NN Interaction in Chiral Constituent Quark Models
Valcarce, A; González, P
2003-01-01
We review the actual state in the description of the NN interaction by means of chiral constituent quark models. We present a series of relevant features that are nicely explained within the quark model framework.
Chiral symmetry and the constituent quark model
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Baryons in chiral constituent quark model
Glozman, L Ya
1996-01-01
Beyond the spontaneous chiral symmetry breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a flavor-spin chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks. One cannot exclude, however, the possibility that this flavor-spin interaction has an appreciable vector- and higher meson exchange component.
Baryons in a chiral constituent quark model
Glozman, L Ya
1998-01-01
In the low-energy regime light and strange baryons should be considered as systems of constituent quarks with confining interaction and a chiral interaction that is mediated by Goldstone bosons as well as by vector and scalar mesons. The flavor-spin structure and sign of the short-range part of the spin-spin force reduces the $SU(6)_{FS}$ symmetry down to $SU(3)_F \\times SU(2)_S$, induces hyperfine splittings and provides correct ordering of the lowest states with positive and negative parity. There is a cancellation of the tensor force from pseudoscalar- and vector-exchanges in baryons. The spin-orbit interactions from $\\rho$-like and $\\omega$-like exchanges also cancel each other in baryons while they produce a big spin-orbit force in NN system. A unified description of light and strange baryon spectra calculated in a semirelativistic framework is presented. It is demonstrated that the same short-range part of spin-spin interaction between the constituent quarks induces a strong short-range repulsion in $NN...
Meson cloud effects on the pion quark distribution function in the chiral constituent quark model
Watanabe, Akira; Suzuki, Katsuhiko
2016-01-01
We investigate the valence quark distribution function of the pion $v^{\\pi}(x,Q^2)$ in the framework of the chiral constituent quark model and evaluate the meson cloud effects on $v^{\\pi}(x,Q^2)$. We explicitly demonstrate how the meson cloud effects affect $v^{\\pi}(x,Q^2)$ in detail. We find that the meson cloud correction causes an overall 32\\% reduction of the valence quark distribution and an enhancement at the small Bjorken $x$ regime. Besides, we also find that the dressing effect of the meson cloud will make the valence quark distribution to be softer in the large $x$ region.
Light baryons in a constituent quark model with chiral dynamics
Glozman, L Ya; Plessas, W
1996-01-01
It is shown from rigorous three-body Faddeev calculations that the masses of all 14 lowest states in the N and \\Delta spectra can be described within a constituent quark model with a Goldstone-boson-exch ange interaction plus linear confinement between the constituent quarks.
Chiral symmetry, constituent quarks and quasi-elastic electron-nucleus scattering
Henley, E. M.; Krein, G.
1989-11-01
The effects of chiral symmetry breaking are examined for quasi-elastic electron scattering on nuclei. Nucleons are assumed to be composed of constituent quarks with masses that depend on density. This density dependence is determined on the basis of the Nambu-Jona-Lasinio model. It is found that the effects of chiral symmetry breaking are in the right direction and the right order of magnitude to explain the discrepancies between theory and experiment. On leave from Departamento de Fisica, Universidade Federal de Santa Maria, 97100 Santa Maria, R.S., Brazil.
Quark structure of chiral solitons
Diakonov, D
2004-01-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
The Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model
Stancu, F; Glozman, L Ya; Stancu, Fl.
1997-01-01
We study the short-range nucleon-nucleon interaction in a chiral constituent quark model by diagonalizing a Hamiltonian comprising a linear confinement and a Goldstone boson exchange interaction between quarks. The six-quark harmonic oscillator basis contains up to two excitation quanta. We show that the highly dominant configuration is $\\mid s^4p^2[42]_O [51]_{FS}>$ due to its specific flavour-spin symmetry. Using the Born-Oppenheimer approximation we find a strong effective repulsion at zero separation between nucleons in both $^3S_1$ and $^1S_0$ channels. The symmetry structure of the highly dominant configuration implies the existence of a node in the S-wave relative motion wave function at short distances. The amplitude of the oscillation of the wave function at short range will be however strongly suppressed. We discuss the mechanism leading to the effective short-range repulsion within the chiral constituent quark model as compared to that related with the one-gluon exchange interaction.
Nucleon structure functions and longitudinal spin asymmetries in the chiral quark constituent model
Dahiya, Harleen
2016-01-01
We have analysed the phenomenological dependence of the spin independent ($F_1^{p,n}$ and $F_2^{p,n}$) and the spin dependent ($g_1^{p,n}$) structure functions of the nucleon on the the Bjorken scaling variable $x$ using the unpolarized distribution functions of the quarks $q(x)$ and the polarized distribution functions of the quarks $\\Delta q(x)$ respectively. The chiral constituent quark model ($\\chi$CQM), which is known to provide a satisfactory explanation of the proton spin crisis and related issues in the nonperturbative regime, has been used to compute explicitly the valence and sea quark flavor distribution functions of $p$ and $n$. In light of the improved precision of the world data, the $p$ and $n$ longitudinal spin asymmetries ($A_1^p(x)$ and $A_1^n(x)$) have been calculated. The implication of the presence of the sea quarks has been discussed for ratio of polarized to unpolarized quark distribution functions for up and down quarks in the $p$ and $n$ $\\frac{\\Delta u^p(x)}{u^p(x)}$, $\\frac{\\Delta d...
Nucleon shape and electromagnetic form factors in the chiral constituent quark model
Dahiya, Harleen
2010-01-01
The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.
Sigma terms of octet baryons in the extended chiral constituent quark model
An, C S
2014-01-01
{\\bf Background:} Quantitative insight into the respective roles played by the valence flavors and the sea quark-antiquark pairs in the baryons is crucial in deepening our comprehension of nonperturbative QCD. {\\bf Purpose:} Study the meson-baryon $\\sigma$-terms for the ground-state octet baryons $B \\equiv N,~\\Lambda,~\\Sigma,~\\Xi$. {\\bf Methods:} Within an extended chiral constituent quark model, we investigate contributions from all possible five-quark components to the $\\sigma$-terms. The probabilities of the quark-antiquark components in the baryons wave functions are calculated by taking the baryons to be admixtures of three- and five-quark components, with the relevant transitions handled {\\it via} the $^{3}P_{0}$ mechanism. {\\bf Results:} Predictions are obtained by using input parameters taken from the literature. Numerical results for the meson-nucleon and the dimensionless ${\\sigma}$-terms, $\\bar {\\sigma}_{Bl}$ and $\\bar {\\sigma}_{Bs}$, are reported. {\\bf Conclusions:} Our results turn out to be, in ...
Charge radii of octet and decuplet baryons in chiral constituent quark model
Indian Academy of Sciences (India)
Neetika Sharma; Harleen Dahiya
2013-09-01
The charge radii of the spin-$\\dfrac{1}{2}^{+}$ octet and spin-$\\dfrac{3}{2}^{+}$ decuplet baryons have been calculated in the framework of chiral constituent quark model ( CQM) using a general parametrization method (GPM). Our results are not only comparable with the latest experimental studies but also agree with other phenomenological models. The effects of (3) symmetry breaking pertaining to the strangeness contribution and GPM parameters pertaining to the one-, two- and three-quark contributions have also been investigated in detail and are found to be the key parameters in understanding the non-zero values for the neutral octet $(n, \\sum^{0}, \\Xi, )$ and decuplet $(^{0}, \\sum^{*0}, \\Xi^{*0})$ baryons.
Indian Academy of Sciences (India)
H Weigel
2003-11-01
In this talk I review studies of hadron properties in bosonized chiral quark models for the quark ﬂavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.
Chiral Dynamics of Baryons in a Lorentz Covariant Quark Model
Faessler, A; Lyubovitskij, V E; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
We develop a manifestly Lorentz covariant chiral quark model for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons. The approach is based on a non-linear chirally symmetric Lagrangian, which involves effective degrees of freedom - constituent quarks and the chiral (pseudoscalar meson) fields. In a first step, this Lagrangian can be used to perform a dressing of the constituent quarks by a cloud of light pseudoscalar mesons and other heavy states using the calculational technique of infrared dimensional regularization of loop diagrams. We calculate the dressed transition operators with a proper chiral expansion which are relevant for the interaction of quarks with external fields in the presence of a virtual meson cloud. In a second step, these dressed operators are used to calculate baryon matrix elements. Applications are worked out for the masses of the baryon octet, the meson-nucleon sigma terms, the magnetic moments of the baryon octet, the nucleon charge...
Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin
1999-01-01
We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.
Faessler, A; Holstein, Barry R; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Thomas; Holstein, Barry R.; Lyubovitskij, Valery E.; Nicmorus, Diana; Pumsa-ard, Kem
2006-01-01
We calculate magnetic moments of light baryons and N -> Delta gamma transition characteristics using a manifestly Lorentz covariant chiral quark approach for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons.
Effective Q-Q Interactions in Constituent Quark Models
Glozman, L Ya; Plessas, W; Varga, K; Wagenbrun, R F
1998-01-01
We study the performance of some recent potential models suggested as effective interactions between constituent quarks. In particular, we address constituent quark models for baryons with hybrid Q-Q interactions stemming from one-gluon plus meson exchanges. Upon recalculating two of such models we find them to fail in describing the N and \\Delta spectra. Our calculations are based on accurate solutions of the three-quark systems in both a variational Schrödinger and a rigorous Faddeev approach. It is argued that hybrid {Q-Q} interactions encounter difficulties in describing baryon spectra due to the specific contributions from one-gluon and pion exchanges together. In contrast, a chiral constituent quark model with a Q-Q interaction solely derived from Goldstone-boson exchange is capable of providing a unified description of both the N and \\Delta spectra in good agreement with phenomenology.
Nuclear Structure Functions from Constituent Quark Model
Arash, F; Arash, Firooz; Atashbar-Tehrani, Shahin
1999-01-01
We have used the notion of the constituent quark model of nucleon, where a constituent quark carries its own internal structure, and applied it to determine nuclear structure functions ratios. It is found that the description of experimental data require the inclusion of strong shadowing effect for $x<0.01$. Using the idea of vector meson dominance model and other ingredients this effect is calculated in the context of the constituent quark model. It is rather striking that the constituent quark model, used here, gives a good account of the data for a wide range of atomic mass number from A=4 to A=204.
An Extended Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANG Zong-Ye; YU You-Wen; WANG Ping; DAI Lian-Rong
2003-01-01
The chiral SU(3) quark model is extended by including the vector meson exchanges to describe the short range interactions. The phase shifts of NN scattering are studied in this model. Compared with the results of the chiral SU(3) quark model in which only the pseudo-scalar and scalar chiralfields are considered, the phase shifts of 1 So wave are obviously improved.
Chiral phases of fundamental and adjoint quarks
Energy Technology Data Exchange (ETDEWEB)
Natale, A. A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica - UNESP Rua Dr. Bento T. Ferraz, 271, Bl.II - 01140-070, São Paulo, SP (Brazil)
2016-01-22
We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.
Mesons in the Constituent Quark Model
Institute of Scientific and Technical Information of China (English)
WANG Li; PING Jia-Lun
2007-01-01
The quark-antiquark (q(-q)) spectrum is studied by solving the Schrǒdinger equation in the framework of non-relativistic constituent quark model. An overall good fit to the experimental data of meson is obtained. The interactions between quark and antiquark consist of quadratic colour confinement-exchange, one-gluon-exchange, and Goldstone-boson-exchange potentials.
Quark confinement in a constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Langfeld, K.; Rho, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique
1995-07-01
On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.
Chiral transition of fundamental and adjoint quarks
Energy Technology Data Exchange (ETDEWEB)
Capdevilla, R.M. [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Doff, A., E-mail: agomes@utfpr.edu.br [Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil)
2014-01-20
The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one.
Chiral dynamics of baryons in the perturbative chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Pumsa-ard, K.
2006-07-01
In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints
Gluonic structure of the constituent quark
Energy Technology Data Exchange (ETDEWEB)
Kochelev, Nikolai, E-mail: kochelev@theor.jinr.ru [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 (Russian Federation); Lee, Hee-Jung [Department of Physics Education, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Zhang, Baiyang; Zhang, Pengming [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)
2016-06-10
Based on both the constituent quark picture and the instanton model for QCD vacuum, we calculate the unpolarized and polarized gluon distributions in the constituent quark and in the nucleon. Our approach consists of the two main steps. At the first step, we calculate the gluon distributions inside the constituent quark generated by the perturbative quark–gluon interaction, the non-perturbative quark–gluon interaction, and the non-perturbative quark–gluon–pion anomalous chromomagnetic interaction. The non-perturbative interactions are related to the existence of the instantons, strong topological fluctuations of gluon fields, in the QCD vacuum. At the second step, the convolution model is applied to derive the gluon distributions in the nucleon. A very important role of the pion field in producing the unpolarized and the polarized gluon distributions in the hadrons is discovered. We discuss a possible solution of the proton spin problem.
Decaying hadrons within constituent-quark models
Kleinhappel, Regina
2012-01-01
Within conventional constituent-quark models hadrons come out as stable bound states of the valence (anti)quarks. Thereby the resonance character of hadronic excitations is completely ignored. A more realistic description of hadron spectra can be achieved by including explicit mesonic degrees of freedom, which couple directly to the constituent quarks. We will present a coupled-channel formalism that describes such hybrid systems in a relativistically invariant way and allows for the decay of excited hadrons. The formalism is based on the point-form of relativistic quantum mechanics. If the confining forces between the (anti)quarks are described by instantaneous interactions it can be formally shown that the mass-eigenvalue problem for a system that consists of dynamical (anti)quarks and mesons reduces to a hadronic eigenvalue problem in which the eigenstates of the pure confinement problem (bare hadrons) are coupled via meson loops. The only point where the quark substructure enters are form factors at the m...
QCD phase transition with chiral quarks and physical quark masses.
Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao
2014-08-22
We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.
Chiral Lagrangian and chiral quark model from confinement in QCD
Simonov, Yu A
2015-01-01
The effective chiral Lagrangian in both nonlocal form $L_{ECCL}$ and standard local form $L_{ECL}$ are derived in QCD using the confining kernel, obtained in the vacuum correlator formalism. As a result all coefficients of $L_{ECL}$ can be computed via $q\\bar q$ Green's functions. In the $p^2$ order of $L_{ECL}$ one obtains GOR relations and quark decay constants $f_a$ are calculated $a=1,...8$, while in the $p^4$ order the coefficients $L_1, L_2, L_3,L_4, L_5, L_6$ are obtained in good agreement with the values given by data. The chiral quark model is shown to be a simple consequence of $L_{ECCL}$ with defined coefficients. It is demonstrated that $L_{ECCL}$ gives an extension of the limiting low-energy Lagrangian $L_{ECL}$ to arbitrary momenta.
Chiral quark model with relativistic kinematics
Garcilazo, H
2003-01-01
The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.
The neutron electric dipole form factor in the perturbative chiral quark model
Dib, C; Gutsche, T; Kovalenko, S; Kuckei, J; Lyubovitskij, V E; Pumsa-ard, K; Dib, Claudio; Faessler, Amand; Gutsche, Thomas; Kovalenko, Sergey; Kuckei, Jan; Lyubovitskij, Valery E.; Pumsa-ard, Kem
2006-01-01
We calculate the electric dipole form factor of the neutron in a perturbative chiral quark model, parameterizing CP-violation of generic origin by means of effective electric dipole moments of the constituent quarks and their CP-violating couplings to the chiral fields. We discuss the relation of these effective parameters to more fundamental ones such as the intrinsic electric and chromoelectric dipole moments of quarks and the Weinberg parameter. From the existing experimental upper limits on the neutron EDM we derive constraints on these CP-violating parameters.
Non-leptonic decays in an extended chiral quark model
Eeg, J O
2012-01-01
We consider the color suppressed (nonfactorizable) amplitude for the decay mode $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $. We treat the $b$-quark in the heavy quark limit and the energetic light ($u,d,s$) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ is suppressed by a factor of order $\\Lambda_{QCD}/m_b$ with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for $\\bar{B_{d}^0} \\rightarrow \\pi^...
Distributions and correlations of constituent quarks in jets
Institute of Scientific and Technical Information of China (English)
黄瑞典; 蔡勖; 钱婉燕; 杨纯斌
2011-01-01
In the frame of the quark recombination model, we study the momentum distributions and correlations of constituent quarks in jets by analyzing the final state hadrons generated by PYTHIA for the hard parton fragmentation processes in vacuum. Parameterizat
Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model
Institute of Scientific and Technical Information of China (English)
宗红石; 吴小华; 侯丰尧; 赵恩广
2004-01-01
A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.
Constituent gluons and the static quark potential
Energy Technology Data Exchange (ETDEWEB)
Greensite, Jeff [San Francisco State Univ., CA (United States); Szczepaniak, Adam P. [Indiana Univ., Bloomington, IN (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.
QQqq Four-Quark Bound States in Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANG Ming; ZHANG Hai-Xia; ZHANG Zong-Ye
2008-01-01
The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JP=1+, I=0 and for the ccnn (JP=1+, I=0) configuration, which is not bound but slightly above the D*D* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the chiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.
Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator
Institute of Scientific and Technical Information of China (English)
ZHANG Yan-Bin; SUN Wei-Min; L(U) Xiao-Fu; ZONG Hong-Shi
2009-01-01
The quark propagator in the Landau gauge is studied on the lattice,including the quenched and the unquenched results.No obvious unquenched effects are found by comparing the quenched quark propagator with the dynamical one.For the quenched and unquenched configurations,the results with different quark masses have been computed.For the quark mass function,a nonlinear chiral extrapolating behavior is found in the in/tared region for both the quenched and dynamical results.
Study of Ratio of Proton Momentum Distributions with a Chiral Quark Model
Institute of Scientific and Technical Information of China (English)
LIU Jian; DONG Yu-Bing
2005-01-01
The ratio between the anomalous magnetic moments of proton and neutron has recently been suggested to be connected to the ratio of proton momentum fractions carried by the valence quarks inside it. This moment fraction ratio is respectively evaluated by using constituent quark model and chiral quark model in order to check meson cloud effect. Our results show that the meson cloud effect is remarkable to the ratio of the proton momentum fractions, and therefore, this ratiois a sensitive test for the meson cloud effect as well as for the SU(6) symmetry breaking effect.
Ruggieri, M
2016-01-01
In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a quark-meson model with vacuum fluctuations included. Vacuum fluctuations give a divergent contribution to the vacuum energy, so the latter has to be renormalized before computing physical quantities. The vacuum term is important for restoration of chiral symmetry at finite temperature and $\\mu_5\
Nucleon polarizabilities in the perturbative chiral quark model
Dong, Y; Gutsche, T; Kuckei, J; Lyubovitskij, V E; Pumsa-ard, K; Shen, P; Faessler, Amand; Gutsche, Th.
2006-01-01
The nucleon polarizabilities alpha(E) and beta(M) are studied in the context of the perturbative chiral quark model. We demonstrate that meson cloud effects are sufficient to explain the electric polarizability of nucleon. Contributions of excite quark states to the paramagnetic polarizability are dominant and cancel the diamagnetic polarizability arising from the chiral field. The obtained results are compared to data and other theoretical predictions.
Quark Mass Correction to Chiral Separation Effect and Pseudoscalar Condensate
Guo, Er-dong
2016-01-01
We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.
Nucleon and gamma N -> Delta lattice form factors in a constituent quark model
Ramalho, G
2008-01-01
A covariant quark model, based both on the spectator formalism and on Vector Meson Dominance, and previously calibrated by the physical data, is here extended to the unphysical region of the lattice data by means of one single extra adjustable parameter - the constituent quark mass in the chiral limit. We calculated the Nucleon (N) and the Gamma N -> Delta form factors in the universe of values for that parameter described by quenched lattice QCD. A qualitative description of the Nucleon and Gamma N -> Delta form factors lattice data is achieved for light pion masses.
On Possible S-Wave Bound States for an N-(N) System Within a Constituent Quark Model
Institute of Scientific and Technical Information of China (English)
CHANG Chao-Hsi; PANG Hou-Rong
2005-01-01
We try to apply a constituent quark model (a variety chiral constituent quark model) and the resonating group approach for the multi-quark problems to compute the effective potential between the NN- in S-wave (the quarks in the nucleons N and N-, and the two nucleons relatively as well, are in S wave) so as to see the possibility if there may be a tight bound state of six quarks as indicated by a strong enhancement at threshold of pp- in J/ψ and B decays. The effective potential which we obtain in terms of the model and approach shows if the experimental enhancement is really caused by a tight S-wave bound state of six quarks, then the quantum number of the bound state is very likely to be I = 1, JPC= 0-+.
Parton distributions for the pion in a chiral quark model
Ruiz-Arriola, E
2001-01-01
Parton distributions for the pion are studied in a chiral quark model characterized by a quark propagator for which a spectral representation is assumed. Electromagnetic and chiral symmetry constraints are imposed through the relevant Ward-Takahashi identities for flavoured vertex functions. Finiteness of the theory, requires the spectral function to be non-positive definite. Straightforward calculation yields the result that the pion structure function becomes one in the chiral limit, regardless of the details of the spectral function. LO and NLO evolution provide a satisfactory description of phenomenological parameterizations of the valence distribution functions but fails to describe gluon and sea distributions.
Distributions and correlations of constituent quarks in jets
Institute of Scientific and Technical Information of China (English)
HUANG Rui-Dian; CAI Xu; QIAN Wan-Yan; YANG Chun-Bin
2011-01-01
In the frame of the quark recombination model, we study the momentum distributions and cor- relations of constituent quarks in jets by analyzing the final state hadrons generated by PYTHIA for the hard parton fragmentation processes in vacuum. Parameterizations for the distributions are tabulated.
Quark distribution functions in the chiral quark-soliton model cancellation of quantum anomalies
Göke, K; Polyakov, M V; Schweitzer, P; Urbano, D
2001-01-01
In the framework of the chiral quark-soliton model of the nucleon we investigate the properties of the polarized quark distribution. In particular we analyse the so called anomalous difference between the representations of the quark distribution functions in terms of occupied and non-occupied quark states. By an explicit analytical calculation it is shown that this anomaly is absent in the polarized isoscalar distribution \\Delta u + \\Delta d, which is ultaviolet finite. In the case of the polarized isovector quark distribution which is also needed for the regularization of the ultraviolet divergence.
Characteristics of the chiral phase transition in nonlocal quark models
Dumm, D G
2004-01-01
The characteristics of the chiral phase transition are analyzed within the framework of chiral quark models with nonlocal interactions in the mean field approximation (MFA). In the chiral limit, we show that there is a region of low values of the chemical potential in which the transition is a second order one. In that region, it is possible to perform a Landau expansion and determine the critical exponents which, as expected, turn out to be the MFA ones. Our analysis also allows to obtain semi-analytical expressions for the transition curve and the location of the tricritical point. For the case of finite current quark masses, we study the behavior of various thermodynamical and chiral response functions across the phase transition.
Successes and failures of the constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Lipkin, H.J.
1982-01-01
Our approach considers the model as a possible bridge between QCD and the experimental data and examines its predictions to see where these succeed and where they fail. We also attempt to improve the model by looking for additional simple assumptions which give better fits to the experimental data. But we avoid complicated models with too many ad hoc assumptions and too many free parameters; these can fit everything but teach us nothing. We define our constituent quark model by analogy with the constituent electron model of the atom and the constituent nucleon model of the nucleus. In the same way that an atom is assumed to consist only of constituent electrons and a central Coulomb field and a nucleus is assumed to consist only of constituent nucleons hadrons are assumed to consist only of their constituent valence quarks with no bag, no glue, no ocean, nor other constituents. Although these constituent models are oversimplified and neglect other constituents we push them as far as we can. Atomic physics has photons and vacuum polarization as well as constituent electrons, but the constituent model is adequate for calculating most features of the spectrum when finer details like the Lamb shift are neglected. 54 references.
KN Phase Shifts in Chiral SU（3） Quark Model
Institute of Scientific and Technical Information of China (English)
HUANGFei; ZHANGZong-Ye; YUYou-Wen
2004-01-01
The isospin I = 0 and I = 1 kaon-nucleon S and P partial waves phase shifts have been studied in the chiral SU(3) quark model by solving a resonating group method equation. When the parameters of the chiral fields are taken in a reasonable region, the numerical results of S-wave are in good agreement with the experimental data, and the P-wave phase shifts can also be explained qualitatively by the calculation of only central force considered.
A Euclidean bridge to the relativistic constituent quark model
Hobbs, T J; Miller, Gerald A
2016-01-01
${\\bf Background}$ Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger Equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). ${\\bf Purpose}$ Seeking to bridge these complementary worldviews, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. ${\\bf Method}$ To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark $+$ scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of ...
Constituent quark masses from modified perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Cabo Montes de Oca, A. [Instituto de Cibernetica, Matematica y Fisica, La Habana (Cuba); International Institute for Theoretical and Applied Physics (IITAP), UNESCO and Iowa State University, Ames, IA (United States); Rigol Madrazo, M. [Centro de Estudios Aplicados al Desarrollo Nuclear, La Habana (Cuba)
2002-03-01
A recently proposed modified perturbative expansion for QCD incorporating gluon condensation is employed to evaluate the quark and gluon self-energy corrections in first approximation. The results predict mass values of 1/3 of the nucleon mass for the light quarks u, d, and s and a monotonously growing variation with the current mass. The only phenomenological input is that left angle G{sup 2} right angle is evaluated up to order g{sup 2} as a function of the unique parameter C defining the modified propagator, and then C is fixed to give a current estimate of left angle g{sup 2}G{sup 2} right angle. The light quarks u and d as a result are found to be confined and the s, c, b and t ones show damped propagation modes, suggesting a model for the large differences in stability between the nucleons and the higher resonances. The above properties of quark modes diverge from the fully confinement result following from the similar gluon propagator previously considered by Munczek and Nemirovski. On the other hand, the condensate effects on the gluon self-energy furnish a tachyonic mass shell as predicted by the Fukuda analysis of gluon condensation in QCD. (orig.)
Strangeness s = -3 dibaryons in a chiral quark model
Lian-Rong, D; Chun-Ran, L; Lei, T; Lian-Rong, Dai; Dan, Zhang; Chun-Ran, Li; Lei, Tong
2006-01-01
The structures of $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ with strangeness $s=-3$ are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The first model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon(NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The effect from the vector meson fields is very similar to that from the one-gluon exchange interaction, both in the chiral SU(3) quark model and the extended chiral SU(3) quark model, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems are wealy bound states. The second model parameters are also taken from our previous work by fitting the KN scattering process. when the mixing of scalar mesons are considered, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems change into unbound...
H-particle in a chiral quark model
Shimizu, K
1999-01-01
In this paper we discuss the binding energy of the H-particle using a chiral quark model, where pion exchange plays an important role to reproduce the mass difference between the nucleon and DELTA resonance. Since the main source for the bound H-particle is believed to be the color magnetic interaction, which gives the nucleon and DELTA mass difference, it is very interesting to investigate whether the chiral quark model gives rise to the bound H-particle or not. We employ an extended resonating group method in order to take into account the possibility of a change of baryon wave functions when two baryons interact with each other. We found that a change of baryon size together with the Hamiltonian which consists of gluon, pseudoscalar meson and sigma meson exchange potentials gives rise to the bound H-particle. The binding energy is found to be about 25 MeV in a hybrid chiral quark model. Differences between the ordinary gluon dominant model and chiral quark models are also investigated. It is found that a p...
ND^(*) and NB^(*) interactions in a chiral quark model
Yang, Dan; Zhang, Dan
2015-01-01
ND and ND^* interactions become a hot topic after the observation of new charmed hadrons \\Sigma_c(2800) and \\Lambda_c(2940)^+. In this letter, we have preliminary investigated S-wave ND and ND^* interactions with possible quantum numbers in the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving the resonating group method equation. The numerical results show that the interactions between N and D or N and D^* are both attractive, which are mainly from \\sigma exchanges between light quarks. Further bound-state studies indicate the attractions are strong enough to form ND or ND^* molecules, except for (ND)_{J=3/2} and (ND^*)_{J=3/2} in the chiral SU(3) quark model. In consequence ND system with J=1/2 and ND^* system with J=3/2 in the extended SU(3) quark model could correspond to the observed \\Sigma_c(2800) and \\Lambda_c(2940)^+, respectively. Naturally, the same method can be applied to research NB and NB^* interactions, and similar conclusions obtained, i.e. NB and NB^* attractive fo...
Thermodynamics of quark matter with a chiral imbalance
Farias, Ricardo L. S.; Duarte, Dyana C.; Krein, Gastão; Ramos, Rudnei O.
2016-10-01
We show how a scheme of rewriting a divergent momentum integral can conciliate results obtained with the Nambu-Jona-Lasinio model and recent lattice results for the chiral transition in the presence of a chiral imbalance in quark matter. Purely vacuum contributions are separated from medium-dependent regularized momentum integrals in such a way that one is left with ultraviolet divergent momentum integrals that depend on vacuum quantities only. The scheme is applicable to other commonly used effective models to study quark matter with a chiral imbalance, it allows us to identify the source of their difficulties in reproducing the qualitative features of lattice results, and enhances their predictability and uses in other applications.
Extended Goldstone-boson-exchange constituent quark model
Wagenbrunn, R F; Plessas, W; Varga, K
2000-01-01
We discuss an updated version of the Goldstone-boson-exchange chiral quark model extended to include in addition to pseudoscalar meson exchanges also vector and scalar meson exchanges. The latter ingredients are viewed as effective parametrizations of multiple Goldstone-boson exchanges in baryons. The extended model allows for an accurate description of all light and strange baryon spectra and at the same time produces the right properties for deducing baryon-baryon interactions.
Constituent quark models and pentaquark baryons
Maltman, K
2004-01-01
We discuss certain general features of the pentaquark picture for the theta, its 10bar_F partner, Xi_{3/2}, and possible heavy quark analogues. Models employing spin-dependent interactions based on either effective Goldstone boson exchange or effective color magnetic exchange are also used to shed light on possible corrections to the Jaffe-Wilczek and Karliner-Lipkin scenarios. Some model-dependent features of the pentaquark picture (splitting patterns and relative decay couplings) are also discussed in the context of these models.
Chiral dynamics with (non)strange quarks
Kubis, Bastian; Meißner, Ulf-G.
2017-01-01
We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.
NN S-Wave Elastic Cross Section and Possible Bound States in a Constituent Quark Model
Institute of Scientific and Technical Information of China (English)
PANG Hou-Rong; PING Jia-Lun; WANG Fan
2008-01-01
In the framework of a chiral constituent quark model, considering the contributions of π annihilation and one-gluon annihilation, the proton-antiproton s-wave elastic scattering cross section experimental data can be reproduced by adjusting properly one-gluon annihilation coupling constant. After fixing the model parameters, we perform a dynamical calculation for all possible s-wave nucleon-antinucleon states. The results show that there is no s-wave bound state as indicated by a strong enhancement at threshold of pp in J/ψ and B decay.
Constituent quark model description of charmonium phenomenology
Segovia, J; Fernandez, F; Hernandez, E
2013-01-01
We review how quark models are able to describe the phenomenology of the charm meson sector. The spectroscopy and decays of charmonium and open charm mesons are described in a particular quark model and compared with the data and the results of other existing models in the literature. A quite reasonable global description of the heavy meson spectra is reached. A new assignment of the $\\psi(4415)$ resonance as a 3D state leaving aside the 4S state to the X(4360) is tested through the analysis of the resonance structure in $e^{+}e^{-}$ exclusive reactions around the $\\psi(4415)$ energy region. We make tentative assignments of some of the $XYZ$ mesons. To elucidate the structure of the $1^{+}$ $c\\bar{s}$ states, i.e. $D_{s1}(2460)$ and $D_{s1}(2536)$, we study the strong decay properties of the $D_{s1}(2536)$ meson. We also perform a calculation of the branching fractions for the semileptonic decays of $B$ and $B_{s}$ mesons into final states containing orbitally excited charmed and charmed-strange mesons, which...
Chiral superfluidity of the quark-gluon plasma
Kalaydzhyan, Tigran
2013-01-01
In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (Tc < T < 2 Tc) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, c...
A Review of Heavy-Quark and Chiral Perturbation Theory
Naboulsi, R
2003-01-01
In this paper we discuss the relations between various decays that can be obtained by combining heavy-quark perturbation theory and chiral perturbation theory for the emission of soft pseudoscalar particles. In the heavy-quark limit of QCD the interactions of the heavy quark Q are simplified because of a new set of symmetries not manifestly present in the full QCD. This fact is usually used in the construction of the new effective theory where the heavy-quark mass goes to infinity $(m_Q\\gg \\Lambda_{QCD})$ with its four-velocity fixed. The spin-flavor symmetry group of this new theory with N heavy quarks is SU(2N) because the interactions of the heavy quarks are independent of their spins and flavors. This fact is widely used in the description of the semileptonic decays of $B$ mesons to $D$ and $D^\\ast$ mesons where heavy-quark symmetry allows a parameterization of the decay amplitudes in terms of the single Isgur-Wise function [1].
Euclidean bridge to the relativistic constituent quark model
Hobbs, T. J.; Alberg, Mary; Miller, Gerald A.
2017-03-01
Background: Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). Purpose: Seeking to bridge these complementary world views, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. Method: To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark + scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. Results: From this formalism, we define and compute a new quantity—the Euclidean density function (EDF)—an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. Conclusions: The quark + scalar diquark ECQM is a step toward a realistic quark model in Euclidean space, and needs additional refinements. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation.
The condensate for two dynamical chirally improved quarks in QCD
Lang, C B; Ortner, W; Majumdar, Pushan; Ortner, Wolfgang
2007-01-01
We compare the eigenvalue spectra of the Dirac operator from a simulation with two mass degenerate dynamical chirally improved fermions with Random Matrix Theory. Comparisons with distribution of k-th eigenvalues (k=1,2,3) in fixed topological sectors (nu=0,1) are carried out using the Kolmogorov-Smirnov test. The eigenvalue distributions are well described by the RMT predictions. The match allows us to read off the quark condensate in the chiral limit directly. Correcting for finite size and renormalization we obtain a mean value of -(276 (11)(16) MeV)**3 in the MS-bar scheme.
Spontaneous magnetization of quark matter in the inhomogeneous chiral phase
Yoshiike, Ryo; Tatsumi, Tositaka
2015-01-01
Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly, and gives rise to the spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in pulsars and/or magnetars.
Spontaneous magnetization of quark matter in the inhomogeneous chiral phase
Directory of Open Access Journals (Sweden)
R. Yoshiike
2015-12-01
Full Text Available Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly, and gives rise to the spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in pulsars and/or magnetars.
Exploration of hyperfine interaction between constituent quarks via eta productions
He, Jun; Xu, H S
2011-01-01
In this work, the different exchange freedom, one gluon, one pion or Goldstone boson, in constituent quark model is investigated, which is responsible to the hyperfine interaction between constituent quarks, via the combined analysis of the eta production processes, $\\pi^{-}p\\rightarrow\\eta n$ and $\\gamma p\\rightarrow\\eta p$. With the Goldstone-boson exchange, as well as the one-gluon or one-pion exchange, both the spectrum and observables, such as, the differential cross section and polarized beam asymmetry, are fitted to the suggested values of Particle Data Group and the experimental data. The first two types of exchange freedoms give acceptable description of the spectrum and observables while the one pion exchange can not describe the observables and spectrum simultaneously, so can be excluded. The experimental data for the two processes considered here strongly support the mixing angles for two lowest S11 sates and D13 states as about -30 and 6 degree respectively.
The QCD phase transition with physical-mass, chiral quarks
Bhattacharya, Tanmoy; Christ, Norman H; Ding, H -T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao
2014-01-01
We report on the first lattice calculation of the QCD phase transition using chiral fermions at physical values of the quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm$)^3$ and (11 fm$)^3$ and temperatures between 139 and 196 MeV . Each temperature was calculated using a single lattice spacing corresponding to a temporal Euclidean extent of $N_t=8$. The disconnected chiral susceptibility, $\\chi_{\\rm disc}$ shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability in the region of the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD ``phase transition'' is not first order but a continuous cross-over for $m_\\pi=135$ MeV. The peak location determines a pseudo-critical temperature $T_c = 155(1)(8)$ MeV. Chiral $SU(2)_L\\times SU(2)_R$ symmetry is fully restored above 164 MeV, but anomalous $U(1)_A$ symmetry breaking is non-zero above $T...
Structure of pentaquarks Pc+ in the chiral quark model
Yang, Gang; Ping, Jialun; Wang, Fan
2017-01-01
The recent experimental results of the LHCb Collaboration suggested the existence of pentaquark states with a charmonium. To understand the structure of the states, a dynamical calculation of 5-quark systems with quantum numbers I JP=1/2 (1/2 )±,1/2 (3/2 )±and1/2 (5/2 )±is performed in the framework of the chiral quark model with the help of the Gaussian expansion method. The results show that there are several negative parity resonance states while all of the positive parity states are the scattering states. The Pc(4380 ) state is suggested to be the pentaquark state of Σc*D ¯. Although the energy of ΣcD ¯* is very close to the mass of Pc(4450 ), the inconsistent parity prevents the assignment. The calculated distances between quarks confirm the molecular nature of the states.
Dibaryons with two strange quarks and one heavy flavor in a constituent quark model
Park, Aaron; Lee, Su Houng
2016-01-01
We investigate the symmetry property and the stability of dibaryons containing two strange quarks and one heavy flavor with $I=\\frac{1}{2}$. We construct the wave function of the dibaryon in two ways. First, we directly construct the color and spin state of the dibaryon starting from the four possible SU(3) flavor state. Second, we consider the states composed of five light quarks, and then construct the wave function of the dibaryon by adding one heavy quark. The stability of the dibaryon against the strong decay into two baryons is discussed by using variational method in a constituent quark model with confining and hyperfine potential. We find that for all configurations with S=0,1,2, the ground states of the dibaryons are the sum of two baryons, and there are no compact bound state that is stable against the strong decay.
Dibaryons with two strange quarks and one heavy flavor in a constituent quark model
Park, Aaron; Park, Woosung; Lee, Su Houng
2016-09-01
We investigate the symmetry property and the stability of dibaryons containing two strange quarks and one heavy flavor with isospin I =1/2 . We construct the wave function of the dibaryon in two ways. First, we directly construct the color and spin state of the dibaryon starting from the four possible S U (3 ) flavor states. Second, we consider the states composed of five light quarks and then construct the wave function of the dibaryon by adding one heavy quark. The stability of the dibaryon against the strong decay into two baryons is discussed by using the variational method in a constituent quark model with a confining and hyperfine potential. We find that, for all configurations with spin S =0 , 1, 2, the ground states of the dibaryons are the sum of two baryons, and there is no compact bound state that is stable against the strong decay.
Choi, Ho-Meoyng
2014-01-01
We discuss the link between the chiral symmetry of QCD and the numerical results of the light-front quark model (LFQM), analyzing both the two-point and three-point functions of a pseudoscalar meson from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD. The two-point and three-point functions are exemplified in this work by the twist-2 and twist-3 distribution amplitudes of a pseudoscalar meson and the pion elastic form factor, respectively. The present analysis of the pseudoscalar meson commensurates with the previous analysis of the vector meson two-point function and fortifies our observation that the light-front quark model with effective degrees of freedom represented by the constituent quark and antiquark may provide the view of effective zero-mode cloud around the quark and antiquark inside the meson. Consequently, the constituents dressed by the zero-mode cloud may be expected to satisfy the chiral symmetry of QCD. Our results appear consistent with this expectation...
Constituent quark and baryon spectra from a modified Perturbative QCD
Cabo-Montes de Oca, Alejandro; Cabo Montes de Oca, Alejandro; Madrazo, Marcos Rigol
2000-01-01
A recently proposed perturbative expansion for QCD incorporating gluon condensation is employed to evaluate the quark and gluon self-energy corrections in the simplest approximations. The results predict mass values of the order of 1/3 of the nucleon mass for the light quarks u,d and s and a monotonously growing variation with the current mass values. The mass spectrum of the ground states within the various groups of baryonic resonances and a class of vector meson ones is well predicted by the simple addition of the calculated constituent quark masses. In connection with the self-energy, it follows that the gluonic mass shell becomes tachyonic in the considered approximation. In order to obtain the above mentioned results was evaluated as a function of the condensate paramater up to order g^2 and then this parameter fixed to give the accepted numerical value of . The discussion leads us to conjecture that the procedure, after also introducing quark condensates in the same token as the gluonic ones, could a...
Double parton distributions in Light-Front constituent quark models
Rinaldi, Matteo; Traini, Marco; Vento, Vicente
2014-01-01
Double parton distribution functions (dPDF), accessible in high energy proton-proton and proton nucleus collisions, encode information on how partons inside a proton are correlated among each other and could represent a tool to explore the 3D proton structure. In recent papers, double parton correlations have been studied in the valence quark region, by means of constituent quark models. This framework allows to understand clearly the dynamical origin of the correlations and to establish which, among the features of the results, are model independent. Recent relevant results, obtained in a relativistic light-front scheme, able to overcome some drawbacks of previous calculations, such as the poor support, will be presented. Peculiar transverse momentum correlations, generated by the correct treatment of the boosts, are obtained. The role of spin correlations will be also shown. In this covariant approach, the symmetries of the dPDFs are unambiguously reproduced. The study of the QCD evolution of the model resu...
Soft Matrix Elements in Non-local Chiral Quark Model
Kotko, Piotr
2009-01-01
Using non-local chiral quark model and currents satisfying Ward-Takahashi identities we analyze Distribution Amplitudes (DA) of photon and pion-to-photon Transition Distribution Amplitudes (TDA) in the low energy regime. Photon DA's are calculated analytically up to twist-4 and reveal several interesting features of photon structure. TDA's calculated in the present model satisfy polynomiality condition. Normalization of vector TDA is fixed by the axial anomaly. We also compute relevant form factors and compare them with existing data. Axial form factor turns out to be much lower then the vector one, what indeed is seen in the experimental data.
Spontaneous Magnetization of Quark Matter in Inhomogeneous Chiral Phase
Yoshiike, Ryo; Tatsumi, Toshitaka
2015-01-01
Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly. This spectral asymmetry gives rise to spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in magnetars. Furthermore, using the generalized Ginzburg-Landau(gGL) expansion, we show that magnetic susceptibility exhibits a peculiar feature
Sea quark transverse momentum distributions and dynamical chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Schweitzer, Peter [Univ. of Connecticut, Storrs, CT (United States); Strikman, Mark [Penn State Univ., State College, PA (United States); Weiss, Christian [JLAB Newport News, VA (United States)
2014-01-01
Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.
Axial form factor of the nucleon in the perturbative chiral quark model
Khosonthongkee, K; Faessler, Amand; Gutsche, T; Lyubovitskij, V E; Pumsa-ard, K; Yan, Y
2004-01-01
We apply the perturbative chiral quark model (PCQM) at one loop to analyze the axial form factor of the nucleon. This chiral quark model is based on an effective Lagrangian, where baryons are described by relativistic valence quarks and a perturbative cloud of Goldstone bosons as dictated by chiral symmetry. We apply the formalism to obtain analytical expressions for the axial form factor of the nucleon, which is given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core).
A Euclidean bridge to the relativistic constituent quark model
Hobbs, Timothy; Alberg, Mary; Miller, Gerald
2017-01-01
We explore the potential of a Euclidean constituent quark model (ECQM) to bridge the lingering gap between Euclidean and Minkowski field theories in studies of nucleon structure. Specifically, we develop our ECQM using a simplified quark-scalar diquark picture of the nucleon as a first calculation. Our treatment in Euclidean space necessitates a hyperspherical formalism involving polynomial expansions of diquark propagators in order to marry our ECQM with results from Bethe-Salpeter Equation (BSE) analyses. From this framework, we define and compute a new quantity - a Euclidean density function (EDF) - an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation. Work supported by DOE grant DE-FG02-97ER-41014 and NSF Grant No. 1516105.
Strange quark asymmetry in the proton in chiral effective theory
Wang, X G; Melnitchouk, W; Salamu, Y; Thomas, A W; Wang, P
2016-01-01
We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of $\\delta$-function contributions to the $\\bar s$ PDF at $x=0$, with a corresponding valence-like component of the $s$-quark PDF at larger $x$, which allows greater flexibility for the shape of $s-\\bar s$. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the $s$ and $\\bar s$ distributions, consistent with the chiral symmetry of QCD. We discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange quark PDFs in global QCD analysis.
Finite-temperature corrections in the dilated chiral quark model
Kim, Y; Rho, M; Kim, Youngman; Lee, Hyun Kyu; Rho, Mannque
1995-01-01
We calculate the finite-temperature corrections in the dilated chiral quark model using the effective potential formalism. Assuming that the dilaton limit is applicable at some short length scale, we interpret the results to represent the behavior of hadrons in dense {\\it and} hot matter. We obtain the scaling law, \\frac{f_{\\pi}(T)}{f_{\\pi}} = \\frac{m_Q (T)}{m_Q} \\simeq \\frac{m_{\\sigma}(T)}{m_{\\sigma}} while we argue, using PCAC, that pion mass does not scale within the temperature range involved in our Lagrangian. It is found that the hadron masses and the pion decay constant drop faster with temperature in the dilated chiral quark model than in the conventional linear sigma model that does not take into account the QCD scale anomaly. We attribute the difference in scaling in heat bath to the effect of baryonic medium on thermal properties of the hadrons. Our finding would imply that the AGS experiments (dense {\\it and} hot matter) and the RHIC experiments (hot and dilute matter) will ``see" different hadron...
Numerically Solving Quark-Loop Effects on Dressed Gluon Propagator in Chiral Limit
Institute of Scientific and Technical Information of China (English)
FAN Xiao-Ying; WANG Jing; Alatancang; SHI Yuan-Mei; HOU Feng-Yao; SUN Wei-Min; ZONG Hong-Shi; PING Jia-Lun
2008-01-01
We do a numerical calculation on the quark-loop effects on the dressed gluon propagator in the chiral limit. It is found that the quark-loop effects on the dressed gluon propagator are significant in solving the quark propagator in the rainbow approximation of the Dyson-Schwinger equation. The approach we used here is quite general and can also be used to calculate both the chemical potential and current quark mass dependence of the dressed gluon propagator.
△△ Dibaryon Structure in Extended Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
DAI Lian-Rong
2005-01-01
@@ The structure of △△ dibaryon is studied in the extended chiral SU(3) quark model in which vector meson exchanges are included. The effect of the vector meson fields is very similar to that of the one-gluon exchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model, the resultant mass of the △△ dibaryon is lower than the threshold of the △△ channel but higher than that of the△Nπ channel.
Double parton correlations in Light-Front constituent quark models
Directory of Open Access Journals (Sweden)
Rinaldi Matteo
2015-01-01
Full Text Available Double parton distribution functions (dPDF represent a tool to explore the 3D proton structure. They can be measured in high energy proton-proton and proton nucleus collisions and encode information on how partons inside a proton are correlated among each other. dPFDs are studied here in the valence quark region, by means of a constituent quark model, where two particle correlations are present without any additional prescription. This framework allows to understand the dynamical origin of the correlations and to clarify which, among the features of the results, are model independent. Use will be made of a relativistic light-front scheme, able to overcome some drawbacks of the previous calculation. Transverse momentum correlations, due to the exact treatment of the boosts, are predicted and analyzed. The role of spin correlations is also shown. Due to the covariance of the approach, some symmetries of the dPDFs are seen unambigously. For the valence sector, also the study of the QCD evolution of the model results, which can be performed safely thanks to the property of good support, has been also completed.
Selected problems of baryons spectroscopy: chiral soliton versus quark models
Kopeliovich, Vladimir B
2008-01-01
Inconsistency between rigid rotator and bound state models at arbitrary number of colors, rigid rotator -- soft rotator dilemma and some other problems of baryon spectroscopy are discussed in the framework of the chiral soliton approach (CSA). Consequences of the comparison of CSA results with simple quark models are considered and the $1/N_c$ expansion for the effective strange antiquark mass is presented, as it follows from the CSA. Strong dependence of the effective strange antiquark mass on the SU(3) multiplet is required to fit the CSA predictions. The difference of `good' and `bad' diquark masses, which is about 100 Mev, is in reasonable agreement with other estimates. Multibaryons (hypernuclei) with strangeness are described and some states of interest are predicted within CSA as well.
QCD topological susceptibility from the nonlocal chiral quark model
Nam, Seung-il
2016-01-01
We investigate the QCD topological susceptibility $\\chi_t$ by using the nonlocal chiral quark model (NL$\\chi$QM). This model is based on the liquid instanton QCD-vacuum configuration in which $\\mathrm{SU}(3)$ flavor symmetry is explicitly broken by the current quark mass $(m_{u,d},m_s)\\approx(5,135)$ MeV. To compute $\\chi_t$, the local topological charge density operator $Q_t(x)$ is derived from the effective partition function of NL$\\chi$QM. We take into account the contributions from the leading-order (LO) ones $\\sim\\mathcal{O}(N_c)$ in the $1/N_c$ expansion. We also verify that the analytical expression of $\\chi_t$ in NL$\\chi$QM satisfy the Witten-Veneziano (WV) and the Leutwyler-Smilga (LS) formulae. Once the average instanton size and inter-instanton distance are fixed with $\\bar{\\rho}=1/3$ fm and $\\bar{R}=1$ fm, respectively, all the associated model parameters are all determined self-consistently within the model, including the $\\eta$ and $\\eta'$ weak decay constants. We obtain the results such as $F_{...
Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks
Institute of Scientific and Technical Information of China (English)
LUO XiangQian
2007-01-01
One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking,which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero.In standard methods of the lattice gauge theory,one has to perform expensive simulations at multiple bare quark masses,and employ some modeled functions to extrapolate the data to the chiral limit.This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks,without any ambiguous mass extrapolation.The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD,which deserves further investigation.
Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks
Institute of Scientific and Technical Information of China (English)
2007-01-01
One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.
Parton Distribution in Pseudoscalar Mesons with a Light-Front Constituent Quark Model
de Melo, J P B C; Tsushima, Kazuo
2015-01-01
We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions~(PDFs), we use both the conditions in the light-cone wave function, i.e., when $\\bar{s}$ quark is on-shell, and when $u$ quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses.
The Strange Magnetic Moment of the Proton in the Chiral Quark Model
1998-01-01
The strange magnetic moment of the proton is small in the chiral quark model, because of a near cancellation between the quantum fluctuations that involve kaons and $s$-quarks and loops that involve radiative transitions between strange vector mesons and kaons.
Explicit versus Dynamical Chiral Symmetry Breaking and Mass Matrix of Quarks and Leptons
Handa, O.; Ishida, S.; Sekiguchi, M.
1992-02-01
By recourse to an analogy between strong and weak interactions, quark mass-matrices consisting of the two parts are proposed, which represent, respectively, dynamical chiral symmetry breaking and explicit one due to small preon mass. The sum rules among quark masses and mixing-matrix elements derived from it seem consistent with present experiments.
Jung, Ju-Hyun
2016-01-01
We present a microscopic description of the strong $\\pi NN$, $\\pi N\\Delta$ and $\\pi\\Delta\\Delta$ vertices. Our starting point is a constituent-quark model supplemented by an additional $3q\\pi$ non-valence component. In the spirit of chiral constituent-quark models, quarks are allowed to emit and reabsorb a pion. This multichannel system is treated in a relativistically invariant way within the framework of point-form quantum mechanics. Starting with a common $SU(6)$ spin-flavor-symmetric wave function for $N$ and $\\Delta$, we calculate the strength of the $\\pi NN$, $\\pi N\\Delta$ and $\\pi\\Delta\\Delta$ couplings and the corresponding vertex form factors. Our results are in accordance with phenomenological fits of these quantities that have been obtained within purely hadronic multichannel models for baryon resonances.
Constituent quarks and the gluonic contribution to the spin of the nucleon
Energy Technology Data Exchange (ETDEWEB)
Eldahoumi, Gamal
2009-01-15
The internal structure of the nucleon is more complicated than expected in a simple quark model. In particular, the portion of the nucleon spin carried by the spins of the quarks is not, as expected, of the order of one, but according to the experimental data much smaller. In this thesis we study the spin structure of the proton in quantum chromodynamics. The constituent quark model, based on SU(6), predicts that the spin of the proton should be carried by the quarks, in disagreement with the experiments. It appears strange, that the theoretical model works so well for the magnetic moments of the nucleons, but not for the spin, although the spin and the magnetic moments are closely related to each other. We shall resolve this problem by assuming that the constituent quarks have an internal structure on their own. Thus a constituent quark has a dynamical structure, and we can introduce notions like the quark or gluon distributions inside a constituent quark. In the light of new experimental data from HERMES, COMPASS, JLab, and RHIC-spin, the current status of our knowledge of the spin structure is discussed in the two theoretical frameworks: the naive parton model, and the QCD evolved parton model. QCD a is successful theory, both in perturbative and non-perturbative regions, but the spin of the nucleon still needs to be explained within QCD. (orig.)
Chen, X B; Chen, X S; Wang, F
2001-07-02
We perform a one-loop calculation of the strange quark polarization (Deltas) of the nucleon in an SU(3) chiral potential model. We find that if the intermediate quark excited states are summed over in a proper way, i.e., summed up to a given energy instead of given radial and orbital quantum numbers, Deltas turns out to be almost independent of all the model parameters: quark masses and potential strengths. The contribution from the quark-antiquark pair creation and annihilation " Z" diagrams is found to be significant. Our numerical results agree quite reasonably with experiments and lattice QCD calculations.
Barik, N; Mohanty, D K; Panda, P K; Frederico, T
2013-01-01
We have calculated the properties of nuclear matter in a self-consistent manner with quark-meson coupling mechanism incorporating structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon, is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious centre of mass motion as well as those due to other residual interactions such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration; have been considered in a perturbation manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to sigma and omega mesons through mean field approximations. The relevant parameters of the interaction are obtained self consistently while realizing the saturation properties such as the binding energy, pressure a...
Spin-polarized versus chiral condensate in quark matter at finite temperature and density
DEFF Research Database (Denmark)
Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao;
2016-01-01
It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef......It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low......-energy effective model that the chiral symmetry is broken again by the spin-polarized condensate on increasing the quark number density, while chiral symmetry restoration occurs, in which the chiral condensate disappears at a certain density....
Gell-Mann, M.
In these lectures I want to speak about at least two interpretations of the concept of quarks for hadrons and the possible relations between them. First I want to talk about quarks as "constituent quarks". These were used especially by G. Zweig (1964) who referred to them as aces. One has a sort of a simple model by which one gets elementary results about the low-lying bound and resonant states of mesons and baryons, and certain crude symmetry properties of these states, by saying that the hadrons act as if they were made up of subunits, the constituent quarks q. These quarks are arranged in an isotopic spin doublet u, d and an isotopic spin singlet s, which has the same charge as d and acts as if it had a slightly higher mass…
Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.
2013-07-01
We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.
Ruggieri, M
2016-01-01
In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows to introduce in the simplest way possible a Euclidean momentum, $p_E$, dependent quark mass function which decays (neglecting logarithms) as $1/p_E^2$ for large $p_E$ in agreement with asymptotic behaviour expected in presence of a nonperturbative quark condensate. We show that the momentum dependence of the quark mass function, which has been neglected in all of the previous model studies, drastically affects the dependence of the critical temperature versus $\\mu_5$. We explain this in terms of a natural removal of ultraviolet modes at $T>0$ in the gap equation, as well as of the natural addition of these modes at $T=0$ which help to catalyze chiral symmetry breaking. As a result we find that within this model the critical temperature increases with $\\mu_5$.
Instanton-dyon Ensemble with two Dynamical Quarks: the Chiral Symmetry Breaking
Larsen, Rasmus
2015-01-01
This is the second paper of the series aimed at understanding of the ensemble of the instanton-dyons, now with two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, $(det T)^{N_f}$ and Dirac eigenvalue spectra at small values are derived from the numerical simulation of 64 dyons. Those spectra show clear chiral symmetry breaking pattern at high dyon density. Within current accuracy, the confinement and chiral transitions occur at very similar densities.
Vector and axial vector mesons in a nonlocal chiral quark model
Villafañe, M F Izzo; Scoccola, N N
2016-01-01
Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.
Electromagnetic nucleon-delta transition in the perturbative chiral quark model
Pumsa-ard, K; Gutsche, T; Faessler, A; Cheedket, S; Gutsche, Th.; Faessler, Amand
2003-01-01
We apply the perturbative chiral quark model to the gamma N -> Delta transition. The four momentum dependence of the respective transverse helicity amplitudes A(1/2) and A(3/2) is determined at one loop in the pseudoscalar Goldstone boson fluctuations. Inclusion of excited states in the quark propagator is shown to result in a reasonable description of the experimental values for the helicity amplitudes at the real photon point.
Vector and axial vector mesons in a nonlocal chiral quark model
Izzo Villafañe, M. F.; Gómez Dumm, D.; Scoccola, N. N.
2016-09-01
Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four-fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.
Ruggieri, M.; Peng, G. X.
2016-05-01
In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.
Pion generalized parton distributions within a fully covariant constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Fanelli, Cristiano [Massachusetts Institute of Technology, Cambridge, MA (United States). Lab. for Nuclear Science; Pace, Emanuele [' ' Tor Vergata' ' Univ., Rome (Italy). Physics Dept.; INFN Sezione di TorVergata, Rome (Italy); Romanelli, Giovanni [Rutherford-Appleton Laboratory, Didcot (United Kingdom). STFC; Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Salmistraro, Marco [Rome La Sapienza Univ. (Italy). Physics Dept.; I.I.S. G. De Sanctis, Rome (Italy)
2016-05-15
We extend the investigation of the generalized parton distribution for a charged pion within a fully covariant constituent quark model, in two respects: (1) calculating the tensor distribution and (2) adding the treatment of the evolution, needed for achieving a meaningful comparison with both the experimental parton distribution and the lattice evaluation of the so-called generalized form factors. Distinct features of our phenomenological covariant quark model are: (1) a 4D Ansatz for the pion Bethe-Salpeter amplitude, to be used in the Mandelstam formula for matrix elements of the relevant current operators, and (2) only two parameters, namely a quark mass assumed to be m{sub q} = 220 MeV and a free parameter fixed through the value of the pion decay constant. The possibility of increasing the dynamical content of our covariant constituent quark model is briefly discussed in the context of the Nakanishi integral representation of the Bethe-Salpeter amplitude. (orig.)
Institute of Scientific and Technical Information of China (English)
应和平; 董绍静; 张剑波
2003-01-01
With an exact chiral symmetry, overlap fermions allow us to reach very light quark region. In the minimummps = 179 MeV, the quenched chiral logarithm diverge is examined. The chiral logarithm parameter δ is calculatedfrom both the pseudo-scalar meson mass mp2s diverge channel and the pseudo-scalar decay constant f p channel.In both the cases, we obtain δ = 0.25 ± 0.03. We also observe that the quenchedchiral logarithm diverge occursonly in the mps ≤400 MeV region.
Baryon spectrum and chiral dynamics
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Fragmentation functions of pions and kaons in the nonlocal chiral quark model
Directory of Open Access Journals (Sweden)
Kao Chung Wen
2014-03-01
Full Text Available We investigate the unpolarized pion and kaon fragmentation functions using the nonlocal chiral-quark model. In this model the interactions between the quarks and pseudoscalar mesons is manifested nonlocally. In addition, the explicit flavor SU(3 symmetry breaking effect is taken into account in terms of the current quark masses. The results of our model are evaluated to higher Q2 value Q2 = 4 GeV2 by the DGLAP evolution. Then we compare them with the empirical parametrizations. We find that our results are in relatively good agreement with the empirical parametrizations and the other theoretical estimations.
Qq(-Q)(-q)'States in Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANG Hai-Xia; ZHANG Min; ZHANG Zong-Ye
2007-01-01
We study the masses of Qq(-Q)(-q)'states with JPC = 0++, 1++, 1+- and 2++ in the chiral SU(3) quark model,where Q is the heavy quark (c or b) and q (q') is the light quark (u, d or s). According to our numerical results, it is improbable to make the interpretation of [cn(-c)(-n)]1++ and [cn(-c)(-n)]2++ (n = u, d) states as X(3872) and Y(3940),respectively. However, it is interesting to find the tetraquarks in the bq(-b)(-q)'system.
The effect of instanton-induced interaction on -wave meson spectra in constituent quark model
Indian Academy of Sciences (India)
Bhavyashri; S Sarangi; Godfrey Saldanha; K B Vijaya Kumar
2008-01-01
The mass spectrum of the -wave mesons is considered in a non-relativistic constituent quark model. The full Hamiltonian used in the investigation includes the kinetic energy, the confinement potential, the one-gluon-exchange potential (OGEP) and the instanton-induced quark-antiquark interaction (III). A good description of the mass spectrum is obtained. The respective role of III and OGEP in the P-wave meson spectrum is discussed.
Strangeness -2 and -3 Baryons in a Constituent Quark Model
Energy Technology Data Exchange (ETDEWEB)
Muslema Pervin; Winston Roberts
2007-09-19
We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced.
Dynamical quark loop light-by-light contribution to muon g-2 within the nonlocal chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Dorokhov, A.E. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna (Russian Federation); M.V. Lomonosov Moscow State University, N.N. Bogoliubov Institute of Theoretical Problems of Microworld, Moscow (Russian Federation); Radzhabov, A.E. [Institute for System Dynamics and Control Theory SB RAS, Irkutsk (Russian Federation); Zhevlakov, A.S. [Institute for System Dynamics and Control Theory SB RAS, Irkutsk (Russian Federation); Tomsk State University, Department of Physics, Tomsk (Russian Federation)
2015-09-15
The hadronic corrections to the muon anomalous magnetic moment a{sub μ}, due to the gauge-invariant set of diagrams with dynamical quark loop light-by-light scattering insertions, are calculated in the framework of the nonlocal chiral quark model. These results complete calculations of all hadronic light-by-light scattering contributions to a{sub μ} in the leading order in the 1/N{sub c} expansion. The result for the quark loop contribution is a{sub μ}{sup HLbL,Loop} = (11.0 ± 0.9) @ x 10{sup -10}, and the total result is a{sub μ}{sup HLbL,NχQM} = (16.8 ± 1.2) @ x 10{sup -10}. (orig.)
Ruggieri, M
2016-01-01
In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...
From Chiral quark dynamics with Polyakov loop to the hadron resonance gas model
Arriola, E Ruiz; Salcedo, L L
2012-01-01
Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.
Polarized antiquark distributions from chiral quark-soliton model summary of the results
Göke, K; Polyakov, M V; Urbano, D
2000-01-01
In these short notes we present a parametrization of the results obtained in the chiral quark-soliton model for polarized antiquark distributions $\\Delta\\bar u$, $\\Delta\\bar d$ and $\\Delta\\bar s$ at a low normalization point around mu=0.6 GeV.
Electromagnetic properties of nucleons and hyperons in a Lorentz covariant quark model
Faessler, A; Holstein, B R; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Thomas; Holstein, Barry R.; Lyubovitskij, Valery E.; Nicmorus, Diana; Pumsa-ard, Kem
2006-01-01
We calculate magnetic moments of nucleons and hyperons and N -> Delta + gamma transition characteristics using a manifestly Lorentz covariant chiral quark approach for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons.
Some Relations for Quark Confinement and Chiral Symmetry Breaking in QCD
Suganuma, Hideo; Redlich, Krzysztof; Sasaki, Chihiro
2016-01-01
We analytically study the relation between quark confinement and spontaneous chiral-symmetry breaking in QCD. In terms of the Dirac eigenmodes, we derive some formulae for the Polyakov loop, its fluctuations, and the string tension from the Wilson loop. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain wall fermion kernels, respectively. For the confinement quantities, the low-lying Dirac/fermion eigenmodes are found to give negligible contribution, while they are essential for chiral symmetry breaking. These relations indicate no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD, which seems to be natural because confinement is realized independently of the quark mass.
Eight-quark interactions as a chiral thermometer
Moreira, J; Hiller, B; Blin, A H; Providência, J
2008-01-01
A NJL Lagrangian extended to six and eight quark interactions is applied to study temperature effects (SU(3) flavor limit, massless case), and (realistic massive case). The transition temperature can be considerably reduced as compared to the standard approach, in accordance with recent lattice calculations. The mesonic spectra built on the spontaneously broken vacuum induced by the 't Hooft interaction strength, as opposed to the commonly considered case driven by the four-quark coupling, undergoes a rapid crossover to the unbroken phase, with a slope and at a temperature which is regulated by the strength of the OZI violating eight-quark interactions. This strength can be adjusted in consonance with the four-quark coupling and leaves the spectra unchanged, except for the sigma meson mass, which decreases. A first order transition behavior is also a possible solution within the present approach.
A chiral matrix model of the semi-Quark Gluon Plasma in QCD
Pisarski, Robert D
2016-01-01
A chiral matrix model applicable to QCD with 2+1 flavors is developed. This requires adding a SU(3)_L x SU(3)_R x Z(3)_A nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y. Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. In addition to the usual symmetry breaking term, linear in the current quark mass m_qk, at a nonzero temperature T it is necessary to add a new term, ~ m_qk T^2. The parameters of the gluon part of the matrix model, including especially the deconfining transition temperature T_d = 270 MeV, are identical to that for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant the masses of the pions, kaons, eta, and eta'. The temperature for the chiral crossover at T_chi = 155 MeV is determined by adjusting the Yukawa coupling y. We find reasonable agreement with th...
The baryon spectrum and the hypercentral Constituent Quark Model
Giannini, M M
2015-01-01
The description of the baryon spectrum is performed using the hypercentral Consituent Quark Model (hCQM), mainly in comparison with the harmonic oscillator (h.o.). Recentlly many new states, at various levels of confidence have been observed, leading to a softening of the missing resonance problem in the case of positive parity states. However, the number of negative states is higher that predicted by the commonly used h.o. scheme and therefore one is forced to take into account also the higher energy shells, which contain an overall number of states much greater than the observed one. It is shown that, thanks to the peculiar level scheme of the hCQM, the recently observed negative parity states can be considered as belonging to the lower shells, keeping the missing resonance problem within more acceptable limits.
The role of strange sea quarks in chiral extrapolations on the lattice
Descotes-Genon, S
2004-01-01
Since the strange quark has a light mass of order Lambda_QCD, fluctuations of sea s-s bar pairs may play a special role in the low-energy dynamics of QCD by inducing significantly different patterns of chiral symmetry breaking in the chiral limits N_f=2 (m_u=m_d=0, m_s physical) and N_f=3 (m_u=m_d=m_s=0). This effect of vacuum fluctuations of s-s bar pairs is related to the violation of the Zweig rule in the scalar sector, described through the two O(p^4) low-energy constants L_4 and L_6 of the three-flavour strong chiral lagrangian. In the case of significant vacuum fluctuations, three-flavour chiral expansions might exhibit a numerical competition between leading- and next-to-leading-order terms according to the chiral counting, and chiral extrapolations should be handled with a special care. We investigate the impact of the fluctuations of s-s bar pairs on chiral extrapolations in the case of lattice simulations with three dynamical flavours in the isospin limit. Information on the size of the vacuum fluct...
T-\\mu phase diagram of the chiral quark model from a large flavor number expansion
Jakovác, A; Szép, Z; Szépfalusy, P; Szep, Zs.
2004-01-01
The chiral phase boundary of strong matter is determined in the T-\\mu plane from the chiral quark model, applying a non-perturbatively renormalised treatment, involving chains of pion-bubbles and 1-loop fermion contributions. In the absence of explicit symmetry breaking the second order portion of the phase boundary and the location of the tricritical point (TCP) are determined analytically. Sensitivity of the results to the renormalisation scale is carefully investigated. The softening of the sigma-pole near the second order transitions is confirmed.
Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models
Pagura, V. P.; Gómez Dumm, D.; Noguera, S.; Scoccola, N. N.
2017-02-01
We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature, our results show that nonlocal models naturally lead to the inverse magnetic catalysis effect.
Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models
Pagura, V P; Noguera, S; Scoccola, N N
2016-01-01
We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature our results show that nonlocal models naturally lead to the Inverse Magnetic Catalysis effect.
Pion Structure at High and Low Energies in Chiral Quark Models
Ruiz-Arriola, E
2002-01-01
Low and high energy properties of the pion are reviewed in the framework of chiral quark models. Particular emphasis is put on the simplest version of the SU(2) NJL model as prototype. The role of gauge invariance in this kind of calculations is stressed. The results are used as initial conditions for perturbative QCD evolution equations. At leading order the quark model scale is $\\mu_0 \\sim 320 {\\rm MeV} $ as determined from the pion distribution functions and the pion distribution amplitudes.
From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma
Liao, Jinfeng
2016-01-01
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma
Liao, Jinfeng
2017-01-01
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
Eta and kaon production in a chiral quark model
Golli, Bojan
2016-01-01
We apply a coupled-channel formalism incorporating quasi-bound quark-model states to calculate pion scattering into eta N, K Lambda and K Sigma channels, as well eta p, eta n, K+Lambda, and K0Sigma+ photo-production processes. The meson-baryon and photon-baryon vertices are determined in a SU(3) version of the Cloudy Bag Model. Our model predicts sizable amplitudes in the P11, P13, P33 and S11 partial waves in agreement with the latest MAID isobar model and the recent partial-wave analyses of the Bonn-Gatchina group. We are able to give a quark-model explanation for the apparent resonance at 1685 MeV in the eta n channel.
Eta and kaon production in a chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Golli, B. [University of Ljubljana and J. Stefan Institute, Faculty of Education, Ljubljana (Slovenia); Sirca, S. [University of Ljubljana and J. Stefan Institute, Faculty of Mathematics and Physics, Ljubljana (Slovenia)
2016-09-15
We apply a coupled-channel formalism incorporating quasi-bound quark-model states to calculate pion scattering into ηN, KΛ and KΣ channels, as well ηp, ηn, K{sup +}Λ, and K{sup 0}Σ{sup +} photoproduction processes. The meson-baryon and photon-baryon vertices are determined in a SU(3) version of the Cloudy Bag Model. Our model predicts sizable amplitudes in the P{sub 11}, P{sub 13}, P{sub 33} and S{sub 11} partial waves in agreement with the latest MAID isobar model and the recent partial-wave analyses of the Bonn-Gatchina group. We are able to give a quark-model explanation for the apparent resonance near 1685 MeV in the ηn channel. (orig.)
The chiral condensate from lattice QCD with Wilson twisted mass quarks
Energy Technology Data Exchange (ETDEWEB)
Urbach, Carsten [Bonn Univ. (Germany). HISKP (Theorie)
2016-11-01
Lattice QCD is a very computer time demanding scientific application. Only with the computer time made available on supercomputers like SuperMUC significant progress, like the one reported here, can be reached. Moreover, the computing resources made available by LRZ are used to reduce the systematic uncertainties in our results even further: in another project we are generating ensembles with physical values of the quark masses, such that a chiral extrapolation is not needed anymore.
Lattice measurement of B{sub B{sub s}} with a chiral light quark action
Energy Technology Data Exchange (ETDEWEB)
Blossier, B.
2007-01-15
The computation on the lattice of the bag parameter B{sub B{sub s}} associated to the B{sub S}-B{sub S} mixing amplitude in the Standard Model is presented. The estimation has been made by combining the static limit of HQET and the Neuberger light quark action which preserves the chiral symmetry on the lattice. We find B{sub B{sub S}}{sup MSstat}(m{sub b})=0.92(3). (orig.)
Electromagnetic form factors of the baryon octet in the perturbative chiral quark model
Cheedket, S; Gutsche, T; Faessler, A; Pumsa-ard, K; Yan, Y; Gutsche, Th.; Faessler, Amand
2002-01-01
We apply the perturbative chiral quark model at one loop to analyze the electromagnetic form factors of the baryon octet. The analytic expressions for baryon form factors, which are given in terms of fundamental parameters of low-energy pion-nucleon physics(weak pion decay constant, axial nucleon coupling, strong pion-nucleon form factor), and the numerical results for baryon magnetic moments, charge and magnetic radii are presented. Our results are in good agreement with experimental data.
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de FÃsica, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de FÃsica, Universidade de Ãvora, 7000-671 Ãvora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Dynamical evolution of the chiral magnetic effect: applications to the quark-gluon plasma
Manuel, Cristina
2015-01-01
We study the dynamical evolution of the so-called chiral magnetic effect in an electromagnetic conductor. To this end, we consider the coupled set of corresponding Maxwell and chiral anomaly equations, and we prove that these can be derived from chiral kinetic theory. After integrating the chiral anomaly equation over space in a closed volume, it leads to a quantum conservation law of the total helicity of the system. A change in the magnetic helicity density comes together with a modification of the chiral fermion density. We study in Fourier space the coupled set of anomalous equations and we obtain the dynamical evolution of the magnetic fields, magnetic helicity density, and chiral fermion imbalance. Depending on the initial conditions we observe how the helicity might be transferred from the fermions to the magnetic fields, or vice versa, and find that the rate of this transfer also depends on the scale of wavelengths of the gauge fields in consideration. We then focus our attention on the quark-gluon pl...
Strong decays of N~*(1535) in an extended chiral quark model
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The strong decays of the N*(1535) resonance are investigated in an extended chiral quark model by including the low-lying qqqqq components in addition to the qqq component.The results show that these five-quark components in N*(1535) contribute significantly to the N*(1535)→ Nπ and N*(1535) → Nη decays.The contributions to the Nη decay come from both the lowest energy and the next-to-lowest energy five-quarks components,while the contributions to the Nπ decay come from only the latter one.Taking these contributions into account,the description for the strong decays of N*(1535) is improved,especially for the puzzling large ratio of the decays to Nη and Nπ.
Calculation of the Isgur-Wise function from a light-front constituent quark model
Simula, S
1996-01-01
The space-like elastic form factor of heavy-light pseudoscalar mesons is investigated within a light-front constituent quark model in order to evaluate the Isgur-Wise form factor. The relativistic composition of the constituent quark spins is properly taken into account using the Melosh rotations, and various heavy-meson wave function are considered, including the eigenfunctions of an effective light-front mass operator reproducing meson mass spectra. It is shown that in a wide range of values of the recoil the Isgur-Wise form factor exhibits a moderate dependence upon the choice of the heavy-meson wave function and is mainly governed by the effects of the confinement scale.
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model
Megias, E; Salcedo, L L
2013-01-01
Based on first principle QCD arguments, it has been argued in arXiv:1204.2424[hep-ph] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop hep-ph/0412308, hep-ph/0607338. The existence of exotic states in the spectrum is discussed.
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model *,**
Directory of Open Access Journals (Sweden)
Megías E.
2014-03-01
Full Text Available Based on first principle QCD arguments, it has been argued in [1] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop [2, 3]. The existence of exotic states in the spectrum is discussed.
Structures of (ΩΩ)0+ and (([1])Ω)1+ in Extended Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANG Zong-Ye; YU You-Wen; DAI Lian-Rong
2003-01-01
The structures of (ΩΩ)0+ and (([1])Ω)1+ are studied in the extended chiral SU(3) quark model in whichvector meson exchanges are included. The effect from the vector meson fields is very similar to that from the one-gluonexchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model,di-omega (ΩΩ)0+ is always deeply bound, with over one hundred MeV binding energy, and (([1])Ω)1+ 's binding energyis around 20 MeV. An analysis shows that the quark exchange effect plays a very important role for making di-omega(ΩΩ)0+ deeply bound.
QCD Equation of State From a Chiral Hadronic Model Including Quark Degrees of Freedom
Rau, Philip; Schramm, Stefan; Stöcker, Horst
2013-01-01
This work presents an effective model for strongly interacting matter and the QCD equation of state (EoS). The model includes both hadron and quark degrees of freedom and takes into account the transition of chiral symmetry restoration as well as the deconfinement phase transition. At low temperatures $T$ and baryonic densities $\\rho_B$ a hadron resonance gas is described using a SU(3)-flavor sigma-omega model and a quark phase is introduced in analogy to PNJL models for higher $T$ and $\\rho_B$. In this way, the correct asymptotic degrees of freedom are used in a wide range of $T$ and $\\rho_B$. Here, results of this model concerning the chiral and deconfinement phase transitions and thermodynamic model properties are presented. Large hadron resonance multiplicities in the transition region emphasize the importance of heavy-mass resonance states in this region and their impact on the chiral transition behavior. The resulting phase diagram of QCD matter at small chemical potentials is in line with latest lattic...
The B=2 system in the chiral quark-soliton model with broken scale invariance
Sarti, Valentina Mantovani; Vento, Vicente
2013-01-01
We study the interaction between two B=1 states in the Chiral-Dilaton Model with scale invariance where baryons are described as non-topological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for the B=1 states we construct, via a product ansatz, three possible B=2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics. We investigate the behaviour of these solutions in the range of long and intermediate distances between the two solitons. Since the product ansatz breaks down as the two solitons get close, we explore the short range distances regime by building up a six quarks bag and by evaluating the interaction energy as a function of the inter-soliton separation. We calculate the interaction energy as a function of the inter-soliton distance for the B=2 system and we show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations conne...
Quark and pion effective couplings from polarization effects
Braghin, Fabio L
2016-01-01
A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks. Within a longwavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant pion self interaction terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found correspondin...
The nonstrange dibaryon and hidden-color effect in a chiral quark model
Dai, L. R.; Zhang, Y. N.; Sun, Y. L.; Shao, S. J.
2016-09-01
The exotic nonstrange ΔΔ dibaryon with I(JP) = 0(3+) has been confirmed by the experimental data reported by WASA-at-COSY Collaboration, and the result is consistent with our theoretical prediction in the chiral SU(3) quark model and extended chiral SU(3) quark model, showing that the effect from hidden-color channel ( CC is important. In the present work, we further investigate another exotic nonstrange ΔΔ dibaryon with I(JP) = 3(0+) in the chiral SU(3) quark model that describes the energies of baryon ground states and the nucleon-nucleon (NN) scattering data satisfactorily. We perform a dynamical coupled-channel study of the ΔΔ - CC system with I(JP) = 3(0+) within the framework of resonating group method (RGM). We find that the binding energy of I(JP) = 3(0+) state is about 22.3 MeV and a root-mean-square radius (RMS) of 1.03 fm in single-channel calculation. Then we extend the model to include the CC channel to further study the I(JP) = 3(0+) state and find that the binding energy is about 31.3 MeV and RMS is 0.97 fm in coupled-channel calculation. We can see that the CC channel coupling has a relatively large effect on this state. The color screening effect is further considered and we find that the bound state property will not change much. It is shown that the binding energy of this state is stably ranged around several tens of MeV; it means that its mass is always lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ.
The nonstrange dibaryon and hidden-color effect in a chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Dai, L.R.; Zhang, Y.N.; Sun, Y.L.; Shao, S.J. [Liaoning Normal University, Department of Physics, Dalian (China)
2016-09-15
The exotic nonstrange ΔΔ dibaryon with I(J{sup P}) = 0(3{sup +}) has been confirmed by the experimental data reported by WASA-at-COSY Collaboration, and the result is consistent with our theoretical prediction in the chiral SU(3) quark model and extended chiral SU(3) quark model, showing that the effect from hidden-color channel (CC) is important. In the present work, we further investigate another exotic nonstrange ΔΔ dibaryon with I(J{sup P}) = 3(0{sup +}) in the chiral SU(3) quark model that describes the energies of baryon ground states and the nucleon-nucleon (NN) scattering data satisfactorily. We perform a dynamical coupled-channel study of the ΔΔ-CC system with I(J{sup P}) = 3(0{sup +}) within the framework of resonating group method (RGM). We find that the binding energy of I(J{sup P}) = 3(0{sup +}) state is about 22.3 MeV and a root-mean-square radius (RMS) of 1.03 fm in single-channel calculation. Then we extend the model to include the CC channel to further study the I(J{sup P}) = 3(0{sup +}) state and find that the binding energy is about 31.3 MeV and RMS is 0.97 fm in coupled-channel calculation. We can see that the CC channel coupling has a relatively large effect on this state. The color screening effect is further considered and we find that the bound state property will not change much. It is shown that the binding energy of this state is stably ranged around several tens of MeV; it means that its mass is always lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ. (orig.)
Temperature and quark density effects on the chiral condensate: an AdS/QCD study
Energy Technology Data Exchange (ETDEWEB)
Colangelo, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Giannuzzi, F.; Nicotri, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Universita degli Studi di Bari, Dipartimento di Fisica, Bari (Italy); Tangorra, V. [Universita degli Studi di Bari, Dipartimento di Fisica, Bari (Italy)
2012-08-15
We investigate the dependence of the chiral condensate left angle anti qq right angle on the temperature and quark density using the soft-wall holographic model of QCD, adopting geometries with black holes at finite temperature and quark chemical potential {mu}. We find that, for {mu} below a critical value, increasing the temperature the condensate decreases and vanishes at a temperature T{approx_equal}210{proportional_to} MeV (at {mu}=0). An analogous behaviour is observed increasing the chemical potential at fixed temperature. These results agree with the findings obtained by other methods. We also comment on the robustness of the results if geometries not involving black holes are adopted at low temperature, and an Hawking-Page transition is implemented. (orig.)
Pion-to-photon transition distribution amplitudes in the non-local chiral quark model
Kotko, Piotr
2008-01-01
We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDA's. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.
Chiral and U(1) axial symmetry restoration in linear sigma models with two quark flavors
Michalski, S
2006-01-01
We study the restoration of chiral symmetry in linear sigma models with two quark flavors. The models taken into consideration have a U(2) x U(2) and an O(N) internal symmetry. The physical mesons of these models are sigma, pion, \\eta and a_0 where the latter two are not present in the O(N) model. Including two-loop contributions through sunset graphs we calculate the temperature behavior of the order parameter and the masses for explicit chiral symmetry breaking with and without a U(1) axial anomaly. Decay threshold effects introduced by the sunset graphs alter the temperature dependence of the condensate and consequently that of the masses as well. Chiral symmetry tends to be restored at higher temperatures in the two-loop approximation than in the Hartree-Fock approximation. To model a dynamical restoration of the U(1) axial symmetry we imply a temperature-dependent anomaly parameter that sharply drops at about 175 MeV. This triggers the restoration of chiral symmetry before the full symmetry is restored a...
Generalized Ginzburg–Landau approach to inhomogeneous phases in nonlocal chiral quark models
Energy Technology Data Exchange (ETDEWEB)
Carlomagno, J.P. [IFLP, CONICET – Dpto. de Física, FCE, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Gómez Dumm, D., E-mail: dumm@fisica.unlp.edu.ar [IFLP, CONICET – Dpto. de Física, FCE, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Scoccola, N.N. [CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Physics Department, Comisión Nacional de Energía Atómica, Av. Libertador 8250, 1429 Buenos Aires (Argentina); Universidad Favaloro, Solís 453, 1078 Buenos Aires (Argentina)
2015-05-18
We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg–Landau approach. We find that for all the phenomenologically acceptable model parametrizations considered the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. Consequently, these models seem to favor a scenario in which the onset of the first order transition between homogeneous phases is not covered by an inhomogeneous, energetically favored phase.
Generalized vector form factors of the pion in a chiral quark model
Broniowski, Wojciech
2008-01-01
Generalized vector form factors of the pion, related to the moments of the generalized parton distribution functions, are evaluated in the Nambu--Jona-Lasinio model with the Pauli-Villars regularization. The lowest moments (the electromagnetic and the gravitational form factors) are compared to recent lattice data, with fair agreement. Predictions for higher-order moments are also made. Relevant features of the generalized form factors in the chiral quark models are highlighted and the role of the QCD evolution for the higher-order GFFs is stressed.
The electroproduction of the $\\Delta$(1232) in the chiral quark-soliton model
Silva, A; Watabe, T; Fiolhais, M; Göke, K
2000-01-01
We calculate the ratios E2/M1 and C2/M1 for the electroproduction of the magnetic dipole amplitude M1 is also presented. The theory used is the chiral quark-soliton model, which is based in the instanton vaccum of the QCD. The calculations are performed in flavor SU(2) and SU(3) taking rotational ($1/N_c$) corrections into account. The results for the ratios agree qualitatively with the available data, although the magnitude of both ratios seems to underestimate the latest experimental results.
Differential elliptic flow of identified hadrons and constituent quark number scaling at FAIR
Bhaduri, Partha Pratim; Chattopadhyay, Subhasis
2010-01-01
Differential elliptic flow $v_2(p_{T})$ for identified hadrons has been investigated in the FAIR energy regime, employing a hadronic-string transport model (UrQMD) as well as a partonic transport model (AMPT). It has been observed that both the models show a mass ordering of $v_2$ at low $p_{T}$ and a switch over resulting a baryon-meson crossing at intermediate $p_{T}$. AMPT generates higher $v_2$ values compared to UrQMD. In addition, constituent quark number scaling behavior of elliptic fl...
Solitons as baryons and qualitons as constituent quarks in two-dimensional QCD
Blas, H
2008-01-01
We study the soliton type solutions arising in two-dimensional quantum chromodynamics (QCD$_{2}$). The so-called generalized sine-Gordon model (GSG) arises as the low-energy effective action of bosonized QCD$_{2}$ for unequal quark mass parameters, and it has been shown that the relevant solitons describe the normal and exotic baryonic spectrum of QCD$_{2}$ [JHEP(03)(2007)(055)]. In the first part of this chapter we classify the soliton and kink type solutions of the sl(3) GSG model. Related to the GSG model we consider the sl(3) affine Toda model coupled to matter fields (Dirac spinors) (ATM). It has been shown the confinement of the spinors inside the solitons and kinks of the GSG model providing an extended hadron model for "quark" confinement [JHEP(01)(2007)(027)]. In the second part of this chapter we discuss the appearance of the constituent quarks in the context of bosonized QCD$_{2}$ and the relevance of the $sl(2)$ ATM model in order to describe the confinement of the color degrees of freedom. We hav...
Silva, Antonio; Kim, Hyun-Chul
2013-01-01
We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (m_s) corrections. To extend the results to higher momentum transfer, we take into account the kinematical relativistic effects. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). We finally discuss the transverse charge densities for both unpolarized and polarized nucleons.
Institute of Scientific and Technical Information of China (English)
PENG Jin-Song; ZHOU Li-Juan; MENG Cheng-Ju; PAN Ji-Huan; MA Wei-Xing; YUAN Tong-Quan
2013-01-01
Based on the fully dressed quark propagator and chiral perturbation theory,we study the ratio of the strange quark mass ms to up or down quark mass mu,d.The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron.An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications.We begin with a brief introduction to the non-perturbation QCD theory,and then study the mass ratio in the framework of the chiral perturbation theory (xPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p2-plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data.Our prediction for the ratio ms/mu,d is consistent with other model predictions such as Lattice QCD,instanton model,QCD sum rules and the empirical values used widely in the literature.As a by-product of this study,our theoretical results,together with other predictions of physical quantities that used this quark propagator in our previous publications,clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD.
Low-Energy Kπ Phase Shifts in Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
HUANG Fei; ZHANG Zong-Ye; YU You-Wen
2005-01-01
The low-energy region kaon-pion S- and P-wave phase shifts with isospin I = 1/2 and I = 3/2 are dynamically studied in the chiral SU(3) quark model by solving a resonating group method equation. The model parameters are taken to be the values fitted by the energies of the baryon ground states and the kaon-nucleon elastic scattering phase shifts of different partial waves. As a preliminary study the s-channel q(-q) annihilation interactions are not included since they only act in the very short range and are subsequently assumed to be unimportant in the low-energy domain. The numerical results are in qualitative agreement with the experimental data.
Direct mass limits for chiral fourth-generation quarks in all mixing scenarios.
Flacco, Christian J; Whiteson, Daniel; Tait, Tim M P; Bar-Shalom, Shaouly
2010-09-10
Present limits on chiral fourth-generation quark masses mb' and mt' are broadly generalized and strengthened by combining both t' and b' decays and considering a full range of t' and b' flavor-mixing scenarios with the lighter generations (to 1-‖V44‖2≈10(-13)). Various characteristic mass-splitting choices are considered. With mt'>mb' we find that CDF Collaboration limits on the b' mass vary by no more than 10%-20% with any choice of flavor mixing, while for the t' mass, we typically find stronger bounds, in some cases up to mt'>430 GeV. For mb'>mt', we find mb'>380-430 GeV, depending on the flavor mixing and the size of the mt'-mb' mass splitting.
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model ***
Megías, E.; Ruiz Arriola, E.; Salcedo, L. L.
2014-03-01
Based on first principle QCD arguments, it has been argued in [1] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop [2, 3]. The existence of exotic states in the spectrum is discussed. Presented by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2011-25948), DGI (FIS2011-24149), Junta de Andalucía grant FQM-225, Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Spanish MINECO's Centro de Excelencia Severo Ochoa Program grant SEV-2012-0234, and the Juan de la Cierva Program.
Relativistic effects on the neutron charge form factor in the constituent quark model
Cardarelli, F
1999-01-01
The neutron charge form factor GEn(Q**2) is investigated within a constituent quark model formulated on the light-front. It is shown that, if the quark initial motion is neglected in the Melosh rotations, the Dirac neutron form factor F1n(Q**2) receives a relativistic correction which cancels exactly against the Foldy term in GEn(Q**2), as it has been recently argued by Isgur. Moreover, at the same level of approximation the ratio of the proton to neutron magnetic form factors GMp(Q**2)/GMn(Q**2) is still given by the naive SU(6)-symmetry expectation, -3/2. However, it is also shown that the full Melosh rotations break SU(6) symmetry, giving rise to GEn(Q**2) neq 0 and GMp(Q**2)/GMn(Q**2) neq -3/2 even when a SU(6)-symmetric canonical wave function is assumed. It turns out that relativistic effects alone cannot explain simultaneously the experimental data on GEn(Q**2) and GMp(Q**2)/GMn(Q**2).
Ejiri, S; Aoki, S; Kanaya, K; Ohno, H; Saito, H; Hatsuda, T; Maezawa, Y; Umeda, T
2010-01-01
We study scaling behavior of a chiral order parameter performing a simulation of two-flavor QCD with improved Wilson quarks. It has been shown that the scaling behavior of the chiral order parameter defined by a Ward-Takahashi identity agrees with the scaling function of the three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to finite density QCD. Calculating derivatives of the chiral order parameter with respect to the chemical potential in two-flavor QCD, the scaling property of chiral phase transition is discussed in the low density region. We moreover calculate the curvature of the phase boundary of the chirl phase transition in the temperature and chemical potential plane assuming the O(4) scaling relation.
Light-by-Light Hadronic Corrections to the Muon G-2 Problem Within the Nonlocal Chiral Quark Model
Dorokhov, A. E.; Radzhabov, A. E.; Zhevlakov, A. S.
2017-03-01
Results of calculation of the light-by-light contribution from the lightest neutral pseudoscalar and scalar mesons and the dynamical quark loop to the muon anomalous magnetic moment are discussed in the framework of the nonlocal SU(3) × SU(3) chiral quark model. The model is based on four-quark interaction of the Nambu-Jona-Lasinio type and Kobayashi-Maskawa-`t Hooft six-quark interaction. The full kinematic dependence of vertices with off-shell mesons and photons in intermediate states in the light-by-light scattering amplitude is taken into account. All calculations are elaborated in explicitly gauge-invariant manner. These results complete calculations of all hadronic light-by-light scattering contributions to aμ in the leading order in the 1/Nc expansion. The final result does not allow the discrepancy between the experiment and the Standard Model to be explained.
Properties of single cluster structure of $d^*(2380)$ in chiral SU(3) quark model
Lü, Qi-Fang; Dong, Yu-Bing; Shen, Peng-Nian; Zhang, Zong-Ye
2016-01-01
The structure of $d^*(2380)$ is re-studied with the single cluster structure in the chiral SU(3) quark model which has successfully been employed to explain the scattering and binding behaviors of baryonic systems. The mass and width are explicitly calculated with two types of trial wave functions. The result shows that the $(0s)^6 [6]_{orb}$ configuration is easy to convert to the configuration with the same $[6]_{orb}$ symmetry but $2\\hbar \\omega$ excitation back and forth, however, it is seldom to turn into a two-cluster configuration with a (1s) relative motion in between. The resultant mass and width are about $2394$MeV and $25$MeV, respectively, and the stable size is about $0.75fm$, which are consistent with both the results in the two-cluster configuration calculation and the data measured by the COSY collaboration. It seems that the observed $d^*$ is a six-quark dominated exotic state with a spherical shape and breath mode in the coordinate space. Moreover, if $d^*$ does have $2\\hbar \\omega$ excitati...
Silva, A; Urbano, D; Göke, K; Silva, Antonio; Kim, Hyun-CHul; Urbano, Diana; Goeke, Klaus
2005-01-01
We investigate three different axial-vector form factors of the nucleon, $G_A^{0}$, $G_A^3$, $G_A^8$, within the framework of the SU(3) chiral quark-soliton model, emphasizing their strangeness content. We take into account the rotational $1/N_c$ and linear strange quark ($m_s$) contributions using the symmetry-conserving SU(3) quantization and assuming isospin symmetry. The strange axial-vector form factor is also obtained and they all are discussed in the context of the parity-violating scattering of polarized electrons off the nucleon and its relevance to the strange vector form factors.
Quark Number Scaling in Fluid Dynamics and Hadronization via Quarkyonic Matter
Directory of Open Access Journals (Sweden)
Zschocke S.
2011-04-01
Full Text Available NCQ scaling of elliptic flow is studied in a non-equilibrium hadronization and freeze-out model from ideal, deconfined and chirally symmetric Quark Gluon Plasma (QGP, to final non-interacting hadrons. In this transition the quarks gain constituent quark mass while the background Bag-field breaks up. The constituent quarks then recombine into simplified hadron states, while chemical, thermal and flow equilibrium break down. Then the resulting temperatures and flow velocities of baryons and mesons will be different. In a simplified model, we reproduce the constituent quark number scaling.
Possible $D\\bar{D}$ and $B\\bar{B}$ Molecular states in a chiral quark model
Li, M T; Dong, Y B; Zhang, Z Y
2012-01-01
We perform a systematic study of the bound state problem of $D\\bar{D}$ and $B\\bar{B}$ systems by using effective interaction in our chiral quark model. Our results show that both the interactions of $D\\bar{D}$ and $B\\bar{B}$ states are attractive, which consequently result in $I^G(J^{PC})=0^+(0^{++})$ $D\\bar{D}$ and $B\\bar{B}$ bound states.
Abu-Shady, M
2015-01-01
The chiral symmetry breaking in the presence of external magnetic field is studied in the framework of logarithmic quark-sigma model. The effective logarithmic mesonic potential is employed and is numerically solved in the mean-field approximation. We find that the chiral symmetry breaking enhances in comparison with the original sigma model. Two sets of parameterization are investigated in the present model. We find that increasing coupling constant enhances the breaking symmetry while increasing sigma mass inhibits enhancing chiral broken vacuum state. A comparison with the Numbu-Jona-Lasinio model and the Schwinger-Dyson equation is discussed. We conclude that the logarithmic sigma model enhances the magnetic catalysis in comparison with the original sigma model and other models.
Structures of（ΩΩ）0＋and（[1]Ω）1＋in Extended Chiral SU（3） Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANGZong-Ye; YUYou-Wen; DAILian-Rong
2003-01-01
The structures of (ΩΩ)0+ and ([1]Ω)1+ are studied in the extended chiral SU(3) quark model in which vector meson exchanges are included. The effect from the vector meson fields is very similar to that from the one-gluon exchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model,di-omega (ΩΩ)0+ is always deeply bound, with over one hundred MeV binding energy, and ([1]Ω)1+ 's binding energy is around 20 MeV. An analysis shows that the quark exchange effect plays a very important role for making di-omega (ΩΩ)0+ deeply bound.
Quark and pion effective couplings from polarization effects
Energy Technology Data Exchange (ETDEWEB)
Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)
2016-05-15
A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)
Non-leptonic decays of K-mesons within the chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Bergan, A.E.
1996-12-31
This theses is based upon four previously printed paper. The main result of the first paper was that a very small contribution to K{sup o}-anti K{sup o} was found for the siamese penguin diagram with a momentum dependent penguin coefficient. The calculation was done with different regularizations. The same momentum dependent penguin interaction was used in the second paper. Dimensional regularization made it possible to calculate analytical results for K{yields}{phi}, and a relatively small g{sub 8}{sup 1/2} factor was found due to large subleading terms. In the third paper nonperturbative effects on the B{sub K} parameter were obtained. To order (G{sup 3}) a vanishing result appeared due to a complete cancellation among the 20 contributing diagrams. In the fourth paper a calculation was made of K{yields}{phi} which included non-diagonal self-energy effects due to the s{yields}d transition. This calculation made it possible to include a heavy top quark. The calculation was done in two ways. First the unphysical K{yields}{phi} transition was calculated. The result was then related to the physical K{yields}2{phi} decay due to chiral symmetry. Then the same result was obtained by a direct calculation of K{yields}2{phi}. In the CP-conserving case the contribution was small while the CP-violating part was sizable. Due to a large cancellation between the operator Q{sub 6} and Q{sub 8} the contribution was of the same size as {epsilon}/{epsilon} itself. 76 refs.
Mishra, H
2001-01-01
We discuss in this note simultaneous existence of chiral symmetry breaking and color superconductivity at finite temperature and density in a Nambu-Jona-Lasinio type model. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. There exist nontrivial solutions to the gap equations at finite densities with both quark-antiquark as well as diquark condensates for the 'ground' state. However, such a phase is thermodynamically unstable with the pressure being negative in this region. We also compute the equation of state, and obtain the structure of the phase diagram in the model.
A chiral quark model for meson electro-production in the S11 partial wave
Golli, Bojan
2011-01-01
We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain consistent predictions for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model suggests that the N(1535) resonance is dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons.
Chiral soliton model vs. pentaquark structure for (1540)
Indian Academy of Sciences (India)
R Ramachandran
2005-09-01
The exotic baryon + (1540 MeV) is visualized as an expected (iso) rotational excitation in the chiral soliton model. It is also argued as a pentaquark baryon state in a constituent quark model with strong diquark correlations. I contrast these two points of view; observe the similarities and differences between the two pictures. Collective excitation, the characteristic of chiral soliton model, points toward small mixing of representations in the wake of (3) breaking. In contrast, constituent quark models prefer near `ideal' mixing, similar to - mixing.
Göke, K; Ossmann, J; Schweitzer, P; Silva, A; Urbano, D
2007-01-01
The nucleon form factors of the energy-momentum tensor are studied in the large-Nc limit in the framework of the chiral quark-soliton model for model parameters that simulate physical situations in which pions are heavy. This allows for a direct comparison to lattice QCD results.
A chiral quark model for meson electro-production in the region of D-wave resonances
Golli, Bojan
2013-01-01
The meson scattering and electroproduction amplitudes in the D13, D33 and D15 partial waves are calculated in a coupled-channel formalism incorporating quasi-bound quark-model states, extending our previous studies of the P11, P33 and S11 partial waves. The vertices of the baryon-meson interaction including the s- and d-wave pions and $\\rho$-mesons, the s-wave $\\eta$-meson, and the $s$- and p-wave $\\sigma$-mesons are determined in the Cloudy Bag Model, with some changes of the parameters to reproduce the widths of the resonances. The helicity amplitudes and the electroproduction amplitudes exhibit consistent behavior in all channels but tend to be too weak compared to the experiment. We discuss possible origins of this discrepancy which arises also in the constituent quark model calculations.
Where does the rho go? Chirally symmetric vector mesons in the quark-gluon plasma
Pisarski, R D
1995-01-01
If the phase transition of QCD at nonzero temperature is dominated by the (approximate) restoration of chiral symmetry, then the transition might be characterized using a gauged linear sigma model. Assuming that vector meson dominance holds, such sigma models predict that at the temperature of chiral restoration, the pole mass of the thermal \\rho meson is greater than that at zero temperature; in the chiral limit and in weak coupling this mass is \\sim 962 \\, MeV. The width of the thermal \\rho-a_1 peak is estimated to be about 200 - 250 \\, MeV.
Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, B.K.
1986-11-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment.
Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Das, M.
1987-05-01
The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, B.K.
1986-04-01
Under the assumption that baryons are an assembly of independent quarks, confined in a first approximation by an effective potential U(r) = 1/2(1+..gamma../sup 0/)(ar/sup 2/+V/sub 0/ ) which presumably represents the nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has been calculated by considering perturbatively the contributions of the residual quark-pion coupling arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-gluon exchange over and above the necessary center-of-mass correction. The physical masses of the baryons so obtained agree quite well with the corresponding experimental value. The strong coupling constant ..cap alpha../sub c/ = 0.58 required here to describe the QCD mass splittings is quite consistent with the idea of treating one-gluon-exchange effects in lowest-order perturbation theory.
Xiao, Li-Ye; Zhong, Xian-Hui
2016-01-01
A combined analysis of the reactions $\\pi^-p\\rightarrow K^0\\Lambda$ and $\\eta n$ is carried out with a chiral quark model. The data in the center-of-mass (c.m.) energy range from threshold up to $W\\simeq 1.8$ GeV are reasonably described. For $\\pi^-p\\rightarrow K^0\\Lambda$, it is found that $N(1535)S_{11}$ and $N(1650)S_{11}$ paly crucial roles near threshold. The $N(1650)S_{11}$ resonance contributes to the reaction through configuration mixing with $N(1535)S_{11}$. The constructive interference between $N(1535)S_{11}$ and $N(1650)S_{11}$ is responsible for the peak structure around threshold in the total cross section. The $n$-pole, $u$- and $t$-channel backgrounds provide significant contributions to the reaction as well. While, for the $\\pi^-p\\rightarrow \\eta n$ process, the "first peak" in the total cross section is dominant by $N(1535)S_{11}$, which has a sizeable destructive interference with $N(1650)S_{11}$. Around $P_\\pi \\simeq $ 1.0 GeV/c ($W\\simeq 1.7$ GeV), there seems to be a small bump structure...
Mitchell, J T; Tannenbaum, M J; Stankus, P W
2016-01-01
Several methods of generating three constituent-quarks in a nucleon are evaluated which explicitly maintain the nucleon's center of mass and desired radial distribution and can be used within Monte Carlo Glauber frameworks. The geometric models provided by each method are used to generate distributions over the Number of Constituent Quark Participants ($N_{qp}$) in $p+p$, $d+$Au and Au$+$Au collisions. The results are compared with each other and to a previous result of $N_{qp}$ calculations, without this explicit constraint, used in measurements of $\\sqrt{s_{_{NN}}}$=200 GeV $p+p$, $d+$Au and Au$+$Au collisions at RHIC.
String formation and chiral symmetry breaking in the heavy-light quark-antiquark system in QCD
Simonov, YA; Tjon, JA
2000-01-01
The effective quark Lagrangian is written for a light quark in the field of a static antiquark, explicitly containing field correlators as coefficient functions of products of quark operators. At large N-c the closed system of equations for the gauge-invariant quark Green's function in the field of
Quark Mass Dependence of Nucleon Magnetic Moment and Charge Radii
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; ZHOU Li-Juan; GU Yun-Ting; PING Rong-Gang
2005-01-01
Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.
Pion scattering and electro-production on nucleons in the resonance region in chiral quark models
Sirca, Simon; Fiolhais, Manuel; Alberto, Pedro
2011-01-01
Pion scattering and electro-production amplitudes have been computed in a coupled-channel framework incorporating quasi-bound quark-model states, based on the Cloudy Bag model. All relevant low-lying nucleon resonances in the P33, P11, and S11 partial waves have been covered, including the Delta(1232), the N*(1440), N*(1535), and N*(1650). Consistent results have been obtained for elastic and inelastic scattering (two-pion, eta-N, and K-Lambda channels), as well as for electro-production. The meson cloud has been shown to play a major role, in particular in electro-magnetic observables in the P33 and P11 channels.
Effective field theories of baryons and mesons, or, what do quarks do?
Energy Technology Data Exchange (ETDEWEB)
Keaton, G.L. [Lawrence Berkeley Lab., CA (United States). Theoretical Physics Group
1995-06-26
This thesis is an attempt to understand the properties of the protons, pions and other hadrons in terms of their fundamental building blocks. In the first chapter the author reviews several of the approaches that have already been developed. The Nambu-Jona-Lasinio model offers the classic example of a derivation of meson properties from a quark Lagrangian. The chiral quark model encodes much of the intuition acquired in recent decades. The author also discusses the non-linear sigma model, the Skyrme model, and the constituent quark model, which is one of the oldest and most successful models. In the constituent quark model, the constituent quark appears to be different from the current quark that appears in the fundamental QCD Lagrangian. Recently it was proposed that the constituent quark is a topological soliton. In chapter 2 the author investigates this soliton, calculating its mass, radius, magnetic moment, color magnetic moment, and spin structure function. Within the approximations used, the magnetic moments and spin structure function cannot simultaneously be made to agree with the constituent quark model. In chapter 3 the author uses a different plan of attack. Rather than trying to model the constituents of the baryon, he begins with an effective field theory of baryons and mesons, with couplings and masses that are simply determined phenomenologically. Meson loop corrections to baryon axial currents are then computed in the 1/N expansion. It is already known that the one-loop corrections are suppressed by a factor 1/N; here it is shown that the two-loop corrections are suppressed by 1/N{sup 2}. To leading order, these corrections are exactly the same as would be calculated in the constituent quark model. This method therefore offers a different approach to the constituent quark.
Energy Technology Data Exchange (ETDEWEB)
Barbara Pasquini, Peter Schweitzer
2011-06-01
We present results for leading-twist azimuthal asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering due to naively time-reversal odd transverse-momentum dependent parton distribution functions from the light-cone constituent quark model. We carefully discuss the range of applicability of the model, especially with regard to positivity constraints and evolution effects. We find good agreement with available experimental data from COMPASS and HERMES, and present predictions to be tested in forthcoming experiments at Jefferson Lab.
Combined analysis of the π-p →K0Λ , η n reactions in a chiral quark model
Xiao, Li-Ye; Ouyang, Fan; Wang, Kai-Lei; Zhong, Xian-Hui
2016-09-01
A combined analysis of the reactions π-p →K0Λ and η n is carried out with a chiral quark model. The data in the center-of-mass (c.m.) energy range from threshold up to W ≃1.8 GeV are reasonably described. For π-p →K0Λ , it is found that N (1535 ) S11 and N (1650 ) S11 play crucial roles near threshold. The N (1650 ) S11 resonance contributes to the reaction through configuration mixing with N (1535 ) S11 . The constructive interference between N (1535 ) S11 and N (1650 ) S11 is responsible for the peak structure around threshold in the total cross section. The n -pole, u -, and t -channel backgrounds provide significant contributions to the reaction as well. For the π-p →η n process, the "first peak" in the total cross section is dominated by N (1535 ) S11 , which has a sizeable destructive interference with N (1650 ) S11 . Around Pπ≃ 1.0 GeV/c (W ≃1.7 GeV), there seems to be a small bump structure in the total cross section, which might be explained by the interference between the u channel and N (1650 ) S11 . The N (1520 ) D13 resonance affects the angle distributions of the cross sections notably, although no obvious effects are seen in the total cross section. The role of P -wave state N (1720 ) P13 should be further confirmed by future experiments. If N (1720 ) P13 has a narrow width of Γ ≃120 MeV as found in our previous work by a study of the π0 photoproduction processes, obvious evidence should be seen in the π-p →K0Λ and η n processes as well. Finally, we give our predictions of the s -channel isospin-1/2 resonance contributions to the π N →π N reactions.
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan
2002-01-01
We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Takahashi, Y.; Eby, P. B.
1985-01-01
Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.
Hadronic correction to Coulomb potential between quarks and diquark structure
Energy Technology Data Exchange (ETDEWEB)
Xin-Heng, Guo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Xue-Qian, Li; Peng-Nian, Shen [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Chuang, Wang [Nankai Univ., TJ (China). Dept. of Physics
1997-07-01
We have studied the hadronic correction from the background pion fields due to the chiral symmetry breaking to the Coulomb potential that governs the short-distance behavior of the interactions between the bound quarks. The background fields are associated with the constituent quark mass. We find a modified form which favors the diquark structure. We also roughly estimate an influence of this correction on the phase shifts in nucleon scattering and find that it may cause an extra middle range attraction between nucleons which is expected. (author) 17 refs., 4 figs.
Silva, A; Kim, H C; Urbano, D; Goeke, Klaus; Kim, Hyun-Chul; Silva, Antonio; Urbano, Diana
2006-01-01
We investigate parity-violating electroweak asymmetries in the elastic scattering of polarized electrons off protons within the framework of the chiral quark-soliton model ($\\chi$QSM). We use as input the former results of the electromagnetic and strange form factors and newly calculated SU(3) axial-vector form factors, all evaluated with the same set of four parameters adjusted several years ago to general mesonic and baryonic properties. Based on this scheme, which yields positive electric and magnetic strange form factors with a $\\mu_s=(0.08-0.13)\\mu_N$, we determine the parity-violating asymmetries of elastic polarized electron-proton scattering. The results are in a good agreement with the data of the A4, HAPPEX, and SAMPLE experiments and reproduce the full $Q^2$-range of the G0-data. We also predict the parity-violating asymmetries for the backward G0 experiment.
Ossmann, J; Schweitzer, P; Urbano, D; Göke, K
2004-01-01
The unpolarized spin-flip isoscalar generalized parton distribution function (E^u+E^d)(x,xi,t) is studied in the large-Nc limit at a low normalization point in the framework of the chiral quark-soliton model. This is the first study of generalized parton distribution functions in this model, which appear only at the subleading order in the large-Nc limit. Particular emphasis is put therefore on the demonstration of the theoretical consistency of the approach. The forward limit of (E^u+E^d)(x,xi,t) of which only the first moment -- the anomalous isoscalar magnetic moment of the nucleon -- is known phenomenologically, is computed numerically. Observables sensitive to (E^u+E^d)(x,xi,t) are discussed.
Duality between quark-quark and quark-antiquark pairing in 1+1 dimensional large N models
Thies, M
2003-01-01
We identify a canonical transformation which maps the chiral Gross-Neveu model onto a recently proposed Cooper pair model. Baryon number and axial charge are interchanged. The same physics can be described either as chiral symmetry breaking (quark-antiquark pairing) or as superconductivity (quark-quark pairing).
Composite Models of Quarks and Leptons.
Geng, Chaoqiang
1987-09-01
We review the various constraints on composite models of quarks and leptons. Some dynamical mechanisms for chiral symmetry breaking in chiral preon models are discussed. We have constructed several "realistic candidate" chiral preon models satisfying complementarity between the Higgs and confining phases. The models predict three to four generations of ordinary quarks and leptons.
Linking Dynamical Gluon Mass to Chiral Symmetry Breaking via a QCD Low Energy Effective Field Theory
Oliveira, O; Frederico, T
2011-01-01
A low energy effective field theory model for QCD with a scalar color octet field is discussed. The model relates the gluon mass, the constituent quark masses and the quark condensate. The gluon mass comes about $\\sqrt{N_c}\\, \\Lambda_{QCD}$ with the quark condensate being proportional to the gluon mass squared. The model suggests that the restoration of chiral symmetry and the deconfinement transition occur at the same temperature and that, near the transition, the critical exponent for the condensate is twice the gluon mass one. The model also favors the decoupling like solution for the gluon propagator.
The topological structures in strongly coupled QGP with chiral fermions on the lattice
Sharma, Sayantan; Dick, Viktor; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato
2016-12-01
The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics.
Electromagnetic properties of light and heavy baryons in the relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Nicmorus Marinescu, Diana
2007-06-14
within this model reveals an exact agreement in leading order with the model-independent predictions for the magnetic moments of the heavy baryons. For the light sector, a Lorentz covariant chiral quark Lagrangian is used to dress the constituent quarks by pseudoscalar meson clouds. The main achievement consists in the factorization of the valence quark contributions and the meson cloud contributions in the calculation of electromagnetic properties of light baryons. (orig.)
B{sup ¯}{sub s}→K semileptonic decay from an Omnès improved constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Albertus, C. [Departamento de Física Atómica, Nuclear y Molecular e Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avenida de Fuentenueva s/n, E-18071 Granada (Spain); Hernández, E. [Departamento de Física Fundamental e IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain); Hidalgo-Duque, C.; Nieves, J. [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Apartado 22085, E-46071 Valencia (Spain)
2014-11-10
We study the f{sup +} form factor for the semileptonic B{sup ¯}{sub s}→K{sup +}ℓ{sup −}ν{sup ¯}{sub ℓ} decay in a constituent quark model. The valence quark estimate is supplemented with the contribution from the B{sup ¯⁎} pole that dominates the high q{sup 2} region. We use a multiply-subtracted Omnès dispersion relation to extend the quark model predictions from its region of applicability near q{sub max}{sup 2}=(M{sub B{sub s}}−M{sub K}){sup 2}∼23.75 GeV{sup 2} to all q{sup 2} values accessible in the physical decay. To better constrain the dependence of f{sup +} on q{sup 2}, we fit the subtraction constants to a combined input from previous light cone sum rule by Duplancic and Melic (2008) [11] and the present quark model results. From this analysis, we obtain Γ(B{sup ¯}{sub s}→K{sup +}ℓ{sup −}ν{sup ¯}{sub ℓ})=(5.47{sub −0.46}{sup +0.54})|V{sub ub}|{sup 2}×10{sup −9} MeV, which is about 10% and 20% higher than the predictions based on Lattice QCD and QCD light cone sum rules respectively. The former predictions, for both the form factor f{sup +}(q{sup 2}) and the differential decay width, lie within the 1σ band of our estimated uncertainties for all q{sup 2} values accessible in the physical decay, except for a quite small region very close to q{sub max}{sup 2}. Differences with the light cone sum results for the form factor f{sup +} are larger than 20% in the region above q{sup 2}=15 GeV{sup 2}.
Two-solar-mass hybrid stars: a two model description with the Nambu-Jona-Lasinio quark model
Pereira, Renan Câmara; Providência, Constança
2016-01-01
Hybrid stars with a quark phase described by the Nambu$-$Jona-Lasinio model are studied. The hadron-quark model used to determine the stellar matter equation of state favors the appearance of quark matter: the coincidence of the deconfinement and chiral transitions and a low vacuum constituent quark mass. These two properties are essential to build equations of state that predict pure quark matter in the center of neutron stars. The effect of vector-isoscalar and vector-isovector terms is discussed, and it is shown that the vector-isoscalar terms are necessary to describe 2$M_\\odot$ hybrid stars, and the vector-isovector terms result in larger quark cores and a smaller deconfinement density.
Color confinement multi quark resonance
Energy Technology Data Exchange (ETDEWEB)
Wang Fan [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China); Ping, J.L. [Department of Physics, Nanjing Normal University, Nanjing, 210097 (China); Pang, H.R. [Department of Physics, Southeast University, Nanjing, 210008 (China); Chen, L.Z. [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China)
2007-06-15
A new kind microscopic resonance, the color confinement multi quark resonance is proposed and studied. The quark delocalization color screening model is compared to one of the chiral quark model, the Salamanca model, and a new mechanism of the intermediate range NN interaction, the mutual distortion of interacting nucleons, is checked to be similar to the {sigma} meson exchange.
Transverse-momentum dependent parton distribution functions beyond leading twist in quark models
Lorcé, C; Schweitzer, P
2014-01-01
Higher-twist transverse momentum dependent parton distribution functions (TMDs) are a valuable probe of the quark-gluon dynamics in the nucleon, and play a vital role for the explanation of sizable azimuthal asymmetries in hadron production from unpolarized and polarized deep-inelastic lepton-nucleon scattering observed in experiments at CERN, DESY and Jefferson Lab. The associated observables are challenging to interpret, and still await a complete theoretical explanation, which makes guidance from models valuable. In this work we establish the formalism to describe unpolarized higher-twist TMDs in the light-front framework based on a Fock-space expansion of the nucleon state in terms of free on-shell parton states. We derive general expressions and present numerical results in a practical realization of this picture provided by the light-front constituent quark model. We review several other popular quark model approaches including free quark ensemble, bag, spectator and chiral quark-soliton model.
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, B.K.
1986-10-01
Nucleon charge and magnetic form factors G/sub E//sub ,//sub M//sup p//sup ,//sup n/(q/sup 2/) have been presented in a quark model with an equally mixed scalar and vector potential in harmonic form taking the pionic contributions into account. The static properties such as the magnetic moment, charge radius, and axial-vector coupling constant in the neutron-..beta..-decay process are shown to be in excellent agreement with the corresponding experimental values. The role of the finite extension of the quark-pion vertex in determining the charge radius and magnetic moment due to the pion cloud surrounding the nucleons has been studied.
Quark Models and Quark Phenomenology
Lipkin, Harry Jeannot
1997-01-01
Overwhelming experimental evidence for quarks as real physical constituents of hadrons along with the QCD analogs of the Balmer Formula, Bohr Atom and Schroedinger Equation already existed in 1966. A model of colored quarks interacting with a one-gluon-exchange potential explained the systematics of the meson and baryon spectrum and gave a hadron mass formula in surprising agreement with experiment. The simple quark model dismissed as heresy and witchcraft by the establishment predicted quantum numbers of an enormous number of hadronic states as well as relations between masses, reaction cross sections and electromagnetic properties, all unexplained by other approaches. Further developments leading to QCD included confinement in the large $N_c$ limit, duality, dual resonance and string models, high energy scattering systematics, unified treatment of mesons and baryons, no exotics and no free quarks.
The effect of the Polyakov loop on the chiral phase transition
Directory of Open Access Journals (Sweden)
Szép Zs.
2011-04-01
Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.
Baryons, their interactions and the chiral symmetry of QCD
Glozman, L Ya
1997-01-01
An implication of the spontaneous chiral symmetry breaking in QCD is that at low energy and resolution there appear quasiparticles - constituent quarks and Goldstone bosons. Thus, light and strange baryons should be considered as systems of three constituent quarks with confining interaction and a chiral interaction that is mediated by Goldstone bosons between the constituent quarks. We show how the flavor-spin structure and sign of the short-range part of the Goldstone boson exchange interaction reduces the $SU(6)_{FS}$ symmetry down to $SU(3)_F \\times SU(2)_S$, induces hyperfine splittings and provides correct ordering of the lowest states with positive and negative parity. We present a unified description of light and strange baryon spectra calculated in a semirelativistic framework. It is demonstrated that the same short-range part of Goldstone boson exchange also induces strong short-range repulsion in $NN$ system when the latter is treated as $6Q$ system. Thus, all main ingredients of $NN$ interaction a...
Can sea quark asymmetry shed light on the orbital angular momentum of the proton?
Nocera, Emanuele R
2016-01-01
A striking prediction of several extensions of the constituent quark model, including the unquenched quark model, the pion cloud model and the chiral quark model, is a proportionality relationship between the quark sea asymmetry and the orbital angular momentum of the proton. We investigate to which extent a relationship of this kind is corroborated by the experiment, through a systematic comparison between expectations based on models and predictions obtained from a global analysis of hard-scattering data in perturbative Quantum Chromodynamics. We find that the data allows the angular momentum of the proton to be proportional to its sea asymmetry, though with a rather large range of the optimal values of the proportionality coefficient. Typical values do not enable us to discriminate among expectations based on different models. In order to make our comparison conclusive, the extrapolation uncertainties on the proportionality coefficient should be reduced, hopefully by means of accurate measurements in the r...
Overlap Quark Propagator in Coulomb Gauge QCD
Mercado, Ydalia Delgado; Schröck, Mario
2014-01-01
The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.
Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential
Braguta, V V
2016-01-01
In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.
Kojo, Toru; McLerran, Larry; Pisarski, Robert D
2009-01-01
We consider the formation of chiral density waves in Quarkyonic matter, which is a phase where cold, dense quarks experience confining forces. We model confinement following Gribov and Zwanziger, taking the gluon propagator, in Coulomb gauge and momentum space, as 1/(p^2)^2. We assume that the number of colors, N, is large, and that the quark chemical potential, mu, is much larger than renormalization mass scale, Lambda_QCD. To leading order in 1/N and Lambda_QCD, a gauge theory with Nf flavors of massless quarks in 3+1 dimensions naturally reduces to a gauge theory in 1+1 dimensions, with an enlarged flavor symmetry of SU(2Nf). Through an anomalous chiral rotation, in two dimensions a Fermi sea of massless quarks maps directly onto the corresponding theory in vacuum. A chiral condensate forms locally, and varies with the spatial position, z, as . Following Schon and Thies, we term this two dimensional pion condensate a (Quarkyonic) chiral spiral. Massive quarks also exhibit chiral spirals, with the magnitude...
LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.
Energy Technology Data Exchange (ETDEWEB)
EJIRI,S.
2007-11-20
We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.
SPONTANEOUS CP VIOLATION AND QUARK MASS AMBIGUITIES.
Energy Technology Data Exchange (ETDEWEB)
CREUTZ,M.
2004-09-21
I explore the regions of quark masses where CP will be spontaneously broken in the strong interactions. The boundaries of these regions are controlled by the chiral anomaly, which manifests itself in ambiguities in the definition of non-degenerate quark masses. In particular, the concept of a single massless quark is ill defined.
Baryons in the unquenched quark model
Bijker, R; Lopez-Ruiz, M A; Santopinto, E
2016-01-01
In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a $^{3}P_{0}$ quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and $\\beta$ decays of octet baryons.
Kalaydzhyan, Tigran
2014-01-01
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.
Pallante, E.; Petronzio, R.
1995-01-01
We construct an effective Lagrangian for low energy hadronic interactions through an infinite expansion in inverse powers of the low energy cutoff Î›Ï‡ of all possible chiral invariant non-renormalizable interactions between quarks and mesons degrees of freedom arising from the bosonization of a gen
Quark-gluon mixed condensate for the SU(2) light-flavor sector at finite temperature
Nam, Seung-il
2013-01-01
We investigate the quark-gluon mixed condensate m^2_0 = for the SU(2) light-flavor sector at finite temperature (T). Relevant model parameters, such as the average (anti)instanton size, inter-(anti)instanton distance, and constituent-quark mass at zero virtuality, are modified as functions of T, employing the trivial-holonomy caloron solution. By doing that, we observe correct chiral restoration patterns depending on the current-quark mass m. We also perform the two-loop renormalization-group (RG) evolution for the both condensates by increasing the renormalization scale mu=(0.6~2.0) GeV. It turns out that the mixed condensate is insensitive to the RG evolution, whereas the quark condensate become larger considerably by the evolution. Numerically, we obtain -^1/5 = (0.45 ~ 0.46) GeV at T=0 within the present theoretical framework, and the mixed condensate plays the role of the chiral order parameter for finite T. The ratio of the two condensates m^2_0 is almost flat below the chiral transition T (T_0), and ...
Glueball Decay in the Witten-Sakai-Sugimoto Model and Finite Quark Masses
Brünner, Frederic
2015-01-01
We discuss recent results on the calculation of glueball decay rates in the Witten-Sakai-Sugimoto model, which favor the $f_0(1710)$ meson as a glueball candidate. The flavor asymmetric decay of $f_0(1710)$ is frequently attributed to a putative chiral suppression in glueball decays, which is however questionable in view of the large constituent quark masses induced by chiral symmetry breaking. We find that this can be explained by what we call nonchiral enhancement when finite quark masses are included in the holographic model, with good quantitative agreement with experimental data for $f_0(1710)$. Assuming the latter to indeed be a nearly pure glueball, the model makes essentially parameter-free and thus falsifiable predictions for its decay rates involving vector mesons and an upper limit on the $\\eta\\eta'$ decay rate.
Directory of Open Access Journals (Sweden)
Goldstein Gary R.
2015-01-01
Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.
Instanton-dyon Ensembles III: Exotic Quark Flavors
Larsen, Rasmus
2016-01-01
"Exotic quarks" in the title refers to a modification of quark periodicity condition on the thermal circle by introduction of some phases -- known also as "flavor holonomies" -- different quark flavors. These phases provide a valuable tool, to be used for better understanding of deconfinement and chiral restoration phase transitions: by changing them one can dramatically modify both phase transitions. In the language of instanton constituents -- instanton-dyons or monopoles -- it has a very direct explanation: the interplay of flavor and color holonomies can switch topological zero modes between various dyon types. The model we will study in detail, the so called $Z_{N_c}$-symmetric QCD model with equal number of colors and flavors $N_c=N_f=2$ and special arrangement of flavor and color holonomies, ensure "most democratic" setting, in which each quark flavor and each dyon type are in one-to-one correspondence. The usual QCD has the opposite "most exclusive" arrangement: all quarks are antiperiodic and thus al...
ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.
Energy Technology Data Exchange (ETDEWEB)
CREUTZ, M.
2005-07-25
With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.
Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics
Ruggieri, M; Chernodub, M
2016-01-01
We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.
Propagators and Masses of Light Quarks
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Juan; ZHU Ji-Zhen; MA Wei-Xing
2003-01-01
Based on Dyson-Schwinger equations in "rainbow" approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.
Propagators and Masses of Light Quarks
Institute of Scientific and Technical Information of China (English)
ZHOULi-Juan; ZHUJi-Zhen; MAWei-Xing
2003-01-01
Based on Dyson-Schwinger equations in “rainbow” approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.
Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates
Directory of Open Access Journals (Sweden)
Tomoya Hayata
2015-05-01
Full Text Available We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.
Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates
Energy Technology Data Exchange (ETDEWEB)
Hayata, Tomoya, E-mail: hayata@riken.jp [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Yamamoto, Arata [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)
2015-05-11
We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.
Chiral gap effect in curved space
Flachi, Antonino
2014-01-01
We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.
Recent progress in understanding deconfinement and chiral restoration phase transitions
Shuryak, Edward
2016-01-01
Paradigme shift in gauge topology, from instantons to their constituents -- instanton-dyons -- has recently lead to very significant advances. Like instantons, they have fermionic zero modes, and their collectivization at sufficiently high density explains the chiral symmetry breaking. Unlike instantons, these objects have electric and magnetic charges. Their back reaction on the mean value of the Polyakov line (holonomy) allows to explain the deconfinement transition. The talk summarizes recent works on the dyon ensemble, done in the mean field approximation (MFA), and also by direct numerical statistical simulation. Introduction of non-trivial quark periodicity conditions leads to drastic changes in both deconfinement and chiral transitions. In particulaly, in the so called Z(N_c)-QCD model the former gets much stronger, while the latter does not seem to occur at all.
SPECTRAL PROPERTIES OF QUARKS IN THE QUARK-GLUON PLASMA.
Energy Technology Data Exchange (ETDEWEB)
KARSCH,F.; KITAZAWA, M.
2007-07-30
We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter {kappa} in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of {kappa}. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.
Spectral Properties of Quarks in the Quark-Gluon Plasma
Karsch, F
2007-01-01
We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter \\kappa in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of \\kappa. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.
SU(2) Higher-order effective quark interactions from polarization
Braghin, Fábio L.
2016-10-01
Higher order quark effective interactions are found for SU(2) flavor by departing from a non-local quark-quark interaction. By integrating out a component of the quark field, the determinant is expanded in chirally symmetric and symmetry breaking effective interactions up to the fifth order in the quark bilinears. The resulting coupling constants are resolved in the leading order of the longwavelength limit and exact numerical ratios between several of these coupling constants are obtained in the large quark mass limit. In this level, chiral invariant interactions only show up in even powers of the quark bilinears, i.e. O(ψ bar ψ) 2 n (n = 1 , 2 , 3 , . .), whereas (explicit) chiral symmetry breaking terms emerge as O(ψ bar ψ) n being always proportional to some power of the Lagrangian quark mass.
The Spectral Quark Model and Light Cone Phenomenology
Ruiz-Arriola, E; Broniowsk, Wojciech
2003-01-01
Chiral quark models offer a practical and simple tool to describe covariantly both low and high energy phenomenology in combination with QCD evolution. This can be done in full harmony with chiral symmetry and electromagnetic gauge invariance. We review the recently proposed spectral quark model where all these constraints are implemented.
Extended Quark Potential Model From Random Phase Approximation
Institute of Scientific and Technical Information of China (English)
DENGWei－Zhen; CHENXiao－Lin; 等
2002-01-01
The quark potential model is extended to include the sea quark excitation using the random phase approximation.The effective quark interaction preserves the important QCD properties-chiral symmetry and confinement simultaneously.A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quark potential model.
Static quark-antiquark potential
Energy Technology Data Exchange (ETDEWEB)
Deo, B.B.; Barik, B.K.
1983-01-01
A heavy-quark--antiquark potential is suggested which connects asymptotic freedom and quark confinement in a unified manner by formal methods of field theory using some plausible assumptions. The potential has only one additional adjustable parameter B which is proportional to (M/sub q//m/sub q/), where M/sub q/ and m/sub q/ are the constituent and current quark masses, respectively.
Barnea, N
2000-01-01
A system of nontopological solitons interacting through meson exchange is used to model dense nuclear matter. The models studied are of the Friedberg-Lee type, which exhibit dynamical bag formation due to the coupling of quarks to a scalar composite gluon field sigma. It is shown in the Wigner-Seitz approximation that the high density behavior of such models depends essentially on the leading power of the quark-sigma coupling vertex. By insisting that the parameters of any soliton model be chosen to reproduce single nucleon properties, this high-density behavior then selects a promising class of models that better fit the empirical results -- the chiral chromodielectric models. The presence of a scalar meson is shown to provide saturation as well as an increase of the proton charge radius with nuclear density. We go beyond the usual Wigner-Seitz approximation by introducing the disorder necessary to reproduce the liquid state, using the significant structure theory of physical chemistry. We study nuclear matt...
Dynamics of the chiral phase transition
van Hees, H; Meistrenko, A; Greiner, C
2013-01-01
The intention of this study is the search for signatures of the chiral phase transition in heavy-ion collisions. To investigate the impact of fluctuations, e.g., of the baryon number, at the transition or at a critical point, the linear sigma model is treated in a dynamical (3+1)-dimensional numerical simulation. Chiral fields are approximated as classical mean fields, and quarks are described as quasi particles in a Vlasov equation. Additional dynamics is implemented by quark-quark and quark-sigma-field interactions. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.
Spontaneous Chiral Symmetry Breaking as Condensation of Dynamical Chirality
Alexandru, Andrei
2012-01-01
The occurrence of spontaneous chiral symmetry breaking (SChSB) is equivalent to sufficient abundance of Dirac near-zeromodes. However, dynamical mechanism leading to breakdown of chiral symmetry should be naturally reflected in chiral properties of the modes. Here we offer such connection, presenting evidence that SChSB in QCD proceeds via the appearance of modes exhibiting dynamical tendency for local chiral polarization. These modes form a band of finite width Lambda_ch (chiral polarization scale) around the surface of otherwise anti--polarized Dirac sea, and condense. Lambda_ch characterizes the dynamics of the breaking phenomenon and can be converted to a quark mass scale, thus offering conceptual means to determine which quarks of nature are governed by broken chiral dynamics. It is proposed that, within the context of SU(3) gauge theories with fundamental Dirac quarks, mode condensation is equivalent to chiral polarization, making Lambda_ch an "order parameter" of SChSB. Several uses of these features, ...
Charge fluctuations in chiral models and the QCD phase transition
Skokov, V; Karsch, F; Redlich, K
2011-01-01
We consider the Polyakov loop-extended two flavor chiral quark--meson model and discuss critical phenomena related with the spontaneous breaking of the chiral symmetry. The model is explored beyond the mean-field approximation in the framework of the functional renormalisation group. We discuss properties of the net-quark number density fluctuations as well as their higher cumulants. We show that with the increasing net-quark number density, the higher order cumulants exhibit a strong sensitivity to the chiral crossover transition. We discuss their role as probes of the chiral phase transition in heavy-ion collisions at RHIC and LHC.
Chiral symmetry and lattice gauge theory
Creutz, M
1994-01-01
I review the problem of formulating chiral symmetry in lattice gauge theory. I discuss recent approaches involving an infinite tower of additional heavy states to absorb Fermion doublers. For hadronic physics this provides a natural scheme for taking quark masses to zero without requiring a precise tuning of parameters. A mirror Fermion variation provides a possible way of extending the picture to chirally coupled light Fermions. Talk presented at "Quark Confinement and the Hadron Spectrum," Como, Italy, 20-24 June 1994.
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Magnetic moments of heavy baryons in the relativistic three-quark model
Faessler, A; Ivanov, M A; Körner, J G; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
The magnetic moments of ground state single, double and triple heavy baryons containing charm or bottom quarks are calculated in a relativistic three-quark model, which, in the heavy quark limit, is consistent with Heavy Quark Effective Theory and Heavy Hadron Chiral Perturbation Theory. The internal quark structure of baryons is modeled by baryonic three-quark currents with a spin-flavor structure patterned according to standard covariant baryonic wave functions and currents used in QCD sum rule calculations.
The quark revolution and the ZGS - new quarks physics since the ZGS
Energy Technology Data Exchange (ETDEWEB)
Lipkin, H.J. [Weizmann Institute of Science, Rehovot (Israel)]|[Tel Aviv Univ. (Israel)
1994-12-31
Overwhelming experimental evidence for quarks as real physical constituents of hadrons along with the QCD analogs of the Balmer Formula, Bohr Atom and Schroedinger Equation already existed in 1966 but was dismissed as heresy. ZGS experiments played an important role in the quark revolution. This role is briefly reviewed and subsequent progress in quark physics is described.
Fluctuations of Goldstone modes and the chiral transition in QCD
Karsch, Frithjof
2008-01-01
We provide evidence for the influence of thermal fluctuations of Goldstone modes on the chiral condensate at finite temperature. We show that at fixed temperature, T
Symmetries of hadrons after unbreaking the chiral symmetry
Glozman, L Ya; Schröck, M
2012-01-01
We study hadron correlators upon artificial restoration of the spontaneously broken chiral symmetry. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the Dirac operator from the valence quark propagators and study evolution of the hadron masses obtained. All mesons and baryons in our study, except for a pion, survive unbreaking the chiral symmetry and their exponential decay signals become essentially better. From the analysis of the observed spectroscopic patterns we conclude that confinement still persists while the chiral symmetry is restored. All hadrons fall into different chiral multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking the chiral symmetry. We also observe signals of some higher symmetry that includes chiral symmetry as a subgroup. Finally, from comparison of the \\Delta - N splitting before and after unbreaking of the chiral symmetry we conclude that both the color-magnetic and the flavor-spin quark-quark interactions are of equal importance.
Chiral behavior of light meson form factors in 2+1 flavor QCD with exact chiral symmetry
Kaneko, T; Cossu, G; Feng, X; Fukaya, H; Hashimoto, S; Noaki, J; Onogi, T
2016-01-01
We present a study of chiral behavior of light meson form factors in QCD with three flavors of overlap quarks. Gauge ensembles are generated at single lattice spacing 0.12 fm with pion masses down to 300 MeV. The pion and kaon electromagnetic form factors and the kaon semileptonic form factors are precisely calculated using the all-to-all quark propagator. We discuss their chiral behavior using the next-to-next-to-leading order chiral perturbation theory.
Magnetic properties in the inhomogeneous chiral phase
Yoshiike, Ryo; Tatsumi, Toshitaka
2016-01-01
We investigate the magnetic properties of quark matter in the inhomogeneous chiral phase, where both scalar and pseudoscalar condensates spatially modulate. The energy spectrum of the lowest Landau level becomes asymmetric about zero in the external magnetic field, and gives rise to the remarkably magnetic properties: quark matter has a spontaneous magnetization, while the magnetic susceptibility does not diverge on the critical point.
Quenched QCD near the chiral limit
Göckeler, M; Petters, D; Pleiter, D; Rakow, P E L; Schierholz, G
2000-01-01
A numerical study of quenched QCD for light quarks is presented using O(a)improved fermions. Particular attention is paid to the possible existence anddetermination of quenched chiral logarithms. A `safe' region to use for chiralextrapolations appears to be at and above the strange quark mass.
Dvornikov, Maxim
2016-12-01
We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field 1012G to the strengths (1014 -1015)G. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.
Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids
Kalaydzhyan, Tigran
2016-01-01
In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark-gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in a external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density, the chiral vortical and chiral magnetic waves. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the excitation reduces to a charge diffusion mode or is completely absent. We also correct the dispersion relation for the chiral magnetic wave.
Institute of Scientific and Technical Information of China (English)
ZONGHong－Shi; PINGJia－Lun; 等
2002-01-01
We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagator from the dressed-quark propagator,which provides a means of determining the behavior of the chiral and deconfinement order parameters.A comparison with the results of previous researches is given.
Maximal Wavelength of Confined Quarks and Gluons and Properties of Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /YITP, Stony Brook /Durham U.; Shrock, Robert; /YITP, Stony Brook
2008-08-01
Because quarks and gluons are confined within hadrons, they have a maximum wavelength of order the confinement scale. Propagators, normally calculated for free quarks and gluons using Dyson-Schwinger equations, are modified by bound-state effects in close analogy to the calculation of the Lamb shift in atomic physics. Because of confinement, the effective quantum chromodynamic coupling stays finite in the infrared. The quark condensate which arises from spontaneous chiral symmetry breaking in the bound state Dyson-Schwinger equation is the expectation value of the operator {bar q}q evaluated in the background of the fields of the other hadronic constituents, in contrast to a true vacuum expectation value. Thus quark and gluon condensates reside within hadrons. The effects of instantons are also modified. We discuss the implications of the maximum quark and gluon wavelength for phenomena such as deep inelastic scattering and annihilation, the decay of heavy quarkonia, jets, and dimensional counting rules for exclusive reactions. We also discuss implications for the zero-temperature phase structure of a vectorial SU(N) gauge theory with a variable number N{sub f} of massless fermions.
Isospin properties of quark matter from a 3-flavor NJL model
Liu, He; Xu, Jun; Chen, Lie-Wen; Sun, Kai-Jia
2016-09-01
We have studied the properties of hot and dense quark matter based on the 3-flavor Nambu-Jona-Lasinio (NJL) model as well as its Polyakov-loop extension (pNJL) with scalar-isovector and vector-isovector couplings. Provided a considerable large isospin asymmetry or isospin chemical potential, isospin splittings of constituent mass, chiral phase transition boundary, and critical point for u and d quarks can be observed for positive isovector coupling constants but are suppressed for negative ones. The quark matter symmetry energy decreases with the increasing isovector coupling constant, and is mostly enhanced in the pNJL model than in the NJL model. A positive scalar-isovector coupling constant is more likely to lead to an unstable isospin asymmetric quark matter. The isovector coupling has been further found to affect particle fractions as well as the equation of state in hybrid stars. Possible effects on the isospin properties of quark matter have also been discussed if the strangeness sector is further broken among the flavor symmetry.
Results from the MILC collaboration's SU(3) chiral perturbation theory analysis
Bazavov, A; DeTar, C; Du, X; Freeman, W; Gottlieb, Steven; Heller, Urs M; Hetrick, J E; Laiho, J; Levkova, L; Oktay, M B; Osborn, J; Sugar, R; Toussaint, D; Van de Water, R S
2009-01-01
We present the status of the MILC collaboration's analysis of the light pseudoscalar meson sector with SU(3) chiral fits. The analysis includes data from new ensembles with smaller lattice spacing, smaller light quark masses and lighter than physical strange quark masses. Our fits include the NNLO chiral logarithms. We present results for decay constants, quark masses, Gasser-Leutwyler low energy constants, and condensates in the two- and three-flavor chiral limits.
Extended Quark Potential Model from Random Phase Approximation
Institute of Scientific and Technical Information of China (English)
DENG Wei-Zhen; CHEN Xiao-Lin; LU Da-Hai; YANG Li-Ming
2002-01-01
The quark potential model is extended to include the sea quark excitation using the random phase approx-imation. The effective quark interaction preserves the important QCD properties - chiral symmetry and confinementsimultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson andthe other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quarkpotential model.
Irving, A C; Michael, C; Sharkey, K J; Wittig, H
2001-01-01
We report on determinations of the low-energy constants alpha5 and alpha8 in the effective chiral Lagrangian at O(p^4), using lattice simulations with N_f=2 flavours of dynamical quarks. Precise knowledge of these constants is required to test the hypothesis whether or not the up-quark is massless. Our results are obtained by studying the quark mass dependence of suitably defined ratios of pseudoscalar meson masses and matrix elements. Although comparisons with an earlier study in the quenched approximation reveal small qualitative differences in the quark mass behaviour, numerical estimates for alpha5 and alpha8 show only a weak dependence on the number of dynamical quark flavours. Our results disfavour the possibility of a massless up-quark, provided that the quark mass dependence in the physical three-flavour case is not fundamentally different from the two-flavour case studied here.
The effective chiral Lagrangian from dimension-six parity and time-reversal violation
de Vries, J.; Mereghetti, E.; Timmermans, R.G.E.; van Kolck, U.
2013-01-01
We classify the parity- and time-reversal-violating operators involving quark and gluon fields that have effective dimension six: the quark electric dipole moment, the quark and gluon chromo-electric dipole moments, and four four-quark operators. We construct the effective chiral Lagrangian with had
Applications Of Chiral Perturbation Theory
Mohta, V
2005-01-01
Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...
Transversity of quarks in a nucleon
Indian Academy of Sciences (India)
K Bora; D K Choudhury
2003-11-01
The transversity distribution of quarks in a nucleon is one of the three fundamental distributions, that characterize nucleon’s properties in hard scattering processes at leading twist (twist 2). It measures the distribution of quark transverse spin in a nucleon polarized transverse to its (inﬁnite) momentum. It is a chiral-odd twist-two distribution function – gluons do not couple to it. Quarks in a nucleon/hadron are relativistically bound and transversity is a measure of the relativistic nature of bound quarks in a nucleon. In this work, we review some important aspects of this less familiar distribution function which has not been measured experimentally so far.
Inhomogeneous phases in the quark-meson model with vacuum fluctuations
Carignano, Stefano; Schaefer, Bernd-Jochen
2014-01-01
Inhomogeneous chiral-symmetry breaking phases at non-vanishing chemical potential and temperature are studied within a two-flavor quark-meson model in the chiral limit. The analysis is performed beyond the standard mean-field approximation by taking into account the Dirac-sea contributions of the quarks. Compared with the case where the Dirac sea is neglected, we find that the inhomogeneous phase shrinks, but in general does not disappear. It is shown within a Ginzburg-Landau analysis that the Lifshitz point of the inhomogeneous phase coincides with the tricritical point if the ratio between sigma-meson and constituent quark mass in vacuum is chosen to be $m_\\sigma/M = 2$, corresponding to the fixed mass ratio in the Nambu--Jona-Lasinio model. In the present model, however, this ratio can be varied, offering the possibility to separate the two points. This is confirmed by our numerical calculations, which demonstrate a strong sensitivity of the size of the inhomogeneous phase on $m_\\sigma$. Finally, we uncove...
Novel Lifshitz point for chiral transition in the magnetic field
Directory of Open Access Journals (Sweden)
Toshitaka Tatsumi
2015-04-01
Full Text Available Based on the generalized Ginzburg–Landau theory, chiral phase transition is discussed in the presence of magnetic field. Considering the chiral density wave we show that chiral anomaly gives rise to an inhomogeneous chiral phase for nonzero quark-number chemical potential. Novel Lifshitz point appears on the vanishing chemical potential line, which may be directly explored by the lattice QCD simulation.
A simple reason based on supersymmetry for replication of chiral families
Babu, K. S.; Pati, Jogesh C.; Stremnitzer, Hanns
1991-03-01
In the context of the minimal flavon-chromon preon model, we show that supersymmetry, because of fermion-boson pairing in its field content, provides a rather simple reason for replication of composite quark-lepton families. At the level of minimum number of core constituents, which turns out to be three, it also provides a good reason why one may expect to have just three light chiral families. One crucial prediction is that there must exist complete vector-like families with mass of order 1 TeV for quark-like and few hundred GeV for lepton-like members. This can be tested at SSC, LHC and future high energy e-e+ machines.
Chiral Superfluidity for the Heavy Ion Collisions
Kalaydzhyan, T
2013-01-01
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate tempera...
Chiral phase transition of $N_f$=2+1 QCD with the HISQ action
Ding, H -T; Karsch, F; Maezawa, Y; Mukherjee, Swagato; Petreczky, P
2013-01-01
We present studies of universal properties of the chiral phase transition in $N_f$=2+1 QCD based on the simulations using Highly Improved Staggered fermions on lattices with temporal extent $N_\\tau$=6. We analyze the quark mass and volume dependence of the chiral condensates and chiral susceptibilities in QCD with two degenerate light quarks and a strange quark. The strange quark mass is chosen to be fixed to its physical value ($m^{phy}_s$) and five values of light quark masses ($m_l$) that are varied in the interval 1/20$\\gtrsim m_l/m^{phy}_s \\gtrsim$1/80. Here various quark masses correspond to pseudo Goldstone pion masses ranging from about 160 MeV to about 80 MeV. The O(N) scaling of chiral observables and the influence of universal scaling on physical observables in the region of physical quark mass values are also discussed.
Effects from inhomogeneities in the chiral transition
Taketani, B G; Taketani, Bruno G.; Fraga, Eduardo S.
2006-01-01
We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density in the presence of a chiral background field which systematically incorporates effects from inhomogeneities in the chiral field through a derivative expansion. We apply the method to the case of a simple low-energy effective chiral model which is commonly used in the study of the chiral phase transition, the linear sigma-model coupled to quarks. The modifications in the effective potential and their consequences for the bubble nucleation process are discussed.
Prompt quark production by exploding sphalerons
Shuryak, Edward; Zahed, Ismail
2003-01-01
Following recent works on the production and subsequent explosive decay of QCD sphaleronlike clusters, we discuss the mechanism of quark pair production in this process. We first show how the gauge field explosive solution of Luscher and Schechter can be achieved by noncentral conformal mapping from the O(4)-symmetric solution. Our main result is a new solution to the Dirac equation in real time in this configuration, obtained by the same inversion of the fermion O(4) zero mode. It explicitly shows how the quark acceleration occurs, starting from the spherically O(3)-symmetric zero energy chiral quark state to the final spectrum of nonzero energies. The sphaleronlike clusters with any Chern-Simons number always produce NFL¯R quarks, and the antisphaleron-like clusters the opposite chirality. The result are relevant for hadron-hadron and nucleus-nucleus collisions at large (s), wherein such clusters can be produced.
Equation of State for physical quark masses
Cheng, M; Hegde, P; Karsch, F; Kaczmarek, O; Laermann, E; Mawhinney, R D; Miao, C; Mukherjee, S; Petreczky, P; Schmidt, C; Soeldner, W
2009-01-01
We calculate the QCD equation of state for temperatures corresponding to the transition region with physical mass values for two degenerate light quark flavors and a strange quark using an improved staggered fermion action (p4-action) on lattices with temporal extent N_tau=8. We compare our results with previous calculations performed at twice larger values of the light quark masses as well as with results obtained from a resonance gas model calculation. We also discuss the deconfining and chiral aspects of the QCD transition in terms of renormalized Polyakov loop, strangeness fluctuations and subtracted chiral condensate. We show that compared to the calculations performed at twice larger value of the light quark mass the transition region shifts by about 5 MeV toward smaller temperatures
Metastable strange matter and compact quark stars
Malheiro, M; Taurines, A R
2003-01-01
Strange quark matter in beta equilibrium at high densities is studied in a quark confinement model. Two equations of state are dynamically generated for the {\\it same} set of model parameters used to describe the nucleon: one corresponds to a chiral restored phase with almost massless quarks and the other to a chiral broken phase. The chiral symmetric phase saturates at around five times the nuclear matter density. Using the equation of state for this phase, compact bare quark stars are obtained with radii and masses in the ranges $R\\sim 5 - 8$ km and $M\\sim M_\\odot$. The energy per baryon number decreases very slowly from the center of the star to the periphery, remaining above the corresponding values for the iron or the nuclear matter, even at the edge. Our results point out that strange quark matter at very high densities may not be absolutely stable and the existence of an energy barrier between the two phases may prevent the compact quarks stars to decay to hybrid stars.
Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange
Llanes-Estrada, Felipe J; Swanson, Eric S; Szczepaniak, Adam P; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.; Szczepaniak, Adam P.; Swanson, Eric S.
2004-01-01
Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both $S$ and $D$ waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the $\\pi$-$\\rho$ mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the $\\pi$ mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The $\\eta_b$ mass is predicted to be around 9400 MeV consistent w...
Quantifying zig-zag motion of quarks
Antonov, D
2010-01-01
Quark condensate is calculated in terms of the effective string tension and the constituent quark mass. For 3 colors and 2 light flavors, the constituent mass is bounded from below by the value of 460 MeV. This value is only accessible when the string tension decreases linearly with the Schwinger proper time. For this reason, the Hausdorff dimension of a light-quark trajectory is equal to 4, indicating that these trajectories are similar to branched polymers, which can describe a weak first-order deconfinement phase transition in SU(3) Yang-Mills theory. Using this indication, we develop a gluon-chain model based on such trajectories.
Recent results in the NJL model with heavy quarks
Feldmann, T
1996-01-01
We investigate the interplay of chiral and heavy quark symmetries by using the NJL quark model. Heavy quarks with finite masses m(Q) as well as the limit m(Q) to infinity are studied. We found large corrections to the heavy mass scaling law for the pseudoscalar decay constant. The influence of external momenta on the shape parameters of the Isgur-Wise form factor is discussed.
Quark-hadron phase transition in massive gravity
Atazadeh, K.
2016-11-01
We study the quark-hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark-hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.
Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D
2011-01-01
We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...
Rho, Mannque
2008-01-01
This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and
A Diquark-Quark Model with Its Use in Nucleon Form Factors
Institute of Scientific and Technical Information of China (English)
WANG Hong-Min; ZHANG Ben-Ai
2005-01-01
The nucleon electromagnetic form factors are investigated within a simple diquark-quark model using the light-front formalism. In this model, baryon is described as a bound state of one quark and one clustering diquark.The calculational results are compared with the experimental ones. We also regard the quarks in a baryon as pointlike constituent quarks.
Chiral magnetic effect in condensed matter systems
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].
Vector Meson Masses in Chiral Perturbation Theory
Bijnens, J; Talavera, P
1997-01-01
We discuss the vector meson masses within the context of Chiral Perturbation Theory performing an expansion in terms of the momenta, quark masses and 1/Nc. We extend the previous analysis to include isospin breaking effects and also include up to order p^4. We discuss vector meson chiral perturbation theory in some detail and present a derivation from a relativistic lagrangian. The unknown coefficients are estimated in various ways. We also discuss the relevance of electromagnetic corrections and the implications of the present calculation for the determination of quark masses.
Heavy Quarks, Origin of Mass, and CP Violation for Universe
Hou, George W S
2013-01-01
A scale-invariant "Gap Equation" is constructed for chiral quark $Q$ by Goldstone, or $V_L$, exchange, where massless input is guaranteed by gauge invariance. A numerical solution is found for Yukawa coupling $\\sim 4\\pi$. In turn, because this gap equation is scale invariant, the strong coupling solution is compatible with a 126 GeV dilaton, which would be a true messenger from higher energies. Some possible phenomena pertaining to heavy chiral quarks at few TeV scale is offered. Adding this heavy quark sector may provide enough CP violation for generating the matter dominance of the Universe.
Chirally symmetric but confined hadrons at finite density
Glozman, L Ya
2008-01-01
At a critical finite chemical potential and low temperature QCD undergoes the chiral restoration phase transition. The folklore tradition is that simultaneously hadrons are deconfined and there appears the quark matter. We demonstrate that it is possible to have confined but chirally symmetric hadrons at a finite chemical potential and hence beyond the chiral restoration point at a finite chemical potential and low temperature there could exist a chirally symmetric matter consisting of chirally symmetric but confined hadrons. If it does happen in QCD, then the QCD phase diagram should be reconsidered with obvious implications for heavy ion programs and astrophysics.
Chiral symmetry breaking from Ginsparg-Wilson fermions
Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent
2000-01-01
We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.
Strangeness at high temperatures: from hadrons to quarks.
Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2013-08-23
Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover, separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window, these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.
Strangeness at high temperatures: from hadrons to quarks
Bazavov, A; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2013-01-01
Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.
The Phase Structure of the Polyakov--Quark-Meson Model
Schaefer, Bernd-Jochen; Wambach, Jochen
2007-01-01
The relation between the deconfinement and chiral phase transition is explored in the framework of an Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and N_f-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect of the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.
Phase structure of the Polyakov-quark-meson model
Schaefer, B.-J.; Pawlowski, J. M.; Wambach, J.
2007-10-01
The relation between the deconfinement and chiral phase transition is explored in the framework of a Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and Nf-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect of the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.
Essence of the Vacuum Quark Condensate
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Roberts, Craig D.; /Argonne, PHY /Peking U.; Shrock, Robert; /YITP, Stony Brook; Tandy, Peter C.; /Kent State U.
2010-08-25
We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wavefunctions.
Field induced spin chirality and chirality switching in magnetic multilayers
Energy Technology Data Exchange (ETDEWEB)
Tartakovskaya, Elena V., E-mail: elena_tartakovskaya@yahoo.com [Institute of Magnetism NAS of Ukraine, Vernadsky blvd 36b, 03142 Kiev (Ukraine); Institute of High Technologies, Taras Shevchenko National University of Kiev, 03022 Kiev (Ukraine)
2015-05-01
The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman–Kittel–Kasuya–Yosida and the Dsyaloshinsky–Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness. - Highlights: • Field-induced spin chirality in magnetic multilayers is explained. • The roles of the RKKY, the DM and the Zeeman interactions are clarified. • Theoretical analysis of the chirality factor is in agreement with experimental data.
Directory of Open Access Journals (Sweden)
Andrianov Alexander
2017-01-01
Full Text Available The chiral imbalance (ChI is given by a difference between the numbers of RH and LH quarks which may occur in the fireball after heavy ion collision. To characterize it adiabatically a quark chiral (axial chemical potential must be introduced taking into account emergence of a ChI in such a phase. In this report the phenomenology of formation of Local spatial Parity Breaking (LPB in the hot and dense baryon matter is discussed and its simulation within a number of QCD-inspired models is outlined. The appearance of new states in the spectra of scalar, pseudoscalar and vector particles in such a matter is elucidated. In particular, from the effective vector meson theory in the presence of Chern-Simons interaction it is demonstrated that the spectrum of massive vector mesons splits into three polarization components with different effective masses. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton invariant mass can serve as a characteristic indication of the LPB in PHENIX, STAR and ALICE experiments.
Inoue, Yoshihisa
2004-01-01
Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S
Topological susceptibility with three flavors of staggered quarks
Aubin, C; Billeter, B; DeTar, C; Gottlieb, S; Gregory, E; Heller, U M; Hetrick, J E; Osborn, J; Sugar, R L; Toussaint, D; Billeter, Brian; Gottlieb, Steven
2005-01-01
As one test of the validity of the staggered-fermion fourth-root determinant trick, we examine the suppression of the topological susceptibility of the QCD vacuum in the limit of small quark mass. The suppression is sensitive to the number of light sea quark flavors. Our study is done in the presence of 2+1 flavors of dynamical quarks in the improved staggered fermion formulation. Variance-reduction techniques provide better control of statistical errors. New results from staggered chiral perturbation theory account for taste-breaking effects in the low-quark mass behavior of the susceptibility, thereby reducing scaling violations from this source. Measurements over a range of quark masses at two lattice spacings permit a rough continuum extrapolation to remove the remaining lattice artifacts. The results are consistent with chiral perturbation theory with the correct flavor counting.
Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks
Blossier, B; Carrasco, N; Dimopoulos, P; Du, X; Frezzotti, R; Gimenez, V; Herdoiza, G; Jansen, K; Lubicz, V; Palao, D; Pallante, E; Pene, O; Petrov, K; Reker, S; Rossi, G C; Sanfilippo, F; Scorzato, L; Simula, S; Urbach, C
2011-01-01
We present preliminary results of the non-perturbative computation of the RI-MOM renormalisation constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalisation constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit.
How tetraquarks can generate a second chiral phase transition
Pisarski, Robert D
2016-01-01
We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature and quark chemical potential, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.
Chiral Corrections to Vector Meson Decay Constants
Bijnens, J; Talavera, P; Bijnens, Johan; Gosdzinsky, Peter; Talavera, Pere
1998-01-01
We calculate the leading quark mass corrections of order $m_q\\log(m_q)$, $m_q$ and $m_q^{3/2}$ to the vector meson decay constants within Heavy Vector Meson Chiral Perturbation Theory. We discuss the issue of electromagnetic gauge invariance and the heavy mass expansion. Reasonably good fits to the observed decay constants are obtained.
Chiral Thermodynamics in a finite box
Juričić, Ana
2016-01-01
Finite-volume modifications of the two-flavor chiral phase diagram are investigated within an effective quark-meson model in various mean-field approximations. The role of vacuum fluctuations and boundary conditions, their influence on higher cumulants and signatures of a possible pseudo-critical endpoint are amplified with smaller volumes.
In Search of the Chiral Regime
Beane, S R
2004-01-01
A critical appraisal is given of a recent analysis of the quark-mass and finite-size dependence of unquenched lattice QCD data for the nucleon mass. We use this forum to estimate the boundary of the chiral regime for nucleon properties.
Dvornikov, Maxim
2016-01-01
We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field $10^{12}\\,\\text{G}$ to the strengths $(10^{14}-10^{15})\\,\\text{G}$. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.
Kallin, Catherine; Berlinsky, John
2016-05-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.
Nuclear matter from effective quark-quark interaction.
Baldo, M; Fukukawa, K
2014-12-12
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Heavy-light quarks interactions in QCD vacuum
Musakhanov, Mirzayusuf
2014-01-01
QCD vacuum instantons induce very strong interactions between light quarks, which generate large dynamical light quark mass M for initially almost massless quarks and can bound these quarks to produce almost massless pions in accordance with the spontaneous breaking of chiral symmetry ($S\\chi$SB). On the other hand, the QCD vacuum instantons generate heavy-light quark interactions terms, which are responsible for the effects of $S\\chi$SB in a heavy-light quark system. Summing the re-scattering series that lead to the total light quark propagator and making few further steps, we get the fermionized representation of low-frequencies light quark determinant in the presence of the quark sources, which is relevant for our problems. The next important step in the line of this strategy is to derive the equation and calculate the heavy quark propagator in the instanton media and in the presence of light quarks. This one provide finally the heavy and N_f light quark interaction term. As an example, we derive heavy-lig...
Chiral spiral induced by a strong magnetic field
Directory of Open Access Journals (Sweden)
Abuki Hiroaki
2016-01-01
Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.
Field induced spin chirality and chirality switching in magnetic multilayers
Tartakovskaya, Elena V.
2015-05-01
The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman-Kittel-Kasuya-Yosida and the Dsyaloshinsky-Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness.
Menke, Sven; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronises, analyses of events containing top quarks allow to probe the properties of bare quarks and to test perturbative QCD. This talk will focus on recent precision top-quark measurements by the ATLAS Collaboration: Single top-quark and top-quark pair production cross sections including differential distributions will be presented, as well as measurements of top-quark pair production in association with a W or Z boson and measurements of top quark properties such as the spin correlation and W boson helicity in top quark pair events.
Heavy-Light Mesons in Chiral AdS/QCD
Liu, Yizhuang
2016-01-01
We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.
From enemies to friends chiral symmetry on the lattice
Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent
2002-01-01
The physics of strong interactions is invariant under the exchange of left-handed and right-handed quarks, at least in the massless limit. This invariance is reflected in the chiral symmetry of quantum chromodynamics. Surprisingly, it has become clear only recently how to implement this important symmetry in lattice formulations of quantum field theories. We will discuss realizations of exact lattice chiral symmetry and give an example of the computation of a physical observable in quantum chromodynamics where chiral symmetry is important. This calculation is performed by relying on finite size scaling methods as predicted by chiral perturbation theory.
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
.5 GeV with BABAR / A. Denig. The pion vector form-factor and (g-2)u / C. Smith. Partially quenched CHPT results to two loops / J. Bijnens. Pion-pion scattering with mixed action lattice QCD / P.F. Bedaque. Meson systems with Ginsparg-Wilson valence quarks / A. Walker-Loud. Low energy constants from the MILC collaboration / C. Bernard. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice QCD simulations with two light dynamical (Wilson) quarks / L. Giusti. Do we understand the low-energy constant L8? / M. Golterman. Quark mass dependence of LECs in the two-flavour sector / M. Schmid. Progress report on the [Pie symbol]0 Lifetime experiment (PRIMEX) at Jlab / D.E. McNulty. Determination of the charged pion polarizabilities / L.V. Fil'kov. Proposed measurement of electroproduction of [Pie symbol]0 near threshold using a large acceptance spectrometer / R.A. Lindgren. The [Pie symbol] meson in [Pie symbol]K scattering / B. Moussallam. Strangeness -1 Meson-Baryon scattering S-wave / J.A. Oller. Results on light mesons decays and dynamics at KLOE / M. Martini. Studies of decays of [symbol] and [symbol] mesons with WASA detector / A. Kupsc. Heavy Quark-Diquark symmetry and X PT for doubly heavy baryons / T. Mehen. HHChPT applied to the charmed-strange parity partners/ R.P. Springer. Study of pion structure through precise measurements of the [Pie symbol]+ --> e+[symbol] decay / D. Pocanic. Exceptional and non-exceptional contributions to the radiative [Pie symbol] decay / V. Mateu. Leading chiral logarithms from unitarity, analyticity and the Roy equations / A. Fuhrer. All orders symmetric subtraction of the nonlinear sigma model in D=4 / A. Quadri -- pt. C. Chiral dynamics in few-nucleon systems. Working group summary: chiral dynamics in few-nucleon systems / H.W Hammer, N. Kalantar-Nayestanaki, and D.R. Phillips. Power counting in nuclear chiral effective field theory / U. van Kolck. On the consistency of Weinberg's power counting / U-G Mei ner. Renormalization
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; SUN Wei-Min; PING Jia-Lun; L(U) Xiao-Fu; WANG Fan
2005-01-01
@@ It is shown on general ground that there exist two qualitatively distinct solutions of the Dyson-Schwinger equation for the quark propagator in the case of non-zero current quark mass. One solution corresponds to the "NambuGoldstone" phase and the other one corresponds to the "Wigner" phase in the chiral limit.
Probing the Source of Proton Mass by"Unbreaking" Scale-Chiral Symmetry
Rho, Mannque
2016-01-01
I describe a possible scenario for the origin of proton mass in terms of Cheshire Cat, half-skyrmions, topology change and interplay between hidden chiral-scale symmetry and induced local symmetry. This differs from the standard constituent-quark scenario. As the baryonic matter density is increased toward the vector manifestation (VM) fixed-point at which the $\\rho$ mass is to vanish, the effective in-medium mass ratio $m^*_\\rho/m^*_N$ is to tend to zero proportionally to $g^*_\\rho$ where $g^*_\\rho$ is the in-medium hidden gauge coupling constant. I develop the thesis that the intricacy involved in the mass generation could be decoded from experiments at RIB accelerators and massive compact stars.
Surface tension in the cold and dense chiral transition and astrophysical applications
Palhares, L F
2011-01-01
The surface tension of cold and dense QCD phase transitions has appeared recently as a key ingredient in different astrophysical scenarios, ranging from core-colapse supernovae explosions to compact star structure. If the surface tension is low enough, observable consequences are possible. Its value is however not known from first-principle methods in QCD, calling for effective approaches. Working within the framework of homogeneous nucleation by Langer, we discuss the steps that are needed to obtain the nucleation parameters from a given effective potential. As a model for deriving the effective potential for the chiral transition, we adopt the linear sigma model with constituent quarks at very low temperatures, which provides an effective description for the thermodynamics of the strong interaction in cold and dense matter, and predict a surface tension of Sigma ~ 5--15 MeV/fm^2, well below previous estimates. Including temperature effects and vacuum logarithmic corrections, we find a clear competition betw...
Binding of Quarks and the $\\pi N$ $\\sigma$-term
Glozman, L Ya
1996-01-01
It is shown that the binding effect that is associated with the short range part of the Goldstone boson exchange interaction between constituent quarks provides a good description of the $\\pi N$ $\\sigma$-term.
The Theory of Quark and Gluon Interactions
Ynduráin, Francisco J
2006-01-01
F. J. Ynduráin's book on Quantum Chromodynamics has become a classic among advanced textbooks. First published in 1983, and translated into Russian in 1986, it now sees its fourth edition. It addresses readers with basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Theory is always confronted with experimental findings. The reader will learn enough to be able to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory.
Energy Technology Data Exchange (ETDEWEB)
Floss, H.G. [Univ. of Washington, Seattle, WA (United States)
1994-12-01
This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.
Quark mass functions and pion structure in Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [CFTP, Institute Superior Tecnico; Gross, Franz L. [JLAB; Pena, Maria Teresa [CFTP, Institute Superior Tecnico; Stadler, Alfred [University of Evora
2014-03-01
We present a study of the dressed quark mass function and the pion structure in Minkowski space using the Covariant Spectator Theory (CST). The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We use an interaction kernel in momentum space that is a relativistic generalization of the linear confining q-qbar potential and a constant potential shift that defines the energy scale. The confining interaction has a Lorentz scalar part that is not chirally invariant by itself but decouples from the equations in the chiral limit and therefore allows the Nambu--Jona-Lasinio (NJL) mechanism to work. We adjust the parameters of our quark mass function calculated in Minkowski-space to agree with LQCD data obtained in Euclidean space. Results of a calculation of the pion electromagnetic form factor in the relativistic impulse approximation using the same mass function are presented and compared with experimental data.
Phase diagram and critical end point for strongly interacting quarks.
Qin, Si-xue; Chang, Lei; Chen, Huan; Liu, Yu-xin; Roberts, Craig D
2011-04-29
We introduce a method based on chiral susceptibility, which enables one to draw a phase diagram in the chemical-potential-temperature plane for strongly interacting quarks whose interactions are described by any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. We locate a critical end point at (μ(E),T(E))∼(1.0,0.9)T(c), where T(c) is the critical temperature for chiral-symmetry restoration at μ=0, and find that a domain of phase coexistence opens at the critical end point whose area increases as a confinement length scale grows.
Chiral Magnetic Effect in Heavy Ion Collisions
Liao, Jinfeng
2016-01-01
The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.
Random matrix model approach to chiral symmetry
Verbaarschot, J J M
1996-01-01
We review the application of random matrix theory (RMT) to chiral symmetry in QCD. Starting from the general philosophy of RMT we introduce a chiral random matrix model with the global symmetries of QCD. Exact results are obtained for universal properties of the Dirac spectrum: i) finite volume corrections to valence quark mass dependence of the chiral condensate, and ii) microscopic fluctuations of Dirac spectra. Comparisons with lattice QCD simulations are made. Most notably, the variance of the number of levels in an interval containing $n$ levels on average is suppressed by a factor $(\\log n)/\\pi^2 n$. An extension of the random matrix model model to nonzero temperatures and chemical potential provides us with a schematic model of the chiral phase transition. In particular, this elucidates the nature of the quenched approximation at nonzero chemical potential.
Chiral susceptibility and the scalar Ward identity.
Energy Technology Data Exchange (ETDEWEB)
Chang, L.; Liu, Y.-X.; Roberts, C. D.; Shi, Y.-M.; Sun, W.-M.; Zong, H.-S.; Physics; Inst. of Applied Physics and Computational Mathematics; Peking Univ.; National Lab. of Heavy Ion Accelerator; Univ. of New South Wales; Nanjing Univ.; Joint Center for Particle, Nuclear Physics and Cosmology
2009-03-01
The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansaetze. For the two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking.
Sharma, A
1997-01-01
A qqq BSE formalism based on an input 4-fermion Lagrangian of "current" u,d quarks, is employed for the construction of a relativistic qqq-wave function) via the BSE. Chiral invariance is ensured by the vector character of the gluonic propagator in the infrared regime, while the `constituent' masses are the low momentum limits of the dynamicalmass function generated by standard DB{\\chi}. The Covariant Instantaneity Ansatz (CIA) gives an exact 3D reduction of the BSE for baryon spectroscopy, while the reconstructed 4D form identifies the baryon quark vertex function reconstructed through a reversal of steps offered by the CIA structure. It is employed for the quark loop integrals for the neutron - proton mass difference which receives contributions from two sources : i) the strong SU(2) effect arising from the $u-d$ mass difference (4 MeV); ii) the e.m. effect of the respective quark charges. The resultant n-p difference works out at 1.28 MeV (vs. 1.29 expt), with only two free parameters characterizing the in...
Light quark correlators in a mixed-action setup
Energy Technology Data Exchange (ETDEWEB)
Bernardoni, Fabio [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garron, Nicolas [Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Hernandez, Pilar [CSIC-Univ. de Valencia (Spain). Inst. de Fisica Corpuscular; Necco, Silvia [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pena, Carlos [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC
2011-11-15
We report our progress in simulating Neuberger valence fermions on N{sub f}=2 Wilson O(a)-improved sea quarks. We compute correlators with valence quark masses both in the p- and in the e-regime, and we match the results with the predictions of the Chiral Effective Theory in the mixed regime. This allows us to extract the Low Energy Couplings (LECs) of the N{sub f}=2 theory and to test the validity of the approach. (orig.)
Contribution of Quark Structure Term in Nucleon Electric and Magnetic Form Factors
Institute of Scientific and Technical Information of China (English)
WANG Hong-Min; ZHANG Ben-Ai
2004-01-01
The constituent quarks in the nucleon have always been considered as a point-like particle in the relativistic constituent quark model. However its calculation results of GnE agree poorly with the new experimental data. The electromagnetic structure of light front constituent quarks is considered in this paper. We find that the calculation results have good agreement with the new experimental data of GnE after considering the contribution of the quark structure term. This treatment seems to be able to improve the fit to experimental data of Gep/GMp, /Q2F2p/kpF1p,and Gen/GMn as well.
Spectrum of heavy baryons in the quark model
Yoshida, Tetsuya; Hosaka, Atsushi; Oka, Makoto; Sadato, Katsunori
2015-01-01
Single- and double- heavy baryons are studied in the constituent quark model. The model Hamiltonian is chosen as a standard one with two exceptions : (1) The color-Coulomb term depend on quark masses, and (2) an antisymmetric $LS$ force is introduced. Model parameters are fixed by the strange baryon spectra, $\\Lambda$ and $\\Sigma$ baryons. The masses of the observed charmed and bottomed baryons are, then, fairly well reproduced. Our focus is on the low-lying negative-parity states, in which the heavy baryons show specific excitation modes reflecting the mass differences of heavy and light quarks. By changing quark masses from the SU(3) limit to the strange quark mass, further to the charm and bottom quark masses, we demonstrate that the spectra change from the SU(3) symmetry patterns to the heavy quark symmetry ones.
Note on Strange Quarks in the Nucleon
Steininger, K
1994-01-01
Scalar matrix elements involving strange quarks are studied in several models. Apart from a critical reexamination of results obtained in the Nambu and Jona-Lasinio model we study a scenario, motivated by instanton physics, where spontaneous chiral symmetry breaking is induced by the flavor-mixing 't Hooft interaction only. We also investigate possible contributions of virtual kaon loops to the strangeness content of the nucleon.
Chirally extended quantum chromodynamics
Brower, R C; Tan, C I; Richard C Brower; Yue Shen; Chung-I Tan
1994-01-01
We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar %\\sigma and \\pi fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investiga...
Hashimoto, Koji; Yoshida, Kentaroh
2016-01-01
Assigning a chaos index for vacua of generic quantum field theories is a challenging problem. We find chaotic behavior of chiral condensates of a quantum gauge theory at strong coupling limit, by using the AdS/CFT correspondence. We evaluate the time evolution of homogeneous quark condensates and in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at large 't Hooft coupling lambda. At an equivalent classical gravity picture, a Lyapunov exponent is readily defined. We show that the condensates exhibit chaotic behavior for energy density E > (6x10^2) (N_c/lambda^2) (m_q)^4 where m_q is the quark mass. The energy region of the chaotic vacua of the N=2 supersymmetric QCD increases for smaller N_c or larger lambda. The Lyapunov exponent is calculated as a function of the theory (N_c,lambda,E), showing that the N=2 supersymmetric QCD is more chaotic for smaller N_c.
Phase structure of cold magnetized quark matter within the SU(3) NJL model
Grunfeld, A G; Pinto, M B; Scoccola, N N
2014-01-01
The possible different phases of cold quark matter in the presence of a finite magnetic field and chemical potential are obtained within the SU(3) NJL model for two parameter sets often used in the literature. Although the general pattern is the same in both cases, the number of intermediate phases is parameter dependent. The chiral susceptibilities, as usually defined, are different not only for the s-quark as compared with the two light quarks, but also for the u and d-quarks, yielding non identical crossover lines for the light quark sector.
Spectral properties of quarks above $\\T_{c}$ in quenched lattice QCD
Karsch, Frithjof
2007-01-01
We analyze the quark spectral function above the critical temperature for deconfinement in quenched lattice QCD using clover improved Wilson fermions in Landau gauge. We show that the temporal quark correlator is well reproduced by a two-pole approximation for the spectral function and analyze the bare quark mass dependence of both poles as well as their residues. In the chiral limit we find that the quark spectral function has two collective modes which correspond to the normal and plasmino excitations. At large values of the bare quark mass the spectral function is dominated by a single pole.
On the quark-mass dependence of baryon ground-state masses
Energy Technology Data Exchange (ETDEWEB)
Semke, Alexander
2010-02-17
Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)
Chiral medium produced by parallel electric and magnetic fields
Ruggieri, Marco; Chernodub, Maxim
2016-01-01
We compute (pseudo)critical temperature, $T_c$, of chiral symmetry restoration for quark matter in the background of parallel electric and magnetic fields. This field configuration leads to the production of a chiral medium on a time scale $\\tau$, characterized by a nonvanishing value of the chiral density that equilibrates due to microscopic processes in the thermal bath. We estimate the relaxation time $\\tau$ to be about $\\approx 0.1-1$ fm/c around the chiral crossover; then we compute the effect of the fields and of the chiral medium on~$T_c$. We find $T_c$ to be lowered by the external fields in the chiral medium.
Chiral spiral induced by a strong magnetic field
Abuki, H
2016-01-01
We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it totally washes the tricritical point out of the phase diagram, bringing the continent for the chiral spiral. This is the case no matter how small is the intensity of the magnetic field. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.
Neutrino emissivities and bulk viscosity in neutral two-flavor quark matter
Berdermann, J.; Blaschke, D.; Fischer, T.; Kachanovich, A.
2016-12-01
We study thermodynamic and transport properties for the isotropic color-spin-locking (iso-CSL) phase of two-flavor superconducting quark matter under compact star constraints within a Nambu-Jona-Lasinio-type chiral quark model. Chiral symmetry breaking and the phase transition to superconducting quark matter leads to a density dependent change of quark masses, chemical potentials, and diquark gap. A self-consistent treatment of these physical quantities influences the microscopic calculations of transport properties. We present results for the iso-CSL direct URCA emissivities and bulk viscosities, which fulfil the constraints on quark matter derived from cooling and rotational evolution of compact stars. We compare our results with the phenomenologically successful, but yet heuristic 2 SC +X phase. We show that the microscopically founded iso-CSL phase can replace the purely phenomenological 2 SC +X phase in modern simulations of the cooling evolution for compact stars with color-superconducting quark matter interior.
Neutrino emissivities and bulk viscosity in neutral two flavor quark matter
Berdermann, J; Fischer, T; Kachanovich, A
2016-01-01
We study thermodynamic and transport properties for the isotropic color-spin-locking (iso-CSL) phase of two-flavor superconducting quark matter under compact star constraints within a NJL-type chiral quark model. Chiral symmetry breaking and the phase transition to superconducting quark matter leads to a density dependent change of quark masses, chemical potentials and diquark gap. A self-consistent treatment of these physical quantities influences on the microscopic calculations of transport properties. We present results for the iso-CSL direct URCA emissivities and bulk viscosities, which fulfill the constraints on quark matter derived from cooling and rotational evolution of compact stars. We compare our results with the phenomenologically successful, but yet heuristic 2SC+X phase. We show that the microscopically founded iso-CSL phase can replace the purely phenomenological 2SC+X phase in modern simulations of the cooling evolution for compact stars with color superconducting quark matter interior.
Chiral effects in the confining QCD vacuum
Simonov, Yu A
1994-01-01
Configurations are introduced into the standard instanton vacuum model. This drastically improves theoretical properties of the vacuum: instanton size density $d(\\rho)$ stabilizes at $\\rho\\sim 0.2 fm$, all chiral effects are formulated in a gauge-invariant way and quarks are confined. An interesting interplay of chiral and confining dynamics is observed; for the realistic values of parameters the Georgi-Manohar picture emerges with chiral radius $R_{ch}\\sim \\rho\\sim 0.2 fm$ much less than confining radius $R_c\\sim$ hadron radius $\\sim 1 fm$. In the limit $R_{ch}\\ll R_c$ the chiral mass $M_{ch}(p)$ is unaffected by confinement and can be taken in the local limit $M_{ch}(p=0)$. Different types of effective chiral Lagrangians (ECL) are obtained, containing all or a part of gluon, quark and Nambu--Goldstone--meson fields. The ECL are manifestly gauge--invariant and in the limit of no gluon fields coincide with those found previously. The problem of the double role of the pion -- as a Goldstone meson or as a $q\\ba...
Hadronization and Strangeness Production in a Chirally Symmetric Nonequilibrium Model
Rehberg, P
1999-01-01
The expansion and hadronization of a quark meson plasma is studied using an effective chiral interaction Lagrangian. The particles we consider are light as well as strange quarks, which can form pions, kaons and eta mesons via collision processes. The transport equations for the system are solved using a QMD type algorithm. We find that in chemical equilibrium at high temperatures the strange quark mass is considerably higher than the strange current quark mass and becomes even higher if we assume an initial state free of strange quarks. This leads to a considerably higher production threshold. In contrast to simpler scenarios, like thermodynamics of free quarks with their bare mass, we observe that strangeness production in a plasma is hindered and not favoured. The different particle species created during the evolution become separated in coordinate as well as in momentum space. We observe, as at CERN experiments, a larger mean momentum of kaons as compared to pions. Thus the radial collective velocity may...
Nuclear phenomena derived from quark-gluon strings
DEFF Research Database (Denmark)
Bohr, Henrik; Providencia, Constanca; Providencia, Joao da
2005-01-01
provided that the chiral fields are identified with the two-particle strings, which are natural in a QCD framework. Moreover, the model is able to reconcile qualitatively such aspects of hadronic physics as saturation density and binding energy of nuclear matter, surface density of finite nuclei, mass......, for the occurrence of the phases of nuclear matter. The model exhibits a quark deconfinement transition and chiral restoration, which are ingredients of QCD and give qualitatively correct numerics. The effective model is shown to be isomorphic to the Nambu-Jona-Lasinio model and exhibits the correct chirality...
Non-perturbative studies of QCD at small quark masses
Energy Technology Data Exchange (ETDEWEB)
Wennekers, J.
2006-07-15
We investigate the quenched approximation of lattice QCD with numerical simulations of Ginsparg-Wilson fermions, which are a fermion discretisation with exact chiral symmetry. We compute the renormalisation constant of the scalar density, which allows to extrapolate the chiral condensate to the continuum limit. Furthermore we match lattice results of matrix elements describing hadronic kaon decays to Chiral Perturbation Theory in finite volume and at almost vanishing quark mass. The resulting low-energy constants in the considered SU(4)-flavour symmetric case indicate a substantial contribution of low scale QCD effects to the {delta}I = 1/2 rule. (Orig.)
Niggli, Ernst; Egger, Marcel
2002-05-01
Elementary subcellular Ca2+ signals arising from the opening of single ion channels may offer the possibility to examine the stochastic behavior and the microscopic chemical reaction rates of these channel proteins in their natural environment. Such an analysis can yield detailed information about the molecular function that cannot be derived from recordings obtained from an ensemble of channels. In this review, we summarize experimental evidence suggesting that Ca2+ sparks, elementary Ca2+ signaling events of cardiac and skeletal muscle excitation contraction coupling, may be comprised of a number of smaller Ca2+ signaling events, the Ca2+ quarks.
Heavy-tailed chiral random matrix theory
Kanazawa, Takuya
2016-05-01
We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.
Heavy-tailed chiral random matrix theory
Kanazawa, Takuya
2016-01-01
We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.
Pentaquarks in chiral color dielectric model
Indian Academy of Sciences (India)
S C Pathak
2006-04-01
Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV. I find that the mass of the state can be fitted to the experimentally observed mass by invoking a color neutral vector field and its interaction with the quarks.
Quark mass effects in quark number susceptibilities
Graf, Thorben
2016-01-01
The quark degrees of freedom of the QGP with special focus on mass effects are investigated. A next-to-leading-order perturbation theory approach with quark mass dependence is applied and compared to lattice QCD results.
Spin polarization in high density quark matter under a strong external magnetic field
Tsue, Yasuhiko; Providencia, Constanca; Yamamura, Masatoshi; Bohr, Henrik
2016-01-01
In high density quark matter under a strong external magnetic field, possible phases are investigated by using the Nambu-Jona-Lasinio model with axial vector-type four-point interaction or tensor-type four-point interaction between quarks. In the axial vector-type interaction, it is shown that a quark spin polarized phase is realized in all region of the quark chemical potential under a strong external magnetic field within the lowest Landau level approximation. Each phase is characterized by the chiral condensate or dynamical quark mass. On the other hand, in the tensor-type interaction, it is also shown that the quark spin polarized phase does not appear even if there exists the strong external magnetic field. However, if the anomalous magnetic moment of quark is taken into account, it may be possible to realize the quark spin polarized phase.
Chiral Nanoscience and Nanotechnology
Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao
2008-01-01
The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology describes the nanoscale appr...
Chiral symmetry breaking in continuum QCD
Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils
2015-03-01
We present a quantitative analysis of chiral symmetry breaking in two-flavor continuum QCD in the quenched limit. The theory is set up at perturbative momenta, where asymptotic freedom leads to precise results. The evolution of QCD towards the hadronic phase is achieved by means of dynamical hadronization in the nonperturbative functional renormalization group approach. We use a vertex expansion scheme based on gauge-invariant operators and discuss its convergence properties and the remaining systematic errors. In particular, we present results for the quark propagator, the full tensor structure and momentum dependence of the quark-gluon vertex, and the four-Fermi scatterings.
Scalar condensate and light quark masses from overlap fermions
Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent; Wittig, Hartmut
2001-01-01
We have studied pseudoscalar correlation functions computed using the overlap operator. Within the accuracy of our calculation we find that the quark mass dependence agrees with the prediction of lowest-order Chiral Perturbation Theory (ChPT) for quark masses in the range of m ~ m_s/2-2m_s. We present the results of an analysis which assumes lowest-order ChPT to be valid to extract the low-energy constants Sigma and f_P, as well as the strange quark mass. Non-perturbative renormalization is i...
The NJL Model for Quark Fragmentation Functions
Energy Technology Data Exchange (ETDEWEB)
T. Ito, W. Bentz, I. Cloet, A W Thomas, K. Yazaki
2009-10-01
A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain the reason why the elementary (lowest order) fragmentation process q → qπ is completely inadequate to describe the empirical data, although the “crossed” process π → qq describes the quark distribution functions in the pion reasonably well. Then, taking into account cascade-like processes in a modified jet-model approach, we show that the momentum and isospin sum rules can be satisfied naturally without introducing any ad-hoc parameters. We present numerical results for the Nambu-Jona-Lasinio model in the invariant mass regularization scheme, and compare the results with the empirical parametrizations. We argue that this NJL-jet model provides a very useful framework to calculate the fragmentation functions in an effective chiral quark theory.
Chiral condensate from the twisted mass Dirac operator spectrum
Cichy, Krzysztof; Jansen, Karl
2013-01-01
We present the results of our computation of the chiral condensate with $N_f=2$ and $N_f=2+1+1$ flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luscher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for $N_f=2$ and $N_f=2+1+1$ dynamical flavours.
Chiral condensate from the twisted mass Dirac operator spectrum
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration
2013-03-15
We present the results of our computation of the chiral condensate with N{sub f}=2 and N{sub f}=2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavours.
Distinguishing Standard Model Extensions using Monotop Chirality at the LHC
Allahverdi, Rouzbeh; Dutta, Bhaskar; Gao, Yu; Kamon, Teruki
2015-01-01
We present two minimal extensions of the standard model that gives rise to baryogensis and include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM.
Quark masses and their hierarchies
Ida, M.
1987-12-01
Electroweak symmetry breaking is attributed to dynamical generation of quark masses. Quarks q (and leptons l) are assumed to be produced by hypercolor confinement of preons at an intermediate scale Λ hc. Hierarchies observed in the q mass spectra can be explained by a BCS mechanism if the color interaction is enough asymptotically free and if residual ones emerging by the confinement are medium strong. The former assumption claims that N≦4, where N is the family number of q and l. Dynamical equations to determine q masses and mixings are given, but they require knowledge on the physics at Λ hc. A phenomenological approach is also made on the basis of an SU(7)× SU(7) chiral preon model with N=4. The mass ratio m t/ mb is related to ( m c/ m s)ηB with η B≃1.1 and m t'/ mb' to ( m u/ m d)ηA with η A≃1.4. In this scheme the fourth down quark is the heaviest (˜ 110 GeV) and contributes dominantly to F 2, where F is the Fermi scale.
Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory
Aubin, C
2007-01-01
We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (\\schpt), working to leading order in $1/m_Q$, where $m_Q$ is the heavy quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick'' within \\schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass depende...
Realisation of chiral symmetry in the domain model of QCD
Kalloniatis, Alexander C
2003-01-01
The domain model for the QCD vacuum has previously been developed and shown to exhibit confinement of quarks and strong correlation of the local chirality of quark modes and duality of the background domain-like gluon field. Quark fluctuations satisfy a chirality violating boundary conditions parametrized by a random chiral angle $\\alpha_j$ on the $j-th$ domain. The free energy of an ensemble of $N\\to\\infty$ domains depends on $\\{\\alpha_j, j=1... N\\}$ through the logarithm of the quark determinant. Its parity odd part is given by the axial anomaly. The anomaly contribution to the free energy suppresses continuous axial U(1) degeneracy in the ground state, leaving only a residual axial Z(2) symmetry. This discrete symmetry and flavour $SU(N_f)_L\\times SU(N_f)_R$ chiral symmetry in turn are spontaneously broken with a quark condensate arising due to the asymmetry of the spectrum of Dirac operator. In order to illustrate the splitting between the $\\eta'$ from octet pseudoscalar mesons realised in the domain mode...
Quark confinement and the fractional quantum Hall effect
Institute of Scientific and Technical Information of China (English)
WANG Hai-Jun; GENG Wen-Tong
2008-01-01
Working in the physics of Wilson factor and Aharonov-Bohm effect,we find in the fluxtubequark system the topology of a baryon consisting of three heavy flavor quarks resembles that of the fractional quantum Hall effect(FQHE)in condensed matter.This similarity yields the result that the constituent quarks of baryon have the"filling factor"1/3.thus the previous conjecture that quark confinement is a correlation effect is confirmed.Moreover,by deriving a Hamiltonian of the system analogous to that of FQHE,we predict an energy gap for the ground state of a heavy three-quark system.
Nelson, Daniel R; Fleming, George T; Kilcup, Gregory W
2003-01-17
A standing mystery in the standard model is the unnatural smallness of the strong CP violating phase. A massless up quark has long been proposed as one potential solution. A lattice calculation of the constants of the chiral Lagrangian essential for the determination of the up quark mass, 2alpha(8)-alpha(5), is presented. We find 2alpha(8)-alpha(5)=0.29+/-0.18, which corresponds to m(u)/m(d)=0.410+/-0.036. This is the first such calculation using a physical number of dynamical light quarks, N(f)=3.
On Chiral Space Groups and Chiral Molecules
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.
On Chiral Space Groups and Chiral Molecules
Institute of Scientific and Technical Information of China (English)
NgSeikWng; HUSheng－Zhi
2003-01-01
This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations).For a chiral molecule,which must crystallize in a chiral space group,the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.
Spectral Properties of Quarks at Finite Temperature in Lattice QCD
Kitazawa, Masakiyo
2009-01-01
We analyze the quark spectral function above and below the critical temperature for deconfinement and at finite momentum in quenched lattice QCD. It is found that the temporal quark correlation function in the deconfined phase near the critical temperature is well reproduced by a two-pole ansatz for the spectral function. The bare quark mass and momentum dependences of the spectral function are analyzed with this ansatz. In the chiral limit we find that even near the critical temperature the quark spectral function has two collective modes corresponding to the normal and plasmino excitations in the high temperature (T) limit. The pole mass of these modes at zero momentum, which should be identified to be the thermal mass of the quark, is approximately proportional to T in a rather wide range of T in the deconfined phase.
Valence-quark distribution functions in the kaon and pion
Chen, Chen; Roberts, Craig D; Wan, Shaolong; Zong, Hong-Shi
2016-01-01
We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed-quarks carry all a meson's momentum at a characteristic hadronic scale and vanishing as $(1-x)^2$ when Bjorken-$x\\to 1$. Comparing such distributions within the pion and kaon, it is apparent that the size of SU(3)-flavour symmetry breaking in meson parton distribution functions is modulated by the flavour dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulae may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison...
Evidence for chiral logarithms in the baryon spectrum
Walker-Loud, Andre
2011-01-01
Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...
Chiral corrections to the Adler-Weisberger sum rule
Beane, Silas R.; Klco, Natalie
2016-12-01
The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .
Dynamically Running Mass of Light Quark and QCD Vacuum Condensates
Institute of Scientific and Technical Information of China (English)
ZHOULi-Juan; PINGRong-Gang
2004-01-01
Based on Dyson-Schwinger equations (DSEs) in “rainbow”approximation, the dynamically running mass of light quark and QCD vacuum condensate are investigated. The structure of non-local quark vacuum condensate, the values of local vacuum condensate of quarks and quark-gluon mixture, and dynamical transition of quark mass from current quark to constituent quark are illustrated. At the same time, according to the knowledge and experience learned from an extensive study of the solutions of DSEs， a parameterized form of confining quark propagator is suggested for a practical use. The new parameterized form of quark propagator is analytic everywhere in the finite complex p2-plane and has no Lehmann representation. The predictions for p2-dependence of effective quark masses, Mr(p2), defined by the self-energy functions Af(p2) and Bf(p2), both from the numerical solutions of DSEs and from its parameterized form, are shown dynamically. Our conclusion is that all numerical results are consistent with empirical values used in(QCD sum rules and lattice QCD calculations. For a qualitative study, the parameterized form is a sumciently good approximation to confining quark propagator.
Dynamically Running Mass of Light Quark and QCD Vacuum Condensates
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Juan; PING Rong-Gang; MA Wei-Xing
2004-01-01
Based on Dyson-Schwinger equations (DSEs) in "rainbow" approximation, the dynamically running mass of light quark and QCD vacuum condensate are investigated. The structure of non-local quark vacuum condensate, the values of local vacuum condensate of quarks and quark-gluon mixture, and dynamical transition of quark mass from current quark to constituent quark are illustrated. At the same time, according to the knowledge and experience learned from an extensive study of the solutions of DSEs, a parameterized form of confining quark propagator is suggested for a practical use. The new parameterized form of quark propagator is analytic everywhere in the finite complex p2-plane and has no Lehmann representation. The predictions for p2-dependence of effective quark masses, Mf(p2), defined by the self-energy functions Af(p2) and Bf(p2), both from the numerical solutions of DSEs and from its parameterized form, are shown dynamically. Our conclusion is that all numerical results are consistent with empirical values used in QCD sum rules and lattice QCD calculations. For a qualitative study, the parameterized form is a sufficiently good approximation to confining quark propagator.
Massive Quark Propagator in the Colour-Superconducting Phase
Institute of Scientific and Technical Information of China (English)
黄梅; 庄鹏飞; 赵维勤
2002-01-01
A more general expression for the quark propagator including both chiral and diquark condensates has been derived by using energy projectors. This makes it possible to study the phase transition from the hadron phase to the colour-superconductivity phase in the moderate baryon density region by using the Feynman diagrammatic method or the Green function method.
Connecting an effective model of confinement and chiral symmetry to lattice QCD
Fraga, E; Fraga, Eduardo; Mocsy, Agnes
2007-01-01
We construct an effective model for the chiral field and the Polyakov loop in which we can investigate the interplay between the approximate chiral symmetry restoration and the deconfinement of color in a thermal SU(3) gauge theory with three flavors of massive quarks. The phenomenological couplings between these two sectors can then be related to the recent lattice data on the renormalized Polyakov loop and the chiral condensate close to the critical region.
Quark-Quark Forces in Quantum Chromodynamics
Arkhipov, A A
2014-01-01
By single-time reduction technique of Bethe-Salpeter formalism for two-fermion systems analytical expressions for the quasipotential of quark-quark interactions in QCD have been obtained in one-gluon exchange approximation. The influence of infrared singularities of gluon Green`s functions on the character of quark-quark forces in QCD has been investigated. The way the asymptotic freedom manifests itself in terms of two-quark interaction quasipotential in quantum chromodynamics is shown. Consistent relativistic consideration of quark interaction problem by single-time reduction technique in QFT allows one to establish a nontrivial energy dependence of the two-quark interaction quasipotential. As a result of the energy dependence of the interaction quasipotential, the character of the forces changes qualitatively during the transition from the discrete spectrum (the region of the negative values of the binding energy) to the continuous spectrum (that of the positive values of the binding energy): the smooth be...
Chiral Symmetry restoration from the hadronic regime
Nicola, Angel Gomez; Morales, John; de Elvira, Jacobo Ruiz; Andres, Ricardo Torres
2016-01-01
We discuss recent advances on QCD chiral symmetry restoration at finite temperature, within the theoretical framework of Effective Theories. $U(3)$ Ward Identities are derived between pseudoscalar susceptibilities and quark condensates, allowing to explain the behaviour of lattice meson screening masses. Unitarized interactions and the generated $f_0(500)$ thermal state are showed to play an essential role in the description of the transition through the scalar susceptibility
Nuclear chiral dynamics and thermodynamics
Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram
2013-11-01
This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.
Examining a possible cascade effect in chiral symmetry breaking
Fariborz, Amir H
2016-01-01
We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.
Chiral matrix model of the semi-QGP in QCD
Pisarski, Robert D.; Skokov, Vladimir V.
2016-08-01
Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the
Holographic Multiquarks in the Quark-Gluon Plasma: A Review
Directory of Open Access Journals (Sweden)
Piyabut Burikham
2011-01-01
Full Text Available We review the holographic multiquark states in the deconfined quark-gluon plasma. Nuclear matter can become deconfined by extremely high temperature and/or density. In the deconfined nuclear medium, bound states with colour degrees of freedom are allowed to exist. Using holographic approach, the binding energy and the screening length of the multiquarks can be calculated. Using the deconfined Sakai-Sugimoto model, the phase diagram of the multiquark phase, the vacuum phase, and the chiral-symmetric quark-gluon plasma can be obtained. Then we review the magnetic properties of the multiquarks and their phase diagrams. The multiquark phase is compared with the pure pion gradient, the magnetized vacuum, and the chiral-symmetric quark-gluon plasma phases. For moderate temperature and sufficiently large density at a fixed magnetic field, the mixed phase of multiquark and pion gradient is the most energetically preferred phase.
Nucleating quark droplets in the core of magnetars
Kroff, Daniel
2014-01-01
To assess the possibility of homogeneous nucleation of quark matter in magnetars, we investigate the formation of chirally symmetric droplets in a cold and dense environment in the presence of an external magnetic field. As a framework, we use the one-loop effective potential of the two-flavor quark-meson model. Within the thin-wall approximation, we extract all relevant nucleation parameters and provide an estimate for the typical time scales for the chiral phase conversion in magnetized compact star matter. We show how the critical chemical potential, critical radius, correlation length and surface tension are affected, and how their combination to define the nucleation time seems to allow for nucleation of quark droplets in magnetar matter even for not so small values of the surface tension.
Nucleating quark droplets in the core of magnetars
Kroff, D.; Fraga, E. S.
2015-01-01
To assess the possibility of homogeneous nucleation of quark matter in magnetars, we investigate the formation of chirally symmetric droplets in a cold and dense environment in the presence of an external magnetic field. As a framework, we use the one-loop effective potential of the two-flavor quark-meson model. Within the thin-wall approximation, we extract all relevant nucleation parameters and provide an estimate for the typical time scales for the chiral phase conversion in magnetized compact star matter. We show how the critical chemical potential, critical radius, correlation length and surface tension are affected, and how their combination to define the nucleation time seems to allow for nucleation of quark droplets in magnetar matter even for not so small values of the surface tension.
Composite quarks and leptons in higher space-time dimensions
Chaichian, Masud; Kobakhidze, A B
2002-01-01
A new approach towards the composite structure of quarks and leptons in the context of the higher dimensional unified theories is proposed. Owing to the certain strong dynamics, much like an ordinary QCD, every possible vectorlike set of composites appears in higher dimensional bulk space-time, however, through a proper Sherk-Schwarz compactification only chiral multiplets of composite quarks and leptons survive as the massless states in four dimensions. In this scenario restrictions related with the 't Hooft's anomaly matching condition are turned out to be avoided and, as a result, the composite models look rather simple and economic. We demonstrate our approach by an explicit construction of model of preons and their composites unified in the supersymmetric SU(5) GUT in five space-time dimensions. The model predicts exactly three families of the composite quarks and leptons being the triplets of the chiral horizontal symmetry SU(3)_h which automatically appears in the composite spectrum when going to ordin...
Reducible chiral metamaterials
Ciattoni, Alessandro; Rizza, Carlo
2016-01-01
We introduce the concept of 3D reducible metamaterials whose constituent permittivity can be modelled by a factorized profile. The separated cartesian coordinates dependence, easily achieved in all-optical reconfigurable materials, allows to physically regard a reducible metamaterial as a superposition of three fictitious 1D generating media. We prove that, in the long-wavelength limit, the electromagnetic response of reducible metamaterials can be reconstructed from the properties of the 1D generating media whose interplay provides large freedom to control the electromagnetic chirality. Our approach introduces an unprecedented decomposition strategy in metamaterial science which allows the full ab-initio and flexible design of a complex 3D bianisotropic response by using 1D metamaterials as basic building blocks.
Complex Langevin dynamics for chiral random matrix theory
Mollgaard, A.; Splittorff, K.
2013-12-01
We apply complex Langevin dynamics to chiral random matrix theory at nonzero chemical potential. At large quark mass, the simulations agree with the analytical results while incorrect convergence is found for small quark masses. The region of quark masses for which the complex Langevin dynamics converges incorrectly is identified as the region where the fermion determinant frequently traces out a path surrounding the origin of the complex plane during the Langevin flow. This links the incorrect convergence to an ambiguity in the Langevin force due to the presence of the logarithm of the fermion determinant in the action.
Complex Langevin Dynamics for chiral Random Matrix Theory
Mollgaard, A
2013-01-01
We apply complex Langevin dynamics to chiral random matrix theory at nonzero chemical potential. At large quark mass the simulations agree with the analytical results while incorrect convergence is found for small quark masses. The region of quark masses for which the complex Langevin dynamics converges incorrectly is identified as the region where the fermion determinant frequently traces out a path surrounding the origin of the complex plane during the Langevin flow. This links the incorrect convergence to an ambiguity in the Langevin force due to the presence of the logarithm of the fermion determinant in the action.
O(N) universality and the chiral phase transition in QCD
Karsch, Frithjof
2010-01-01
We discuss universal scaling properties of (2+1)-flavor QCD in the vicinity of the chiral phase transition at vanishing as well as non-vanishing light quark chemical potential (mu_l). We provide evidence for O(N) scaling of the chiral order parameter in (2+1)-flavor QCD and show that the scaling analysis of its derivative with respect to the light quark chemical potential provides a unique approach to the determination of the curvature of the chiral phase transition line in the vicinity of mu_l/T=0.
Cameron, R.P.; Cameron, J. A.; Barnett, S. M.
2016-01-01
We explain that Stegosaurus exhibited exterior chirality and observe that the largest plate in particular of USNM 4394, USNM 4714, DMNS 2818 and NHMUK R36730 appears to have tilted to the right rather than to the left in each case. Several instances in which Stegosaurus specimens have been confused with their distinct, hypothetical mirror-image forms are highlighted. We believe our findings to be consistent with the hypothesis that Stegosaurus's plates acted primarily as display structures. A...
Hydrodynamics of the Chiral Dirac Spectrum
Liu, Yizhuang; Zahed, Ismail
2016-01-01
We derive a hydrodynamical description of the eigenvalues of the chiral Dirac spectrum in the vacuum and in the large $N$ (volume) limit. The linearized hydrodynamics supports sound waves. The stochastic relaxation of the eigenvalues is captured by a hydrodynamical instanton configuration which follows from a pertinent form of Euler equation. The relaxation from a phase of localized eigenvalues and unbroken chiral symmetry to a phase of de-localized eigenvalues and broken chiral symmetry occurs over a time set by the speed of sound. We show that the time is $\\Delta \\tau=\\pi\\rho(0)/2\\beta N$ with $\\rho(0)$ the spectral density at zero virtuality and $\\beta=1,2,4$ for the three Dyson ensembles that characterize QCD with different quark representations in the ergodic regime.
Evidence for hard chiral logarithms in quenched lattice QCD
Kim, S; Kim, Seyong; Sinclair, D K
1995-01-01
We present the first direct evidence that quenched QCD differs from full QCD in the chiral (m_q \\rightarrow 0) limit, as predicted by chiral perturbation theory, from our quenched lattice QCD simulations at \\beta = 6/g^2 = 6.0. We measured the spectrum of light hadrons on 16^3 \\times 64, 24^3 \\times 64 and 32^3 \\times 64, using staggered quarks of masses m_q=0.01, m_q=0.005 and m_q=0.0025. The pion masses showed clear evidence for logarithmic violations of the PCAC relation m_{\\pi}^2 \\propto m_q, as predicted by quenched chiral perturbation theory. The dependence on spatial lattice volume precludes this being a finite size effect. No evidence was seen for such chiral logarithms in the behaviour of the chiral condensate \\langle\\bar{\\psi}\\psi\\rangle.
Chiral symmetry breaking, instantons, and monopoles
Di Giacomo, Adriano
2015-01-01
The purpose of this study is to show that monopoles induce the chiral symmetry breaking. In order to indicate the evidence, we add one pair of monopoles with magnetic charges to the quenched SU(3) configurations by a monopole creation operator, and investigate the propaties of the chiral symmetry breaking using the Overlap fermion. We show that instantons are created by the monopoles. The pseudoscalar meson mass and decay constant are computed from the correlation functions, and the renormalization constant $Z_{S}$ is determined by the non perturbative method. The renormalization group invariant chiral condensate in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV] is evaluated by the Gell-Mann-Oakes-Renner formula, and the random matrix theory. Finally, we estimate the renormalization group invariant quark masses $\\bar{m} = (m_{u} + m_{d})/2$, and $m_{s}$ in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV]. The preliminary results indicate that the chiral condensate decreases and the quark masses become slightly heavy by inc...
Harigaya, Keisuke
2016-01-01
An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U(1) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, SU(N), and a U(1) charge of the constituent dark quarks, the model has only three free parameters: the dynamical scale of the non-Abelian gauge theory, the gauge coupling of the dark photon, and the mixing parameter between the dark and standard model photons. In particular, the gauge symmetry of the model does not allow any mass term for the dark quarks, and stability of the dark pion is understood as a result of an accidental global symmetry. The model has a significant parameter space in which thermal relic dark pions comprise all of the dark matter, consistently with all experimenta...
On the strange quark mass with improved staggered quarks
Hein, J.; Davies, C.; Lepage, G. P.; Mason, Q.; Trottier, H.
2002-01-01
We present results on the sum of the masses of light and strange quark using improved staggered quarks. Our calculation uses 2+1 flavours of dynamical quarks. The effects of the dynamical quarks are clearly visible.
Hyun, Chang Ho; Lee, Hee-Jung
2016-01-01
We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.
Wigner Solution to the Quark Gap Equation in the Nonzero Current Quark Mass
Institute of Scientific and Technical Information of China (English)
JIANG Yu; GONG Hao; SUN Wei-Min; ZONG Hong-Shi
2012-01-01
From the graphical representation of the Dyson-Schwinger equation for the dressed gluon propagator it is shown that the gluon propagator in the Wigner phase should be different from that in the Nambu phase.Based on this analysis,we propose a modified gluon propagator to reflect this fact.With such a modified gluon propagator,in the framework of the Nambu Jona Lasinio (NJL) model,we obtain the Wigner solution to the quark gap equation at finite current quark mass,which has not been found in literature.This provides a new point of view to study partial restoration of chiral symmetry at finite temperature and chemical potential.%From the graphical representation of the Dyson-Schwinger equation for the dressed gluon propagator it is shown that the gluon propagator in the Wigner phase should be different from that in the Nambu phase. Based on this analysis, we propose a modified gluon propagator to reflect this fact. With such a modified gluon propagator, in the framework of the Nambu-Jona-Lasinio (NJL) model, we obtain the Wigner solution to the quark gap equation at finite current quark mass, which has not been found in literature. This provides a new point of view to study partial restoration of chiral symmetry at finite temperature and chemical potential.
Indian Academy of Sciences (India)
Yuji Takeuchi
2012-10-01
Since the top quark was discovered at Tevatron in 1995, many top quark properties have been measured. However, the top quark is still interesting due to unique features which originate from the extremely heavy mass, and providing various test grounds on the Standard Model as well as searches for a new physics. Though the measurements of the top quark had been performed only at Tevatron so far, LHC is now ready for measurements with more top quarks than Tevatron. In this article, recent measurements of top quark properties from Tevatron (CDF and DØ) as well as LHC (ATLAS and CMS) are presented.
Chirally symmetric but confining dense and cold matter
Glozman, L Ya
2007-01-01
The folklore tradition about the QCD phase diagram is that the chiral restoration and deconfinement transitions coincide. Very recently McLerran and Pisarski suggested, based on qualitative large $N_c$ arguments, that at moderate temperature and not very small chemical potential it is not the case. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. Single quarks cannot be observed because the single-quark Green function is infrared divergent. We solve this model at T=0 and finite chemical potential \\mu and obtain a clear chiral restoration phase transition at the critical value \\mu_{cr}. Below this value the quarks have a finite momentum-dependent dynamical mass and the spectrum i...
Quark and gluon condensates in nuclear matter with Brown- Rho scaling
Institute of Scientific and Technical Information of China (English)
郭华; 杨树; 刘玉鑫
2001-01-01
Quark and gluon condensates in nuclear matter are investigated in a density-dependent relativistic mean-field theory. The in-medium quark condensate decreases rapidly as the density of nu-clear matter increases, if the Brown-Rho scaling is included. The decrease in the in-medium quark condensate with the nuclear matter density is consistent with the result predicted by the partial chiral symmetry restoration. The gluon condensate and the influence of the strange quark contents on the gluon condensate in nuclear matter are discussed.
Real-Time Thermal Schwinger-Dyson Equation for Quark Self-energy in Landau Gauge
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
By means of a formal expression of Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperatures and finite quark chemical potentials, we derive the real-time thermal Schwinger-Dyson equation for quark propagator in Landau gauge. Denote the inverse quark propagator by A(p2)p - B(p2), we argue that, when temperature T is lower than the given infrared momentum cutoff pc, A(p2) = 1 is a feasible approximation and can be assumed in discussions of chiral symmetry phase transition problem in QCD.
Lattice simulations with Nf=2 +1 improved Wilson fermions at a fixed strange quark mass
Bali, Gunnar S.; Scholz, Enno E.; Simeth, Jakob; Söldner, Wolfgang; RQCD Collaboration
2016-10-01
The explicit breaking of chiral symmetry of the Wilson fermion action results in additive quark mass renormalization. Moreover, flavor singlet and nonsinglet scalar currents acquire different renormalization constants with respect to continuum regularization schemes. This complicates keeping the renormalized strange quark mass fixed when varying the light quark mass in simulations with Nf=2 +1 sea quark flavors. Here we present and validate our strategy within the CLS (coordinated lattice simulations) effort to achieve this in simulations with nonperturbatively order-a improved Wilson fermions. We also determine various combinations of renormalization constants and improvement coefficients.
Sequential deconfinement of quark flavors in neutron stars
Blaschke, D; Klahn, T; Berdermann, J
2008-01-01
We suggest a scenario where the three light quark flavors are sequentially deconfined under increasing pressure in cold asymmetric nuclear matter as found, e.g., in neutron stars. The basis for our analysis is a chiral quark matter model of Nambu--Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single flavor (CSL), spin-0 two flavor (2SC) and three flavor (CFL) channels. We find that nucleon dissociation sets in at about the saturation density, n_0, when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor asymmetry induced by beta-equilibrium and charge neutrality. At about 3n_0 u-quarks appear and a two-flavor color superconducting (2SC) phase is formed. The s-quark Fermi sea is populated only at still higher baryon density, when the quark chemical potential is of the order of the dynamically generated strange quark mass. We construct two different hybrid equations of state (EoS) using the Dirac-Brueckner Hartree-Fock (DBHF) approach and the EoS by Shen et al. in the nuclear...
Chiral Imbalance in QCD and its consequences
Directory of Open Access Journals (Sweden)
Andrianov Alexander
2016-01-01
Full Text Available Under extreme conditions of high temperature and/or large quark (baryon density, the vacuum of QCD changes its properties, and deconfinement, chiral symmetry restoration as well as chiral symmetry breaking take place. These transitions (phases are accompanied by the rapid change in the rate and nature of topological transitions connecting different topological sectors. The heavy ion collisions (HIC program opens a possibility to study these phenomena in so-called non-Abelian Quark-gluon plasma (QGP. In these phases the currents of light quarks (vector and axial-vector can be independently examined for right-handed (RH and left-handed (LH quarks. To describe such a quark matter chiral chemical potential can be introduced to quantify the presence of chirality imbalance (ChI i.e. the difference between the average numbers of RH and LH quarks in the fireball after HIC. In this review talk we will focus our attention on the discussion of the ChI related developments in heavy ion physics at central collisions and the plans for the future experiments aimed at establishing (or falsifying the presence of Local spacial Parity Breaking (LPB in heavy ion data. We describe some of experimental observables in detecting the signal of LPB. A number of measurements is proposed that allow to reach a definite conclusion on the occurrence of LPB effects in non-Abelian QGP produced in central heavy ion collisions and its simulation within a number of QCD-inspired models is outlined. Based on the effective meson theory in the presence of Chern-Simons interaction it is found that the spectrum of massive vector mesons splits into three polarization components with different effective masses. Moreover a resonance broadening occurs that leads to an increase of spectral contribution to the dilepton production as compared to the vacuum state. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the
Chiral Imbalance in QCD and its consequences
Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec
2016-10-01
Under extreme conditions of high temperature and/or large quark (baryon) density, the vacuum of QCD changes its properties, and deconfinement, chiral symmetry restoration as well as chiral symmetry breaking take place. These transitions (phases) are accompanied by the rapid change in the rate and nature of topological transitions connecting different topological sectors. The heavy ion collisions (HIC) program opens a possibility to study these phenomena in so-called non-Abelian Quark-gluon plasma (QGP). In these phases the currents of light quarks (vector and axial-vector) can be independently examined for right-handed (RH) and left-handed (LH) quarks. To describe such a quark matter chiral chemical potential can be introduced to quantify the presence of chirality imbalance (ChI) i.e. the difference between the average numbers of RH and LH quarks in the fireball after HIC. In this review talk we will focus our attention on the discussion of the ChI related developments in heavy ion physics at central collisions and the plans for the future experiments aimed at establishing (or falsifying) the presence of Local spacial Parity Breaking (LPB) in heavy ion data. We describe some of experimental observables in detecting the signal of LPB. A number of measurements is proposed that allow to reach a definite conclusion on the occurrence of LPB effects in non-Abelian QGP produced in central heavy ion collisions and its simulation within a number of QCD-inspired models is outlined. Based on the effective meson theory in the presence of Chern-Simons interaction it is found that the spectrum of massive vector mesons splits into three polarization components with different effective masses. Moreover a resonance broadening occurs that leads to an increase of spectral contribution to the dilepton production as compared to the vacuum state. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; WU Xiao-Hua; SUN Wei-Min; ZHAO En-Guang; WANG Fan
2003-01-01
A method for obtaining the smallcurrent quark mass dependence of the dressed quark propagator froman effective quark-quark interaction model is developed. Within this approach the small current quark mass effects ondressed-quark propagator have been studied. A comparison with previous results is given.
Energy Technology Data Exchange (ETDEWEB)
Paschos, E A
1976-01-01
This contribution reviews the evidence accumulated over the past year in favor of quarks and partons. Then it applies the quark ideas in order to interpret the neutrino-induced production of charm and the structure of neutral currents.
Pion production model - connection between dynamics and quark models
Energy Technology Data Exchange (ETDEWEB)
Lee, T.-S. H.; Sato, T.
2000-05-17
The authors discuss the difficulties in testing the hadron models by using the N{sup *} parameters extracted from the empirical amplitude analyses of the {pi}N and {gamma}N reaction data. As an alternative or perhaps a more advantageous approach, they present a Hamiltonian formulation that can relate the pion production dynamics and the constituent quark models of N{sup *} structure. The application of the approach in investigating the {Delta} and N{sup *}(S{sub 11}) excitations is reviewed. It is found that while the {Delta} excitation can be described satisfactory, the {pi}N scattering in S{sub 11} channel can not be described by the constituent quark models based on either the one-gluon-exchange or one-meson-exchange mechanisms. A phenomenological quark-quark potential has been constructed to reproduce the S{sub 11} amplitude.
Chiral Nanoscience and Nanotechnology
Directory of Open Access Journals (Sweden)
Dibyendu S. Bag
2008-09-01
Full Text Available The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology describes the nanoscale approaches to chiraltechnology such as asymmetric synthesis and catalysis, chiral separation and detection, and enantiomericanalysis. Chiral sensors have also been included. The state-of-the-art chiral research at DMSRDE,Kanpur isalso presented.Defence Science Journal, 2008, 58(5, pp.626-635, DOI:http://dx.doi.org/10.14429/dsj.58.1685
On thermal nucleation of quark matter in compact stars
Mintz, B W; Schaffner-Bielich, J; Pagliara, G
2010-01-01
The possibility of a hadron-quark phase transition in extreme astrophysical phenomena such as the collapse of a supernova is not discarded by the modern knowledge of the high-energy nuclear and quark-matter equations of state. Both the density and the temperature attainable in such extreme processes are possibly high enough to trigger a chiral phase transition. However, the time scales involved are an important issue. Even if the physical conditions for the phase transition are favorable (for a system in equilibrium), there may not be enough time for the dynamical process of phase conversion to be completed. We analyze the relevant time scales for the phase conversion via thermal nucleation of bubbles of quark matter and compare them to the typical astrophysical time scale, in order to verify the feasibility of the scenario of hadron-quark phase conversion during, for example, the core-collapse of a supernova.
Kaon semileptonic decay form factors with HISQ valence quarks
Gamiz, E; Bazavov, A; Bernard, C; Bouchard, C; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gottlieb, Steven; Heller, U M; Kim, J; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, R
2012-01-01
We report on the status of our kaon semileptonic form factor calculations using the highly-improved staggered quark (HISQ) formulation to simulate the valence fermions. We present results for the form factor f_+^{K \\pi}(0) on the asqtad N_f=2+1 MILC configurations, discuss the chiral-continuum extrapolation, and give a preliminary estimate of the total error. We also present a more preliminary set of results for the same form factor but with the sea quarks also simulated with the HISQ action; these results include data at the physical light quark masses. The improvements that we expect to achieve with the use of the HISQ configurations and simulations at the physical quark masses are briefly discussed.
ATLAS collaboration; LHCb collaboration
2016-01-01
Measurements of top quarks from Run-I and Run-II of the LHC are presented. Results on differential and inclusive top quark production cross sections, measured by the ATLAS, CMS and LHCb experiments, and measurements of top quark properties and mass are reported.
On SU(3 Effective Models and Chiral Phase Transition
Directory of Open Access Journals (Sweden)
Abdel Nasser Tawfik
2015-01-01
Full Text Available Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL model and Polyakov linear sigma-model (PLSM has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM a gluonic sector is integrated into LSM. The hadron resonance gas (HRG model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.
Dynamical Twisted Mass Fermions with Light Quarks
Boucaud, P; Farchioni, F; Frezzotti, R; Giménez, V; Herdoiza, G; Jansen, K; Lubicz, V; Martinelli, G; McNeile, C; Michael, C; Montvay, I; Palao, D; Papinutto, Mauro; Pickavance, J; Rossi, G C; Scorzato, L; Shindler, A; Simula, S; Urbach, C; Wenger, U; Boucaud, Ph.
2007-01-01
We present results of dynamical simulations with 2 flavours of degenerate Wilson twisted mass quarks at maximal twist in the range of pseudo scalar masses from 300 to 550 MeV. The simulations are performed at one value of the lattice spacing a \\lesssim 0.1 fm. In order to have O(a) improvement and aiming at small residual cutoff effects, the theory is tuned to maximal twist by requiring the vanishing of the untwisted quark mass. Precise results for the pseudo scalar decay constant and the pseudo scalar mass are confronted with chiral perturbation theory predictions and the low energy constants F, \\bar{l}_3 and \\bar{l}_4 are evaluated with small statistical errors.
Penta-Quark States with Strangeness, Hidden Charm and Beauty
Wu, Jia-Jun; Zou, Bing-Song
The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow N* and Λ* resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such N* with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.
Penta-quark States with Strangeness, Hidden Charm and Beauty
Wu, Jia-Jun
2015-01-01
The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow $N^*$ and $\\Lambda^*$ resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such $N^*$ with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R N
2015-01-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as the relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star, as well as most of the 2- and 1-star states of strange baryons with established quantum numbers are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R. N.; Galkin, V. O.
2015-09-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star states of strange baryons with established quantum numbers, as well as most of the 2- and 1-star states, are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Meson Spectroscopy in the Light Quark Sector
Energy Technology Data Exchange (ETDEWEB)
De Vita, R.; Lunardi, S.; Bizzeti, P. G.; Bucci, C.; Chiari, M.; Dainese, A.; Di Nezza, P.; Menegazzo, R.; Nannini, A.; Signorini, C.; Valiente-Dobon, J. J.
2014-01-01
Understanding the hadron spectrum is one of the fundamental issues in modern particle physics. We know that existing hadron configurations include baryons, made of three quarks, and mesons, made of quark-antiquark pairs. However most of the mass of the hadrons is not due to the mass of these elementary constituents but to their binding force. Studying the hadron spectrum is therefore a tool to understand one of the fundamental forces in nature, the strong force, and Quantum Chromo Dynamics (QCD), the theory that describes it. This investigation can provide an answer to fundamental questions as what is the origin of the mass of hadrons, what is the origin of quark confinement, what are the relevant degrees of freedom to describe these complex systems and how the transition between the elementary constituents, quarks and gluons, and baryons and mesons occurs. In this field a key tool is given by meson spectroscopy. Mesons, being made by a quark and an anti-quark, are the simplest quark bound system and therefore the ideal benchmark to study the interaction between quarks and understand what the role of gluons is. In this investigation, it is fundamental to precisely determine the spectrum and properties of mesons but also to search for possible unconventional states beyond the configuration q{anti q} as tetraquarks (qq{anti qq}), hybrids (q{anti q}g) and glueballs. These states can be distinguished unambiguously from regular mesons when they have exotic quantum numbers, i.e. combinations of total angular momentum, spin and parity that are not allowed for q{anti q} states. These are called exotic quantum numbers and the corresponding states are referred to as exotics. The study of the meson spectrum and the search for exotics is among the goals of several experiments in the world that exploit different reaction processes, as e{sup +}e{sup -} annihilation, p{anti p} annihilation, pion scattering, proton-proton scattering and photo-production, to produce meson states
The mass effect of the quark phase transition in supernova core
Institute of Scientific and Technical Information of China (English)
Lai Xiang-Jun; Liu Men-Quan; Liu Jing-Jing; Luo Zhi-Quan
2008-01-01
Constituent quark mass model is adopted as a tentative one to study the phase transition between two-flavour quark matter and more stable thres-flavour quark matter in the core of supernovae.The result shows that the transition has a significant influence on the increasing of the core temperature,the neutrino abundance and the neutrino energies,which contributes to the enhancement of the successful probability of supernova explosion.However,the equilibrium values of these parameters (except the temperature) from the constituent quark mass model in this work are slightly bigger than those obtained from the other model.And we find that the constituent quark mass model is also applicable to describing the transition in the supernova core.
Quark model for kaon nucleon scattering
Indian Academy of Sciences (India)
Ahmed Osman
2011-12-01
Kaon nucleon elastic scattering is studied using chiral (3) quark model including antiquarks. Parameters of the present model are essentially based on nucleon–nucleon and nucleon–hyperon interactions. The mass of the scalar meson is taken as 635 MeV. Using this model, the phase shifts of the and partial waves of the kaon nucleon elastic scattering are investigated for isospins 0 and 1. The results of the numerical calculations of different partial waves are in good agreement with experimental data.
Li, Xiao-ya; Wang, Bin; Sun, Win-min; Zong, Hong-shi
2008-01-01
The thermal properties of cold dense nuclear matter are investigated with chiral perturbation theory. The evolution curves for the baryon number density, baryon number susceptibility, pressure and the equation of state are obtained. The chiral condensate is calculated and our result shows that when the baryon chemical potential goes beyond $1150 \\mathrm{MeV}$, the absolute value of the quark condensate decreases rapidly, which indicates a tendency of chiral restoration.
Nonlocal quark model description of a composite Higgs particle
Kachanovich, Aliaksei
2016-01-01
We propose a description of the Higgs boson as top-antitop quark bound state within a nonlocal relativistic quark model of Nambu - Jona-Lasinio type. In contrast to model with local four-fermion interaction, the mass of the scalar bound state can be lighter than the sum of its constituents. This is achieved by adjusting the interaction range and the value of the coupling constant to experimental data, for both the top quark mass and the scalar Higgs boson mass, which can simultaneously be described.
QCD $\\theta$-vacua from the chiral limit to the quenched limit
Mameda, Kazuya
2014-01-01
We investigate the dependence of the QCD vacuum structure on $\\theta$-angle and quark mass, using the Veneziano$-$Di-Vecchia model. Although the Veneziano$-$Di-Vecchia model is a chiral effective model, it contains the topological property of the pure Yang$-$Mills theory. It is shown that within this model, the ground state energies for all $\\theta$ are continuous functions of quark mass from the chiral limit to the quenched limit, including the first order phase transition at $\\theta = \\pi$ for arbitrary finite mass. Besides, based on this effective model, we discuss (i) how the ground state depends on quark mass, and (ii) why the phase transition at $\\theta = \\pi$ is caused both in the chiral and quenched limit. In order to analyze the relation between quark mass and $\\theta$-vacua, we calculate chiral condensate as a function of quark mass. We also give a unified understanding of the phase transitions at $\\theta = \\pi$ in the chiral and quenched limit, making reference to the metastable states included inn...
Energy Technology Data Exchange (ETDEWEB)
Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)
2015-06-01
Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.
LHC Signatures of Vector-Like Quarks
Directory of Open Access Journals (Sweden)
Yasuhiro Okada
2013-01-01
Full Text Available This work provides an overview on the current status of phenomenology and searches for heavy vector-like quarks, which are predicted in many models of new physics beyond the Standard Model. Searches at Tevatron and at the LHC, here listed and shortly described, have not found any evidence for new heavy fermionic states (either chiral or vector-like and have therefore posed strong bounds on their masses: depending on specific assumptions on the interactions and on the observed final state, vector-like quarks with masses up to roughly 400–600 GeV have been excluded by all experiments. In order to be as simple and model independent as possible, the chosen framework for the phenomenological analysis is an effective model with the addition of a vector-like quark representation (singlet, doublet, or triplet under SU(2L which couples through Yukawa interactions with all SM families. The relevance of different observables for the determination of bounds on mixing parameters is then discussed and a complete overview of possible two body final states for every vector-like quark is provided, including their subsequent decay into SM particles. A list and short description of phenomenological analyses present in the literature are also provided for reference purposes.
Molecular chirality at surfaces
Energy Technology Data Exchange (ETDEWEB)
Ernst, Karl-Heinz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Organic Chemistry Institute, University Zurich, 8057 Zuerich (Switzerland)
2012-11-15
With the adsorption of larger molecules being increasingly tackled by surface scientists, the aspect of chirality often plays a role. This paper gives a topical review of molecular chirality at surfaces and gives a phenomenological overview of different aspects of adsorption and self-assembly of chiral and prochiral molecules and the principles of mirror-symmetry breaking at a surface. After a brief introduction into the history of molecular chirality and the important role it played for understanding the spatial structure of molecules, definitions of chirality are presented. Topics treated here are principle ways to create single chiral adsorbates, chiral ensembles, and monolayers by achiral molecules, adsorption of intrinsically chiral molecules at achiral and chiral surfaces, long-range symmetry breaking in two-dimensional (2D) crystals due to additional chiral bias, chiral restructuring of solid surfaces under the influence of chiral molecules, switching the handedness of adsorbates, and chirality at the liquid/air interface. An outlook onto further potential research directions and recommendations for further reading, including nonsurface-related sources of chiral topics completes this paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Space-Time Geometry of Quark and Strange Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).
Index Theorem and Random Matrix Theory for Improved Staggered Quarks
Energy Technology Data Exchange (ETDEWEB)
Follana, E. [Department of Physics and Astronomy, University of Glasgow (United Kingdom); Hart, A. [School of Physics, University of Edinburgh (United Kingdom); Davies, C.T.H. [Department of Physics and Astronomy, University of Glasgow (United Kingdom)
2006-03-15
We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD. We find a clear separation of the spectrum of eigenvalues into high chirality, would-be zero modes and others, in accordance with the Index Theorem. We find the expected clustering of the non-zero modes into quartets as we approach the continuum limit. The predictions of random matrix theory for the epsilon regime are well reproduced. We conclude that improved staggered quarks near the continuum limit respond correctly to QCD topology.
Towards thermodynamics of the quark quasi-particles
Molodtsov, S V
2011-01-01
Some features of hot and dense gas of quarks which are considered as the quasi-particles of the model Hamiltonian with four-fermion interaction are studied. Being adapted to the Nambu-Jona-Lasinio model this approach allows us to accommodate a phase transition similar to the nuclear liquid-gas one at the proper scale and to argue an existence of the mixed phase of vacuum and normal baryonic matter as a plausible scenario of chiral symmetry (partial) restoration. Analyzing the transition layer between two phases we estimate the surface tension coefficient and discuss the possibility of quark droplet formation.
Kane-Maguire, Leon A P; Wallace, Gordon G
2010-07-01
This critical review describes the preparation and properties of a relatively new class of chiral macromolecules, namely chiral conducting polymers. It focuses in particular on examples based on polypyrrole, polythiophene and polyaniline. They possess remarkable properties, combining not only chirality with electrical conductivity but also the ability to undergo facile redox and pH switching. These unique properties have opened up a range of exciting new potential applications, including as chiral sensors, as novel stationary phases for chiral separations, and as chiral electrodes for electrochemical asymmetric synthesis (153 references).
Chiral symmetry and scalar meson in hadron and nuclear physics
Kunihiro, T
1995-01-01
After giving a short introduction to the Nambu-Jona-Lasinio model with an anomaly term, we show the importance of the scalar-scalar correlation in the low-energy hadron dynamics, which correlation may be summarized by a scalar-isoscalar meson, the sigma meson. The discussion is based on the chiral quark model with the sigma-meson degrees of freedom. Possible experiments are proposed to produce the elusive meson in a nucleus and detect it. In relation to a precursory soft mode for the chiral transition, the reason is clarified why the dynamic properties of the superconductor may be described by the diffusive time-dependent Ginzburg-Landau (TDGL) equation. We indicate the chiral symmetry plays a significant role also in nuclei; one may say that the stability of nuclei is due to the chiral symmetry of QCD.
From QCD to a dynamical quark model: construction and some meson spectroscopy
Dudal, D; Palhares, L F; Sorella, S P
2013-01-01
We introduce an effective quark model that is in principle dynamically derivable from the QCD action. An important feature is the incorporation of spontaneous chiral symmetry breaking in a renormalizable fashion. The quark propagator in the condensed vacuum exhibits complex conjugate poles, indicative of an unphysical spectral form, i.e. confined quarks. Moreover, the ensuing mass function can be fitted well to existing lattice data. To validate the physical nature of the new model, we identify not only a massless pseudoscalar (i.e. a pion) in the chiral limit, but we also present reasonable estimates for the rho meson mass and decay constant, employing a contact point interaction and a large N argument to simplify the diagrammatic spectral analysis. We stress that we do not use any experimental input to obtain our numbers, but only rely on our model and lattice quark data.
fK /f{pi} in Full QCD with Domain Wall Valence Quarks
Energy Technology Data Exchange (ETDEWEB)
Silas Beane; Paulo Bedaque; Konstantinos Orginos; Martin Savage
2007-05-01
We compute the ratio of pseudoscalar decay constants f{sub K}/f{sub {pi}} using domain-wall valence quarks and rooted improved Kogut-Susskind sea quarks. By employing continuum chiral perturbation theory, we extract the Gasser-Leutwyler low-energy constant L{sub 5}, and extrapolate f{sub K}/f{sub {pi}} to the physical point. We find: f{sub K}/f{sub {pi}} = 1.218 {+-} 0.002{sub -0.024}{sup +0.011} where the first error is statistical and the second error is an estimate of the systematic due to chiral extrapolation and fitting procedures. This value agrees within the uncertainties with the determination by the MILC collaboration, calculated using Kogut-Susskind valence quarks, indicating that systematic errors arising from the choice of lattice valence quark are small.
Nucleon Structure Function F2 in the Resonance Region and Quark-Hadron Duality
Institute of Scientific and Technical Information of China (English)
DONG Yu-Bing; LI Ming-Fei
2003-01-01
Based on a simple nonrelativistic constituent quark model, the nucleon structure function F2 in theresonance region is estimated by taking the contributions from low-lying nucleon resonances into account. Calculatedresults are employed to study quark-hardon duality in the nucleon electron scattering process by comparing them to thescaling behavior from the data in deep inelastic scattering region.
Chiral-symmetry breaking and confinement in Minkowski space
Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz
2014-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Chiral-symmetry breaking and confinement in Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [Unibersidade de Lisboa, 104-001, Lisboa, Portugal; Pena, M. T. [Universidade de Lisboa, 1049-001, Lisboa, Portugal; Ribiero, J. E. [Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Universidade de Ãvora, 7000-671 Ãvora, Portugal; Universidade de Lisboa, 1049-001 Lisboa, Portugal; Gross, Franz [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Chiral-symmetry breaking and confinement in Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmar P. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Peña, M. T. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Departamento de Física, Instituto Superior Técnico (IST), Universidadede Lisboa, 1049-001 Lisboa (Portugal); Ribeiro, J. E. [Centro de Física das Interações Fundamentais (CFIF), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Gross, Franz [Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia 23606 (United States)
2016-01-22
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Connections between chiral Lagrangians and QCD sum-rules
Fariborz, Amir H; Steele, T G
2016-01-01
It is shown how a chiral Lagrangian framework can be used to derive relationships connecting quark-level QCD correlation functions to mesonic-level two-point functions. Crucial ingredients of this connection are scale factor matrices relating each distinct quark-level substructure (e.g., quark-antiquark, four-quark) to its mesonic counterpart. The scale factors and mixing angles are combined into a projection matrix to obtain the physical (hadronic) projection of the QCD correlation function matrix. Such relationships provide a powerful bridge between chiral Lagrangians and QCD sum-rules that are particularly effective in studies of the substructure of light scalar mesons with multiple complicated resonance shapes and substantial underlying mixings. The validity of these connections is demonstrated for the example of the isotriplet $a_0(980)$-$a_0(1450)$ system, resulting in an unambiguous determination of the scale factors from the combined inputs of QCD sum-rules and chiral Lagrangians. These scale factors ...
Energy Technology Data Exchange (ETDEWEB)
Ahmadov, A.; Azuelos, G.; Bauer, U.; Belyaev, A.; Berger, E. L.; Sullivan, Z.; Tait, T. M. P.
2000-03-24
The top quark, when it was finally discovered at Fermilab in 1995 completed the three-generation structure of the Standard Model (SM) and opened up the new field of top quark physics. Viewed as just another SM quark, the top quark appears to be a rather uninteresting species. Produced predominantly, in hadron-hadron collisions, through strong interactions, it decays rapidly without forming hadrons, and almost exclusively through the single mode t {r_arrow} Wb. The relevant CKM coupling V{sub tb} is already determined by the (three-generation) unitarity of the CKM matrix. Rare decays and CP violation are unmeasurable small in the SM. Yet the top quark is distinguished by its large mass, about 35 times larger than the mass of the next heavy quark, and intriguingly close to the scale of electroweak (EW) symmetry breaking. This unique property raises a number of interesting questions. Is the top quark mass generated by the Higgs mechanism as the SM predicts and is its mass related to the top-Higgs-Yukawa coupling? Or does it play an even more fundamental role in the EW symmetry breaking mechanism? If there are new particles lighter than the top quark, does the top quark decay into them? Could non-SM physics first manifest itself in non-standard couplings of the top quark which show up as anomalies in top quark production and decays? Top quark physics tries to answer these questions. Several properties of the top quark have already been examined at the Tevatron. These include studies of the kinematical properties of top production, the measurements of the top mass, of the top production cross-section, the reconstruction of t{bar t}pairs in the fully hadronic final states, the study of {tau} decays of the top quark, the reconstruction of hadronic decays of the W boson from top decays, the search for flavor changing neutral current decays, the measurement of the W helicity in top decays, and bounds on t{bar t} spin correlations. Most of these measurements are limited by
Hadronic and Quark-Gluon Excitations of Dense and Hot Matter
Renk, T; Weise, W
2002-01-01
We summarize recent developments in our understanding of low-mass quark-antiquark excitations in hadronic matter under various different conditions. This includes the thermodynamics of the chiral condensate, pions as Goldstone bosons in normal nuclear matter, and excursions into extreme territory of the QCD phase diagram: lepton pair production from a fireball expanding through the transition boundary between the quark-gluon and hadron pha ses of QCD.
Index Theorem and Random Matrix Theory for Improved Staggered Quarks
Energy Technology Data Exchange (ETDEWEB)
Follana, E. [Department of Physics and Astronomy, University of Glasgow, G12 8QQ Glasgow (United Kingdom)
2005-03-15
We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We find a clear separation of the spectrum of eigenvalues into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as expected from the Index Theorem, and their chirality expectation value is large. The remaining modes have low chirality and show clear signs of clustering into quartets and approaching the random matrix theory predictions for all topological charge sectors. We conclude that improvement of the fermionic and gauge actions moves the staggered quarks closer to the continuum limit where they respond correctly to QCD topology.
Testa, Massimo
1990-01-01
In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.
Evidence for non-analytic light quark mass dependence in the baryon spectrum
Walker-Loud, Andre
2011-01-01
Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...
Juste, A
2006-01-01
Ten years after its discovery at the Tevatron collider, we still know little about the top quark. Its large mass suggests it may play a key role in the mechanism of Electroweak Symmetry Breaking (EWSB), or open a window of sensitivity to new physics related to EWSB and preferentially coupled to it. To determine whether this is the case, precision measurements of top quark properties are necessary. The high statistics samples being collected by the Tevatron experiments during Run II start to incisively probe the top quark sector. This report summarizes the experimental status of the top quark, focusing in particular on the recent measurements from the Tevatron Run II.
Cuevas Maestro, Javier
2016-01-01
An overview of recent top quark measurements in proton-proton collisions at 7, and 8 TeV in data collected with the CMS and ATLAS experiments at the LHC, using a data sample collected during the years 2011, 2012 is presented. The results include measurements of top-quark pairs spin correlation, the top pair charge asymmetry, the cross section of top-quark pair events produced in association with a W or a Z boson. The mass of the top quark is estimated by different methods. Some results on the same topics are also presented in data collected by the CDF and D0 collaborations at the Tevatron collider.
The Physics of a Sextet Quark Sector
White, Alan R
2005-01-01
Electroweak symmetry breaking can be a consequence of color sextet quark chiral symmetry breaking. If so, a special solution of QCD is involved, for which the high-energy S-Matrix can be constructed ``semi-perturbatively''. The spectrum is consistent with, but is more limited than is required by, confinement and chiral symmetry breaking. The pomeron is approximately a regge pole and the Critical Pomeron describes asymptotic cross-sections. The pomeron couples strongly to the electroweak sector and this coupling could produce large $x$ and $Q^2$ events at HERA, and vector boson pairs at Fermilab. Further evidence for the sextet sector would be a large $E_T$ jet excess and other phenomena related to top quark production by the $\\eta_6$. The sextet proton and neutron are the only new baryonic states. Sextet states will dominate high energy hadronic cross-sections and the sextet neutron, which is absolutely stable, could be responsible for dark matter in the universe and also ultra high energy cosmic rays. Other ...
Quark Number Susceptibilities with Domain-Wall Fermions
Hegde, Prasad; Schmidt, Christian
2008-01-01
We present results from calculations of different quark number and hadronic susceptibilities on 2+1-flavor dynamical domain wall ensembles. We find that the iso-spin and electric charge susceptibilities are especially well suited to determine the transition temperature, as these quantities show only small statistical errors. Moreover, the transition values of the coupling obtained from iso-spin and electrical charge susceptibilities are in good agreement with the one obtained from the chiral condensate.
Ghosh, Sabyasachi; Roy, Victor; Serna, Fernando E; Krein, Gastão
2015-01-01
We have calculated the temperature dependence of shear $\\eta$ and bulk $\\zeta$ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-$\\pi$ and quark-$\\sigma$ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses, and quark-meson couplings are obtained in the Nambu--Jona-Lasinio model. We found a non-trivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios $\\eta/s$ and $\\zeta/s$, where $s$ is the entropy density (also determined in the Nambu--Jona-Lasinio model in the quasi-particle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for $\\eta/s$ has a minimum very close to the conjectured AdS/CFT lower bound, $\\eta/s = 1/4\\pi$.
Ghosh, Sabyasachi; Peixoto, Thiago C.; Roy, Victor; Serna, Fernando E.; Krein, Gastão
2016-04-01
We have calculated the temperature dependence of shear η and bulk ζ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-π and quark-σ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses and quark-meson couplings are obtained in the Nambu-Jona-Lasinio model. We found a nontrivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios η /s and ζ /s , where s is the entropy density (also determined in the Nambu-Jona-Lasinio model in the quasiparticle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for η /s has a minimum very close to the quantum lower bound, η /s =1 /4 π .
Chiral perturbation theory approach to hadronic weak amplitudes
Energy Technology Data Exchange (ETDEWEB)
Rafael, E. de (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique 2)
1989-07-01
We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing {Delta}S=1 and {Delta}S=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3){sub Left}xSU(3){sub Right} rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI).
Dakin, James T.
1974-01-01
Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)
New quarks: exotic versus strong
Holdom, B.
2011-01-01
The new quarks of a fourth family are being pushed into the strongly interacting regime due to the lower limits on their masses. The theoretical basis and experimental implications of such quarks are compared with exotic quarks.
Valence-quark distribution functions in the kaon and pion
Chen, Chen; Chang, Lei; Roberts, Craig D.; Wan, Shaolong; Zong, Hong-Shi
2016-04-01
We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed quarks carry all the meson's momentum at a characteristic hadronic scale and vanish as (1 -x )2 when Bjorken-x →1 . Comparing such distributions within the pion and kaon, it is apparent that the size of S U (3 ) -flavor symmetry breaking in meson parton distribution functions is modulated by the flavor dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulas may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison with experiment which allows us to identify and highlight basic features of measurable pion and kaon valence-quark distributions. We find that whereas roughly two thirds of the pion's light-front momentum is carried by valence dressed quarks at a characteristic hadronic scale; this fraction rises to 95% in the kaon; evolving distributions with these features to a scale typical of available Drell-Yan data produces a kaon-to-pion ratio of u -quark distributions that is in agreement with the single existing data set, and predicts a u -quark distribution within the pion that agrees with a modern reappraisal of π N Drell-Yan data. Precise new data are essential in order to validate this reappraisal and because a single modest-quality measurement of the kaon-to-pion ratio cannot be considered definitive.
Valence-quark distribution functions in the kaon and pion
Energy Technology Data Exchange (ETDEWEB)
Chen, Chen; Chang, Lei; Roberts, Craig D.; Wan, Shaolong; Zong, Hong-Shi
2016-04-18
We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed quarks carry all the meson’s momentum at a characteristic hadronic scale and vanish as ( 1 - x ) ^{2} when Bjorken- x → 1 . Comparing such distributions within the pion and kaon, it is apparent that the size of S U ( 3 ) -flavor symmetry breaking in meson parton distribution functions is modulated by the flavor dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulas may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison with experiment which allows us to identify and highlight basic features of measurable pion and kaon valence-quark distributions. We find that whereas roughly two thirds of the pion’s light-front momentum is carried by valence dressed quarks at a characteristic hadronic scale; this fraction rises to 95% in the kaon; evolving distributions with these features to a scale typical of available Drell-Yan data produces a kaon-to-pion ratio of u -quark distributions that is in agreement with the single existing data set, and predicts a u -quark distribution within the pion that agrees with a modern reappraisal of π N Drell-Yan data. Precise new data are essential in order to validate this reappraisal and because a single modest-quality measurement of the kaon-to-pion ratio cannot be considered definitive.
Chiral interpolation in a finite volume
Fukaya, H; Hashimoto, S; Kaneko, T; Matsufuru, H; Noaki, J; Onogi, T; Yamada, N
2011-01-01
A simulation of lattice QCD at (or even below) the physical pion mass is feasible on a small lattice size of \\sim 2 fm. The results are, however, subject to large finite volume effects. In order to precisely understand the chiral behavior in a finite volume, we develop a new computational scheme to interpolate the conventional epsilon and p regimes within chiral perturbation theory. In this new scheme, we calculate the two-point function in the pseudoscalar channel, which is described by a set of Bessel functions in an infra-red finite way as in the epsilon regime, while chiral logarithmic effects are kept manifest as in the p regime. The new ChPT formula is compared to our 2+1- flavor lattice QCD data near the physical up and down quark mass, mud \\sim 3 MeV on an L \\sim 1.8 fm lattice. We extract the pion mass = 99(4) MeV, from which we attempt a chiral "interpolation" of the observables to the physical point.
Lattice simulations with $N_f=2+1$ improved Wilson fermions at a fixed strange quark mass
Bali, Gunnar S; Simeth, Jakob; Söldner, Wolfgang
2016-01-01
The explicit breaking of chiral symmetry of the Wilson fermion action results in additive quark mass renormalization. Moreover, flavour singlet and non-singlet scalar currents acquire different renormalization constants with respect to continuum regularization schemes. This complicates keeping the renormalized strange quark mass fixed when varying the light quark mass in simulations with $N_f=2+1$ sea quark flavours. Here we present and validate our strategy within the CLS (Coordinated Lattice Simulations) effort to achieve this in simulations with non-perturbatively order-$a$ improved Wilson fermions. We also determine various combinations of renormalization constants and improvement coefficients.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.
Structure functions in the chiral bag model
Energy Technology Data Exchange (ETDEWEB)
Sanjose, V.; Vento, V.
1989-07-13
We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).
Chiral transition in a strong magnetic background
Fraga, Eduardo S
2008-01-01
The presence of a strong magnetic background can modify the nature and the dynamics of the chiral phase transition at finite temperature. We compute the modified effective potential in the linear sigma model with quarks to one loop in the $\\bar{MS}$ scheme for $N_{f}=2$. For fields $eB\\sim 5 m_{\\pi}^{2}$ and larger a crossover is turned into a weak first-order transition. We discuss possible implications for non-central heavy ion collisions at RHIC and LHC, and for the primordial QCD transition.
Testing Lorentz Symmetry using Chiral Perturbation Theory
Noordmans, J P
2016-01-01
We consider the low-energy effects of a selected set of Lorentz- and CPT-violating quark and gluon operators by deriving the corresponding chiral effective lagrangian. Using this effective lagrangian, low-energy hadronic observables can be calculated. We apply this to magnetometer experiments and derive the best bounds on some of the Lorentz-violating coefficients. We point out that progress can be made by studying the nucleon-nucleon potential, and by considering storage-ring experiments for deuterons and other light nuclei.
Dihyperons in chiral color dielectric model
Indian Academy of Sciences (India)
S C Phatak
2003-11-01
The mass of the dibaryon having spin, parity =0+, isospin = 0 and strangeness -2 is computed using chiral color dielectric model. The bare wave function is constructed as a product of two color-singlet three-quark clusters and then it is properly antisymmetrized by considering appropriate exchange operators for spin, ﬂavor and color. Color magnetic energy due to gluon exchange, meson self energy and energy correction due to center of mass motion are computed. The calculation shows that the mass of the particle is 80 to 160 MeV less than twice mass.
The U(1)A anomaly in high temperature QCD with chiral fermions on the lattice
Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato
2015-01-01
The magnitude of the $U_A(1)$ symmetry breaking is expected to affect the nature of $N_f=2$ QCD chiral phase transition. The explicit breaking of chiral symmetry due to realistic light quark mass is small, so it is important to use chiral fermions on the lattice to understand the effect of $U_A(1)$ near the chiral crossover temperature, $T_c$. We report our latest results for the eigenvalue spectrum of 2+1 flavour QCD with dynamical Mobius domain wall fermions at finite temperature probed using the overlap operator on $32^3\\times 8$ lattice. We check how sensitive the low-lying eigenvalues are to the sea-light quark mass. We also present a comparison with the earlier independent results with domain wall fermions.
Approaching the chiral point in two-flavour lattice simulations
Lottini, Stefano
2014-01-01
We investigate the behaviour of the pion decay constant and the pion mass in two-flavour lattice QCD, with the physical and chiral points as ultimate goal. Measurements come from the ensembles generated by the CLS initiative using the O(a)-improved Wilson formulation, with lattice spacing down to about 0.05 fermi and pion masses as low as 190 MeV. The applicability of SU(2) chiral perturbation theory is investigated, and various functional forms, and their range of validity, are compared. The physical scale is set through the kaon decay constant, whose measurement is enabled by inserting a third, heavier valence strange quark.
Quark mean field model with pion and gluon corrections
Xing, Xueyong; Hu, Jinniu; Shen, Hong
2016-10-01
The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pions and gluons into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pions and gluons on the nucleon structure are treated in second-order perturbation theory. In a nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, mq, we determine three parameter sets for the coupling constants between mesons and quarks, named QMF-NK1, QMF-NK2, and QMF-NK3, by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give a satisfactory description of properties of nuclear matter and finite nuclei, moreover they also predict a larger neutron star mass around 2.3 M⊙ without hyperon degrees of freedom.
The quark mean field model with pion and gluon corrections
Xing, Xueyong; Shen, Hong
2016-01-01
The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pion and gluon into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pion and gluon on the nucleon structure are treated in second-order perturbation theory. For the nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, $m_q$, we determine three parameter sets about the coupling constants between mesons and quarks, named as QMF-NK1, QMF-NK2, and QMF-NK3 by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give satisfactory description on properties of nuclear matter and finite nuclei, meanwhile they can also predict the larger neutron star mass around $2.3M_\\odot$ without the hypero...
Contribution of Quark Structure Term in Nucleon Electric and Magnetic Form Factors
Institute of Scientific and Technical Information of China (English)
WANGHong-Min; ZHANGBen-Ai
2004-01-01
The constituent quarks in the nucleon have always been considered as a point-like particle in the relativisticconstituent quark model. However its calculation results of GEn agree poorly with the new experimental data. Theelectromagnetic structure of light front constituent quarks is considered in this paper. We find that the calculationresults have good agreement with the new experimental data of GEn after considering the contribution of the quarkstructure term. This treatment seems to be able to improve the fit to experimental data of GEp/GMp,√Q2F2p/kpF1p,and GEn/GMn as well.
Parity- and Time Reversal-Violating Pion Nucleon Couplings: Higher Order Chiral Matching Relations
Seng, Chien-Yeah
2016-01-01
Parity- and time reversal-violating (PVTV) pion-nucleon couplings govern the magnitude of long-range contributions to nucleon and atomic electric dipole moments. When these couplings arise from chiral symmetry-breaking CP-violating operators, such as the QCD $\\theta$-term or quark chromoelectric dipole moments, one may relate hadronic matrix elements entering the PVTV couplings to nucleon and pion mass shifts by exploiting the corresponding chiral transformation properties at leading order (LO) in the chiral expansion. We compute the higher-order contributions to the lowest order relations arising from chiral loops and next-to-next-to leading order (NNLO) operators. We find that for the QCD $\\theta$-term the higher order contributions are analytic in the quark masses, while for the quark chromoelectric dipole moments and chiral symmetry-breaking four-quark operators, the matching relations also receive non-analytic corrections. Numerical estimates suggest that for the isoscalar PVTV pion-nucleon coupling, the...
Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry
Aoki, S; Feng, X; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T
2015-01-01
We study the chiral behavior of the electromagnetic (EM) form factors of pion and kaon in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between M_pi \\simeq 290 MeV and 540 MeV and with a strange quark mass m_s close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on m_s and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy...
Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry
Aoki, S.; Cossu, G.; Feng, X.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.
2016-02-01
We study the chiral behavior of the electromagnetic (EM) form factors of pions and kaons in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between Mπ≃290 MeV and 540 MeV and with a strange quark mass ms close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on ms and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii, and find reasonable agreement with phenomenological and experimental results.
The epsilon regime of chiral perturbation theory with Wilson-type fermions
Energy Technology Data Exchange (ETDEWEB)
Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Liverpool Univ. (United Kingdom). Theoretical Physics Division
2009-11-15
In this proceeding contribution we report on the ongoing effort to simulate Wilson-type fermions in the so called epsilon regime of chiral perturbation theory (cPT).We present results for the chiral condensate and the pseudoscalar decay constant obtained with Wilson twisted mass fermions employing two lattice spacings, two different physical volumes and several quark masses. With this set of simulations we make a first attempt to estimate the systematic uncertainties. (orig.)
Chiral Rotational Spectroscopy
Cameron, Robert P; Barnett, Stephen M
2015-01-01
We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.
E. Laenen
2011-01-01
The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.
Indian Academy of Sciences (India)
Eric Laenen
2012-10-01
The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.
On chiral and non chiral 1D supermultiplets
Energy Technology Data Exchange (ETDEWEB)
Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)
Subtraction of Spurious Centre-of-Mass Motion in Quark Delocalization and Colour Screening Model
Institute of Scientific and Technical Information of China (English)
CHEN Ling-Zhi; PANG Hou-Rong; HUANG Hong-Xia; PING Jia-Lun; WANG Fan
2007-01-01
The quark delocalization colour screening model provides an alternative approach for the NN intermediate range attraction, which is attributed to the σ meson exchange in the meson exchange and chiral quark model.However the quark delocalization induces the spurious centre-of-mass motion (CMM). A method for subtracting the spurious CMM proposed before is applied to the new scattering calculation. The subtraction of the spurious CMM results in an additional NN attraction. The NN scattering data are refitted by a fine tune of the colour screening constant.
Role of center vortices in chiral symmetry breaking in SU(3) gauge theory
2011-01-01
We study the behavior of the AsqTad quark propagator in Landau gauge on SU(3) Yang-Mills gauge configurations under the removal of center vortices. In SU(2) gauge theory, center vortices have been observed to generate chiral symmetry breaking and dominate the infrared behavior of the quark propagator. In contrast, we report a weak dependence on the vortex content of the gauge configurations, including the survival of dynamical mass generation on configurations with vanishing string tension.
Energy Technology Data Exchange (ETDEWEB)
Erbacher, Robin D.; /UC, Davis
2005-10-01
While the top quark was discovered in 1995 at the Fermilab Tevatron, a decade later they still have very little information about the top. As the heaviest particle yet discovered, the top quark is interesting in and of itself, but some speculate that it may play a special role in physics beyond the Standard Model. With Run 2 of the Tevatron well underway, they have the opportunity to study top quark properties with much better sensitivity, and to test whether top quarks behave as predicted by current theories. This article focuses on the basics of top quark physics at the Tevatron, highlighting only a sample of the many recent measurements, as new results are being released monthly, and constantly changing the landscape of our knowledge of top.
Chiral symmetry and chiral-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Semiclassical projection of hedgehog models with quarks
Energy Technology Data Exchange (ETDEWEB)
Cohen, T.D.; Broniowski, W.
1986-12-01
A simple semiclassical method is presented for calculating physical observables in states with good angular momentum and isospin for models whose mean-field solutions are hedgehogs. The method is applicable for theories which have both quark and meson degrees of freedom. The basic approach is to find slowly rotating solutions to the time-dependent mean-field equations. A nontrivial set of differential equations must be solved to find the quark configuration for these rotating hedgehogs. The parameters which specify the rotating solutions are treated as the collective degrees of freedom. They are requantized by imposing a set of commutation relations which ensures the correct algebra for the SU(2) x SU(2) group of angular momentum and isospin. Collective wave functions can then be found and with these wave functions all matrix elements can be calculated. The method is applied to a simple version of the chiral quark-meson model. A number of physical quantities such as magnetic moments, charge distributions, g/sub A/, g/sub ..pi..//sub N//sub N/, N-..delta.. mass splitting, properties of the N-..delta.. transition, etc., are calculated.
Light Quark Mass Effects in Bottom Quark Mass Determinations
Hoang, A. H.
2001-01-01
Recent results for charm quark mass effects in perturbative bottom quark mass determinations from $\\Upsilon$ mesons are reviewed. The connection between the behavior of light quark mass corrections and the infrared sensitivity of some bottom quark mass definitions is examined in some detail.
Extrinsic electromagnetic chirality in metamaterials
Plum, E.; Fedotov, V. A.; Zheludev, N. I.
2009-01-01
Three- and two-dimensional chirality arising from the mutual orientation of non-chiral planar metamaterial structures and the incident electromagnetic wave (extrinsic chirality) lead to pronounced optical activity, circular dichroism and asymmetric transmission indistinguishable from those seen in media consisting of three- and two-dimensionally chiral molecules (intrinsic chirality).
Normal-2SC mixed phase of quark matter in compact stars for large coupling constant
Aguilera, D N; Grigorian, H
2004-01-01
We study the consequences of changing the ratio $\\eta$ between the coupling constant in the diquark channel and the coupling constant in the messon channel to a quark matter equation of state under compact stars constraints. A nonlocal chiral quark model is used and the quark interaction is represented via formfactor functions. We found that a mixed phase of 2SC quark matter and normal quark matter (N-2SC) is likely to occur for rather large $\\eta$, 0.86 $\\leq \\eta \\leq$ 1.1 in the interior of compact stars for Gaussian formfactor. For the two other formfactors the range of the mixed phase is shifted to lower values of $\\eta$. This result leads us to suggest that, if the coupling is not so large, spin-1 channels may be more likely to occur rather than the 2SC phase for intermediate densities in the interior of compact stars.
Equation of state and transition temperatures in the quark-hadron hybrid model
Miyahara, Akihisa; Torigoe, Yuhei; Kouno, Hiroaki; Yahiro, Masanobu
2016-07-01
We analyze the equation of state of 2 +1 flavor lattice QCD at zero baryon density by constructing a simple quark-hadron hybrid model that has both quark and hadron components simultaneously. We calculate the hadron and quark contributions separately and parameterize those to match with lattice QCD data. Lattice data on the equation of state are decomposed into hadron and quark components by using the model. The transition temperature is defined by the temperature at which the hadron component is equal to the quark one in the equation of state. The transition temperature thus obtained is about 215 MeV; this is somewhat higher than the chiral and the deconfinement pseudocritical temperatures defined by the temperature at which the susceptibility or the absolute value of the derivative of the order parameter with respect to temperature becomes maximum.
Meson screening masses at finite temperature with Highly Improved Staggered Quarks
Maezawa, Y; Karsch, F; Petreczky, P; Mukherjee, S
2013-01-01
We report on the first study of the screening properties of the mesonic excitations with strange ($s$) and charm ($c$) quarks, specifically the ground states of the pseudo-scalar and vector meson excitations for the $\\bar{s}s$, $\\bar{s}c$ and $\\bar{c}c$ flavor combinations, using the Highly Improved Staggered Quark action with dynamical physical strange quark and nearly-physical up and down quarks. By comparing with their respective vacuum meson masses and by investigating the influence of the changing temporal boundary conditions of the valence quarks we study the thermal modifications of these mesonic excitations. While the $\\bar{s}s$ states show significant modifications even below the chiral crossover temperature $T_c$, the modifications of the open-charm and charmonium like states become visible only for temperatures $T\\gtrsim T_c$ and $T\\gtrsim1.2T_c$, respectively.
Four Quark cn - nbar cbar States in U(12)-Scheme and X(3872)/Y(3940)
Ishida, M; Maeda, T; Ishida, Muneyuki; Ishida, Shin; Maeda, Tomohito
2005-01-01
The properties of four quark cn - nbar cbar states are investigated as cn di-quark and nbar cbar di-antiquark system in U(12)-classification scheme of hadrons, recently proposed by us. We consider the negative-parity di-quark and di-antiquark in ground states, which form with the ordinary positive-parity ones the respective linear representations of chiral symmetry. The masses and widths of ground-states are predicted by using Joint Spring Quark Model, and the observed properties of X(3872) and Y(3940) are consistent, respectively, with those of the JPC=1++ and 2++ states from the negative-parity di-quark and di-antiquark. Their narrow-widths are explained from a kind of conservation law, called rho3-line rule. The properties of ground-state cs - sbar cbar system are also predicted in this scheme.
Minkowski space pion model inspired by lattice QCD running quark mass
Mello, Clayton S.; de Melo, J. P. B. C.; Frederico, T.
2017-03-01
The pion structure in Minkowski space is described in terms of an analytic model of the Bethe-Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe-Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward-Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.
Feng, Sheng-Qin; Sun, Fei; Zhong, Yang; Yin, Zhong-Bao
2016-01-01
It was pointed out that the Chiral Magnetic Effect is a process of charge separation with respect to the reaction plane. There is one kind of phenomenon of gauge field configurations with nonzero topological charge, which can be a sphaleron in the QCD vacuum. At high temperatures, one expects that the sphaleron process is a dominant process. One finds that left-handed quarks will become right-handed quarks, and right-handed quarks will remain right-handed in a region with negative topological charge. The strong magnetic field produced in relativistic heavy-ion collisions interacts with the magnetic moment of the quarks and locates the spins of quarks with positive (negative) electric charge to be parallel (anti-parallel) to the field direction. The Chiral Separation Effect is a similar effect in which the occurrence of a vector charge, e.g. electric charge, causes a separation of chiralities. We calculate the chiral separation effects during RHIC and LHC energy regions by studying the detailed chiral charge s...
Gelation induced supramolecular chirality: chirality transfer, amplification and application.
Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua
2014-08-14
Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.
Huang, Z; Huang, Zheng
1993-01-01
We study the behavior of the self-mass for a quark with a current mass larger than $\\Lambda_QCD$, as a function of its Euclidean momentum and mass, in QCD. An expression for the Bethe-Salpeter kernel of the Schwinger-Dyson (SD) equation valid in both the infrared and ultraviolet regions is obtained based on a renormalization group analysis. The resulting SD equation is solved numerically. It is found that the quark constituent mass at zero momentum is substantially enhanced due to its effective gauge interaction. The solution in the ultraviolet region agrees well with the known asymptotic solution. The self-mass scales exactly as the on-shell current mass at a fixed momentum.
The phase diagram of nuclear and quark matter at high baryon density
Fukushima, Kenji
2013-01-01
We review theoretical approaches to explore the phase diagram of nuclear and quark matter at high baryon density. We first look over the basic properties of quantum chromodynamics (QCD) and address how to describe various states of QCD matter. In our discussions on nuclear matter we cover the relativistic mean-field model, the chiral perturbation theory, and the approximation based on the large-Nc limit where Nc is the number of colors. We then explain the liquid-gas phase transition and the inhomogeneous meson condensation in nuclear matter with emphasis put on the relevance to quark matter. We commence the next part focused on quark matter with the bootstrap model and the Hagedorn temperature. Then we turn to properties associated with chiral symmetry and exposit theoretical descriptions of the chiral phase transition. There emerge some quark-matter counterparts of phenomena seen in nuclear matter such as the liquid-gas phase transition and the inhomogeneous structure of the chiral condensate. The third reg...
Thermodynamics in 2+1 flavor QCD with improved Wilson quarks by the fixed scale approach
Umeda, T; Ejiri, S; Hatsuda, T; Kanaya, K; Maezawa, Y; Ohno, H
2012-01-01
We study thermodynamic properties of 2+1 flavor QCD with improved Wilson quarks coupled with the RG improved Iwasaki glue, using the fixed scale approach. We present the results for the equation of state, renormalized Polyakov loop, and chiral condensate.
Chiral magnetic effect and anomalous transport from real-time lattice simulations
Mueller, Niklas; Sharma, Sayantan
2016-01-01
We present a first-principle study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian $SU(N_c)$ and Abelian $U(1)$ gauge fields. Investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating wave. We further analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark mass.
Chiral rotational spectroscopy
Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.
2016-09-01
We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.
Emerging chirality in nanoscience.
Wang, Yong; Xu, Jun; Wang, Yawen; Chen, Hongyu
2013-04-07
Chirality in nanoscience may offer new opportunities for applications beyond the traditional fields of chirality, such as the asymmetric catalysts in the molecular world and the chiral propellers in the macroscopic world. In the last two decades, there has been an amazing array of chiral nanostructures reported in the literature. This review aims to explore and categorize the common mechanisms underlying these systems. We start by analyzing the origin of chirality in simple systems such as the helical spring and hair vortex. Then, the chiral nanostructures in the literature were categorized according to their material composition and underlying mechanism. Special attention is paid to highlight systems with original discoveries, exceptional structural characteristics, or unique mechanisms.
On SU(3) effective models and chiral phase-transition
Tawfik, Abdel Nasser
2015-01-01
The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...
Binary mixtures of chiral gases
Presilla, Carlo
2015-01-01
A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.
Anomalous transport model study of chiral magnetic effects in heavy ion collisions
Sun, Yifeng; Li, Feng
2016-01-01
Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).
Gasser-Leutwyler Coefficients of Chiral Lagrangian for Pseudoscalar Goldstone Bosons
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Juan; WU Qing; PAN Ji-Huan; MENG Cheng-Ju; MA Wei-Xing; LI Xi-Guo
2006-01-01
Based on the Dyson-Schwinger equations in rainbow approximation for quark propagator with an effective gluon propagator, and on the parametrized fully dressed quark propagator proposed by us, the unknown Gasser-Leutwyler coefficients of the chiral Lagrangian for pseudoscalar Goldstone bosons, Li, are predicted respectively. The predicted values of Li in the two different ways are not only in reasonable agreement each other but also in agreement with empirical values used widely in literature and the values predicted by many other theoretical models with QCD characteristics. The compatible results of Gasser-Leutwyler coefficients predicted by our parameterized quark propagator,in turn, clearly verify its extensive validity.
Ebert, D; Klimenko, K G
2016-01-01
In this paper we investigate the phase structure of a (1+1)-dimensional schematic quark model with four-quark interaction and in the presence of baryon ($\\mu_B$), isospin ($\\mu_I$) and chiral isospin ($\\mu_{I5}$) chemical potentials. It is established that in the large-$N_c$ limit ($N_c$ is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation (PC) one. The role and influence of this property on the phase structure of the model are studied. Moreover, it is shown that the chemical potential $\\mu_{I5}$ promotes the appearance of the charged PC phase with nonzero baryon density.
Cichy, Krzysztof; Jansen, Karl; Shindler, Andrea
2013-01-01
We apply the spectral projector method, recently introduced by Giusti and L\\"uscher, to compute the chiral condensate using $N_f=2$ and $N_f=2+1+1$ dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the $O(a)$ improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for $N_f=2$ and $N_f=2+1+1$ dynamical flavors.
Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong
2016-06-01
Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.
Sen, Srimoyee
2016-01-01
We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.
Anomalous chiral superfluidity
Energy Technology Data Exchange (ETDEWEB)
Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)
2010-02-08
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.
Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD
Farias, R L S; Avancini, S S; Pinto, M B; Krein, G
2016-01-01
The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu-Jona-Lasinio model if the coupling G of the model decreases with the strength B of the magnetic field and temperature T. The thermo-magnetic dependence of G(B,T) is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with a G(B, T) are compared with the ones obtained at constant coupling G. The model with a G(B,T) predicts a more dramatic chiral transition as the field intensity increases. In addition, the pressure and magnetization always increase with B for a given temperature. Being parametrized by four magnetic field dependent coefficients and having a rather simple exponential thermal dependence our accurate ansatz for the running coupling can be easily implemented to improve typical model applications to magnetized quark matter.
Measurement of parity violation in electron–quark scattering
Energy Technology Data Exchange (ETDEWEB)
Wang, D.; Pan, K.; Subedi, R.; Deng, X.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Deur, A.; Dutta, C.; El Fassi, L.; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; LeRose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Myers, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman,; Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.
2014-02-05
Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks chirality preference when participating in the weak force, which have been measured directly3, 4 only once in the past 40?years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u???C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.
Measurement of parity violation in electron-quark scattering.
2014-02-01
Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks' chirality preference when participating in the weak force, which have been measured directly only once in the past 40 years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u - C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.
Power Counting Regime of Chiral Effective Field Theory and Beyond
Hall, J M M; Leinweber, D B
2010-01-01
Chiral effective field theory complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of chiral effective field theory, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may b...
Chiral Effective Theory of Dark Matter Direct Detection
Bishara, Fady; Grinstein, Benjamin; Zupan, Jure
2016-01-01
We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.
Chiral effective theory of dark matter direct detection
Bishara, Fady; Brod, Joachim; Grinstein, Benjamin; Zupan, Jure
2017-02-01
We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of Script O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.
The chiral and deconfinement aspects of the QCD transition
Bazavov, A; Cheng, M; DeTar, C; Ding, H -T; Gottlieb, Steven; Gupta, R; Hegde, P; Heller, U M; Karsch, F; Laermann, E; Levkova, L; Mukherjee, S; Petreczky, P; Schmidt, C; Soltz, R A; Soeldner, W; Sugar, R; Toussaint, D; Unger, W; Vranas, P
2011-01-01
We present results on the chiral and deconfinement properties of the QCD transition at finite temperature. Calculations are performed with 2+1 flavors of quarks using the p4, asqtad and HISQ/tree actions. Lattices with temporal extent N_tau=6, 8 and 12 are used to understand and control discretization errors and to reliably extrapolate estimates obtained at finite lattice spacings to the continuum limit. The chiral transition temperature is defined in terms of the phase transition in a theory with two massless flavors and analyzed using O(N) scaling fits to the chiral condensate and susceptibility. We find consistent estimates from the HISQ/tree and asqtad actions and our main result is T_c=154 +/- 9 MeV.
Guichon, P A M; Thomas, A W
1996-01-01
We describe the development of a theoretical description of the structure of finite nuclei based on a relativistic quark model of the structure of the bound nucleons which interact through the (self-consistent) exchange of scalar and vector mesons.
Indian Academy of Sciences (India)
Narendra Singh
2003-01-01
Assuming a relation between the quark mass matrices of the two sectors a unique solution can be obtained for the CKM ﬂavor mixing matrix. A numerical example is worked out which is in excellent agreement with experimental data.
Energy Technology Data Exchange (ETDEWEB)
Parke, S.
1998-01-01
In this presentation I will primarily focus on top quark physics but I will include a discussion of the W-boson mass and the possibility of discovering a light Higgs boson via associated production at the Tevatron.
A search for inverse magnetic catalysis in thermal quark-meson models
Fraga, E. S.; Mintz, B. W.; Schaffner-Bielich, J.
2014-04-01
We explore the parameter space of the two-flavor thermal quark-meson model and its Polyakov loop-extended version under the influence of a constant external magnetic field B. We investigate the behavior of the pseudo critical temperature for chiral symmetry breaking taking into account the likely dependence of two parameters on the magnetic field: the Yukawa quark-meson coupling and the parameter T0 of the Polyakov loop potential. Under the constraints that magnetic catalysis is realized at zero temperature and the chiral transition at B=0 is a crossover, we find that the quark-meson model leads to thermal magnetic catalysis for the whole allowed parameter space, in contrast to the present picture stemming from lattice QCD.
A search for inverse magnetic catalysis in thermal quark-meson models
Fraga, E S; Schaffner-Bielich, J
2013-01-01
We explore the parameter space of the two-flavor thermal quark-meson model and its Polyakov loop-extended version under the influence of a constant external magnetic field $B$. We investigate the behavior of the pseudo critical temperature for chiral symmetry breaking taking into account the likely dependence of two parameters on the magnetic field: the Yukawa quark-meson coupling and the parameter $T_0$ of the Polyakov loop potential. Under the constraints that magnetic catalysis is realized at zero temperature and the chiral transition at $B=0$ is a crossover, we find that the quark-meson model leads to thermal magnetic catalysis for the whole allowed parameter space, in contrast to the present picture stemming from lattice QCD.
Doped Chiral Polymer Metamaterials Project
National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Taylor, John C.
1984-01-01
Processes with coloured particles in the initial state are generally infrared divergent. We investigate the effect of this on processes with colourless particles in the initial state, when the amplitude is near an intermediate quark pole. The result is a characteristic logarithmic depedence...... on the 'binding energy'(even though spectator interactions are taken into account), and the result is gauge-invariant. Summed to all orders the logarithms could perhaps suppress the quark pole....
Scale-setting, flavour dependence and chiral symmetry restoration
Binosi, Daniele; Rodriguez-Quintero, Jose
2016-01-01
We determine the flavour dependence of the renormalisation-group-invariant running interaction through judicious use of both unquenched Dyson-Schwinger equation and lattice results for QCD's gauge-sector two-point functions. An important step is the introduction of a physical scale setting procedure that enables a realistic expression of the effect of different numbers of active quark flavours on the interaction. Using this running interaction in concert with a well constrained class of dressed--gluon-quark vertices, we estimate the critical number of active lighter-quarks above which dynamical chiral symmetry breaking becomes impossible: $n_f^{\\rm cr}\\approx 9$; and hence in whose neighbourhood QCD is plausibly a conformal theory.