tipo magnético que puede ser identificado con un campo quiral geometrizado. Este campo quiral representa un tipo novedoso de campo que no puede ser identificado con alguno de los campos electromagnéticos conocidos. Como aplicación de esta teoría se discute la morfología de los planetas alrededor del sol.

  8. Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX' (X, X' = H, CH3) with lithium cation and their chiral discrimination

    Science.gov (United States)

    Alkorta, Ibon; Elguero, José; Provasi, Patricio F.; Pagola, Gabriel I.; Ferraro, Marta B.

    2011-09-01

    The set of 1:1 and 2:1 complexes of XOOX' (X, X' = H, CH3) with lithium cation has been studied to determine if they are suitable candidates for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. Conventional nuclear magnetic resonance is unable to distinguish between enantiomers in the absence of a chiral solvent. The criterion for experimental detection is valuated by the isotropic part of nuclear shielding polarisability tensors, related to a pseudoscalar of opposite sign for two enantiomers. The study includes calculations at coupled Hartree-Fock and density functional theory schemes for 17O nucleus in each compound. Additional calculations for 1H are also included for some compounds. A huge static homogeneous electric field, perpendicular to the magnetic field of the spectromer, as big as ≈1.7 × 108 V m-1 should be applied to observe a shift of ≈1 ppm for 17O magnetic shielding in the proposed set of complexes.

  9. Nuclear Dynamics with Effective Field Theories

    CERN Document Server

    Epelbaum, Evgeny

    2013-01-01

    These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.

  10. Chiral separation of the clinically important compounds fucose and pipecolic acid using CE: determination of the most effective chiral selector.

    Science.gov (United States)

    Hadjistasi, Christoforos A; Stavrou, Ioannis J; Stefan-Van Staden, Raluca-Ioana; Aboul-Enein, Hassan Y; Kapnissi-Christodoulou, Constantina P

    2013-09-01

    In this study, simple electrophoretic methods were developed for the chiral separation of the clinically important compounds fucose and pipecolic acid. In recent years, these analytes, and particularly their individual enantiomers, have attracted considerable attention due to their role in biological functions and disorders. The detectability and sensitivity of pipecolic acid and fucose were improved by reacting them with fluorenylmethyloxycarbonyl chloride (FMOC-Cl) and 5-amino-2-naphthalene-sulfonic acid (ANSA), respectively. The enantioseparation conditions were optimized by initially investigating the type of the chiral selector. Different chiral selectors, such as polymeric surfactants and cyclodextrins, were used and the most effective ones were determined with regard to resolution and analysis time. A 10-mM β-cyclodextrin was able to separate the enantiomers of ANSA-DL-fucose and the polymeric surfactant poly(sodium N-undecanoyl-LL-leucine-valinate) was able to separate the enantiomers of FMOC-DL-pipecolic acid, with resolution values of 3.45 and 2.78, respectively. Additional parameters, such as the concentration and the pH of the background electrolyte (BGE), the concentration of the chiral selector, and the addition of modifiers were examined in order to optimize the separations. The addition of the chiral ionic liquid D-alanine tert-butyl ester lactate into the BGE was also investigated, for the first time, in order to improve resolution of the enantiomers.

  11. Chiral separation of the clinically important compounds fucose and pipecolic acid using CE: determination of the most effective chiral selector.

    Science.gov (United States)

    Hadjistasi, Christoforos A; Stavrou, Ioannis J; Stefan-Van Staden, Raluca-Ioana; Aboul-Enein, Hassan Y; Kapnissi-Christodoulou, Constantina P

    2013-09-01

    In this study, simple electrophoretic methods were developed for the chiral separation of the clinically important compounds fucose and pipecolic acid. In recent years, these analytes, and particularly their individual enantiomers, have attracted considerable attention due to their role in biological functions and disorders. The detectability and sensitivity of pipecolic acid and fucose were improved by reacting them with fluorenylmethyloxycarbonyl chloride (FMOC-Cl) and 5-amino-2-naphthalene-sulfonic acid (ANSA), respectively. The enantioseparation conditions were optimized by initially investigating the type of the chiral selector. Different chiral selectors, such as polymeric surfactants and cyclodextrins, were used and the most effective ones were determined with regard to resolution and analysis time. A 10-mM β-cyclodextrin was able to separate the enantiomers of ANSA-DL-fucose and the polymeric surfactant poly(sodium N-undecanoyl-LL-leucine-valinate) was able to separate the enantiomers of FMOC-DL-pipecolic acid, with resolution values of 3.45 and 2.78, respectively. Additional parameters, such as the concentration and the pH of the background electrolyte (BGE), the concentration of the chiral selector, and the addition of modifiers were examined in order to optimize the separations. The addition of the chiral ionic liquid D-alanine tert-butyl ester lactate into the BGE was also investigated, for the first time, in order to improve resolution of the enantiomers. PMID:23757267

  12. SAR Simulation with Magneto Chiral Effects for Human Head Radiated from Cellular Phones

    Science.gov (United States)

    Torres-Silva, H.

    2008-09-01

    A numerical method for a microwave signal emitted by a cellular phone, propagating in a magneto-chiral media, characterized by an extended Born-Fedorov formalism, is presented. It is shown that the use of a cell model, combined with a real model of the human head, derived from the magnetic resonance of images allows a good determination of the near fields induced in the head when the brain chirality and the battery magnetic field are considered together. The results on a 2-Dim human head model show the evolution of the specific absorption rate, (SAR coefficient) and the spatial peak specific absorption rate which are sensitives to the magneto-chiral factor, which is important in the brain layer. For GSM/PCN phones, extremely low frequency real pulsed magnetic fields (in the order of 10 to 60 milligauss) are added to the model through the whole of the user's head. The more important conclusion of our work is that the head absorption is bigger than the results for a classical model without the magneto chiral effect. Hot spots are produced due to the combination of microwave and the magnetic field produced by the phone's operation. The FDTD method was used to compute the SARs inside the MRI based head models consisting of various tissues for 1.8 GHz. As a result, we found that in the head model having more than four kinds of tissue, the localized peak SAR reaches maximum inside the head for over five tissues including skin, bone, blood and brain cells.

  13. Nuclear effective field theory on the lattice

    CERN Document Server

    Krebs, H; Epelbaum, E; Lee, D; ner, Ulf-G Mei\\ss

    2008-01-01

    In the low-energy region far below the chiral symmetry breaking scale (which is of the order of 1 GeV) chiral perturbation theory provides a model-independent approach for quantitative description of nuclear processes. In the two- and more-nucleon sector perturbation theory is applicable only at the level of an effective potential which serves as input in the corresponding dynamical equation. To deal with the resulting many-body problem we put chiral effective field theory (EFT) on the lattice. Here we present the results of our lattice EFT study up to next-to-next-to-leading order in the chiral expansion. Accurate description of two-nucleon phase-shifts and ground state energy ratio of dilute neutron matter up to corrections of higher orders shows that lattice EFT is a promising tool for a quantitative description of low-energy few- and many-body systems.

  14. Chiral streamers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Dandan; Cao, Xin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, Xinpei, E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Comonwealth Scientific and Industrial Research Organization, P.O. Box 218, Sydney, New South Wales 2070 (Australia)

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  15. Chiral streamers

    Science.gov (United States)

    Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya Ken

    2015-10-01

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  16. Phase diagram of 4D field theories with chiral anomaly from holography

    CERN Document Server

    Ammon, Martin; Macedo, Rodrigo P

    2016-01-01

    Within gauge/gravity duality, we study the class of four dimensional CFTs with chiral anomaly described by Einstein-Maxwell-Chern-Simons theory in five dimensions. In particular we determine the phase diagram at finite temperature, chemical potential and magnetic field. At high temperatures the solution is given by an electrically and magnetically charged AdS Reissner-Nordstroem black brane. For sufficiently large Chern-Simons coupling and at sufficiently low temperatures and small magnetic fields, we find a new phase with helical order, breaking translational invariance spontaneously. For the Chern-Simons couplings studied, the phase transition is second order with mean field exponents. Since the entropy density vanishes in the limit of zero temperature we are confident that this is the true ground state which is the holographic version of a chiral magnetic spiral.

  17. Chiral optical fields: A unified formulation of helicity scattered from particles and dichroism enhancement

    CERN Document Server

    Nieto-Vesperinas, Manuel

    2016-01-01

    We establish a general unified formulation which, using the optical theorem of electromagnetic helicity, shows that dichorism is a phenomenon arising in any scattering -or diffraction- process, elastic or not, of chiral electromagnetic fields by objects either chiral or achiral. It is shown how this approach paves the way to overcoming well-known limitations of standard circular dichroism, like its weak signal or the difficulties of using it with magnetodielectric particles. Based on the angular spectrum representation of optical fields with only right circular or left circular plane waves, we introduce beams with transverse elliptic polarization and posessing a longitudinal component. Then our formulation for general optical fields shows how to enhance the helicity, (and therefore the dichroism signal), versus the energy of the light scattered or emitted by a particle, or viceversa.

  18. A chiral alternative to the vierbein field in general relativity

    OpenAIRE

    Hooft, G. 't

    1991-01-01

    An alternative to the usual vierbein field in a (3 + 1)-dimensional (euclidean) space-time is proposed such that the internal index takes only three values and the external is a double: ea = −ea. In flat space-time this field reduces to the self-dual generalized Levi-Civita symbol a. Like the vierbein field, our field determines the metric field g uniquely. It can be viewed upon as the 'cube root' of the metric field. In euclidean space the internal symmetry group is SL(3). In Minkowski space...

  19. Dynamical chiral symmetry breaking and confinement : its interrelation and effects on the hadron mass spectrum

    International Nuclear Information System (INIS)

    Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author)

  20. The Effect of Logarithmic Mesonic Potential on the Magnetic Catalysis in the Chiral Quark-Sigma Model

    CERN Document Server

    Abu-Shady, M

    2015-01-01

    The chiral symmetry breaking in the presence of external magnetic field is studied in the framework of logarithmic quark-sigma model. The effective logarithmic mesonic potential is employed and is numerically solved in the mean-field approximation. We find that the chiral symmetry breaking enhances in comparison with the original sigma model. Two sets of parameterization are investigated in the present model. We find that increasing coupling constant enhances the breaking symmetry while increasing sigma mass inhibits enhancing chiral broken vacuum state. A comparison with the Numbu-Jona-Lasinio model and the Schwinger-Dyson equation is discussed. We conclude that the logarithmic sigma model enhances the magnetic catalysis in comparison with the original sigma model and other models.

  1. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    CERN Document Server

    Sun, Yifeng; Li, Feng

    2016-01-01

    Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).

  2. Chiral Spin Liquids in Triangular-Lattice SU (N ) Fermionic Mott Insulators with Artificial Gauge Fields

    Science.gov (United States)

    Nataf, Pierre; Lajkó, Miklós; Wietek, Alexander; Penc, Karlo; Mila, Frédéric; Läuchli, Andreas M.

    2016-10-01

    We show that, in the presence of a π /2 artificial gauge field per plaquette, Mott insulating phases of ultracold fermions with SU (N ) symmetry and one particle per site generically possess an extended chiral phase with intrinsic topological order characterized by an approximate ground space of N low-lying singlets for periodic boundary conditions, and by chiral edge states described by the SU(N ) 1 Wess-Zumino-Novikov-Witten conformal field theory for open boundary conditions. This has been achieved by extensive exact diagonalizations for N between 3 and 9, and by a parton construction based on a set of N Gutzwiller projected fermionic wave functions with flux π /N per triangular plaquette. Experimental implications are briefly discussed.

  3. Cutoff effects of Wilson fermions in the absence of spontaneous chiral symmetry breaking

    CERN Document Server

    Della Morte, M; Luz, Magdalena; Morte, Michele Della

    2006-01-01

    We simulate two dimensional QED with two degenerate Wilson fermions and plaquette gauge action. As a consequence of the Mermin-Wagner theorem, in the continuum limit chiral symmetry is realized a la Wigner. This property affects also the size of the cutoff effects. That can be understood in view of the fact that the leading lattice artifacts are described, in the continuum Symanzik effective theory, by chirality breaking terms. In particular, vacuum expectation values of non-chirality-breaking operators are expected to be O(a) improved in the chiral limit. We provide a numerical confirmation of this expectation by performing a scaling test.

  4. Strange quark matter in a chiral SU(3) quark mean field model

    OpenAIRE

    Wang, P.; Lyubovitskij, V. E.; Gutsche, Th.; Faessler, Amand

    2002-01-01

    We apply the chiral SU(3) quark mean field model to investigate strange quark matter. The stability of strange quark matter with different strangeness fraction is studied. The interaction between quarks and vector mesons destabilizes the strange quark matter. If the strength of the vector coupling is the same as in hadronic matter, strangelets can not be formed. For the case of beta equilibrium, there is no strange quark matter which can be stable against hadron emission even without vector m...

  5. The Chiral Anomaly, Dirac and Weyl Semimetals, and Force-Free Magnetic Fields

    OpenAIRE

    Marsh, Gerald E.

    2016-01-01

    The chiral anomaly is a purely quantum mechanical phenomenon that has a long history dating back to the late 1960s. Surprisingly, it has recently made a macroscopic appearance in condensed matter physics. A brief introduction to the relevant features of this anomaly is given and it is shown that its appearance in condensed matter systems must involve force-free magnetic fields, which may help explain the long current relaxation times in Dirac and Weyl semimetals.

  6. Chiral dynamics with vector fields: an application to $\\pi\\pi$ and $\\pi K$ scattering

    OpenAIRE

    Danilkin, I.V.; Lutz, M. F. M.

    2012-01-01

    A theoretical study of Goldstone boson scattering based on the chiral Lagrangian with vector meson fields is presented. In application of a recently developed novel approach we extrapolate subthreshold partial-wave amplitudes into the physical region. The constraints set by micro-causality and coupled-channel unitarity are kept rigourously. It is shown that already the leading order subthreshold amplitudes lead to s- and p-wave $\\pi\\pi$ and $\\pi K$ phase shifts are in agreement with the exper...

  7. Chiral assembly of weakly curled hard rods: Effect of steric chirality and polarity

    Energy Technology Data Exchange (ETDEWEB)

    Wensink, H. H., E-mail: wensink@lps.u-psud.fr; Morales-Anda, L. [Laboratoire de Physique des Solides–UMR 8502, Université Paris-Sud & CNRS, 91405 Orsay (France)

    2015-10-14

    We theoretically investigate the pitch of lyotropic cholesteric phases composed of slender rods with steric chirality transmitted via a weak helical deformation of the backbone. In this limit, the model is amenable to analytical treatment within Onsager theory and a closed expression for the pitch versus concentration and helical shape can be derived. Within the same framework, we also briefly review the possibility of alternative types of chiral order, such as twist-bend or screw-like nematic phases, finding that cholesteric order dominates for weakly helical distortions. While long-ranged or “soft” chiral forces usually lead to a pitch decreasing linearly with concentration, steric chirality leads to a much steeper decrease of quadratic nature. This reveals a subtle link between the range of chiral intermolecular interaction and the pitch sensitivity with concentration. A much richer dependence on the thermodynamic state is revealed for polar helices where parallel and anti-parallel pair alignments along the local director are no longer equivalent. It is found that weak temperature variations may lead to dramatic changes in the pitch, despite the lyotropic nature of the assembly.

  8. Coriolis effect and spin Hall effect of light in an inhomogeneous chiral medium.

    Science.gov (United States)

    Zhang, Yongliang; Shi, Lina; Xie, Changqing

    2016-07-01

    We theoretically investigate the spin Hall effect of spinning light in an inhomogeneous chiral medium. The Hamiltonian equations of the photon are analytically obtained within eikonal approximation in the noninertial orthogonal frame. Besides the usual spin curvature coupling, the chiral parameter enters the Hamiltonian as a spin-torsion-like interaction. We reveal that both terms have parallel geometric origins as the Coriolis terms of Maxwell's equations in nontrivial frames. PMID:27367104

  9. Coriolis effect and spin Hall effect of light in an inhomogeneous chiral medium.

    Science.gov (United States)

    Zhang, Yongliang; Shi, Lina; Xie, Changqing

    2016-07-01

    We theoretically investigate the spin Hall effect of spinning light in an inhomogeneous chiral medium. The Hamiltonian equations of the photon are analytically obtained within eikonal approximation in the noninertial orthogonal frame. Besides the usual spin curvature coupling, the chiral parameter enters the Hamiltonian as a spin-torsion-like interaction. We reveal that both terms have parallel geometric origins as the Coriolis terms of Maxwell's equations in nontrivial frames.

  10. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields

    Institute of Scientific and Technical Information of China (English)

    Ciprian Dariescu; Marina-Aura Dariescu

    2012-01-01

    Starting with the U(1)-gauge covariant four-dimensional Dirac equation,we derive the analytic solutions describing the chiral massless fermions evolving in static orthogonal magnetic and electric fields.Working in cylindric coordinates,we compute the electric current density essential component and the off-diagonal conductivities.By summing up the conductivities of the two distinct species of electrons connected to the orientation of spin,the well-known 4n-quantization law is restored.%Starting with the U(1)-gauge covariant four-dimensional Dirac equation, we derive the analytic solutions describing the chiral massless fermions evolving in static orthogonal magnetic and electric Gelds. Working in cylindric coordinates, we compute the electric current density essential component and the off-diagonal conductivities. By summing up the conductivities of the two distinct species of electrons connected to the orientation of spin, the well-known in-quantization law is restored.

  11. Strange quark asymmetry in the proton in chiral effective theory

    CERN Document Server

    Wang, X G; Melnitchouk, W; Salamu, Y; Thomas, A W; Wang, P

    2016-01-01

    We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of $\\delta$-function contributions to the $\\bar s$ PDF at $x=0$, with a corresponding valence-like component of the $s$-quark PDF at larger $x$, which allows greater flexibility for the shape of $s-\\bar s$. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the $s$ and $\\bar s$ distributions, consistent with the chiral symmetry of QCD. We discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange quark PDFs in global QCD analysis.

  12. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Directory of Open Access Journals (Sweden)

    Tomoya Hayata

    2015-05-01

    Full Text Available We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  13. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Energy Technology Data Exchange (ETDEWEB)

    Hayata, Tomoya, E-mail: hayata@riken.jp [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Yamamoto, Arata [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-05-11

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  14. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Science.gov (United States)

    Hayata, Tomoya; Yamamoto, Arata

    2015-05-01

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  15. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    OpenAIRE

    Tomoya Hayata; Arata Yamamoto

    2015-01-01

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement...

  16. Concerning the proofs of spontaneous chiral symmetry breaking in Q.C.D. from the effective lagrangian point of view

    International Nuclear Information System (INIS)

    Claims that spontaneous chiral symmetry breaking in Q.C.D. is mediated by the U(1) axial anomaly are examined from the viewpoint of effective chiral lagrangians. The proofs are seen to arise from a use of effective chiral lagrangians in which the U(1) axial symmetry is explicitly broken by effects of the anomaly. A U(1) axial invariant chiral lagrangian (to be presented) offers no such proof. (author)

  17. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy

    Science.gov (United States)

    Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S.; Kappes, Manfred M.; Krupke, Ralph

    2016-09-01

    The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.

  18. Consistent chiral kinetic theory in Weyl materials: chiral magnetic plasmons

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern--Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. T...

  19. Is the Chiral Vortical Effect Vanishing in Heavy Ion Collisions?

    CERN Document Server

    Landsteiner, Karl; Pena-Benitez, Francisco

    2013-01-01

    We study the frequency dependence of all the chiral vortical and magnetic conductivities for a relativistic chiral gas of free fermions and for a strongly coupled CFT with holographic dual in four dimensions. Both systems present gauge and gravitational anomalies and we compute their contribution to the conductivities. The chiral vortical conductivities and the chiral magnetic conductivity in the energy current show an unexpected frequency dependence in the form of a delta centered at zero frequency. We argue that this makes the CVE practically unobservable in heavy ion collisions. In the appendix we discuss why the CME seems to vanish in the consistent current for a particular implementation of the axial chemical potential.

  20. Effects of (axialvector mesons on the chiral phase transition: initial results

    Directory of Open Access Journals (Sweden)

    Kovács P.

    2014-01-01

    Full Text Available We investigate the effects of (axialvector mesons on the chiral phase transition in the framework of an SU(3, (axialvector meson extended linear sigma model with additional constituent quarks and Polyakov loops. We determine the parameters of the Lagrangian at zero temperature in a hybrid approach, where we treat the mesons at tree-level, while the constituent quarks at 1-loop level. We assume two nonzero scalar condensates and together with the Polyakov-loop variables we determine their temperature dependence according to the 1-loop level field equations.

  1. Equation of state of isospin-asymmetric nuclear matter in relativistic mean-field models with chiral limits

    OpenAIRE

    Jiang, Wei-Zhou; Li, Bao-An; Chen, Lie-Wen

    2007-01-01

    Using in-medium hadron properties according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities and considering naturalness of the coupling constants, we have newly constructed several relativistic mean-field Lagrangians with chiral limits. The model parameters are adjusted such that the symmetric part of the resulting equation of state at supra-normal densities is consistent with that required by the collective flow data from high energy heavy-ion reactions, whi...

  2. A chiral route to pulling optical forces and left-handed optical torques

    CERN Document Server

    Canaguier-Durand, Antoine

    2015-01-01

    We analyze how chirality can generate pulling optical forces and left-handed torques by cross-coupling linear-to-angular momenta between the light field and the chiral object. In the dipolar regime, we reveal that such effects can emerge from a competition between non-chiral and chiral contributions to dissipative optical forces and torques, a competition balanced by the strength of chirality of the object. We extend the analysis to large chiral spheres where the interplay between chirality and multipolar resonances can give rise to a break of symmetry that flips the signs of both optical forces and torques.

  3. The quest for chirality

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.A. [Department of Chemistry Stanford University, Stanford, California 94305 (United States)

    1996-07-01

    The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)

  4. Anisotropic hydrodynamics, holography and the chiral magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Gahramanov, Ilmar; Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik

    2012-03-15

    We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient {upsilon}{sub 2}. We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on {upsilon}{sub 2}. We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)

  5. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. Y. [Department of Physics, Chonbuk National University, 561-756, Jeonbuk (Korea, Republic of); Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States); Christensen, N. D. [Department of Physics, Illinois State University, 61790, Normal, IL (United States); Salmon, D.; Wang, X., E-mail: xiw77@pitt.edu [Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States)

    2015-10-06

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -}→P{sup +}P{sup -}→(ℓ{sup +}D{sup 0})(ℓ{sup -}D{sup -bar0}) at high-energy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -}→P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider.

  6. Two-loop effective potentials in general N=2, d=3 chiral superfield model

    International Nuclear Information System (INIS)

    We study local superspace contributions to the low-energy effective action in general chiral three-dimensional superfield model. The effective Kähler and chiral potentials are computed in an explicit form up to the two-loop order. In accordance with the non-renormalization theorem, the ultraviolet divergences appear only in the full superspace while the effective chiral potential receives only finite quantum contributions in the massless case. As an application, the two-loop effective scalar potential is found for the three-dimensional N=2 supersymmetric Wess-Zumino model.

  7. Nonlinear evolution equations associated with the chiral-field spectral problem

    Energy Technology Data Exchange (ETDEWEB)

    Bruschi, M.; Ragnisco, O. (Istituto Nazionale di Fisica Nucleare, Roma (Italy); Dipt. di Fisica, Univ. Rome (Italy))

    1985-08-11

    In this paper we derive and investigate the class of nonlinear evolution equations (NEEs) associated with the linear problem psisub(x) = lambdaApsi. It turns out that many physically interesting NEEs pertain to this class: for instance, the chiral-field equation, the nonlinear Klein-Gordon equations, the Heisenberg and Papanicolau spin chain models, the modified Boussinesq equation, the Wadati-Konno-Ichikawa equations, etc. We display also the Baecklund transformations for such a class and exploit them to derive in a special case the one-soliton solution.

  8. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states

    Science.gov (United States)

    Heo, Changhoon; Kiselev, Nikolai S.; Nandy, Ashis Kumar; Blügel, Stefan; Rasing, Theo

    2016-06-01

    Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion.

  9. Field-Selective Anomaly and Chiral Mode Reversal in Type-II Weyl Materials.

    Science.gov (United States)

    Udagawa, M; Bergholtz, E J

    2016-08-19

    Three-dimensional condensed matter incarnations of Weyl fermions generically have a tilted dispersion-in sharp contrast to their elusive high-energy relatives where a tilt is forbidden by Lorentz invariance, and with the low-energy excitations of two-dimensional graphene sheets where a tilt is forbidden by either crystalline or particle-hole symmetry. Very recently, a number of materials (MoTe_{2}, LaAlGe, and WTe_{2}) have been identified as hosts of so-called type-II Weyl fermions whose dispersion is so strongly tilted that a Fermi surface is formed, whereby the Weyl node becomes a singular point connecting electron and hole pockets. We here predict that these systems have remarkable properties in the presence of magnetic fields. Most saliently, we show that the nature of the chiral anomaly depends crucially on the relative angle between the applied field and the tilt, and that an inversion-asymmetric overtilting creates an imbalance in the number of chiral modes with positive and negative slopes. The field-selective anomaly gives a novel magneto-optical resonance, providing an experimental way to detect concealed Weyl nodes. PMID:27588869

  10. Field-Selective Anomaly and Chiral Mode Reversal in Type-II Weyl Materials

    Science.gov (United States)

    Udagawa, M.; Bergholtz, E. J.

    2016-08-01

    Three-dimensional condensed matter incarnations of Weyl fermions generically have a tilted dispersion—in sharp contrast to their elusive high-energy relatives where a tilt is forbidden by Lorentz invariance, and with the low-energy excitations of two-dimensional graphene sheets where a tilt is forbidden by either crystalline or particle-hole symmetry. Very recently, a number of materials (MoTe2 , LaAlGe, and WTe2 ) have been identified as hosts of so-called type-II Weyl fermions whose dispersion is so strongly tilted that a Fermi surface is formed, whereby the Weyl node becomes a singular point connecting electron and hole pockets. We here predict that these systems have remarkable properties in the presence of magnetic fields. Most saliently, we show that the nature of the chiral anomaly depends crucially on the relative angle between the applied field and the tilt, and that an inversion-asymmetric overtilting creates an imbalance in the number of chiral modes with positive and negative slopes. The field-selective anomaly gives a novel magneto-optical resonance, providing an experimental way to detect concealed Weyl nodes.

  11. In-medium effective chiral lagrangians and the pion mass in nuclear matter

    CERN Document Server

    Wirzba, A; Wirzba, Andreas; Thorsson, Vesteinn

    1995-01-01

    We argue that the effective pion mass in nuclear matter obtained from chiral effective lagrangians is unique and does not depend on off-mass-shell extensions of the pion fields as e.g. the PCAC choice. The effective pion mass in isospin symmetric nuclear matter is predicted to increase slightly with increasing nuclear density, whereas the effective time-like pion decay constant and the magnitude of the density-dependent quark condensate decrease appreciably. The in-medium Gell-Mann-Oakes-Renner relation as well as other in-medium identities are studied in addition. Finally, several constraints on effective lagrangians for the description of the pion propagation in isospin symmetric, isotropic and homogenous nuclear matter are discussed. (Talk presented at the workshop ``Hirschegg '95: Hadrons in Nuclear Matter'', Hirschegg, Kleinwalsertal, Austria, January 16-21, 1995)

  12. In-medium effective chiral lagrangians and the pion mass in nuclear matter

    International Nuclear Information System (INIS)

    We argue that the effective pion mass in nuclear matter obtained from chiral effective lagrangians is unique and does not depend on off-mass-shell extensions of the pion fields as e.g. the PCAC choice. The effective pion mass in isospin symmetric nuclear matter is predicted to increase slightly with increasing nuclear density, whereas the effective time-like pion decay constant and the magnitude of the density-dependent quark condensate decrease appreciably. The in-medium Gell-Mann-Oakes-Renner relation as well as other in-medium identities are studied in addition. Finally, several constraints on effective lagrangians for the description of the pion propagation in isospin symmetric, isotropic and homogeneous nuclear matter are discussed. (orig.)

  13. Electromagnetic fields with electric and chiral magnetic conductivities in heavy ion collisions

    CERN Document Server

    Li, Hui; Wang, Qun

    2016-01-01

    We derive analytic formula for electric and magnetic fields produced by a moving charged particle in a conducting medium with the electric conductivity \\sigma and the chiral magnetic conductivity \\sigma_{\\chi}. We use the Green function method and assume that \\sigma_{\\chi} is much smaller than \\sigma. The compact algebraic expressions for electric and magnetic fields without any integrals are obtained. They recover the Lienard-Wiechert formula at vanishing conductivities. Exact numerical solutions are also found for any values of \\sigma and \\sigma_{\\chi} and are compared to analytic results. Both numerical and analytic results agree very well for the scale of high energy heavy ion collisions. The space-time profiles of electromagnetic fields in non-central Au+Au collisions have been calculated based on these analytic formula as well as exact numerical solutions.

  14. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    Science.gov (United States)

    Sun, Yifeng; Ko, Che Ming; Li, Feng

    2016-10-01

    Using an anomalous transport model for massless quarks and antiquarks, we study the effect of a magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in noncentral heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision. The electric quadrupole moment subsequently leads to a splitting between the elliptic flows of quarks and antiquarks. The slope of the charge asymmetry dependence of the elliptic flow difference between positively and negatively charged particles is positive, which is expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the BNL Relativistic Heavy Ion Collider, only if the Lorentz force acting on the charged particles is neglected and the quark-antiquark scattering is assumed to be dominated by the chirality changing channel.

  15. SU(3) Polyakov Linear $\\sigma$-Model in Magnetic Field: Thermodynamics, Higher-Order Moments, Chiral Phase Structure and Meson Masses

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    Effects of external magnetic field on various properties of the quantum chromodynamics under extreme conditions of temperature and density have been analysed. To this end, we use SU(3) Polyakov linear sigma-model and assume that the external magnetic field eB adds some restrictions to the quarks energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization. This requires an additional temperature to drive the system through the chiral phase-transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase-transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of magnetic field on chiral phase-transition. We found that both critical temperature T_c and critical chemical potential increase with increasing the magnetic f...

  16. On SU(3 Effective Models and Chiral Phase Transition

    Directory of Open Access Journals (Sweden)

    Abdel Nasser Tawfik

    2015-01-01

    Full Text Available Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL model and Polyakov linear sigma-model (PLSM has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM a gluonic sector is integrated into LSM. The hadron resonance gas (HRG model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.

  17. Comment on "Analysis of General Power Counting Rules in Effective Field Theory"

    CERN Document Server

    Buchalla, G; Celis, A; Krause, C

    2016-01-01

    In a recent paper [1] a master formula has been presented for the power counting of a general effective field theory. We first show that this master formula follows immediately from the concept of chiral dimensions (loop counting), together with standard dimensional analysis. Subsequently, [1] has disputed the relevance of chiral counting for chiral Lagrangians, and in particular for the electroweak chiral Lagrangian including a light Higgs boson. As an alternative, a power counting based on `primary dimensions' has been proposed. The difficulties encountered with this scheme led the authors to suggest that even the leading order of the electroweak chiral Lagrangian could not be clearly defined. Here we demonstrate that the concept of primary dimensions is irrelevant for the organization of chiral Lagrangians. We re-emphasize that the correct counting is based on chiral dimensions, or the counting of loop orders, and show how the problems encountered in [1] are resolved.

  18. Polarization-sensitive effects of solgel materials containing various chiral media.

    Science.gov (United States)

    Tao, Wei-dong; Bai, Gui-ru; Lu, Zu-kang

    2004-04-15

    The polarization-sensitive effects of solgel materials containing various chiral media were measured experimentally. The results show that the solgel material displays optical activity when it contains organic chiral molecules and manifests depolarization when it contains inorganic chiral microcrystals with a particle size of 70 microm. Solgel material containing glass powder that also has a particle size of 70 microm displays a polarization held characteristic (i.e., the polarization of the output light is the same as that of the input light). PMID:15119408

  19. Parity-violating $\\pi NN$ coupling constant from the flavor-conserving effective weak chiral Lagrangian

    CERN Document Server

    Hyun, Chang Ho; Lee, Hee-Jung

    2016-01-01

    We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.

  20. Chiral Superfluidity for the Heavy Ion Collisions

    CERN Document Server

    Kalaydzhyan, T

    2013-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate tempera...

  1. Augmented Superfield Approach to Nilpotent Symmetries in Self-Dual Chiral Bosonic Field Theory

    CERN Document Server

    Srinivas, N; Malik, R P

    2015-01-01

    We exploit the beauty and strength of the symmetry invariant restrictions on the superfields to derive the Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-) co-BRST symmetry transformations in the case of a two (1+1)-dimensional (2D) self-dual chiral bosonic field theory within the framework of augmented superfield formalism. Our 2D ordinary theory is generalized onto a (2, 2)-dimensional supermanifold which is parameterized by the superspace variable $Z^M = (x^\\mu, \\theta, \\bar\\theta)$ where $x^\\mu$ (with $\\mu = 0, 1$) are the ordinary 2D bosonic coordinates and ($\\theta,\\, \\bar\\theta$) are a pair of Grassmannian variables with their standard relationships: $\\theta^2 = {\\bar\\theta}^2 =0, \\theta\\,\\bar\\theta + \\bar\\theta\\theta = 0$. We impose the (anti-)BRST and (anti-)co-BRST invariant restrictions on the superfields, defined on the (anti-)chiral (2, 1)-dimensional super-submanifolds of the above {\\it general} (2, 2)-dimensional supermanifold, to derive the above nilpotent symmetries. We do not exploit ...

  2. Photospintronics: Magnetic Field-Controlled Photoemission and Light-Controlled Spin Transport in Hybrid Chiral Oligopeptide-Nanoparticle Structures.

    Science.gov (United States)

    Mondal, Prakash Chandra; Roy, Partha; Kim, Dokyun; Fullerton, Eric E; Cohen, Hagai; Naaman, Ron

    2016-04-13

    The combination of photonics and spintronics opens new ways to transfer and process information. It is shown here that in systems in which organic molecules and semiconductor nanoparticles are combined, matching these technologies results in interesting new phenomena. We report on light induced and spin-dependent charge transfer process through helical oligopeptide-CdSe nanoparticles' (NPs) architectures deposited on ferromagnetic substrates with small coercive force (∼100-200 Oe). The spin control is achieved by the application of the chirality-induced spin-dependent electron transfer effect and is probed by two different methods: spin-controlled electrochemichemistry and photoluminescence (PL) at room temperature. The injected spin could be controlled by excitation of the nanoparticles. By switching the direction of the magnetic field of the substrate, the PL intensity could be alternated. PMID:27027885

  3. Photospintronics: Magnetic Field-Controlled Photoemission and Light-Controlled Spin Transport in Hybrid Chiral Oligopeptide-Nanoparticle Structures

    Science.gov (United States)

    2016-01-01

    The combination of photonics and spintronics opens new ways to transfer and process information. It is shown here that in systems in which organic molecules and semiconductor nanoparticles are combined, matching these technologies results in interesting new phenomena. We report on light induced and spin-dependent charge transfer process through helical oligopeptide–CdSe nanoparticles’ (NPs) architectures deposited on ferromagnetic substrates with small coercive force (∼100–200 Oe). The spin control is achieved by the application of the chirality-induced spin-dependent electron transfer effect and is probed by two different methods: spin-controlled electrochemichemistry and photoluminescence (PL) at room temperature. The injected spin could be controlled by excitation of the nanoparticles. By switching the direction of the magnetic field of the substrate, the PL intensity could be alternated. PMID:27027885

  4. Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge

    Science.gov (United States)

    Kiyohara, Naoki; Tomita, Takahiro; Nakatsuji, Satoru

    2016-06-01

    The external field control of antiferromagnetism is a significant subject both for basic science and technological applications. As a useful macroscopic response to detect magnetic states, the anomalous Hall effect (AHE) is known for ferromagnets, but it has never been observed in antiferromagnets until the recent discovery in Mn3Sn . Here we report another example of the AHE in a related antiferromagnet, namely, in the hexagonal chiral antiferromagnet Mn3Ge . Our single-crystal study reveals that Mn3Ge exhibits a giant anomalous Hall conductivity |σx z|˜60 Ω-1 cm-1 at room temperature and approximately 380 Ω-1 cm-1 at 5 K in zero field, reaching nearly half of the value expected for the quantum Hall effect per atomic layer with Chern number of unity. Our detailed analyses on the anisotropic Hall conductivity indicate that in comparison with the in-plane-field components |σx z| and |σz y|, which are very large and nearly comparable in size, we find |σy x| obtained in the field along the c axis to be much smaller. The anomalous Hall effect shows a sign reversal with the rotation of a small magnetic field less than 0.1 T. The soft response of the AHE to magnetic field should be useful for applications, for example, to develop switching and memory devices based on antiferromagnets.

  5. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.Y. [Chonbuk National University, Department of Physics, Jeonbuk (Korea, Republic of); University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States); Christensen, N.D. [Illinois State University, Department of Physics, Normal, IL (United States); Salmon, D.; Wang, X. [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States)

    2015-10-15

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -} → P{sup +}P{sup -} → (l{sup +}D{sup 0})(l{sup +} anti D{sup 0}) at highenergy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -} → P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (nonchiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider. (orig.)

  6. Effects of chiral restoration on the behaviour of the Polyakov loop at strong coupling

    OpenAIRE

    Fukushima, Kenji

    2002-01-01

    We discuss the relation between the Polyakov loop and the chiral order parameter at finite temperature. For that purpose we analyse an effective model proposed by Gocksch and Ogilvie, which is constructed by the double expansion of strong coupling and large dimensionality. We make improvements in dealing with the model and then obtain plausible results for the behaviours of both the Polyakov loop and the chiral scalar condensate. The pseudo-critical temperature read from the Polyakov loop tur...

  7. Analysis of General Power Counting Rules in Effective Field Theory

    OpenAIRE

    Gavela, B. M.; Jenkins, E. E.; Manohar, A. V.; Merlo, L.

    2016-01-01

    We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\...

  8. Fermion self-energy in magnetized chirally asymmetric QED matter

    CERN Document Server

    Rybalka, D O

    2016-01-01

    The fermion self-energy is calculated for a cold QED plasma with chiral chemical potential in a magnetic field. It is found that a momentum shift parameter dynamically generated in such a plasma leads to a modification of the chiral magnetic effect current. It is argued that the momentum shift parameter can be relevant for the evolution of magnetic field in the chirally asymmetric primordial plasma in the early Universe.

  9. THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: A Chiral Macroscopic Force between Liquid of Butyl Alcohol and Copper Block

    Science.gov (United States)

    Hu, Yong-Hong; Liu, Zhong-Zhu

    2008-11-01

    A non-zero macroscopic chirality-dependent force between a copper block and a vessel of homochiral molecules (butyl alcohol) is calculated quantitatively with the central field approximation. The magnitude of the force is estimated with the published limits of the scalar and pseudo-scalar coupling constants.

  10. The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes

    CERN Document Server

    Yu, Lang; Huang, Mei

    2015-01-01

    We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.

  11. Laser Writing of Multiscale Chiral Polymer Metamaterials

    Directory of Open Access Journals (Sweden)

    E. P. Furlani

    2012-01-01

    Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.

  12. Chiral metamaterials: retrieval of the effective parameters with and without substrate.

    Science.gov (United States)

    Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M

    2010-07-01

    After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we analyze the wave propagation in chiral metamaterials and follow the regular retrieval procedure for ordinary metamaterials and apply it in chiral metamaterial slabs. Then based on the transfer matrix technique, the parameter retrieval is extended to treat samples with not only the substrate but also the top layers. After the parameter retrieval procedure, we take two examples to check our method and study how the substrate influences on the thin chiral metamaterials slabs. We find that the substrate may cause the homogeneous slab to be inhomogeneous, i.e. the reflections in forward and backward directions are different. However, the chiral metamaterial where the resonance element is embedded far away from the substrate is insensitive to the substrate.

  13. Chirality effect on Lithiation of narrow carbon nanotubes; bond order MD and DFT studies

    Science.gov (United States)

    Malehmir, M.; Khoshnevisan, B.; Tavangar, Z.

    2016-10-01

    Bond order force field molecular dynamic simulation and also a complimentary density functional theory method are employed for lithiation of narrow carbon nanotubes (CNTs). Since interior region of the narrow tubes (diameters < 7 Å) is strongly influenced by their walls’ ‘curvature effect’, endo-lithiation occurs via formation of lithium chains. Whereas, in the case of exo-lithiation the absorbed lithium atoms form coaxial cylinders up to radiuses of 12 Å. Meanwhile, although to some extent chirality of the CNTs has minor effects on endo-litiation’s distribution, the main factor in the total lithium storage capacity is the diameter. In addition, to obtain more applicable results this study is extended also for a bundle of the CNTs and it is seen that the adsorption energy and also the storage capacity enhance about 1.5 times.

  14. Magnetic Catalysis in Graphene Effective Field Theory

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.

  15. Nucleon Properties from Approximating Chiral Quark Sigma Model

    CERN Document Server

    Abu-Shady, M

    2009-01-01

    We apply the approximating chiral quark model. This chiral quark model is based on an effective Lagrangian which the interactions between quarks via sigma and pions mesons. The field equations have been solved in the mean field approximation for the hedgehog baryon state. Good results are obtained for nucleon properties in comparison with original model.

  16. Synthetic-gauge-field stabilization of the chiral-spin-liquid phase

    Science.gov (United States)

    Chen, Gang; Hazzard, Kaden R. A.; Rey, Ana Maria; Hermele, Michael

    2016-06-01

    We explore the phase diagram of the SU (N ) Hubbard models describing fermionic alkaline-earth-metal atoms in a square optical lattice with, on average, one atom per site, using a slave rotor mean-field approach. We find that the chiral spin liquid (CSL) predicted for N ≥5 and large interactions passes through a fractionalized state with a spinon Fermi surface as interactions are decreased before transitioning to a weakly interacting metal. We show that by adding a uniform artificial gauge field with 2 π /N flux per plaquette, the CSL becomes the ground state for all N ≥3 at intermediate interactions, persists to weaker interactions, and exhibits a larger spin gap. For N ≥5 we find the CSL is the ground state everywhere the system is a Mott insulator. The gauge field stabilization of the CSL at lower interactions, and thus at weaker lattice depths, together with the increased spin gap, can relax the temperature constraints required for its experimental realization in ultracold atom systems.

  17. C3-Symmetric Molecules with Axial Chirality and Handed Arrangement of Dipole Fields

    Institute of Scientific and Technical Information of China (English)

    XU Wei; JIN Lan; ZHOU Hui; LU Yin-xiang; LAN Bi-jian; ZOU Zhen-guang

    2007-01-01

    @@ Introduction Chirality is defined as the absence of inversion symmetry, however, it is actually a pseudo-scalar of objects or figures, and does not depend for its definition on any connection to the physical world[1-5]. Logically, chiral molecules may possess other inherent physical quantity that guarantees the connection to the physical world[6,7].

  18. The effect of the Polyakov loop on the chiral phase transition

    OpenAIRE

    Szép Zs.; Markó G.

    2010-01-01

    The Polyakov loop is included in the SU(2)_L x SU(2)_R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (sigma,pi) meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors N_f. Keeping the fermion propagator at i...

  19. Five chiral Cd(II) complexes with dual chiral components: Effect of positional isomerism, luminescence and SHG response

    International Nuclear Information System (INIS)

    Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of (1R,2R)–N1,N2-bis(pyridinylmethyl)cyclohexane-1,2-diamine ligands with different N-positions of pyridyl rings and Cd(NO3)2. The circular dichroism (CD) spectra and second-harmonic generation (SHG) efficiency measurements confirmed that they are of structural chirality in the bulk samples. The luminescent properties indicated that they may have potential applications as optical materials. The formation of discrete mononuclear and binuclear complexes, and one-dimensional chains may be attributed to positional isomerism of the ligands. - Graphical abstract: Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of chiral ligands with different N-positions of pyridyl rings. - Highlights: • Five chiral Cd(II) complexes with dual chiral components have been synthesized. • CD spectra and SHG efficiency of the bulk samples have been measured. • The complexes display luminescent properties

  20. Five chiral Cd(II) complexes with dual chiral components: Effect of positional isomerism, luminescence and SHG response

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lin, E-mail: lcheng@seu.edu.cn [Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189 (China); Wang, Jun; Yu, Hai-Yan; Zhang, Xiu-Ying [Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Gou, Shao-Hua, E-mail: sgou@seu.edu.cn [Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189 (China); Fang, Lei [Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189 (China)

    2015-01-15

    Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of (1R,2R)–N{sup 1},N{sup 2}-bis(pyridinylmethyl)cyclohexane-1,2-diamine ligands with different N-positions of pyridyl rings and Cd(NO{sub 3}){sub 2}. The circular dichroism (CD) spectra and second-harmonic generation (SHG) efficiency measurements confirmed that they are of structural chirality in the bulk samples. The luminescent properties indicated that they may have potential applications as optical materials. The formation of discrete mononuclear and binuclear complexes, and one-dimensional chains may be attributed to positional isomerism of the ligands. - Graphical abstract: Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of chiral ligands with different N-positions of pyridyl rings. - Highlights: • Five chiral Cd(II) complexes with dual chiral components have been synthesized. • CD spectra and SHG efficiency of the bulk samples have been measured. • The complexes display luminescent properties.

  1. Plasmon mode as a detection of the chiral anomaly in Weyl semimetals

    OpenAIRE

    Zhou, Jianhui; Chang, Hao-Ran; Xiao, Di

    2014-01-01

    Weyl semimetals are one kind of three-dimensional gapless semimetal with nontrivial topology in the momentum space. The chiral anomaly in Weyl semimetals manifests as a charge imbalance between the Weyl nodes of opposite chiralities induced by parallel electric and magnetic fields. We investigate the chiral anomaly effect on the plasmon mode in both intrinsic and doped Weyl semimetals within the random phase approximation. We prove that the chiral anomaly gives rise to a different plasmon mod...

  2. New Light on Optical Activity: Interaction of Electromagnetic Waves with Chiral Photonic Metamaterials

    OpenAIRE

    Decker, Manuel

    2010-01-01

    Chiral metamaterials allow for obtaining very large chiral optical effects which result specifically from the interplay of electric/magnetic dipoles of the ''artificial atoms'' and the magnetic/electric component of the incident light field. We investigate double-layered chiral metamaterial designs with respect to their circular dichroism and optical rotatory power that is orders of magnitude larger than in, e.g., a solution of chiral sugar molecules.

  3. Chiral Thermodynamic Model of QCD and its Critical Behavior in the Closed-Time-Path Green Function Approach

    CERN Document Server

    Huang, Da

    2011-01-01

    By applying the closed-time-path Green function formalism to the chiral dynamical model based on an effective Lagrangian of chiral quarks with the nonlinear-realized meson fields as bosonized auxiliary fields, we then arrive at a chiral thermodynamic model for the meson fields with finite temperature. Particular attention is paid to the spontaneous chiral symmetry breaking and restoration from the dynamically generated effective composite Higgs potential of meson fields at finite temperature. It is shown that the minimal condition of the effective composite Higgs potential of meson fields leads to the thermodynamic gap equation at finite temperature, which enables us to investigate the critical behavior of the effective chiral thermodynamical model and to explore the QCD phase transition. After fixing the free parameters in the effective chiral Lagrangian at low energies with zero temperature, we determine the critical temperature of the chiral symmetry restoration and present a consistent prediction for the ...

  4. Punctuated Chirality

    Science.gov (United States)

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  5. Punctuated Chirality

    CERN Document Server

    Gleiser, Marcelo; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  6. Relativistic Chiral Theory of Nuclear Matter and QCD Constraints

    OpenAIRE

    Chanfray, G.; Ericson, M.

    2009-01-01

    Talk given by G. Chanfray at PANIC 08, Eilat (Israel), november 10-14, 2008 We present a relativistic chiral theory of nuclear matter which includes the effect of confinement. Nuclear binding is obtained with a chiral invariant scalar background field associated with the radial fluctuations of the chiral condensate Nuclear matter stability is ensured once the scalar response of the nucleon depending on the quark confinement mechanism is properly incorporated. All the parameters are fixed o...

  7. Low-Energy Constants from Resonance Chiral Theory

    OpenAIRE

    Pich, Antonio

    2008-01-01

    I discuss the recent attempts to build an effective chiral Lagrangian incorporating massive resonance states. A useful approximation scheme to organize the resonance Lagrangian is provided by the large-Nc limit of QCD. Integrating out the resonance fields, one recovers the usual chiral perturbation theory Lagrangian with explicit values for the low-energy constants, parameterized in terms of resonance masses and couplings. The resonance chiral theory generates Green functions that interpolate...

  8. Global Anomalies and Effective Field Theory

    CERN Document Server

    Golkar, Siavash

    2015-01-01

    We show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on %thermal partition functions and thermal effective field theory where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient. This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functions rather than eta invariants.

  9. Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    宗红石; 吴小华; 侯丰尧; 赵恩广

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.

  10. Observation of SERS effect in Raman optical activity, a new tool for chiral vibrational spectroscopy

    DEFF Research Database (Denmark)

    Abdali, Salim

    2006-01-01

    A new tool for chiral vibrational spectroscopy is here reported. A Surface Enhanced effect was observed using Raman Optical Activity (ROA). This observation opens new possibilities for ROA as a tool for vibrational spectroscopy. The combination of surface enhanced effect SE and ROA into SEROA...

  11. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  12. Intrinsic and Extrinsic Origins of the Polar Kerr Effect in a Chiral p-WAVE Superconductor

    Science.gov (United States)

    Goryo, Jun

    Recently, the measurement of the polar Kerr effect (PKE) in the quasi two-dimensional superconductor Sr2RuO4, which is motivated to observe the chirality of px + ipy-wave pairing, has been reported. We clarify that the PKE has intrinsic and extrinsic (disorder-induced) origins. The extrinsic contribution would be dominant in the PKE experiment.

  13. Separation of flow from chiral magnetic effect in U+U collisions using spectator asymmetry

    CERN Document Server

    Chatterjee, Sandeep

    2014-01-01

    We demonstrate that the prolate shape of the Uranium nucleus generates anti-correlation between spectator asymmetry and initial state ellipticity of the collision zone, providing a way to constrain the initial event shape in U+U collisions. As an application, we show that this can be used to separate the background contribution due to flow from the signals of chiral magnetic effect.

  14. Chirality in Nonlinear Optics

    Science.gov (United States)

    Haupert, Levi M.; Simpson, Garth J.

    2009-05-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.

  15. Nuclear forces from chiral EFT: The unfinished business

    OpenAIRE

    Machleidt, R.; Entem, D.R.

    2010-01-01

    In spite of the great progress we have seen in recent years in the derivation of nuclear forces from chiral effective field theory (EFT), some important issues are still unresolved. In this contribution, we discuss the open problems which have particular relevance for microscopic nuclear structure, namely, the proper renormalization of chiral nuclear potentials and sub-leading many-body forces.

  16. Ab initio study of the enantio-selective magnetic-field-induced second harmonic generation in chiral molecules.

    Science.gov (United States)

    Rizzo, Antonio; Rikken, G L J A; Mathevet, R

    2016-01-21

    We present a systematic ab initio study of enantio-selective magnetic-field-induced second harmonic generation (MFISHG) on a set of chiral systems ((l)-alanine, (l)-arginine and (l)-cysteine; 3,4-dehydro-(l)-proline; (S)-α-phellandrene; (R,S)- and (S,S)-cystine disulphide; N-(4-nitrophenyl)-(S)-prolinol, N-(4-(2-nitrovinyl)-phenyl)-(S)-prolinol, N-(4-tricyanovinyl-phenyl)-(S)-prolinol, (R)-BINOL, (S)-BINAM and 6-(M)-helicene). The needed electronic frequency dependent cubic response calculations are performed within a density functional theory (DFT) approach. A study of the dependence of the property on the choice of electron correlation, on one-electron basis set extension and on the choice of magnetic gauge origin is carried out on a prototype system (twisted oxygen peroxide). The magnetic gauge dependence analysis is extended also to the molecules of the set. An attempt to analyze the structure-property relationships is also made, based on the results obtained for biphenyl (in a frozen twisted conformation), for prolinol and for some of their derivatives. The strength of the effect is discussed, in order to establish its measurability with a proposed experimental setup.

  17. Density-dependent effective baryon-baryon interaction from chiral three-baryon forces

    CERN Document Server

    Petschauer, Stefan; Kaiser, Norbert; Meißner, Ulf-G; Weise, Wolfram

    2016-01-01

    A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the Lambda-nucleon in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the ...

  18. In-Medium Effective Pion Mass from Heavy-Baryon Chiral Perturbation Theory

    CERN Document Server

    Park, T S; Min, D P; Park, Tae-Sun; Jung, Hong; Min, Dong-Pil

    2002-01-01

    Using heavy-baryon chiral perturbation theory, we have calculated all the diagrams up to two-loop order which contribute to the S-wave pion self-energy in symmetric nuclear matter. Some subtleties related to the definition of pion fields are discussed. The in-medium pion mass is turned out to be increased by only (6 - 7) per cents in normal nuclear matter density, without any off-shell ambiguity.

  19. Higgs Effective Field Theories - Systematics and Applications

    CERN Document Server

    Krause, Claudius

    2016-01-01

    We discuss effective field theories (EFTs) for the Higgs particle, which is not necessarily the Higgs of the Standard Model. We distinguish two different consistent expansions: EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, $\\mathcal{O}(f^{2}/\\Lambda^{2})=\\mathcal{O}(1/16\\pi^{2})$. We then compare the decoupling and the non-decoupling EFT. We also consider scenarios in which the new-physics sector is non-decoupling at a scale $f$, far above the electroweak-scale $v$. We discuss the relevance of the resulting double expansion in $\\xi=v^{2}/f^{2}$ and $f^{2}/\\Lambda^{2}$ for the data analys...

  20. Generation of chiral spin state by quantum simulation

    Science.gov (United States)

    Tanamoto, Tetsufumi

    2016-06-01

    Chirality of materials in nature appears when there are asymmetries in their lattice structures or interactions in a certain environment. Recent development of quantum simulation technology has enabled the manipulation of qubits. Accordingly, chirality can be realized intentionally rather than passively observed. Here we theoretically provide simple methods to create a chiral spin state in a spin-1/2 qubit system on a square lattice. First, we show that switching on and off the Heisenberg and X Y interactions produces the chiral interaction directly in the effective Hamiltonian without controlling local fields. Moreover, when initial states of spin qubits are appropriately prepared, we prove that the chirality with desirable phase is dynamically obtained. Finally, even for the case where switching on and off the interactions is infeasible and the interactions are always on, we show that, by preparing an asymmetric initial qubit state, the chirality whose phase is π /2 is dynamically generated.

  1. Enhanced Electromagnetic Chirality by Locally Excited Surface Plasmon Polaritons

    CERN Document Server

    Alizadeh, M H

    2015-01-01

    The possibility to enhance chiral light-matter interactions through plasmonic nanostructures provides entirely new opportunities for greatly improving the detection limits of chiroptical spectroscopies down to the single molecule level. The most pronounced of these chiral interactions occur in the ultraviolet (UV) range of the electromagnetic spectrum, which is difficult to access with conventional localized plasmon resonance based sensors. Although Surface Plasmon Polaritons (SPPs) on noble metal films can sustain resonances in the desired spectral range, their transverse magnetic nature has been an obstacle for enhancing chiroptical effects. Here we demonstrate, both analytically and numerically, that SPPs excited by near-field sources can exhibit rich and non-trivial chiral characteristics. In particular, we show that the excitation of SPPs by a chiral source not only results in a locally enhanced optical chirality but also achieves manifold enhancement of net optical chirality. Our finding that SPPs facil...

  2. STUDY ON MAGNETIC FIELD-INDUCED ORIENTATION OF A CHIRAL SIDE-CHAIN LIQUID CRYSTAL POLYACRYLATE USING INFRARED DICHROISM

    Institute of Scientific and Technical Information of China (English)

    HE Liu; JIN Shunzi; ZHANG Shufan; QI Zongneng; WANG Fosong

    1996-01-01

    Magnetic field-induced orientation of a chiral side chain liquid crystalline polyacrylate (P-11) was studied by using IR dichroism. For the investigated P-11, it has been shown that the magnetic alignment takes place over the entire temperature range between its melting point and clearing point and the orientation level is strongly temperature-dependent, the development with time of the magnetic orientation follows an exponential-type relation,and the smectic phase state influences the thermal relaxation process in the absence of the magnetic field.

  3. Color chiral solitons

    CERN Document Server

    Novozhilov, V Yu; Novozhilov, Victor; Novozhilov, Yuri

    2002-01-01

    We discuss specific features of color chiral solitons (asymptotics, possibility of confainment, quantization) at example of isolated SU(2) color skyrmions, i.e. skyrmions in a background field which is the vacuum field forming the gluon condensate.

  4. Effective field theory in the harmonic-oscillator basis

    CERN Document Server

    Binder, S; Hagen, G; Papenbrock, T; Wendt, K A

    2015-01-01

    We develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. We derive useful analytical expressions for an exact and efficient calculation of matrix elements. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leading order. Many-body coupled-cluster calculations of nuclei up to 132Sn exhibit a fast convergence of ground-state energies and radii in feasible model spaces.

  5. Chiral two-body currents in nuclei: Gamow-Teller transitions and neutrinoless double-beta decay

    OpenAIRE

    Menéndez, J.; Gazit, D.; Schwenk, A.

    2011-01-01

    We show that chiral effective field theory (EFT) two-body currents provide important contributions to the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the momentum-transfer dependence that is probed in neutrinoless double-beta decay. We then calculate for the first time the neutrinoless double-beta decay operator based on chiral EFT currents and study the nuclear matrix elements at successive orders. The contributions from chiral two-body currents...

  6. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  7. Dynamical generation of extended objects in a (1+1)-dimensional chiral field theory: Nonperturbative Dirac operator resolvent analysis

    International Nuclear Information System (INIS)

    We analyze the (1+1)-dimensional Nambu - Jona-Lasinio (NJL) model nonperturbatively. In addition to its simple ground-state saddle points, the effective action of this model has a rich collection of nontrivial saddle points in which the composite fields σ(x)=left-angle bar ψψ right-angle and π(x)=left-angle bar ψiγ5ψ right-angle form static space-dependent configurations because of nontrivial dynamics. These configurations may be viewed as one-dimensional chiral open-quotes bags.close quotes We start our analysis of such configurations by asking what kind of initially static {σ(x),π(x)} background configurations will remain so under fermionic back reaction. By simply looking at the asymptotic spatial behavior of the expectation value of the fermion number current we show, independently of the large-N limit, that a necessary condition for this situation to occur is that {σ(x),π(x)} give rise to a reflectionless Dirac operator. We provide an explicit formula for the diagonal resolvent of the Dirac operator in a reflectionless {σ(x),π(x)} background which produces a prescribed number of bound states. We analyze in detail the cases of a single as well as two bound states. We explicitly check that these reflectionless backgrounds may be tuned such that the large- N saddle-point condition is satisfied. Thus, in the case of the NJL model, reflectionlessness is also sufficient to assure the time independence of the background. In our view, these facts make our work conceptually simpler than the previous work of Shei and of Dashen, Hasslacher, and Neveu which were based on the inverse scattering formalism. Our method of finding such nontrivial static configurations may be applied to other (1+1)-dimensional field theories. copyright 1997 The American Physical Society

  8. Tactoids of chiral liquid crystals

    Science.gov (United States)

    Palacio-Betancur, Viviana; Villada-Gil, Stiven; Zhou, Ye; Armas-Pérez, Julio C.; de Pablo, Juan José; Hernández-Ortiz, Juan Pablo

    The phase diagram of chiral liquid crystals confined in ellipsoids is obtained, by following a theoretically informed Monte Carlo relaxation of the tensor alignment field Q. The free energy of the system is described by a functional in the framework of the Landau-de Gennes formalism. This study also includes the effect of anchoring strength, curvature, and chirality of the system. In the low chirality region of the phase diagram we found the twist bipolar (BS) phase and some cholesteric phases such as the radial spherical structure (RSS), twist cylinder (TC) and double twist cylinder (DTC) whose axis of rotation is not necessarily aligned with the major axis of the geometry. For high chirality scenarios, the disclination lines are twisted or bent near the surface preventing the formation of symmetric networks of defects, although an hexagonal pattern is formed on the surface which might serve as open sites for collocation of colloids. By analyzing the free energies of isochoric systems, prolate geometries tend to be more favorable for high chirality and low anchoring conditions. Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under the Contract No. 110-165-843-748. CONACYT for Postdoctoral Fellowships Nos. 186166 and 203840.

  9. The effect of the Polyakov loop on the chiral phase transition

    Directory of Open Access Journals (Sweden)

    Szép Zs.

    2011-04-01

    Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.

  10. The effect of the Polyakov loop on the chiral phase transition

    Science.gov (United States)

    Markó, G.; Szép, Zs.

    2011-04-01

    The Polyakov loop is included in the S U(2)L × S U(2)R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π) meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf) represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq - T phase diagram is studied for various forms of the Polyakov loop potential.

  11. Punctuated Chirality

    OpenAIRE

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high int...

  12. Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties.

    Science.gov (United States)

    Smith, Kyle W; Zhao, Hangqi; Zhang, Hui; Sánchez-Iglesias, Ana; Grzelczak, Marek; Wang, Yumin; Chang, Wei-Shun; Nordlander, Peter; Liz-Marzán, Luis M; Link, Stephan

    2016-06-28

    Metal nanoparticles with a dumbbell-like geometry have plasmonic properties similar to those of their nanorod counterparts, but the unique steric constraints induced by their enlarged tips result in distinct geometries when self-assembled. Here, we investigate gold dumbbells that are assembled into dimers within polymeric micelles. A single-particle approach with correlated scanning electron microscopy and dark-field scattering spectroscopy reveals the effects of dimer geometry variation on the scattering properties. The dimers are prepared using exclusively achiral reagents, and the resulting dimer solution produces no detectable ensemble circular dichroism response. However, single-particle circular differential scattering measurements uncover that this dimer sample is a racemic mixture of individual nanostructures with significant positive and negative chiroptical signals. These measurements are complemented with detailed simulations that confirm the influence of various symmetry elements on the overall peak resonance energy, spectral line shape, and circular differential scattering response. This work expands the current understanding of the influence self-assembled geometries have on plasmonic properties, particularly with regard to chiral and/or racemic samples which may have significant optical activity that may be overlooked when using exclusively ensemble characterization techniques.

  13. 电磁散射问题手性障碍边界重构的线性探测法的理论分析%Analysis of the Linear Sampling Method for Boundary Reconstruction of Chiral Obstacle in Electromagnetic Scattering Problems

    Institute of Scientific and Technical Information of China (English)

    高天玲; 马富明; 张德悦

    2006-01-01

    In this paper, we consider the inverse scattering by chiral obstacle in electromagnetic fields, and prove that the linear sampling method is also effective to determine the support of a chiral obstacle from the noisy far field data.

  14. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  15. In search of chiral magnetic effect: separating flow-driven background effects and quantifying anomaly-induced charge separations

    CERN Document Server

    Huang, Xu-Guang; Liao, Jinfeng

    2015-01-01

    We report our recent progress on the search of Chiral Magnetic Effect (CME) by developing new measurements as well as by hydrodynamic simulations of CME and background effects, with both approaches addressing the pressing issue of separating flow-driven background contributions and possible CME signal in current heavy ion collision measurements.

  16. Chiral Shock Waves

    CERN Document Server

    Sen, Srimoyee

    2016-01-01

    We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.

  17. On the Interacting Chiral Gauge Field Theory in D=6 and the Off-Shell Equivalence of Dual Born-Infeld-Like Actions

    CERN Document Server

    De Castro, A S

    1999-01-01

    A canonical action describing the interaction of chiral gauge fields in D=6 Minkowski space-time is constructed. In a particular partial gauge fixing it reduces to the action found by Perry and Schwarz. The additional gauge symmetries are used to show the off-shell equivalence of the dimensional reduction to D=5 Minkowski space-time of the chiral gauge field canonical action and the Born-Infeld canonical action describing an interacting D=5 Abelian vector field. Its extension to improve the on-shell equivalence arguments of dual D-brane actions to off-shell ones is discussed.

  18. Nuclear Chiral EFT in the Precision Era

    CERN Document Server

    Epelbaum, Evgeny

    2015-01-01

    Chiral effective field theory has established itself as the method of choice to study nuclear forces and low-energy nuclear dynamics. I review the status and prospects of this approach and discuss ongoing efforts to advance the precision frontier for ab initio description of few-nucleon systems. Special emphasis is put on the precise determination of the two-nucleon force at fifth order in the chiral expansion, role of the chiral symmetry, the convergence pattern of the chiral expansion and the quantification of the theoretical uncertainties. The discussed topics are essential for ongoing studies towards elucidating the structure of the three-nucleon force which will be briefly addressed as well.

  19. The Fuzzy analogy of chiral diffeomorphisms in higher dimensional quantum field theories

    CERN Document Server

    Fassarella, L

    2001-01-01

    Our observation that the chiral diffeomorphisms allow an interpretation as modular groups of local operator algebras in the sense of Tomita and takesaki allows us to conclude that the higher deimensional generalizations are certain infinite dimensional groups which act in a 'fuzzy' way on the operator algebras of local quantum physics. These actions do not require any spacetime noncommutativity and are in complete harmony with causality and localization principles. The use of an appropriately defined isomorphism reprocesses these fuzzy actions into partially geometric actions on the holographic image and in this way tightens the relation with chiral structures and makes recent attempts to explain the required universal structure of a would be quantum Bekenstein law in terms of Virasoro algebra structures more palatable.

  20. The Fuzzy Analog of Chiral Diffeomorphisms in higher dimensional Quantum Field Theories

    CERN Document Server

    Fassarella, L; Fassarella, Lucio; Schroer, Bert

    2001-01-01

    Our observation that the chiral diffeomorphisms allow an interpretation as modular groups of local operator algebras in the sense of Tomita and Takesaki allows us to conclude that the higher dimensional generalizations are certain infinite dimensional groups which act in a ``fuzzy'' way on the operator algebras of local quantum physics. These actions do not require any spacetime noncommutativity and are in complete harmony with causality and localization principles. The use of an appropriately defined holomorphic isomorphism reprocesses these fuzzy actions into partially geometric actions on the holographic image and in this way tightens the relation with chiral structures and makes recent attempts to explain the required universal structure of a would be quantum Bekenstein law in terms of Virasoro algebra structures more palatable.

  1. Analysis of General Power Counting Rules in Effective Field Theory

    CERN Document Server

    Gavela, B M; Manohar, A V; Merlo, L

    2016-01-01

    We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.

  2. Higgs-Yukawa model in chirally-invariant lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John [CERN, Geneva (Switzerland). Physics Department; Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [National Taiwan Univ., Taipei (China). Dept. of Physics; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; National Centre for Theoretical Sciences, Hsinchu (China). Div. of Physics; Nagai, Kei-Ichi [Nagoya Univ., Nagoya, Aichi (Japan). Kobayashi-Maskawa Institute; Ogawa, Kenji [Chung-Yuan Christian Univ., Chung-Li (China). Dept. of Physics

    2012-10-15

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  3. Dimensional structural constants from chiral and conformal bosonization of QCD

    CERN Document Server

    Andrianov, A A; Ebert, D; Mann, T F; Mann, Th. Feld

    1997-01-01

    We derive the dimensional non-perturbative part of the QCD effective ac= tion for scalar and pseudoscalar meson fields by means of chiral and conformal bosonization. The related structural coupling constants L_5 and L_8 of th= e chiral lagrangian are estimated using general relations which are valid i= n a variety of chiral bosonization models without explicit reference to model parameters. The asymptotics for large scalar fields in QCD is elaborated,= and model-independent constraints on dimensional coupling constants of the effective meson lagrangian are evaluated. We determine also the interacti= on between scalar quarkonium and the gluon density and obtain the scalar glueball-quarkonium potential.

  4. Chiral Heat Wave and wave mixing in chiral media

    CERN Document Server

    Chernodub, M N

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective excitation associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This excitation, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. We find that the coupled waves - which are coherent fluctuations of the vector, axial and energy currents - have generally different velocities compared to the velocities of the individual waves. We also demonstrate that rotating chiral systems subjected to external magnetic field possess non-propagating metastable thermal excitations, the Dense Hot Spots.

  5. Effective chiral magnetic currents, topological magnetic charges, and microwave vortices in a cavity with an enclosed ferrite disk

    International Nuclear Information System (INIS)

    In microwaves, a TE-polarized rectangular-waveguide resonator with an inserted thin ferrite disk gives an example of a nonintegrable system. The interplay of reflection and transmission at the disk interfaces together with the material gyrotropy effect gives rise to whirlpool-like electromagnetic vortices in the proximity of the ferromagnetic resonance. Based on numerical simulation, we show that a character of microwave vortices in a cavity can be analyzed by means of consideration of equivalent magnetic currents. Maxwell equations allows introduction of a magnetic current as a source of the electromagnetic field. Specifically, we found that in such nonintegrable structures, magnetic gyrotropy and geometrical factors leads to the effect of symmetry breaking resulting in effective chiral magnetic currents and topological magnetic charges. As an intriguing fact, one can observe precessing behavior of the electric-dipole polarization inside a ferrite disk

  6. Constraints on $s-\\bar s$ asymmetry in the proton in chiral effective theory

    CERN Document Server

    Wang, X G; Melnitchouk, W; Salamu, Y; Thomas, A W; Wang, P

    2016-01-01

    We compute the $s-\\bar s$ asymmetry in the proton in chiral effective theory, using available phenomenological constraints from existing data. Unlike previous meson cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate states, our formalism includes off-shell and contact interactions, which impact the shape of the $s-\\bar s$ difference. Using a finite-range regularization procedure that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated value of the first moment of the asymmetry to the range $-0.07 \\times 10^{-3} \\leq \\langle x(s-\\bar s) \\rangle \\leq 1.12 \\times 10^{-3}$ at a scale of $Q^2=1\\ $GeV$^2$. In contrast to some suggestions in the literature, the magnitude of this correction is too small to account for the NuTeV anomaly.

  7. Chiral effects in amino acid adsorption on Au(111): A comparison of cysteine, homocysteine and methionine

    Science.gov (United States)

    Popa, Tatiana; Ting, Elvis C. M.; Paci, Irina

    2014-11-01

    A combined classical/quantum methodology is used to examine chiral effects upon adsorption of three sulfur-containing amino acids on the Au(111) surface: cysteine, homocysteine and methionine. Parallel tempering Monte Carlo simulations were employed to broadly examine the configurational space of monomers, dimers and trimers of the molecules on the gold surface. Density functional theory was applied to promising structural targets in order to incorporate higher order electronic structure effects in a study of relative stabilities of the various molecular states upon adsorption. As the precursors of chiral structure formation, like and unlike dimers were investigated at some length, with consideration given to the mode of sorption (chemisorption of physisorption) and the existence of zwitterionic states. We found that neutral (non-zwitterionic) molecules adsorbed weakly on the highly-coordinated Au(111) surfaces. As a consequence, pair configurations in dimers were insufficiently constrained to lead to differential stabilities of homochiral and heterochiral dimers. Whereas neutral molecule interactions were non-discriminating, strong chiral discrimination was found in zwitterionic amino acids. The zwitterionic forms of the larger molecules equilibrated closer to the surface, and the stronger molecule-molecule and molecule-surface interactions were such that homochiral dimers were stable whereas heterochiral dimers were not.

  8. Chiral dynamics in a magnetic field from the functional renormalization group

    CERN Document Server

    Kamikado, Kazuhiko

    2014-01-01

    We investigate the quark-meson model in a magnetic field using the exact functional renormalization group equation beyond the local-potential approximation. Our truncation of the effective action involves anisotropic wave function renormalization for mesons, which allows us to investigate how the magnetic field distorts the propagation of neutral mesons. Solving the flow equation numerically, we find that the transverse velocity of mesons decreases with the magnetic field at all temperatures, which is most prominent at zero temperature. The meson screening masses and the pion decay constants are also computed. The constituent quark mass is found to increase with magnetic field at all temperatures, resulting in the crossover temperature that increases monotonically with the magnetic field. This tendency is consistent with most model calculations but not with the lattice simulation performed at the physical point. Our work suggests that the strong anisotropy of meson propagation may not be the fundamental origi...

  9. Chiral dynamics in a magnetic field from the functional renormalization group

    Science.gov (United States)

    Kamikado, Kazuhiko; Kanazawa, Takuya

    2014-03-01

    We investigate the quark-meson model in a magnetic field using the functional renormalization group equation beyond the local-potential approximation. Our truncation of the effective action involves anisotropic wave function renormalization for mesons, which allows us to investigate how the magnetic field distorts the propagation of neutral mesons. Solving the flow equation numerically, we find that the transverse velocity of mesons decreases with the magnetic field at all temperatures, which is most prominent at zero temperature. The meson screening masses and the pion decay constants are also computed. The constituent quark mass is found to increase with magnetic field at all temperatures, resulting in the crossover temperature that increases monotonically with the magnetic field. This tendency is consistent with most model calculations but not with the lattice simulation performed at the physical point. Our work suggests that the strong anisotropy of meson propagation may not be the fundamental origin of the inverse magnetic catalysis.

  10. Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics

    International Nuclear Information System (INIS)

    By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3)F symmetry breaking effects are estimated and, if possible, confronted with experiment. ((orig.))

  11. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    CERN Document Server

    Buballa, Michael

    2015-01-01

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color-superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking...

  12. The Least-Order Torsion-Gravity for Chiral-Spinor Fields; its induced Cosmological-Constant Generation, Immirzi Parameter and Parity

    CERN Document Server

    Fabbri, Luca

    2013-01-01

    We consider the most general least-order derivative action for the torsional completion of gravitational backgrounds filled with chiral spinorial fields: we will analyze the torsionally-induced self-interactions in the formation of condensates with the cosmological-constant generation; we shall see that the Immirzi parameter will be swallowed by all other parameters, but even more importantly we shall see that there remains no violation of parity within the non-linear potentials determining the dynamics of the chiral fermion fields.

  13. Meson cloud effects on the pion quark distribution function in the chiral constituent quark model

    CERN Document Server

    Watanabe, Akira; Suzuki, Katsuhiko

    2016-01-01

    We investigate the valence quark distribution function of the pion $v^{\\pi}(x,Q^2)$ in the framework of the chiral constituent quark model and evaluate the meson cloud effects on $v^{\\pi}(x,Q^2)$. We explicitly demonstrate how the meson cloud effects affect $v^{\\pi}(x,Q^2)$ in detail. We find that the meson cloud correction causes an overall 32\\% reduction of the valence quark distribution and an enhancement at the small Bjorken $x$ regime. Besides, we also find that the dressing effect of the meson cloud will make the valence quark distribution to be softer in the large $x$ region.

  14. GLOBAL EFFECTS OF VARIOUS SOIL TREATMENTS ON TRANSFORMATIONS OF CHIRAL PESTICIDES

    Science.gov (United States)

    Many pesticides and other organic pollutants are chiral, and their enantiomers exhibit differences in biological properties, including rates of microbial degradation. We have measured by chiral GC and capillary electrophoresis the enantioselectivity of biodegradation of three pe...

  15. The covariant chiral ring

    Science.gov (United States)

    Bourget, Antoine; Troost, Jan

    2016-03-01

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N = (4 , 4) supersymmetry in two dimensions. For seed target spaces K3 and T 4, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  16. The Covariant Chiral Ring

    CERN Document Server

    Bourget, Antoine

    2015-01-01

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T4, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  17. Gauge Invariant Effective Action in Abelian Chiral Gauge Theory on the Lattice

    CERN Document Server

    Suzuki, H

    1999-01-01

    Lüscher's recent formulation of Abelian chiral gauge theories on the lattice, in the vacuum (or perturbative) sector in infinite lattice volume, is re-interpreted in terms of the lattice covariant regularization. The gauge invariance of the effective action and the integrability of the gauge current in anomaly-free cases become transparent then. The real part of the effective action is simply one-half of that of the Dirac fermion and, when the Dirac operator has proper properties in the continuum limit, the imaginary part in the continuum limit reproduces the $\\eta$-invariant.}

  18. Virtual decuplet effects on octet baryon masses in covariant baryon chiral perturbation theory

    OpenAIRE

    Ren, Xiu-Lei; Geng, Lisheng; Meng, Jie; Toki, Hiroshi

    2013-01-01

    We extend a previous analysis of the lowest-lying octet baryon masses in covariant baryon chiral perturbation theory (ChPT) by explicitly taking into account the contribution of the virtual decuplet baryons. Up to next-to-next-to-next-to-leading order (N$^3$LO), the effects of these heavier degrees of freedom are systematically studied. Their effects on the light-quark mass dependence of the octet baryon masses are shown to be relatively small and can be absorbed by the available low-energy c...

  19. Chiral Effective Theory Methods and their Application to the Structure of Hadrons from Lattice QCD

    CERN Document Server

    Shanahan, P E

    2016-01-01

    For many years chiral effective theory (ChEFT) has enabled and supported lattice QCD calculations of hadron observables by allowing systematic effects from unphysical lattice parameters to be controlled. In the modern era of precision lattice simulations approaching the physical point, ChEFT techniques remain valuable tools. In this review we discuss the modern uses of ChEFT applied to lattice studies of hadron structure in the context of recent determinations of important and topical quantities. We consider muon g-2, strangeness in the nucleon, the proton radius, nucleon polarizabilities, and sigma terms relevant to the prediction of dark-matter-hadron interaction cross-sections, among others.

  20. Quantum-mechanical picture of peripheral chiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos [Uppsala Univ., Uppsala (Sweden); Weiss, Christian [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-08-28

    The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(Mπ)] and could be observed in form factor measurements at low momentum transfer.

  1. Chiral superfluidity for the heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)

    2013-02-15

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate temperatures (T{sub c}

  2. Chiral mononuclear lanthanide complexes and the field-induced single-ion magnet behaviour of a Dy analogue.

    Science.gov (United States)

    Lin, Shuang-Yan; Wang, Chao; Zhao, Lang; Wu, Jianfeng; Tang, Jinkui

    2015-01-01

    Three pairs of homochiral mononuclear lanthanide complexes, with the general formula [LnH4LRRRRRR/SSSSSS(SCN)2](SCN)2·xCH3OH·yH2O(Ln = Dy (R/S-Dy1), Ho (R/S-Ho1) and Er (R/S-Er1)), have been obtained via self-assembly between chiral macrocyclic ligands and the respective thiocyanates, all of which show a saddle-type conformation with seven-coordinated metal ions. Magnetic measurements revealed that the Dy complex shows field-induced single-ion magnet behaviour, which is rarely reported in a seven-coordinated lanthanide-based SIM encapsulated in a macrocyclic ligand. The absolute configuration of all enantiomers was determined by single crystal X-ray crystallography and confirmed by electronic CD and VCD spectra. PMID:25369972

  3. The nonstrange dibaryon and hidden-color effect in a chiral quark model

    Science.gov (United States)

    Dai, L. R.; Zhang, Y. N.; Sun, Y. L.; Shao, S. J.

    2016-09-01

    The exotic nonstrange ΔΔ dibaryon with I(JP) = 0(3+) has been confirmed by the experimental data reported by WASA-at-COSY Collaboration, and the result is consistent with our theoretical prediction in the chiral SU(3) quark model and extended chiral SU(3) quark model, showing that the effect from hidden-color channel ( CC is important. In the present work, we further investigate another exotic nonstrange ΔΔ dibaryon with I(JP) = 3(0+) in the chiral SU(3) quark model that describes the energies of baryon ground states and the nucleon-nucleon (NN) scattering data satisfactorily. We perform a dynamical coupled-channel study of the ΔΔ - CC system with I(JP) = 3(0+) within the framework of resonating group method (RGM). We find that the binding energy of I(JP) = 3(0+) state is about 22.3 MeV and a root-mean-square radius (RMS) of 1.03 fm in single-channel calculation. Then we extend the model to include the CC channel to further study the I(JP) = 3(0+) state and find that the binding energy is about 31.3 MeV and RMS is 0.97 fm in coupled-channel calculation. We can see that the CC channel coupling has a relatively large effect on this state. The color screening effect is further considered and we find that the bound state property will not change much. It is shown that the binding energy of this state is stably ranged around several tens of MeV; it means that its mass is always lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ.

  4. $\\bar d - \\bar u$ asymmetry in the proton in chiral effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Salamu, Yusupujiang [Institute of High Energy Physics, CAS, Beijing (China); Ji, Chueng -Ryong [North Carolina State Univ., Raleigh, NC (United States); Melnitchouk, W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, P. [Institute of High Energy Physics, Beijing (China); Theoretical Physics Center for Science Facilities, CAS, Beijing (China)

    2015-03-25

    We compute the $\\bar d - \\bar u$ asymmetry in the proton in chiral effective theory, including both nucleon and Δ degrees of freedom, within both relativistic and heavy baryon frameworks. In addition to the distribution at $x>0$, we estimate the correction to the integrated asymmetry arising from zero momentum contributions from pion rainbow and bubble diagrams at $x=0$, which have not been accounted for in previous analyses. In conclusion, we find that the empirical $x$ dependence of $\\bar d - \\bar u$ as well as the integrated asymmetry can be well reproduced in terms of a transverse momentum cutoff parameter.

  5. Finite-volume effects on octet-baryon masses in covariant baryon chiral perturbation theory

    OpenAIRE

    Geng, Li-Sheng; Ren, Xiu-Lei; Martin-Camalich, J.; Weise, W.

    2011-01-01

    We study finite-volume effects on the masses of the ground-state octet baryons using covariant baryon chiral perturbation theory (ChPT) up to next-to-leading order by analyzing the latest $n_f=2+1$ lattice Quantum ChromoDynamics (LQCD) results from the NPLQCD collaboration. Contributions of virtual decuplet baryons are taken into account using the "consistent" coupling scheme. We compare our results with those obtained from heavy baryon ChPT and show that, although both approaches can describ...

  6. Beam Energy Scan a Case for the Chiral Magnetic Effect in Au-Au Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Longacre, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-01-05

    The Chiral Magnetic Effect (CME) is predicted for Au-Au collisions at RHIC. However, many backgrounds can give signals that make the measurement hard to interpret. The STAR experiment has made measurements at different collisions energy ranging from √(sNN)=7.7 GeV to 62.4 GeV. In the analysis that is presented we show that the CME turns on with energy and is not present in central collisions where the induced magnetic is small.

  7. Enantiospecific adsorption of cysteine on a chiral Au34 cluster

    Science.gov (United States)

    Pelayo, José de Jesús; Valencia, Israel; Díaz, Gabriela; López-Lozano, Xóchitl; Garzón, Ignacio L.

    2015-12-01

    The interaction of biological molecules like chiral amino acids with chiral metal clusters is becoming an interesting and active field of research because of its potential impact in, for example, chiral molecular recognition phenomena. In particular, the enantiospecific adsorption (EA) of cysteine (Cys) on a chiral Au55 cluster was theoretically predicted a few years ago. In this work, we present theoretical results, based on density functional theory, of the EA of non-zwitterionic cysteine interacting with the C3-Au34 chiral cluster, which has been experimentally detected in gas phase, using trapped ion electron diffraction. Our results show that, indeed, the adsorption energy of the amino acid depends on which enantiomers participate in the formation Cys-Au34 chiral complex. EA was obtained in the adsorption modes where both the thiol, and the thiol-amino functional groups of Cys are adsorbed on low-coordinated sites of the metal cluster surface. Similarly to what was obtained for the Cys-Au55 chiral complex, in the present work, it is found that the EA is originated from the different strength and location of the bond between the COOH functional group and surface Au atoms of the Au34 chiral cluster. Calculations of the vibrational spectrum for the different Cys-Au34 diastereomeric complexes predict the existence of a vibro-enantiospecific effect, indicating that the vibrational frequencies of the adsorbed amino acid depend on its handedness.

  8. Solutions of ward's modified chiral model

    International Nuclear Information System (INIS)

    We discuss the adaptation of Uhlenbeck's method of solving the chiral model in 2 Euclidean dimensions to Ward's modified chiral model in (2+1) dimensions. We show that the method reduces the problem of solving the second-order partial differential equations for the chiral field to solving a sequence of first-order partial differential equations for time dependent projector valued fields

  9. Chiral effects in adrenocorticolytic action of o,p'-DDD (mitotane) in human adrenal cells.

    Science.gov (United States)

    Asp, V; Cantillana, T; Bergman, A; Brandt, I

    2010-03-01

    Adrenocortical carcinoma (ACC) is a rare malignant disease with poor prognosis. The main pharmacological choice, o,p'-DDD (mitotane), produces severe adverse effects. Since o,p'-DDD is a chiral molecule and stereoisomers frequently possess different pharmacokinetic and/or pharmacodynamic properties, we isolated the two o,p'-DDD enantiomers, (R)-(+)-o,p'-DDD and (S)-(-)-o,p'-DDD, and determined their absolute structures. The effects of each enantiomer on cell viability and on cortisol and dehydroepiandrosterone (DHEA) secretion in the human adrenocortical cell line H295R were assessed. We also assayed the o,p'-DDD racemate and the m,p'- and p,p'-isomers. The results show small but statistically significant differences in activity of the o,p'-DDD enantiomers for all parameters tested. The three DDD isomers were equally potent in decreasing cell viability, but p,p'-DDD affected hormone secretion slightly less than the o,p'- and m,p'-isomers. The small chiral differences in direct effects on target cells alone do not warrant single enantiomer administration, but might reach importance in conjunction with possible stereochemical effects on pharmacokinetic processes in vivo.

  10. Chiral current generation in QED by longitudinal photons

    CERN Document Server

    Avalo, J L Acosta

    2016-01-01

    We report the generation of a pseudovector electric current having imbalanced chirality in an electron-positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even for vanishing chemical potential. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler-Bell-Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral...

  11. Computational study of basis set and electron correlation effects on anapole magnetizabilities of chiral molecules.

    Science.gov (United States)

    Zarycz, Natalia; Provasi, Patricio F; Pagola, Gabriel I; Ferraro, Marta B; Pelloni, Stefano; Lazzeretti, Paolo

    2016-06-30

    In the presence of a static, nonhomogeneous magnetic field, represented by the axial vector B at the origin of the coordinate system and by the polar vector C=∇×B, assumed to be spatially uniform, the chiral molecules investigated in this paper carry an orbital electronic anapole, described by the polar vector A. The electronic interaction energy of these molecules in nonordered media is a cross term, coupling B and C via a¯, one third of the trace of the anapole magnetizability aαβ tensor, that is, WBC=-a¯B·C. Both A and W(BC) have opposite sign in the two enantiomeric forms, a fact quite remarkable from the conceptual point of view. The magnitude of a¯ predicted in the present computational investigation for five chiral molecules is very small and significantly biased by electron correlation contributions, estimated at the density functional level via three different functionals. © 2016 Wiley Periodicals, Inc. PMID:27010603

  12. Topics in Effective Field Theory for Lattice QCD

    CERN Document Server

    Walker-Loud, A

    2006-01-01

    In this work, we extend and apply effective field theory techniques to systematically understand a subset of lattice artifacts which pollute the lattice correlation functions for a few processes of physical interest. Where possible, we compare to existing lattice QCD calculations. In particular, we extend the heavy baryon Lagrangian to the next order in partially quenched chiral perturbation theory and use it to compute the masses of the lightest spin-1/2 and spin-3/2 baryons to next-to-next-to leading order. We then construct the twisted mass chiral Lagrangian for baryons and apply it to compute the lattice spacing corrections to the baryon masses simulated with twisted mass lattice QCD. We extend computations of the nucleon electromagnetic structure to account for finite volume effects, as these observables are particularly sensitive to the finite extent of the lattice. We resolve subtle peculiarities for lattice QCD simulations of polarizabilities and we show that using background field techniques, one can...

  13. Effects of β-cyclodextrins on the enzymatical hydrolysis of chiral dichlorprop methyl ester

    Institute of Scientific and Technical Information of China (English)

    WEN Yue-zhong; ZHOU Shan-shan; FANG Zhao-hua; LIU Wei-ping

    2005-01-01

    The effect of β-cyclodextrins(β-CDs) on the enzymatical hydrolysis of chiral dichlorprop methyl ester (DCPPM) was studied.Four kinds of β-cyclodextrins(β-cyclodextrin, Partly methylated-CD( PM-β-CD), hydroxypropyl-cyclodextrin(HP-β-CD) and carboxymethylcyclodextrin(CM-β-CD) ) were used. Compared with 100% DCPPM in the absence of β-cyclodextrins, the activity of lipase decreased with the increase of β-cyclodextrin and PM-β-cyclodextrin. However, CM-β-cyclodextrin stimulated the lipase activity. The inhibition effect of β-cyclodextrin and PM-β-cyclodextrin on the hydrolysis of DCPPM is affected by many factors other than degree of the methylation blocking the active site of lipase. UV-Vis and Fourier transform infrared(FTIR) spectroscopy studies of the complexation of aqueous DCPPM with β-CDs provide fresh insight into the molecular structure of the complex and explain the effects of β-CDs on enzymatical hydrolysis of chiral DCPPM. Data showed that inclusion complexes had formed by complexation of the CM-β-CD with DCPPM and the solubility of DCPPM was increased in water, which leaded to the increased lipase activity.

  14. Attosecond strong-field interferometry in graphene: Chirality, singularity, and Berry phase

    Science.gov (United States)

    Kelardeh, Hamed Koochaki; Apalkov, Vadym; Stockman, Mark I.

    2016-04-01

    We propose an interferometry in graphene's reciprocal space without a magnetic field, employing strong ultrafast circularly polarized optical pulses. The reciprocal space interferograms contain information on the electronic spectra and topological properties of graphene and on the waveform and circular polarization of the excitation optical pulses. These can be measured using angle-resolved photoemission spectroscopy (ARPES) with attosecond ultraviolet pulses. The predicted effects provide unique opportunities in fundamental studies of two-dimensional topological materials and in applications to future petahertz light-wave-driven electronics.

  15. Chiral dynamics in few-nucleon systems

    CERN Document Server

    Epelbaum, E; Glöckle, W; Elster, C; Kamada, H; Nogga, A; Witala, H; Epelbaum, Evgeny; Mei{\\ss}ner, Ulf-G.; Gl\\"ockle, Walter

    2001-01-01

    We report on recent progress achieved in calculating various few-nucleon low-energy observables from effective field theory. Our discussion includes scattering and bound states in the 2N, 3N and 4N systems and isospin violating effects in the 2N system. We also establish a link between the nucleon-nucleon potential derived in chiral effective field theory and various modern high-precision potentials.

  16. On the one-loop effective potential in the higher-derivative four-dimensional chiral superfield theory with a nonconventional kinetic term

    International Nuclear Information System (INIS)

    We explicitly calculate the one-loop effective potential for a higher-derivative four-dimensional chiral superfield theory with a nonconventional kinetic term. We consider the cases of minimal and nonminimal general Lagrangians. In particular, we find that in the minimal case the divergent part of the one-loop effective potential vanishes by reason of the chirality.

  17. Phase diagram of the chiral magnet Cr1 /3NbS2 in a magnetic field

    Science.gov (United States)

    Tsuruta, K.; Mito, M.; Deguchi, H.; Kishine, J.; Kousaka, Y.; Akimitsu, J.; Inoue, K.

    2016-03-01

    We construct the phase diagram of the chiral magnet Cr1 /3NbS2 in a dc magnetic field (Hdc) using ac magnetic susceptibility measurements. At Hdc=0 , the ac response at the transition from the helical magnetic (HM) state to the paramagnetic (PM) state consists of a giant third-order harmonic component (M3 ω) and a first-order harmonic component (M1 ω). By applying Hdc perpendicular to the c axis, the HM state is transformed to the chiral soliton lattice (CSL) state, which is a superlattice tuned by Hdc. The above giant M3 ω is markedly suppressed at small Hdc. The CSL state is found to consist of CSL-1, with dominant helical texture and a poor ferromagnetic array, and CSL-2, with a large ferromagnetic array. The transition between CSL-1 and the PM state causes a linear magnetic response, the dominant component of which is the in-phase M1 ω. With increasing temperature, CSL-2 is transformed into the forced ferromagnetic (FFM) state, and ultimately the PM state is reached. The transition between CSL-2 and the FFM state consists of a large M3 ω and large out-of-phase M1 ω as well as in-phase M1 ω. The transition between the FMM and PM states also yields a linear magnetic response, like the CSL-1-PM-state transition. Five typical magnetic dynamics in the transitions among the HM state, CSL-1, CSL-2, FFM state, and PM state were identified according to the equivalent dynamical motion equation of a nonlinear spring model.

  18. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  19. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  20. Neutron matter with chiral EFT interactions: Perturbative and first QMC calculations

    OpenAIRE

    Tews, I.; Krüger, T.; Gezerlis, A.; Hebeler, K.; Schwenk, A.

    2013-01-01

    Neutron matter presents a unique system in chiral effective field theory (EFT), because all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N3LO). We discuss perturbative and first Quantum Monte Carlo (QMC) calculations of neutron matter with chiral EFT interactions and their astrophysical impact for the equation of state and neutron stars.

  1. Power Counting Regime of Chiral Extrapolation and Beyond

    CERN Document Server

    Leinweber, D B; Young, R D; Leinweber, Derek B; Thomas, Anthony W; Young, Ross D

    2005-01-01

    Finite-range regularised (FRR) chiral effective field theory is presented in the context of approximation schemes ubiquitous in modern lattice QCD calculations. Using FRR techniques, the power-counting regime (PCR) of chiral perturbation theory can be estimated. To fourth-order in the expansion at the 1% tolerance level, we find m_\\pi < 180 MeV for the PCR, extending only a small distance beyond the physical pion mass.

  2. Circular dichroism induced by Fano resonances in planar chiral oligomers

    CERN Document Server

    Hopkins, Ben; Miroshnichenko, Andrey E; Kivshar, Yuri S

    2016-01-01

    We present a general theory of circular dichroism induced in planar chiral nanostructures with rotational symmetry. It is demonstrated, analytically, that the handedness of the incident field's polarization can control whether a nanostructure induces either absorption or scattering losses, even when the total loss (extinction) is polarization-independent. We then show that this effect is a consequence of modal interference so that strong circular dichroism in absorption and scattering can be engineered by combining Fano resonances with chiral nanoparticle clusters.

  3. The chirality dependent spin filter design in the graphene-like junction

    Science.gov (United States)

    Tian, Hongyu; Wang, Sake; Hu, Jingguo; Wang, Jun

    2015-04-01

    We investigate the chirality-dependent spin transport in a graphene-like topological insulator (TI) TI/n junction, where a perpendicular magnetic field or an off-resonant circularly- polarized light field is applied to the normal (n) region. It is found that the coupling between the helical edge states of the TI and chiral edge states from the magnetic/light field results in a perfect spin filtering effect and only one spin species can tunnel through the junction interface. The origin is ascribed to the chirality-conservation requirement, since the two spin species have the opposite chiralities in the TI region and in the n region both of them have the same chiralities. For a TI/n superlattice structure, the spin filtering effect is enhanced and even survives in a fairly strong disorder environment.

  4. Effect of vacuum polarization in system of two three-phase chiral bags

    CERN Document Server

    Malakhov, I Y

    2002-01-01

    The self-consistent solutions describing the system of two interacting bags are obtained for the model of the three-phase chiral quark bags in the (1 + 1)-dimensional case. Special attention thereby is paid to studying the role of the fermions vacuum polarization inside the bags in the system dynamics and the boson field connecting (interpolating) the bags is accounted for only at the single-boson exchange level. The renormalized complete energy of the system is studied as the function of the parameters characterizing the geometry of the problem and the bags additional characteristics originating in the (1 + 1)-dimensional case. It is shown that the vacuum polarization in the system of two three-phase bags leads to origination of strong nonlinear interaction at small distances whereby in dependence on the bags characteristics this may be both repulsion and attraction

  5. Constraints on the s - s bar asymmetry of the proton in chiral effective theory

    Science.gov (United States)

    Wang, X. G.; Ji, Chueng-Ryong; Melnitchouk, W.; Salamu, Y.; Thomas, A. W.; Wang, P.

    2016-11-01

    We compute the s - s bar asymmetry in the proton in chiral effective theory, using phenomenological constraints based upon existing data. Unlike previous meson cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate states alone, this work includes off-shell terms and contact interactions, which impact the shape of the s - s bar difference. We identify a valence-like component of s (x) which is balanced by a δ-function contribution to s bar (x) at x = 0, so that the integrals of s and s bar over the experimentally accessible region x > 0 are not equal. Using a regularization procedure that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated value of the second moment of the asymmetry to the range - 0.07 ×10-3 ≤ s - s bar) > ≤ 1.12 ×10-3 at a scale of Q2 = 1 GeV2. This is too small to account for the NuTeV anomaly and of the wrong sign to enhance it.

  6. A multiscale approach for estimating the chirality effects in carbon nanotube reinforced composites

    Science.gov (United States)

    Joshi, Unnati A.; Sharma, Satish C.; Harsha, S. P.

    2012-08-01

    In this paper, the multiscale representative volume element approach is proposed for modeling the elastic behavior of carbon nanotubes reinforced composites. The representative volume element incorporates the continuum approach, while carbon nanotube characterizes the atomistic approach. Space frame structure similar to three dimensional beams and point masses are employed to simulate the discrete geometrical constitution of the single walled carbon nanotube. The covalent bonds between carbon atoms found in the hexagonal lattices are assigned elastic properties using beam elements. The point masses applied on each node are coinciding with the carbon atoms work as mass of beam elements. The matrix phase is modeled as a continuum medium using solid elements. These two regions are interconnected by interfacial zone using beam elements. Analysis of nanocomposites having single walled carbon nanotube with different chiralities is performed, using an atomistic finite element model based on a molecular structural mechanics approach. Using the proposed multi scale model, the deformations obtained from the simulations are used to predict the elastic and shear moduli of the nanocomposites. A significant enhancement in the stiffness of the nanocomposites is observed. The effects of interfacial shear strength, stiffness, tensile strength, chirality, length of carbon nanotube, material of matrix, types of representative volume elements and types of loading conditions on the mechanical behavior of the nanocomposites are estimated. The finite element results are compared with the rule of mixtures using formulae. It is found that the results offered by proposed model, are in close proximity with those obtained by the rule of mixtures.

  7. Chiral logarithms in the massless limit tamed.

    Science.gov (United States)

    Kivel, Nikolai; Polyakov, Maxim V; Vladimirov, Alexei

    2008-12-31

    We derive nonlinear recursion relations for the leading chiral logarithms (LLs) in massless theories. These relations not only provide a very efficient method of computation of LLs (e.g., the 33-loop contribution is calculated in a dozen of seconds on a PC) but also equip us with a powerful tool for the summation of the LLs. Our method is not limited to chiral perturbation theory only; it is pertinent to any nonrenormalizable effective field theory such as, for instance, the theory of critical phenomena, low-energy quantum gravity, etc.

  8. Invariant Regularization of Supersymmetric Chiral Gauge Theory

    CERN Document Server

    Suzuki, H

    1999-01-01

    We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.

  9. Chiral logarithms in the massless limit tamed.

    Science.gov (United States)

    Kivel, Nikolai; Polyakov, Maxim V; Vladimirov, Alexei

    2008-12-31

    We derive nonlinear recursion relations for the leading chiral logarithms (LLs) in massless theories. These relations not only provide a very efficient method of computation of LLs (e.g., the 33-loop contribution is calculated in a dozen of seconds on a PC) but also equip us with a powerful tool for the summation of the LLs. Our method is not limited to chiral perturbation theory only; it is pertinent to any nonrenormalizable effective field theory such as, for instance, the theory of critical phenomena, low-energy quantum gravity, etc. PMID:19437635

  10. A chiral rhenium complex with predicted high parity violation effects: synthesis, stereochemical characterization by VCD spectroscopy and quantum chemical calculations

    CERN Document Server

    Saleh, Nidal; Roisnel, Thierry; Guy, Laure; Bast, Radovan; Saue, Trond; Darquié, Benoît; Crassous, Jeanne

    2015-01-01

    With their rich electronic, vibrational, rotational and hyperfine structure, molecular systems have the potential to play a decisive role in precision tests of fundamental physics. For example, electroweak nuclear interactions should cause small energy differences between the two enantiomers of chiral molecules, a signature of parity symmetry breaking. Enantioenriched oxorhenium(VII) complexes S-(-)- and R-(+)-3 bearing a chiral 2-methyl-1-thio-propanol ligand have been prepared as potential candidates for probing molecular parity violation effects via high resolution laser spectroscopy of the Re=O stretching. Although the rhenium atom is not a stereogenic centre in itself, experimental vibrational circular dichroism (VCD) spectra revealed a surrounding chiral environment, evidenced by the Re=O bond stretching mode signal. The calculated VCD spectrum of the R enantiomer confirmed the position of the sulfur atom cis to the methyl, as observed in the solid-state X-ray crystallographic structure, and showed the ...

  11. Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets.

    Science.gov (United States)

    Owerre, S A

    2016-11-30

    In this Letter, we study the magnetic transport in AA-stacked bilayer honeycomb chiral magnets coupled either ferromagnetically or antiferromagnetically. For both couplings, we observe chirality-induced gaps, chiral protected edge states, magnon Hall and magnon spin Nernst effects of magnetic spin excitations. For ferromagnetically coupled layers, thermal Hall and spin Nernst conductivities do not change sign as function of magnetic field or temperature similar to single-layer honeycomb ferromagnetic insulator. In contrast, for antiferromagnetically coupled layers, we observe a sign change in the thermal Hall and spin Nernst conductivities as the magnetic field is reversed. We discuss possible experimental accessible honeycomb bilayer quantum materials in which these effects can be observed. PMID:27636333

  12. Stability and chirality effect on twist formation of collapsed double wall carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    XIAO Jian-liang; LIU Bin; HUANG Yong-gang; HWANG Ke-zhi; YU Min-feng

    2006-01-01

    This study is to reveal the effect of interlayer lattice registry on the formation of collapsed double wall carbon nanotubes (DWCNTs). It is found that collapsed carbon nanotubes can be energetically unstable,metastable or stable,depending mainly on the diameter of the CNT. A fully collapsed DWCNT can adopt different structural morphologies,such as a straight ribbon,a warping ribbon or a twisted ribbon,depending on the chirality of the CNT,which is similar to single wall carbon nanotubes (SWCNTs). Different from SWCNTs,this study also shows some unique phenomena in the formation of collapsed DWCNTs. A fully collapsed DWCNT can have different combinations of the interlayer lattice registry effect within the inner and outer tube,thus the outer tube can influence the formation of the collapsed CNT via lattice registry effect,sometimes even dominates the twist of the CNT.

  13. Chiral damping of magnetic domain walls

    Science.gov (United States)

    Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).

  14. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie

    2015-12-21

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  15. Chiral damping of magnetic domain walls.

    Science.gov (United States)

    Jué, Emilie; Safeer, C K; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ). PMID:26689141

  16. Chiral superfluidity of the quark-gluon plasma

    CERN Document Server

    Kalaydzhyan, Tigran

    2013-01-01

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (Tc < T < 2 Tc) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, c...

  17. A Chiral Solution to the Ginsparg-Wilson Equation

    CERN Document Server

    Grabowska, Dorota M

    2016-01-01

    We present a chiral solution of the Ginsparg-Wilson equation. This work is motivated by our recent proposal for nonperturbatively regulating chiral gauge theories, where five-dimensional domain wall fermions couple to a four-dimensional gauge field that is extended into the extra dimension as the solution to a gradient flow equation. Mirror fermions at the far surface decouple from the gauge field as if they have form factors that become infinitely soft as the distance between the two surfaces is increased. In the limit of an infinite extra dimension we derive an effective four-dimensional chiral overlap operator which is shown to obey the Ginsparg-Wilson equation, and which correctly reproduces a number of properties expected of chiral gauge theories in the continuum.

  18. K stability and stability of chiral ring

    CERN Document Server

    Collins, Tristan C; Yau, Shing-Tung

    2016-01-01

    We define a notion of stability for chiral ring of four dimensional N=1 theory by introducing test chiral rings and generalized a maximization. We conjecture that a chiral ring is the chiral ring of a superconformal field theory if and only if it is stable. We then study N=1 field theory derived from D3 branes probing a three-fold singularity X, and show that the K stability which implies the existence of Ricci-flat conic metric on X is equivalent to the stability of chiral ring of the corresponding field theory.

  19. Numerical evidence for a chiral spin liquid in the XXZ model on the kagome lattice in a magnetic field

    Science.gov (United States)

    Changlani, Hitesh; Kumar, Krishna; Clark, Bryan; Fradkin, Eduardo

    Frustrated spin systems in two dimensions provide a fertile ground for discovering exotic states of matter, often with topologically non-trivial properties. In this work, we investigate the possible existence of a chiral spin liquid state in the spin 1/2 XXZ model on the frustrated kagome lattice in the presence of a magnetic field. This model is equivalent to a hard-core bosonic one with density-density interactions at finite filling fraction. Motivated by previous field theoretic predictions utilizing a Chern-Simons theory adapted for this lattice, we focus our attention to understanding the XY limit for the 2/3 magnetization plateau (equivalent to a system of hard-core bosons at 1/6 filling with weak nearest-neighbor repulsive interactions). Performing exact or accurate numerical computations, and based on energetics and construction of minimally entangled states and associated modular matrices, we provide evidence for such a spin liquid. We study the nature of this phase and examine its stability to additional interactions. We acknowledge support from the SciDAC program under Award Number DE-FG02-12ER46875.

  20. CHIRAL FIELD IDEAS FOR A THEORY OF MATTER IDEAS DE CAMPO QUIRAL PARA UNA TEORÍA DE LA MATERIA

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available In this paper, a chiral approach is used for developing a unified theory of electromagnetic and gravity fields. The photons which satisfy Maxwell's equations for an electromagnetic wave are taken as the basic physical components. The goal of the theory is to unify the phenomena of relativistic invariance, wave mechanics and pair creation with Maxwell's equation to obtain an electromagnetic field theory of matter. With this theory some aspects of GPS (Global Positioning Systems systems are discussed.En este trabajo, para el desarrollo de una teoría unificada de campos electromagnéticos y gravitacionales se usa un método quiral. Los fotones que satisfacen las ecuaciones de Maxwell, para una onda electromagnética se consideran como componentes físicos básicos. El objetivo de esta teoría es unificar el fenómeno de la invarianza relativística, mecánica de onda y la creación del par electrón positrón, con las ecuaciones de Maxwell, para obtener una teoría de la materia totalmente electromagnética. Considerando esta teoría se discuten algunos aspectos de los sistemas GPS (Global Positioning Systems.

  1. Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark-gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in a external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density, the chiral vortical and chiral magnetic waves. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the excitation reduces to a charge diffusion mode or is completely absent. We also correct the dispersion relation for the chiral magnetic wave.

  2. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  3. Chiral fiber optical isolator

    Science.gov (United States)

    Kopp, Victor I.; Zhang, Guoyin; Zhang, Sheng; Genack, Azriel Z.; Neugroschl, Dan

    2009-02-01

    We propose an in-fiber chiral optical isolator based on chiral fiber polarizer technology and calculate its performance by incorporating the magnetic field into the scattering matrix. The design will be implemented in a special preform, which is passed through a miniature heat zone as it is drawn and twisted. The birefringence of the fiber is controlled by adjusted the diameter of a dual-core optical fiber. By adjusting the twist, the fiber can convert linear to circular polarization and reject one component of circular polarization. In the novel central portion of the isolator, the fiber diameter is large. The effective birefringence of the circular central core with high Verdet constant embedded in an outer core of slightly smaller index of refraction is small. The central potion is a non-reciprocal polarization converter which passes forward traveling left circularly polarized (LCP) light as LCP, while converting backward propagating LCP to right circularly polarized (RCP) light. Both polarizations of light traveling backwards are scattered out of the isolator. Since it is an all-glass structure, we anticipate that the isolator will be able to handle several watts of power and will be environmentally robust.

  4. Challenges in flow background removal in search for the chiral magnetic effect

    CERN Document Server

    Wang, Fuqiang

    2016-01-01

    We investigate the effect of resonance decays on the three-particle correlator charge separation observable in search for the chiral magnetic effect, using a simple simulation with realistic inputs. We find that resonance decays can largely account for the measured signal. We suppress the elliptic flow ($v_2$) background by using zero event-by-event $v_2$ (or via the mixed-event technique). We find that the background is suppressed, but not eliminated as naively anticipated. We identify the reason to be the non-identicalness of the resonance and final-state particle's $v_2$ and the induced correlation between the transverse momentum dependent resonance $v_2$ and decay angle. We make predictions for the charge separation signal due to resonance decays in 200~GeV Au+Au collisions.

  5. Chiral symmetry and strangeness at SIS energies

    International Nuclear Information System (INIS)

    In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)

  6. Chiral magnetic conductivity in an interacting lattice model of parity-breaking Weyl semimetal

    Science.gov (United States)

    Buividovich, P. V.; Puhr, M.; Valgushev, S. N.

    2015-11-01

    We report on the mean-field study of the chiral magnetic effect (CME) in static magnetic fields within a simple model of parity-breaking Weyl semimetal given by the lattice Wilson-Dirac Hamiltonian with constant chiral chemical potential. We consider both the mean-field renormalization of the model parameters and nontrivial corrections to the CME originating from resummed ladder diagrams with arbitrary number of loops. We find that onsite repulsive interactions affect the chiral magnetic conductivity almost exclusively through the enhancement of the renormalized chiral chemical potential. Our results suggest that nontrivial corrections to the chiral magnetic conductivity due to interfermion interactions are not relevant in practice since they only become important when the CME response is strongly suppressed by the large gap in the energy spectrum.

  7. Effective field theory in the harmonic oscillator basis

    Science.gov (United States)

    Binder, S.; Ekström, A.; Hagen, G.; Papenbrock, T.; Wendt, K. A.

    2016-04-01

    We develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. In oscillator EFT, matrix elements of EFTs formulated for continuous momenta are evaluated at the discrete momenta that stem from the diagonalization of the kinetic energy in the finite oscillator space. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leading order. Many-body coupled-cluster calculations of nuclei up to 132Sn converge fast for the ground-state energies and radii in feasible model spaces.

  8. Bayesian parameter estimation for effective field theories

    CERN Document Server

    Wesolowski, S; Furnstahl, R J; Phillips, D R; Thapaliya, A

    2015-01-01

    We present procedures based on Bayesian statistics for effective field theory (EFT) parameter estimation from data. The extraction of low-energy constants (LECs) is guided by theoretical expectations that supplement such information in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools are developed that analyze the fit and ensure that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems and the extraction of LECs for the nucleon mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.

  9. Hadronic Transport Coefficients from Effective Field Theories

    CERN Document Server

    Torres-Rincon, Juan M

    2012-01-01

    This dissertation focuses on the calculation of transport coefficients in the matter created in a relativistic heavy-ion collision after the chemical freeze-out. This matter can be well approximated by a pion gas out of equilibrium. We describe the theoretical framework to obtain the shear and bulk viscosities, the thermal and electrical conductivities and the flavor diffusion coefficients of a meson gas at low temperatures. To describe the interactions of the degrees of freedom, we use effective field theories with chiral and heavy quark symmetries. We introduce the unitarization methods in order to obtain a scattering amplitude that satisfies the unitarity condition exactly. We perform the calculation of the transport properties of the low temperature phase of quantum chromodynamics -the hadronic medium- that can be used in the hydrodynamic simulations of a relativistic heavy-ion collision and its subsequent evolution. We show that the shear viscosity over entropy density exhibits a minimum in a phase trans...

  10. Bayesian parameter estimation for effective field theories

    Science.gov (United States)

    Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.

    2016-07-01

    We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.

  11. Quantifying truncation errors in effective field theory

    CERN Document Server

    Furnstahl, R J; Phillips, D R; Wesolowski, S

    2015-01-01

    Bayesian procedures designed to quantify truncation errors in perturbative calculations of quantum chromodynamics observables are adapted to expansions in effective field theory (EFT). In the Bayesian approach, such truncation errors are derived from degree-of-belief (DOB) intervals for EFT predictions. Computation of these intervals requires specification of prior probability distributions ("priors") for the expansion coefficients. By encoding expectations about the naturalness of these coefficients, this framework provides a statistical interpretation of the standard EFT procedure where truncation errors are estimated using the order-by-order convergence of the expansion. It also permits exploration of the ways in which such error bars are, and are not, sensitive to assumptions about EFT-coefficient naturalness. We first demonstrate the calculation of Bayesian probability distributions for the EFT truncation error in some representative examples, and then focus on the application of chiral EFT to neutron-pr...

  12. Chiral symmetry breaking from two-loop effective potential of the holographic non-local NJL model

    International Nuclear Information System (INIS)

    We calculate the two-loop effective potential of the non-local Nambu–Jona–Lasinio (NJL) model derived from the Sakai–Sugimoto model in string theory. In contrast to the conventional NJL with 4-fermion contact interaction, the chiral symmetry was previously found to be dynamically broken for an arbitrary weak coupling at the one-loop level. As a confirmation, the approximate numerical solutions to the gap equation at the one-loop level are explicitly demonstrated for weak couplings. We then calculate the one- and two-loop contributions to the effective potential of the non-local NJL model and found that the two-loop contribution is negative. The two-loop potential for the chiral-symmetric vacuum is also negative but larger than the combined effective potential of the chiral broken vacuum at the two-loop level. The chiral symmetry breaking thus persists for the arbitrary weak coupling at the two-loop level. (paper)

  13. Chiral selective effects of doxazosin enantiomers on blood pressure and urinary bladder pressure in anesthetized rats

    Institute of Scientific and Technical Information of China (English)

    Shi-ping MA; Lei-ming REN; Ding ZHAO; Zhong-ning ZHU; Miao WANG; Hai-gang LU; Li-hua DUAN

    2006-01-01

    Aim: To study chiral selective effects of doxazosin enantiomers on blood pressure and urinary bladder pressure in anesthetized rats. Methods: In anesthetized rats, the carotid blood pressure, left ventricular pressure of the heart and the urinary bladder pressure were recorded. Results: Administration of S-doxazosin at 0.25, 2.5, 25, and 250 nmol/kg iv produced a dose-dependent decrease in blood pressure, but its depressor effect was significantly weaker than that induced by R-doxazosin and racemic-doxazosin (rac-doxazosin), and the ED30 values (producing a 30% decrease in mean arterial pressure) of R-doxazosin, rac-doxazosin and S-doxazosin were 15.64,45.93, and 128.81, respectively. Rac-doxazosin and its enantiomers administered cumulatively in anesthetized rats induced a dose-dependent decrease in the left ventricular systolic pressure and ±dp/dtmax, and the potency order of the 3 agents was R-doxazosin >rac-doxazosin >S-doxazosin. Rac-doxazosin and its enantiomers decreased the vesical micturition pressure dose-dependently at 2.5,25, and 250 nmol/kg, and the inhibitory potency among the 3 agents was not significantly different. Conclusion: S-doxazosin decreases the carotid blood pressure and left ventricular pressure of the heart less than R-doxazosin and rac-doxazosin, but its effect on the vesical micturition pressure is similar to R-doxazosin and rac-doxazosin, indicating that S-doxazosin has chiral selectivity between cardiovascular system and urinary system in anesthetized rats.

  14. Spiral Galaxies as Chiral Objects?

    CERN Document Server

    Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra

    2005-01-01

    Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.

  15. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP.

    Science.gov (United States)

    Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; Dos Reis, Ricardo Donizeth; Kumar, Nitesh; Naumann, Marcel; Ajeesh, Mukkattu O; Schmidt, Marcus; Grushin, Adolfo G; Bardarson, Jens H; Baenitz, Michael; Sokolov, Dmitry; Borrmann, Horst; Nicklas, Michael; Felser, Claudia; Hassinger, Elena; Yan, Binghai

    2016-01-01

    Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample. PMID:27186980

  16. Chiral transport of neutrinos in supernovae: neutrino-induced fluid helicity and helical plasma instability

    CERN Document Server

    Yamamoto, Naoki

    2015-01-01

    Chirality of neutrinos modifies the conventional kinetic theory and hydrodynamics, and leads to unusual chiral transport related to quantum anomalies in field theory. We argue that these corrections lead to new phenomenological consequences for hot and dense neutrino gases, especially in core-collapse supernovae. We find that the neutrino density can be converted to the fluid helicity through the chiral vortical effect. This fluid helicity effectively acts as a chiral chemical potential for other charged particles via the momentum exchange with neutrinos, and it induces a "helical plasma instability" that generates a strong helical magnetic field. This provides a new mechanism for converting the gravitational energy released by the core collapse to the electromagnetic energy, and potentially explains the origin of magnetars. The other possible applications of the neutrino chiral transport theory are also discussed.

  17. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP

    Science.gov (United States)

    Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; Dos Reis, Ricardo Donizeth; Kumar, Nitesh; Naumann, Marcel; Ajeesh, Mukkattu O.; Schmidt, Marcus; Grushin, Adolfo G.; Bardarson, Jens H.; Baenitz, Michael; Sokolov, Dmitry; Borrmann, Horst; Nicklas, Michael; Felser, Claudia; Hassinger, Elena; Yan, Binghai

    2016-05-01

    Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample.

  18. Lattice effective field theory calculations for A = 3,4,6,12 nuclei

    CERN Document Server

    Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G

    2009-01-01

    We present lattice results for the ground state energies of tritium, helium-3, helium-4, lithium-6, and carbon-12 nuclei. Our analysis includes isospin-breaking, Coulomb effects, and interactions up to next-to-next-to-leading order in chiral effective field theory.

  19. Painlevé test for integrability and exact solutions for the field equations for Charap's chiral invariant model of the pion dynamics

    Indian Academy of Sciences (India)

    Susanto Chakraborty; Pranab Krishna Chanda

    2006-06-01

    It has been shown that the field equations for Charap's chiral invariant model of the pion dynamics pass the Painlevé test for complete integrability in the sense of Weiss et al. The truncation procedure of the same analysis leads to auto-Backlund transformation between two pairs of solutions. With the help of this transformation non-trivial exact solutions have been rediscovered.

  20. Chiral Structure of Baryon and Scalar Tetraquark Currents

    Directory of Open Access Journals (Sweden)

    Chen Hua-Xing

    2014-03-01

    Full Text Available We investigate chiral properties of local fields of baryons consisting of three quarks with flavor SU(3 symmetry. We construct explicitly independent local threequark fields belonging to definite Lorentz and flavor representations. We discuss some implications of the allowed chiral symmetry representations on physical quantities such as axial coupling constants and chiral invariant Lagrangians. We also systematically investigate chiral properties of local scalar tetraquark currents, and study their chiral transformation properties.

  1. Quark structure of chiral solitons

    CERN Document Server

    Diakonov, D

    2004-01-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  2. Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT

    International Nuclear Information System (INIS)

    I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.

  3. Poynting Robertson Battery and the Chiral Magnetic Fields of AGN Jets

    Science.gov (United States)

    Kazanas, Demosthenes

    2010-01-01

    We propose that the magnetic fields in the accretion disks of active galactic nuclei (AGNs) are generated by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with the AGN photons (the Poynting Robertson battery). This process provides a unique relation between the polarity of the poloidal B field to the angular velocity Omega of the accretion disk (B is parallel to Omega), a relation absent in the more popular dynamo B-field generation. This then leads to a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry comes about by chance being approx.0.06 %. This lends support to the hypothesis that the universe is seeded by B fields that are generated in AGNs via this mechanism and subsequently injected into intergalactic space by the jet outflows.

  4. Chirality in photonic systems

    Science.gov (United States)

    Solnyshkov, Dmitry; Malpuech, Guillaume

    2016-10-01

    The optical modes of photonic structures are the so-called TE and TM modes that bring intrinsic spin-orbit coupling and chirality to these systems. This, combined with the unique flexibility of design of the photonic potential, and the possibility to mix photon states with excitonic resonances, sensitive to magnetic field and interactions, allows us to achieve many phenomena, often analogous to other solid-state systems. In this contribution, we review in a qualitative and comprehensive way several of these realizations, namely the optical spin Hall effect, the creation of spin currents protected by a non-trivial geometry, the Berry curvature for photons, and the photonic/polaritonic topological insulator. xml:lang="fr"

  5. Analysis of general power counting rules in effective field theory

    Science.gov (United States)

    Gavela, Belen; Jenkins, Elizabeth E.; Manohar, Aneesh V.; Merlo, Luca

    2016-09-01

    We derive the general counting rules for a quantum effective field theory (EFT) in d dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ power counting of EFT, not by chiral counting, even for chiral perturbation theory (χ PT). The relation between Λ and f is generalized to d dimensions. We show that the naive dimensional analysis 4π counting is related to hbar counting. The EFT counting rules are applied to χ PT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT.

  6. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly

    CERN Document Server

    Hirono, Yuji; Yin, Yi

    2015-01-01

    For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current - this is the Chiral Magnetic Effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity towards the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electric and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. We devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matt...

  7. Covariant Effective Field Theory for Nuclear Structure and Currents

    CERN Document Server

    Serot, B D

    2004-01-01

    Recent progress in Lorentz-covariant quantum field theories of the nuclear many-body problem (quantum hadrodynamics or QHD) is discussed. The effective field theory studied here contains nucleons, pions, isoscalar scalar (\\sigma) and vector (\\omega) fields, and isovector vector (\\rho) fields. The theory exhibits a nonlinear realization of spontaneously broken SU(2) \\times SU(2) chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the nuclear currents and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of QCD, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for normal nuclear systems, it is possible to expand the effective lagrangian systematically in powers of the meson fields (and their derivatives) and to truncate the expansion reliably after the first few orders. Using a mean-field versio...

  8. Covariant Effective Field Theory for Nuclear Structure and Nuclear Currents

    CERN Document Server

    Serot, B D

    2004-01-01

    Recent progress in Lorentz-covariant quantum field theories of the nuclear many-body problem (quantum hadrodynamics or QHD) is discussed. The effective field theory studied here contains nucleons, pions, isoscalar scalar (\\sigma) and vector (\\omega) fields, and isovector vector (\\rho) fields. The theory exhibits a nonlinear realization of spontaneously broken SU(2)_L \\times SU(2)_R chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the nuclear currents and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of QCD, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for normal nuclear systems, it is possible to expand the effective Lagrangian systematically in powers of the meson fields (and their derivatives) and to truncate the expansion reliably after the first few orders. Using a mean-field ve...

  9. Chiral extrapolation beyond the power-counting regime

    CERN Document Server

    Hall, J M M; Leinweber, D B; Liu, K F; Mathur, N; Young, R D; Zhang, J B

    2011-01-01

    Chiral effective field theory can provide valuable insight into the chiral physics of hadrons when used in conjunction with non-perturbative schemes such as lattice QCD. In this discourse, the attention is focused on extrapolating the mass of the rho meson to the physical pion mass in quenched QCD (QQCD). With the absence of a known experimental value, this serves to demonstrate the ability of the extrapolation scheme to make predictions without prior bias. By using extended effective field theory developed previously, an extrapolation is performed using quenched lattice QCD data that extends outside the chiral power-counting regime (PCR). The method involves an analysis of the renormalization flow curves of the low energy coefficients in a finite-range regularized effective field theory. The analysis identifies an optimal regulator, which is embedded in the lattice QCD data themselves. This optimal regulator is the regulator value at which the renormalization of the low energy coefficients is approximately i...

  10. Experimental demonstration of spontaneous chirality in a nonlinear microresonator

    CERN Document Server

    Cao, Qi-Tao; Dong, Chun-Hua; Jing, Hui; Liu, Rui-Shan; Chen, Xi; Ge, Li; Gong, Qihuang; Xiao, Yun-Feng

    2016-01-01

    Chirality is an important concept that describes the asymmetry property of a system, which usually emerges spontaneously due to mirror symmetry breaking. Such spontaneous chirality manifests predominantly as parity breaking in modern physics, which has been studied extensively, for instance, in Higgs physics, double-well Bose-Einstein condensates, topological insulators and superconductors. In the optical domain, spontaneous chiral symmetry breaking has been elusive experimentally, especially for micro- and nano-photonics which demands multiple identical subsystems, such as photonic nanocavities, meta-molecules and other dual-core settings. Here, for the first time, we observe spontaneous emergence of a chiral field in a single ultrahigh-Q whispering- gallery microresonator. This counter-intuitive effect arises due to the inherent Kerr nonlinearity-modulated coupling between clockwise (CW) and counterclockwise (CCW) propagating waves. At an ultra-weak input threshold of a few hundred microwatts, the initial c...

  11. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  12. Chiral Superconductors

    OpenAIRE

    Kallin, Catherine; Berlinsky, John

    2015-01-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a c...

  13. Criteria of backscattering in chiral one-way photonic crystals

    Science.gov (United States)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  14. DIRAC MATRICES IN CHIRAL REPRESENTATION AND THE CONNECTION WITH THE ELECTRIC FIELD PARALLEL TO THE MAGNETIC FIELD MATRICES DE DIRAC EN REPRESENTACIÓN QUIRAL Y LA CONEXIÓN CON EL CAMPO ELÉCTRICO PARALELO AL CAMPO MAGNÉTICO

    OpenAIRE

    Héctor Torres-Silva

    2008-01-01

    In this paper we offer an expression of the general Foldy-Wouthuysen transformation in the chiral representation of Dirac matrices interacting with fermion field. Our hypothesis is that through the multiplication of the Pauli matrix and Maxwell's chiral equations in the case of ,one obtains the Dirac's chiral equation. This is the proof of the theorem that the wave mechanics of quantum particles represent a specialized electrodynamic.En este trabajo se presenta una expresión de la transformac...

  15. Chiral Quantum Optics

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter

    2016-01-01

    At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...

  16. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  17. Effective quantum field theories

    International Nuclear Information System (INIS)

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  18. Chiral two-body currents in nuclei: Gamow-Teller transitions and neutrinoless double-beta decay.

    Science.gov (United States)

    Menéndez, J; Gazit, D; Schwenk, A

    2011-08-01

    We show that chiral effective field theory (EFT) two-body currents provide important contributions to the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the momentum-transfer dependence that is probed in neutrinoless double-beta (0νββ) decay. We then calculate for the first time the 0νββ decay operator based on chiral EFT currents and study the nuclear matrix elements at successive orders. The contributions from chiral two-body currents are significant and should be included in all calculations. PMID:21902315

  19. The meson-baryon effective chiral Lagrangians at order $p^4$

    CERN Document Server

    Jiang, Shao-Zhou

    2016-01-01

    We construct the three-flavor Lorentz-invariant meson-baryon chiral Lagrangians at the order $p^4$. There exist 540 terms. The minimal numbers of mesons and photons related to these terms are also given.

  20. Sensitivity of predictions in an effective model: Application to the chiral critical end point position in the Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Biguet, Alexandre; Hansen, Hubert; Brugiere, Timothee [Universite Claude Bernard de Lyon, Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Villeurbanne Cedex (France); Costa, Pedro [Universidade de Coimbra, Centro de Fisica Computacional, Departamento de Fisica, Coimbra (Portugal); Borgnat, Pierre [CNRS, l' Ecole normale superieure de Lyon, Laboratoire de Physique, Lyon Cedex 07 (France)

    2015-09-15

    The measurement of the position of the chiral critical end point (CEP) in the QCD phase diagram is under debate. While it is possible to predict its position by using effective models specifically built to reproduce some of the features of the underlying theory (QCD), the quality of the predictions (e.g., the CEP position) obtained by such effective models, depends on whether solving the model equations constitute a well- or ill-posed inverse problem. Considering these predictions as being inverse problems provides tools to evaluate if the problem is ill-conditioned, meaning that infinitesimal variations of the inputs of the model can cause comparatively large variations of the predictions. If it is ill-conditioned, it has major consequences because of finite variations that could come from experimental and/or theoretical errors. In the following, we shall apply such a reasoning on the predictions of a particular Nambu-Jona-Lasinio model within the mean field + ring approximations, with special attention to the prediction of the chiral CEP position in the (T-μ) plane. We find that the problem is ill-conditioned (i.e. very sensitive to input variations) for the T-coordinate of the CEP, whereas, it is well-posed for the μ-coordinate of the CEP. As a consequence, when the chiral condensate varies in a 10MeV range, μ {sub CEP} varies far less. As an illustration to understand how problematic this could be, we show that the main consequence when taking into account finite variation of the inputs, is that the existence of the CEP itself cannot be predicted anymore: for a deviation as low as 0.6% with respect to vacuum phenomenology (well within the estimation of the first correction to the ring approximation) the CEP may or may not exist. (orig.)

  1. Effects of Variation of Viscosity and Viscous Dissipation on Oberbeck Magnetoconvection in a Chiral Fluid

    Directory of Open Access Journals (Sweden)

    N. Rudraiah

    2013-01-01

    Full Text Available The flow and heat transfer characteristics of Oberbeck convection of a chiral fluid in the presence of the transverse magnetic field, viscous dissipation and variable viscosity are investigated. The coupled non-linear ordinary differential equations governing the flow and heat transfer characteristics of the problem are solved both analytically and numerically. The analytical solutions are obtained using a regular perturbation and numerical solutions obtained using finite difference method. The solution is valid for small values of Buoyancy parameter N and variable viscosity parameter R1. The analytical results are compared with the numerical results and found good agreement.The role of temperature dependent viscosity and viscous dissipation on velocity, temperature, skin friction and the rate of heat transfer are determined. The results are depicted graphically, from these graphs it is noticed that the velocity is parabolic in nature and increases with an increase in magnetochiral number M . Physically this is attributed to the fact that magnetochiral number introduces small scale turbulences.

  2. Novel Topological Effects in Dense QCD in a Magnetic Field

    CERN Document Server

    Ferrer, E J

    2015-01-01

    We show that in dense QCD an axion field can be dynamically generated as the phase of the dual chiral density wave condensate that forms in the presence of a magnetic field. The coupling of the axion with the external magnetic field leads to several macroscopically observable effects. They are the generation of an anomalous uniform electric charge proportional to the magnetic field, the induction of a nondissipative anomalous Hall current, a linear magnetoelectric effect, and the formation of an axion polariton due to the fluctuations of the axion field at finite temperature. Connection to topological insulators, as well as possible observable signatures in heavy-ion collisions and neutron stars are all highlighted.

  3. Lattice Study of Magnetic Catalysis in Graphene Effective Field Theory

    Science.gov (United States)

    Winterowd, Christopher; Detar, Carleton; Zafeiropoulos, Savvas

    2016-03-01

    The discovery of graphene ranks as one of the most important developments in condensed matter physics in recent years. As a strongly interacting system whose low-energy excitations are described by the Dirac equation, graphene has many similarities with other strongly interacting field theories, particularly quantum chromodynamics (QCD). Graphene, along with other relativistic field theories, have been predicted to exhibit spontaneous symmetry breaking (SSB) when an external magnetic field is present. Using nonperturbative methods developed to study QCD, we study the low-energy effective field theory (EFT) of graphene subject to an external magnetic field. We find strong evidence supporting the existence of SSB at zero-temperature and characterize the dependence of the chiral condensate on the external magnetic field. We also present results for the mass of the Nambu-Goldstone boson and the dynamically generated quasiparticle mass that result from the SSB.

  4. Anisotropy and Strong-Coupling Effects on the Collective Mode Spectrum of Chiral Superconductors: Application to Sr2RuO4

    Directory of Open Access Journals (Sweden)

    James Avery Sauls

    2015-06-01

    Full Text Available Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the class of 2D chiral superconductors spanning 3He-A to chiral superconductors with strong anisotropy. Chiral superconductors support a pair of massive Bosonic excitations of the time-reversed pairs labeled by their parity under charge conjugation. These modes are degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic modes. Selection rules and phase space considerations lead to large asymmetries in the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound Fermion pairs. We also highlight results for the excitation of the Bosonic modes by microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic chiral ground state.

  5. The vorticity induced chiral separation effect from the compactified D4-branes with smeared D0-brane charge

    CERN Document Server

    Wu, Chao; Huang, Mei

    2016-01-01

    By using the boundary derivative expansion formalism of fluid/gravity correspondence, we study the chiral vortical separation effect in a strongly coupled nonconformal relativistic fluid in the background of D0-D4 Sakai-Sugimoto model. The relativistic fluid of this model is nonconformal with a conserved axial vector current, and the presence of the chiral vortical separation effect is induced by the addition of a Chern-Simons term in the bulk action. Except the non-dissipative anomalous viscous coefficient and the sound speed, all other thermal and hydrodynamical quantities of first order depend on the temperature and the axial chemical potential. Stability analysis shows that this anomalous relativistic fluid is stable and the doping of smeared D0-brane will slow down the sound speed.

  6. Dileptons and Chiral Symmetry Restoration

    CERN Document Server

    Hohler, P M

    2015-01-01

    We report on recent work relating the medium effects observed in dilepton spectra in heavy-ion collisions to potential signals of chiral symmetry restoration. The key connection remains the approach to spectral function degeneracy between the vector-isovector channel with its chiral partner, the axialvector-isovector channel. Several approaches are discussed to elaborate this connection, namely QCD and Weinberg sum rules with input for chiral order parameters from lattice QCD, and chiral hadronic theory to directly evaluate the medium effects of the axialvector channel and the pertinent pion decay constant as function of temperature. A pattern emerges where the chiral mass splitting between rho and a_1 burns off and is accompanied by a strong broadening of the spectral distributions.

  7. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  8. Holographic effective field theories

    Science.gov (United States)

    Martucci, Luca; Zaffaroni, Alberto

    2016-06-01

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  9. Chiral anomaly and transport in Weyl metals

    Science.gov (United States)

    Burkov, A. A.

    2015-03-01

    We present an overview of our recent work on transport phenomena in Weyl metals, which may be connected to their nontrivial topological properties, particularly to chiral anomaly. We argue that there are two basic phenomena, which are related to chiral anomaly in Weyl metals: anomalous Hall effect (AHE) and chiral magnetic effect (CME). While AHE is in principle present in any ferromagnetic metal, we demonstrate that a magnetic Weyl metal is distinguished from an ordinary ferromagnetic metal by the absence of the extrinsic and the Fermi surface part of the intrinsic contributions to the AHE, as long as the Fermi energy is sufficiently close to the Weyl nodes. The AHE in a Weyl metal is thus shown to be a purely intrinsic, universal property, fully determined by the location of the Weyl nodes in the first Brillouin zone. In other words, a ferromagnetic Weyl metal may be thought of as the only example of a ferromagnetic metal with a purely intrinsic AHE. We further develop a fully microscopic theory of diffusive magnetotransport in Weyl metals. We derive coupled diffusion equations for the total and axial (i.e. node-antisymmetric) charge densities and show that chiral anomaly manifests as a magnetic-field-induced coupling between them. We demonstrate that an experimentally-observable consequence of CME in magnetotransport in Weyl metals is a quadratic negative magnetoresistance, which will dominate all other contributions to magnetoresistance under certain conditions and may be regarded as a smoking-gun transport characteristic, unique to Weyl metals.

  10. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  11. Chiral quark model

    Indian Academy of Sciences (India)

    H Weigel

    2003-11-01

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.

  12. Effects of gauge boson mass on chiral and deconfinement phase transitions in QED$_{3}$

    CERN Document Server

    Yin, Pei-Lin; Feng, Hong-Tao; Zong, Hong-Shi

    2016-01-01

    Based on the experimental observation that there is a coexisting region between the antiferromagnetic (AF) and $\\textit{d}$-wave superconducting ($\\textit{d}$SC) phases, the influences of gauge boson mass $m_{a}$ on chiral symmetry restoration and deconfinement phase transitions in QED$_{3}$ are investigated simultaneously within a unified framework, i.e., Dyson-Schwinger equations. The results show that the chiral symmetry restoration phase transition in the presence of the gauge boson mass $m_{a}$ is a typical second-order phase transition; the chiral symmetry restoration and deconfinement phase transitions are coincident; the critical number of fermion flavors $N^{c}_{f}$ decreases as the gauge boson mass $m_{a}$ increases and there exists a boundary that separates the $N^{c}_{f}$-$m_{a}$ plane into chiral symmetry breaking/confinement region for ($N_{f}^{c}$, $m_{a}$) below the boundary and chiral symmetry restoration/deconfinement region for ($N_{f}^{c}$, $m_{a}$) above it.

  13. Nuclear electromagnetic currents from chiral EFT

    International Nuclear Information System (INIS)

    Using the method of unitary transformation in combination with chiral effective field theory we derive the pion exchange contributions to the two-nucleon electromagnetic current. A formal definition of the current operator in this scheme and the power counting is presented. We discuss the implications of additional unitary transformations that have to be present to ensure the renormalizability of the one-pion exchange current. Further, we give explicit and compact results for the current in coordinate-space.

  14. Nucleon-Nucleon Scattering from Effective Field Theory

    OpenAIRE

    Kaplan, David B.; Savage, Martin J.; Wise, Mark B.

    1996-01-01

    We perform a nonperturbative calculation of the 1S0 NN scattering amplitude using an effective field theory (EFT) expansion. The expansion we advocate is a modification of what has been used previously; it is no a chiral expansion in powers of the pion mass. We use dimensional regularization throughout and the MS-bar subtraction scheme; our final result depends only on physical observables. We show that the EFT expansion of the quantity |p|cot delta(p) converges at momenta much greater than t...

  15. Enantiospecific adsorption of cysteine on a chiral Au34 cluster

    Science.gov (United States)

    de Jesús Pelayo, José; Valencia, Israel; Díaz, Gabriela; López-Lozano, Xóchitl; Garzón, Ignacio L.

    2015-12-01

    The interaction of biological molecules like chiral amino acids with chiral metal clusters is becoming an interesting and active field of research because of its potential impact in, for example, chiral molecular recognition phenomena. In particular, the enantiospecific adsorption (EA) of cysteine (Cys) on a chiral Au55 cluster was theoretically predicted a few years ago. In this work, we present theoretical results, based on density functional theory, of the EA of non-zwitterionic cysteine interacting with the C3-Au34 chiral cluster, which has been experimentally detected in gas phase, using trapped ion electron diffraction. Our results show that, indeed, the adsorption energy of the amino acid depends on which enantiomers participate in the formation Cys-Au34 chiral complex. EA was obtained in the adsorption modes where both the thiol, and the thiol-amino functional groups of Cys are adsorbed on low-coordinated sites of the metal cluster surface. Similarly to what was obtained for the Cys-Au55 chiral complex, in the present work, it is found that the EA is originated from the different strength and location of the bond between the COOH functional group and surface Au atoms of the Au34 chiral cluster. Calculations of the vibrational spectrum for the different Cys-Au34 diastereomeric complexes predict the existence of a vibro-enantiospecific effect, indicating that the vibrational frequencies of the adsorbed amino acid depend on its handedness. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by G. Delgado Barrio, A. Solov'Yov, P. Villarreal, R. Prosmiti.

  16. Effect of Single-walled Carbon Nanotubes on Cellulose Phenylcarbamate Chiral Stationary Phases

    Institute of Scientific and Technical Information of China (English)

    CHANG Yin-xia; REN Chao-xing; RUAN Qiong; YUAN Li-ming

    2007-01-01

    Single-walled carbon nanotubes(SWNTs) have a high adsorption ability and nanoscale interactions. Cellulose trisphenylcarbamates possess high enantioseparation ability in high-performance liquid chromatography(HPLC). Single-walled carbon nanotubes mixed with cellulose trisphenylcarbamate are coated on the silica gel as chiral stationary phases and higher enantioseparation factors are obtained. After a single-walled carbon nanotube is linked to the 6-position of cellulose 2,3-bisphenylcarbamate, its enantioseparation resolution increases compared to that of the cellulose trisphenylcarbamate. It is the first time that SWNTs have been applied to enantioseparation. The results indicate that the single-walled carbon nanotubes are good promoters of chiral recognition. This method can be used to improve the enantioseparation efficiency of the polysaccharide chiral stationary phases.

  17. Chiral superfluidity of the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2012-08-15

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  18. On chiral symmetry breaking, topology and confinement

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, Edward

    2014-08-15

    We start with the relation between the chiral symmetry breaking and gauge field topology. New lattice results further enhance the notion of Zero Mode Zone, a very narrow strip of states with quasizero Dirac eigenvalues. Then we move to the issue of “origin of mass” and Brown–Rho scaling: a number of empirical facts contradicts to the idea that masses of quarks and such hadrons as ρ,N decrease near T{sub c}. We argue that while at T=0 the main contribution to the effective quark mass is chirally odd m{sub χ/}, near T{sub c} it rotates to chirally-even component m{sub χ}, because “infinite clusters” of topological solitons gets split into finite ones. Recent progress in understanding of topology require introduction of nonzero holonomy 〈A{sub 0}〉≠0, which splits instantons into N{sub c} (anti)selfdual “instanton–dyons”. Qualitative progress, as well as first numerical studies of the dyon ensemble are reported. New connections between chiral symmetry breaking and confinement are recently understood, since instanton–dyons generate holonomy potential with a minimum at confining value, if the ensemble is dense enough.

  19. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  20. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.

    Science.gov (United States)

    Skandani, A Alipour; Zeineldin, R; Al-Haik, M

    2012-05-22

    The ability of carbon nanotubes to enter the cell membrane acting as drug-delivery vehicles has yielded a plethora of experimental investigations, mostly with inconclusive results because of the wide spectra of carbon nanotube structures. Because of the virtual impossibility of synthesizing CNTs with distinct chirality, we report a parametric study on the use of molecular dynamics to provide better insight into the effect of the carbon nanotube chirality and the aspect ratio on the interaction with a lipid bilayer membrane. The simulation results indicated that a single-walled carbon nanotube utilizes different time-evolving mechanisms to facilitate their internalization within the membrane. These mechanisms comprise both penetration and endocytosis. It was observed that carbon nanotubes with higher aspect ratios penetrate the membrane faster whereas shorter nanotubes undergo significant rotation during the final stages of endocytosis. Furthermore, nanotubes with lower chiral indices developed significant adhesion with the membrane. This adhesion is hypothesized to consume some of the carbon nanotube energy, thus resulting in longer times for the nanotube to translocate through the membrane.

  1. A primer for chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.

  2. A primer for Chiral Perturbative Theory

    International Nuclear Information System (INIS)

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  3. A primer for Chiral Perturbative Theory

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Stefan [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schindler, Matthias R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics; George Washington Univ., Washington, DC (United States). Dept. of Physics

    2012-07-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  4. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles

    Science.gov (United States)

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-08-01

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.

  5. Focusing, Power Tunneling and Rejection from Chiral and/or Chiral Nihility/Nihility Metamaterials Layers

    CERN Document Server

    Shah, Syed Touseef Hussain; Syed, Aqeel A; Naqvi, Qaisar Abbas

    2013-01-01

    Focusing of electromagnetic plane wave from a large size paraboloidal reflector, composed of layers of chiral and/or chiral nihility metamaterials, has been studied us- ing Maslov's method. First, the transmission and reflection of electromagnetic plane wave from two parallel layers of chiral and/or chiral nihility metamaterials are cal- culated using transfer matrix method. The effects of change of angle of incidence, chirality parameters and impedances of layers are noted and discussed. Special cases by taking very large and small values of permittivity of second layer, while assuming value of corresponding chirality equal to zero, are also treated. These special cases are equivalent to reflection from a perfect electric conductor backed chiral layer and nihility backed chiral layer, respectively. Results of reflection from parallel layers have been utilized to study focusing from a large size paraboloidal reflector. The present study, on focusing from a paraboloidal re{\\deg}ector, not only unifies several ...

  6. Dynamical quarks effects on the gluon propagation and chiral symmetry restoration

    CERN Document Server

    Bashir, A; Rodríguez-Quintero, J

    2014-01-01

    We exploit the recent lattice results for the infrared gluon propagator with light dynamical quarks and solve the gap equation for the quark propagator. Chiral symmetry breaking and confinement (intimately tied with the analytic properties of QCD Schwinger functions) order parameters are then studied.

  7. Chiral and continuum extrapolation of partially quenched lattice results

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Allton; W. Armour; D.B. Leinweber; A.W. Thomas; R.D. Young

    2005-04-01

    The vector meson mass is extracted from a large sample of partially quenched, two-flavor lattice QCD simulations. For the first time, discretization, finite-volume and partial quenching artifacts are treated in a unified chiral effective field theory analysis of the lattice simulation results.

  8. Infinite Chiral Symmetry in Four Dimensions

    CERN Document Server

    Beem, Christopher; Liendo, Pedro; Peelaers, Wolfger; Rastelli, Leonardo; van Rees, Balt C

    2015-01-01

    We describe a new correspondence between four-dimensional conformal field theories with extended supersymmetry and two-dimensional chiral algebras. The meromorphic correlators of the chiral algebra compute correlators in a protected sector of the four-dimensional theory. Infinite chiral symmetry has far-reaching consequences for the spectral data, correlation functions, and central charges of any four-dimensional theory with ${\\mathcal N}=2$ superconformal symmetry.

  9. △△ Dibaryon Structure in Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong

    2005-01-01

    @@ The structure of △△ dibaryon is studied in the extended chiral SU(3) quark model in which vector meson exchanges are included. The effect of the vector meson fields is very similar to that of the one-gluon exchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model, the resultant mass of the △△ dibaryon is lower than the threshold of the △△ channel but higher than that of the△Nπ channel.

  10. Improved description of the πN-scattering phenomenology in covariant baryon chiral perturbation theory

    Directory of Open Access Journals (Sweden)

    Alarcón Jose Manuel

    2014-06-01

    Full Text Available We highlight some of the recent advances in the application of chiral effective field theory (chiral EFT with baryons to the πN scattering process. We recall some problems that cast doubt on the applicability of chiral EFT to πN and show how the relativistic formalism, once the Δ(1232-resonance is included as an explicit degree of freedom, solves these issues. Finally it is shown how this approach can be used to extract the σ-terms from phenomenological information.

  11. Chiral 2N and 3N interactions and quantum Monte Carlo applications

    Directory of Open Access Journals (Sweden)

    Gezerlis Alexandros

    2016-01-01

    Full Text Available Chiral Effective Field Theory (EFT two- and three-nucleon forces are now widely employed. Since they were originally formulated in momentum space, these interactions were non-local, making them inaccessible to Quantum Monte Carlo (QMC methods. We have recently derived a local version of chiral EFT nucleon-nucleon and three-nucleon interactions, which we also used in QMC calculations for neutron matter and light nuclei. In this contribution I go over the basics of local chiral EFT and then summarize recent results.

  12. Chiral EFT based nuclear forces: achievements and challenges

    Science.gov (United States)

    Machleidt, R.; Sammarruca, F.

    2016-08-01

    During the past two decades, chiral effective field theory has become a popular tool to derive nuclear forces from first principles. Two-nucleon interactions have been worked out up to sixth order of chiral perturbation theory and three-nucleon forces up to fifth order. Applications of some of these forces have been conducted in nuclear few- and many-body systems—with a certain degree of success. But in spite of these achievements, we are still faced with great challenges. Among them is the issue of a proper uncertainty quantification of predictions obtained when applying these forces in ab initio calculations of nuclear structure and reactions. A related problem is the order by order convergence of the chiral expansion. We start this review with a pedagogical introduction and then present the current status of the field of chiral nuclear forces. This is followed by a discussion of representative examples for the application of chiral two- and three-body forces in the nuclear many-body system including convergence issues.

  13. Chiral EFT based nuclear forces: Achievements and challenges

    CERN Document Server

    Machleidt, R

    2016-01-01

    During the past two decades, chiral effective field theory has become a popular tool to derive nuclear forces from first principles. Two-nucleon interactions have been worked out up to sixth order of chiral perturbation theory and three-nucleon forces up to fifth order. Applications of some of these forces have been conducted in nuclear few- and many-body systems---with a certain degree of success. But in spite of these achievements, we are still faced with great challenges. Among them is the issue of a proper uncertainty quantification of predictions obtained when applying these forces in {\\it ab initio} calculations of nuclear structure and reactions. A related problem is the order by order convergence of the chiral expansion. We start this review with a pedagogical introduction and then present the current status of the field of chiral nuclear forces. This is followed by a discussion of representative examples for the application of chiral two- and three-body forces in the nuclear many-body system includin...

  14. Chiral Quark Model of Mesons

    CERN Document Server

    Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin

    1999-01-01

    We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.

  15. Large Enhancement of Circular Dichroism Using an Embossed Chiral Metamaterial

    CERN Document Server

    Mousavi, S Hamed Shams; El-Sayed, Mostafa A; Eftekhar, Ali A; Adibi, Ali

    2016-01-01

    In the close vicinity of a chiral nanostructure, the circular dichroism of a biomolecule could be greatly enhanced, due to the interaction with the local superchiral fields. Modest enhancement of optical activity using a planar metamaterial, with some chiral properties, and achiral nanoparticles has been previously reported. A more substantial chirality enhancement can be achieved in the local filed of a chiral nanostructure with a three-dimensional arrangement. Using an embossed chiral nanostructure designed for chiroptical sensing, we measure the circular dichroism spectra of two biomolecules, Chlorophylls A and B, at the molecular level, using a simple polarization resolved reflection measurement. This experiment is the first realization of the on-resonance surface-enhanced circular dichroism, achieved by matching the chiral resonances of a strongly chiral metamaterial with that of a chiral molecule, resulting in an unprecedentedly large differential CD spectrum from a monolayer of a chiral material.

  16. Bringing chiral optical forces to dominance with optical nanofibers

    CERN Document Server

    Alizadeh, M H

    2016-01-01

    Transverse spin angular momentum (SAM) of light and associated transverse chiral optical forces have received tremendous attention recently as the latter may lead to an optical separation of chiral biomolecules. Previous schemes to generate chiral forces are plagued by the fact that the chiral optical forces are orders of magnitude smaller than conventional gradient and scattering forces. The relative magnitude of chiral and non-chiral forces represents a fundamental challenge for the implementation of chiral separation schemes. In this work we demonstrate that, by spatially separating the maxima of transverse spin density from the gradient of field intensity, in the vicinity of optical nanofibers and nanowires, chiral optical forces can emerge that are stronger than gradient and scattering forces. This finding has important implications for the design of improved optical separation schemes for chiral biomolecules.

  17. To CME or not to CME? Implications of p+Pb measurements of the chiral magnetic effect in heavy ion collisions

    CERN Document Server

    Belmont, R

    2016-01-01

    The Chiral Magnetic Effect (CME) is a fundamental prediction of QCD and various observables have been proposed in heavy ion collisions to access this physics. Recently the CMS Collaboration \\cite{Khachatryan:2016got} has reported results from p+Pb collisions at 5.02 TeV on one such observable, the three-point correlator. The results are strikingly similar to those measured at the same particle multiplicity in Pb+Pb collisions, that have been attributed to the CME. This similarity, combined with two key assumptions about the magnetic field in p+Pb collisions, presents a major challenge to the CME picture. These two assumptions as stated in the CMS paper are (1) that the magnetic field in p+Pb collisions is smaller than that in Pb+Pb collisions and (2) that the magnetic field direction is uncorrelated with the flow angle. We test these two postulates in the Monte Carlo Glauber framework and find that the magnetic fields are not significantly smaller in central p+Pb collisions, however the magnetic field directi...

  18. Chiral Magnetic Wave at Finite Baryon Density and the Electric Quadrupole Moment of the Quark-Gluon Plasma

    International Nuclear Information System (INIS)

    The chiral magnetic wave is a gapless collective excitation of quark-gluon plasma in the presence of an external magnetic field that stems from the interplay of chiral magnetic and chiral separation effects; it is composed of the waves of the electric and chiral charge densities coupled by the axial anomaly. We consider a chiral magnetic wave at finite baryon density and find that it induces the electric quadrupole moment of the quark-gluon plasma produced in heavy ion collisions: the 'poles' of the produced fireball (pointing outside of the reaction plane) acquire additional positive electric charge, and the 'equator' acquires additional negative charge. We point out that this electric quadrupole deformation lifts the degeneracy between the elliptic flows of positive and negative pions leading to v2(π+)2(π-), and estimate the magnitude of the effect.

  19. Parafermionic chiral algebra Z{sub 3} with the dimension of the principal parafermion fields {psi}(z), {psi}{sup +}(z), {Delta}{sub {psi}}=8/3

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, Vladimir S., E-mail: dotsenko@lpthe.jussieu.fr [LPTHE, CNRS, Universite Pierre et Marie Curie, Paris VI, UMR 7589, 4 place Jussieu, 75252 Paris Cedex 05 (France)

    2012-10-01

    We analyze, and prove, the associativity of the new Z{sub 3} parafermionic chiral algebra which has been announced some time ago, with principal parafermionic fields having the conformal dimension {Delta}{sub {psi}}=8/3. In doing so we have developed a new method for analyzing the associativity of a given chiral algebra of parafermionic type, the method which might be of a more general significance than a particular conformal field theory studied in detail in this paper. Still, even in the context of our particular chiral algebra, of Z{sub 3} parafermions with {Delta}{sub {psi}}=8/3, the new method allowed us to give a proof of associativity which we consider to be complete.

  20. Applications of chiral perturbation theory to lattice QCD

    CERN Document Server

    Golterman, Maarten

    2011-01-01

    These notes contain the written version of lectures given at the 2009 Les Houches Summer School "Modern perspectives in lattice QCD: Quantum field theory and high performance computing." The goal is to provide a pedagogical introduction to the subject, and not a comprehensive review. Topics covered include a general introduction, the inclusion of scaling violations in chiral perturbation theory, partial quenching and mixed actions, chiral perturbation theory with heavy kaons, and the effects of finite volume, both in the p- and epsilon-regimes.

  1. Lateral chirality-sorting optical forces

    Science.gov (United States)

    Hayat, Amaury; Mueller, J. P. Balthasar; Capasso, Federico

    2015-01-01

    The transverse component of the spin angular momentum of evanescent waves gives rise to lateral optical forces on chiral particles, which have the unusual property of acting in a direction in which there is neither a field gradient nor wave propagation. Because their direction and strength depends on the chiral polarizability of the particle, they act as chirality-sorting and may offer a mechanism for passive chirality spectroscopy. The absolute strength of the forces also substantially exceeds that of other recently predicted sideways optical forces. PMID:26453555

  2. Chiral geometry in multiple chiral doublet bands

    CERN Document Server

    Zhang, Hao

    2015-01-01

    The chiral geometry of the multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters $\\gamma$ in the particle rotor model with $\\pi h_{11/2}\\otimes \

  3. The Life Story of Hydrogen Peroxide III: Chirality and Physical Effects at the Dawn of Life

    Science.gov (United States)

    Ball, Rowena; Brindley, John

    2016-03-01

    It is a remarkable observed fact that all life on Earth is homochiral, its biology using exclusively the D-enantiomer of ribose, the sugar moiety of the ribonucleic acids, and the L-enantiomers of the chiral amino acids. Motivated by concurrent work that elaborates further the role of hydrogen peroxide in providing an oscillatory drive for the RNA world (Ball & Brindley 2015a, J. R. Soc. Interface 12, 20150366, and Ball & Brindley 2015b, this journal, in press), we reappraise the structure and physical properties of this small molecule within this context. Hydrogen peroxide is the smallest, simplest molecule to exist as a pair of non-superimposable mirror images, or enantiomers, a fact which leads us to develop the hypothesis that its enantiospecific interactions with ribonucleic acids led to enantioselective outcomes. We propose a mechanism by which these chiral interactions may have led to amplification of D-ribonucleic acids and extinction of L-ribonucleic acids.

  4. The long and winding road from chiral effective Lagrangians to nuclear structure

    CERN Document Server

    Meißner, Ulf-G

    2015-01-01

    I review the chiral dynamics of nuclear physics. In the first part, I discuss the new developments in the construction of the forces between two, three and four nucleons which have been partly carried out to fifth order in the chiral expansion. It is also shown that based on these forces in conjunction with the estimation of the corresponding theoretical uncertainties, the need for three-nucleon forces in few nucleon systems can be unambiguously established. I also introduce the lattice formulation of these forces, which allow for truly ab initio calculations of nuclear structure and reactions. I present some pertinent results of the nuclear lattice approach. Finally, I discuss how few-nucleon systems and nuclei can be used to explore symmetries and physics within and beyond the Standard Model.

  5. The Life Story of Hydrogen Peroxide III: Chirality and Physical Effects at the Dawn of Life.

    Science.gov (United States)

    Ball, Rowena; Brindley, John

    2016-03-01

    It is a remarkable observed fact that all life on Earth is homochiral, its biology using exclusively the D-enantiomer of ribose, the sugar moiety of the ribonucleic acids, and the L-enantiomers of the chiral amino acids. Motivated by concurrent work that elaborates further the role of hydrogen peroxide in providing an oscillatory drive for the RNA world (Ball & Brindley 2015a, J. R. Soc. Interface 12, 20150366, and Ball & Brindley 2015b, this journal, in press), we reappraise the structure and physical properties of this small molecule within this context. Hydrogen peroxide is the smallest, simplest molecule to exist as a pair of non-superimposable mirror images, or enantiomers, a fact which leads us to develop the hypothesis that its enantiospecific interactions with ribonucleic acids led to enantioselective outcomes. We propose a mechanism by which these chiral interactions may have led to amplification of D-ribonucleic acids and extinction of L-ribonucleic acids.

  6. Magnetohydrodynamics of Chiral Relativistic Fluids

    CERN Document Server

    Boyarsky, Alexey; Ruchayskiy, Oleg

    2015-01-01

    We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.

  7. Synthesis of chiral phosphonoacetamides and their toxic effects on paramecium sp

    Directory of Open Access Journals (Sweden)

    Samia Guezane Lakoud

    2015-02-01

    Full Text Available Three chiral phosphonoacetamides were prepared by an alternative method . For this purpose, 2-(diethoxyphosphorylacetic acid was prepared from ethyl 2-bromoacetate by treatment of P(OEt 3 followed by saponification of the ester with K 2CO 3. BOP activated amidation of the 2-(diethoxyphosphorylacetic acid with (S-amino acids gave the corresponding phosphonoaceteamides. Growth inhibition of two phosphonoacetamides on Paramecium sp. were studied.

  8. Anomaly-driven inverse cascade and inhomogeneities in a magnetized chiral plasma in the early Universe

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Vilchinskii, S

    2016-01-01

    By making use of a simple model that captures the key features of the anomalous Maxwell equations, we study the role of inhomogeneities on the evolution of magnetic fields in a chiral plasma. We find that inhomogeneities of the chiral asymmetry by themselves do not prevent the anomaly-driven inverse cascade and, as in the homogeneous case, the magnetic helicity is transferred from shorter to longer wavelength helical modes of the magnetic field. However, we also find that the evolution appears to be sensitive to the effects of diffusion. In the case when diffusion is negligible, the inverse cascade slows down considerably compared to the homogeneous scenario. In the case of the primordial plasma, though, we find that the diffusion is substantial and efficiently suppresses chiral asymmetry inhomogeneities. As a result, the inverse cascade proceeds practically in the same way as in the chirally homogeneous model.

  9. Chiral retrieval method based on right circularly polarized and left circularly polarized waves

    International Nuclear Information System (INIS)

    The free-wave characterization of metamaterials is usually carried out by illuminating a sample with a linearly polarized plane electromagnetic wave. At points before and after the sample, sensors are introduced to measure the transverse components of the field, in order to compute the reflection and transmission coefficients related with the co- and cross-polar field components. Based on this information, retrieval algorithms allow parameters like rotation angle, effective chirality and refraction index to be calculated. Here we propose to use the transmission signals under illumination with plane circularly polarized waves, without sensing the reflection signal, to calculate the chirality parameter and the rotation angle due to the electromagnetic activity of the material. This new method, which allows a simpler characterization of a chiral slab, is applied to the study of metamaterials composed of both periodic and random distributions of metallic structures with chiral symmetry. The experimental results are contrasted with simulations and alternative measurements obtained using linearly polarized waves. (paper)

  10. Quantum Monte Carlo calculations of neutron matter with chiral three-body forces

    Science.gov (United States)

    Tews, I.; Gandolfi, S.; Gezerlis, A.; Schwenk, A.

    2016-02-01

    Chiral effective field theory (EFT) enables a systematic description of low-energy hadronic interactions with controlled theoretical uncertainties. For strongly interacting systems, quantum Monte Carlo (QMC) methods provide some of the most accurate solutions, but they require as input local potentials. We have recently constructed local chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading order (N2LO ). Chiral EFT naturally predicts consistent many-body forces. In this paper, we consider the leading chiral three-nucleon (3N) interactions in local form. These are included in auxiliary field diffusion Monte Carlo (AFDMC) simulations. We present results for the equation of state of neutron matter and for the energies and radii of neutron drops. In particular, we study the regulator dependence at the Hartree-Fock level and in AFDMC and find that present local regulators lead to less repulsion from 3N forces compared to the usual nonlocal regulators.

  11. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    International Nuclear Information System (INIS)

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)

  12. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    Energy Technology Data Exchange (ETDEWEB)

    Buballa, Michael; Carignano, Stefano [Technische Universitaet Darmstadt, Theoriezentrum, Institut fuer Kernphysik, Darmstadt (Germany)

    2016-03-15

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)

  13. Mechanically generated surface chirality at the nanoscale.

    Science.gov (United States)

    Ferjani, Sameh; Choi, Yoonseuk; Pendery, Joel; Petschek, Rolfe G; Rosenblatt, Charles

    2010-06-25

    A substrate coated with an achiral polyimide alignment layer was scribed bidirectionally with the stylus of an atomic force microscope to create an easy axis for liquid crystal orientation. The resulting noncentrosymmetric topography resulted in a chiral surface that manifests itself at the molecular level. To show this unambiguously, a planar-aligned negative dielectric aniostropy achiral nematic liquid crystal was placed in contact with the surface and subjected to an electric field E. The nematic director was found to undergo an azimuthal rotation approximately linear in E. This so-called "surface electroclinic effect" is a signature of surface chirality and was not observed when the polyimide was treated for a centrosymmetric topography, and therefore was nonchiral. PMID:20867414

  14. Effect of template on chiral separation of phenylalanine using molecularly imprinted membrane in aqueous medium

    International Nuclear Information System (INIS)

    Wet phase inversion method was used to prepare L-Phenylalanine (L-Phe) and D-Phenylalanine (D-Phe) imprinted poly ((acrylonitrile)-co-(acrylic acid)) membranes for chiral separation. Ultrafiltration experiments were conducted to evaluate the chiral separation ability of the prepared membrane towards racemate aqueous solution of Phenylalanine. The continuous permselectivity was observed by novel membrane. The chiral resolution ability of L-Phe imprinted membrane was much better than that of D-Phe. It was observed that both membranes simultaneously, selectively reject, selectively adsorbed and selectively permeate solute. The achieved adsorption selectivities of L-Phe imprinted membrane (AlphaAds)L and D-Phe imprinted membrane (AlphaAds)D were 2.6 and 2.40 respectively. Permselectivity of L-Phe imprinted membrane (AlphaPerm)L was 2.56 while D-Phe imprinted membrane permselectivity (AlphaPerm)D was 2.03. The rejection selectivities of L-Phe and D-Phe imprinted membranes were (AlphaRej)L=0.32 and (AlphaRej)D =0.28 respectively. (author)

  15. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten;

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  16. Unified chiral analysis of the vector meson spectrum from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Wes Armour; Chris Allton; Derek Leinweber; Anthony Thomas; Ross Young

    2005-10-13

    The chiral extrapolation of the vector meson mass calculated in partially-quenched lattice simulations is investigated. The leading one-loop corrections to the vector meson mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. To incorporate the effect of the opening decay channel as the chiral limit is approached, the extrapolation is studied using a necessary phenomenological extension of chiral effective field theory. This chiral analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of $M_\\rho$ in excellent agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are much less enlightening.

  17. Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry

    Directory of Open Access Journals (Sweden)

    Michiya Fujiki

    2014-08-01

    Full Text Available Controlled mirror symmetry breaking arising from chemical and physical origin is currently one of the hottest issues in the field of supramolecular chirality. The dynamic twisting abilities of solvent molecules are often ignored and unknown, although the targeted molecules and polymers in a fluid solution are surrounded by solvent molecules. We should pay more attention to the facts that mostly all of the chemical and physical properties of these molecules and polymers in the ground and photoexcited states are significantly influenced by the surrounding solvent molecules with much conformational freedom through non-covalent supramolecular interactions between these substances and solvent molecules. This review highlights a series of studies that include: (i historical background, covering chiral NaClO3 crystallization in the presence of d-sugars in the late 19th century; (ii early solvent chirality effects for optically inactive chromophores/fluorophores in the 1960s–1980s; and (iii the recent development of mirror symmetry breaking from the corresponding achiral or optically inactive molecules and polymers with the help of molecular chirality as the solvent use quantity.

  18. Effective and fundamental quantum fields at criticality

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Michael

    2010-10-28

    We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)

  19. Chiral Anomaly in Toroidal Carbon Nanotubes

    OpenAIRE

    Sasaki, K.

    2001-01-01

    It is pointed out that the chiral anomaly in 1+1 dimensions should be observed in toroidal carbon nanotubes on a planar geometry with varying magnetic field. We show that the chiral anomaly is closely connected with the persistent current in a one-dimensional metallic ring.

  20. A strict QCD inequality and mechanisms for chiral symmetry breaking

    International Nuclear Information System (INIS)

    A strict QCD inequality allows one to discuss mechanisms proposed for breaking the chiral symmetry in QCD. ''Order parameters'' are identified such that if sufficiently many gauge field configurations contribute to them, spontaneous chiral symmetry breaking follows. As an application the role of instantons is discussed in chiral symmetry breaking in QCD. (orig.)