WorldWideScience

Sample records for chiral building blocks

  1. Convenient Syntheses of Some C4 Chiral Building Blocks Starting From (S)-Malic Acid

    Institute of Scientific and Technical Information of China (English)

    WU; TianJun

    2001-01-01

    In the field of chiral technology, the synthesis of chiral intermediates and chiral building blocks occupies an important position. Chiral building blocks bearing double and / or multiple functionalities is particularly useful for the synthesis of chiral pharmaceuticals and chiral agrochemicals.  In the recent years, we have been engaged in the development of synthetic methodology based on (S)-malic acid1-s. In these studies, malimide 2, easily accessible from (S)-malic acid, was shown to be a useful multifunctional building block in the asymmetric synthesis of natural products and chiral drugs (Scheme 1).  ……

  2. Convenient Syntheses of Some C4 Chiral Building Blocks Starting From (S)-Malic Acid

    Institute of Scientific and Technical Information of China (English)

    WU TianJun; YU XianYong; ZHENG Xiao; HUANG PeiQiang

    2001-01-01

    @@ In the field of chiral technology, the synthesis of chiral intermediates and chiral building blocks occupies an important position. Chiral building blocks bearing double and / or multiple functionalities is particularly useful for the synthesis of chiral pharmaceuticals and chiral agrochemicals. In the recent years, we have been engaged in the development of synthetic methodology based on (S)-malic acid1-s. In these studies, malimide 2, easily accessible from (S)-malic acid, was shown to be a useful multifunctional building block in the asymmetric synthesis of natural products and chiral drugs (Scheme 1).

  3. Role of pseudoephedrine as chiral auxiliary in the "acetate-type" aldol reaction with chiral aldehydes; asymmetric synthesis of highly functionalized chiral building blocks.

    Science.gov (United States)

    Ocejo, Marta; Carrillo, Luisa; Vicario, Jose L; Badía, Dolores; Reyes, Efraim

    2011-01-21

    We have studied in depth the aldol reaction between acetamide enolates and chiral α-heterosubstituted aldehydes using pseudoephedrine as chiral auxiliary under double stereodifferentiation conditions, showing that high diastereoselectivities can only be achieved under the matched combination of reagents and provided that the α-heteroatom-containing substituent of the chiral aldehyde is conveniently protected. Moreover, the obtained highly functionalized aldols have been employed as very useful starting materials for the stereocontrolled preparation of other interesting compounds and chiral building blocks such as pyrrolidines, indolizidines, and densely functionalized β-hydroxy and β-amino ketones using simple and high-yielding methodologies. PMID:21188970

  4. Screw split ring resonator as building block of three-dimensional chiral metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yong, E-mail: liaoy@cqu.edu.cn [Key Laboratory of Aerocraft Tracking Telemetering and Command and Communication, Ministry of Education, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Integrated Services Networks, Xidian University, Xian 710071 (China); Yang, Shizhong [Key Laboratory of Aerocraft Tracking Telemetering and Command and Communication, Ministry of Education, Chongqing University, Chongqing 400044 (China); Shi, Lina [Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2014-01-17

    We proposed and numerically investigated the influence of spatial topology on the infrared frequency region response of chiral metamaterials based on discrete deformed split ring resonators. Compared with the well studied continuous helix, the proposed metamaterials with discrete topology exhibit broad band chiral electromagnetic response. It is shown that the conversion between left and right circular polarization waves for our model is much broader than the continuous helix model. The observed cross-coupling between electric and magnetic fields results from the chiral electric currents on the resonators due to the broken mirror symmetry. The findings are useful for the design of future real three-dimensional chiral metamaterials with tunable optical response.

  5. Enantioselective total synthesis of epoxyquinone natural products (−)-phyllostine, (+)-epoxydon, (+)-epiepoxydon and (−)-panepophenanthrin: access to versatile chiral building blocks through enzymatic kinetic resolution

    OpenAIRE

    Mehta, Goverdhan; Islam, Kabirul

    2004-01-01

    A new enzyme mediated protocol to access versatile chiral building blocks for the synthesis of epoxyquinone natural products is delineated. Total syntheses of (−)-phyllostine, (+)-epoxydon, (+)-epiepoxydon and (−)-panepophenanthrin have been accomplished to demonstrate the efficacy of this approach.

  6. Synthesis of (-)-Harzialactone A from a Readily Accessible Epoxy Chiral Building Block%Synthesis of (-)-Harzialactone A from a Readily Accessible Epoxy Chiral Building Block

    Institute of Scientific and Technical Information of China (English)

    何蕾; 张少敏; 伍贻康; 李焰

    2011-01-01

    The antipode of (+)-harzialactone A, an antitumor marine metabolite, was synthesized with the two stereogenic centers in the target structure taken from an optically active epoxy cbiral building block.

  7. Triflate-functionalized calix[6]arenes as versatile building-blocks: application to the synthesis of an inherently chiral Zn(ii) complex.

    Science.gov (United States)

    Zahim, Sara; Lavendomme, Roy; Reinaud, Olivia; Luhmer, Michel; Evano, Gwilherm; Jabin, Ivan

    2016-02-14

    Cavity-based metal complexes can find many applications notably in the fields of catalysis and biomimicry. In this context, it was shown that metal complexes of calix[6]arenes bearing three aza-coordinating arms at the small rim provide excellent structural models of the poly-imidazole sites found in the active site of many metallo-enzymes. All these N-donor ligands were synthesized from the 1,3,5-tris-methoxy-p-tBu-calix[6]arene platform, which presents some limitations in terms of functionalization. Therefore, there is a need for the development of new calix[6]arene-based building-blocks selectively protected at the small rim. Herein we describe the regioselective one step synthesis of two calix[6]arenes decorated with triflate groups, i.e. X6H4Tf2 and X6H3Tf3, from the parent calix[6]arene X6H6. It is shown that the triflate groups can either act as protecting or deactivating groups, allowing the elaboration of sophisticated calixarene-based systems selectively functionalized at the large and/or at the small rim. In addition, X6H3Tf3 is functionalized on the A, B, and D rings and thus gives access to inherently chiral compounds, as demonstrated by the synthesis of a rare example of inherently chiral cavity-based metal complex. PMID:26751614

  8. Enantiomerically Pure [2.2]Paracyclophane-4-thiol: A Planar Chiral Sulfur-Based Building Block Readily Available by Resolution with an Amino Acid Chiral Auxiliary.

    Science.gov (United States)

    Vincent, Adrien; Deschamps, Damien; Martzel, Thomas; Lohier, Jean-François; Richards, Christopher J; Gaumont, Annie-Claude; Perrio, Stéphane

    2016-05-01

    Acyl chloride of N-phthaloyl-(S)-isoleucine is an efficient chiral auxiliary for the resolution of (±)-[2.2]paracyclophane-4-thiol. A preparative protocol, based on the conversion into diastereoisomeric thiolesters and separation by two fractional crystallizations and column chromatography, was developed. Deprotection with LiAlH4 allowed isolation of the individual thiol enantiomers in good yield (∼40%) and high enantiomeric purity (ee >93%). The absolute configurations were determined by comparison of the optical rotation value of the products with literature data and were confirmed by X-ray crystallography. PMID:27081870

  9. Photovoltaic building blocks

    DEFF Research Database (Denmark)

    Hanberg, Peter Jesper; Jørgensen, Anders Michael

    2014-01-01

    efficiency of about 15% for commercial Silicon solar cells there is still much to gain. DTU Danchip provides research facilities, equipment and expertise for the building blocks that comprises fabricating the efficient solar cell. In order to get more of the sun light into the device we provide thin film...... coating tools to depositand develop anti-reflection filters by means of sputtering or e-beam evaporation. To reduce the area taken up by metallic contacts transparent conducting oxides like Aluminium doped ZincOxide (AZO) and Indium Tin Oxide (ITO) can be deposited. We also support research...... and development of new 2D materials like graphene that is a promising candidate for cheap highly transparent contacts. Another way to increase efficiency is to structure the active layers indevice so that more light is absorbed. This can be done in one of our advanced dry etching machines either mask-less to form...

  10. Chirality in block copolymer melts: mesoscopic helicity from intersegment twist.

    Science.gov (United States)

    Zhao, Wei; Russell, Thomas P; Grason, Gregory M

    2013-02-01

    We study the effects of chirality at the segment scale on the thermodynamics of block copolymer melts using self-consistent field theory. In linear diblock melts where segments of one block prefer a twisted, or cholesteric, texture, we show that melt assembly is critically sensitive to the ratio of random coil size to the preferred pitch of cholesteric twist. For weakly chiral melts (large pitch), mesophases remain achiral, while below a critical value of pitch, two mesoscopically chiral phases are stable: an undulated lamellar phase and a phase of hexagonally ordered helices. We show that the nonlinear sensitivity of mesoscale chiral order to preferred pitch derives specifically from the geometric and thermodynamic coupling of the helical mesodomain shape to the twisted packing of chiral segments within the core, giving rise to a second-order cylinder-to-helix transition. PMID:23414052

  11. A Novel Tetrathiafulvalene Building Block

    DEFF Research Database (Denmark)

    Jeppesen, Jan Oskar; Takimiya, Kazuo; Thorup, Niels;

    1999-01-01

    Efficient synthesis of a novel tetrathiafulvalene building block. 2,3-bis(2-cyanoethylthio)-6,7-bis(thiocyanato-methyl)tetrathiafulv alene (7) useful for stepwise and asymmetrical bis-function-alization is reported.......Efficient synthesis of a novel tetrathiafulvalene building block. 2,3-bis(2-cyanoethylthio)-6,7-bis(thiocyanato-methyl)tetrathiafulv alene (7) useful for stepwise and asymmetrical bis-function-alization is reported....

  12. Chiral Building Blocks from (+)-(S)-7,7a-Dihydro-7a-methylindane-1,5(6H)-dione (Hajos-Parrish Diketone)

    OpenAIRE

    Thiemann, Thies; Noltemeyer, Michael; de Meijere, Armin

    1997-01-01

    Transformations of (+)-(S)-7,7a-dihydro-7a-methylindane-1,5(6H)-dione (5) to non-racemic bicyclo[3.3.0]octanediones 7, 14, and 16 arid non-racemic cyclopentanones like 22 are described. Reaction of the chiral diketo aldehyde 7 with phenylhydrazine yields the corresponding angular diazatriquinene derivative 19.

  13. Building Blocks for Personal Brands

    Science.gov (United States)

    Thomas, Lisa Carlucci

    2011-01-01

    In this article, the author discusses the four essential building blocks for personal brands: (1) name; (2) message; (3) channels; and (4) bridges. However, outstanding building materials can only take a person so far. The author emphasizes that vision, determination, faith, a sense of humor, and humility are also required.

  14. Nuclear building blocks

    International Nuclear Information System (INIS)

    The Candu 300 is the latest and smallest version of the CANDU pressurized heavy water reactor. It is designed for modular construction which, it is hoped, will shorten the construction schedule, take advantage of factory construction, improve quality (because central work locations and better conditions can be used) and provide flexibility of supply. The basic CANDU nuclear steam supply system is described generally and then the station and building layout, modular construction sequence (using a very heavy lift mobile crane), the process system modules and major nuclear equipment modules, are described in more detail. The advantages of modularisation are explained and plans for future modular reactors are mentioned. (U.K.)

  15. Building block filtering and mixing

    NARCIS (Netherlands)

    Kemenade, C.H.M. van

    1998-01-01

    A three-stage evolutionary method, the BBF-GA is introduced. BBF-GA is an acronym for building block filtering genetic algorithm. During the first stage, an ensemble of fast evolutionary algorithms is used to explore the search space. The best individual found by each of these evolutionary algorithm

  16. Building blocks of the universe

    International Nuclear Information System (INIS)

    COSI [Ohio's Center for Science and Industry], a well established science center, and SciTech, an emerging one, have formed a collaboration to develop a group of original interactive exhibits conveying to a wide audience the nature of the most fundamental features of the Universe, as revealed in the fascinating world of nuclear and particle science. These new exhibits will add to, and be supported by, the basic science exhibits which have already attracted large numbers of visitors to both centers. The new project, called Building Blocks of the Universe, aims to foster an appreciation of the way all features of the Universe arise from simple, basic rules and to lead the visitor from the perceived complexities of our surroundings, to the unperceived, but simpler features of the sub-nuclear world. It has already become apparent from individual prototypes that these simple but immensely far-reaching ideas can indeed be conveyed by hands-on exhibits. These exhibits will be linked and enhanced by an effective museum environment, using pictorial diagrams, accurate non-technical text, and artistic displays to create an atmosphere in which visitors can learn about phenomena beyond the range of direct perception. This paper describes the goals, content and organization of the exhibition. The authors also outline their experience with prototype exhibits, and thereby invite additional input into the development process

  17. Chirality in Block Copolymer Melts: Mesoscopic Helicity from Inter-Segment Twist

    OpenAIRE

    Zhao, Wei; Russell, Thomas P.; Grason, Gregory M.

    2012-01-01

    We study the effects of chirality at the segment scale on the thermodynamics of block copolymer melts using self consistent field theory. In linear diblock melts where segments of one block prefer a twisted, or cholesteric, texture, we show that melt assembly is critically sensitive to the ratio of random coil size to the preferred pitch of cholesteric twist. For weakly-chiral melts (large pitch), mesophases remain achiral, while below a critical value of pitch, two mesocopically chiral phase...

  18. Building blocks for embedded control systems

    NARCIS (Netherlands)

    Broenink, Jan F.; Hilderink, Gerald H.; Bakkers, André W.P.; Veen, Jean Pierre

    2000-01-01

    Developing embedded control systems using a building-block approach at all the parts enables an efficient and fast design process. Main reasons are the real plug-and-play capabilities of the blocks. Furthermore, due the simulatability of the designs, parts of the system can already be tested before

  19. Building Blocks of the Universe

    CERN Document Server

    Mehlhase, Sascha; The ATLAS collaboration

    2015-01-01

    This article presents possibilities to impart knowledge of and enthusiasm for particle physics to essentially all non-expert target audiences by the use of LEGO bricks and models of particle physics experiments built from these. Methods of using LEGO models, both as a passive exhibit and as part of interactive outreach events, are presented, along with a historical review of the “Build Your Own Particle Detector” programme and the corresponding idea of hosting competitions in building detector models in LEGO pieces as a perfect setting to grasp people’s attention, get them involved and ultimately convey knowledge in particle physics to them.

  20. Synthesis of New Chrial Building Blocks for Novel Peptide Nucleic Acids

    Institute of Scientific and Technical Information of China (English)

    WU,Jie; XU,Xiao-Yu; LIU,Ke-Liang

    2003-01-01

    N-Boc protected amino acids of analogues of peptide nucleic acid (PNA),which are a class of conformationally constrained building blocks based on 4-aminoproline backbone with chirality at 2-c and 4-c,have been synthesized.Those monomers can be used for the construction of novel peptide nucleic acid analogues.

  1. Building blocks for embedded control systems

    OpenAIRE

    Broenink, Jan F.; Hilderink, Gerald H.; Bakkers, André W.P.; Veen, Jean Pierre

    2000-01-01

    Developing embedded control systems using a building-block approach at all the parts enables an efficient and fast design process. Main reasons are the real plug-and-play capabilities of the blocks. Furthermore, due the simulatability of the designs, parts of the system can already be tested before the other parts are available. We have applied an object-oriented approach for modeling all three parts of embedded control systems: compositional programming for the embedded software parts; VHDL ...

  2. Building blocks for subleading helicity operators

    Science.gov (United States)

    Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.

    2016-05-01

    On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. We also describe an interesting angular momentum selection rule that restricts how these building blocks can be assembled.

  3. Building Blocks for Control System Software

    NARCIS (Netherlands)

    Broenink, J.F.; Hilderink, G.H.; Amerongen van, J.; Jonker, B.; Regtien, P.P.L.

    2001-01-01

    Software implementation of control laws for industrial systems seem straightforward, but is not. The computer code stemming from the control laws is mostly not more than 10 to 30% of the total. A building-block approach for embedded control system development is advocated to enable a fast and effici

  4. Anisotropy Spectra for Enantiomeric Differentiation of Biomolecular Building Blocks

    DEFF Research Database (Denmark)

    Evans, Amanda C.; Meinert, Cornelia; Bredehoft, Jan H.;

    2013-01-01

    All biopolymers are composed of homochiral building blocks, and both D-sugars and L-amino acids uniquely constitute life on Earth. These monomers were originally enantiomerically differentiated under prebiotic conditions. Particular progress has recently been made in support of the photochemical...... model for this differentiation: the interaction of circularly polarized light with racemic molecules is currently thought to have been the original source for life’s biological homochirality. The differential asymmetric photoreactivity of particular small molecules can be characterized by both circular...... light. This chapter will: (1) present the theory and configuration of anisotropy spectroscopy; (2) explain experimentally recorded anisotropy spectra of selected chiral biomolecules such as amino acids; and (3) discuss the relevance of these spectra for the investigation of the origin of the molecular...

  5. Chiral Synthons in Pesticide Syntheses

    NARCIS (Netherlands)

    Feringa, Bernard

    1988-01-01

    The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the implicatio

  6. Essential Building Blocks of Human Nature

    CERN Document Server

    Frey, Ulrich J; Willführ, Kai P

    2011-01-01

    To understand why we humans are as we are, it is necessary to look at the essential building blocks that comprise our nature. The foundations of this structure are our evolutionary origins as primates and our social roots. Upon these rest features such as our emotions, language and aesthetic preferences, with our self-perceptions, self-deceptions and thirst for knowledge right at the top. The unifying force holding these blocks together is evolutionary theory. Evolution provides a deeper understanding of human nature and, in particular, of the common roots of these different perspectives. To build a reliable and coherent model of man, leading authors from fields as diverse as primatology, anthropology, neurobiology and philosophy have joined forces to present essays  each describing their own expert perspective. Together they provide a convincing and complete picture of our own human nature.

  7. Enantiopure cyclopentane building blocks from iridoid glucosides

    DEFF Research Database (Denmark)

    Rasmussen, Jon Holbech

    The main objective of this work has been to investigate the use of the plant metabolites iridoid glucosides as starting materials in the synthesis of versatile cyclopentanoid building blocks. With the aim of isolating the iridoid glucoside catalpol (5) several species of the genus Scutellaria, i.......e. S. albida, S. woronowic, S. subvelutina, S. lateriflora, S. altissima, were investigated. It was found that in the water-soluble part of an ethanolic extract, a cinnamic ester of catalpol, scutellarioside I (348), was extractable into EtOAc. A method was developed in which the preparation of a water...... achieved by chromatography. It was found that S. woronowic and S. subvelutina were the best sources of 348, while S. albida was a good source of 5. Catalpol (5) and scutellarioside I (348) were used as starting materials in the syntheses of cyclopentanoid building blocks. Through a short sequence...

  8. Building blocks for protein interaction devices

    OpenAIRE

    Grünberg, Raik; Ferrar, Tony S.; van der Sloot, Almer M.; Constante, Marco; Serrano, Luis

    2010-01-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein–protein or protein–peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part–based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors contro...

  9. Self Assembly of Complex Building Blocks

    Science.gov (United States)

    Stucke, David; Crespi, Vincent

    2004-03-01

    A genetic search algorithm for optimizing the packing density of self-assembled multicomponent crystals of nanoparticles applied to complex colloidal building blocks will be presented. The algorithm searches the complex multi-dimensional space to find preferred crystal structures where standard methods fail. Mixtures of colloidal molecules and the structures found to be preferred to phase separation for different species of coloidal molecule mixtures will be shown.

  10. Building blocks for correlated superconductors and magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; Batista, C. D.; Zhu, J.-X.; Thompson, J. D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  11. Building blocks for correlated superconductors and magnets

    International Nuclear Information System (INIS)

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis

  12. A building block for hardware belief networks.

    Science.gov (United States)

    Behin-Aein, Behtash; Diep, Vinh; Datta, Supriyo

    2016-01-01

    Belief networks represent a powerful approach to problems involving probabilistic inference, but much of the work in this area is software based utilizing standard deterministic hardware based on the transistor which provides the gain and directionality needed to interconnect billions of them into useful networks. This paper proposes a transistor like device that could provide an analogous building block for probabilistic networks. We present two proof-of-concept examples of belief networks, one reciprocal and one non-reciprocal, implemented using the proposed device which is simulated using experimentally benchmarked models. PMID:27443521

  13. Functional polymers as nanoscopic building blocks

    International Nuclear Information System (INIS)

    Polyphenylene dendrimers are introduced as polymeric building blocks--with a strictly monodisperse particle size distribution within the nanometer range--for the construction of nanostructured materials and devices. The possibility for the introduction of different functionalities in the core, the scaffold or the periphery of the dendrimers offer their use as interesting modules for photonic, electronic or bioactive structures and supramolecular functional assemblies. Thus, dendrimers complement the available set of nanoscopic building blocks made from metals, e.g., Au nanoclusters and semiconductors, e.g., luminescent quantum dots. In a first set of experiments, we describe the fabrication of multilayer architectures using dendrimers with chargeable groups at the surface. This way, the polyelectrolyte deposition technique can be applied for the construction of hybrid layered assemblies with a control of the internal supramolecular structure at the nanometer level. Surface plasmon field-enhanced fluorescence spectroscopy is used to monitor the luminescent properties of dendrimers with a phthalocyanine core integrated into such a multilayer assembly. AFM and SEM micrographs demonstrate the use of surface-functionalized dendrimers (exposing sulfur groups at the periphery) in combination with Au nanoparticles for the controlled assembly of hybrid aggregates as nanoscopic functional devices

  14. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    Directory of Open Access Journals (Sweden)

    Pradeep Mishra

    Full Text Available Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S-amide to (S-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH. IaaH is known to catalyse conversion of indole-3-acetamide (IAM to indole-3-acetic acid (IAA, which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To

  15. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    Science.gov (United States)

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of

  16. Molecular building blocks for magnetic spin chains

    International Nuclear Information System (INIS)

    The paramagnetic di(metalloethynyl)benzene ion [1,4-C6H4{CW(depe)2Cl}2]2+ was synthesized from diamagnetic 1,4-C6H4{CW(depe)2Cl}2 (depe 1,2-bis(diethylphosphino)ethane). Systematic measurements of magnetic susceptibility for both crystalline and powder-formed compounds indicate a predominant super-exchange coupling between the magnetic tungsten centres. We provide a quantitative description of the observed susceptibility using a decoupled Heisenberg dimer model, and find that all the complexes exhibit a robust antiferromagnetic coupling between spins, J∼38 K. We note their potential use as building blocks for one-dimensional spin chains-with or without disorder-and describe possible synthetic routes to these architectures

  17. Galactic Building Blocks Seen Swarming Around Andromeda

    Science.gov (United States)

    2004-02-01

    Green Bank, WV - A team of astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) has made the first conclusive detection of what appear to be the leftover building blocks of galaxy formation -- neutral hydrogen clouds -- swarming around the Andromeda Galaxy, the nearest large spiral galaxy to the Milky Way. This discovery may help scientists understand the structure and evolution of the Milky Way and all spiral galaxies. It also may help explain why certain young stars in mature galaxies are surprisingly bereft of the heavy elements that their contemporaries contain. Andromeda Galaxy This image depicts several long-sought galactic "building blocks" in orbit of the Andromeda Galaxy (M31). The newfound hydrogen clouds are depicted in a shade of orange (GBT), while gas that comprises the massive hydrogen disk of Andromeda is shown at high-resolution in blue (Westerbork Sythesis Radio Telescope). CREDIT: NRAO/AUI/NSF, WSRT (Click on Image for Larger Version) "Giant galaxies, like Andromeda and our own Milky Way, are thought to form through repeated mergers with smaller galaxies and through the accretion of vast numbers of even lower mass 'clouds' -- dark objects that lack stars and even are too small to call galaxies," said David A. Thilker of the Johns Hopkins University in Baltimore, Maryland. "Theoretical studies predict that this process of galactic growth continues today, but astronomers have been unable to detect the expected low mass 'building blocks' falling into nearby galaxies, until now." Thilker's research is published in the Astrophysical Journal Letters. Other contributors include: Robert Braun of the Netherlands Foundation for Research in Astronomy; Rene A.M. Walterbos of New Mexico State University; Edvige Corbelli of the Osservatorio Astrofisico di Arcetri in Italy; Felix J. Lockman and Ronald Maddalena of the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia; and Edward Murphy of the

  18. Microwave spectroscopy of biomolecular building blocks.

    Science.gov (United States)

    Alonso, José L; López, Juan C

    2015-01-01

    Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment. PMID:25721775

  19. SYNTHESIS AND CHARACTERIZATION OF NOVEL CHIRAL SMECTIC C(Sc*) PHASE SHISH-KEBAB TYPE LIQUID CRYSTALLINE BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Shi-jun Zheng; Zi-fa Li; Shu-yuan Zhang; Shao-kui Cao; Ming-sheng Tang; Qiu-jun Fen; Qi-feng Zhou

    1999-01-01

    A new series of chiral shish-kebab type liquid crystal block copolymers that form the smectic C(Sc*) phase was synthesized by solution polycondensation. The copolymers were characterized by GPC,DSC, TG, POM, X-ray diffraction and polarimeter. The copolymers 7 entered into liquid crystal phase when they were heated to their melting temperatures (Tm) and the copolymers 8 were in liquid crystal phase at room temperature with low viscosities. The smectic sanded texture or focal-conic texture were observed on POM.All the chiral block copolymers showed high optical activity. No racemization has happened. Temperaturevariable X-ray diffraction study together with POM and polarimetric analysis realized that they are chiral smectic C(Sc*) phase. Thus we offer in this report the first example of shish-kebab type liquid crystal block copolymers that form a chiral smectic C(Sc*) phase. The variation of melting and isotropization temperatures with molecular structure was also discussed.

  20. Customizable Visualizations with Formula-Linked Building Blocks

    DEFF Research Database (Denmark)

    Kuhail, Mohammad Amin; Lauesen, Søren

    . Visualization toolkits allow easier visualization creation in some cases, but customization and interaction are tedious. As an alternative, we developed uVis visualization tool that uses spreadsheet-like formulas to connect building blocks. uVis formulas can refer to building blocks and database tables. We...

  1. Countering Depression with the Five Building Blocks of Resilience.

    Science.gov (United States)

    Grotberg, Edith H.

    1999-01-01

    Provides strategies for reducing the risk of youth retreating into depression when faced with adversities in life, by helping them develop the building blocks of resilience (trust, autonomy, initiative, industry, identity). Reports that these building blocks have proven effective in fostering and strengthening resilience. (Author/JDM)

  2. Data Policy Construction Set - Building Blocks from Childhood Constructions

    Science.gov (United States)

    Fleischer, Dirk; Paul-Stueve, Thilo; Jobmann, Alexandra; Farrenkopf, Stefan

    2016-04-01

    A complete construction set of building blocks usually comes with instructions and these instruction include building stages. The products of these building stages usually build from very general parts become highly specialized building parts for very unique features of the whole construction model. This sounds very much like the construction or organization of an interdisciplinary research project, institution or association, doesn't it! The creation process of an overarching data policy for a project group or institution is exactly the combination of individual interests with the common goal of a collaborative data policy and can be compared with the building stages of a construction set of building blocks and the building instructions. Keeping this in mind we created the data policy construction set of textual building blocks. This construction set is subdivided into several building stages or parts each containing multiple building blocks as text blocks. By combining building blocks of all subdivisions it is supposed to create a cascading data policy document. Cascading from the top level as a construction set provider for all further down existing levels such as project, themes, work packages or Universities, faculties, institutes down to the working level of working groups. The working groups are picking from the remaining building blocks in the provided construction set the suitable blocks for its working procedures to create a very specific policy from the available construction set provided by the top level community. Nevertheless, if a working group realized that there are missing building blocks or worse that there are missing building parts, then they have the chance to add the missing pieces to the construction set of direct an future use. This cascading approach enables project or institution wide application of the encoded rules from the textual level on access to data storage infrastructure. This structured approach is flexible enough to allow for

  3. The 10 Building Blocks of High-Performing Primary Care

    OpenAIRE

    Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin

    2014-01-01

    Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements—engaged leadership, data-driven improvement, empanelment, and team-based care—that assist the implementation of the other 6 building blocks—patient-team partnership, population mana...

  4. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    Energy Technology Data Exchange (ETDEWEB)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  5. Optically controlled three-dimensional assembly of microfabricated building blocks

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Kelemen, Lorand; Palima, Darwin;

    2009-01-01

    and may also lead to the future realization of optically actuated micromachines. Fabricating morphologically complex microstructures and then optically manipulating these archetypal building blocks can also be used to construct reconfigurable microenvironments that can aid in understanding cellular...

  6. Electron density building block approach for metal organic frameworks

    International Nuclear Information System (INIS)

    A general introduction to the state of the art in modeling metal organic materials using transferable atomic multipoles is provided. The method is based on the building block partitioning of the electron density, which is illustrated with some examples of potential applications and with detailed discussions of the advantages and pitfalls. The interactions taking place between building blocks are summarized and are used to discuss the properties that can be calculated. (comment)

  7. Synthesis of Chiral Cyclopentenones.

    Science.gov (United States)

    Simeonov, Svilen P; Nunes, João P M; Guerra, Krassimira; Kurteva, Vanya B; Afonso, Carlos A M

    2016-05-25

    The cyclopentenone unit is a very powerful synthon for the synthesis of a variety of bioactive target molecules. This is due to the broad diversity of chemical modifications available for the enone structural motif. In particular, chiral cyclopentenones are important precursors in the asymmetric synthesis of target chiral molecules. This Review provides an overview of reported methods for enantioselective and asymmetric syntheses of cyclopentenones, including chemical and enzymatic resolution, asymmetric synthesis via Pauson-Khand reaction, Nazarov cyclization and organocatalyzed reactions, asymmetric functionalization of the existing cyclopentenone unit, and functionalization of chiral building blocks. PMID:27101336

  8. Designing a nanotube using naturally occurring protein building blocks.

    Directory of Open Access Journals (Sweden)

    Chung-Jung Tsai

    2006-04-01

    Full Text Available Here our goal is to carry out nanotube design using naturally occurring protein building blocks. Inspection of the protein structural database reveals the richness of the conformations of proteins, their parts, and their chemistry. Given target functional protein nanotube geometry, our strategy involves scanning a library of candidate building blocks, combinatorially assembling them into the shape and testing its stability. Since self-assembly takes place on time scales not affordable for computations, here we propose a strategy for the very first step in protein nanotube design: we map the candidate building blocks onto a planar sheet and wrap the sheet around a cylinder with the target dimensions. We provide examples of three nanotubes, two peptide and one protein, in atomistic model detail for which there are experimental data. The nanotube models can be used to verify a nanostructure observed by low-resolution experiments, and to study the mechanism of tube formation.

  9. Engineering Responsive Mobile Applications for Android from Reusable Building Blocks

    OpenAIRE

    Sagberg, Geir

    2011-01-01

    This report describes the continued design and development of an instant voice communication application for Android, with specific focus on creating a highly responsive, stable application that is intuitive to use and integrates well with the Android environment. Existing building blocks have been redesigned with cleaner layouts and smaller state spaces, and new reusable blocks have been added. Techniques and principles for optimizing an application for responsiveness will be presented, alon...

  10. Linked supramolecular building blocks for enhanced cluster formation

    DEFF Research Database (Denmark)

    McLellan, Ross; Palacios, Maria A.; Beavers, Christine M.;

    2015-01-01

    (Figure Presented). Methylene-bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the com...

  11. Building Blocks of the Milky Way's Accreted Spheroid

    CERN Document Server

    van Oirschot, Pim; Helmi, Amina; Nelemans, Gijs

    2016-01-01

    In the $\\Lambda$CDM model of structure formation, a stellar spheroid grows by the assembly of smaller galaxies, the so-called building blocks. Combining the Munich-Groningen semi-analytical model of galaxy formation with the high resolution Aquarius simulations of dark matter haloes, we study the assembly history of the stellar spheroids of six Milky Way-mass galaxies, focussing on building block properties such as mass, age and metallicity. These properties are compared to those of the surviving satellites in the same models. We find that the building blocks have higher star formation rates on average, and this is especially the case for the more massive objects. At high redshift these dominate in star formation over the satellites, whose star formation timescales are longer on average. These differences ought to result in a larger $\\alpha$-element enhancement from Type II supernovae in the building blocks (compared to the satellites) by the time Type Ia supernovae would start to enrich them in iron, explain...

  12. Strategies for Controlled Placement of Nanoscale Building Blocks

    Directory of Open Access Journals (Sweden)

    Koh SeongJin

    2007-01-01

    Full Text Available AbstractThe capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others.

  13. Analogue Behavioral Modeling of Switched-Current Building Block Circuits

    Institute of Scientific and Technical Information of China (English)

    ZENG Xuan; WANG Wei; SHI Jianlei; TANG Pushan; D.ZHOU

    2001-01-01

    This paper proposes a behavioral modeling technique for the second-generation switched-current building block circuits. The proposed models are capable of capturing the non-ideal behavior of switched-current circuits, which includes the charge injection effects and device mismatch effects. As a result, system performance degradations due to the building block imperfections can be detected at the early design stage by fast behavioral simulations. To evaluate the accuracy of the proposed models, we developed a time-domain behavioral simulator. Experimental results have shown that compared with SPICE, the behavioral modeling error is less than 2.15%, while behavioral simulation speed up is 4 orders in time-domain.

  14. Carbon Nanotubes:from Nanoscale Building Blocks to Macrostructures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Carbon nanotubes (CNTs) have fascinating properties.In order to use these novel one-dimensional structures for applications such as in nano-electronic,nano-mechanical and electrochemical energy storage device and as structural elements in various composites,the structure of nanotubes needs to be tailored and various architectures and macroscale assembles have to be configured using nanotube building blocks.Nanotube macrostructures are macroscopically organized groups of CNTs,which are expecte...

  15. Preparing a Safety Analysis Report using the building block approach

    International Nuclear Information System (INIS)

    The credibility of the applicant in a licensing proceeding is severely impacted by the quality of the license application, particularly the Safety Analysis Report. To ensure the highest possible credibility, the building block approach was devised to support the development of a quality Safety Analysis Report. The approach incorporates a comprehensive planning scheme that logically ties together all levels of the investigation and provides the direction necessary to prepare a superior Safety Analysis Report

  16. Topology Optimization of Building Blocks for Photonic Integrated Circuits

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    Photonic integrated circuits are likely candidates as high speed replacements for the standard electrical integrated circuits of today. However, in order to obtain a satisfactorily performance many design prob- lems that up until now have resulted in too high losses must be resolved. In this work...... we demonstrate how the method of topology optimization can be used to design a variety of high performance building blocks for the future circuits....

  17. Sandcrete Blocks and Quality Management in Nigeria Building Industry

    Directory of Open Access Journals (Sweden)

    M. N. Anosike

    2012-01-01

    Full Text Available Over 90% of physical infrastructures in Nigeria are being constructed using sandcrete blocks making it a very important material in building construction. It is widely used in Nigeria, Ghana, and other African countries as load bearing and non-load bearing walling units. For a long time in Nigeria, sandcrete blocks are manufactured in many parts of the country without any reference to suit local building requirements or good quality work. The Standard Organization of Nigeria (SON developed a reference document which prescribed the compressive strength and water absorption properties standard requirements for different kinds of sandcrete blocks. The objective of this research is to ensure that all block manufacturers meets a minimum specified standard. The study appraised this objective using field study, sampling and laboratory experimentation and results obtained revealed very low compliance with as low as 0.66N/mm2 compressive strength value and as much as 16.95% water absorption capacity. The study revealed that poor quality control, poor selection of constituent materials and inadequate curing period by the manufacturers contributed to the negative results obtained.

  18. Synthesis of Eight 1-Deoxynojirimycin Isomers from a Single Chiral Cyanohydrin

    NARCIS (Netherlands)

    Nieuwendijk, Adrianus M.C.H. van den; Berg, Richard J.B.H.N. van den; Ruben, Mark; Witte, Martin D.; Brussee, Johannes; Boot, Rolf G.; Marel, Gijsbert A. van der; Aerts, Johannes M.F.G.; Overkleeft, Herman S.

    2012-01-01

    Eight configurational 1-deoxynojirimycin isomers have been synthesized starting from a chiral cyanohydrin as the common precursor. The cyanohydrin chiral pool building block is easily accessible in large quantities by using almond hydroxynitrile lyase as the chiral catalyst in condensing hydrogen cy

  19. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    Science.gov (United States)

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-03-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.

  20. The scientific building blocks for business coaching: A literature review

    Directory of Open Access Journals (Sweden)

    Flip Schutte

    2015-03-01

    Full Text Available Orientation: Business coaching is a relatively new approach to leadership development. It is also slowly growing as an academic discipline with only a small number of active researchers and a dearth of published literature reviews.Research purpose: This article is an investigation into the current level of development of the body of knowledge related to business coaching by means of a systematic literature review.Motivation of the study: Previous literature reviews summarised the available published articles. In order to contribute to establishing business coaching as an independent academic discipline, the building blocks for science in the phenomenon under investigation have to be scientifically not only summarised, but also synthesised and explored to ground this new discipline as an academic field of research.Research design, approach and method: A methodological framework has been developed to analyse the information. The data were synthesised according to the following building blocks for science: concepts, definitions, typologies, models, theories and paradigms.Main findings: A total of 84 articles were accessed by the specified search strategy and 36 were analysed according to inclusive and exclusive criteria. Although coaching has not been sufficiently developed as an academic discipline, it is possible to develop a comprehensive definition of coaching, as well as to identify the main models and theories that apply to this field.Practical/managerial implications: This literature review has synthesised and summarised the available data in such a way that it will contribute to the conceptualisation and foundation of business coaching as an academic discipline.Contribution: The building blocks for business coaching as a relatively new and emerging science within the field of business leadership have been defined. This will contribute to the articulation of concepts within this discipline by future researchers and practitioners.

  1. Building Blocks Propagation in Quantum-Inspired Genetic Algorithm

    CERN Document Server

    Nowotniak, Robert

    2010-01-01

    This paper presents an analysis of building blocks propagation in Quantum-Inspired Genetic Algorithm, which belongs to a new class of metaheuristics drawing their inspiration from both biological evolution and unitary evolution of quantum systems. The expected number of quantum chromosomes matching a schema has been analyzed and a random variable corresponding to this issue has been introduced. The results have been compared with Simple Genetic Algorithm. Also, it has been presented how selected binary quantum chromosomes cover a domain of one-dimensional fitness function.

  2. Using Foursquare place data for estimating building block use

    OpenAIRE

    SPYRATOS SPYRIDON; STATHAKIS D; Lutz, Michael; TSINARAKI CHRYSI

    2015-01-01

    Information about the Land Use (LU) of built-up areas is required for the comprehensive planning and management of cities. However, due to the high cost of the LU surveys, LU data is out-dated or not available for many cities. Therefore, we propose the reuse of up-to-date and low-cost place data from social media applications for LU mapping purposes. As main case study, we used Foursquare place data for estimating non-residential Building Block Use (BBU) in the city of Amsterdam. Based on the...

  3. Optimal control for Rydberg quantum technology building blocks

    Science.gov (United States)

    Müller, Matthias M.; Pichler, Thomas; Montangero, Simone; Calarco, Tommaso

    2016-04-01

    We consider a platform for quantum technology based on Rydberg atoms in optical lattices where each atom encodes one qubit of information and external lasers can manipulate their state. We demonstrate how optimal control theory enables the functioning of two specific building blocks on this platform: We engineer an optimal protocol to perform a two-qubit phase gate and to transfer the information within the lattice among specific sites. These two elementary operations allow to design very general operations like storage of atoms and entanglement purification as, for example, needed for quantum repeaters.

  4. Fault-tolerant building-block computer study

    Science.gov (United States)

    Rennels, D. A.

    1978-01-01

    Ultra-reliable core computers are required for improving the reliability of complex military systems. Such computers can provide reliable fault diagnosis, failure circumvention, and, in some cases serve as an automated repairman for their host systems. A small set of building-block circuits which can be implemented as single very large integration devices, and which can be used with off-the-shelf microprocessors and memories to build self checking computer modules (SCCM) is described. Each SCCM is a microcomputer which is capable of detecting its own faults during normal operation and is described to communicate with other identical modules over one or more Mil Standard 1553A buses. Several SCCMs can be connected into a network with backup spares to provide fault-tolerant operation, i.e. automated recovery from faults. Alternative fault-tolerant SCCM configurations are discussed along with the cost and reliability associated with their implementation.

  5. Spectroscopy of semiconductor meta-device building blocks (Presentation Recording)

    Science.gov (United States)

    Butakov, Nikita A.; Schuller, Jon A.

    2015-09-01

    Inspired by the potential of designing highly efficient nanophotonic optical elements, numerous researchers are currently exploring the use of dielectric resonators in constructing meta-devices. A wide range of optical components have been demonstrated, including metasurfaces that act as two-dimensional lenses, gratings, and axicons. At the core of these devices is a dielectric building block, typically a Silicon nano-disk or nano-rod, that supports Mie-like leaky mode excitations with a geometrically tunable amplitude and phase response. Here we present a comprehensive experimental characterization of these building blocks. We elucidate their multipolar mode structure, and explain the dependence on the underlying substrate. We find that fundamentally new buried magnetic modes emerge in high-index substrates, and that Fabry-Perot effects in silicon-on-insulator platforms can be utilized to enhance or suppress specific modes. When individual resonators are arranged into arrays with sub-wavelength periodicities, inter-particle coupling leads to a shift in the resonant response. When the periodicities are on the same order as the operating wavelength, the localized resonances may couple with the global diffraction modes, leading to the possible formation of distinct high-quality-factor surface-lattice-resonant modes, similar to those encountered in plasmonic gratings. We conclude by exploring the behavior of resonators constructed out of active materials, such as polar materials that support phonon-polariton excitations, and phase-change materials with tunable dielectric constants.

  6. Building blocks toward contemporary trauma theory: Ferenczi 's paradigm shift.

    Science.gov (United States)

    Mészáros, Judit

    2010-12-01

    In laying down the building blocks of contemporary trauma theory, Ferenczi asserted that trauma is founded on real events and that it occurs in the interpersonal and intersubjective dynamics of object relations. He stressed the significance of the presence or lack of a trusted person in the post-traumatic situation. After the trauma, the loneliness and later the isolation of the victim represent a serious pathogenic source. In the traumatic situation, the victim and the persecutor/aggressor operate differing ego defense mechanisms. Ferenczi was the first to describe the ego defense mechanism of identification with the aggressor. Ferenczi pointed out the characteristic features of the role of analyst/therapist with which (s)he may assist the patient in working through the trauma, among them being the development of a therapeutic atmosphere based on trust, so that the traumatic experiences can be relived, without which effective therapeutic change cannot be achieved. For the analyst, countertransference, as part of authentic communication, is incorporated into the therapeutic process. These are the key building blocks that are laid down by Ferenczi in his writings and appear in later works on trauma theory. PMID:21116288

  7. PUS Services Software Building Block Automatic Generation for Space Missions

    Science.gov (United States)

    Candia, S.; Sgaramella, F.; Mele, G.

    2008-08-01

    The Packet Utilization Standard (PUS) has been specified by the European Committee for Space Standardization (ECSS) and issued as ECSS-E-70-41A to define the application-level interface between Ground Segments and Space Segments. The ECSS-E- 70-41A complements the ECSS-E-50 and the Consultative Committee for Space Data Systems (CCSDS) recommendations for packet telemetry and telecommand. The ECSS-E-70-41A characterizes the identified PUS Services from a functional point of view and the ECSS-E-70-31 standard specifies the rules for their mission-specific tailoring. The current on-board software design for a space mission implies the production of several PUS terminals, each providing a specific tailoring of the PUS services. The associated on-board software building blocks are developed independently, leading to very different design choices and implementations even when the mission tailoring requires very similar services (from the Ground operative perspective). In this scenario, the automatic production of the PUS services building blocks for a mission would be a way to optimize the overall mission economy and improve the robusteness and reliability of the on-board software and of the Ground-Space interactions. This paper presents the Space Software Italia (SSI) activities for the development of an integrated environment to support: the PUS services tailoring activity for a specific mission. the mission-specific PUS services configuration. the generation the UML model of the software building block implementing the mission-specific PUS services and the related source code, support documentation (software requirements, software architecture, test plans/procedures, operational manuals), and the TM/TC database. The paper deals with: (a) the project objectives, (b) the tailoring, configuration, and generation process, (c) the description of the environments supporting the process phases, (d) the characterization of the meta-model used for the generation, (e) the

  8. Microbial production of building block chemicals and polymers.

    Science.gov (United States)

    Lee, Jeong Wook; Kim, Hyun Uk; Choi, Sol; Yi, Jongho; Lee, Sang Yup

    2011-12-01

    Owing to our increasing concerns on the environment, climate change, and limited natural resources, there has recently been considerable effort exerted to produce chemicals and materials from renewable biomass. Polymers we use everyday can also be produced either by direct fermentation or by polymerization of monomers that are produced by fermentation. Recent advances in metabolic engineering combined with systems biology and synthetic biology are allowing us to more systematically develop superior strains and bioprocesses for the efficient production of polymers and monomers. Here, we review recent trends in microbial production of building block chemicals that can be subsequently used for the synthesis of polymers. Also, recent successful cases of direct one-step production of polymers are reviewed. General strategies for the production of natural and unnatural platform chemicals are described together with representative examples. PMID:21420291

  9. Network Motifs: Simple Building Blocks of Complex Networks

    Science.gov (United States)

    Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U.

    2002-10-01

    Complex networks are studied across many fields of science. To uncover their structural design principles, we defined ``network motifs,'' patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.

  10. Acicular building blocks in the corallites of Porites lutea

    International Nuclear Information System (INIS)

    A detailed study of the crystal building blocks of Porites Lutea corallites was performed using transmission electron microscope (TEM) and applying a preparation method that preserved the original microstructure of the skeleton. Bundled acicular aragonite crystals could be identified and were found to be of high structural quality. These tens of μm long needle shaped crystals were in general electron transparent - indicating a thickness well below 500 nm - and covered by an amorphous, possibly organic matrix. The growth of the orthorhombic crystal needles was found to proceed preferentially along directions with the and growth directions being inhibited. The width distribution of these needles shows a multimodal behaviour, which could indicate a multi-stage nucleation process throughout the skeleton formation.

  11. Enabling technologies and building blocks for large planetary orbiters

    Science.gov (United States)

    Poncy, J.; Roser, X.; Couzin, P.

    2013-09-01

    Thales Alenia Space reports how, beyond ExoMars, enabling technologies and their corresponding building blocks for large orbiters and mother ships will play a key-role in the exploration of our System. We first make a census of the targets, of the induced missions for the next decades and of the constraints they place on the physical and functional architecture of the main spacecraft. As a function of the maturity of the related technologies, and of the urgency of scientific and exploration needs, we then introduce the time dimension per target and mission type, as an input for establishing a future comprehensive road map. We conclude by recalling the most urgent developments.

  12. Building blocks for a polarimeter-on-a-chip

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Thomas R. [NASA/Goddard Space Flight Center, Code 553, Greenbelt, MD 20771 (United States)]. E-mail: Thomas.R.Stevenson@nasa.gov; Hsieh, W.-T. [NASA/Goddard Space Flight Center, Code 553, Greenbelt, MD 20771 (United States); Schneider, Gideon [NASA/Goddard Space Flight Center, Code 553, Greenbelt, MD 20771 (United States); Travers, Douglas [NASA/Goddard Space Flight Center, Code 553, Greenbelt, MD 20771 (United States); Cao, Nga [NASA/Goddard Space Flight Center, Code 553, Greenbelt, MD 20771 (United States); Wollack, Edward [NASA/Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Limon, Michele [NASA/Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Kogut, Alan [NASA/Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)

    2006-04-15

    For the 'Primordial Anisotropy Polarization Pathfinder Array (PAPPA)' balloon flight project, we have designed and made thin-film niobium microstrip circuits as building blocks for a 'polarimeter-on-a-chip' in which superconducting transmission lines are used to couple millimeter wave signals from planar antennas to superconducting transition edge sensor (TES) detectors. Our goal is to demonstrate technology for precision measurements of the polarization of the cosmic microwave background. To enable characterization and verification of our microstrip components, we have incorporated waveguide probes on each chip that can bring millimeter wave signals from a room temperature vector network analyzer to the superconducting circuits on the chip and back again for S-parameter measurements. We have designed a planar antenna and RF choke on the probes to efficiently couple radiation between waveguide and thin-film microstrip. To support the probe antennas in waveguides, we sculpted thin silicon cantilevers that extend from an edge of each silicon chip into a pair of waveguides within a specially designed split-block mount. This technique will allow us to make calibrated measurements at low temperatures of the velocity, impedance, and loss properties of our niobium transmission lines, the frequency response of microstrip filters, hybrid couplers, or terminations, and the performance of integrated detectors.

  13. Rice Husk Ash Sandcrete Block as Low Cost Building Material

    Directory of Open Access Journals (Sweden)

    S.P.Sangeetha,

    2016-06-01

    Full Text Available Concrete is a widely used construction material for various types of structures due to its structural stability and strength. The construction industry is today consuming more than 400 million tonnes of concrete every year .Most of the increase in cement demand will be met by the use of supplementary cementing materials, as each ton of Portland cement clinker production is associated with similar amount of CO2 emission, which is a major source of global warming. Partial replacement of ordinary Portland cement with mineral admixtures like fly ash, ground granulated blast furnace slag, silica fume, metakaolin, Rice husk Ash (RHA,etc with plasticizers eliminates these drawbacks. The use of rice husk modifies the physical qualities of fresh cement paste as well as microstructure of paste after hardening. By burning the rice husk under a uncontrolled temperature in the atmosphere, a highly reactive RHA was obtained and the ash was utilized as a supplementary cementing material. This paper presents the effects of using Rice Husk Ash (RHA as a partial cement replacement material in mortar mixes. This work is based on an experimental study of mortar made with replacement of Ordinary Portland Cement (OPC with 10%, 20% 30% & 40% RHA. The properties investigated were the compressive strength, setting time, consistency, workability and specific gravity. Finally, a cost analysis was also done to compare the efficiency of rice husk ash sandcrete blocks. From the test results it can be concluded that rice husk ash can be utilized in day today life of manufacturing building blocks which are more economical and more eco-friendly than the cement concrete blocks which are produced now-a-days.

  14. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks

    Science.gov (United States)

    Kim, Kwanoh; Xu, Xiaobin; Guo, Jianhe; Fan, D. L.

    2014-04-01

    The development of rotary nanomotors is crucial for advancing nanoelectromechanical system technology. In this work, we report design, assembly and rotation of ordered arrays of nanomotors. The nanomotors are bottom-up assembled from nanoscale building blocks with nanowires as rotors, patterned nanomagnets as bearings and quadrupole microelectrodes as stators. Arrays of nanomotors rotate with controlled angle, speed (over 18,000 r.p.m.), and chirality by electric fields. Using analytical modelling, we reveal the fundamental nanoscale electrical, mechanical and magnetic interactions in the nanomotor system, which excellently agrees with experimental results and provides critical understanding for designing metallic nanoelectromechanical systems. The nanomotors can be continuously rotated for 15 h over 240,000 cycles. They are applied for controlled biochemical release and demonstrate releasing rate of biochemicals on nanoparticles that can be precisely tuned by mechanical rotations. The innovations reported in this research, from concept, design and actuation to application, are relevant to nanoelectromechanical system, nanomedicine, microfluidics and lab-on-a-chip architectures.

  15. A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation

    International Nuclear Information System (INIS)

    Tissue engineering based on building blocks is an emerging method to fabricate 3D tissue constructs. This method requires depositing and assembling building blocks (cell-laden microgels) at high throughput. The current technologies (e.g., molding and photolithography) to fabricate microgels have throughput challenges and provide limited control over building block properties (e.g., cell density). The cell-encapsulating droplet generation technique has potential to address these challenges. In this study, we monitored individual building blocks for viability, proliferation and cell density. The results showed that (i) SMCs can be encapsulated in collagen droplets with high viability (>94.2 ± 3.2%) for four cases of initial number of cells per building block (i.e. 7 ± 2, 16 ± 2, 26 ± 3 and 37 ± 3 cells/building block). (ii) Encapsulated SMCs can proliferate in building blocks at rates that are consistent (1.49 ± 0.29) across all four cases, compared to that of the controls. (iii) By assembling these building blocks, we created an SMC patch (5 mm x 5 mm x 20 μm), which was cultured for 51 days forming a 3D tissue-like construct. The histology of the cultured patch was compared to that of a native rat bladder. These results indicate the potential of creating 3D tissue models at high throughput in vitro using building blocks.

  16. Theoretical and technological building blocks for an innovation accelerator

    Science.gov (United States)

    van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.

    2012-11-01

    Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate

  17. Distributed Computing Software Building-Blocks for Ubiquitous Computing Societies

    Science.gov (United States)

    Kim, K. H. (Kane

    The steady approach of advanced nations toward realization of ubiquitous computing societies has given birth to rapidly growing demands for new-generation distributed computing (DC) applications. Consequently, economic and reliable construction of new-generation DC applications is currently a major issue faced by the software technology research community. What is needed is a new-generation DC software engineering technology which is at least multiple times more effective in constructing new-generation DC applications than the currently practiced technologies are. In particular, this author believes that a new-generation building-block (BB), which is much more advanced than the current-generation DC object that is a small extension of the object model embedded in languages C++, Java, and C#, is needed. Such a BB should enable systematic and economic construction of DC applications that are capable of taking critical actions with 100-microsecond-level or even 10-microsecond-level timing accuracy, fault tolerance, and security enforcement while being easily expandable and taking advantage of all sorts of network connectivity. Some directions considered worth pursuing for finding such BBs are discussed.

  18. Polymeric architectures of bismuth citrate based on dimeric building blocks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Four bismuth complexes, (H2En)[Bi2(cit)2(H2O)4/3]·(H2O)x (1), (H2En)3[Bi2(cit)2Cl4]·(H2O)x (2), (HPy)2[Bi2(cit)2(H2O)8/5]·(H2O)x (3) and (H2En)[Bi2(cit)2](H2O)x (4) [cit = citrate4-; En = ethylenediamine; Py = pyridine] have been synthesized and crystallized. The crystal structures reveal that the basic building blocks in all of these complexes are bismuth citrate dimeric units which combine to form polymeric architectures. The embedded protonated ethylenediamine and pyridine moieties in the polymeric frameworks have been identified by X-ray crystallography and solid-state cross polarization/magic angle spinning (CP/MAS) 13C NMR. Based on the framework of complex 1, a structural model of a clinically used antiulcer drug, ranitidine bismuth citrate (RBC) was generated. The behavior of the protonated amine-bismuth citrate complexes in acidic aqueous solution has been studied by electrospray ionization-mass spectrometry (ESI-MS).

  19. Origami building blocks: Generic and special four-vertices

    Science.gov (United States)

    Waitukaitis, Scott; van Hecke, Martin

    2016-02-01

    Four rigid panels connected by hinges that meet at a point form a four-vertex, the fundamental building block of origami metamaterials. Most materials designed so far are based on the same four-vertex geometry, and little is known regarding how different geometries affect folding behavior. Here we systematically categorize and analyze the geometries and resulting folding motions of Euclidean four-vertices. Comparing the relative sizes of sector angles, we identify three types of generic vertices and two accompanying subtypes. We determine which folds can fully close and the possible mountain-valley assignments. Next, we consider what occurs when sector angles or sums thereof are set equal, which results in 16 special vertex types. One of these, flat-foldable vertices, has been studied extensively, but we show that a wide variety of qualitatively different folding motions exist for the other 15 special and 3 generic types. Our work establishes a straightforward set of rules for understanding the folding motion of both generic and special four-vertices and serves as a roadmap for designing origami metamaterials.

  20. Micro-Watt building blocks for biomedical RF tranceivers.

    Science.gov (United States)

    Taris, T; Kraimia, H; Begueret, J-B; Deval, Y

    2011-01-01

    The development of Wireless Body Area Network (WBAN) is a key point enabling the mobility health. Among the most critical constrains in WBAN implementation is the power consumption of wireless featuring nodes. This work focuses on the development of ultra low power radio building blocks dedicated to 2.4 GHz ISM band. A novel design approach based on device optimization is first presented. It is then applied to the implementation of a Low Noise Amplifier (LNA) and a mixer in a 0.13 μm CMOS technology. The LNA provides a 13.1 dB gain and a 5.3 dB NF for a 60 μW/0.4 V power consumption. The mixer achieves a conversion gain of 17.5 dB and a NF of 12 dB at 0 dBm LO power. It consumes 350 μW for a 0.8 V supply. PMID:22255670

  1. From Building Blocks to Architects Empowering Learners for Success

    Directory of Open Access Journals (Sweden)

    Reyes Juana Mahissa

    2002-08-01

    Full Text Available Although our ultimate goal is to enable our learners to become autonomous and efficient in their use of the foreign language, whether or not they have the opportunity to ever live and interact in a foreign language setting, our work as teachers must involve a conscious analysis of the different factors involved in this process, as well as the conscious effort to put all the intervening factors into action. Furthermore, it is our responsibility to develop the learners¿ thinking skills as they increase their competence in the target language and at the same time make them aware of their responsibility for their own processes and success by enhancing their autonomy and making them aware of the value of learning strategies. It is our task as teachers to be present on this journey and guide our learners towards becoming architects and masters of their own foreign language construct. In order for this journey to be a successful one, we must make sure we provide the learner with a correct supply of building blocks. In this paper we present an analysis of the main components comprised in teaching English as a foreign language, including a historical overview of methods, approaches, strategies, the concept of learner¿s autonomy, social and psychological factors, aiming at contributing to every teacher¿s reflection on his/her task in the school context.

  2. Rings and spirals in barred galaxies. I Building blocks

    CERN Document Server

    Athanassoula, E; Masdemont, J J

    2008-01-01

    In this paper we present building blocks which can explain the formation and properties both of spirals and of inner and outer rings in barred galaxies. We first briefly summarise the main results of the full theoretical description we have given elsewhere, presenting them in a more physical way, aimed to an understanding without the requirement of extended knowledge of dynamical systems or of orbital structure. We introduce in this manner the notion of manifolds, which can be thought of as tubes guiding the orbits. The dynamics of these manifolds can govern the properties of spirals and of inner and outer rings in barred galaxies. We find that the bar strength affects how unstable the L1 and L2 Lagrangian points are, the motion within the 5A5A5Amanifold tubes and the time necessary for particles in a manifold to make a complete turn around the galactic centre. We also show that the strength of the bar, or, to be more precise, of the non-axisymmetric forcing at and somewhat beyond the corotation region, deter...

  3. The Development of Spatial Skills through Interventions Involving Block Building Activities

    Science.gov (United States)

    Casey, Beth M.; Andrews, Nicole; Schindler, Holly; Kersh, Joanne E.; Samper, Alexandra; Copley, Juanita

    2008-01-01

    This study investigated the use of block-building interventions to develop spatial-reasoning skills in kindergartners. Two intervention conditions and a control condition were included to determine, first, whether the block building activities themselves benefited children's spatial skills, and secondly, whether a story context further improved…

  4. Synthesis of aromatic glycoconjugates. Building blocks for the construction of combinatorial glycopeptide libraries

    Directory of Open Access Journals (Sweden)

    Markus Nörrlinger

    2014-10-01

    Full Text Available New aromatic glycoconjugate building blocks based on the trifunctional 3-aminomethyl-5-aminobenzoic acid backbone and sugars linked to the backbone by a malonyl moiety were prepared via peptide coupling. The orthogonally protected glycoconjugates, bearing an acetyl-protected glycoside, were converted into their corresponding acids which are suitable building blocks for combinatorial glycopeptide synthesis.

  5. An Organolanthanide Building Block Approach to Single-Molecule Magnets.

    Science.gov (United States)

    Harriman, Katie L M; Murugesu, Muralee

    2016-06-21

    and experimental chemistry allows us to shed light on the mechanisms and electronic properties that govern the slow relaxation dynamics inherent to this unique set of SMMs, thus providing insight into the role by which both symmetry and crystal field effects contribute to the magnetic properties. As we look to the future success of such materials in practical devices, we must gain an understanding of how the 4f elements communicate magnetically, a subject upon which there is still limited knowledge. As such, we have described our work on coupling mononuclear metallocenes to generate new dinuclear SMMs. Through a building block approach, we have been able to gain access to new double,- triple- and quadruple-decker complexes that possess remarkable properties; exhibiting TB of 12 K and Ueff above 300 K. Our goal is to develop a fundamental platform from which to study 4f coupling, while maintaining and enhancing the strict axiality of the anisotropy of the 4f ions. This Account will present a successful strategy employed in the production of novel and high-performing SMMs, as well as a clear overview of the lessons learned throughout. PMID:27195740

  6. Development of a Deterministic Ethernet Building blocks for Space Applications

    Science.gov (United States)

    Fidi, C.; Jakovljevic, Mirko

    2015-09-01

    The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The deterministic Ethernet technology TTEthernet [1] diploid on the NASA Orion spacecraft has demonstrated the use of the TTEthernet technology for a safety critical human space flight application during the Exploration Flight Test 1 (EFT-1). The TTEthernet technology used within the NASA Orion program has been matured for the use within this mission but did not lead to a broader use in space applications or an international space standard. Therefore TTTech has developed a new version which allows to scale the technology for different applications not only the high end missions allowing to decrease the size of the building blocks leading to a reduction of size weight and power enabling the use in smaller applications. TTTech is currently developing a full space products offering for its TTEthernet technology to allow the use in different space applications not restricted to launchers and human spaceflight. A broad space market assessment and the current ESA TRP7594 lead to the development of a space grade TTEthernet controller ASIC based on the ESA qualified Atmel AT1C8RHA95 process [2]. In this paper we will describe our current TTEthernet controller development towards a space qualified network component allowing future spacecrafts to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer.

  7. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temperature for liquefaction (Wigner E. and Huntington H.B. On the possibility of a metallic modification of hydro- gen. J. Chem. Phys. , 1935, v.3, 764–770. At that time, solid metallic hydrogen was hypothesized to exist as a body centered cubic, although a more energetically accessible layered graphite-like lattice was also envisioned. Relative to solar emission, this struc- tural resemblance between graphite and layered metallic hydrogen should not be easily dismissed. In the laboratory, metallic hydrogen remains an elusive material. However, given the extensive observational evidence for a condensed Sun composed primarily of hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It is anticipated that solar liquid metallic hydrogen should possess at least some layered order. Since layered liquid metallic hydrogen would be essentially incompressible, its invocation as a solar constituent brings into question much of current stellar physics. The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its proper understanding brings together all the great forces which shaped modern physics. Although other proofs exist for a liquid photosphere, our focus remains solidly on the generation of this light.

  8. Building a Case for Blocks as Kindergarten Mathematics Learning Tools

    Science.gov (United States)

    Kinzer, Cathy; Gerhardt, Kacie; Coca, Nicole

    2016-01-01

    Kindergarteners need access to blocks as thinking tools to develop, model, test, and articulate their mathematical ideas. In the current educational landscape, resources such as blocks are being pushed to the side and being replaced by procedural worksheets and academic "seat time" in order to address standards. Mathematics research…

  9. Science Support: The Building Blocks of Active Data Curation

    Science.gov (United States)

    Guillory, A.

    2013-12-01

    While the scientific method is built on reproducibility and transparency, and results are published in peer reviewed literature, we have come to the digital age of very large datasets (now of the order of petabytes and soon exabytes) which cannot be published in the traditional way. To preserve reproducibility and transparency, active curation is necessary to keep and protect the information in the long term, and 'science support' activities provide the building blocks for active data curation. With the explosive growth of data in all fields in recent years, there is a pressing urge for data centres to now provide adequate services to ensure long-term preservation and digital curation of project data outputs, however complex those may be. Science support provides advice and support to science projects on data and information management, from file formats through to general data management awareness. Another purpose of science support is to raise awareness in the science community of data and metadata standards and best practice, engendering a culture where data outputs are seen as valued assets. At the heart of Science support is the Data Management Plan (DMP) which sets out a coherent approach to data issues pertaining to the data generating project. It provides an agreed record of the data management needs and issues within the project. The DMP is agreed upon with project investigators to ensure that a high quality documented data archive is created. It includes conditions of use and deposit to clearly express the ownership, responsibilities and rights associated with the data. Project specific needs are also identified for data processing, visualization tools and data sharing services. As part of the National Centre for Atmospheric Science (NCAS) and National Centre for Earth Observation (NCEO), the Centre for Environmental Data Archival (CEDA) fulfills this science support role of facilitating atmospheric and Earth observation data generating projects to ensure

  10. The covenant as fundamental building block of marriage

    Directory of Open Access Journals (Sweden)

    Amanda L. Du Plessis

    2012-05-01

    Full Text Available

    ENGLISH ABSTRACT:
    Marriage is an institution of God, a social institution, a multidimensional experience, as well as an intimate personal relationship between a man and a woman. In the Bible the marital relationship is used to describe the covenant relationship between God and human beings. The covenant relationship between God and human beings gives man a secure and safe space where he/she can grow to spiritual and emotional maturity in God, through Jesus Christ. When spouses understand and accept the covenant as a fundamental building block in their marriage, and live accordingly, it creates a profound union and intimacy. Marriage then becomes a safe haven in which spouses can grow to spiritual and emotional wholeness. The question this article explores is how the covenant as the pastoral point of departure may contribute to marriage pastorate. The empirical research has shown that marriage counselling is currently executed reactively, rather than pro-actively.

    AFRIKAANSE OPSOMMING:
    DIE VERBOND AS FUNDAMENTELE BOUSTEEN VIR DIE HUWELIK
    Die huwelik is ’n instelling van God, ’n sosiale instelling, multidimensionele ervaring, asook ’n intieme persoonlike verhouding tussen ’n man en ’n vrou. In die Bybel word die huweliksverhouding gebruik om die verbondsverhouding tussen God en die mens te beskryf. Die verbondsverhouding tussen God en die mens gee aan die mens sekuriteit en veilige ruimte waarbinne die mens tot volwassenheid in God deur Jesus kan groei. Wanneer huweliksgenote die aspekte van die verbond as fundamentele bousteen in hulle huwelik begryp en daarvolgens leef, ontstaan ’n diepe eenwording en intimiteit. Die huwelik word dan ’n veilige ruimte waarbinne beide huweliksgenote geestelik en emosioneel kan groei tot heelheid. Die vraag wat in hierdie artikel ondersoek word, is op watter manier die verbond as pastorale vertrekpunt kan bydra tot die huwelikspastoraat. Die empiriese

  11. Haloalkynes: a powerful and versatile building block in organic synthesis.

    Science.gov (United States)

    Wu, Wanqing; Jiang, Huanfeng

    2014-08-19

    Inspired by the need for green and sustainable chemistry, modern synthetic chemists have been seeking general and practical ways to construct complex molecules while maximizing atom economy and minimizing synthetic steps. Over the past few decades, considerable progress has been made to fulfill these goals by taking advantage of transition metal catalysis and chemical reagents with diverse and tunable reactivities. In recent years, haloalkynes have emerged as powerful and versatile building blocks in a variety of synthetic transformations, which can be generally conceived as a dual functionalized molecules, and different reaction intermediates, such as σ-acetylene-metal, π-acetylene-metal, and halovinylidene-metal complexes, can be achieved and undergo further transformations. Additionally, the halogen moieties can be retained during the reaction processes, which makes the subsequent structural modifications and tandem carbon-carbon or carbon-heteroatom bond formations possible. As a consequence, impressive effort has been devoted to this attractive area, and some elegant work has been done over the past several years. This Account highlights some of the recent progress on the development of efficient and practical synthetic methods involving haloalkyne reagents in our laboratory and in others around the world, which showcase the synthetic power of haloalkynes for rapid assembly of complex molecular structures. The focus is primarily on reaction development with haloalkynes, such as cross-coupling reactions, nucleophilic additions, and cycloaddition reactions. The designed approaches, as well as serendipitous observations, will be discussed with special emphasis placed on the mechanistic aspects and the synthetic utilities of the obtained products. These transformations can lead directly to heteroatom-containing products and introduce structural complexity rapidly, thus providing new strategies and quick access to a wide range of functionalized products including

  12. Radix-2α/4β Building Blocks for Efficient VLSI’s Higher Radices Butterflies Implementation

    Directory of Open Access Journals (Sweden)

    Marwan A. Jaber

    2014-01-01

    has been formulated as the combination of radix-2α/4β butterflies implemented in parallel. By doing so, the VLSI butterfly implementation for higher radices would be feasible since it maintains approximately the same complexity of the radix-2/4 butterfly which is obtained by block building of the radix-2/4 modules. The block building process is achieved by duplicating the block circuit diagram of the radix-2/4 module that is materialized by means of a feed-back network which will reuse the block circuit diagram of the radix-2/4 module.

  13. Dimeric Building Blocks for Solid-Phase Synthesis of α-Peptide-β-Peptoid Chimeras

    DEFF Research Database (Denmark)

    Seigan, Gitte Bonke; Vedel, Line; Matthias, Witt,;

    2008-01-01

    Recently, a novel type of antimicrobial and proteolytically stable peptidomimetic oligomers having an α-peptide-β-peptoid chimeric backbone was reported. The present paper describes efficient protocols for the preparation of a wide range of dimeric building blocks, displaying different types of...... ten different building blocks in good to excellent yields. Finally, the efficiency of SPS oligomerization of a representative dimer was demonstrated by preparing 10- to 16-residue homomers and by the assembly of four different building blocks to give a diversely functionalized octamer....

  14. The 48-base-long primordial building block of immunoglobulin light-chain variable regions is complementary to the primordial building block of heavy-chain variable regions.

    OpenAIRE

    Ohno, S; Matsunaga, T

    1982-01-01

    The ancestral gene for immunoglobulin light-chain variable regions (Ig VLs) of the kappa as well as the lambda class apparently arose from about 12 tandem repeats of the 48-base-long primordial building block sequence TCT-TGC-GCA-GTA-AGT-CCA-CTC-CAG-GTC-ATA-TCC-AGT-CAG-GCT-GCT-GAA. Even today, amino acid residues 67 to 82 of each Ig V kappa L are still specified by a direct descendant in toto of the above-noted primordial building block, whereas amino acid residues 14 to 25 are invariably spe...

  15. Mn-based nanostructured building blocks: Synthesis, characterization and applications

    Science.gov (United States)

    Beltran Huarac, Juan

    The quest for smaller functional elements of devices has stimulated increased interest in charge-transfer phenomena at the nanoscale. Mn-based nanostructured building blocks are particularly appealing given that the excited states of high-spin Mn2+ ions induce unusual d-d energy transfer processes, which is critical for better understanding the performance of electronic and spintronic devices. These nanostructures also exhibit unique properties superior to those of common Fe- and Co-based nanomaterials, including: excellent structural flexibility, enhanced electrochemical energy storage, effective ion-exchange dynamics, more comprehensive transport mechanisms, strong quantum yield, and they act as effective luminescent centers for more efficient visible light emitters. Moreover, Mn-based nanostructures (MBNs) are crucial for the design and assembly of inexpensive nanodevices in diluted magnetic semiconductors (DMS), optoelectronics, magneto-optics, and field-effect transistors, owing to the great abundance and low-cost of Mn. Nonetheless, the paucity of original methods and techniques to fabricate new multifunctional MBNs that fulfill industrial demands limits the sustainable development of innovative technology in materials sciences. In order to meet this critical need, in this thesis we develop and implement novel methods and techniques to fabricate zero- and one-dimensional highly-crystalline new-generation MBNs conducive to the generation of new technology, and provide alternative and feasible miniaturization strategies to control and devise at nanometric precision their size, shape, structure and composition. Herein, we also establish the experimental conditions to grow Mn-based nanowires (NWs), nanotubes (NTs), nanoribbons (NRs), nanosaws (NSs), nanoparticles (NPs) and nanocomposites (NCs) via chemical/physical deposition and co-precipitation chemical routes, and determine the pertinent arrangements to our experimental schemes in order to extend our bottom

  16. Polymorphic Ring-Shaped Molecular Clusters Made of Shape-Variable Building Blocks

    Directory of Open Access Journals (Sweden)

    Keitel Cervantes-Salguero

    2015-02-01

    Full Text Available Self-assembling molecular building blocks able to dynamically change their shapes, is a concept that would offer a route to reconfigurable systems. Although simulation studies predict novel properties useful for applications in diverse fields, such kinds of building blocks, have not been implemented thus far with molecules. Here, we report shape-variable building blocks fabricated by DNA self-assembly. Blocks are movable enough to undergo shape transitions along geometrical ranges. Blocks connect to each other and assemble into polymorphic ring-shaped clusters via the stacking of DNA blunt-ends. Reconfiguration of the polymorphic clusters is achieved by the surface diffusion on mica substrate in response to a monovalent salt concentration. This work could inspire novel reconfigurable self-assembling systems for applications in molecular robotics.

  17. Cosmic "Dig" Reveals Vestiges of the Milky Way's Building Blocks

    Science.gov (United States)

    2009-11-01

    Peering through the thick dust clouds of our galaxy's "bulge" (the myriads of stars surrounding its centre), and revealing an amazing amount of detail, a team of astronomers has unveiled an unusual mix of stars in the stellar grouping known as Terzan 5. Never observed anywhere in the bulge before, this peculiar "cocktail" of stars suggests that Terzan 5 is in fact one of the bulge's primordial building blocks, most likely the relic of a proto-galaxy that merged with the Milky Way during its very early days. "The history of the Milky Way is encoded in its oldest fragments, globular clusters and other systems of stars that have witnessed the entire evolution of our galaxy," says Francesco Ferraro from the University of Bologna, lead author of a paper appearing in this week's issue of the journal Nature. "Our study opens a new window on yet another piece of our galactic past." Like archaeologists, who dig through the dust piling up on top of the remains of past civilisations and unearth crucial pieces of the history of mankind, astronomers have been gazing through the thick layers of interstellar dust obscuring the bulge of the Milky Way and have unveiled an extraordinary cosmic relic. The target of the study is the star cluster Terzan 5. The new observations show that this object, unlike all but a few exceptional globular clusters, does not harbour stars which are all born at the same time - what astronomers call a "single population" of stars. Instead, the multitude of glowing stars in Terzan 5 formed in at least two different epochs, the earliest probably some 12 billion years ago and then again 6 billion years ago. "Only one globular cluster with such a complex history of star formation has been observed in the halo of the Milky Way: Omega Centauri," says team member Emanuele Dalessandro. "This is the first time we see this in the bulge." The galactic bulge is the most inaccessible region of our galaxy for astronomical observations: only infrared light can

  18. Solid-phase route to Fmoc-protected cationic amino acid building blocks

    DEFF Research Database (Denmark)

    Clausen, Jacob Dahlqvist; Linderoth, Lars; Nielsen, Hanne Mørck;

    2012-01-01

    Diamino acids are commonly found in bioactive compounds, yet only few are commercially available as building blocks for solid-phase peptide synthesis. In the present work a convenient, inexpensive route to multiple-charged amino acid building blocks with varying degree of hydrophobicity was...... developed. A versatile solid-phase protocol leading to selectively protected amino alcohol intermediates was followed by oxidation to yield the desired di- or polycationic amino acid building blocks in gram-scale amounts. The synthetic sequence comprises loading of (S)-1-(p-nosyl)aziridine-2-methanol onto a...... simple neutral amino acids as well as analogs displaying high bulkiness or polycationic side chains was prepared. Two building blocks were incorporated into peptide sequences using microwave-assisted solid-phase peptide synthesis confirming their general utility....

  19. Silicon-Carbide (SIC) Multichip Power Modules (MCPMS) For Power Building Block Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project seeks to prove the feasibility of developing high power density modular power electronic building blocks...

  20. Modeling Data Center Building Blocks for Energy-efficiency and Thermal Simulations

    OpenAIRE

    Vor Dem Berge, Micha; Da Costa, Georges; Jarus, Mateusz; Oleksiak, Ariel; Piatek, Wojciech; Volk, Eugen

    2013-01-01

    In this paper we present a concept and specification of Data Center Efficiency Building Blocks (DEBBs), which represent hardware components of a data center complemented by descriptions of their energy efficiency. Proposed building blocks contain hardware and thermodynamic models that can be applied to simulate a data center and to evaluate its energy efficiency. DEBBs are available in an open repository being built by the CoolEmAll project. In the paper we illustrate the concept by an exampl...

  1. Para-Functionalized NCN-Pincer Palladium and Platinum Complexes as Building Blocks in Organometallic Chemistry

    OpenAIRE

    Slagt, Martijn Quico

    2002-01-01

    A rapidly evolving field in chemistry is the application of organometallic and coordination complexes as building blocks or active components for the construction of new materials exhibiting specific catalytic, redox, optical or sensor activities. A central theme in the construction of these inorganic building blocks is the targeted functionalization of ligands, either prior to or, less conventionally, after the metallation step. Ligand functionalization enables the immobilization of the tran...

  2. A NEW STRATEGY FOR THE DESIGN OF LIQUID CRYSTALLINE POLYMERS WITH FLEXIBLE AND APOLAR BUILDING BLOCKS

    Institute of Scientific and Technical Information of China (English)

    K.C. Gupta; H.K. Abdulkadir; S. Chand

    2003-01-01

    The synthesis and characterization of a new series of liquid crystalline polymers, poly(dicycloalkyl vinylterephthalate)s, are reported. The basic building blocks of these polymers are not mesogenic by themselves. However,very stable mesophases can be generated by self-assembly of the polymer molecules. This approach suggests a novel design strategy of liquid crystalline polymers with flexible and apolar building blocks.

  3. Composition of clusters and building blocks in amylopectins from maize mutants deficient in starch synthase III.

    Science.gov (United States)

    Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik

    2013-12-18

    Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures. PMID:24229421

  4. Hyperbranched polyether polyols as building blocks for complex macromolecular architectures

    OpenAIRE

    Barriau, Emilie

    2005-01-01

    The present thesis deals with the development of new branched polymer architectures containing hyperbranched polyglycerol. Materials investigated include hyperbranched oligomers, hyperbranched polyglycerols containing functional initiator-cores at the focal point, well-defined linear-hyperbranched block copolymers and also negatively charged hyperbranched polyelectrolytes.rnHyperbranched oligoglycerols (DPn = 7 and 14) have been synthesized for the first time. The materials show narrow polydi...

  5. Building an organic block storage service at CERN with Ceph

    International Nuclear Information System (INIS)

    Emerging storage requirements, such as the need for block storage for both OpenStack VMs and file services like AFS and NFS, have motivated the development of a generic backend storage service for CERN IT. The goals for such a service include (a) vendor neutrality, (b) horizontal scalability with commodity hardware, (c) fault tolerance at the disk, host, and network levels, and (d) support for geo-replication. Ceph is an attractive option due to its native block device layer RBD which is built upon its scalable, reliable, and performant object storage system, RADOS. It can be considered an 'organic' storage solution because of its ability to balance and heal itself while living on an ever-changing set of heterogeneous disk servers. This work will present the outcome of a petabyte-scale test deployment of Ceph by CERN IT. We will first present the architecture and configuration of our cluster, including a summary of best practices learned from the community and discovered internally. Next the results of various functionality and performance tests will be shown: the cluster has been used as a backend block storage system for AFS and NFS servers as well as a large OpenStack cluster at CERN. Finally, we will discuss the next steps and future possibilities for Ceph at CERN.

  6. Thermal radiation role in conjugate heat transfer across a multiple-cavity building block

    International Nuclear Information System (INIS)

    Accurate calculation of the heat transfer rate across building blocks may lead to significant energy savings. Conjugate heat transfer analysis is carried out numerically to compute the heat transfer rate/R-value as the number/layout of air-filled cavities is changed. Conduction heat transfer in the block material and both natural convection and radiation in the cavity were considered. It is found that increasing the number of cavities keeping the block width unchanged decreases the heat flux significantly. Five cavities can fit the building block under investigation without compromising the strength. Furthermore, changing the surface emissivity can increase the R-value substantially so that no insulation would be needed to fill the spaces. Thermal radiation plays a considerable role in the heat transfer process of this application. Through this study, the heat transfer characteristics and the gains in the R-value were quantified for the basic blocks used in the local market. Furthermore, the gains in the R-value were calculated for different number of cavities, for different cavities layouts for the conjugate contribution of conduction, convection and/or radiation across the building block. Results are useful for designers and manufacturers of building blocks for better energy savings of end users.

  7. Trenches for building blocks of advanced planar components

    DEFF Research Database (Denmark)

    Haiyan, Ou

    2004-01-01

    Trenches are fundamental structures used to build advanced optical planar waveguide components. In this letter, the fabrication of trenches across silica-on-silicon waveguides using inductively coupled plasma etching is presented. These trenches were etched deep into the silicon substrate and their...

  8. Trenches for building blocks of advanced planar components

    OpenAIRE

    Haiyan, Ou

    2004-01-01

    Trenches are fundamental structures used to build advanced optical planar waveguide components. In this letter, the fabrication of trenches across silica-on-silicon waveguides using inductively coupled plasma etching is presented. These trenches were etched deep into the silicon substrate and their widths were varied between 24 and 100>tex/textex/tex

  9. Career Planning as a Building Block for Personal Excellence

    OpenAIRE

    Mikačić Marija Turnšek; Ovsenik Marija

    2013-01-01

    The narrow field of research here is the development of a model for the building of personal excellence using a career plan that is empirically tested and confirmed, both qualitatively and quantitatively. The purpose of this study relates to the writing of a career plan, for the determination of the factors that influence the feeling of personal excellence of participants in career planning education, in relation to other participants who are not. The qualitative analysis consists of basic ex...

  10. The new district energy : building blocks for sustainable community development

    International Nuclear Information System (INIS)

    The price of energy is expected to rise as world demand for fossil fuels increases and energy supplies become harder to access. Governments and businesses are interested in the role of energy in the design, development and operation of buildings and whole communities. In addition to contributing to community economic development, district energy (DE) systems can assist communities in meeting their goals for sustainable growth and in managing the changing nature of risk in the generation and delivery of energy. This handbook was developed in order to encourage information sharing and provide ideas on how to advance district energy development in communities across Canada. The handbook identified those who could use DE and listed the benefits provided by DE. These included community, environmental, and business benefits. The handbook also offered suggestions for overcoming common challenges experienced by communities initiating a DE system and provided a checklist to help accelerate the uptake of DE systems in a community. These challenges included working with the community; using integrated design; building knowledge, know-how and technical skills; and partnering to improve project financing and reducing development risk. 50 refs., 8 tabs., 11 figs

  11. Experimental Study on Volume for Fly Ash of Building Block

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2013-04-01

    Full Text Available Fly ash is a waste substance from thermal power plants, steel mills, etc. That is found in abundance in the world. It has polluted the environment, wasting the cultivated land. This study introduces an experimental research on fly ash being reused effectively, the study introduces raw materials of fly ash brick, production process and product inspection, fly ash content could be amounted to 40%~75%. High doping fly ash bricks are manufactured, which selects wet fly ash from the power plants, adding aggregate with reasonable ratio and additives with reasonable dosage and do the experimental research on manufacture products for properties, production technology and selection about technology parameter of production equipment. Index of strength grade and freezing-thawing resisting etc and the high doping fly ash brick building which we are working on can achieve the national standard on building materials industry. Based on the tests, this achievement of research has a very wide practical prospect in using fly ash, industrial waste residue, environmental protection and reducing the cost of enterprises. The efficient reuse of fly ash from coal boiler and power plants has very vital significance of protecting the environment, benefiting descendants and developing of circular economy.

  12. Chain length dependent alkane/β-cyclodextrin nonamphiphilic supramolecular building blocks.

    Science.gov (United States)

    Zhou, Chengcheng; Huang, Jianbin; Yan, Yun

    2016-02-01

    In this work we report the chain length dependent behavior of the nonamphiphilic supramolecular building blocks based on the host-guest inclusion complexes of alkanes and β-cyclodextrins (β-CD). (1)H NMR, ESI-MS, and SAXS measurements verified that upon increasing the chain length of alkanes, the building blocks for vesicle formation changed from channel type 2alkane@2β-CD via channel type alkane@2β-CD to non-channel type 2alkane@2β-CD. FT-IR and TGA experiments indicated that hydrogen bonding is the extensive driving force for vesicle formation. It revealed that water molecules are involved in vesicle formation in the form of structural water. Upon changing the chain length, the average number of water molecules associated with per building block is about 16-21, depending on the chain length. PMID:26660592

  13. Toward a Cooperative View of MNC-Host Government Relations: Building Blocks and Performance Implications

    OpenAIRE

    Yadong Luo

    2001-01-01

    This study examines cooperation-based relations between MNCs and host governments. We theorize that resource commitment, personal relations, political accommodation, and organizational credibility are four building blocks for improving an MNC's cooperative relationships with governments. Analysis of 131 MNCs in China validates the importance of these blocks in shaping MNC–government relations and the importance of these relations in shaping the performance of MNC subsidiaries.© 2001 JIBS. Jou...

  14. Carbohydrate Green Chemistry: C-Glycoside Ketones as Potential Chiral Building Blocks

    Science.gov (United States)

    "Green chemistry" methods to produce new chemicals from renewable agricultural feedstocks will decrease our dependence on imported petroleum feedstocks and lower the environmental impact of consumer products. Our current research focuses on development of new carbohydrate-based derivatives, "locked...

  15. Molecular Building Blocks for Nanotechnology From Diamondoids to Nanoscale Materials and Applications

    CERN Document Server

    Mansoori, G. Ali; Assoufid, Lahsen; Zhang, Guoping

    2007-01-01

    This book is a result of the research and educational activities of a group of outstanding scientists worldwide who have authored the chapters of this book dealing with the behavior of nanoscale building blocks. It contains a variety of subjects covering computational, dry and wet nanotechnology. The state-of-the-art subject matters presented here provide the reader with the latest developments on ongoing nanoscience and nanotechnology research from the bottom-up approach, which starts with with atoms and molecules as molecular building blocks.

  16. A mixed molecular building block strategy for the design of nested polyhedron metal-organic frameworks.

    Science.gov (United States)

    Tian, Dan; Chen, Qiang; Li, Yue; Zhang, Ying-Hui; Chang, Ze; Bu, Xian-He

    2014-01-13

    A mixed molecular building block (MBB) strategy for the synthesis of double-walled cage-based porous metal-organic frameworks (MOFs) is presented. By means of this method, two isostructural porous MOFs built from unprecedented double-walled metal-organic octahedron were obtained by introducing two size-matching C3 -symmetric molecular building blocks with different rigidities. With their unique framework structures, these MOFs provide, to the best of our knowledge, the first examples of double-walled octahedron-based MOFs. PMID:24282117

  17. Quarks, atoms, molecules. On the hunt for the smallest building blocks of the world

    International Nuclear Information System (INIS)

    What exactly are molecules, atoms, quarks - the enigmating smallest building blocks of all life? By this book even hardcore physics and chemistry muffles become experts. The reknown science journalist Gerhard Staguhn embarks on a thrilling quest to find out what holds our world together: The smallest building blocks of the universe, the tiny operations that are taking place in the invisible world of the microcosm. In 69 chapters he tells fascinatingly and easily to be understood from the properties of the atoms and why the quarks until today prefer to be not seen.

  18. Synthesis of skeletally diverse alkaloid-like molecules: exploitation of metathesis substrates assembled from triplets of building blocks

    OpenAIRE

    Maurya, Sushil K.; Mark Dow; Stuart Warriner; Adam Nelson

    2013-01-01

    A range of metathesis substrates was assembled from triplets of unsaturated building blocks. The approach involved the iterative attachment of a propagating and a terminating building block to a fluorous-tagged initiating building block. Metathesis cascade chemistry was used to “reprogram” the molecular scaffolds. Remarkably, in one case, a cyclopropanation reaction competed with the expected metathesis cascade process. Finally, it was demonstrated that the metathesis products could be deriva...

  19. Use of Pumice in Mortar and Rendering for Lightweight Building Blocks

    OpenAIRE

    İlter, Osman

    2010-01-01

    ABSTRACT: The usage of lightweight aggregates in concrete or mortar is increasing remarkably due to energy and safety reasons. The important factor for energy saving (heat insulation) in buildings is the used construction materials and their thermal properties. Pumice is an abundantly consumed, cheap and important industrial raw material for the lightweight aggregate that essentially used for making building blocks. The usage of porous lightweight aggregate is becoming common world wide as a...

  20. Media Peace Discourse: Constraints, Concepts and Building Blocks

    Directory of Open Access Journals (Sweden)

    Dov Shinar

    2004-07-01

    Full Text Available Normative, professional, and academic premises steer the discussion of the importance and the absence of a peace discourse in the media, and of the need and possibility to invent one. Among the possible points of departure are that the media should be involved in the promotion of peace; that peace coverage is hindered by the absence of a peace discourse in the professional media repertoire; and that the creation, development, and marketing of a media peace discourse should be included in the current research agenda. The development of a peace-oriented media discourse can be assisted by three conceptual elements, namely, the existing strategies employed by the media to cover peace; the competition in the media among dominant and alternative frames, in which news-value is the measure of success; and the concept of “constitutive rhetoric” – the creation, change and legitimization of realities through texts, rhetorical constructs and the manipulation of symbols – as a discourse-building device. Research on the three major strategies used by the media in the coverage of peace – Framing Peace Coverage in War Discourse; Trivialization; and Ritualization – suggests that the latter fits this conceptual framework better than the others, and thus is more suitable for the development of a media peace discourse. Some findings and models of media research can be used for conceptual leverage by providing paradigmatic frameworks and variables. Good examples include the media events and the textual analysis genres, as they are particularly related to professional effects; narrative techniques; and performance styles; and concepts such as “master-frames” and “super-texts” – major motifs, composed of many smaller frames or sub-texts – to suggest the potential contents of a media peace discourse. Finally, it is proposed that research and development efforts of media peace coverage along these lines should include work on adapting the current

  1. Small, monogenetic volcanoes: building blocks of the upper oceanic crust

    Science.gov (United States)

    Yeo, Isobel A.; Achenbach, Kay L.; Searle, Roger C.; Le Bas, Tim P.

    2010-05-01

    the products of single eruptions. Cones of all heights, but particularly those over 70m, are prone to collapse soon after forming. A variety of mechanisms are examined and collapse triggers may include: a) flank over-steepening, b) building on unstable material, and c) cutting by fissuring. Collapse scarps show two strong alignments, one ridge parallel and one at 30° to the ridge trend; however as cones always collapse downslope, these alignments may be due to the slope angles produced as a result of cone emplacement rather than first order controls on collapses themselves. We estimate the minimum magmatic flux to the surface for this segment to be at least 64,000m3 yr -1, which is equivalent to producing one average volume cone every 3.5 years.

  2. Synthesis of N-protected Galactosamine Building Blocks from D-Tagatose via the Heyns Rearrangement

    DEFF Research Database (Denmark)

    Wrodnigg, Tanja M.; Lundt, Inge; Stütz, Arnold E.

    2006-01-01

    N-Acetyl-D-galactosamine (11), a very important naturally occurring building block of oligosaccharides, is easily accessible via the Heyns rearrangement of D-tagatose (3) with benzylamine. The short and efficient synthesis of various differently N-protected D-galactosamine derivatives is reported....

  3. Biorefineries for the production of top building block chemicals and their derivatives

    DEFF Research Database (Denmark)

    Choi, Sol; Song, Chan Woo; Shin, Jae Ho;

    2015-01-01

    Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 1...

  4. Extended structure design with simple molybdenum oxide building blocks and urea as a directing agent

    NARCIS (Netherlands)

    Veen, S.J.; Roy, S.; Filinchuk, Y.; Chernyshov, D.; Petukhov, A.V.; Versluijs-Helder, M.; Broersma, A.; Soulimani, F.; Visser, T.; Kegel, W.K.

    2008-01-01

    We report here a simple one-pot directed synthesis of an oxomolybdate urea composite in which elementary molybdenum oxide building blocks are linked together with the aid of urea. This type of directed material design resulted in large rod-like crystals of an inorganic-organic hybrid extended struct

  5. Synthesis of 4-Halogenated 3-Fluoro-6-methoxyquinolines: Key Building Blocks for the Synthesis of Antibiotics

    DEFF Research Database (Denmark)

    Flagstad, Thomas; Petersen, Mette Terp; Hinnerfeldt, Daniel Michael;

    2014-01-01

    A practical and scalable 4-step route is presented for the synthesis of 4-bromo-3-fluoro-6-methoxyoquinoline and 3-fluoro-4-iodo-6-methoxyoquinoline from readily available 2,4-dichloro-3-fluoroquinoline with an overall yield of 81-85%. Halogenated quinoline building blocks have found much use in ...

  6. Para-Functionalized NCN-Pincer Palladium and Platinum Complexes as Building Blocks in Organometallic Chemistry

    NARCIS (Netherlands)

    Slagt, Martijn Quico

    2002-01-01

    A rapidly evolving field in chemistry is the application of organometallic and coordination complexes as building blocks or active components for the construction of new materials exhibiting specific catalytic, redox, optical or sensor activities. A central theme in the construction of these inorgan

  7. Sequence-Defined Oligomers from Hydroxyproline Building Blocks for Parallel Synthesis Applications.

    Science.gov (United States)

    Kanasty, Rosemary L; Vegas, Arturo J; Ceo, Luke M; Maier, Martin; Charisse, Klaus; Nair, Jayaprakash K; Langer, Robert; Anderson, Daniel G

    2016-08-01

    The functionality of natural biopolymers has inspired significant effort to develop sequence-defined synthetic polymers for applications including molecular recognition, self-assembly, and catalysis. Conjugation of synthetic materials to biomacromolecules has played an increasingly important role in drug delivery and biomaterials. We developed a controlled synthesis of novel oligomers from hydroxyproline-based building blocks and conjugated these materials to siRNA. Hydroxyproline-based monomers enable the incorporation of broad structural diversity into defined polymer chains. Using a perfluorocarbon purification handle, we were able to purify diverse oligomers through a single solid-phase extraction method. The efficiency of synthesis was demonstrated by building 14 unique trimers and 4 hexamers from 6 diverse building blocks. We then adapted this method to the parallel synthesis of hundreds of materials in 96-well plates. This strategy provides a platform for the screening of libraries of modified biomolecules. PMID:27365192

  8. Structure of clusters and building blocks in amylopectin from African rice accessions.

    Science.gov (United States)

    Gayin, Joseph; Abdel-Aal, El-Sayed M; Marcone, Massimo; Manful, John; Bertoft, Eric

    2016-09-01

    Enzymatic hydrolysis in combination with gel-permeation and anion-exchange chromatography techniques were employed to characterise the composition of clusters and building blocks of amylopectin from two African rice (Oryza glaberrima) accessions-IRGC 103759 and TOG 12440. The samples were compared with one Asian rice (Oryza sativa) sample (cv WITA 4) and one O. sativa×O. glaberrima cross (NERICA 4). The average DP of clusters from the African rice accessions (ARAs) was marginally larger (DP=83) than in WITA 4 (DP=81). However, regarding average number of chains, clusters from the ARAs represented both the smallest and largest clusters. Overall, the result suggested that the structure of clusters in TOG 12440 was dense with short chains and high degree of branching, whereas the situation was the opposite in NERICA 4. IRGC 103759 and WITA 4 possessed clusters with intermediate characteristics. The commonest type of building blocks in all samples was group 2 (single branched dextrins) representing 40.3-49.4% of the blocks, while groups 3-6 were found in successively lower numbers. The average number of building blocks in the clusters was significantly larger in NERICA 4 (5.8) and WITA 4 (5.7) than in IRGC 103759 and TOG 12440 (5.1 and 5.3, respectively). PMID:27185123

  9. Synthesis of homo- and heteromultivalent carbohydrate-functionalized oligo(amidoamines using novel glyco-building blocks

    Directory of Open Access Journals (Sweden)

    Felix Wojcik

    2013-11-01

    Full Text Available We present the solid phase synthesis of carbohydrate-functionalized oligo(amidoamines with different functionalization patterns utilizing a novel alphabet of six differently glycosylated building blocks. Highly efficient in flow conjugation of thioglycosides to a double-bond presenting diethylentriamine precursor is the key step to prepare these building blocks suitable for fully automated solid-phase synthesis. Introduction of the sugar ligands via functionalized building blocks rather than postfunctionalization of the oligomeric backbone allows for the straightforward synthesis of multivalent glycoligands with full control over monomer sequence and functionalization pattern. We demonstrate the potential of this building-block approach by synthesizing oligomers with different numbers and spacing of carbohydrates and also show the feasibility of heteromultivalent glycosylation patterns by combining building blocks presenting different mono- and disaccharides.

  10. Efficient Risk Determination of Risk of Road Blocking by Means of MMS and Data of Buildings and Their Surrounding

    Science.gov (United States)

    Nose, Kazuhito; Hatake, Shuhei

    2016-06-01

    Massive earthquake named "Tonankai Massive earthquake" is predicted to occur in the near future and is feared to cause severe damage in Kinki District . "Hanshin-Awaji Massive Earthquake" in 1995 destroyed most of the buildings constructed before 1981 and not complying with the latest earthquake resistance standards. Collapsed buildings blocked roads, obstructed evacuation, rescue and firefighting operations and inflicted further damages.To alleviate the damages, it is important to predict the points where collapsed buildings are likely block the roads and to take precautions in advance. But big cities have an expanse of urban areas with densely-distributed buildings, and it requires time and cost to check each and every building whether or not it will block the road. In order to reduce blocked roads when a disaster strikes, we made a study and confirmed that the risk of road blocking can be determined easily by means of the latest technologies of survey and geographical information.

  11. An API to Wi-Fi Direct Using Reactive Building Blocks

    OpenAIRE

    Gabrielsen, Erlend Bjerke

    2012-01-01

    Implementing unfamiliar functionalities in smartphone applications can be a difficult and a tedious task. Owing to the fact that the API do not have a formal way of representing the sequence of events may be one reason. This thesis describes the development process of various Arctis building blocks based on Android's API of Wi-Fi Direct. The objective of these blocks was to simplify the implementation of Wi-Fi Direct by confining a predictable sequence of events.An Android application wa...

  12. Dendrimers and Dendrons as Versatile Building Blocks for the Fabrication of Functional Hydrogels

    Directory of Open Access Journals (Sweden)

    Sadik Kaga

    2016-04-01

    Full Text Available Hydrogels have emerged as a versatile class of polymeric materials with a wide range of applications in biomedical sciences. The judicious choice of hydrogel precursors allows one to introduce the necessary attributes to these materials that dictate their performance towards intended applications. Traditionally, hydrogels were fabricated using either polymerization of monomers or through crosslinking of polymers. In recent years, dendrimers and dendrons have been employed as well-defined building blocks in these materials. The multivalent and multifunctional nature of dendritic constructs offers advantages in either formulation or the physical and chemical properties of the obtained hydrogels. This review highlights various approaches utilized for the fabrication of hydrogels using well-defined dendrimers, dendrons and their polymeric conjugates. Examples from recent literature are chosen to illustrate the wide variety of hydrogels that have been designed using dendrimer- and dendron-based building blocks for applications, such as sensing, drug delivery and tissue engineering.

  13. Pyrrolic Amide: A New Hydrogen Bond Building Block for Self-assembly

    Institute of Scientific and Technical Information of China (English)

    YIN Zhen-Ming; LI Jian-Feng; HE Jia-Qi; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Molecular self-assembly has emerged as a powerful technology for the synthesis of nanostructured materials. In design of various molecular assemblies, hydrogen bonding is a preferably selected intra- or inter-molecular weak interaction in recent research by virtue of the directionality and specificity. The research for novel hydrogen bond building blocks that self-assembly into well defined structures is great important not only for gaining an understanding of the concepts of self-assembly but also for the design of new molecular materials. Pyrrolic amide moiety has one hydrogen bond acceptor (C =O) and two hydrogen bond donors (pyrrole NH and amide NH). By deliberately design, pyrrolic amide compounds would be new kinds hydrogen bond building blocks. So, pyrrolic amide compounds 1 ~ 6, which bear one, two or three pyrrolic amide moieties respectively, were designed and synthesized.

  14. Synthesis of bio-based building blocks from vegetable oils: a platform chemicals approach

    Directory of Open Access Journals (Sweden)

    Desroches Myriam

    2013-01-01

    Full Text Available This review reports the synthesis of various building blocks from vegetable oils in one or two-steps syntheses. Thiol-ene coupling allows to synthesize new biobased reactants with various function and functionality with reaction conditions in agreement with green chemistry principles: it does not use neither solvent nor initiator or need simple purification step, feasible at industrial scale. Esterification and amidification were also used to insert ester or amide groups in fatty chains in order to modifiy properties of thereof synthesized polymers. Building blocks synthesized have various functions and functionality: polyols, polyacids, polyamines and dicyclocarbonates from vegetable oils and from glycerine derivatives. They were used for the synthesis of biobased polyurethanes, polyhydroxyurethanes and epoxy resins.

  15. Building Blocks Of Innovation Within A State-Owned Enterprise (Part Two

    Directory of Open Access Journals (Sweden)

    Betsie van Zyl

    2005-11-01

    Full Text Available In this article (the second part of a two-part study the focus is on establishing a theoretical framework of state owned enterprise (SOE managers’ espoused theory of building blocks of innovation. A qualitative approach, namely Grounded Theory, supported by Theoretical Sampling, was applied in generating the primary data for the study from different management levels in the SOE. The managers’ espoused theory, based on empirical evidence, shows that innovation consisted of five important building blocks, namely contextual setting; strategic enablers; business enablers; foundational enablers; and human resources; each with its own categories and sub-categories. The study also identified barriers to innovation. An innovation diffusion framework, specifically for implementation in a government context, was proposed.

  16. Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks

    CERN Document Server

    Senani, Raj; Singh, V K; Sharma, R K

    2016-01-01

    This book serves as a single-source reference to sinusoidal oscillators and waveform generators, using classical as well as a variety of modern electronic circuit building blocks. It provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators and includes a catalogue of over 600 configurations of oscillators and waveform generators, describing their relevant design details and salient performance features/limitations. The authors discuss a number of interesting, open research problems and include a comprehensive collection of over 1500 references on oscillators and non-sinusoidal waveform generators/relaxation oscillators. Offers readers a single-source reference to everything connected to sinusoidal oscillators and waveform generators, using classical as well as modern electronic circuit building blocks; Provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators; Includes a catalog of over 600 configurations of oscillato...

  17. Plasmid vectors and molecular building blocks for the development of genetic manipulation tools for Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    León A Bouvier

    Full Text Available The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted.

  18. Building Blocks: Utilizing Component-Based Software Engineering in Developing Cross-Platform Mobile Applications

    OpenAIRE

    Oskar, Andersson

    2014-01-01

    Contemporary approaches to cross-platform mobile application development, such as hybrid apps from PhoneGap and generated native apps from Xamarin, show promise in reducing development time towards Android, iOS and other platforms. At the same time, studies show that there are various problems associated with these approaches, including suffering user experiences and codebases that are difficult to maintain and test properly. In this thesis, a novel prototype framework called Building Blocks ...

  19. The Synthesis and Application of Fmoc-Lys(5-Fam) Building Blocks

    OpenAIRE

    Tokmina-Roszyk, Michal; Tokmina-Roszyk, Dorota; Fields, Gregg B.

    2013-01-01

    Fluorescence resonance energy transfer (FRET) peptide substrates are often utilized for protease activity assays. This study has examined the preparation of FRET triple-helical peptide (THP) substrates using 5-carboxyfluorescein (5-Fam) as the fluorophore and 4,4-dimethylamino-azobenzene-4′-carboxylic acid (Dabcyl) as the quencher. The Nα-(9-fluorenylmethoxycarbonyl)-Nε-(5-carboxy-fluorescein)-L-lysine [Fmoc-Lys(5-Fam)] building block was synthesized utilizing two distinct synthetic routes. T...

  20. The synthesis of planar sp2 -bonded system from molecular building blocks

    Science.gov (United States)

    Zhang, Xin; Luo, Hong; Gu, Gong

    Biphenyl and pyrene molecules were deposited onto atomically flat Cu (100) surface as building blocks for the synthesis of planar, conjugated, sp2-bonded system. In situ STM observation confirmed the formation of highly-ordered lattice structure after annealing under UHV condition, as a result of the substrate-assisted dehydrogenation. The electronic properties of the system were examined by STS and will be presented. ONR N00014-15-1-2661.

  1. Prototypic implementations of the building block for component based open Hypermedia systems (BB/CB-OHSs)

    DEFF Research Database (Denmark)

    Mohamed, Omer I. Eldai

    2005-01-01

    In this paper we describe the prototypic implementations of the BuildingBlock (BB/CB-OHSs) that proposed to address some of the Component-based Open Hypermedia Systems (CB-OHSs) issues, including distribution and interoperability [4, 11, 12]. Four service implementations were described below. The....... These are the math service, navigational service, naming and location service and the storage service in addition to two communication protocols (TCP/IP and JAVA RMI)....

  2. Fluorinated building blocks for next-generation polymer electrolyte membrane fuel cells

    OpenAIRE

    Wadekar, M.N.

    2012-01-01

    The purpose of this thesis is to design, create and study basic building blocks for the construction of self-assembled nanostructured electrodes and membranes for PEMFC. The research described deals with the synthesis of polymerizable fluorosurfactant (1) and its non-polymerizable analogue (2) and the study of their self-assembly properties. Similarly, the (co)polymerization behavior of 1 and the polymer properties are described. The design of the polymerizable fluorosurfactant, 1 and the syn...

  3. Evolutionary Modelling in Economics : A Survey of Methods and Building Blocks

    OpenAIRE

    Safarzynska, Karolina; Jeroen C.J.M. van den Bergh

    2008-01-01

    In this paper we present an overview of methods and components of formal economic models employing evolutionary approaches. This compromises two levels: (1) techniques of evolutionary modelling, including multi-agent modelling, evolutionary algorithms and evolutionary game theory; (2) building blocks or components of formal models classified into core processes and features of evolutionary systems - diversity, innovation and selection - and additional elements, such as bounded rationality, di...

  4. Methods for estimating wake flow and effluent dispersion near simple block-like buildings

    International Nuclear Information System (INIS)

    This report is intended as an interim guide for those who routinely face air quality problems associated with near-building exhaust stack placement and height, and the resulting concentration patterns. Available data and methods for estimating wake flow and effluent dispersion near isolated block-like structures are consolidated. The near-building and wake flows are described, and quantitative estimates for frontal eddy size, height and extent of roof and wake cavities, and far wake behavior are provided. Concentration calculation methods for upwind, near-building, and downwind pollutant sources are given. For an upwind source, it is possible to estimate the required stack height, and to place upper limits on the likely near-building concentration. The influences of near-building source location and characteristics relative to the building geometry and orientation are considered. Methods to estimate effective stack height, upper limits for concentration due to flush roof vents, and the effect of changes in rooftop stack height are summarized. Current wake and wake cavity models are presented. Numerous graphs of important expressions have been prepared to facilitate computations and quick estimates of flow patterns and concentration levels for specific simple buildings. Detailed recommendations for additional work are given

  5. Reference Architecture Test-Bed for Avionics (RASTA): A Software Building Blocks Overview

    Science.gov (United States)

    Viana Sanchez, Aitor; Taylor, Chris

    2010-08-01

    This paper presents an overview of the Reference Architecture System Test-bed for Avionics (RASTA) being developed within the ESA Estec Data Systems Division. This activity aims to benefit from interface standardization to provide a hardware/software reference infrastructure into which incoming R&D activities can be integrated, thus providing a generic but standardized test and development environment rather than dedicated facilities for each activity. Rasta is composed of by both HW and SW building blocks constituting the main elements of a typical Data Handling System. This includes a core processor (LEON2), Telemetry and Telecommand links, digital interfaces, and mass memory. The range of digital serial interfaces includes CAN bus, MIL-STD-1553 and SpaceWire. The paper will focus on the Software aspects of RASTA and in particular the software building blocks provided to ease development activities and allow hardware independency. To support the take-up of RASTA by European Industry, all RASTA software developed internally by ESA is provided free under license. Significant outputs are already available and include: Basic SW and SW drivers (CAN/1553/SpW, TT&C), OS abstraction layer, CFDP flight implementation, highly portable and independent file system for space, ground segment telecommand/telemetry router. In the future, additional SW building blocks are planned (e.g. ECSS CAN library). The present focus of RASTA is related to a prototype implementation of the SOIS services and protocols under development by the CCSDS (Consultative committee for Space Data Standards)

  6. Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks

    Science.gov (United States)

    Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2015-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.

  7. Technological characteristics of compressed earth blocks for its use as a building material

    Science.gov (United States)

    Gomez-Villalba, Luz Stella; Camacho-Perez, Nancy; Alvarez de Buergo, Monica; Becerra-Becerra, Javier; Esmeralda Corredor-Pulido, Dery; Fort, Rafael

    2013-04-01

    We present here an innovative building technique, which uses ecological, inexpensive and environmentally friendly materials. These compressed earth blocks seem to be very good for building purposes and that is why we have characterized three types of compressed earth blocks (CEB, named by their color as yellow, grey and red) mineralogically by means of X ray diffraction XRD and scanning electron microscopy SEM (both blocks and raw materials), petrographically by polarizing optical light microscopy POLM, and SEM, and, mainly, petrophysically: their hydric, physical and physico-mechanical properties by means of determining their capillary water absorption, porosity (open or accessible to water, pore size distribution and micro/macroporosity), and densities, color and ultrasound velocity (together with anisotropy). The particularities of these analyzed materials show that some varieties are more durable than others, and that all of them can be used as building materials with some restrictions related to their appropriate placing in the structures and the exposure to water. Acknowledgements: This work is supported by the GEOMATERIALES (S2009/MAT-1629) and CONSOLIDER-TCP (CSD2007-0058) programmes. Thanks also to the UCM (Complutense University of Madrid) Research Group "Alteración y conservación de los materiales pétreos del patrimonio" / Alteration and conservation of heritage stone materials (ref. 921349).

  8. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    Science.gov (United States)

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-01

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device. PMID:26924759

  9. Enantiomeric Separation of 1-(Benzofuran-2-yl)alkylamines on Chiral Stationary Phases Based on Chiral Crown Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soohyun; Kim, Sang Jun; Hyun, Myung Ho [Pusan National Univ., Busan (Korea, Republic of)

    2012-10-15

    Optically active chiral amines are important as building blocks for pharmaceuticals and as scaffolds for chiral ligands and, consequently, many efforts have been devoted to the development of efficient methods for their preparation. For example, reduction of amine precursors with chiral catalysts, enzymatic kinetic resolution or dynamic kinetic resolution of racemic amines and the direct amination of ketones with transaminases have been developed as the efficient methods for the preparation of optically active chiral amines. During the process of developing or utilizing optically active chiral amines, the methods for the determination of their enantiomeric composition are essential. Among various methods, liquid chromatographic resolution of enantiomers on chiral stationary phases (CSPs) have been known to be one of the most accurate and economic means for the determination of the enantiomeric composition of optically active chiral compounds. Especially, CSPs based on chiral crown ethers have been successfully used for the resolution of racemic primary amines. For example, CSPs based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (CSP 1, Figure 1) or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 (CSP 2 and CSP 3, Figure 1) have been known to be quite effective for the resolution of cyclic and non-cyclic amines, various fluoroquinolone antibacterials containing a primary amino group, tocainide (antiarrhythmic agent) and its analogues, aryl-a-amino ketones and 3-amino-1,4-benzodiazepin-2-ones.

  10. Synthesis of skeletally diverse alkaloid-like molecules: exploitation of metathesis substrates assembled from triplets of building blocks

    Directory of Open Access Journals (Sweden)

    Sushil K. Maurya

    2013-04-01

    Full Text Available A range of metathesis substrates was assembled from triplets of unsaturated building blocks. The approach involved the iterative attachment of a propagating and a terminating building block to a fluorous-tagged initiating building block. Metathesis cascade chemistry was used to “reprogram” the molecular scaffolds. Remarkably, in one case, a cyclopropanation reaction competed with the expected metathesis cascade process. Finally, it was demonstrated that the metathesis products could be derivatised to yield the final products. At each stage, purification was facilitated by the presence of a fluorous-tagged protecting group.

  11. A C–H oxidation approach for streamlining synthesis of chiral polyoxygenated motifs

    OpenAIRE

    Covell, Dustin J.; White, M. Christina

    2013-01-01

    Chiral oxygenated molecules are pervasive in natural products and medicinal agents; however, their chemical syntheses often necessitate numerous, wasteful steps involving functional group and oxidation state manipulations. Herein a strategy for synthesizing a readily diversifiable class of chiral building blocks, allylic alcohols, through sequential asymmetric C—H activation/resolution is evaluated against the state-of-the-art. The C—H oxidation routes’ capacity to strategically introduce oxy...

  12. Constructing Self-Dual Chiral Polytopes

    OpenAIRE

    Cunningham, Gabe

    2011-01-01

    An abstract polytope is chiral if its automorphism group has two orbits on the flags, such that adjacent flags belong to distinct orbits. There are still few examples of chiral polytopes, and few constructions that can create chiral polytopes with specified properties. In this paper, we show how to build self-dual chiral polytopes using the mixing construction for polytopes.

  13. BLOCK-MODULE METHOD FOR DESIGNING RESIDENTIAL BUILDINGS OF RURAL AREA IN HAINAN PROVINCE

    Directory of Open Access Journals (Sweden)

    Fan Jinyong

    2009-01-01

    Full Text Available The most widely-spread type of a rural dwelling-house in the Hainan province presenting the most populated part of China is a «Siheyuan» country estate. Its lay-out structure contains an open internal courtyard and all the buildings are practically always located symmetrically relative to a central axis on the sides of the courtyard. The Siheyuan composition permits to divide it in elements which are convenient for a separate construction and for being connected in multi-element block-schemes.  In this connection the designing block-module method can be recommended as the most prospective one for improvement of the methodology for designing rural dwelling houses. Their large-scale construction on the valley territories of the Hainan province is planned by the leadership of the People’s Republic of China. 

  14. Processi di biorefining per l'estrazione di secondary chemical building blocks da sottoprotti dell'agro-industria

    OpenAIRE

    Zanichelli, Dario

    2008-01-01

    Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the...

  15. A Customizable Quantum-Dot Cellular Automata Building Block for the Synthesis of Classical and Reversible Circuits

    Science.gov (United States)

    Moustafa, Ahmed; Younes, Ahmed; Hassan, Yasser F.

    2015-01-01

    Quantum-dot cellular automata (QCA) are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs. PMID:26345412

  16. Hierarchical coassembly of DNA–triptycene hybrid molecular building blocks and zinc protoporphyrin IX

    Science.gov (United States)

    Kumari, Rina; Singh, Sumit; Monisha, Mohan; Bhowmick, Sourav; Roy, Anindya

    2016-01-01

    Summary Herein, we describe the successful construction of composite DNA nanostructures by the self-assembly of complementary symmetrical 2,6,14-triptycenetripropiolic acid (TPA)–DNA building blocks and zinc protoporphyrin IX (Zn PpIX). DNA–organic molecule scaffolds for the composite DNA nanostructure were constructed through covalent conjugation of TPA with 5′-C12-amine-terminated modified single strand DNA (ssDNA) and its complementary strand. The repeated covalent conjugation of TPA with DNA was confirmed by using denaturing polyacrylamide gel electrophoresis (PAGE), reverse-phase high-performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). The biologically relevant photosensitizer Zn PpIX was used to direct the hybridization-mediated self-assembly of DNA–TPA molecular building blocks as well as a model guest molecule within the DNA–TPA supramolecular self-assembly. The formation of fiber-like composite DNA nanostructures was observed. Native PAGE, circular dichroism (CD) and atomic force microscopy (AFM) have been utilized for analyzing the formation of DNA nanofibers after the coassembly. Computational methods were applied to discern the theoretical dimension of the DNA–TPA molecular building block of the nanofibers. A notable change in photocatalytic efficiency of Zn PpIX was observed when it was inside the TPA–DNA scaffold. The significant increase in ROS generation by Zn PpIX when trapped in this biocompatible DNA–TPA hybrid nanofiber may be an effective tool to explore photodynamic therapy (PDT) applications as well as photocatalytic reactions.

  17. Metal-Organic Frameworks: Building Block Design Strategies for the Synthesis of MOFs.

    KAUST Repository

    Luebke, Ryan

    2014-09-01

    A significant and ongoing challenge in materials chemistry and furthermore solid state chemistry is to design materials with the desired properties and characteristics. The field of Metal-Organic Frameworks (MOFs) offers several strategies to address this challenge and has proven fruitful at allowing some degree of control over the resultant materials synthesized. Several methodologies for synthesis of MOFs have been developed which rely on use of predetermined building blocks. The work presented herein is focused on the utilization of two of these design principles, namely the use of molecular building blocks (MBBs) and supermolecular building blocks (SBBs) to target MOF materials having desired connectivities (topologies). These design strategies also permit the introduction of specific chemical moieties, allowing for modification of the MOFs properties. This research is predominantly focused on two platforms (rht-MOFs and ftw-MOFs) which topologically speaking are edge transitive binodal nets; ftw being a (4,12)-connected net and rht being a (3,24)-connected net. These highly connected nets (at least one node having connectivity greater than eight) have been purposefully targeted to increase the predictability of structural outcome. A general trend in topology is that there is an inverse relationship between the connectivity of the node(s) and the number of topological outcomes. Therefore the key to this research (and to effective use of the SBB and MBB approaches) is identification of conditions which allow for reliable formation of the targeted MBBs and SBBs. In the case of the research presented herein: a 12-connected Group IV or Rare Earth based hexanuclear MBB and a 24-connected transition metal based SBB were successfully targeted and synthesized. These two synthetic platforms will be presented and used as examples of how these design methods have been (and can be further) utilized to modify existing materials or develop new materials for gas storage and

  18. Utilization of the Building-Block Approach in Structural Mechanics Research

    Science.gov (United States)

    Rouse, Marshall; Jegley, Dawn C.; McGowan, David M.; Bush, Harold G.; Waters, W. Allen

    2005-01-01

    In the last 20 years NASA has worked in collaboration with industry to develop enabling technologies needed to make aircraft safer and more affordable, extend their lifetime, improve their reliability, better understand their behavior, and reduce their weight. To support these efforts, research programs starting with ideas and culminating in full-scale structural testing were conducted at the NASA Langley Research Center. Each program contained development efforts that (a) started with selecting the material system and manufacturing approach; (b) moved on to experimentation and analysis of small samples to characterize the system and quantify behavior in the presence of defects like damage and imperfections; (c) progressed on to examining larger structures to examine buckling behavior, combined loadings, and built-up structures; and (d) finally moved to complicated subcomponents and full-scale components. Each step along the way was supported by detailed analysis, including tool development, to prove that the behavior of these structures was well-understood and predictable. This approach for developing technology became known as the "building-block" approach. In the Advanced Composites Technology Program and the High Speed Research Program the building-block approach was used to develop a true understanding of the response of the structures involved through experimentation and analysis. The philosophy that if the structural response couldn't be accurately predicted, it wasn't really understood, was critical to the progression of these programs. To this end, analytical techniques including closed-form and finite elements were employed and experimentation used to verify assumptions at each step along the way. This paper presents a discussion of the utilization of the building-block approach described previously in structural mechanics research and development programs at NASA Langley Research Center. Specific examples that illustrate the use of this approach are

  19. InGaN micro-LED-pillar as the building block for high brightness emitters

    KAUST Repository

    Shen, Chao

    2013-01-01

    In summary, we confirmed the improved electrical and optical characteristics, with reduced efficiency droop in InGaN μLED-pillars when these devices were scaled down in size. We demonstrated that strain relief contributed to further improvement in EQE characteristics in small InGaN μLED-pillars (D < 50 μm), apart from the current spreading effect. The μLED-pillar can be deployed as the building block for large effective-area, high brightness emitter. © 2013 IEEE.

  20. Dyck Paths with Forced and Forbidden Touch Points and q,t-Catalan building blocks

    CERN Document Server

    Haglund, James; Zabrocki, Mike

    2010-01-01

    We introduce a q,t-enumeration of Dyck paths which touch the main diagonal at specific points and conjecture that it describes the action of the Macdonald theory nabla operator applied to a Hall-Littlewood polynomial. Our conjecture refines several earlier conjectures concerning the space of diagonal harmonics including the "shuffle conjecture" (Duke J. Math. {126} (2005), pp. 195-232) for nabla e_n[X]. We bring to light that certain generalized Hall-Littlewood polynomials indexed by compositions are the building blocks for the algebraic combinatorial theory of q,t-Catalan sequences and we prove a number of identities involving these functions.

  1. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    Science.gov (United States)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  2. Alfven Wave Collisions, The Fundamental Building Block of Plasma Turbulence II: Numerical Solution

    CERN Document Server

    Nielson, Kevin D; Dorland, William

    2013-01-01

    This paper presents the numerical verification of an asymptotic analytical solution for the nonlinear interaction between counterpropagating Alfven waves, the fundamental building block of astrophysical plasma turbulence. The analytical solution, derived in the weak turbulence limit using the equations of incompressible MHD, is compared to a nonlinear gyrokinetic simulation of an Alfven wave collision. The agreement between these methods signifies that the incompressible solution satisfactorily describes the essential dynamics of the nonlinear energy transfer, even under the weakly collisional plasma conditions relevant to many astrophysical environments.

  3. Solving Job-Shop Scheduling Problems by Genetic Algorithms Based on Building Block Hypothesis

    Institute of Scientific and Technical Information of China (English)

    CHENG Rong; CHEN You-ping; LI Zhi-gang

    2006-01-01

    In this paper, we propose a new genetic algorithm for job-shop scheduling problems(JSP). The proposed method uses the operation-based representation, based on schema theorem and building block hypothesis, a new crossover is proposed: By selecting short, low order highly fit schemas to genetic operator, the crossover can exchange meaningful ordering information of parents effectively and can search the global optimization. Simulation results on MT benchmark problem coded by C + + show that our genetic operators are very powerful and suitable to job-shop scheduling problems and our method outperforms the previous GA-based approaches.

  4. New tricyanoiron(Ⅲ) building blocks for the construction of molecule-based magnets

    Institute of Scientific and Technical Information of China (English)

    LAU; Pui-Ha; WONG; Wing-Tak; LAU; Tai-Chu

    2010-01-01

    A series of tricyanoiron(Ⅲ) complexes with the general formula mer-[FeⅢ(5-Xsap)(CN)3]2-(X = H, Me, MeO, Cl or Br, sapH2 = N-salicylidene-o-aminophenol) have been synthesized. These complexes were characterized by IR, ESI-MS, UV/Vis, elemental analysis and magnetic measurements. The structures of (PPh4)2[FeⅢ(sap)(CN)3] and (PPh4)2[FeⅢ(5-Mesap)(CN)3] have been determined by X-ray crystallography. These low-spin d5 tricyanoiron(Ⅲ) complexes are potential building blocks for the construction of molecule-based magnets.

  5. Lurgi megamethanol technology - delivering the building blocks for the future fuel and monomer demand

    Energy Technology Data Exchange (ETDEWEB)

    Wurzel, T. [Lurgi AG, Frankfurt am Main (Germany)

    2007-06-15

    The article describes the central role of methanol within a changing environment with respect to feedstock availability as well as steadily growing fuel and monomer demand. The current large-scale production facilities are described with respect to the technological challenges in order to ensure the availability of sufficient methanol for downstream applications. Different downstream applications are described which clearly confirm that methanol is the dominant CI-building block due to its chemical flexibility. It is concluded that by means of the implementation of two MTP (Methanol to Propylene) projects in China the era of ''down-stream methanol'' has begun in the industry. (orig.)

  6. Enzymatic Ligation Creates Discrete Multi-Nanoparticle Building Blocks for Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Claridge, Shelley A.; Mastroianni, Alexander J.; Au, Yeung B.; Liang, Huiyang W.; Micheel, Christine M.; Frechet, Jean M.J.; Alivisatos, A. Paul

    2008-05-27

    Enzymatic ligation of discrete nanoparticle?DNA conjugates creates nanoparticle dimer and trimer structures in which the nanoparticles are linked by single-stranded DNA, rather than double-stranded DNA as in previous experiments. Ligation is verified by agarose gel and small-angle X-ray scattering. This capability is utilized in two ways: first to create a new class of multiparticle building blocks for nanoscale self-assembly; second to develop a system which can amplify a population of discrete nanoparticle assemblies.

  7. Chirality dependent spin polarization of carbon nanotubes

    Science.gov (United States)

    Wang, Jia; Jiang, Wanrun; Wang, Bo; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin

    2016-02-01

    The spin polarization of carbon nanotubes (CNTs) offers a tunable building block for spintronic devices and is also crucial for realizing carbon-based electronics. However, the effect of chiral CNTs is still unclear. In this paper, we use the density functional theory (DFT) method to investigate the spin polarization of a series of typical finite-length chiral CNTs (9, m). The results show that the spin density of chiral CNTs (9, m) decreases gradually with the increase in m and vanishes altogether when m is larger than or equal to 6. The armchair edge units on both ends of the (9, m) CNTs exhibit a clear inhibition of spin polarization, allowing control of the spin density of (9, m) CNTs by adjusting the number of armchair edge units on the tube end. Furthermore, analysis of the orbitals shows that the spin of the ground state for (9, m) CNTs mainly comes from the contributions of the frontier molecular orbitals (MOs), and the energy gap decreases gradually with the spin density for chiral CNTs. Our work further develops the study of the spin polarization of CNTs and provides a strategy for controlling the spin polarization of functional molecular devices through chiral vector adjustment.

  8. 324 and 325 Building Hot Cell Cleanout Program: Air lock cover block refurbishment

    International Nuclear Information System (INIS)

    The high-density concrete cover blocks shielding the pipe trench in the hot-cell air lock of the 324 Building Radiochemical Engineering Cells had accumulated fixed radioactivity ranging from 1100 to 22, 000 mrad/hr. A corresponding increase in the radiation exposure to personnel entering the air lock, together with ALARA concerns, led to the removal of the contaminated concrete surface with a hydraulic spaller and the emplacement of a stainless steel covering over a layer of grout. The resultant saving in radiation exposure is estimated to be 7200 mrad for personnel completing burial box runs for the 324 and 325 Building Hot Cell Cleanout Program. Radiation exposure to all staff members entering the air lock is now at least 50% lower. 3 refs., 22 figs., 1 tab

  9. Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks

    KAUST Repository

    Hur, Kahyun

    2011-10-17

    Metamaterials are engineered artificial materials that offer new functionalities such as super-resolution imaging and cloaking. Calculations of the photonic properties of three-dimensionally isotropic metamaterials with cubic double gyroid and alternating gyroid morphologies from block copolymer self-assembly are presented.

  10. Optimum Compressive Strength of Hardened Sandcrete Building Blocks with Steel Chips

    Directory of Open Access Journals (Sweden)

    Alohan Omoregie

    2013-02-01

    Full Text Available The recycling of steel chips into an environmentally friendly, responsive, and profitable commodity in the manufacturing and construction industries is a huge and difficult challenge. Several strategies designed for the management and processing of this waste in developed countries have been largely unsuccessful in developing countries mainly due to its capital-intensive nature. To this end, this investigation attempts to provide an alternative solution to the recycling of this material by maximizing its utility value in the building construction industry. This is to establish their influence on the compressive strength of sandcrete hollow blocks and solid cubes with the aim of specifying the range percent of steel chips for the sandcrete optimum compressive strength value. This is particularly important for developing countries in sub-Saharan Africa, and even Latin America where most sandcrete blocks exhibit compressive strengths far below standard requirements. Percentages of steel chips relative to the weight of cement were varied and blended with the sand in an attempt to improve the sand grading parameters. The steel chips variations were one, two, three, four, five, ten and fifteen percent respectively. It was confirmed that the grading parameters were improved and there were significant increases in the compressive strength of the blocks and cube samples. The greatest improvement was noticed at four percent steel chips and sand combination. Using the plotted profile, the margin of steel chips additions for the optimum compressive strength was also established. It is recommended that steel chip sandcrete blocks are suitable for both internal load bearing, and non-load bearing walls, in areas where they are not subjected to moisture ingress. However, for external walls, and in areas where they are liable to moisture attack after laying, the surfaces should be well rendered. Below ground level, the surfaces should be coated with a water

  11. Spontaneous chiral resolution directed by symmetry restriction and π-π interaction

    Science.gov (United States)

    Yu, Jin-Tao; Shi, Yan-Yan; Sun, Junliang; Lin, Jianhua; Huang, Zhi-Tang; Zheng, Qi-Yu

    2013-10-01

    In order to understand and rationally construct homochiral self-assembled structures from racemic molecules, two novel crystalline metal-organic frameworks with chiral cavities were developed. The homochirality of the layers in both MOFs was achieved by forming strong coordinate bonds between the C3-symmetric cyclotriveratrylene and Zn4O(CO2)6 cluster. By changing weak π-π interactions between organic building blocks, the achiral assembly of ZnCTV-1 was successfully transformed into a chiral assembly in ZnCTV-2. This study demonstrated a possible route for designing the synthesis of chiral MOF through weak interactions.

  12. determination of lead equivalent thickness to building blocks used in shielding of diagnostic x-ray rooms in Syria

    International Nuclear Information System (INIS)

    Lead equivalent thicknesses of various kinds of blocks (Hollow core, solid, filled, roof) with different thicknesses were determined. These blocks are widely used for building the diagnostic X-rya departments in Syria. Different applied voltages at X-ray tube (65, 85, 100, 125, 150 KVp) were examined. The results showed that the highest lead equivalent thicknesses for hollow core blocks were at 100 KVp. These equivalent thicknesses were 0.4372, 0.7008 and 0.928 mm for block thicknesses of 10, 15 and 20 cm, respectively. it was also found that, the lead equivalent thicknesses for filled, solid and concrete block were 3.5 to 4 times higher than that of the hollow core block for the same thicknesses and the applied KVp. Values obtained for roof blocks were similar to that of hollow core for the same conditions and geometry. (Author)

  13. High-order accurate multi-phase simulations: building blocks and whats tricky about them

    Science.gov (United States)

    Kummer, Florian

    2015-11-01

    We are going to present a high-order numerical method for multi-phase flow problems, which employs a sharp interface representation by a level-set and an extended discontinuous Galerkin (XDG) discretization for the flow properties. The shape of the XDG basis functions is dynamically adapted to the position of the fluid interface, so that the spatial approximation space can represent jumps in pressure and kinks in velocity accurately. By this approach, the `hp-convergence' property of the classical discontinuous Galerkin (DG) method can be preserved for the low-regularity, discontinuous solutions, such as those appearing in multi-phase flows. Within the past years, several building blocks of such a method were presented: this includes numerical integration on cut-cells, the spatial discretization by the XDG method, precise evaluation of curvature and level-set algorithms tailored to the special requirements of XDG-methods. The presentation covers a short review on these building-block and their integration into a full multi-phase solver. A special emphasis is put on the discussion of the several pitfalls one may expire in the formulation of such a solver. German Research Foundation.

  14. Expanding the structural diversity of self-assembling dendrons and supramolecular dendrimers via complex building blocks.

    Science.gov (United States)

    Percec, Virgil; Won, Betty C; Peterca, Mihai; Heiney, Paul A

    2007-09-12

    The design and synthesis of the first examples of AB4 and AB5 dendritic building blocks with complex architecture are reported. Structural and retrostructural analysis of supramolecular dendrimers self-assembled from hybrid dendrons based on different combinations of AB4 and AB5 building blocks with AB2 and AB3 benzyl ether dendrons demonstrated that none of these new hybrid dendrons exhibit the previously encountered conformations of libraries of benzyl ether dendrons. These hybrid dendrons enabled the discovery of some highly unusual tapered and conical dendrons generated by the intramolecular back-folding of their repeat units and of their apex. The new back-folded tapered dendrons have double thickness and self-assemble into pine-tree-like columns exhibiting a long-range 7/2 helical order. The back-folded conical dendrons self-assemble into spherical dendrimers. Non-back-folded truncated conical dendrons were also discovered. They self-assemble into spherical dendrimers with a less densely packed center. The discovery of dendrons displaying a novel crown-like conformation is also reported. Crown-like dendrons self-assemble into long-range 5/1 helical pyramidal columns. The long-range 7/2 and 5/1 helical structures were established by applying, for the first time, the helical diffraction theory to the analysis of X-ray patterns obtained from oriented fibers of supramolecular dendrimers. PMID:17705390

  15. Surfactant-free CZTS nanoparticles as building blocks for low-cost solar cell absorbers

    Science.gov (United States)

    Zaberca, O.; Oftinger, F.; Chane-Ching, J. Y.; Datas, L.; Lafond, A.; Puech, P.; Balocchi, A.; Lagarde, D.; Marie, X.

    2012-05-01

    A process route for the fabrication of solvent-redispersible, surfactant-free Cu2ZnSnS4 (CZTS) nanoparticles has been designed with the objective to have the benefit of a simple sulfide source which advantageously acts as (i) a complexing agent inhibiting crystallite growth, (ii) a surface additive providing redispersion in low ionic strength polar solvents and (iii) a transient ligand easily replaced by an carbon-free surface additive. This multifunctional use of the sulfide source has been achieved through a fine tuning of ((Cu2+)a(Zn2+)b(Sn4+)c(Tu)d(OH-)e)t+, Tu = thiourea) oligomers, leading after temperature polycondensation and S2- exchange to highly concentrated (c > 100 g l-1), stable, ethanolic CZTS dispersions. The good electronic properties and low-defect concentration of the sintered, crack-free CZTSe films resulting from these building blocks was shown by photoluminescence investigation, making these building blocks interesting for low-cost, high-performance CZTSe solar cells.

  16. Surfactant-free CZTS nanoparticles as building blocks for low-cost solar cell absorbers.

    Science.gov (United States)

    Zaberca, O; Oftinger, F; Chane-Ching, J Y; Datas, L; Lafond, A; Puech, P; Balocchi, A; Lagarde, D; Marie, X

    2012-05-11

    A process route for the fabrication of solvent-redispersible, surfactant-free Cu₂ZnSnS₄ (CZTS) nanoparticles has been designed with the objective to have the benefit of a simple sulfide source which advantageously acts as (i) a complexing agent inhibiting crystallite growth, (ii) a surface additive providing redispersion in low ionic strength polar solvents and (iii) a transient ligand easily replaced by an carbon-free surface additive. This multifunctional use of the sulfide source has been achieved through a fine tuning of ((Cu²⁺)(a)(Zn²⁺)(b)(Sn⁴⁺)(c)(Tu)(d)(OH⁻)(e))(t⁺), Tu = thiourea) oligomers, leading after temperature polycondensation and S²⁻ exchange to highly concentrated (c > 100 g l⁻¹), stable, ethanolic CZTS dispersions. The good electronic properties and low-defect concentration of the sintered, crack-free CZTSe films resulting from these building blocks was shown by photoluminescence investigation, making these building blocks interesting for low-cost, high-performance CZTSe solar cells. PMID:22513652

  17. Holographic optical tweezers: microassembling of shape-complementary 2PP building blocks

    Science.gov (United States)

    Ksouri, Sarah Isabelle; Mattern, Manuel; Köhler, Jannis; Aumann, Andreas; Zyla, Gordon; Ostendorf, Andreas

    2014-09-01

    Based on an ongoing trend in miniaturization and due to the increased complexity in MEMS-technology new methods of assembly need to be developed. Recent developments show that particularly optical forces are suitable to meet the requirements. The unique advantages of optical tweezers (OT) are attractive due to their contactless and precise manipulation forces. Spherical as well as non-spherical shaped pre-forms can already be assembled arbitrarily by using appropriate beam profiles generated by a spatial light modulator (SLM), resulting in a so called holographic optical tweezer (HOT) setup. For the fabrication of shape-complementary pre-forms, a two-photon-polymerization (2PP) process is implemented. The purpose of the process combination of 2PP and HOT is the development of an optical microprocessing platform for assembling arbitrary building blocks. Here, the optimization of the 2PP and HOT processes is described in order to allow the fabrication and 3D assembling of interlocking components. Results include the analysis of the dependence of low and high qualities of 2PP microstructures and their manufacturing accuracy for further HOT assembling processes. Besides, the applied detachable interlocking connections of the 2PP building blocks are visualized by an application example. In the long-term a full optical assembly method without applying any mechanical forces can thus be realized.

  18. Digitally programmable analog building blocks for the implementation of artificial neural networks.

    Science.gov (United States)

    Almeida, A P; Franca, J E

    1996-01-01

    This paper describes the design, experimental characterization and behavior modeling of a homogeneous set of building blocks necessary to construct in analog hardware feed-forward artificial neural networks. A novel synapse architecture is proposed using a quasi-passive D/A (digital-to-analog) converter followed by a four-quadrant analog-digital multiplier, its main advantages are 1) increased signal input range; 2) improved area/weight resolution ratio; 3) on-chip refreshing of the weight value; and 4) serial loading the weight bits. The neurons are built using MOS (metal-oxide semiconductor) transistors operating in the saturation region and exploiting the inherent quadratic characteristics. Experimental results obtained from a demonstration prototype chip realized in a 1.2 mum double-poly, double-metal CMOS (complimentary MOS) technology show good agreement with the design specifications. A simple application of the proposed building blocks is illustrated based on the mixed-signal simulation of the corresponding behavior models constructed from the experimental characterization data. PMID:18255602

  19. Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes

    Science.gov (United States)

    Hemraz, Usha D.; El-Bakkari, Mounir; Yamazaki, Takeshi; Cho, Jae-Young; Beingessner, Rachel L.; Fenniri, Hicham

    2014-07-01

    Rosette nanotubes are biologically inspired nanostructures, formed through the hierarchical organization of a hybrid DNA base analogue (G∧C), which features hydrogen-bonding arrays of guanine and cytosine. Several twin-G∧C motifs functionalized with chiral moieties, which undergo a self-assembly process under methanolic and aqueous conditions to produce helical rosette nanotubes (RNTs), were synthesized and characterized. The built-in molecular chirality in the twin-G∧C building blocks led to the supramolecular chirality exhibited by the RNTs, as evidenced by the CD activity. Depending on the motifs and environmental conditions, mirror-image supramolecular chirality due to absolute molecular chirality, solvent-induced and structure-dependent supramolecular chirality inversion, and pH-controlled chiroptical switching were observed.Rosette nanotubes are biologically inspired nanostructures, formed through the hierarchical organization of a hybrid DNA base analogue (G∧C), which features hydrogen-bonding arrays of guanine and cytosine. Several twin-G∧C motifs functionalized with chiral moieties, which undergo a self-assembly process under methanolic and aqueous conditions to produce helical rosette nanotubes (RNTs), were synthesized and characterized. The built-in molecular chirality in the twin-G∧C building blocks led to the supramolecular chirality exhibited by the RNTs, as evidenced by the CD activity. Depending on the motifs and environmental conditions, mirror-image supramolecular chirality due to absolute molecular chirality, solvent-induced and structure-dependent supramolecular chirality inversion, and pH-controlled chiroptical switching were observed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00340c

  20. Passive Vibration Isolation by Compliant Mechanism Using Topology Optimization with Building Blocks

    Directory of Open Access Journals (Sweden)

    V. Vijayan

    2014-10-01

    Full Text Available Compliant Mechanism has been designed for various types of application to transmit desired force and motion. In this study, we have explored an application of Compliant Mechanism for passive vibration isolation systems, for which compliant isolator is used to cancel undesired disturbance, which results in attenuated output amplitude. The Compliant Mechanism is equipped with isolator, which acts as a transmission of force, in order to control the amount of displacement transmitted from it. Compliant Mechanism also used as passive vibration isolator. Here, introducing compliance into the connection, the transmission of applied forces is reduced at some frequencies, at the expense of increasing transmission at other frequencies. The force transmissibility is numerically identical to the motion transmissibility. In order to find the flexible building blocks for force transmissibility, structural optimization approach is applied. The Structural optimization approach focuses on the determination of the topology, shape and size of the mechanism. Thus approach is used to establish the actuator model of the block and it is validated by commercial Finite Element software. A library of compliant elements is proposed in FlexIn. These blocks are in limited number and the basis is composed of 36 elements. The force transmitted to the rigid foundation through the isolator is reduced to avoid transmission of vibration to other machines. Thus the preliminary results of FEA from ANSYS demonstrate that the compliant mechanism can be effectively used to reduce the amount of force transmitted to the surface.

  1. Culture’s building blocks: investigating cultural evolution in a LEGO construction task

    Directory of Open Access Journals (Sweden)

    John Joseph Mcgraw

    2014-09-01

    Full Text Available One of the most essential but theoretically vexing issues regarding the notion of culture is that of cultural evolution and transmission: how a group’s accumulated solutions to invariant challenges develop and persevere over time. But at the moment, the notion of applying evolutionary theory to culture remains little more than a suggestive trope. Whereas the modern synthesis of evolutionary theory has provided an encompassing scientific framework for the selection and transmission of biological adaptations, a convincing theory of cultural evolution has yet to emerge. One of the greatest challenges for theorists is identifying the appropriate time scales and units of analysis in order to reduce the intractably large and complex phenomenon of culture into its component building blocks. In this paper, we present a model for scientifically investigating cultural processes by analyzing the ways people develop conventions in a series of LEGO construction tasks. The data revealed a surprising pattern in the selection of building bricks as well as features of car design across consecutive building sessions. Our findings support a novel methodology for studying the development and transmission of culture through the microcosm of interactive LEGO design and assembly.

  2. Cosmic queuing: galaxy satellites, building blocks and the hierarchical clustering paradigm

    CERN Document Server

    Lagos, Claudia del P; Cora, Sofia A

    2009-01-01

    We study the properties of building blocks (BBs, i.e. accreted satellites) and surviving satellites of present-day galaxies using the SAG semi-analytic model of galaxy formation in the context of a concordance Lambda Cold Dark Matter (LCDM) cosmology. We find higher metallicities for BBs, an effect produced by the same processes behind the build-up of the mass-metallicity relation, namely, the higher peak height in the density fluctuation field occupied by BBs and central galaxies which have collapsed into a single object earlier than surviving satellites. A detailed analysis shows that BBs start to form stars earlier, and build-up half of their final stellar mass (measured at the moment of disruption) up to four times faster than surviving satellites. We show that this effect is a consequence of the epoch in which this occurs; BBs assemble their stellar mass mostly during the peak of the merger activity in the LCDM cosmology, whereas surviving satellites keep increasing their stellar masses down to z=1. The ...

  3. Nitrogen Heterocycles as Building Blocks for New Metallo-supramolecular Architectures

    OpenAIRE

    Steel, Peter J.

    2004-01-01

    The syntheses of representative examples of five classes of new heterocyclic ligands are described. These include N,N'-chelating bis-heterocycles, binucleating ligands, cyclometallated compounds, chiral ligands and a family of polyheteroaryl-linked arenes.

  4. A new chiral uranyl phosphonate framework consisting of achiral building units generated from ionothermal reaction: structure and spectroscopy characterizations.

    Science.gov (United States)

    Zheng, Tao; Gao, Yang; Chen, Lanhua; Liu, Zhiyong; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-11-01

    The ionothermal reactions of uranyl nitrate and 1,3-pbpH4 (1,3-pbpH4 = 1,3-phenylenebis(phosphonic acid) ligand in ionic liquids of [C4mim][Dbp], [C4mpyr][Br], and [Etpy][Br], respectively, afforded three new uranyl phosphonates, namely [C4mim][(UO2)2(1,3-pbpH)(1,3-pbpH)·Hmim] (1), [UO2(1,3-pbpH2)H2O·mpr] (2), and [Etpy][UO2(1,3-pbpH2)F] (3). Compound 1 exhibits a rare example of a chiral uranyl phosphonate 3D framework structure built from achiral building units of tetragonal bipyramidal uranium polyhedra and 1,3-pbp ligands. The structure adopts a network with channels extending along the b axis, which are filled with C4mim(+) and protonated 1-methylimidazole. In sharp contrast, compounds 2 & 3 both show pillared topology composed of uranyl pentagonal bipyramid polyhedra and phosphonate ligands. The layers are neutral in compound 2 with N-methylpyrrole molecules in the interlayer space, while compound 3 adopts anionic layer, and the charge is compensated with N-ethyl-pyridinium cations between the layers. Although compounds 1, 2, and 3 were synthesized under identical conditions with sole variation of the ionic liquid species, the resulting structures show a rich diversity in the local coordination environment of uranyl ions, the protonation of the phosphonate ligand, the conformation of ionic liquid ions, and the overall arrangement of the structure. All compounds were characterized by absorption, temperature dependent fluorescence, as well as infrared and Raman spectroscopies. PMID:26419426

  5. Tuning the 1D-self-assembly of dicyano-functionalized helicene building-blocks

    International Nuclear Information System (INIS)

    Full text: Effective control of chirality in supramolecular systems is an important challenge towards the assembly of well-defined nano-architectures from the bottom-up. The chirality transfer from single molecules onto 3D- and 2D-crystals is well known, however chirality in case of the 1D-objects (wires) is largely unexplored. Here we present a study based on Scanning Tunnelling Microscopy (STM) and X-Ray Photoelectron Spectroscopy (XPS) measurements and Density Functional Theory (DFT) calculations to understand the formation of 1D conglomerates from enantiopure dicyano functionalized heptahelicene molecules of both chiralities at different, well defined single-crystal surfaces. We show that the main bonding motif can be switched by temperature, substrate or adatom stimuli. We discuss the key driving forces for the formation of well-ordered long-range arrays and the chirality transfer on the single molecule scale as well as onto the 1D conglomerate as a whole. In comparison of experiment and theory, we deepen the insight into the chirality transfer in competition between molecule-molecule and surface-molecule interactions. (author)

  6. Building blocks for future detectors: Silicon test masses and 1550 nm laser light

    International Nuclear Information System (INIS)

    Current interferometric gravitational wave detectors use the combination of quasi-monochromatic, continuous-wave laser light at 1064 nm and fused silica test masses at room temperature. Detectors of the third generation, such as the Einstein-Telescope, will involve a considerable sensitivity increase. The combination of 1550 nm laser radiation and crystalline silicon test masses at low temperatures might be important ingredients in order to achieve the sensitivity goal. Here we compare some properties of the fused silica and silicon test mass materials relevant for decreasing the thermal noise in future detectors as well as the recent technology achievements in the preparation of laser radiation at 1064 nm and 1550 nm relevant for decreasing the quantum noise. We conclude that silicon test masses and 1550 nm laser light have the potential to form the future building blocks of gravitational wave detection.

  7. Learning and optimization with cascaded VLSI neural network building-block chips

    Science.gov (United States)

    Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.

    1992-01-01

    To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.

  8. Culture’s building blocks: Investigating cultural evolution in a LEGO construction task

    DEFF Research Database (Denmark)

    McGraw, John J.; Wallot, Sebastian; Mitkidis, Panagiotis;

    2014-01-01

    One of the most essential but theoretically vexing issues regarding the notion of culture is that of cultural evolution and transmission: how a group’s accumulated solutions to invariant challenges develop and persevere over time. But at the moment, the notion of applying evolutionary theory to...... culture remains little more than a suggestive trope. Whereas the modern synthesis of evolutionary theory has provided an encompassing scientific framework for the selection and transmission of biological adaptations, a convincing theory of cultural evolution has yet to emerge. One of the greatest...... challenges for theorists is identifying the appropriate time scales and units of analysis in order to reduce the intractably large and complex phenomenon of “culture” into its component “building blocks.” In this paper, we present a model for scientifically investigating cultural processes by analyzing the...

  9. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang

    2015-03-24

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  10. Building blocks for future detectors: Silicon test masses and 1550 nm laser light

    CERN Document Server

    Schnabel, R; Brückner, F; Burmeister, O; Danzmann, K; Dück, J; Eberle, T; Friedrich, D; Lück, H; Mehmet, M; Nawrodt, R; Steinlechner, S; Willke, B

    2010-01-01

    Current interferometric gravitational wave detectors use the combination of quasi-monochromatic, continuous-wave laser light at 1064 nm and fused silica test masses at room temperature. Detectors of the third generation, such as the Einstein-Telescope, will involve a considerable sensitivity increase. The combination of 1550 nm laser radiation and crystalline silicon test masses at low temperatures might be important ingredients in order to achieve the sensitivity goal. Here we compare some properties of the fused silica and silicon test mass materials relevant for decreasing the thermal noise in future detectors as well as the recent technology achievements in the preparation of laser radiation at 1064 nm and 1550 nm relevant for decreasing the quantum noise. We conclude that silicon test masses and 1550 nm laser light have the potential to form the future building blocks of gravitational wave detection.

  11. Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wen-Yang; Cai, Rong; Pham, Tony; Forrest, Katherine A.; Hogan, Adam; Nugent, Patrick; Williams, Kia; Wojtas, Lukasz; Luebke, Ryan; Weseli; #324; ski, Lukasz J.; Zaworotko, Michael J.; Space, Brian; Chen, Yu-Sheng; Eddaoudi, Mohamed; Shi, Xiaodong; Ma, Shengqian (KAUST); (UC); (USF); (WVU)

    2015-08-21

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal–organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu₂(O₂C-)₄], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu₃O(N4–x(CH)xC-)₃] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1.

  12. Alfven Wave Collisions, The Fundamental Building Block of Plasma Turbulence IV: Laboratory Experiment

    CERN Document Server

    Drake, D J; Howes, G G; Kletzing, C A; Skiff, F; Carter, T A; Auerbach, D W

    2013-01-01

    Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfven waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfven waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfven wave generated nonlinearly by a collision between counterpropagating Alfven waves.

  13. Alfvén wave collisions, the fundamental building block of plasma turbulence. IV. Laboratory experiment

    International Nuclear Information System (INIS)

    Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfvén waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfvén waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfvén wave generated nonlinearly by a collision between counterpropagating Alfvén waves

  14. LEP : four building blocks of matter ... times three Conference MT17

    CERN Multimedia

    2001-01-01

    The four building blocks of everyday matter form a family composed of the up-quark, the down-quark, the electron and the electron-neutrino. Similar particles, heavier but otherwise identical, are known to exist - grouped together in two further families. By measuring the number of neutrino types that exist, LEP has shown that there are no more fam-ilies of particles. Nature has chosen the number three. This is an intriguing result, and the reason why there are neither more nor fewer than three particle families is one of the greatest mysteries of modern physics. One important consequence is that we exist. Had there been any fewer than three families of matter particles, the phenomenon known as CP violation - which led to matter dominating anti-matter in the early Universe - would not have occurred. All the matter and antimatter created in the Big Bang would have annihilated.

  15. Three distinct ribosome assemblies modulated by translation are the building blocks of polysomes.

    Science.gov (United States)

    Viero, Gabriella; Lunelli, Lorenzo; Passerini, Andrea; Bianchini, Paolo; Gilbert, Robert J; Bernabò, Paola; Tebaldi, Toma; Diaspro, Alberto; Pederzolli, Cecilia; Quattrone, Alessandro

    2015-03-01

    Translation is increasingly recognized as a central control layer of gene expression in eukaryotic cells. The overall organization of mRNA and ribosomes within polysomes, as well as the possible role of this organization in translation are poorly understood. Here we show that polysomes are primarily formed by three distinct classes of ribosome assemblies. We observe that these assemblies can be connected by naked RNA regions of the transcript. We show that the relative proportions of the three classes of ribosome assemblies reflect, and probably dictate, the level of translational activity. These results reveal the existence of recurrent supra-ribosomal building blocks forming polysomes and suggest the presence of unexplored translational controls embedded in the polysome structure. PMID:25713412

  16. Synthesis of a hybrid m-terphenyl/o-carborane building block: applications in phosphine ligand design.

    Science.gov (United States)

    Lugo, Christopher A; Moore, Curtis E; Rheingold, Arnold L; Lavallo, Vincent

    2015-03-01

    A hybrid terphenyl/o-carborane ligand building block is synthesized by the reaction of m-terphenylalkyne with B10H14. This sterically demanding substituent can be installed into ligands, as demonstrated by the preparation of carboranylphosphine. The bulky phosphine reacts with [ClRh(CO)2]2 to produce monophosphine complex ClRhL(CO)2, which subsequently extrudes CO under vacuum to afford the dimeric species [ClRhL(CO)]2. The latter complex does not react with excess phosphine and is resistant toward cyclometalation, which is in contrast to related o-carborane phosphine complexes. Data from a single-crystal X-ray diffraction study are utilized to quantify the steric impact of the ligand via the percent buried volume approach. PMID:25668570

  17. Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks.

    Science.gov (United States)

    Klinger, Christen M; Spang, Anja; Dacks, Joel B; Ettema, Thijs J G

    2016-06-01

    In contrast to prokaryotes, eukaryotic cells are characterized by a complex set of internal membrane-bound compartments. A subset of these, and the protein machineries that move material between them, define the membrane-trafficking system (MTS), the emergence of which represents a landmark in eukaryotic evolution. Unlike mitochondria and plastids, MTS organelles have autogenous origins. Much of the MTS machinery is composed of building blocks, including small GTPase, coiled-coil, beta-propeller + alpha-solenoid, and longin domains. Despite the identification of prokaryotic proteins containing these domains, only few represent direct orthologues, leaving the origins and early evolution of the MTS poorly understood. Here, we present an in-depth analysis of MTS building block homologues in the composite genome of Lokiarchaeum, the recently discovered archaeal sister clade of eukaryotes, yielding several key insights. We identify two previously unreported Eukaryotic Signature Proteins; orthologues of the Gtr/Rag family GTPases, involved in target of rapamycin complex signaling, and of the RLC7 dynein component. We could not identify golgin or SNARE (coiled-coil) or beta-propeller + alpha-solenoid orthologues, nor typical MTS domain fusions, suggesting that these either were lost from Lokiarchaeum or emerged later in eukaryotic evolution. Furthermore, our phylogenetic analyses of lokiarchaeal GTPases support a split into Ras-like and Arf-like superfamilies, with different prokaryotic antecedents, before the advent of eukaryotes. While no GTPase activating proteins or exchange factors were identified, we show that Lokiarchaeum encodes numerous roadblock domain proteins and putative longin domain proteins, confirming the latter's origin from Archaea. Altogether, our study provides new insights into the emergence and early evolution of the eukaryotic membrane-trafficking system. PMID:26893300

  18. Current situation of the project finishing of the building of 3 and 4 block of the nuclear power plant Mochovce

    International Nuclear Information System (INIS)

    In the contribution there is the basic information mentioned about history of building and the current situation at the finishing of the building of 3 and 4 block of the Nuclear Power Plant Mochovce with the use of project digitization. Further on the contribution shows what kinds of supporting material has been elaborated, what kind of decisions have been issued to the finishing of the building, way of financing and also the assumption of investment return under the defined conditions. An orientation time schedule of the finishing of the building and the crucial steps for its security are presented in the conclusion

  19. MOCHA/ISAIA: Building Blocks for Interoperability in a Virtual Observatory

    Science.gov (United States)

    Cheung, C. Y.; Hanisch, R. J.; McGlynn, T. A.; Plante, R. L.; Shaya, E. J.

    2000-12-01

    Some basic building blocks must be put in place before we can realize the vision of a National or Global Virtual Observatory. MOCHA is a project that is building a prototype interoperability infrastructure for a Virtual Observatory. ISAIA is an effort that defines the astrophysics query profile to enables searches to networked astrophysics resources that have very different data structures. Both projects are funded by the NASA Applied Information Systems Research Program. We shall describe a joint demonstration by these two projects that involves four data centers: the Astronomical Data Center (ADC), the High Energy Astrophysics Science Archive Research Center (HEASARC), the Astronomical Digital Image Library (ADIL), the Space Telescope Science Institute (STScI); and the University of Maryland. We shall show how a positional query for astrophysical data in a region of arbitrary geometrical boundary can be carried out using these basic components. We shall also describe a scheme by which user software can be deployed to a data center to extend its services, and how the system will return to the researcher only the desired scientific results. This capability is very important for multispectral studies using the large all-sky surveys that reside in distributed data archives.

  20. A rare cationic building block that generates a new type of polyhedral network with "cross-linked" pto topology.

    Science.gov (United States)

    Lusi, Matteo; Fechine, Pierre B A; Chen, Kai-Jie; Perry, John J; Zaworotko, Michael J

    2016-03-01

    A rare 8-connected cationic building block, [Cu2L8(μ-MF6)](2+) (L = pyridyl ligand, M = Si, Ti, Ge, Zr or Sn), enables the formation of a small cubicuboctahedral supramolecular building block, SBB, when complexed by 2,4,6-tris(4-pyridyl)pyridine. The coordination network resulting from fusing the square faces of the SBBs can be described as a pto topology in which half of the square faces are cross-linked by MF6(2-) moieties, and represents the first example of a new 3,5-c topology. PMID:26902412

  1. Shortcut Access to Peptidosteroid Conjugates: Building Blocks for Solid-Phase Bile Acid Scaffold Decoration by Convergent Ligation

    Directory of Open Access Journals (Sweden)

    Sara Figaroli

    2011-12-01

    Full Text Available We present three versatile solid-supported scaffold building blocks based on the (deoxycholic acid framework and decorated with handles for further derivatization by modern ligation techniques such as click chemistry, Staudinger ligation or native chemical ligation. Straightforward procedures are presented for the synthesis and analysis of the steroid constructs. These building blocks offer a new, facile and shorter access route to bile acid-peptide conjugates on solid-phase with emphasis on heterodipodal conjugates with defined spatial arrangements. As such, we provide versatile new synthons to the toolbox for bile acid decoration.

  2. Mounting the large-size building blocks of the reactor room structure at the Kozloduj NPP fifth power unit (Bulgaria)

    International Nuclear Information System (INIS)

    Pecularities of the construction of Kozloduj NPP fifth power unit with a WWER-1000 reactor are described. Methods of mounting reactor well, storage pond and underwater reloading well using large-size building blocks are presented. The described methods can be applied for the construction of NPPs with WWER-1000 reactors using a high capacity crane (not less than 200 t) erected in the centre of the reactor building

  3. Molecular s-triazine and s-heptazine derivatives as building blocks in coordination networks, molecular salts and supramolecular materials

    OpenAIRE

    Makowski, Sophia Janina

    2012-01-01

    In this thesis various possibilities to employ s-triazine and s-heptazine compounds as building blocks in novel materials are presented. Different molecular s-triazine and s-heptazine derivatives have been utilized as building units in molecular salts, coordination and supramolecular compounds. Special attention has been paid to increased employment of s-heptazine derivatives and of molecules which can be classified as intermediates between inorganic carbon nitride type compounds and hydrocar...

  4. SiC Multi-Chip Power Modules as Power-System Building Blocks

    Science.gov (United States)

    Lostetter, Alexander; Franks, Steven

    2007-01-01

    The term "SiC MCPMs" (wherein "MCPM" signifies "multi-chip power module") denotes electronic power-supply modules containing multiple silicon carbide power devices and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking. Moreover, the higher-temperature capabilities of SiC MCPMs could enable operation in environments hotter than Si-based power systems can withstand. The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules. In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications: typical functions could include regulating voltages, storing energy, and driving motors. Because identical SiC MCPM building blocks could be utilized in a variety of ways, the cost

  5. Supernovae, Neutrinos and the Chirality of Amino Acids

    Directory of Open Access Journals (Sweden)

    Toshitaka Kajino

    2011-05-01

    Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.

  6. Supernovae, Neutrinos, and the Chirality of the Amino Acids

    CERN Document Server

    Boyd, R N; Onaka, T

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  7. Stardust, Supernovae and the Chirality of the Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R N; Kajino, T; Onaka, T

    2011-03-09

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

  8. "Science SQL" as a Building Block for Flexible, Standards-based Data Infrastructures

    Science.gov (United States)

    Baumann, Peter

    2016-04-01

    We have learnt to live with the pain of separating data and metadata into non-interoperable silos. For metadata, we enjoy the flexibility of databases, be they relational, graph, or some other NoSQL. Contrasting this, users still "drown in files" as an unstructured, low-level archiving paradigm. It is time to bridge this chasm which once was technologically induced, but today can be overcome. One building block towards a common re-integrated information space is to support massive multi-dimensional spatio-temporal arrays. These "datacubes" appear as sensor, image, simulation, and statistics data in all science and engineering domains, and beyond. For example, 2-D satellilte imagery, 2-D x/y/t image timeseries and x/y/z geophysical voxel data, and 4-D x/y/z/t climate data contribute to today's data deluge in the Earth sciences. Virtual observatories in the Space sciences routinely generate Petabytes of such data. Life sciences deal with microarray data, confocal microscopy, human brain data, which all fall into the same category. The ISO SQL/MDA (Multi-Dimensional Arrays) candidate standard is extending SQL with modelling and query support for n-D arrays ("datacubes") in a flexible, domain-neutral way. This heralds a new generation of services with new quality parameters, such as flexibility, ease of access, embedding into well-known user tools, and scalability mechanisms that remain completely transparent to users. Technology like the EU rasdaman ("raster data manager") Array Database system can support all of the above examples simultaneously, with one technology. This is practically proven: As of today, rasdaman is in operational use on hundreds of Terabytes of satellite image timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Therefore, Array Databases offering SQL/MDA constitute a natural common building block for next-generation data infrastructures. Being initiator and editor of the standard we present principles

  9. The Building Blocks of Digital Media Literacy: Socio-Material Participation and the Production of Media Knowledge

    Science.gov (United States)

    Dezuanni, Michael

    2015-01-01

    This article outlines the knowledge and skills students develop when they engage in digital media production and analysis in school settings. The metaphor of "digital building blocks" is used to describe the material practices, conceptual understandings and production of knowledge that lead to the development of digital media literacy.…

  10. A Concise Strategy for Polymer-supported Regio-oriented Introduction of Various Building Blocks onto Glucopyranoside Scaffold

    Institute of Scientific and Technical Information of China (English)

    廖云; 李正名; 黄乃正

    2001-01-01

    A new strategy was devised to stereo-specifically introduce various building blocks, mainly heterocycles such as pyrimidines and triazines onto a multi-hydroxy molecule. A glucopyranoside was chosen as a target scaffold. Two polymerbased protective reagents were jointly integrated in the implementation of the strategy. It was found that in the α-D-giu-copyranoside, which has four free hydroxyl groups within the same molecule, its 4, 6-di-OH could be simultaneously protected by polystyryl boronic acid, which left the 2, 3-di-OH free for substitution. Due to the steric effects within the molecule, the 2-OH is much more liabile to electrophilic stubstitution. Thus the first and the second building blocks could be introduced regioselectively onto the 2-OH and the 3-OHpositions. After a facile deprotection, the4,6-di-OH were left free and by apiication of a second protecting reagentpolystyryltritylchloride onto 6-OH, a third building block was introduced onto the 4-OH position. After further deprotection, the fourth building block was later introduced onto the 6-OH position. The new strategy was successfully applied in the combinatorial synthesis by application of the split-mix technique. The respective eleven small libraries were obtained and confirmed by HPLC-MS and NMR. Some preliminary results on chemical structure/herbicidal activity relationship were discussed.

  11. Production in a factory (the cell) requires high level of organisation : the cell: The plant’s smallest building block

    NARCIS (Netherlands)

    Heuvelink, E.

    2015-01-01

    The cell is the plant’s smallest building block. Many cultivation techniques and climate control measures have an effect at this level. Some knowledge about the functioning of the cell is therefore very useful. Many components of the cell have bizarre names so to understand it all better, for the pu

  12. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2013-01-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective...

  13. The asc trinodal platform: Two-step assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks

    KAUST Repository

    Schoedel, Alexander

    2013-02-10

    The self-assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks affords the first example of a trinodal family of metal-organic materials. Four examples of isoreticular expanded and functionalized frameworks are detailed. Gas adsorption experiments validated the permanent porosity of the parent structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Use of shock block transmitters in the structural rehabilitation of historical buildings in Calabria and Sicily

    Science.gov (United States)

    Bianco, Alessia; Candela, Michele; Fonti, Roberta

    2008-07-01

    Many old and historical masonry buildings, located in the Calabrian and Sicilian areas near the strait of Messina, are affected by typical pattern of cracks, which are not produced by previous earthquakes. These cracks in the masonry walls are characterized by a quasi-vertical trend with constant width. The careful examination of the crack distribution allows to clearly identify the diagnosis: the damage is caused by the sinking due to a horizontal movement of translation of the ground, which is an evident effect of creep phenomena in the soil, so-called "solifluxion". This paper, after showing this geological pathology, proposes an innovative strategy of intervention, which consists of the use of "oleo-dynamic" devices, so-called shock block transmitters, providing different degrees of restraint, according to the loading conditions. In addition, in case of earthquake, an important part of the in-put seismic energy can be dissipated. The strategy of application of this system to the building consists of the subdivision of each masonry wall in two different parts, which are physically separated by the cracks. Each wall portion must be consolidated separately and the different parts of walls behave as statically independent each other, so that they can move independently during the serviceability conditions. The connection among the walls composing the whole structural organism is given by metal tie-rods equipped with "oleo dynamic" devices, which allows, in a given range, the horizontal sliding in case of slow movement due to the phenomenon of "solifluxion". Contrary, in case of dynamic and fast movements, such as the ones produced by an earthquake, each "oleo dynamic" device provides a fully restraint effect and, as a consequence, the tie-rods behave in the classical way.

  15. Use of shock block transmitters in the structural rehabilitation of historical buildings in Calabria and Sicily

    International Nuclear Information System (INIS)

    Many old and historical masonry buildings, located in the Calabrian and Sicilian areas near the strait of Messina, are affected by typical pattern of cracks, which are not produced by previous earthquakes. These cracks in the masonry walls are characterized by a quasi-vertical trend with constant width. The careful examination of the crack distribution allows to clearly identify the diagnosis: the damage is caused by the sinking due to a horizontal movement of translation of the ground, which is an evident effect of creep phenomena in the soil, so-called 'solifluxion'. This paper, after showing this geological pathology, proposes an innovative strategy of intervention, which consists of the use of 'oleo-dynamic' devices, so-called shock block transmitters, providing different degrees of restraint, according to the loading conditions. In addition, in case of earthquake, an important part of the in-put seismic energy can be dissipated. The strategy of application of this system to the building consists of the subdivision of each masonry wall in two different parts, which are physically separated by the cracks. Each wall portion must be consolidated separately and the different parts of walls behave as statically independent each other, so that they can move independently during the serviceability conditions. The connection among the walls composing the whole structural organism is given by metal tie-rods equipped with 'oleo dynamic' devices, which allows, in a given range, the horizontal sliding in case of slow movement due to the phenomenon of 'solifluxion'. Contrary, in case of dynamic and fast movements, such as the ones produced by an earthquake, each 'oleo dynamic' device provides a fully restraint effect and, as a consequence, the tie-rods behave in the classical way

  16. Nanopatterned graphene quantum dots as building blocks for quantum cellular automata

    Science.gov (United States)

    Wang, Z. F.; Liu, Feng

    2011-10-01

    Quantum cellular automata (QCA) is an innovative approach that incorporates quantum entities in classical computation processes. Binary information is encoded in different charge states of the QCA cells and transmitted by the inter-cell Coulomb interaction. Despite the promise of QCA, however, it remains a challenge to identify suitable building blocks for the construction of QCA. Graphene has recently attracted considerable attention owing to its remarkable electronic properties. The planar structure makes it feasible to pattern the whole device architecture in one sheet, compatible with the existing electronics technology. Here, we demonstrate theoretically a new QCA architecture built upon nanopatterned graphene quantum dots (GQDs). Using the tight-binding model, we determine the phenomenological cell parameters and cell-cell response functions of the GQD-QCA to characterize its performance. Furthermore, a GQD-QCA architecture is designed to demonstrate the functionalities of a fundamental majority gate. Our results show great potential in manufacturing high-density ultrafast QCA devices from a single nanopatterned graphene sheet.

  17. Ultraflat Au nanoplates as a new building block for molecular electronics

    Science.gov (United States)

    Jeong, Wooseok; Lee, Miyeon; Lee, Hyunsoo; Lee, Hyoban; Kim, Bongsoo; Park, Jeong Young

    2016-05-01

    We demonstrate the charge transport properties of a self-assembled organic monolayer on Au nanoplates with conductive probe atomic force microscopy (CP-AFM). Atomically flat Au nanoplates, a few hundred micrometers on each side, that have only (111) surfaces, were synthesized using the chemical vapor transport method; these nanoplates were employed as the substrates for hexadecanethiol (HDT) self-assembled monolayers (SAMs). Atomic-scale high-resolution images show (\\sqrt{3}× \\sqrt{3}){{R}}30^\\circ molecular periodicity, indicating a well-ordered structure of the HDT on the Au nanoplates. We observed reduced friction and adhesion forces on the HDT SAMs on Au nanoplates, compared with Si substrates, which is consistent with the lubricating nature of HDT SAMs. The electrical properties, such as I–V characteristics and current as a function of load, were measured using CP-AFM. We obtained a tunneling decay constant (β) of 0.57 Å‑1, including through-bond ({β }{tb} = 0.99 Å‑1) and through-space ({β }{{ts}} = 1.36 Å‑1) decay constants for the two-pathway model. This indicates that the charge transport properties of HDT SAMs on Au nanoplates are consistent with those on a Au (111) film, suggesting that SAMs on nanoplates can provide a new building block for molecular electronics.

  18. Manipulation of partially oriented hydroxyapatite building blocks to form flowerlike bundles without acid-base regulation.

    Science.gov (United States)

    Wen, Zhenliang; Wang, Zihao; Chen, Jingdi; Zhong, Shengnan; Hu, Yimin; Wang, Jianhua; Zhang, Qiqing

    2016-06-01

    The application of hydroxyapatite (HAP) in different fields depends greatly on its morphology, composition and structure. Besides, the main inorganic building blocks of human bones and teeth are also HAP. Therefore, accurate shape and aggregation control and of hydroxyapatite particles will be of great interest. Herein, oriented bundles of flowerlike HAP nanorods were successfully prepared through hydrothermal treatment without acid-base regulation, with the mono-alkyl phosphate (MAP) and sodium citrate as surfactant and chelating agent, respectively. The prepared samples were characterized by the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and zeta potential, the pH value and conductivity value of suspension were characterized by pH meter and conductivity measurement. The results showed that the MAP and citrate play an important role in assembly of HAP nanorods without acid-base regulation. Citrate calcium complex could decompose slowly and release citrate ions at hydrothermal conditions. Besides, the further decomposition of citrate ions could release aconitic acid as the reaction time prolongs. Moreover, the possible scheme for the formation process was discussed in detail. PMID:26930036

  19. Probing the bioactivity-relevant chemical space of robust reactions and common molecular building blocks.

    Science.gov (United States)

    Hartenfeller, Markus; Eberle, Martin; Meier, Peter; Nieto-Oberhuber, Cristina; Altmann, Karl-Heinz; Schneider, Gisbert; Jacoby, Edgar; Renner, Steffen

    2012-05-25

    In the search for new bioactive compounds, there is a trend toward increasingly complex compound libraries aiming to target the demanding targets of the future. In contrast, medicinal chemistry and traditional library design rely mainly on a small set of highly established and robust reactions. Here, we probe a set of 58 such reactions for their ability to sample the chemical space of known bioactive molecules, and the potential to create new scaffolds. Combined with ~26,000 common available building blocks, the reactions retrieve around 9% of a scaffold-diverse set of compounds active on human target proteins covering all major pharmaceutical target classes. Almost 80% of generated scaffolds from virtual one-step synthesis products are not present in a large set of known bioactive molecules for human targets, indicating potential for new discoveries. The results suggest that established synthesis resources are well suited to cover the known bioactivity-relevant chemical space and that there are plenty of unexplored regions accessible by these reactions, possibly providing valuable "low-hanging fruit" for hit discovery. PMID:22512717

  20. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael; Müller, Jens [Institute of Physics, Goethe-University Frankfurt, Frankfurt/Main (Germany); Ohno, Yuzo; Ohno, Hideo [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai (Japan)

    2015-05-07

    We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their “coercive field” with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' “survival time” with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct “paths” most likely driven by thermal perturbation.

  1. Perspectives of 99mTc chemistry and radiopharmacy: strategies, building blocks and targets

    International Nuclear Information System (INIS)

    Technetium chemistry, both fundamental and applied are required to a larger extent in order to keep the essential role of this element in radiopharmacy alive. After an introduction, highlighting the situation in general from research and market aspects, new strategies will be proposed in which technetium and rhenium play an essential role which can not be taken over by other radionuclides such as 11C or 18F. Furthermore, currently available and potential future building blocks in technetium chemistry and their relationship to the new strategies as well as characteristics of new precursors will be discussed and compared to each other. Targets and targeting molecules, again in the context of strategies unique for technetium (and rhenium) are in the focus of the last part. With respect of retaining a unique role, it is obvious that any future technetium or rhenium labelled biomolecule should have potential to therapy or be applied in the immediate context of therapy, as e.g. for the early assessment of success in chemotherapy. All these aspects emphasize a role of inorganic technetium chemistry which goes far beyond simple labelling strategies. To underline the importance of fundamental chemistry, we will present and discuss some examples with nuclear targeting agents, amino acids and vitamin B12. (author)

  2. Novel layered two-dimensional semiconductors as the building blocks for nano-electronic/photonic systems

    Science.gov (United States)

    Su, Guoxiong; De, Debtanu; Hadjiev, Viktor G.; Peng, Haibing

    2014-06-01

    Layered two-dimensional (2D) semiconductors beyond graphene have been emerging as potential building blocks for the next-generation electronic/photonic applications. Representative metal chalcogenides, including the widely studied MoS2, possess similar layered crystal structures with weak interaction between adjacent layers, thus allowing the formation of stable thin-layer crystals with thickness down to a few or even single atomic layer. Other important chalcogenides, involving earth-abundant and environment-friendly materials desirable for sustainable applications, include SnS2 (band gap: 2.1 eV) and SnS (band gap: 1.1 eV). So far, commonly adopted for research purpose are mechanical and liquid exfoliation methods for creating thin layers of such 2D semiconductors. Most recently, chemical vapor deposition (CVD) was attracting significant attention as a practical method for producing thin films or crystal grains of MoS2. However, critical yet still absent is an effective experimental approach for controlling the positions of thin crystal grains of layered 2D semiconductors during the CVD process. Here we report the controlled CVD synthesis of thin crystal arrays of representative layered semiconductors (including SnS2 and SnS) at designed locations on chip, promising large-scale optoelectronic applications. Our work opens a window for future practical applications of layered 2D semiconductors in integrated nano-electronic/photonic systems.

  3. Electronic and optical excitations in building blocks of the metal organic framework MOF-5

    Science.gov (United States)

    Shi, Bin; Hung, Linda; Yildirim, Taner; Ogut, Serdar

    Metal organic frameworks (MOFs) are a relatively new class of materials which are made of metal-oxide clusters linked by organic bridging ligands. In recent years, MOFs have received considerable attention due to their widely tunable structural, chemical and physical properties. We investigate one of the well characterized MOFs, MOF-5, whose framework consists of tetrahedral [Zn40]6+ units linked by rigid arylcarboxylate ligands. We use many-body perturbation (GW +BSE) and time-dependent DFT methods in real space to examine the electronic and optical excitations in the building blocks of MOF-5, such as Zn4O(COOH)6, basic zinc acetate [Zn4O(CH3COO)6], and tetranuclear zinc benzoate [Zn4O(C6H5COO)6]. The calculated spectra are compared with available experimental measurements and existing calculations to shed light on the controversy regarding the nature (metal-ligand versus ligand-ligand) of low-energy electronic and optical excitations in MOF-5. Supported by DOE Grant No. DE-SC0001853.

  4. Stepwise transformation of the molecular building blocks in a porphyrin-encapsulating metal-organic material

    KAUST Repository

    Zhang, ZhenJie

    2013-04-24

    When immersed in solutions containing Cu(II) cations, the microporous metal-organic material P11 ([Cd4(BPT)4]·[Cd(C 44H36N8)(S)]·[S], BPT = biphenyl-3,4′,5-tricarboxylate) undergoes a transformation of its [Cd 2(COO)6]2- molecular building blocks (MBBs) into novel tetranuclear [Cu4X2(COO)6(S) 2] MBBs to form P11-Cu. The transformation occurs in single-crystal to single-crystal fashion, and its stepwise mechanism was studied by varying the Cd2+/Cu2+ ratio of the solution in which crystals of P11 were immersed. P11-16/1 (Cd in framework retained, Cd in encapsulated porphyrins exchanged) and other intermediate phases were thereby isolated and structurally characterized. P11-16/1 and P11-Cu retain the microporosity of P11, and the relatively larger MBBs in P11-Cu permit a 20% unit cell expansion and afford a higher surface area and a larger pore size. © 2013 American Chemical Society.

  5. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

    International Nuclear Information System (INIS)

    We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their “coercive field” with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' “survival time” with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct “paths” most likely driven by thermal perturbation

  6. Can Fluorinated Molecular Cages Be Utilized as Building Blocks of Hyperhalogens?

    Science.gov (United States)

    Sun, Wei-Ming; Li, Xiang-Hui; Li, Ying; Wu, Di; Li, Chun-Yan; Chen, Jing-Hua; Li, Zhi-Ru

    2016-05-18

    Based on the density functional theory for exchange-correlation potential, fluorocarbon molecular cages are investigated as building blocks of hyperhalogens. By utilizing C8 F7 as a ligand, a series of hyperhalogen anions, that is, M(C8 F7 )2 (-) (M=Li, Na, and K) and M(C8 F7 )3 (-) (M=Be, Mg, and Ca), are modeled. Calculations show that all the C8 F7 moieties preserve their geometric and electronic integrity in these anions. These anionic molecules possess larger vertical electron detachment energies (5.11-6.45 eV) than that of C8 F7 (-) , verifying their hyperhalogen nature. Moreover, it is also revealed that using larger fluorinated cage C10 F9 as ligands can bring about hyperhalogen anions with larger vertical electron detachment energies. The stability of these studied anions is determined by their large HOMO-LUMO gaps and positive dissociation energies of predetermined possible fragmentation pathways. It is hoped this study will provide an approach for the construction of new types of hyperhalogens and stimulate more research in superatom chemistry. PMID:26923480

  7. Are ancient dwarf satellites the building blocks of the Galactic halo?

    CERN Document Server

    Spitoni, E; Matteucci, F; Romano, D

    2016-01-01

    According to the current cosmological cold dark matter paradigm, the Galactic halo could have been the result of the assemblage of smaller structures. Here we explore the hypothesis that the classical and ultra-faint dwarf spheroidal satellites of the Milky Way have been the building blocks of the Galactic halo by comparing their [$\\alpha$/Fe] and [Ba/Fe] versus [Fe/H] patterns with the ones observed in Galactic halo stars. The $\\alpha$ elements deviate substantially from the observed abundances in the Galactic halo stars for [Fe/H] values larger than -2 dex, while they overlap for lower metallicities. On the other hand, for the [Ba/Fe] ratio the discrepancy is extended at all [Fe/H] values, suggesting that the majority of stars in the halo are likely to have been formed in situ. Therefore, we suggest that [Ba/Fe] ratios are a better diagnostic than [$\\alpha$/Fe] ratios. Moreover, for the first time we consider the effects of an enriched infall of gas with the same chemical abundances as the matter ejected an...

  8. 1,5-Anhydro-D-fructose as Chiral Building Block: A Novel Approach to 1-Deoxymannojirimycin

    DEFF Research Database (Denmark)

    Maier, Peter; Andersen, Søren Møller; Lundt, Inge

    2006-01-01

    A novel six-step synthesis of 1-deoxymannojirimycin from 1,5-anhydro-D-fructose in 35% overall yield is reported. The key steps are nucleophilic piperidine ring formation and subsequent Lewis acid induced pyran ether cleavage....

  9. BUILDING BLOCKS IN THE FOREIGN LANGUAGE CLASSROOM (PILARES BÁSICOS EN EL AULA DE IDIOMAS

    Directory of Open Access Journals (Sweden)

    Coto Keith Rossina

    2010-12-01

    presents each separately, giving the idea that only one or two can be used in the language classroom, thus missing some important matters. The point of this article is that in order to be more effective, Learning Styles, Multiple Intelligences and Language Learning Strategies must intertwine, so as to create a solid building block. The author first gives an overview of each of these areas. She then explains in the review of the literature how they should be used as a closely-knit unit. Next, she provides an example of this integration through a lesson plan on the topic of environmental conservation for an Oral Communication course for English majors at School of Modern Languages, University of Costa Rica. Finally, some advice is given to instructors on the incorporation of each of these building blocks.

  10. The pherophorins: common, versatile building blocks in the evolution of extracellular matrix architecture in Volvocales.

    Science.gov (United States)

    Hallmann, Armin

    2006-01-01

    Green algae of the order Volvocales provide an unrivalled opportunity for exploring the transition from unicellularity to multicellularity. They range from unicells, like Chlamydomonas, through homocytic colonial forms with increasing cooperation of individual cells, like Gonium or Pandorina, to heterocytic multicellular forms with different cell types and a complete division of labour, like Volvox. A fundamental requirement for the evolution of multicellularity is the development of a complex, multifunctional extracellular matrix (ECM). The ECM has many functions, which can change under developmental control or as a result of environmental factors. Here molecular data from 15 novel proteins are presented. These proteins have been identified in Chlamydomonas reinhardtii, Gonium pectorale, Pandorina morum and Volvox carteri, and all belong to a single protein family, the pherophorins. Pherophorin-V1 is shown to be a glycoprotein localized to the 'cellular zone' of the V. carteri ECM. Pherophorin-V1 and -V2 mRNAs are strongly induced not only by the sex inducer, which triggers sexual development at extremely low concentrations, but also by mechanical wounding. Like the extensins of higher plants, which are also developmentally controlled or sometimes inducible by wounding, the pherophorins contain a (hydroxy-)proline-rich (HR) rod-like domain and are abundant within the extracellular compartment. In contrast to most extensins, pherophorins have additional globular A and B domains on both ends of the HR domains. Therefore pherophorins most closely resemble a particular class of higher plant extensin, the solanaceous lectins (e.g. potato lectin), suggesting multivalent carbohydrate-binding functions are present within the A and B domains and are responsible for cross-linking. Our results suggest that pherophorins are used as the building blocks for the extracellular scaffold throughout the Volvocales, with the characteristic mesh sizes in different ECM structures being

  11. The experimental validation of a transient power electronic building block (PEBB) mathematical model

    International Nuclear Information System (INIS)

    This work adjusts and validates experimentally a previously developed volume element model based thermal management tool (vemESRDC) through the comparison of temperature measurements of a power electronic building block (PEBB) to numerical simulation results, featuring relevant electronic components of an all-electric ship. Primary components of interest in this simulation are: inductors, capacitors, AC and DC fuses, and a tiristors/fins set. The vemESRDC is a thermal simulation tool developed as part of the Electric Ship Research and Development Consortium (ESRDC) funded by the Office of Naval Research (ONR) that is capable of providing quick responses during early stages of ship design. The model adjustment was conducted by solving the inverse problem of parameter estimation for appropriate equipment properties using a total power dissipation of 4.8 kW in the PEBB. Next, the adjusted model was experimentally validated using the same PEBB with a power dissipation of 11.12 kW. The transient and steady state numerical results are shown to be in good quantitative and qualitative agreement with the experimental measurements within the experimental error margin. Transient simulations demonstrate that the components temperature vary significantly from one heating mode to another, whereas internal air average temperature varies only slightly for all heating modes, therefore not only average internal air temperature should be monitored for preserving equipment functionality. As a result, it is expected that vemESRDC could be used as a reliable tool for transient and steady state thermal management of heat generating packages (e.g., PEBB, future all-electric ship). -- Highlights: • We amended and tested a general computational model for electronic packages. • Experimental and numerical results are in good quantitative and qualitative agreement. • A transient simulation study was conducted with the model. • The system thermal conductance was determined and

  12. Are ancient dwarf satellites the building blocks of the Galactic halo?

    Science.gov (United States)

    Spitoni, E.; Vincenzo, F.; Matteucci, F.; Romano, D.

    2016-05-01

    According to the current cosmological cold dark matter paradigm, the Galactic halo could have been the result of the assemblage of smaller structures. Here we explore the hypothesis that the classical and ultra-faint dwarf spheroidal satellites of the Milky Way have been the building blocks of the Galactic halo by comparing their [α/Fe] and [Ba/Fe] versus [Fe/H] patterns with the ones observed in Galactic halo stars. The α elements deviate substantially from the observed abundances in the Galactic halo stars for [Fe/H] values larger than -2 dex, while they overlap for lower metallicities. On the other hand, for the [Ba/Fe] ratio, the discrepancy is extended at all [Fe/H] values, suggesting that the majority of stars in the halo are likely to have been formed in situ. Therefore, we suggest that [Ba/Fe] ratios are a better diagnostic than [α/Fe] ratios. Moreover, for the first time we consider the effects of an enriched infall of gas with the same chemical abundances as the matter ejected and/or stripped from dwarf satellites of the Milky Way on the chemical evolution of the Galactic halo. We find that the resulting chemical abundances of the halo stars depend on the assumed infall time-scale, and the presence of a threshold in the gas for star formation. In particular, in models with an infall time-scale for the halo around 0.8 Gyr coupled with a threshold in the surface gas density for the star formation (4 M⊙ pc-2), and the enriched infall from dwarf spheroidal satellites, the first halo stars formed show [Fe/H]>-2.4 dex. In this case, to explain [α/Fe] data for stars with [Fe/H]formed in dSph systems.

  13. Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability

    OpenAIRE

    Eduardo José Araújo Lima; Benjamin Miranda Tabak

    2007-01-01

    This paper compares different versions of the multiple variance ratio test based on bootstrap techniques for the construction of empirical distributions. It also analyzes the crucial issue of selecting optimal block sizes when block bootstrap procedures are used, by applying the methods developed by Hall et al. (1995) and by Politis and White (2004). By comparing the results of the different methods using Monte Carlo simulations, we conclude that methodologies using block bootstrap methods pr...

  14. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

    CERN Document Server

    Tian, Xiaorui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of...

  15. A novel 300 kW arc plasma inverter system based on hierarchical controlled building block structure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To date, the high power arc plasma technology is widely used. A next generation high power arc plasma system based on building block structure is presented. The whole arc plasma inverter system is composed of 12 paralleled units to increase the system output capability. The hierarchical control system is adopted to improve the reliability and flexibility of the high power arc plasma inverter. To ensure the reliable turn on and off of the IGBT module in each building block unit, a special pulse drive circuit is designed by using pulse transformer. The experimental result indicates that the high power arc plasma inverter system can transfer 300 kW arc plasma energy reliably with high efficiency.

  16. Use of Mixed Micelles for Presentation of Building Blocks in a New Combinatorial Discovery Methodology: Proof-of-Concept Studies

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-03-01

    Full Text Available We describe a new method of combinatorial screening in which building blocks, instead of being linked together chemically, are placed on the surface of nanoparticles. Two- or three-dimensional structures form on the surface of these particles through the close approach of different building blocks, with sufficient flexibility to be able to adapt and interact with putative binding sites in biological systems. The particles assemble without the need for formation of chemical bonds, so libraries comprised of many structures can be prepared rapidly, with large quantities of material available for testing. Screening methods can include solid and solution-phase binding assays, or tissue culture models, for example looking for structures which can change the behaviour of cells in a disease-modifying manner.

  17. Conformal Manifolds in Four Dimensions and Chiral Algebras

    CERN Document Server

    Buican, Matthew

    2016-01-01

    Any N=2 superconformal field theory (SCFT) in four dimensions has a sector of operators related to a two-dimensional chiral algebra containing a Virasoro sub-algebra. Moreover, there are well-known examples of isolated SCFTs whose chiral algebra is a Virasoro algebra. In this note, we consider the chiral algebras associated with interacting N=2 SCFTs possessing an exactly marginal deformation that can be interpreted as a gauge coupling (i.e., at special points on the resulting conformal manifolds, free gauge fields appear that decouple from isolated SCFT building blocks). At any point on these conformal manifolds, we argue that the associated chiral algebras possess at least three generators. In addition, we show that there are examples of SCFTs realizing such a minimal chiral algebra: they are certain points on the conformal manifold obtained by considering the low-energy limit of type IIB string theory on the three complex-dimensional hypersurface singularity x_1^3+x_2^3+x_3^3+A x_1x_2x_3+w^2=0. The associa...

  18. Solar thermal electricity production. A building block for the energy turnaround?; Solarthermische Stromerzeugung. Ein Baustein fuer die Energiewende?

    Energy Technology Data Exchange (ETDEWEB)

    Pitz-Paal, Robert [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) e.V., Koeln (Germany). Inst. fuer Solarforschung

    2012-12-15

    Whereas in Germany enthusiasm for solar thermal power plants has subsided following the inglorious insolvency of Solar Millennium AG, internationally the market is livening up again. This has to do with the fact that many countries have now understood that security of supply cannot be founded on photovoltaics and wind alone in the long term. Solar thermal power could thus yet become an important building block in Germany's energy supply system as it continues to pursue the energy turnaround.

  19. Basic Sleep and Circadian Science as Building Blocks for Behavioral Interventions: A Translational Approach for Mood Disorders

    OpenAIRE

    Asarnow, Lauren D.; Soehner, Adriane M.; Harvey, Allison G.

    2014-01-01

    Sleep and circadian functioning has been of particular interest to researchers focused on improving treatments for psychiatric illness. The goal of the present paper is to highlight the exciting research that utilizes basic sleep and circadian science as building blocks for intervention in the mood disorders. The reviewed evidence suggests that the sleep and circadian systems are 1) disrupted in the mood disorders and linked to symptoms, 2) open systems that can be modified, 3) the focus of i...

  20. Selectively fluorinated cyclohexane building blocks: Derivatives of carbonylated all-cis-3-phenyl-1,2,4,5-tetrafluorocyclohexane

    Science.gov (United States)

    Ayoup, Mohammed Salah; Cordes, David B; Slawin, Alexandra M Z

    2015-01-01

    Summary Palladium catalysed carbonylation reactions using the meta- and para-iodo derivatives of all-cis-3-phenyl-1,2,4,5-tetrafluorocyclohexane (4) are illustrated as the start point for a variety of functional group interconversions. The resultant benzaldehyde and benzoic acids offer novel building blocks for further derivatisation and facilitate the incorporation of the facially polarised all-cis-1,2,4,5-tetrafluorocyclohexane motif into more advanced molecular scaffolds. PMID:26877788

  1. The conversion of furan derivatives from renewable resources into valuable building blocks and their application in synthetic chemistry

    OpenAIRE

    Ulbrich, Kathrin

    2015-01-01

    This work covers research on the utilization of renewable resources for the synthesis of building blocks in organic chemistry, especially the use of different furan derivatives which can be obtained from agricultural waste products. In the course of the first project a successful implementation of the Piancatelli rearrangement of furfuryl alcohol, one of the mentioned furan derivatives, in a dilute aqueous solution under subcritical conditions in a continuous flow system or under microwav...

  2. Phosphogypsum as an alternative building material: preliminary modeling and simulation of radon-222 exhalation from blocks and indoor accumulation

    International Nuclear Information System (INIS)

    Phosphogypsum is a by-product from the phosphate fertilizer industry and its large-scale utilization as an alternative construction material copes with radiological issues related to radon-222. Zero-order models for radon-222 exhalation from phosphogypsum building blocks and its time-varying accumulation in closed domains (e.g. indoor accumulation) presume homogeneous distribution of radon-222 throughout the enclosure. Having in mind radiological protection design, exhalation characterization of a block sample is a valuable parameter for the corresponding building performance simulation and it can be accomplished by placing a test block inside a test chamber together with a suitable nuclear detector (their relative positioning depends on the chamber geometry). As breakdown of the uniform concentration hypothesis is likely to occur, this preliminary work numerically investigates such model oversimplification. Along with emanation and decay processes, the present mathematical model assumes time-dependent two-dimensional diffusion-dominant mass transfer in a domain containing a sample of porous material, namely the phosphogypsum block of finite thickness. Conversely, as the test chamber is quite small and air-tight closed, convective mass transfer is neglected. Numerically simulated results have confirmed that a non-uniform radon-222 distribution takes place, which can obviously influence the position of the nuclear detector (or its primary element), thus affecting its readings. (author)

  3. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  4. Chiral Electronics

    OpenAIRE

    Kharzeev, Dmitri E.; Yee, Ho-Ung

    2012-01-01

    We consider the properties of electric circuits involving Weyl semimetals. The existence of the anomaly-induced chiral magnetic current in a Weyl semimetal subjected to magnetic field causes an interesting and unusual behavior of such circuits. We consider two explicit examples: i) a circuit involving the "chiral battery" and ii) a circuit that can be used as a "quantum amplifier" of magnetic field. The unique properties of these circuits stem from the chiral anomaly and may be utilized for c...

  5. Identification of Biomolecular Building Blocks by Recognition Tunneling: Stride towards Nanopore Sequencing of Biomolecules

    Science.gov (United States)

    Sen, Suman

    DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular identification of their building blocks can be done by a technique called Recognition Tunneling (RT) based on Scanning Tunneling Microscope (STM). A single layer of specially designed recognition molecule is attached to the STM electrodes, which trap the targeted molecules (DNA nucleoside monophosphates, RNA nucleoside monophosphates or amino acids) inside the STM nanogap. Depending on their different binding interactions with the recognition molecules, the analyte molecules generate stochastic signal trains accommodating their "electronic fingerprints". Signal features are used to detect the molecules using a machine learning algorithm and different molecules can be identified with significantly high accuracy. This, in turn, paves the way for rapid, economical nanopore sequencing platform, overcoming the drawbacks of Next Generation Sequencing (NGS) techniques. To read DNA nucleotides with high accuracy in an STM tunnel junction a series of nitrogen-based heterocycles were designed and examined to check their capabilities to interact with naturally occurring DNA nucleotides by hydrogen bonding in the tunnel junction. These recognition molecules are Benzimidazole, Imidazole, Triazole and Pyrrole. Benzimidazole proved to be best among them showing DNA nucleotide classification accuracy close to 99%. Also, Imidazole reader can read an abasic monophosphate (AP), a product from depurination or depyrimidination that occurs 10,000 times per human cell per day. In another study, I have investigated a new universal reader, 1-(2-mercaptoethyl)pyrene (Pyrene reader) based on stacking interactions, which should be more specific to the canonical DNA nucleosides. In addition

  6. RELATIVE DISTANCE: THE KEY TO THE SHAPE OF HEPATIC BUILDING BLOCKS

    Directory of Open Access Journals (Sweden)

    Jan M Ruijter

    2011-05-01

    Full Text Available The delineation and the shape of the smallest structural units of the liver is still the subject of debate. However,the blood flow from an upstream terminal branch of the portal vein to a downstream central vein is thought to induce a functional zonation in hepatocyte gene expression. This property was used to determine boundary conditions for the shape of the hepatic building blocks. Histochemical techniques that specifically label periportally or pericentrally expressed enzymes can be used to distinguish periportal and pericentral areas in a liver section. Pairs of images from aligned serial sections, one stained for a portal and the next for a central enzyme, are used. Segmentation and skeletonisation of these images results in the skeletons of the portal and central areas. Distance transformation with respect to these skeletons gives for each point in the image pair the distance to the nearest terminal branches of the portal vein and the central vein. For each point the relative position on the porto-central radius can then be calculated as its distance to a portal vein divided by the sum of its portal and its central distance. In the resulting relative radius image, the area occupied by 'zones' of equivalent relative radius can be measured. According to the principle of Delesse the relative area of a zone in the image is equal to the relative volume of that zone in the tissue. For structural units of plate-like, cylindrical or spherical shape, the relative volume of a zone is equal to the relative radius of that zone to the power 1, 2 or 3, respectively. Thus, the exponent in the relative area - relative radius relation gives information on the shape of the structural unit. Measurement of the areas of each relative radius zone and determination of the area - radius relation in images of random sections of adult mouse liver results in an exponent of 1.1. This suggests that the smallest structural unit of the mouse liver has the shape of a

  7. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    Science.gov (United States)

    Hendrickson, Heidi Phillips

    A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their

  8. Surprising Image Revises Understanding Of Dwarf Galaxies -- Building Blocks of the Universe

    Science.gov (United States)

    2003-01-01

    Hertz. However, cold molecular Hydrogen cannot be observed with current telescopes. Instead, astronomers look for CO, which emits at several radio frequencies, and then estimate the amount of molecular Hydrogen based on how much CO they see. Based on the new observations of CO, the astronomers concluded that IC 10 has much less molecular gas than previously thought and apparently has a much smaller percentage of molecular gas than our Milky Way. The astronomers add that dwarf galaxies in general are found to have less of the heavy elements than larger, spiral galaxies. They are thus probably more similar to galaxies in the early Universe when there had been less time for stars to produce the heavy elements and then return them to their surroundings through supernova explosions. Studies of a dwarf irregular galaxy like IC 10 therefore give astronomers new insights about how stars formed in the distant past. In addition, many astronomers believe dwarf galaxies are the "building blocks of the Universe," from which larger galaxies were assembled through mergers. "The beauty of this is that dwarf irregulars are the most numerous type of galaxy, and many, like IC 10, are relatively nearby. That means we can learn about star formation in such extreme environments by studying nearby dwarf galaxies. That's fortunate, because we cannot observe extremely distant galaxies with sufficient detail," Walter said. Studies of molecules in galaxies also will benefit from the completion of the Atacama Large Millimeter Array (ALMA), an international millimeter-wave telescope project to be located in the high plains of northern Chile. With ALMA, astronomers will be able to study galaxies with greater detail and sensitivity to learn more about the nature of the building blocks of the Universe. Research with the Owens Valley Radio Telescope, operated by the California Institute of Technology, is supported by NSF grant AST96-13717. The National Radio Astronomy Observatory is a facility of the National

  9. Chiral superconductors

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  10. Comprehensive procedural approach for transferring or comparative analysis of analogue IP building blocks towards different CMOS technologies

    Science.gov (United States)

    Gevaert, Dorine M.

    2009-05-01

    The challenges for the next generation of integrated circuit design of analogue and mixed-signal building blocks in standard CMOS technologies for signal conversion demand research progress in the emerging scientific fields of device physics and modelling, converter architectures, design automation, quality assurance and cost factor analysis. Estimation of mismatch for analogue building blocks at the conceptual level and the impact on active area is not a straightforward calculation. The proposed design concepts reduce the over-sizing of transistors, compared with the existing methods, with 15 to 20% for the same quality specification. Besides the reduction of the silicon cost also the design time cost for new topologies is reduced considerably. Comparison has been done for current mode converters (ADC and DAC) and focussing on downscaling technologies. The developed method offers an integrated approach on the estimation of architecture performances, yield and IP-reuse. Matching energy remains constant over process generations and will be the limiting factor for current signal processing. The comprehensive understanding of all sources of mismatches and the use of physical based mismatch modelling in the prediction of mismatch errors, more adequate and realistic sizing of all transistors will result in an overall area reduction of analogue IP blocks. For each technology the following design curves are automatically developed: noise curves for a specified signal bandwidth, choice of overdrive voltage versus lambda and output resistance, physical mismatch error modelling on target current levels. The procedural approach shares knowledge of several design curves and speeds up the design time.

  11. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.

    Science.gov (United States)

    Hu, Jinming; Liu, Shiyong

    2014-07-15

    CONSPECTUS: All living organisms and soft matter are intrinsically responsive and adaptive to external stimuli. Inspired by this fact, tremendous effort aiming to emulate subtle responsive features exhibited by nature has spurred the invention of a diverse range of responsive polymeric materials. Conventional stimuli-responsive polymers are constructed via covalent bonds and can undergo reversible or irreversible changes in chemical structures, physicochemical properties, or both in response to a variety of external stimuli. They have been imparted with a variety of emerging applications including drug and gene delivery, optical sensing and imaging, diagnostics and therapies, smart coatings and textiles, and tissue engineering. On the other hand, in comparison with molecular chemistry held by covalent bonds, supramolecular chemistry built on weak and reversible noncovalent interactions has emerged as a powerful and versatile strategy for materials fabrication due to its facile accessibility, extraordinary reversibility and adaptivity, and potent applications in diverse fields. Typically involving more than one type of noncovalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic association, electrostatic interactions, van der Waals forces, and π-π stacking), host-guest recognition refers to the formation of supramolecular inclusion complexes between two or more entities connected together in a highly controlled and cooperative manner. The inherently reversible and adaptive nature of host-guest molecular recognition chemistry, stemming from multiple noncovalent interactions, has opened up a new platform to construct novel types of stimuli-responsive materials. The introduction of host-guest chemistry not only enriches the realm of responsive materials but also confers them with promising new applications. Most intriguingly, the integration of responsive polymer building blocks with host-guest recognition motifs will endow the former with

  12. Polymer encapsulated 2.5D sensor arrays as building blocks for creating smart objects

    Science.gov (United States)

    Lishchynska, Maryna; Moore, Liam; Rogoz, Daniel; Delaney, Kieran; Barrett, John

    2010-03-01

    One of the key challenges in developing effective and scalable technologies necessary to realise future pervasive systems and ubiquitous computing is implementing a methodology that genuinely integrates embedded sensing and processing capabilities with everyday materials and objects. Embedding intelligent systems into polymer materials and using such "smart blocks" for constructing smart objects is a promising way to achieve the above. This work provides new solutions to challenges of realising a functional system, comprising sensing, processing and actuating components, fully encapsulated in a block of polymer material. The paper also investigates the possibilities of connecting arrays of such smart blocks in 1.5-D and 2.5-D arrangements to form a modular smart object. Experimental and numerical studies were conducted to establish a level of degradation in mechanical properties and strength of the plastic materials embedded with inserts. In current work, a bare cubic system and the system in a capsule-like package were realised and tested. The results of a full physical characterisation of both individual smart blocks and smart block arrays are presented.

  13. First principles calculations of nucleon and pion form factors: understanding the building blocks of nuclear matter from lattice QCD

    International Nuclear Information System (INIS)

    Lattice QCD is an essential complement to the current and anticipated DOE-supported experimental program in hadronic physics. In this poster we address several key questions central to our understanding of the building blocks of nuclear matter, nucleons and pions. Firstly, we describe progress at computing the electromagnetic form factors of the nucleon, describing the distribution of charge and current, before considering the role played by the strange quarks. We then describe the study of transition form factors to the Delta resonance. Finally, we present recent work to determine the pion form factor, complementary to the current JLab experimental determination and providing insight into the approach to asymptotic freedom

  14. Power Block Geometry Applied to the Building of Power Electronics Converters

    Science.gov (United States)

    dos Santos, E. C., Jr.; da Silva, E. R. C.

    2013-01-01

    This paper proposes a new methodology, Power Block Geometry (PBG), for the presentation of power electronics topologies that process ac voltage. PBG's strategy uses formal methods based on a geometrical representation with particular rules and defines a universe with axioms and conjectures to establish a formation law. It allows power…

  15. Developing the basic building blocks of mathematics to be employed in practical embedded systems

    International Nuclear Information System (INIS)

    Mathematics is vitally important as it is used in many areas of science and engineering, in particular are functions such as sine, cosine and the exponent in addition to being to able to carry out such tasks as decimal division. The sine wave is vitally important in physics and communications due to its ability to retain its waveshape when added to another sine wave of the same frequency and arbitrary phase. It is the only periodic waveform that has this property and leads to techniques such as Fourier analysis. Unfortunately these blocks are not included in the standard DSP Builder blockset in Simulink and so a method of creating these operations must be created if this methodology is to be employed in real world tasks such as power relay protection and stereo vision systems. Shown here is a method of performing these calculations using the limited blocks provided for a 50-bit based embedded system with a discussion about the accuracy when compared to traditional digital system counterparts. The order of the equations used and the scaling factors of the blocks are investigated to provide evidence of why certain values need to be changed depending upon the calculation being performed.

  16. DETECTIONS OF FAINT Lyα EMITTERS AT z = 5.7: GALAXY BUILDING BLOCKS AND ENGINES OF REIONIZATION

    International Nuclear Information System (INIS)

    We report results of an unprecedentedly deep, blind search for Lyα emitters (LAEs) at z = 5.7 using the Inamori-Magellan Areal Camera and Spectrograph (IMACS), with the goal of identifying missing sources of reionization that could also be basic building blocks for today's L* galaxies. We describe how improvements in wide field imaging with the Baade telescope, upgrades to IMACS, and the accumulation of ∼20 hr of integration per field in excellent seeing led to the detection of single-emission-line sources as faint as F ∼ 2 x 10-18 erg s-1 cm-2, a sensitivity five times deeper than our first search. A reasonable correction for foreground interlopers implies a steep rise of approximately an order of magnitude in source density for a factor of four drop in flux, from F = 10-17.0 erg s-1 cm-2 to F = 10-17.6 (2.5 x 10-18) erg s-1 cm-2. At this flux the putative LAEs have reached a surface density of ∼1 arcmin-2-a comoving volume density of 4 x 10-3 Mpc-3, several times the density of L* galaxies today. Such a population of faint LAEs would account for a significant fraction of the critical flux density required to complete reionization at this epoch, and would be good candidates for building blocks of stellar mass ∼108-109 Msun for the young galaxies of this epoch.

  17. Expedient Route To Access Rare Deoxy Amino l-Sugar Building Blocks for the Assembly of Bacterial Glycoconjugates.

    Science.gov (United States)

    Sanapala, Someswara Rao; Kulkarni, Suvarn S

    2016-04-13

    Bacterial glycoproteins and oligosaccharides contain several rare deoxy amino l-sugars which are virtually absent in the human cells. This structural difference between the bacterial and host cell surface glycans can be exploited for the development of carbohydrate based vaccines and target specific drugs. However, the unusual deoxy amino l-sugars present in the bacterial glycoconjugates are not available from natural sources. Thus, procurement of orthogonally protected rare l-sugar building blocks through efficient chemical synthesis is a crucial step toward the synthesis of structurally well-defined and homogeneous complex glycans. Herein, we report a general and expedient methodology to access a variety of unusual deoxy amino l-sugars starting from readily available l-rhamnose and l-fucose via highly regioselective, one-pot double serial and double parallel displacements of the corresponding 2,4-bistriflates using azide and nitrite anions as nucleophiles. Alternatively, regioselective monotriflation at O2, O3, and O4 of l-rhamnose/l-fucose allowed selective inversions at respective positions leading to diverse rare sugars. The orthogonally protected deoxy amino l-sugar building blocks could be stereoselectively assembled to obtain biologically relevant bacterial O-glycans, as exemplified by the first total synthesis of the amino linker-attached, conjugation-ready tetrasaccharide of O-PS of Yersinia enterocolitica O:50 strain 3229 and the trisaccharide of Pseudomonas chlororaphis subsp. aureofaciens strain M71. PMID:27002789

  18. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  19. EDITORIAL: Nature's building blocks Nature's building blocks

    Science.gov (United States)

    Engel, Andreas

    2009-10-01

    The scanning tunnelling microscope (STM), invented by Gerd Binnig and Heinrich Rohrer in the early 1980s in the IBM Laboratory in Zurich, and the atomic force microscope (AFM) that followed shortly afterwards, were key developments that initiated a new era in scientific research: nanotechnology. These and related scanning probe microscopes have become fruitful tools in the study of cells, supramolecular assemblies and single biomolecules, as well as other nanoscale structures. In particular, the ability to investigate living matter in native environments made possible by atomic force microscopy, has allowed pronounced progress in biological research. The journal Nanotechnology was the first to serve as a publication platform for this rapidly developing field of science. The journal celebrates its 20th volume with this special issue, which presents a collection of original research articles in various fields of science, but all with the common feature that the structures, processes and functions all take place at the nanometre scale. Scanning probe microscopes are constantly being devised with increasingly sophisticated sensing and actuating features that optimize their performance. However, while these tools continue to provide impressive and informative images of nanoscale systems and allow single molecules to be manipulated with increasing dexterity, a wider field of research activity stimulated either by or for biology has emerged. The unique properties of matter at the nanoscale, such as localized surface plasmons supported by nanostructures, have been exploited in sensors with unprecedented sensitivity. Nanostructures have also found a profitable role in the encapsulation of molecules for 'smart' drug delivery. The potential application of DNA in the self-assembly of nanostructures guided by molecular recognition is another rapidly advancing area of research. In this issue a group of researchers in Germany report how the addition of copper ions can promote the stability of modified double-stranded DNA. They use scanning force microscope observations to provide insights into the energy landscape as DNA complexes form. This research provides just one example of how developments on biological systems are being applied to research across the spectrum of disciplines. This 20th volume special issue provides a snapshot of current state-of-the-art research activity in various areas of nanotechnology, and highlights the breadth and range of research progressing in this field. The developments reported here highlight the continued prominence of biology-related research and promise a bright future for nanotechnology.

  20. Quantum networks with chiral light--matter interaction in waveguides

    CERN Document Server

    Mahmoodian, Sahand; Sørensen, Anders S

    2016-01-01

    We design and analyze a simple on-chip photonic circuit that can form a universal building block of a quantum network. The circuit consists of a single-photon source, and two quantum emitters positioned in two arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral light--matter interfaces. The efficient chiral light--matter interaction allows the emitters to act as photon sources to herald internode entanglement, and to perform high-fidelity intranode two-qubit gates within a single chip without any need for reconfiguration. We show that by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities ${\\cal F} \\sim 0.998$ achievable in state-of-the-art quantum dot systems.

  1. A new fixation strategy for addressable nano-network building blocks

    KAUST Repository

    Lundberg, Erik P.

    2010-01-01

    Rapid controlled self-assembly makes DNA ideal for building nanostructures. A problem using hybridized intermediates in hierarchic assembly is their thermodynamic lability. We demonstrate a click-fixation technology by which robust hexagonal DNA modules can be made. This principle is applicable to a wide variety of DNA nanoconstructs. © 2010 The Royal Society of Chemistry.

  2. Getting "What Works" Working: Building Blocks for the Integration of Experimental and Improvement Science

    Science.gov (United States)

    Peterson, Amelia

    2016-01-01

    As a systemic approach to improving educational practice through research, "What Works" has come under repeated challenge from alternative approaches, most recently that of improvement science. While "What Works" remains a dominant paradigm for centralized knowledge-building efforts, there is need to understand why this…

  3. The Building Blocks of User-Focused 3D City Models

    Directory of Open Access Journals (Sweden)

    Isabel Sargent

    2015-12-01

    Full Text Available At Ordnance Survey, GB, we have taken an incremental approach to creating our 3D geospatial database. Research at Ordnance Survey has focused not only on methods for deriving 3D data, but also on the needs of the user in terms of the actual tasks they perform. This provides insights into the type and quality of the data required and how its quality is conveyed. In 2007, using task analysis and user-centred design, we derived a set of geometric characteristics of building exteriors that are relevant to one or more use contexts. This work has been valuable for guiding which building data to collect and how to augment our products. In 2014, we began to supply building height attributes as an alpha-release enhancement to our 2D topography data, OS MasterMap® Topography Layer. This is the first in a series of enhancements of our 2D data that forms part of a road map that will ultimately lead to a full range of 3D products. This paper outlines our research journey from the understanding of the key 3D building characteristics to the development of geo-spatial products and the specification of research. There remains a rich seam of research into methods for capturing user-focused, geo-spatial data to enable visualisation and analysis in three dimensions. Because the process of informing and designing a product is necessarily focused on the practicalities of production, storage and distribution, this paper is presented as a case report, as we believe our journey will be of interest to others involved in the capture of 3D buildings at a national level.

  4. A tribo-mechanical analysis of PVA-based building-blocks for implementation in a 2-layered skin model.

    Science.gov (United States)

    Morales Hurtado, M; de Vries, E G; Zeng, X; van der Heide, E

    2016-09-01

    Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dependence of human skin. Thus, blocks of pure PVA and PVA mixed with Cellulose (PVA-Cel) were synthesised via freezing/thawing cycles and their mechanical properties were determined by Dynamic Mechanical Analysis (DMA) and creep tests. The dynamic tests addressed to elastic moduli between 38 and 50kPa for the PVA and PVA-Cel, respectively. The fitting of the creep compliance tests in the SLS model confirmed the viscoelastic behaviour of the samples with retardation times of 23 and 16 seconds for the PVA and PVA-Cel, respectively. Micro indentation tests were also achieved and the results indicated elastic moduli in the same range of the dynamic tests. Specifically, values between 45-55 and 56-81kPa were obtained for the PVA and PVA-Cel samples, respectively. The tribological results indicated values of 0.55 at low forces for the PVA decreasing to 0.13 at higher forces. The PVA-Cel blocks showed lower friction even at low forces with values between 0.2 and 0.07. The implementation of these building blocks in the design of a 2-layered skin model (2LSM) is also presented in this work. The 2LSM was stamped with four different textures and their surface properties were evaluated. The hydration of the 2LSM was also evaluated with a corneometer and the results indicated a gradient of hydration comparable to the human skin. PMID:27236420

  5. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    Science.gov (United States)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. Mark; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-01

    The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation.

  6. BASIС FEATURES OF PREFABRICATED CONSTRUCTION LOW-RISE BUILDINGS OF THE BLOCK-MODULES IN UKRAINE

    OpenAIRE

    DYACHENKO L. Y.; Dyachenko, O. S.; MALASHENKO A. S.

    2016-01-01

    Raising of problem. In the construction market of Ukraine, there appear new materials and technology, which allow significant reducethe time of construction saving high quality of the buildings. Industrial low-rise construction is raising in connection with a number of problems that have arisen in Ukraine: development of construction in suburban areas; the need for the construction in areas of combat operations in the shortest possible time and at minimum cost; of construction inf...

  7. From coronal observations to MHD simulations, the building blocks for 3D models of solar flares

    OpenAIRE

    Janvier, Miho; Aulanier, Guillaume; Demoulin, Pascal

    2015-01-01

    Solar flares are energetic events taking place in the Sun's atmosphere, and their effects can greatly impact the environment of the surrounding planets. In particular, eruptive flares, as opposed to confined flares, launch coronal mass ejections into the interplanetary medium, and as such, are one of the main drivers of space weather. After briefly reviewing the main characteristics of solar flares, we summarize the processes that can account for the build up and release of energy during thei...

  8. Building Blocks for Cognitive Robots: Embodied Simulation and Schemata in a Cognitive Architecture

    OpenAIRE

    Hemion, Nikolas

    2013-01-01

    Building robots with the ability to perform general intelligent action is a primary goal of artificial intelligence research. The traditional approach is to study and model fragments of cognition separately, with the hope that it will somehow be possible to integrate the specialist solutions into a functioning whole. However, while individual specialist systems demonstrate proficiency in their respective niche, current integrated systems remain clumsy in their performance. Recent findings in ...

  9. Computer-aided design of nanostructures from self- and directed-assembly of soft matter building blocks

    Science.gov (United States)

    Nguyen, Trung Dac

    2011-12-01

    Functional materials that are active at nanometer scales and adaptive to environment have been highly desirable for a huge array of novel applications ranging from photonics, sensing, fuel cells, smart materials to drug delivery and miniature robots. These bio-inspired features imply that the underlying structure of this type of materials should possess a well-defined ordering as well as the ability to reconfigure in response to a given external stimulus such as temperature, electric field, pH or light. In this thesis, we employ computer simulation as a design tool, demonstrating that various ordered and reconfigurable structures can be obtained from the self- and directed-assembly of soft matter nano-building blocks such as nanoparticles, polymer-tethered nanoparticles and colloidal particles. We show that, besides thermodynamic parameters, the self-assembly of these building blocks is governed by nanoparticle geometry, the number and attachment location of tethers, solvent selectivity, balance between attractive and repulsive forces, nanoparticle size polydispersity, and field strength. We demonstrate that higher-order nanostructures, i.e. those for which the correlation length is much greater than the length scale of individual assembling building blocks, can be hierarchically assembled. For instance, bilayer sheets formed by laterally tethered rods fold into spiral scrolls and helical structures, which are able to adopt different morphologies depending on the environmental condition. We find that a square grid structure formed by laterally tethered nanorods can be transformed into a bilayer sheet structure, and vice versa, upon shortening, or lengthening, the rod segments, respectively. From these inspiring results, we propose a general scheme by which shape-shifting particles are employed to induce the reconfiguration of pre-assembled structures. Finally, we investigate the role of an external field in assisting the formation of assembled structures that would

  10. Energy Efficiency and Conservation Block Grant (EECBG)- Better Buildings Neighborhood Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Donisha; Harris, Barbara; Blue, Cynthia; Gaskins, Charla

    2014-09-16

    The original BetterBuildings for Greensboro grant program included an outreach campaign to inform 100% of the Greensboro community about the benefits of reducing energy use; a plan to reduce energy consumption in at least 34% of the homes and 10% of the other buildings in the east Greensboro target area; and a plan to create and retain jobs in the energy conservation industry. Under the original program structure the City of Greensboro planned to partner with local and regional lenders to create a diversified portfolio of loan products to meet the needs of various income levels and building types. All participants would participate in the loan programs as a method of meeting the program’s 5 to1 private capital match/leverage requirements. In June 2011 the program was restructured to include partnerships with large commercial and multifamily projects, with these partners providing the greater portion of the required match/leverage. The geographic focus was revised to include reducing energy consumption across the entire City of Greensboro, targeting neighborhoods with high concentrations of low-moderate income households and aged housing stock. The community outreach component used a neighborhood-based approach to train community residents and volunteers to conduct door-to-door neighborhood sweeps; delivered high quality information on available program resources; helped residents to evaluate alternative energy efficiency measures and alternative financing sources; assisted with contractor selections and monitoring/evaluation of work; coordinated activities with BetterBuildings program partners; and collected data required by the Department of Energy. Additionally, HERO (Home Energy Response Officers) delivered intro packages (energy efficiency information and products) to thousands of households at the initial point of contact. A pilot program (Early Adopters) was offered from March 1, 2011 through June 30, 2011. The Early Adopters program was designed to offer

  11. Bark polyflavonoids from Pinus radiata as functional building-blocks for polylactic acid (PLA-based green composites

    Directory of Open Access Journals (Sweden)

    D. E. Garcia

    2016-10-01

    Full Text Available Polylactic acid (PLA was melt-blended with Pinus radiata unmodified and modified (hydroxypropyled bark polyflavonoids in order to use such polyphenolic building-blocks as functional additives for envisaged applications. Rheological, morphological, molecular, thermal, and flexural properties were studied. Polyflavonoids improved blend processability in terms of short-time mixing. Furthermore, hydroxypropylated polyflavonoids improve miscibility in binary and ternary blends. Blend-composition affects crystallization-, melting-, and glass transition-temperature of PLA, as well as thermal resistance, and flexural properties of the blends. Polyflavonoids induced PLA-crystallization, and polymer-chain decomposition. Modified and unmodified bark polyflavonoids from radiata pine can be used successfully in PLA-based green composites beyond the food-packaging applications. The high compatibility between PLA and hydroxypropyled polyflavonoids highlights the potential of such phenolic derivatives for PLA-based material design.

  12. Metal-Free Route for the Synthesis of 4-Acyl-1,2,3-Triazoles from Readily Available Building Blocks.

    Science.gov (United States)

    Thomas, Joice; Goyvaerts, Vince; Liekens, Sandra; Dehaen, Wim

    2016-07-11

    Functionalized 1,2,3-triazole heterocycles have been known for a long time and hold an extraordinary potential in diverse research areas ranging from medicinal chemistry to material science. However, the scope of therapeutically important 1-substituted 4-acyl-1H-1,2,3-triazoles is much less explored, probably due to the lack of synthetic methodologies of good scope and practicality. Here, we describe a practical and efficient one-pot multicomponent reaction for the synthesis of α-ketotriazoles from readily available building blocks such as methyl ketones, N,N-dimethylformamide dimethyl acetal, and organic azides with 100 % regioselectivity. This reaction is enabled by the in situ formation of an enaminone intermediate followed by its 1,3-dipolar cycloaddition reaction with an organic azide. We effectively utilized the developed strategy for the derivatization of various heterocycles and natural products, a protocol which is difficult or impossible to realize by other means. PMID:27172985

  13. Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays

    International Nuclear Information System (INIS)

    We describe ring-cavity surface-emitting lasers (ring-CSELs) based on quantum cascade structures as an elementary building block for two-dimensional quantum cascade laser arrays. The light emitters operate at high temperatures as high as 380 K and above. The devices facilitate a reduction in threshold current density as well as enhanced radiation efficiency in comparison to Fabry–Pérot lasers. Single-mode emission is observed at a wavelength of around 8 µm with a side-mode suppression ratio of 30 dB at room temperature. A tuning of the resonance is achieved by a variation in the grating period or a change in temperature. Phase locking of two ring-CSELs is demonstrated which is based on a direct coupling scheme. Coherent operation of ring-type lasers results in light emission at an identical wavelength and thus in an enhancement of the spectral brightness

  14. Constraining the coordination geometries of lanthanide centers and magnetic building blocks in frameworks: a new strategy for molecular nanomagnets.

    Science.gov (United States)

    Liu, Ke; Zhang, Xuejing; Meng, Xixi; Shi, Wei; Cheng, Peng; Powell, Annie K

    2016-05-01

    Single-molecule magnets (SMMs) and single-chain magnets (SCMs), also known as molecular nanomagnets, are molecular species of nanoscale proportions with the potential for high information storage density and spintronics applications. Metal-organic frameworks (MOFs) are three-dimensional ordered assemblies of inorganic nodes and organic linkers, featuring structural diversity and multiple chemical and physical properties. The concept of using these frameworks as scaffolds in the study of molecular nanomagnets provides an opportunity to constrain the local coordination geometries of lanthanide centers and organize the individual magnetic building blocks (MBBs, including both transition-metal and lanthanide MBBs) into topologically well-defined arrays that represent two key factors governing the magnetic properties of molecular nanomagnets. In this tutorial review, we summarize recent progress in this newly emerging field. PMID:27009851

  15. Gamma activity and radiation dose in concrete building blocks used for construction of dwellings in Jos, Nigeria

    International Nuclear Information System (INIS)

    Radioactivity concentrations of concrete building block samples made and used in Jos (Nigeria)), were determined using a gamma ray spectrometry method. The mean values of the radioactivity concentrations were calculated as 66, 126 and 589 Bq kg-1 for 226Ra, 232Th and 40K, respectively. The radium equivalent activities ranged between 131 and 712 Bq kg-1, with six of the samples exceeding the UNSCEAR reported maximum permissible level of 370 Bq kg-1. The mean radium equivalent activity (292 Bq kg-1) is higher than the values available in the literature for some countries by factors ranging between 2 and 5, a situation that can be traced to the practice of sourcing sand aggregates from mining sites. The indoor annual effective dose for a dwelling of dimension 3.6 x 3.6 x 3.0 m3 was calculated as 0.81 mSv. (authors)

  16. Basic sleep and circadian science as building blocks for behavioral interventions: a translational approach for mood disorders.

    Science.gov (United States)

    Asarnow, Lauren D; Soehner, Adriane M; Harvey, Allison G

    2014-06-01

    Sleep and circadian functioning has been of particular interest to researchers focused on improving treatments for psychiatric illness. The goal of the present paper is to highlight the exciting research that utilizes basic sleep and circadian science as building blocks for intervention in the mood disorders. The reviewed evidence suggests that the sleep and circadian systems are a) disrupted in the mood disorders and linked to symptoms, b) open systems that can be modified, c) the focus of interventions which have been developed to effectively treat sleep disturbance within mood disorders, and d) intimately linked with mood, such that improvements in sleep are associated with improvements in mood. Although significant positive treatment effects are evident, more research is needed to fill the gap in our basic understanding of the relationship between sleep and mood. PMID:24773429

  17. Punctuated Chirality

    Science.gov (United States)

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  18. Punctuated Chirality

    CERN Document Server

    Gleiser, Marcelo; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  19. Synthesis of a Versatile Building Block Combining Cyclen-derivative DO3A with a Polyamine via a Rigid Spacer

    Directory of Open Access Journals (Sweden)

    Zdeněk Trávníček

    2013-11-01

    Full Text Available The five-step synthesis of a polydentate building block combining a cyclen-based macrocycle (DO3A with N-(2-aminoethylpropane-1,3-diamine, which are linked through the xylylen moiety as a rigid C-spacer is described. These two molecular parts were coupled by subsequent bromine atom substitution in 1,4-bis(bromomethylbenzene. First, N-(2-aminoethylpropane-1,3-diamine was protected by phthaloyl moieties and then it was reacted with 1,4-bis(bromomethylbenzene to form (2-phthalimidoethyl(3-phthalimido-prop-1-yl(4-bromomethylbenzylamine (2. This compound underwent a substitution reaction with DO3A in the form of its tert-butyl esters leading to the intermediate 1-{4-[(2-phthalimidoethyl(3-phthalimidoprop-1-ylaminomethyl]phenylmethyl}-4,7,10-tris(t-butoxy-carbonylmethyl-1,4,7,10-tetraazacyclododecane (3. The phthaloyl as well as the t-butyl protecting groups were removed in the next two reaction steps to form the final product 1-{4-[(2-aminoethyl(3-aminoprop-1-ylaminomethyl]phenylmethyl}-4,7,10-tris(carboxy-methyl-1,4,7,10-tetraazacyclododecane (5. The intermediates 1–4 as well as the final product 5 were characterized by elemental analysis, mass spectrometry, and multinuclear (1H and 13C and two-dimensional NMR spectroscopy. The final product 5 could serve as a potential building block in subsequent syntheses of binuclear complexes of lanthanides and/or transition metals.

  20. Multi-component superstructures self-assembled from nanocrystal building blocks

    Science.gov (United States)

    Tan, Rui; Zhu, Hua; Cao, Can; Chen, Ou

    2016-05-01

    More than three decades of intensive study to make high-quality nanocrystals have created a unique toolbox for building multi-component superstructures, which have been recognized as a new generation of metamaterials important to both fundamental sciences and applied technologies. This minireview summarizes recent advances in this exciting field. We will focus our discussion on the synthetic strategies and superstructures of this multi-component metamaterial, and highlight their novel properties and potential applications. Additionally, some perspectives on possible developments in this field are offered at the end of this review. We hope that this minireview will both inform and stimulate research interests for the design and fabrication of these nanocrystal-based multi-component metamaterials for diverse applications in the future.

  1. Chiral morphing

    CERN Document Server

    Chang, N P

    1994-01-01

    Chiral symmetry undergoes a metamorphosis at T.sub(c). For T < T.sub(c), the usual Noether charge, \\Qa, is dynamically broken by the vacuum. Above T.sub(c), chiral symmetry undergoes a subtle change, and the Noether charge \\underline{{\\em morphs}} into \\Qbeta, with the thermal vacuum now becoming invariant under \\Qbeta. This vacuum is however not invariant under the old \\Qa transformations. As a result, the pion remains strictly massless at high T. The pion propagates in the early universe with a halo. New order parameters are proposed to probe the structure of the new thermal vacuum.

  2. Chiral transparency

    International Nuclear Information System (INIS)

    Color transparency is the vanishing of initial and final state interactions, predicted by QCD to occur in high momentum transfer quasielastic nuclear reactions. For specific reactions involving nucleons, the initial and final state interactions are expected to be dominated by exchanges of pions. We argue that these interactions are also suppressed in high momentum transfer nuclear quasielastic reactions; this is open-quotes chiral transparency.close quotes We show that studies of the e3He→e'Δ++nn reaction could reveal the influence of chiral transparency. copyright 1997 The American Physical Society

  3. Metal-containing polymers: building blocks for functional (nano)materials.

    Science.gov (United States)

    Wang, Xiaosong; McHale, Ronan

    2010-02-16

    The incorporation of metallic units into polymer chains has emerged as a promising route towards functional metal-containing (nano)materials. The resulting polymers possess rich functions derived from their metallic elements, such as redox, optical, catalytic and magnetic properties. In addition, the directional and dynamic nature of metal coordination interactions provides further variables for the exploration of novel materials with designed nanostructures. These types of polymers can be synthesized through direct metal-ligand coordination or chain polymerization of metal containing monomers. Depending on the polymerization techniques and starting components, the resulting polymers, akin to their organic counterparts, can be produced in the form of insoluble networks, processible chain structures, gels or colloids. Research into this rising multidisciplinary subject has benefited from recent progress in several related areas such as supramolecular chemistry, colloidal chemistry etc., with the combination of the relative merits of each ensuring further developments in each individual discipline. For example, as a result of studies into organometallic block copolymers self-assembly behavior, living supramolecular polymerization has been unprecedentedly realized for the architectural design of micelles (see image on the right). Nevertheless, the field is still in a developmental stage and offers ample opportunities for fundamental research, as well as material exploration. In this Feature Article, we intend to overview the field with a brief survey of recent literature. PMID:21590911

  4. Building non-tortuous ion-conduction pathways using self-assembled block copolymers

    Science.gov (United States)

    Kim, Onnuri; Park, Moon Jeong

    Ion-containing polymers with self-assembled morphologies are becoming important ingredients of a wide range of electrochemical devices such as lithium-ion batteries, fuel cells and electroactive actuators. Although several studies have reported the relationship between morphologies and ion transport properties of such polymers, the most of quantitative analysis have been limited to two-dimensional morphologies as they occupy a large window of the phase diagrams. In present study, we investigated the effects of morphology on the ion transport efficiency with a focus on three-dimensional symmetry. A range of three-dimensional self-assembled morphologies, i.e., ill-defined cubic, orthorhombic network (O70) , and face-centered cubic phases (fcc) were achieved for a single sulfonated block copolymer upon the addition of non-stoichiometric ionic liquids. The type of three-dimensional lattice was found out to play a crucial role in determining the ion transport properties of composite membranes, where the most efficient ion-conduction was demonstrated for fcc phases with lowest tortuosity of 1 over orthorhombic networks phases (tortuosity:1.5). This intriguing result suggests a new avenue to designing polymer electrolytes with improved transport properties.

  5. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  6. Heterometallic Zn6Ti2 Building Block Persistent in Metal-organic Frameworks Based on Asymmetrically Substituted Dicarboxylate Ligands

    International Nuclear Information System (INIS)

    The Zn6Ti2 SBU appears to be a persistent and preferably formed building block when asymmetrically substituted, linear dicarboxylate ligands are used. Despite the complexity of the composition and connectivity, the new SBU possesses the nodal geometry of distorted octahedron leading to a simple, 6-connected topology. Metal-organic frameworks (MOFs) are coordination-based polymeric networks often noted for their high crystallinity and high level of porosity. Although many MOFs lack the chemical stabilities under ambient conditions, the crystalline porous materials enjoy the status as promising candidates for numerous practical applications thanks to the highly versatile nature of their compositions and structures. The almost infinite variations in the structures of MOFs are governed by two factors, the geometry of secondary building units (SBUs) and organic ligands. A high level of uncertainty is almost always associated with the former, while the latter, in structure-point of view, largely remains invariant during the synthesis of MOFs. Therefore identifying a new SBU with a well-defined geometry is of a paramount importance in the targeted synthesis of new MOFs. In this context, exploiting two different metals with dissimilar coordination behavior would be highly beneficial because it can significantly deepen the structural chemistry of MOFs. It is, however, a challenging task

  7. Nanoscale building blocks in a novel lithium arsenotungsten bronze: Synthesis and characterization

    International Nuclear Information System (INIS)

    We report on a novel compound Li3AsW7O25 obtained by solid-state reaction and characterized by diffraction and spectroscopic methods. The bronze-type compound crystallizes in the orthorhombic space group Pbca with a=724.38(3) pm, b=1008.15(4) pm, c=4906.16(17) pm and Z=8. The structure is built up by chains of WO6 octahedra interconnected by AsO4 tetrahedra and WO6 octahedra forming a polyhedral arrangement as seen in intergrowth tungsten bronzes. The X-ray single crystal structure refinement allows solving the complex arsenotungstate framework. The powder neutron diffraction data analysis locates the lithium atoms. Thermal analysis showed that Li3AsW7O25 is stable up to its melting at 1135(3) K followed by a decomposition at 1182(5) K. The Kubelka–Munk treatment of the UV–vis spectrum revealed a wide band gap in the range of 2.84–3.40 eV depending on the presumed electron transition type. - Graphical abstract: Crystal structure of Li3AsW7O25 showing different schematic components. - Highlights: • A report on a novel compound Li3AsW7O25 obtained by solid-state reaction. • Chains and nano-blocks of WO6 octahedra and AsO4 tetrahedra formed a structure like intergrowth tungsten bronzes. • X-ray diffraction allowed solving the complex arsenotungstate framework. • Powder neutron diffraction data analysis locates the lithium atoms. • UV–vis spectrum revealed the band-gap

  8. Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors

    Science.gov (United States)

    Yang, Lei; Chen, Yusheng; Chen, Shangshang; Dong, Tao; Deng, Wei; Lv, Lei; Yang, Saina; Yan, He; Huang, Hui

    2016-08-01

    Two analogous dimer and tetramer compounds, SF-PDI2 and SF-PDI4, were designed, theoretically calculated, synthesized, and developed as electron acceptors for organic solar cells. The effects of the number of the electron deficient building blocks on the optical absorption, energy levels, charge transport, morphology, crystallinity, and photovoltaic performance of the molecules were investigated. In combination with two different donors, PTB7-Th and PffBT4T-2OD, the results showed that increasing the numbers of PDI building blocks is beneficial to photovoltaic performance and leads to efficiency over 5%.

  9. Methyl chloride via oxyhydrochlorination of methane: A building block for chemicals and fuels from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Benson, R.L.; Brown, S.S.D.; Ferguson, S.P.; Jarvis, R.F. Jr. [Dow Corning Corp., Carrollton, KY (United States)

    1995-12-31

    The objectives of this program are to (a) develop a process for converting natural gas to methyl chloride via an oxyhydrochlorination route using highly selective, stable catalysts in a fixed-bed, (b) design a reactor capable of removing the large amount of heat generated in the process so as to control the reaction, (c) develop a recovery system capable of removing the methyl chloride from the product stream and (d) determine the economics and commercial viability of the process. The general approach has been as follows: (a) design and build a laboratory scale reactor, (b) define and synthesize suitable OHC catalysts for evaluation, (c) select first generation OHC catalyst for Process Development Unit (PDU) trials, (d) design, construct and startup PDU, (e) evaluate packed bed reactor design, (f) optimize process, in particular, product recovery operations, (g) determine economics of process, (h) complete preliminary engineering design for Phase II and (i) make scale-up decision and formulate business plan for Phase II. Conclusions regarding process development and catalyst development are presented.

  10. 5,10-linked naphthodithiophenes as the building block for semiconducting polymers

    International Nuclear Information System (INIS)

    We present new semiconducting polymers incorporating naphtho[1, 2-b:5, 6-b′] dithiophene (NDT3) and naphtho[2, 1-b:6, 5-b′] dithiophene (NDT4), which are linked at the naphthalene positions, in the polymer backbone. It is interesting that the trend in the ordering structure and thus charge transport properties are quite different from what were observed in the isomeric polymers where the NDT3 and NDT4 cores are linked at the thiophene α-positions. In the thiophene-linked NDT system, the NDT3-based polymer (PNDT3BT) gave the better ordering in thin films and thus the high charge carrier mobility compared to the NDT4-based polymer (PNDT4BT). In the meantime, in the naphthalene-linked NDT system, the NDT4-based polymer (PNDT4iBT) provided the superior properties. Considering that PNDT4iBT has relatively low highest occupied molecular orbital (HOMO) energy level (−5.2 eV) and moderately high mobilities in the order of 10−2 cm2 V−1 s−1, the NDT4 core, when linked at the naphthalene positions, can be a good building unit for the development of high-performance semiconducting polymers for both organic field-effect transistors and photovoltaic devices. (papers)

  11. Winter energy behaviour in multi-family block buildings in a temperate-cold climate in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Filippin, C. [CONICET - CC302, Santa Rosa, 6300 La Pampa (Argentina); Larsen, S. Flores [CONICET - CC302, Santa Rosa, 6300 La Pampa (Argentina); INENCO - Instituto de Investigaciones en Energias No Convencionales, U.N.Sa., CONICET, Avda. Bolivia 5150 - CP 4400, Salta Capital (Argentina); Mercado, V. [LAHV-Laboratorio de Ambienet Humano y Vivienda (INCIHUSA-CCT-CONICET) (Argentina)

    2011-01-15

    This paper analyzes the thermal and energy behaviour of apartments in three-story block buildings located along a NE-SW axis (azimuth = 120 ) in a temperate-cold climate (latitude: 36 57'; longitude: 64 27') in the city of Santa Rosa, La Pampa, central Argentina. Four apartments had been monitored during May and June 2009. Three of them are located in Block 126. Two of these apartments face South: 15 and 23 on the SE end, ground and first floor, respectively; 18 faces N on the second floor. Finally apartment, 12 is located in Block 374, on the first floor, faces N and shows a carpentry-closed balcony. The purpose of this work is - to study the evolution of the indoor temperature in each apartment; to analyze energy consumption and comfort conditions; to study energy potential and energy intervention in order to reduce energy consumption; to analyze bioclimatic alternatives feasibility and the possibility to extrapolate results to all blocks. On the basis of the analysis of natural gas historical consumption records, results showed that regarding heating energy consumption during the period May-June, Apartment 12, facing N, with its only bedroom facing NW and its carpentry-closed, transparent glass balcony, presented a mean temperature of 21.2 C, using a halogen heater for 6 h/day between 9 pm and 2 am (0.16 kWh/day/m{sup 2}). Apartment 15, on the SE end, first floor of the block consumed 22.5 kWh/day (0.43 kWh/day/m{sup 2}) (mean temperature = 22.2 C). Apartment 23, located on the second and top floor (on top of Apartment 15) with higher energy loss, consumed 28 kWh/day (0.54 kWh/day/m{sup 2}) (mean temperature 23.7 C). Apartment 18, also on the second floor and facing N, located in the centre and with its only bedroom facing SE, consumed 18.8 kWh/day (0.48 kWh/day/m{sup 2}) (mean temperature = 22.3 C). Apartment 23, with higher thermal loss through its envelope, but with heat transfer from the apartment located below, is the one that showed the highest

  12. Fusion of aerial images with mean shift-based upsampled elevation data for improved building block classification

    Science.gov (United States)

    Gyftakis, S.; Tsenoglou, T.; Bratsolis, E.; Charou, Eleni; Vassilas, N.

    2014-10-01

    Nowadays there is an increasing demand for detailed 3D modeling of buildings using elevation data such as those acquired from LiDAR airborne scanners. The various techniques that have been developed for this purpose typically perform segmentation into homogeneous regions followed by boundary extraction and are based on some combination of LiDAR data, digital maps, satellite images and aerial orthophotographs. In the present work, our dataset includes an aerial RGB orthophoto, a DSM and a DTM with spatial resolutions of 20cm, 1m and 2m respectively. Next, a normalized DSM (nDSM) is generated and fused with the optical data in order to increase its resolution to 20cm. The proposed methodology can be described as a two-step approach. First, a nearest neighbor interpolation is applied on the low resolution nDSM to obtain a low quality, ragged, elevation image. Next, we performed a mean shift-based discontinuity preserving smoothing on the fused data. The outcome is on the one hand a more homogeneous RGB image, with smoothed terrace coloring while at the same time preserving the optical edges and on the other hand an upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. Besides the apparent visual assessment of the increased accuracy of building boundaries, the effectiveness of the proposed method is demonstrated using the processed dataset as input to five supervised classification methods. The performance of each method is evaluated using a subset of the test area as ground truth. Comparisons with classification results obtained with the original data demonstrate that preprocessing the input dataset using the mean shift algorithm improves significantly the performance of all tested classifiers for building block extraction.

  13. Lightweight concrete blocks with EVA recycled aggregate: a contribution to the thermal efficiency of building external walls

    Directory of Open Access Journals (Sweden)

    De Melo, A. B.

    2013-12-01

    Full Text Available The regions with lots of shoe production suffer environmental impacts from waste generation during manufacturing of insoles and outsoles. Research conducted in Brazil has demonstrated the technical feasibility to recycle these wastes, especially Ethylene Vinyl Acetate (EVA, as lightweight aggregate, in the production of non-structural cement blocks. This article presents an evaluation of thermal performance with measurements of temperature variation in mini walls (1 m2 built with different materials, including various kinds of EVA block and ceramic bricks. Tests have shown efficient thermal performance for masonry blocks with EVA. These results and supplementary estimates contribute to add value to the EVA block, considering that there are good expectations that the component, with the new geometry proposed, can contribute to the energy efficiency of buildings, highlighting its suitability to most Brazilian bioclimatic regions.Las regiones con una gran producción de calzado sufren impactos ambientales derivados de la generación de residuos durante la producción de plantillas y suelas. Investigaciones realizadas en Brasil han demostrado la viabilidad técnica para el reciclaje de estos residuos, especialmente el Etileno Vinil Acetato (EVA, como agregado ligero en la fabricación de bloques de hormigón no estructurales. Este trabajo presenta una evaluación del rendimiento térmico, con mediciones de la variación de la temperatura en pequeñas paredes (1 m2 construidas con diversos materiales, incluyendo algunos tipos de bloques EVA y ladrillos de cerámica. Las pruebas demostraron actuaciones térmicas eficientes para las muestras con bloques EVA. Estos resultados y cálculos adicionales contribuyen con un aporte de valor añadido al bloque EVA, considerando que existen buenas expectativas del componente, con una nueva propuesta de geometría, pudiendo contribuir a la eficiencia energética de edificios, especialmente por su adecuación a la

  14. Chiral symmetry

    International Nuclear Information System (INIS)

    We present many varied chiral symmetry models at the quark level which consistently describe strong interaction hadron dynamics. The pattern that emerges is a nonstrange current quark mass scale mcur ≅ (34-69) MeV and a current quark mass ratio (ms/m)cur ≅ 5-6 along with no strange quark content in nucleons. (orig./WL)

  15. Enabling the 2nd Generation in Space: Building Blocks for Large Scale Space Endeavours

    Science.gov (United States)

    Barnhardt, D.; Garretson, P.; Will, P.

    Today the world operates within a "first generation" space industrial enterprise, i.e. all industry is on Earth, all value from space is from bits (data essentially), and the focus is Earth-centric, with very limited parts of our population and industry participating in space. We are limited in access, manoeuvring, on-orbit servicing, in-space power, in-space manufacturing and assembly. The transition to a "Starship culture" requires the Earth to progress to a "second generation" space industrial base, which implies the need to expand the economic sphere of activity of mankind outside of an Earth-centric zone and into CIS-lunar space and beyond, with an equal ability to tap the indigenous resources in space (energy, location, materials) that will contribute to an expanding space economy. Right now, there is no comfortable place for space applications that are not discovery science, exploration, military, or established earth bound services. For the most part, space applications leave out -- or at least leave nebulous, unconsolidated, and without a critical mass -- programs and development efforts for infrastructure, industrialization, space resources (survey and process maturation), non-traditional and persistent security situational awareness, and global utilities -- all of which, to a far greater extent than a discovery and exploration program, may help determine the elements of a 2nd generation space capability. We propose a focus to seed the pre-competitive research that will enable global industry to develop the necessary competencies that we currently lack to build large scale space structures on-orbit, that in turn would lay the foundation for long duration spacecraft travel (i.e. key technologies in access, manoeuvrability, etc.). This paper will posit a vision-to-reality for a step wise approach to the types of activities the US and global space providers could embark upon to lay the foundation for the 2nd generation of Earth in space.

  16. Energy Efficiency and Conservation Block Grant (EECBG): Better Buildings Neighborhood Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Kat A.

    2014-01-10

    The Neighbor to Neighbor Energy Challenge (N2N) brought together a consortium of 14 leading clean energy rural, suburban, and low income communities throughout Connecticut. N2N was awarded $4.2 million from the U.S. Department of Energy (DOE) competitive BetterBuildings Neighborhood Program on August 10, 2010 to run a two-year pilot program (plus one year of transition and evaluation) (Award No. EMCBC- 00969-10). N2N tested innovative program models and hypotheses for improving Connecticut’s existing residential energy efficiency programs that are overseen by the ratepayer fund board and administered by CT utilities. N2N’s original goal was to engage 10 percent of households in participating communities to reduce their energy usage by 20 percent through energy upgrades and clean energy measures. N2N planned for customers to complete more comprehensive whole-home energy efficiency and clean energy measures and to achieve broader penetration than existing utility-administered regulated programs. Since this was an ARRA award, we report the following figures on job creation in Table 1. Since N2N is not continuing in its current form, we do not provide figures on job retention. Table 1 N2N Job Creation by Quarter Jobs Created 2010 Q4 6.65 2011 Q1 7.13 2011 Q2 4.98 2011 Q3 9.66 2011 Q4 5.43 2012 Q1 11.11 2012 Q2 6.85 2012 Q3 6.29 2012 Q4 6.77 2013 Q1 5.57 2013 Q2 8.35 2013 Q3 6.52 Total 85.31 The N2N team encountered several gaps in the existing efficiency program performance that hindered meeting N2N’s and DOE’s short-term program goals, as well as the State of Connecticut’s long-term energy, efficiency, and carbon reduction goals. However, despite the slow program start, N2N found evidence of increasing upgrade uptake rates over time, due to delayed customer action of one to two years from N2N introduction to completion of deeper household upgrades. Two main social/behavioral principles have contributed to driving deeper upgrades in CT: 1. Word of mouth

  17. A supramolecular helix that disregards chirality

    Science.gov (United States)

    Roche, Cécile; Sun, Hao-Jan; Leowanawat, Pawaret; Araoka, Fumito; Partridge, Benjamin E.; Peterca, Mihai; Wilson, Daniela A.; Prendergast, Margaret E.; Heiney, Paul A.; Graf, Robert; Spiess, Hans W.; Zeng, Xiangbing; Ungar, Goran; Percec, Virgil

    2016-01-01

    The functions of complex crystalline systems derived from supramolecular biological and non-biological assemblies typically emerge from homochiral programmed primary structures via first principles involving secondary, tertiary and quaternary structures. In contrast, heterochiral and racemic compounds yield disordered crystals, amorphous solids or liquids. Here, we report the self-assembly of perylene bisimide derivatives in a supramolecular helix that in turn self-organizes in columnar hexagonal crystalline domains regardless of the enantiomeric purity of the perylene bisimide. We show that both homochiral and racemic perylene bisimide compounds, including a mixture of 21 diastereomers that cannot be deracemized at the molecular level, self-organize to form single-handed helical assemblies with identical single-crystal-like order. We propose that this high crystalline order is generated via a cogwheel mechanism that disregards the chirality of the self-assembling building blocks. We anticipate that this mechanism will facilitate access to previously inaccessible complex crystalline systems from racemic and homochiral building blocks.

  18. Enzymatic cascades for the regio- and stereoselective synthesis of chiral amines

    Directory of Open Access Journals (Sweden)

    Elaine O'Reilly

    2015-03-01

    Full Text Available Significant advancements in protein engineering and DNA technology have seen biocatalytic transformations take the place of traditional chemical manipulations in both academia and industry for the preparation of active pharmaceutical ingredients (APIs and other medicinally relevant compounds. However, despite the large repertoire of commercially available biocatalysts that are readily accessible, enzymes which mediate the formation of C–C bonds and those that enable convergent synthesis remain largely undeveloped. To expand the scope of biocatalytic retrosynthesis and enable it to complement traditional chemical retrosynthesis it is essential to develop a ‘toolbox’ of biocatalysts which build molecular complexity. Of particular interest is the development of one-pot enzymatic cascades for the synthesis of functionalised, chiral building blocks without the need for protecting group manipulations or harsh reaction conditions. Highly regio- and stereoselective chemoenzymatic cascades have been developed for the synthesis of a range of chiral amines employing ω-transaminases and monoamine oxidase variants.

  19. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures.

    Science.gov (United States)

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  20. Synthesis of a Hoechst 32258 analogue amino acid building block for direct incorporation of a fluorescent, high-affinity DNA binding motif into peptides

    DEFF Research Database (Denmark)

    Behrens, C; Harrit, N; Nielsen, P E

    2001-01-01

    The synthesis of a new versatile "Hoechst 33258-like" Boc-protected amino acid building block for peptide synthesis is described. It is demonstrated that this new ligand is an effective mimic of Hoechst 33258 in terms of DNA affinity and sequence specificity. Furthermore, this minor groove binder...

  1. Novel branched isocyanides as useful building blocks in the Passerini-amine deprotection-acyl migration (PADAM) synthesis of potential HIV-1 protease inhibitors

    OpenAIRE

    Gravestock, David; Lourens, Anna C. U.; Rousseau, Amanda L.; Hoppe, Heinrich C; Nkabinde, Lindiwe A.; Bode, Moira L.

    2012-01-01

    Novel branched isocyanides have been prepared from L-serine and used as building blocks in the Passerini- amine deprotection-acyl migration (PADAM) sequence for the preparation of compounds with activity against HIV-1 protease. http://www.journals.elsevier.com/tetrahedron-letters/ The authors wish to thank the Innovation Fund (now the Technology Innovation Agency, South Africa) for financial support

  2. The Building Blocks Collaborative: advancing a life course approach to health equity through multi-sector collaboration.

    Science.gov (United States)

    Shrimali, Bina Patel; Luginbuhl, Jessica; Malin, Christina; Flournoy, Rebecca; Siegel, Anita

    2014-02-01

    Too many children are born into poverty, often living in disinvested communities without adequate opportunities to be healthy and thrive. Two complementary frameworks-health equity and life course-propose new approaches to these challenges. Health equity strategies seek to improve community conditions that influence health. The life course perspective focuses on key developmental periods that can shift a person's trajectory over the life course, and highlights the importance of ensuring that children have supports in place that set them up for long-term success and health. Applying these frameworks, the Alameda County Public Health Department launched the Building Blocks Collaborative (BBC), a countywide multi-sector initiative to engage community partners in improving neighborhood conditions in low-income communities, with a focus on young children. A broad cross-section of stakeholders, called to action by the state of racial and economic inequities in children's health, came together to launch the BBC and develop a Bill of Rights that highlights the diverse factors that contribute to children's health. BBC partners then began working together to improve community conditions by learning and sharing ideas and strategies, and incubating new collaborative projects. Supportive health department leadership; dedicated staff; shared vision and ownership; a flexible partnership structure; and broad collective goals that build on partners' strengths and priorities have been critical to the growth of the BBC. Next steps include institutionalizing BBC projects into existing infrastructure, ongoing partner engagement, and continued project innovation-to achieve a common vision that all babies have the best start in life. PMID:23807714

  3. Punctuated Chirality

    OpenAIRE

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high int...

  4. Chiral streamers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Dandan; Cao, Xin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, Xinpei, E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Comonwealth Scientific and Industrial Research Organization, P.O. Box 218, Sydney, New South Wales 2070 (Australia)

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  5. Chiral streamers

    Science.gov (United States)

    Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya Ken

    2015-10-01

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  6. Synthetic Approaches to L-Iduronic Acid and L-Idose: Key Building Blocks for the Preparation of Glycosaminoglycan Oligosaccharides.

    Science.gov (United States)

    Mohamed, Shifaza; Ferro, Vito

    2015-01-01

    L-Iduronic acid (IdoA) is an important monosaccharide component of glycosaminoglycans (GAGs) such as heparin, heparan sulfate and dermatan sulfate. GAGs are complex, highly sulfated polysaccharides that mediate a multitude of physiological and pathological processes via their interactions with a range of diverse proteins. The main challenge in the synthesis of GAG oligosaccharides is the efficient gram-scale preparation of IdoA building blocks since neither IdoA nor L-idose is commercially available or readily accessible from natural sources. In this review, the different synthetic approaches for the preparation of IdoA and its derivatives, including L-idose, are presented and discussed. Derivatives of the latter are often used in GAG synthesis and are elaborated to IdoA via selective oxidation at C-6 after incorporation into a GAG chain. Particular focus will be given to the preparation of IdoA synthons most commonly used for GAG oligosaccharide synthesis, and on the progress made since the last systematic review in this area. PMID:26613814

  7. W{sub n}S{sub m}-clusters: Possible building blocks for new nano-materials?

    Energy Technology Data Exchange (ETDEWEB)

    Westhaeuser, Wilko; Mangler, Tobias; Fischer, Tim; Gantefoer, Gerd [University of Konstanz (Germany); Gemming, Sibylle; Seifert, Gotthard [University of Dresden (Germany)

    2008-07-01

    Since bulk WS{sub 2} forms layered structures similar to bulk graphite, this material might also built up stable cage-like fullerene structures. Large graphite-like structures (multiwall fullerenes, nanotubes) have been found in TEM experiments, but so far no anorganic fullerenes have been detected in the size regime of C{sub 60}. Thus, we started a search for WS{sub 2} fullerenes by combining gas phase and deposition experiments. In the gas phase, we identified a variety of different structures (nanowires, nanoplatelets) in the size regime up to 30 metal atoms. To investigate the suitability as building blocks, in a first attempt small size-selected W{sub n}S{sub m}-clusters were soft-landed on Ag- and Si-substrates at ultrahigh vacuum conditions. These samples were analysed via HREELS and XPS. The HREELS spectra are different for the different cluster sizes indicating that these clusters survived the soft-landing on the substrate and do not coalesce to bulk-like structures.

  8. Theoretical insights into the photo-protective mechanisms of natural biological sunscreens: building blocks of eumelanin and pheomelanin.

    Science.gov (United States)

    Marchetti, Barbara; Karsili, Tolga N V

    2016-02-01

    Eumelanin (EM) and pheomelanin (PM) are ubiquitous in mammalian skin and hair--protecting against harmful radiation from the sun. Their primary roles are to absorb solar radiation and efficiently dissipate the excess excited state energy in the form of heat without detriment to the polymeric structure. EU and PM exist as polymeric chains consisting of exotic arrangements of functionalised heteroaromatic molecules. Here we have used state-of-the-art electronic structure calculations and on-the-fly surface hopping molecular dynamics simulations to study the intrinsic deactivation paths of various building blocks of EU and PM. Ultrafast excited state decay, via electron-driven proton transfer (in EU and PM) and proton-transfer coupled ring-opening (in PM) reactions, have been identified to proceed along hitherto unknown charge-separated states in EU and PM oligomers. These results shed light on the possible relaxation pathways that dominate the photochemistry of natural skin melanins. Extrapolation of such findings could provide a gateway into engineering more effective molecular constituents in commercial sunscreens--with reduced phototoxicity. PMID:26753793

  9. Creating functional sophistication from simple protein building blocks, exemplified by factor H and the regulators of complement activation.

    Science.gov (United States)

    Makou, Elisavet; Herbert, Andrew P; Barlow, Paul N

    2015-10-01

    Complement control protein modules (CCPs) occur in numerous functionally diverse extracellular proteins. Also known as short consensus repeats (SCRs) or sushi domains each CCP contains approximately 60 amino acid residues, including four consensus cysteines participating in two disulfide bonds. Varying in length and sequence, CCPs adopt a β-sandwich type fold and have an overall prolate spheroidal shape with N- and C-termini lying close to opposite poles of the long axis. CCP-containing proteins are important as cytokine receptors and in neurotransmission, cell adhesion, blood clotting, extracellular matrix formation, haemoglobin metabolism and development, but CCPs are particularly well represented in the vertebrate complement system. For example, factor H (FH), a key soluble regulator of the alternative pathway of complement activation, is made up entirely from a chain of 20 CCPs joined by short linkers. Collectively, therefore, the 20 CCPs of FH must mediate all its functional capabilities. This is achieved via collaboration and division of labour among these modules. Structural studies have illuminated the dynamic architectures that allow FH and other CCP-rich proteins to perform their biological functions. These are largely the products of a highly varied set of intramolecular interactions between CCPs. The CCP can act as building block, spacer, highly versatile recognition site or dimerization mediator. Tandem CCPs may form composite binding sites or contribute to flexible, rigid or conformationally 'switchable' segments of the parent proteins. PMID:26517887

  10. Self-organizing p-quinquephenyl building blocks incorporating lateral hydroxyl and methoxyl groups into supramolecular nano-assemblies.

    Science.gov (United States)

    Lu, Zhaoyang; Zhong, Keli; Liu, Yang; Li, Zhaohua; Chen, Tie; Jin, Long Yi

    2016-05-01

    The self-assembling behavior of coil-rod-coil molecules 1a, 1b, and 2a, 2b was investigated using DSC, POM, SAXS, and AFM in bulk and aqueous solutions. These molecules contain p-quinquephenyl groups as rod segments incorporating lateral hydroxyl or methoxyl groups in the center positions and oligo(ethylene oxide)s as the coil segments. Molecules 1a and 1b, with lateral methoxyl groups in the rod segments, self-assemble into oblique columnar structures in the crystalline phase and transform into nematic phases. On the other hand, molecules 2a and 2b, with hydroxyl groups in the center of their rod segments, self-organize into hexagonal perforated lamellar and oblique columnar nano-structures in the crystalline and liquid crystalline phase, respectively. In aqueous solutions, these molecules aggregate into nano-ribbons and vesicles, depending on their lateral groups and oligo(ethylene oxide) chain lengths. These results imply that the lateral methoxyl or hydroxyl groups, present in the center of the rod segments, significantly influence the formation of various supramolecular nano-structures in the bulk state and in aqueous solution. This is achieved via tuning of the non-covalent interactions of the rod building blocks. PMID:27025276

  11. A polypeptide "building block" for the β-trefoil fold identified by "top-down symmetric deconstruction".

    Science.gov (United States)

    Lee, Jihun; Blaber, Sachiko I; Dubey, Vikash K; Blaber, Michael

    2011-04-15

    Fibroblast growth factor-1, a member of the 3-fold symmetric β-trefoil fold, was subjected to a series of symmetric constraint mutations in a process termed "top-down symmetric deconstruction." The mutations enforced a cumulative exact 3-fold symmetry upon symmetrically equivalent positions within the protein and were combined with a stability screen. This process culminated in a β-trefoil protein with exact 3-fold primary-structure symmetry that exhibited excellent folding and stability properties. Subsequent fragmentation of the repeating primary-structure motif yielded a 42-residue polypeptide capable of spontaneous assembly as a homotrimer, producing a thermostable β-trefoil architecture. The results show that despite pronounced reduction in sequence complexity, pure symmetry in the design of a foldable, thermostable β-trefoil fold is possible. The top-down symmetric deconstruction approach provides a novel alternative means to successfully identify a useful polypeptide "building block" for subsequent "bottom-up" de novo design of target protein architecture. PMID:21315087

  12. NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A-T phosphoramidite building blocks.

    Science.gov (United States)

    Schmidtgall, Boris; Höbartner, Claudia; Ducho, Christian

    2015-01-01

    Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T-T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X-T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A-T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues. PMID:25670992

  13. Deprotonated Water Dimers: The Building Blocks of Segmented Water Chains on Rutile RuO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Rentao; Cantu Cantu, David; Glezakou, Vassiliki Alexandra; Lyubinetsky, Igor; Rousseau, Roger J.; Dohnalek, Zdenek

    2015-10-15

    Despite the importance of RuO2 in photocatalytic water splitting and catalysis in general, the interactions of water with even its most stable (110) surface are not well-understood. In this study we employ a combination of high-resolution scanning tunneling microscopy imaging with density functional theory based ab initio molecular dynamics, and we follow the formation and binding of linear water clusters on coordinatively unsaturated ruthenium rows. We find that clusters of all sizes (dimers, trimers, tetramers, extended chains) are stabilized by donating one proton per every two water molecules to the surface bridge bonded oxygen sites, in contrast with water monomers that do not show a significant propensity for dissociation. The clusters with odd number of water molecules are less stable than the clusters with even number, and are generally not observed under thermal equilibrium. For all clusters with even numbers, the dissociated dimers represent the fundamental building blocks with strong intra-dimer hydrogen bonds and only very weak inter-dimer interactions resulting in segmented water chains.

  14. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles.

    Science.gov (United States)

    Zhou, Yunlong; Marson, Ryan L; van Anders, Greg; Zhu, Jian; Ma, Guanxiang; Ercius, Peter; Sun, Kai; Yeom, Bongjun; Glotzer, Sharon C; Kotov, Nicholas A

    2016-03-22

    Chiroptical materials found in butterflies, beetles, stomatopod crustaceans, and other creatures are attributed to biocomposites with helical motifs and multiscale hierarchical organization. These structurally sophisticated materials self-assemble from primitive nanoscale building blocks, a process that is simpler and more energy efficient than many top-down methods currently used to produce similarly sized three-dimensional materials. Here, we report that molecular-scale chirality of a CdTe nanoparticle surface can be translated to nanoscale helical assemblies, leading to chiroptical activity in the visible electromagnetic range. Chiral CdTe nanoparticles coated with cysteine self-organize around Te cores to produce helical supraparticles. d-/l-Form of the amino acid determines the dominant left/right helicity of the supraparticles. Coarse-grained molecular dynamics simulations with a helical pair-potential confirm the assembly mechanism and the origin of its enantioselectivity, providing a framework for engineering three-dimensional chiral materials by self-assembly. The helical supraparticles further self-organize into lamellar crystals with liquid crystalline order, demonstrating the possibility of hierarchical organization and with multiple structural motifs and length scales determined by molecular-scale asymmetry of nanoparticle interactions. PMID:26900920

  15. Relationship Building Blocks

    Science.gov (United States)

    Santabarbara, Todd; Erbe, Ryan; Cooper, Scott

    2009-01-01

    Intimate or romantic relationships for young people today play an integral role in their health and quality of life. Between the ages of 11 and 13 students become more interested in the opposite sex and as a result they begin to develop more intimate relationships. Around this age students are learning to deal with these feelings of attraction and…

  16. Building blocks of turbulence

    CERN Document Server

    Avila, Marc; Roland, Nicolas; Hof, Bjoern

    2013-01-01

    Turbulence is ubiquitous in nature and although the equations governing fluid flow are well known, there are no analytical expressions that describe the complexity of turbulent motion. The nonlinear nature and the large number of spatial and temporal degrees of freedom turn this into one of the most challenging problems in mathematics and the physical sciences alike. We here report the discovery of unstable localised solutions for pipe flow that share key spatial characteristics of turbulence in the intermittent regime. While their temporal dynamics are very simple, much of the spatial complexity found in low Reynolds number turbulence is already encoded in them. We furthermore demonstrate how turbulent transients arise from one such solution branch. Our observations shed light on the origin of turbulence and link the localised structures commonly observed in turbulent flows to invariant solutions of the Navier-Stokes equations.

  17. Genetic Building Blocks

    Science.gov (United States)

    Roberg, Ezra

    2004-01-01

    The "Central Dogma" of genetics states that one gene, located in a DNA molecule, is ultimately translated into one protein. As important as this idea is, many teachers shy away from teaching the actual mechanism of gene translation, and many students find the concepts abstract and inaccessible. This article describes a unit, called Genetics…

  18. Nanoparticle building blocks

    Directory of Open Access Journals (Sweden)

    Vincent M. Rotello

    2001-11-01

    Full Text Available Monolayer-protected clusters (MPCs and mixed monolayer-protected clusters (MMPCs2 provide crucial tools for bridging the gap between ‘bottomup’ synthetic methods and ‘top-down’ fabrication. MPCs are core-shell type systems that feature a metallic or semiconductor core functionalized with a self-assembled monolayer (SAM. This monolayer provides two key functions. Firstly preventing core-core contact that would lead to agglomeration and secondly providing a structured environment for the attachment of functional molecular entities, including devices and sensors. MMPCs feature multiple functionality on the shell monolayer, greatly extending the versatility of these core-shell systems.

  19. Chiral geometry in multiple chiral doublet bands

    CERN Document Server

    Zhang, Hao

    2015-01-01

    The chiral geometry of the multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters $\\gamma$ in the particle rotor model with $\\pi h_{11/2}\\otimes \

  20. Building block diode laser concept for high brightness laser output in the kW range and its applications

    Science.gov (United States)

    Ferrario, Fabio; Fritsche, Haro; Grohe, Andreas; Hagen, Thomas; Kern, Holger; Koch, Ralf; Kruschke, Bastian; Reich, Axel; Sanftleben, Dennis; Steger, Ronny; Wallendorf, Till; Gries, Wolfgang

    2016-03-01

    The modular concept of DirectPhotonics laser systems is a big advantage regarding its manufacturability, serviceability as well as reproducibility. By sticking to identical base components an economic production allows to serve as many applications as possible while keeping the product variations minimal. The modular laser design is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking several diodes in fast axis. This can be theoretically done until the combined fast axis beam quality is on a comparable level as the individual diodes slow axis beam quality without loosing overall beam performance after fiber coupling. Those stacked individual emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100 W with BPP of Systems without further reduction of the BPP. The 500 W building blocks are consequently designed in a way that they feature a high flexibility with regard to their emitting wavelength bandwidth. Therefore, new wavelengths can be implemented by only exchanging parts and without any additional change of the production process. This design principal theoretically offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR as long as there are any diodes commercially available. This opens numerous additional applications like laser pumping, scientific applications, materials processing such as cutting and welding of copper aluminum or steel and also medical application. Typical operating at wavelengths in the 9XX nm range, these systems are designed for and mainly used in cutting and welding applications, but adapted wavelength ranges such as 793 nm and 1530 nm are also offered. Around 15XX nm the diodes are already successfully used for resonant pumping of Erbium lasers [1

  1. Mechanical behavior of carbon nanotube and graphene junction as a building block for 3D carbon nanostructures

    OpenAIRE

    Mina Moradi; Jamshid Aghazadeh Mohandesi

    2015-01-01

    The incorporation of defects in junction area of 1D and 2D carbon nanostructures has a major impact on properties of their 3D structures. In the present study, molecular dynamics simulation is utilized to examine the mechanical behavior of graphene sheet (GS) in carbon nanotube (CNT)-GS junctions. The tensile load was applied along the GS in connection with CNTs of different chiralities. The adaptive intermolecular reactive empirical bond order potential was chosen to model C-C interactions. ...

  2. STRUCTURAL SOLUTIONS AND SPECIAL FEATURES OF THE THERMAL PROTECTION ANALYSIS OF EXTERIOR WALLS OF BUILDINGS MADE OF AUTOCLAVED GAS-CONCRETE BLOCKS

    Directory of Open Access Journals (Sweden)

    Bedov Anatolij Ivanovich

    2012-10-01

    Full Text Available Relevant structural solutions, physical and mechanical characteristics, coefficients of thermal conductivity for exterior masonry walls made of autoclaved gas-concrete blocks are provided in the article. If a single-layer wall is under consideration, an autoclaved gas-concrete block is capable of performing the two principal functions of a shell structure, including the function of thermal protection and the bearing function. The functions are performed simultaneously. Therefore, the application of the above masonry material means the design development and erection of exterior walls of residential buildings noteworthy for their thermal efficiency. In the event of frameless structures, the height of the residential building in question may be up to 5 stories, while the use of a monolithic or a ready-made frame makes it possible to build high-rise buildings, and the number of stories is not limited in this case. If the average block density is equal to 400…500 kilograms per cubic meter, the designed wall thickness is to be equal to 400 mm. Its thermal resistance may be lower than the one set in the event of the per-element design of the thermal protection (Rreq = 3.41 м2 C/Watt, in Ufa, although it will meet the requirements of the applicable regulations if per-unit power consumption rate is considered.

  3. Building

    OpenAIRE

    Seavy, Ryan

    2014-01-01

    Building for concrete is temporary. The building of wood and steel stands against the concrete to give form and then gives way, leaving a trace of its existence behind. Concrete is not a building material. One does not build with concrete. One builds for concrete.

  4. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  5. Active Esters as Pseudostoppers for Slippage Synthesis of [2]Pseudorotaxane Building Blocks: A Straightforward Route to Multi-Interlocked Molecular Machines.

    Science.gov (United States)

    Legigan, Thibaut; Riss-Yaw, Benjamin; Clavel, Caroline; Coutrot, Frédéric

    2016-06-20

    The efficient synthesis and very easy isolation of dibenzo[24]crown-8-based [2]pseudorotaxane building blocks that contain an active ester motif at the extremity of the encircled molecular axle and an ammonium moiety as a template for the dibenzo[24]crown-8 is reported. The active ester acts both as a semistopper for the [2]pseudorotaxane species and as an extensible extremity. Among the various investigated active ester moieties, those that allow for the slippage process are given particular focus because this strategy produces fewer side products. Extension of the selected N-hydroxysuccinimide ester based pseudorotaxane building block by using either a mono- or a diamino compound, both containing a triazolium moiety, is also described. These provide a pH-dependent two-station [2]rotaxane molecular machine and a palindromic [3]rotaxane molecular machine, respectively. Molecular machinery on both interlocked compounds through variation of pH was studied and characterized by means of NMR spectroscopy. PMID:27239975

  6. The problems of operational reliability exterior walls of a building based on the autoclaved aerated concrete blocks and possibility of their protection from moisture

    Directory of Open Access Journals (Sweden)

    N.S. Samofeev

    2010-12-01

    Full Text Available The basic mechanisms and factors that have destructive effect on the state of autoclaved aerocrete in the exterior walls of operated buildings are shown. These mechanisms are wetting the wall, the effect of moisture during freezing, carbonation hydrosilicate structure-phase of material. The possibilities of protection exterior walls with using hydrophobic multilayered vapor permeable stucco are estimated, which were accepted for protecting facades apartment buildings on the basis autoclaved aerocrete blocks in Bashkiriya.In the Republic of Bashkortostan in October 2010 was put into operation factory for production blocks with capaciry 225,000 m3 per year at OAO "GlavBashStroy" on equipment Masa-Henke, whose products are currently being investigated

  7. A Thieno[3,2-b][1]benzothiophene Isoindigo Building Block for Additive- and Annealing-Free High-Performance Polymer Solar Cells

    KAUST Repository

    Yue, Wan

    2015-08-20

    A novel photoactive polymer with two different molecular weights is reported, based on a new building block: thieno[3,2-b][1]benzothiophene isoindigo. Due to the improved crystallinity, optimal blend morphology, and higher charge mobility, solar-cell devices of the high-molecular-weight polymer exhibit a superior performance, affording efficiencies of 9.1% without the need for additives, annealing, or additional extraction layers during device fabrication.

  8. A bracket approach to improve the stability and gas sorption performance of a metal-organic framework via in situ incorporating the size-matching molecular building blocks.

    Science.gov (United States)

    Chen, Di-Ming; Tian, Jia-Yue; Liu, Chun-Sen; Du, Miao

    2016-06-28

    Incorporating the in situ formed size-matching molecular building blocks (MBBs) into the open channels will remarkably improve the robustness and gas sorption performance of an evacuated metal-organic framework. As a result, such MBBs can transfer the open metal sites from the framework walls to the channel centers and separate the large channels into multiple smaller voids, leading to a molecular sieving effect and high-performance gas-separation of the modified material. PMID:27301546

  9. Studies Towards the Total Synthesis of Di- and Sesterterpenes with Dicyclopenta[a,d]cyclooctane Skeletons. Three-component Approach to the A/B Rings Building Block

    Directory of Open Access Journals (Sweden)

    J. Wicha

    2005-09-01

    Full Text Available Sesqui- and sesterterpenes of ophiobolin and fusicoccin families are important synthetic targets because of complexity of structure and potentially useful physiological activities, including anti-tumor activity. A synthesis of versatile building blocks for these terpenoids is described. Cyclopenta[8]annulene rings system with properly dislocated substituents was constructed using as key steps ring closing metathesis reaction and Wagner - Meerwein rearrangement. Ring closing metathesis reaction leading to cyclopenta[8]annulene was studied in detail.

  10. Fabrication of a Complex Two-Dimensional Adenine-Perylene-3,4,9, 10-tetracarboxylic Dianhydride Chiral Nanoarchitecture through Molecular Self-Assembly

    OpenAIRE

    Sun, Xiaonan; Mura, Manuela; Jonkman, Harry T.; Kantorovich, Lev N.; Silly, Fabien

    2012-01-01

    The two-dimensional self-assembly of a nonsyrnmetric adenine DNA base mixed with symmetric perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules is investigated using scanning tunneling microscopy (STM). We experimentally observe that these two building blocks form a complex close-packed chiral supramolecular network on Au(111). The unit cell of the adenine PTCDA nanoarchitecture is composed of 14 molecules. The high stability of this structure relies on PTCDA-PTCDA and PTCDA-adenin...

  11. Chiral mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  12. Preface to the Surface Science Topical Issue on Chirality at Surfaces

    Science.gov (United States)

    2014-11-01

    This Topical Issue of Surface Science focuses on the rapidly growing interest in the structure and enantioselective properties of chiral surfaces and chiral organic layers on surfaces. Chirality has intrigued scientists since the time of Pasteur and his 1848 [1] demonstration of the relationship between the optical rotation of light and the atomic structure of the compounds through which it propagates. The origin of optical rotation in the structure of organic molecules and the tetrahedral nature of the carbon atom was first appreciated and articulated by van't Hoff in 1874 [2]. In biochemistry, the importance of molecular chirality arises from the fact that most naturally occurring chiral biomolecules exist in homochiral form. For example, the fundamental building blocks of proteins are the amino acids which all appear in the L-enantiomeric form in nature. The implications of biomolecular homochirality were not truly appreciated until the late 1950s [3] when the stereochemistry of the artificially produced drug thalidomide was implicated in the physical defects observed in thousands of children born to mothers who had used the drug during pregnancy. This then sparked an explosion in asymmetric synthesis and enantioselective chemical processing in general, as regulations required that chiral pharmaceuticals be manufactured in enantiomerically pure form. The development of heterogenous catalysts for industrial-scale production of enantiomerically pure molecules is still a huge challenge. Many of the studies in this Topical Issue are aimed at developing a molecular level understanding of the surface processes which direct enantioselective reactions at gas-solid and liquid-solid interfaces.

  13. Aldolase as a Chirality Intersection of L-Amino Acids and D-Sugars

    Science.gov (United States)

    Munegumi, Toratane

    2015-06-01

    Aldolase plays an important role in glycolysis and gluconeogenesis to produce D-fructose-1,6-bisphosphate (D-FBP) from dihydroxyacetone phosphate (DHP) and D-glyceraldehyde-3-phosphate (D-GAP). This reaction is stereoselective and retains the D-GAP 2R configuration and yields D-FBP (with the configuration: 3S, 4S, 5R). The 3- and 4-position carbons are the newly formed chiral carbons because the 5-position carbon of D-FBP comes from the 2-position of D-GAP. Although four diastereomeric products, ( 3S, 4R, 5R), ( 3R, 4R, 5R), ( 3R, 4S, 5R), ( 3S, 4S, 5R), are expected in the nonenzymatic reaction, only the ( 3S, 4S, 5R) diastereomer (D-FBP) is obtained. Therefore, the chirality in the 3- and 4-positions is induced by the chirality of the enzyme composed of L-amino acid residues. D-Glucose-6-phosphate (D-G6P), which is generated from D-FBP in the gluconeogenesis pathway, produces D-ribose-5-phosphate (D-R5P) in the pentose phosphate pathway. D-R5P is converted to PRPP (5-phosphoribosyl-α-pyrophosphate), which is used for the de novo synthesis of nucleotides. Ribonucleic acid (RNA) uses the nucleotides as building blocks. The configurations of the 4R-carbon and of the 3S-carbon are retained. The stereochemical structure of RNA is based on 3S as well as 4R (D). The consideration above suggests that aldolase is a key enzyme that determines the 3S configuration in D-R5P. It is thus a chirality intersection between amino acids and sugars, because the sugar chirality is determined by the chiral environment of an L-amino acid protein, aldolase, to produce D-FBP.

  14. Development of valence-directed nanoparticle building blocks on the basis of controlled bio/nano-interfacing chemistry

    Science.gov (United States)

    Kim, Jeong-Hwan

    The assembly of nanoparticles in controllable and predictable ways would not only aid practical nanoscale assembly, which requires accurate and scalable assembly of large and complex nanoscale structures, but also would increase their utility for many applications, including electronics, optics, sensing and imaging, medical diagnostics, etc. Well-defined and controlled functionality and directionality of the building blocks are essential to actively control the molecular assembly processes at the nanometer scale. Such controls over the functionality and directionality would enable us to construct sophisticated nanostructures to take advantage of the increasing number of available nanocomponents and ultimately to approximate the complexity and the functionality of current microfabrication. We have developed a serial solid-phase placement approach to synthesize anisotropically or symmetrically functionalized gold nanoparticles (AuNPs), in which the functionality and directionality (e.g., numbers, locations, and orientations) of the functional ligands are controlled. Two types of bi-functionalized (bif-) AuNPs were synthesized at a site-specific manner with increased yield and accuracy: (1) homo-bif-AuNPs with two carboxyl groups at ˜180° angle (para-configuration) and (2) hetero-bif-AuNPs with one carboxyl and one amine functional groups at less than 180°, but greater than 90° angle (meta-configuration). With such control, we successfully demonstrated the assembly of intentionally designed one-dimensional (1D) chains with homo-bif-AuNPs and two-dimensional (2D) rings with hetero-bif-AuNPs, confirming the high functional as well as directional selectivity of the functionalized NPs. This study represents an important step towards accurate, reliable, and scaled-up manufacturing of complex nanoscale structures, potentially making 'bottom-up' nanofabrication of practical use. We have further developed the ligand replacement technology to achieve such active controls

  15. Low-Energy Constants from Resonance Chiral Theory

    OpenAIRE

    Pich, Antonio

    2008-01-01

    I discuss the recent attempts to build an effective chiral Lagrangian incorporating massive resonance states. A useful approximation scheme to organize the resonance Lagrangian is provided by the large-Nc limit of QCD. Integrating out the resonance fields, one recovers the usual chiral perturbation theory Lagrangian with explicit values for the low-energy constants, parameterized in terms of resonance masses and couplings. The resonance chiral theory generates Green functions that interpolate...

  16. Enantioselective total synthesis of (−)-epoxyquinols A and B. Novel, convenient access to chiral epoxyquinone building blocks through enzymatic desymmetrization

    OpenAIRE

    Mehta, Goverdhan; Islam, Kabirul

    2004-01-01

    Following our recent total synthesis of the biologically potent natural products epoxyquinols A and B in racemic form, we have now accomplished the total synthesis of the (−)-epoxyquinols A and B, anti-podes of the angiogenesis inhibiting natural products, through a protocol that involves enzymatic desymmetrization of a versatile epoxyquinone derivative, readily available from the Diels–Alder adduct of cyclopentadiene and p-benzoquinone.

  17. Chiral Gravitational Waves from Chiral Fermions

    CERN Document Server

    Anber, Mohamed M

    2016-01-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  18. Covariant Approaches to Superconformal Blocks

    CERN Document Server

    Fitzpatrick, A Liam; Khandker, Zuhair U; Li, Daliang; Poland, David; Simmons-Duffin, David

    2014-01-01

    We develop techniques for computing superconformal blocks in 4d superconformal field theories. First we study the super-Casimir differential equation, deriving simple new expressions for superconformal blocks for 4-point functions containing chiral operators in theories with N-extended supersymmetry. We also reproduce these results by extending the "shadow formalism" of Ferrara, Gatto, Grillo, and Parisi to supersymmetric theories, where superconformal blocks can be represented as superspace integrals of three-point functions multiplied by shadow three-point functions.

  19. Anomalous Chiral Superfluidity

    OpenAIRE

    Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail

    2009-01-01

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...

  20. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  1. Establishing an Appropriate Level of Detail (LoD) for a Building Information Model (BIM) - West Block, Parliament Hill, Ottawa, Canada

    Science.gov (United States)

    Fai, S.; Rafeiro, J.

    2014-05-01

    In 2011, Public Works and Government Services Canada (PWGSC) embarked on a comprehensive rehabilitation of the historically significant West Block of Canada's Parliament Hill. With over 17 thousand square meters of floor space, the West Block is one of the largest projects of its kind in the world. As part of the rehabilitation, PWGSC is working with the Carleton Immersive Media Studio (CIMS) to develop a building information model (BIM) that can serve as maintenance and life-cycle management tool once construction is completed. The scale and complexity of the model have presented many challenges. One of these challenges is determining appropriate levels of detail (LoD). While still a matter of debate in the development of international BIM standards, LoD is further complicated in the context of heritage buildings because we must reconcile the LoD of the BIM with that used in the documentation process (terrestrial laser scan and photogrammetric survey data). In this paper, we will discuss our work to date on establishing appropriate LoD within the West Block BIM that will best serve the end use. To facilitate this, we have developed a single parametric model for gothic pointed arches that can be used for over seventy-five unique window types present in the West Block. Using the AEC (CAN) BIM as a reference, we have developed a workflow to test each of these window types at three distinct levels of detail. We have found that the parametric Gothic arch significantly reduces the amount of time necessary to develop scenarios to test appropriate LoD.

  2. Oligonucleotides with cyclohexene-nucleoside building blocks: crystallization and preliminary X-ray studies of a left-handed sequence GTGTACAC

    International Nuclear Information System (INIS)

    A novel oligonucleotide containing cyclohexene-nucleoside building blocks has been crystallized. Crystals belong to space group R3 and diffract to 1.7 Å. Cyclohexene nucleic acids contain a cyclohexene ring instead of the normal β-d-2′-deoxyribose. The cyclohexene oligonucleotide GTGTACAC was synthesized using phosphoramidite chemistry and standard protecting groups. Crystals of GTGTACAC were obtained at 289 K by the hanging-drop vapour-diffusion technique. The crystals diffract to 1.7 Å resolution and belong to the trigonal space group R3, with unit-cell parameters a = 41.434, c = 66.735 Å

  3. Role of Solvent, pH, and Molecular Size in Excited-State Deactivation of Key Eumelanin Building Blocks: Implications for Melanin Pigment Photostability

    DEFF Research Database (Denmark)

    Gauden, M.; Pezzella, A.; Panzella, L.;

    2008-01-01

      Ultrafast time-resolved fluorescence spectroscopy has been used to investigate the excited state dynamics of the basic eumelanin building block 5,6-dihydroxyindole-2-carboxylic acid  (DHICA) its acetylated, methylated and carboxylic ester derivatives as well as two oligomers, a dimer and a trimer...... in the O-acetylated forms. The results show that: 1) excited state decays are faster for the trimer relative to the monomer; 2) for parent DHICA, excited state lifetimes are much shorter in aqueous acidic medium (380 ps) as compared to organic solvent (acetonitrile, 2.6 ns); 3) variation of...

  4. End-Group-Functionalized Poly(α-olefinates) as Non-Polar Building Blocks: Self-Assembly of Sugar-Polyolefin Hybrid Conjugates.

    Science.gov (United States)

    Thomas, Tessy S; Hwang, Wonseok; Sita, Lawrence R

    2016-04-01

    Living coordinative chain-transfer polymerization of α-olefins, followed by chemical functionalization of a Zn(polymeryl)2 intermediate, provides entry to end-group functionalized poly(α-olefinates) (x-PAOs) that can serve as a new class of non-polar building block with tailorable occupied volumes. Application of these x-PAOs for the synthesis and self-assembly of sugar-polyolefin hybrid conjugates demonstrate the ability to manipulate the morphology of the ultra-thin film nanostructure through variation in occupied volume of the x-PAO domain. PMID:26961338

  5. Mechanical behavior of carbon nanotube and graphene junction as a building block for 3D carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Mina Moradi

    2015-11-01

    Full Text Available The incorporation of defects in junction area of 1D and 2D carbon nanostructures has a major impact on properties of their 3D structures. In the present study, molecular dynamics simulation is utilized to examine the mechanical behavior of graphene sheet (GS in carbon nanotube (CNT-GS junctions. The tensile load was applied along the GS in connection with CNTs of different chiralities. The adaptive intermolecular reactive empirical bond order potential was chosen to model C-C interactions. It provided a reliable model for CNT, GS and their junctions. The results revealed that the connection of CNT to the GS with a hole could improve the mechanical properties of defective GS, which appeared to be independent of CNT type. It was found that the high strength C-C bonds postpone the crack propagation and motivates new crack nucleation. When a hole or CNT placed on the GS, it caused stress concentration, exactly along a line on its side. The lower mechanical properties were consequently associated with crack nucleation and propagation on both sides in a way that cracks encountered each other during the failure; while, the cracks in pristine GS propagate parallel to each other and could not encounter each other.

  6. Mechanical behavior of carbon nanotube and graphene junction as a building block for 3D carbon nanostructures

    Science.gov (United States)

    Moradi, Mina; Aghazadeh Mohandesi, Jamshid

    2015-11-01

    The incorporation of defects in junction area of 1D and 2D carbon nanostructures has a major impact on properties of their 3D structures. In the present study, molecular dynamics simulation is utilized to examine the mechanical behavior of graphene sheet (GS) in carbon nanotube (CNT)-GS junctions. The tensile load was applied along the GS in connection with CNTs of different chiralities. The adaptive intermolecular reactive empirical bond order potential was chosen to model C-C interactions. It provided a reliable model for CNT, GS and their junctions. The results revealed that the connection of CNT to the GS with a hole could improve the mechanical properties of defective GS, which appeared to be independent of CNT type. It was found that the high strength C-C bonds postpone the crack propagation and motivates new crack nucleation. When a hole or CNT placed on the GS, it caused stress concentration, exactly along a line on its side. The lower mechanical properties were consequently associated with crack nucleation and propagation on both sides in a way that cracks encountered each other during the failure; while, the cracks in pristine GS propagate parallel to each other and could not encounter each other.

  7. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  8. Emergence of Chirality from Isotropic Interactions of Three Length Scales

    Science.gov (United States)

    Mkhonta, S. K.; Elder, K. R.; Huang, Zhi-Feng

    2016-05-01

    Chirality is known to play a pivotal role in determining material properties and functionalities. However, it remains a great challenge to understand and control the emergence of chirality and the related enantioselective process particularly when the building components of the system are achiral. Here we explore the generic mechanisms driving the formation of two-dimensional chiral structures in systems characterized by isotropic interactions and three competing length scales. We demonstrate that starting from isotropic and rotationally invariant interactions, a variety of chiral ordered patterns and superlattices with anisotropic but achiral units can self-assemble. The mechanisms for selecting specific states are related to the length-scale coupling and the selection of resonant density wave vectors. Sample phase diagrams and chiral elastic properties are identified. These findings provide a viable route for predicting chiral phases and selecting the desired handedness.

  9. Chirality in Nonlinear Optics

    Science.gov (United States)

    Haupert, Levi M.; Simpson, Garth J.

    2009-05-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.

  10. Chiral Rotational Spectroscopy

    CERN Document Server

    Cameron, Robert P; Barnett, Stephen M

    2015-01-01

    We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.

  11. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  12. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  13. Synthesis of a Glucuronic Acid-Containing Thioglycoside Trisaccharide Building Block and Its Use in the Assembly of Cryptococcus Neoformans Capsular Polysaccharide Fragments.

    Science.gov (United States)

    Guazzelli, Lorenzo; Ulc, Rebecca; Oscarson, Stefan

    2015-12-01

    As part of an ongoing project aimed at identifying protective capsular polysaccharide epitopes for the development of vaccine candidates against the fungal pathogen Cryptococcus neoformans, the synthesis and glycosylation properties of a naphthalenylmethyl (NAP) orthogonally protected trisaccharide thioglycoside, a common building block for construction of serotype B and C capsular polysaccharide structures, were investigated. Ethyl (benzyl 2,3,4-tri-O-benzyl-β-d-glucopyranosyl- uronate)-(1→2)-[2,3,4-tri-O-benzyl-β-d-xylopyranosyl-(1→4)]-6-O-benzyl-3-O-(2-naphthalenylmethyl)-1-thio-α-d-mannopyranoside was prepared and used both as a donor and an acceptor in glycosylation reactions to obtain spacer equipped hexa- and heptasaccharide structures suitable either for continued elongation or for deprotection and printing onto a glycan array or conjugation to a carrier protein. The glycosylation reactions proceeded with high yields and α-selectivity, proving the viability of the building block approach also for construction of 4-O-xylosyl-containing C. neoformans CPS structures. PMID:27308199

  14. Combining electron-neutral building blocks with intramolecular "conformational locks" affords stable, high-mobility p- and n-channel polymer semiconductors.

    Science.gov (United States)

    Huang, Hui; Chen, Zhihua; Ponce Ortiz, Rocio; Newman, Christopher; Usta, Hakan; Lou, Sylvia; Youn, Jangdae; Noh, Yong-Young; Baeg, Kang-Jun; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J; Marks, Tobin

    2012-07-01

    Understanding the relationship between molecular/macromolecular architecture and organic thin film transistor (TFT) performance is essential for realizing next-generation high-performance organic electronics. In this regard, planar π-conjugated, electron-neutral (i.e., neither highly electron-rich nor highly electron-deficient) building blocks represent a major goal for polymeric semiconductors, however their realization presents synthetic challenges. Here we report that an easily accessible (minimal synthetic steps), electron-neutral thienyl-vinylene (TVT)-based building block having weak intramolecular S···O "conformational locks" affords a new class of stable, structurally planar, solution-processable, high-mobility, molecular, and macromolecular semiconductors. The attraction of merging the weak TVT electron richness with supramolecular planarization is evident in the DFT-computed electronic structures, favorable MO energetics, X-ray diffraction-derived molecular structures, experimental lattice coehesion metrics, and excellent TFT performance. TVT-based polymer TFTs exhibit stable carrier mobilities in air as high as 0.5 and 0.05 cm(2)/V·s (n- and p-type, respectively). All-TVT polymer-based complementary inverter circuitry exhibiting high voltage gains (~50) and ring oscillator circuitry with high f(osc)(~1.25 kHz) is readily fabricated from these materials by simple inkjet printing. PMID:22679903

  15. A Self-Assembled Aggregate Composed of a Fatty Acid Membrane and the Building Blocks of Biological Polymers Provides a First Step in the Emergence of Protocells.

    Science.gov (United States)

    Black, Roy A; Blosser, Matthew C

    2016-01-01

    We propose that the first step in the origin of cellular life on Earth was the self-assembly of fatty acids with the building blocks of RNA and protein, resulting in a stable aggregate. This scheme provides explanations for the selection and concentration of the prebiotic components of cells; the stabilization and growth of early membranes; the catalysis of biopolymer synthesis; and the co-localization of membranes, RNA and protein. In this article, we review the evidence and rationale for the formation of the proposed aggregate: (i) the well-established phenomenon of self-assembly of fatty acids to form vesicles; (ii) our published evidence that nucleobases and sugars bind to and stabilize such vesicles; and (iii) the reasons why amino acids likely do so as well. We then explain how the conformational constraints and altered chemical environment due to binding of the components to the membrane could facilitate the formation of nucleosides, oligonucleotides and peptides. We conclude by discussing how the resulting oligomers, even if short and random, could have increased vesicle stability and growth more than their building blocks did, and how competition among these vesicles could have led to longer polymers with complex functions. PMID:27529283

  16. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    Energy Technology Data Exchange (ETDEWEB)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training

  17. Understanding complex chiral plasmonics

    Science.gov (United States)

    Duan, Xiaoyang; Yue, Song; Liu, Na

    2015-10-01

    Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant

  18. Numerical simulation of {sup 222}RN exhalation from phosphogypsum building blocks and accumulation inside a closed chamber

    Energy Technology Data Exchange (ETDEWEB)

    Rabi Junior, Jose A. [Sao Paulo Univ., Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos]. E-mail: jrabi@fzea.usp.br; Silva, Nivaldo C. da [Pontificia Univ. Catolica de Minas Gerais, Pocos de Caldas, MG (Brazil)]|[Comissao Nacional de Energia Nuclear (CNEN), Pocos de Caldas, MG (Brazil). Laboratorio]. E-mail: ncsilva@pucpcaldas.br; ncsilva@cnen.gov.br

    2005-07-01

    Zero-order models for {sup 222}Rn exhalation from phosphogypsum-bearing building materials and its transient indoor accumulation assume uniform distribution inside the enclosure. Conversely, this paper numerically simulates a transient two-dimensional {sup 222}Rn accumulation in a test chamber that contains a phosphogypsum board at one wall. Results show that above hypothesis might be oversimplified when spatial dependence is considered. (author)

  19. Halogen-bonding in a new family of tris(haloanilato)metallate(III) magnetic molecular building blocks.

    Science.gov (United States)

    Atzori, Matteo; Artizzu, Flavia; Sessini, Elisa; Marchiò, Luciano; Loche, Danilo; Serpe, Angela; Deplano, Paola; Concas, Giorgio; Pop, Flavia; Avarvari, Narcis; Mercuri, Maria Laura

    2014-05-21

    Here we report on new tris(haloanilato)metallate(III) complexes with general formula [A]3[M(X2An)3] (A = (n-Bu)4N(+), (Ph)4P(+); M = Cr(III), Fe(III); X2An = 3,6-dihalo derivatives of 2,5-dihydroxybenzoquinone (H4C6O4), chloranilate (Cl2An(2-)), bromanilate (Br2An(2-)) and iodanilate (I2An(2-))), obtained by a general synthetic strategy, and their full characterization. The crystal structures of these Fe(III) and Cr(III) haloanilate complexes consist of anions formed by homoleptic complexes formulated as [M(X2An)3](3-) and (Et)3NH(+), (n-Bu)4N(+), or (Ph4)P(+) cations. All complexes exhibit octahedral coordination geometry with metal ions surrounded by six oxygen atoms from three chelate ligands. These complexes are chiral according to the metal coordination of three bidentate ligands, and both Λ and Δ enantiomers are present in their crystal lattice. The packing of [(n-Bu)4N]3[Cr(I2An)3] (5a) shows that the complexes form supramolecular dimers that are held together by two symmetry related I···O interactions (3.092(8) Å), considerably shorter than the sum of iodine and oxygen van der Waals radii (3.50 Å). The I···O interaction can be regarded as a halogen bond (XB), where the iodine behaves as the XB donor and the oxygen atom as the XB acceptor. This is in agreement with the properties of the electrostatic potential for [Cr(I2An)3](3-) that predicts a negative charge accumulation on the peripheral oxygen atoms and a positive charge accumulation on the iodine. The magnetic behaviour of all complexes, except 5a, may be explained by considering a set of paramagnetic non-interacting Fe(III) or Cr(III) ions, taking into account the zero-field splitting effect. The presence of strong XB interactions in 5a are able, instead, to promote antiferromagnetic interactions among paramagnetic centers at low temperature, as shown by the fit with the Curie-Weiss law, in agreement with the formation of halogen-bonded supramolecular dimers. PMID:24626345

  20. Biocatalytic reduction of racemic 2-arenoxycycloalkanones by yeasts P. glucozyma and C. glabrata: one way of achieving chiral 2-arenoxycycloalcohols.

    Science.gov (United States)

    Andreu, Cecilia; Peña, Miguel; Del Olmo, Marcel Lí

    2016-06-01

    Chiral β-aryloxy alcohols are interesting building blocks that form part of drugs like β adrenergic antagonists. Acquiring cyclic rigid analogs to obtain more selective drugs is interesting. Thus, we used whole cells of yeast strains Pichia glucozyma and Candida glabrata to catalyze the reduction of several 2-arenoxycycloalkanones to produce chiral 2-arenoxycycloalcohols with good/excellent enantioselectivity. In both cases, the alcohol configuration that resulted from the carbonyl group reduction was S. Yeast P. glucozyma allowed the conversion of both enantiomers of the starting material to produce 2-arenoxycycloalcohols with configuration (1S, 2R) and (1S, 2S). The reaction with C. glabrata nearly always allowed the kinetic resolution of the starting ketone, recovering 2-arenoxycycloalkanone with configuration S and (1S, 2R)-2-arenoxycycloalcohol.All the four possible stereoisomers of 2-phenoxycyclohexanol and the two enantiomers of 2-phenoxycyclohexanone were obtained by combining the biocatalyzed reaction with the oxidation/reduction of the chiral compounds with standard reagents. This is a simple approach for the synthesis of the rigid chiral moiety 2-arenoxycycloalcohols contained in putative β-blockers 2-arenoxycycloalkanepropanolamines. PMID:26754816

  1. Chiral Superfluidity for QCD

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  2. Mechanical separation of chiral dipoles by chiral light

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.

  3. Al15Ge4Ni3: A new intergrowth structure with Cu3Au- and CaF2-type building blocks

    International Nuclear Information System (INIS)

    The new ternary compound Al15Ge4Ni3 (τ2 in the system Al–Ge–Ni) was synthesized in single crystalline form by a special annealing procedure from samples located in the three phase fields [L+Al+τ2] and [L+Ge+τ2]. The crystal structure of Al15Ge4Ni3 was determined by single-crystal X-ray diffraction. The compound crystallizes in a new structure type in space group I4-bar3m, Pearson Symbol cI88, cubic lattice parameter a=11.405(1) Å. Phase diagram investigations indicate stoichiometric composition without considerable homogeneity range; τ2 melts peritectically at T=444 °C. The crystal structure of Al15Ge4Ni3 shows a unique combination of simple Cu3Au- and CaF2-type building blocks: a three dimensional network of CaF2-type units, formed by Ni and Al atoms, is interspaced by clusters (Al6Ge8) resembling unit cells of the Cu3Au-type. Both structural motifs are connected by Al–Ge bonds. The ground state energy of the compound was obtained by DFT calculations and the densities of states were analyzed in detail. In addition, electron density maps were calculated in four different sections through the unit cell using the full potential linearized augmented plane-wave (FLAPW) method. The bonding situation in Al15Ge4Ni3 was discussed combining results from electronic calculations with the analysis of the coordination of atoms. - Graphical abstract: The new compound Al15Ge4Ni3 shows a unique combination of simple Cu3Au- and CaF2-type building blocks. - Highlights: • The crystal structure of Al15Ge4Ni3 (space group I4-bar3m) was determined. • It shows a unique combination of CaF2- and Cu3Au-type building blocks. • Electronic (DFT) calculations were performed to gain insight to chemical bonding

  4. The Multiple Facets of Iodine(III) Compounds in an Unprecedented Catalytic Auto-amination for Chiral Amine Synthesis.

    Science.gov (United States)

    Buendia, Julien; Grelier, Gwendal; Darses, Benjamin; Jarvis, Amanda G; Taran, Frédéric; Dauban, Philippe

    2016-06-20

    Iodine(III) reagents are used in catalytic one-pot reactions, first as both oxidants and substrates, then as cross-coupling partners, to afford chiral polyfunctionalized amines. The strategy relies on an initial catalytic auto C(sp(3) )-H amination of the iodine(III) oxidant, which delivers an amine-derived iodine(I) product that is subsequently used in palladium-catalyzed cross-couplings to afford a variety of useful building blocks with high yields and excellent stereoselectivities. This study demonstrates the concept of self-amination of the hypervalent iodine reagents, which increases the value of the aryl moiety. PMID:27158802

  5. Bainbridge Energy Challenge. Energy efficiency and conservation block grant (EECBG) - Better buildings neighborhood program. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Yvonne X.

    2014-02-14

    RePower Bainbridge and Bremerton (RePower) is a residential energy-efficiency and conservation program designed to foster a sustainable, clean, and renewable energy economy. The program was a 3.5 year effort in the cities of Bainbridge Island and Bremerton, Washington, to conserve and reduce energy use, establish a trained home performance trade ally network, and create local jobs. RePower was funded through a $4.8 million grant from the US Department of Energy, Better Buildings Program. The grant’s performance period was August 1, 2010 through March 30, 2014.

  6. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  7. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    International Nuclear Information System (INIS)

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs

  8. Switching slips. Building blocks for a robust environmental policy for the 21st century; Wissels omzetten. Bouwstenen voor een robuust milieubeleid voor de 21e eeuw

    Energy Technology Data Exchange (ETDEWEB)

    Hoogervorst, N.; Hajer, M.; Dietz, F.; Timmerhuis, J.; Kruitwagen, S.

    2013-06-15

    With this 'signal report', PBL (Netherlands Environmental Assessment Agency) offers building blocks for a robust environmental policy for the twentyfirst century, such as changes in consumer behavior, new coalitions of interests and stakeholders, and the establishment of an investment fund for eco-innovation. Which track does the Netherlands want to follow? With this essay, PBL is calling for a broad public debate on this issue [Dutch] In dit signalenrapport reikt het PBL (Planbureau voor de Leefomgeving) bouwstenen aan voor een robuust milieubeleid voor de eenentwintigste eeuw, zoals gedragsverandering van consumenten, nieuwe coalities van belangen en betrokkenen, en de oprichting van een investeringsfonds voor eco-innovatie. Welk spoor wil Nederland bewandelen? Met dit essay roept het PBL op tot een breed maatschappelijk debat over deze vraag.

  9. Synthesis of Oligodeoxynucleotides Using Fully Protected Deoxynucleoside 3′-Phosphoramidite Building Blocks and Base Recognition of Oligodeoxynucleotides Incorporating N3-Cyano-Ethylthymine

    Directory of Open Access Journals (Sweden)

    Mitsuo Sekine

    2010-10-01

    Full Text Available Oligodeoxynucleotide (ODN synthesis, which avoids the formation of side products, is of great importance to biochemistry-based technology development. One side reaction of ODN synthesis is the cyanoethylation of the nucleobases. We suppressed this reaction by synthesizing ODNs using fully protected deoxynucleoside 3′-phosphoramidite building blocks, where the remaining reactive nucleobase residues were completely protected with acyl-, diacyl-, and acyl-oxyethylene-type groups. The detailed analysis of cyanoethylation at the nucleobase site showed that N3-protection of the thymine base efficiently suppressed the Michael addition of acrylonitrile. An ODN incorporating N3-cyanoethylthymine was synthesized using the phosphoramidite method, and primer extension reactions involving this ODN template were examined. As a result, the modified thymine produced has been proven to serve as a chain terminator.

  10. Bottom-up processing of thermoelectric nanocomposites from colloidal nanocrystal building blocks: the case of Ag{sub 2}Te-PbTe

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, Doris [Catalonia Institute for Energy Research, IREC (Spain); Ibanez, Maria [Universitat de Barcelona, Departament d' Electronica (Spain); Gorsse, Stephane [Universite de Bordeaux, ICMCB, CNRS (France); Lopez, Antonio M. [Universitat Politecnica de Catalunya, Departament d' Enginyeria Electronica (Spain); Cirera, Albert [Universitat de Barcelona, Departament d' Electronica (Spain); Morante, Joan Ramon; Cabot, Andreu, E-mail: acabot@irec.cat [Catalonia Institute for Energy Research, IREC (Spain)

    2012-12-15

    Nanocomposites are highly promising materials to enhance the efficiency of current thermoelectric devices. A straightforward and at the same time highly versatile and controllable approach to produce nanocomposites is the assembly of solution-processed nanocrystal building blocks. The convenience of this bottom-up approach to produce nanocomposites with homogeneous phase distributions and adjustable composition is demonstrated here by blending Ag{sub 2}Te and PbTe colloidal nanocrystals to form Ag{sub 2}Te-PbTe bulk nanocomposites. The thermoelectric properties of these nanocomposites are analyzed in the temperature range from 300 to 700 K. The evolution of their electrical conductivity and Seebeck coefficient is discussed in terms of the blend composition and the characteristics of the constituent materials.

  11. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

  12. Self-Assembling Nano-Architectures Created from a Protein Nano-Building Block Using an Intermolecularly Folded Dimeric de Novo Protein.

    Science.gov (United States)

    Kobayashi, Naoya; Yanase, Keiichi; Sato, Takaaki; Unzai, Satoru; Hecht, Michael H; Arai, Ryoichi

    2015-09-01

    The design of novel proteins that self-assemble into supramolecular complexes is an important step in the development of synthetic biology and nanotechnology. Recently, we described the three-dimensional structure of WA20, a de novo protein that forms an intermolecularly folded dimeric 4-helix bundle (PDB code 3VJF ). To harness the unusual intertwined structure of WA20 for the self-assembly of supramolecular nanostructures, we created a protein nanobuilding block (PN-Block), called WA20-foldon, by fusing the dimeric structure of WA20 to the trimeric foldon domain of fibritin from bacteriophage T4. The WA20-foldon fusion protein was expressed in the soluble fraction in Escherichia coli, purified, and shown to form several homooligomeric forms. The stable oligomeric forms were further purified and characterized by a range of biophysical techniques. Size exclusion chromatography, multiangle light scattering, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS) analyses indicate that the small (S form), middle (M form), and large (L form) forms of the WA20-foldon oligomers exist as hexamer (6-mer), dodecamer (12-mer), and octadecamer (18-mer), respectively. These findings suggest that the oligomers in multiples of 6-mer are stably formed by fusing the interdigitated dimer of WA20 with the trimer of foldon domain. Pair-distance distribution functions obtained from the Fourier inversion of the SAXS data suggest that the S and M forms have barrel- and tetrahedron-like shapes, respectively. These results demonstrate that the de novo WA20-foldon is an effective building block for the creation of self-assembling artificial nanoarchitectures. PMID:26120734

  13. Chiral geometry in multiple chiral doublet bands

    Science.gov (United States)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  14. Wormholes from Chiral Fields

    International Nuclear Information System (INIS)

    In this paper, Lorentzian wormholes with a phantom field and chiral matter fields have been obtained. In addition, it is shown that for different values of the gravitational coupling of the chiral fields, the wormhole geometry changes. Finally, the stability of the corresponding wormholes is studied and it is shown that are unstable (eg. Ellis's wormhole instability)

  15. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast to the...

  16. The street block Joens Ols at Lund - energy efficient and profitable apartment building using conventional technology; Kv Joens Ols i Lund - energisnaalt och loensamt flerfamiljshus med konventionell teknik

    Energy Technology Data Exchange (ETDEWEB)

    Warfvinge, Catarina [WSP Environmental, Malmoe (Sweden). Byggnadsfysik

    2005-09-01

    The Joens Ols block is an apartment house with 34 flats totalling a surface of 2877 m2. The building was constructed in 1998 with the objective of reducing the energy consumption by 50% without losses in comfort, robustness and simplicity of maintenance. This evaluation report builds on two years of monitoring. The house has conventional concrete framework with well insulated infill walls. Thermal bridges and air leaks are eliminated at all connections. Ventilation inlet is located behind the hot water-based radiators, forced ventilation exist i bathrooms and kitchens. Space heat is primarily generated by a exhaust/ambient air source heat pump supplemented by district heating. Heat and hot water consumption is metered and charged individually. Waste heat from the waste water is exchanged to preheat the household hot water. Solar and district heat is used for hot water production. Electric appliances, fans and pumps all have high energy efficiency. The evaluation shows that the objectives were met and that the prognoses were in good agreement with the outcome. In the report a detailed Analys is made of the profitability of the different components of the efficiency measures.

  17. Chiral Magnetic "Superfluidity"

    CERN Document Server

    Sadofyev, Andrey V

    2015-01-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will {\\it not} contribute to the drag experienced by an impurity. We argue on very general basis that those systems with a strong magnetic field would exhibit the behavior of 'superfluidity" -- the motion of the heavy impurity is frictionless, in analog to the case of a superfluid. However, this "superfluidity" exists even for chiral media at finite temperature and only in the directional longitudinal with the magnetic field, in contrast to the ordinary superfluid. We will call this novel phenomenon as the Chiral Magnetic "Superfluidity". We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion ...

  18. Participatory Approach to Long-Term Socio-Economic Scenarios as Building Block of a Local Vulnerability and Risk Assessment Tool - The Case Study Lienz (East-Tyrol)

    Science.gov (United States)

    Meyer, Ina; Eder, Brigitte; Hama, Michiko; Leitner, Markus

    2016-04-01

    Risks associated with climate change are mostly still understood and analyzed in a sector- or hazard-specific and rarely in a systemic, dynamic and scenario-based manner. In addition, socio-economic trends are often neglected in local vulnerability and risk assessments although they represent potential key determinants of risk and vulnerability. The project ARISE (Adaptation and Decision Support via Risk Management Through Local Burning Embers) aims at filling this gap by applying a participatory approach to socio-economic scenario building as building block of a local vulnerability assessment and risk management tool. Overall, ARISE aims at developing a decision support system for climate-sensitive iterative risk management as a key adaptation tool for the local level using Lienz in the East-Tyrol as a test-site City. One central building block is participatory socio-economic scenario building that - together with regionalized climate change scenarios - form a centrepiece in the process-oriented assessment of climate change risks and vulnerability. Major vulnerabilities and risks may stem from the economic performance, the socio-economic or socio-demographic developments or changes in asset exposition and not from climate change impacts themselves. The IPCC 5th assessment report underlines this and states that for most economic sectors, the impact of climate change may be small relative to the impacts of other driving forces such as changes in population growth, age, income, technology, relative prices, lifestyle, regulation, governance and many other factors in the socio-economy (Arent et al., 2014). The paper presents the methodology, process and results with respect to the building of long-term local socio-economic scenarios for the City of Lienz and the surrounding countryside. Scenarios were developed in a participatory approach using a scenario workshop that involved major stakeholders from the region. Participatory approaches are increasingly recognized as

  19. Chiral Magnetic Effect and Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    FU Wei-Jie; LIU Yu-Xin; WU Yue-Liang

    2011-01-01

    We study the influence of the chiral phase transition on the chiral magnetic effect.The azimuthal chargeparticle correlations as functions of the temperature are calculated.It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition.It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value.We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.

  20. Chiral String-Soliton Model for the light chiral baryons

    CERN Document Server

    Pavlovsky, Oleg

    2010-01-01

    The Chiral String-Soliton Model is a joining of the two notions about the light chiral baryons: the chiral soliton models (like the Skyrme model) and the Quark-Gluon String models. The ChSS model is based on the Effective Chiral Lagrangian which was proposed in [arXiv:hep-ph/0306216]. We have studied the physical properties of the light chiral baryon within the framework of this ChSS model.

  1. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature Tχ implies that the ρ and a1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, mρ(Tχ) > mρ(0). The author conjectures that at Tχ the thermal ρ - a1, peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by Tχ. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  2. Two-dimensional chiral topological superconductivity in Shiba lattices

    Science.gov (United States)

    Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei

    2016-07-01

    The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal.

  3. E-Block: A Tangible Programming Tool with Graphical Blocks

    OpenAIRE

    Danli Wang; Yang Zhang; Shengyong Chen

    2013-01-01

    This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transfer...

  4. Chiral supergravity and anomalies

    CERN Document Server

    Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.

    1999-01-01

    Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.

  5. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  6. Crystal engineered acid–base complexes with 2D and 3D hydrogen bonding systems using p-hydroxybenzoic acid as the building block

    Directory of Open Access Journals (Sweden)

    PU SU ZHAO

    2010-04-01

    Full Text Available p-Hydroxybenzoic acid (p-HOBA was selected as the building block for self-assembly with five bases, i.e., diethylamine, tert-butylamine, cyclohexylamine, imidazole and piperazine, and generation of the corresponding acid–base complexes 1–5. Crystal structure analyses suggest that proton-transfer from the carboxyl hydrogen to the nitrogen atom of the bases can be observed in 1–4, while only in 5 does a solvent water molecule co-exist with p--HOBA and piperazine. With the presence of O–H···O hydrogen bonds in 1–4, the deprotonated p-hydroxybenzoate anions (p-HOBAA– are simply connected each other in a head-to-tail motif to form one-dimensional (1D arrays, which are further extended to distinct two-dimensional (2D (for 1 and 4 and three-dimensional (3D (for 2 and 3 networks via N–H···O interactions. While in 5, neutral acid and base are combined pair-wise by O–H···N and N–H···O bonds to form a 1D tape and then the 1D tapes are sequentially combined by water molecules to create a 3D network. Some interlayer or intralayer C–H···O, C–H···p and p×××p interactions help to stabilize the supramolecular buildings. Melting point determination analyses indicate that the five acid–base complexes are not the ordinary superposition of the reactants and they are more stable than the original reactants.

  7. Crystal Chirality Selected by Mutual Antagonism

    Science.gov (United States)

    Yukio Saito,; Hiroyuki Hyuga,

    2010-08-01

    To explore the mechanism of chiral symmetry breaking in a process of crystal growth under grinding, we propose a simple irreversible growth model of a lattice-gas with four possible states on a site: occupied by an achiral molecule A, or by a chiral enantiomer R or S, or empty. After two A molecules on neighboring sites form a chiral dimer R2 or S2, clusters grow by incorporating A’s at cluster periphery, irreversibly. Only the grinding recycles products R or S back to A. It is then demonstrated in kinetic Monte Carlo (KMC) simulations that chirality selection takes place in the presence of the grinding. The cause for this realization is attributed to mutual antagonistic inhibition: that is, clusters of opposite enantiomeric types are brought into contact through stirring, and they block crystallization sites on cluster peripheries each other. The density evolution obtained by time integration of the rate equations with this antagonistic inhibition fits well with results of KMC simulations.

  8. The quest for chirality

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.A. [Department of Chemistry Stanford University, Stanford, California 94305 (United States)

    1996-07-01

    The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)

  9. Chiral separation in microflows

    OpenAIRE

    Kostur, Marcin; Schindler, Michael; Talkner, Peter; Hänggi, Peter

    2005-01-01

    Molecules that only differ by their chirality, so called enantiomers, often possess different properties with respect to their biological function. Therefore, the separation of enantiomers presents a prominent challenge in molecular biology and belongs to the ``Holy Grail'' of organic chemistry. We suggest a new separation technique for chiral molecules that is based on the transport properties in a microfluidic flow with spatially variable vorticity. Because of their size the thermal fluctua...

  10. Chiral Odd GPDs

    Directory of Open Access Journals (Sweden)

    Goldstein Gary R.

    2015-01-01

    Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.

  11. Model Building

    OpenAIRE

    Frampton, Paul H.

    1997-01-01

    In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly...

  12. Building Block Experiment System for Off-class Research Activities%积木式课外科技活动实验系统

    Institute of Scientific and Technical Information of China (English)

    徐红; 叶丰

    2014-01-01

    本文讨论了笔者开发的积木式课外科技活动实验系统。该实验系统具有可重构、灵活、易扩展、兼具数据处理和控制等特点,因此可以实现多种应用设计的开发。学生在课堂之外利用本系统能够独立动手实践,熟悉基本的电子电路知识,提高软硬件开发能力和创新能力。%A set of self-developed building block experiment system for off-class research activities,with the advan-tages of reconfiguration,flexibility,extensibility,strong data processing and control capability and so on,is pro-posed. This system can carry out a variety of development of application designs,and can make students think in-dependently,practice in person in order to study basic knowledge of electronic circuit,improve the hardware and software development capabilities and innovation ability.

  13. Observed Faraday Effects in Damped Lyman-Alpha Absorbers and Lyman Limit Systems: The Magnetised Environment of Galactic Building Blocks at Redshift=2

    CERN Document Server

    Farnes, J S; Gaensler, B M; Haverkorn, M; O'Sullivan, S P; Curran, S J

    2016-01-01

    Protogalactic environments are typically identified using quasar absorption lines, and these galactic building blocks can manifest as Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). We use radio observations of Faraday effects to test whether DLAs and LLSs host a magnetised medium, by combining DLA and LLS detections throughout the literature with 1.4 GHz polarization data from the NRAO VLA Sky Survey (NVSS). We obtain a control, a DLA, and a LLS sample consisting of 114, 19, and 27 lines-of-sight respectively - all of which are polarized at $\\ge8\\sigma$ to ensure Rician bias is negligible. Using a Bayesian framework, we are unable to detect either coherent or random magnetic fields in DLAs: the regular coherent magnetic fields within the DLAs must be $\\le2.8$ $\\mu$G, and the lack of depolarization is consistent with the weakly magnetised gas in DLAs being non-turbulent and quiescent. However, we find mild suggestive evidence that LLSs have coherent magnetic fields: after controlling for t...

  14. Molecular assembly of highly symmetric molecules under a hydrogen bond framework controlled by alkyl building blocks: a simple approach to fine-tune nanoscale structures.

    Science.gov (United States)

    Tanphibal, Pimsai; Tashiro, Kohji; Chirachanchai, Suwabun

    2016-01-14

    To date, molecular assemblies under the contribution of hydrogen bond in combination with weak interactions and their consequent morphologies have been variously reported; however, how the systematic variation of the structure can fine-tune the morphologies has not yet been answered. The present work finds an answer through highly symmetric molecules, i.e. diamine-based benzoxazine dimers. This type of molecule develops unique molecular assemblies with their networks formed by hydrogen bonds at the terminal, while, at the same time, their hydrogen bonded frameworks are further controlled by the hydrophobic segment at the center of the molecule. When this happens, slight differences in hydrophobic alkyl chain lengths (, , and ) bring a significant change to the molecular assemblies, thus resulting in tunable morphologies, i.e. spheres, needles and dendrites. The superimposition between the crystal lattice obtained from X-ray single crystal analysis and the electron diffraction pattern obtained from transmission electron microscopy allows us to identify the molecular alignment from single molecules to self-assembly until the morphologies developed. The present work, for the first time, shows the case of symmetric molecules, where the hydrophobic building block controls the hydrogen bond patterns, leading to the variation of molecular assemblies with tunable morphologies. PMID:26482133

  15. Ce2B8O15. High-pressure synthesis and crystal structure determination of a rare-earth polyborate exhibiting a new 'Fundamental Building Block'

    International Nuclear Information System (INIS)

    The new cerium polyborate Ce2B8O15 was synthesized under high-pressure/high-temperature conditions of 6 GPa and 1050 C in a Walker-type multianvil apparatus. The single-crystal structure determination revealed that the new compound crystallizes in the space group P2/c with the lattice parameters a = 916.6(2), b = 421.0(1), c = 1248.9(3) pm, β = 116.7(1) , V = 0.4303(2) nm3, R1 = 0.0356, and wR2 = 0.0504. The crystal structure of Ce2B8O15 exhibits a new fundamental building block (FBB) in borate chemistry that consists of four BO4 tetrahedra and can be written as 4□: [Φ] left angle 3□ right angle vertical stroke □ vertical stroke. These FBB are interconnected via common corners, forming a complex threedimensional network that contains the Ce3+ cations. Ce2B8O15 represents the most boron rich rare-earth borate synthesized under high-pressure/high-temperature conditions so far. We report about the synthetic conditions, structural details, thermal behaviour, and the IR/Raman spectra of Ce2B8O15. (orig.)

  16. Exohedral M–C60 and M2–C60 (M = Pt, Pd) systems as tunable-gap building blocks for nanoarchitecture and nanocatalysis

    International Nuclear Information System (INIS)

    Transition metal–fullerenes complexes with metal atoms bound on the external surface of C60 are promising building blocks for next-generation fuel cells and catalysts. Yet, at variance with endohedral M@C60, they have received a limited attention. By resorting to first principles simulations, we elucidate structural and electronic properties for the Pd–C60, Pt–C60, PtPd–C60, Pd2–C60, and Pt2–C60 complexes. The most stable structures feature the metal atom located above a high electron density site, namely, the π bond between two adjacent hexagons (π-66 bond). When two metal atoms are added, the most stable configuration is those in which metal atoms still stand on π-66 bonds but tends to clusterize. The electronic structure, rationalized in terms of localized Wannier functions, provides a clear picture of the underlying interactions responsible for the stability or instability of the complexes, showing a strict relationship between structure and electronic gap

  17. INTOLERANT ATTITUDES BUILD WALLS AND BLOCK THE CONSTRUCTION OF BRIDGES: a cognitive-discoursive analysis of systematic metaphor emersion in opinion article genre

    Directory of Open Access Journals (Sweden)

    Ana Cristina Pelosi

    2016-03-01

    Full Text Available The article presents partial results of a research which is aimed at verifying how figurative language, specifically metaphoric and metonymic language, present in different textual genres such as the literary and the journalistic genres, contributes to the emergence and negotiation of meaning. The theoretic and methodological basis of the research comes from Conceptual Metaphor Theory, originally proposed by Lakoff and Johnson (1980 and expanded in the 90’s by theoreticians such as Grady (1997, and from Metaphor-Led Discourse Analysis (CAMERON ET AL, 2009; CAMERON; MASLEN, 2010. Research implementation involves two stages. An analysis of four exemplars of the genres under investigation according to Metaphor-Led Discourse Analysis and a second analysis, still to be carried out, of the talk of three focus groups composed by students of a state school in Santa Maria, RS, after the reading of the different genres. The preliminary analysis presented of the opinion article selected for this study reveals the presence of image-kinesthetic schemas and metaphoric/metonymic vehicles which structure the language present in the analyzed genre and contribute to the emergence of the systematic metaphor INTOLERANT ATTITUDES BUILD WALLS AND BLOCK THE CONSTRUCTION OF BRIDGES.

  18. Prebiotic synthesis of nucleic acids and their building blocks at the atomic level - merging models and mechanisms from advanced computations and experiments.

    Science.gov (United States)

    Šponer, Judit E; Szabla, Rafał; Góra, Robert W; Saitta, A Marco; Pietrucci, Fabio; Saija, Franz; Di Mauro, Ernesto; Saladino, Raffaele; Ferus, Martin; Civiš, Svatopluk; Šponer, Jiří

    2016-07-27

    The origin of life on Earth is one of the most fascinating questions of contemporary science. Extensive research in the past decades furnished diverse experimental proposals for the emergence of first informational polymers that could form the basis of the early terrestrial life. Side by side with the experiments, the fast development of modern computational chemistry methods during the last 20 years facilitated the use of in silico modelling tools to complement the experiments. Modern computations can provide unique atomic-level insights into the structural and electronic aspects as well as the energetics of key prebiotic chemical reactions. Many of these insights are not directly obtainable from the experimental techniques and the computations are thus becoming indispensable for proper interpretation of many experiments and for qualified predictions. This review illustrates the synergy between experiment and theory in the origin of life research focusing on the prebiotic synthesis of various nucleic acid building blocks and on the self-assembly of nucleotides leading to the first functional oligonucleotides. PMID:27136968

  19. Biodiversity: Building blocks for crops

    Science.gov (United States)

    An increasing global population will require more efficient food production. By year 2025, we will need 20-24% increases in yields of crops to meet the projected increase in food, fiber, and bioenergy demand from the global population. The competition to use limited land and sometimes compromised ...

  20. Building blocks in overcoming impasse

    Energy Technology Data Exchange (ETDEWEB)

    Strom, B. [Canadian Inst. for Conflict Resolution, Ottawa, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of ensuring the success of wind power projects by engaging community support. While financial incentives for wind power energy proposals are being implemented by government agencies, public support for wind power is often problematic. Wind power developers must ensure that effective communications strategies are used to deliver information to communities, as well to receive information from community groups. Active anti-wind groups can seem as though they represent entire communities when they may only represent a small minority. Consultation processes must be considered as a relationship between wind power developers and the surrounding community. A successful consultation process will help developers and community understand their roles as citizens as well as the regulatory requirements of wind power projects. Many disputes do represent the source of potential conflicts. An understanding of the real interests and motivations of all stakeholders will improve the success of the consultation process. Consultation processes must ensure that respect is maintained between all involved parties. tabs., figs.

  1. The Building Blocks of Learning

    Science.gov (United States)

    Kobrin, Jennifer L.; Panorkou, Nicole

    2016-01-01

    Learning progressions detail the incremental steps that students take as they learn to master a skill. These progressions are based on developmental research about how students learn and how their thinking develops as a result of instruction. A typical progression not only describes the stages that students must master, but it also shows what…

  2. Dynamic covalent nanoparticle building blocks

    OpenAIRE

    Kay, Euan Robert

    2016-01-01

    The author thanks the Royal Society of Edinburgh and Scottish Government for a personal research fellowship and gratefully acknowledge the EPSRC (EP/K016342/1) and Leverhulme Trust (RPG-2015-042) for funding our work on dynamic nanomaterials. Rational and generalizable methods for engineering surface functionality will be crucial to realizing the technological potential of nanomaterials. Nanoparticle-bound dynamic covalent exchange combines the error-correcting and environment-responsive f...

  3. The building blocks of HACCP

    Science.gov (United States)

    The Hazard Analysis and Critical Control Point (HACCP) food safety inspection program is utilized by both USDA Food Safety Inspection Service (FSIS) and FDA for many of the products they regulate. This science-based program was implemented by the USDA FSIS to enhance the food safety of meat and pou...

  4. Dirac brackets for the chiral Schwinger model with chiral constraint

    International Nuclear Information System (INIS)

    Dirac brackets for the chiral Schwinger model with chiral constraint are derived perturbatively from the correlation function by the BJL limit method. The results show that the Poissons brackets are not consistent in this theory. (author)

  5. Dynamic Chirality in Nuclei

    International Nuclear Information System (INIS)

    Chirality has recently been proposed as a novel feature of rotating nuclei [1]. Because the chiral symmetry is dichotomic, its spontaneous breaking by the axial angular momentum vector leads to doublets of closely lying rotational bands of the same parity. To investigate nuclear chirality, next to establish the existence of almost degenerate rotational bands, it is necessary to measure also other observables and compare them to the model predictions. The crucial test for the suggested nuclei as candidates to express chirality is based on precise lifetime measurements. Two lifetime experiments and theoretical approaches for the description of the experimental results will be presented. Lifetimes of exited states in 134Pr were measured [2,3] by means of the recoil distance Doppler-shift and Doppler-shift attenuation techniques. The branching ratios and the electric or magnetic character of the transitions were also investigated [3]. The experiments were performed at IReS, Strasbourg, using the EUROBALL IV spectrometer, in conjunction with the inner bismuth germanate ball and the Cologne coincidence plunger apparatus. Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F, 4n)134Pr. The possible chiral interpretation of twin bands was investigated in the two-quasiparticle triaxial rotor [1] and interacting boson-fermion-fermion models [4]. Both theoretical approaches can describe the level-scheme of 134Pr. The analysis of the wave functions has shown that the possibility for the angular momenta of the proton, neutron, and core to find themselves in the favorable, almost orthogonal geometry, is present but is far from being dominant [3,5]. The structure is characterized by large β and γ fluctuations. The existence of doublets of bands in 134Pr can be attributed to weak chirality dominated by shape fluctuations. In a second experiment branching ratios and lifetimes in 136Pm were measured by means of the recoil distance Doppler-shift and

  6. Building Languages

    Science.gov (United States)

    ... family's native language) is taught as the child's second language through reading, writing, speech, and use of residual ... that parents can use to help their child learn language. There are many types of building blocks, and ...

  7. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  8. Chitosan microspheres with an extracellular matrix-mimicking nanofibrous structure as cell-carrier building blocks for bottom-up cartilage tissue engineering

    Science.gov (United States)

    Zhou, Yong; Gao, Huai-Ling; Shen, Li-Li; Pan, Zhao; Mao, Li-Bo; Wu, Tao; He, Jia-Cai; Zou, Duo-Hong; Zhang, Zhi-Yuan; Yu, Shu-Hong

    2015-12-01

    Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation. Recently, as a valuable alternative, a bottom-up TE approach utilizing cell-loaded micrometer-scale modular components as building blocks to reconstruct a new tissue in vitro or in vivo has been proved to demonstrate a number of desirable advantages compared with the traditional bulk scaffold based top-down TE approach. Nevertheless, micro-components with an ECM-mimicking nanofibrous structure are still very scarce and highly desirable. Chitosan (CS), an accessible natural polymer, has demonstrated appealing intrinsic properties and promising application potential for TE, especially the cartilage tissue regeneration. According to this background, we report here the fabrication of chitosan microspheres with an ECM-mimicking nanofibrous structure for the first time based on a physical gelation process. By combining this physical fabrication procedure with microfluidic technology, uniform CS microspheres (CMS) with controlled nanofibrous microstructure and tunable sizes can be facilely obtained. Especially, no potentially toxic or denaturizing chemical crosslinking agent was introduced into the products. Notably, in vitro chondrocyte culture tests revealed that enhanced cell attachment and proliferation were realized, and a macroscopic 3D geometrically shaped cartilage-like composite can be easily constructed with the nanofibrous CMS (NCMS) and chondrocytes, which demonstrate significant application potential of NCMS as the bottom-up cell-carrier components for cartilage tissue engineering.Scaffolds for tissue engineering (TE) which closely mimic the physicochemical properties of the natural extracellular matrix (ECM) have been proven to advantageously favor cell attachment, proliferation, migration and new tissue formation

  9. Quarkyonic Chiral Spirals

    CERN Document Server

    Kojo, Toru; McLerran, Larry; Pisarski, Robert D

    2009-01-01

    We consider the formation of chiral density waves in Quarkyonic matter, which is a phase where cold, dense quarks experience confining forces. We model confinement following Gribov and Zwanziger, taking the gluon propagator, in Coulomb gauge and momentum space, as 1/(p^2)^2. We assume that the number of colors, N, is large, and that the quark chemical potential, mu, is much larger than renormalization mass scale, Lambda_QCD. To leading order in 1/N and Lambda_QCD, a gauge theory with Nf flavors of massless quarks in 3+1 dimensions naturally reduces to a gauge theory in 1+1 dimensions, with an enlarged flavor symmetry of SU(2Nf). Through an anomalous chiral rotation, in two dimensions a Fermi sea of massless quarks maps directly onto the corresponding theory in vacuum. A chiral condensate forms locally, and varies with the spatial position, z, as . Following Schon and Thies, we term this two dimensional pion condensate a (Quarkyonic) chiral spiral. Massive quarks also exhibit chiral spirals, with the magnitude...

  10. Chiral Quirkonium Decays

    CERN Document Server

    Fok, R

    2011-01-01

    We calculate the two-body decay rates of "quirkonium" states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)_ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the Standard Model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vector-like representation. The differences in the dominant decay channels between "chiral quirkonia" versus "vector-like quirkonia" are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, t\\bar{t}, t\\bar{b} / b\\bar{t}, and gamma+H, which never dominate for vector-like quirkonia. Additionally, the channels WW, WZ, ZZ, and W+gamma, are shared among both chiral and vector-like quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vector-like quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the ...

  11. Chiral quirkonium decays

    International Nuclear Information System (INIS)

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between 'chiral quirkonia' versus 'vectorlike quirkonia' are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, tt, tb/bt, and γH, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and Wγ, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  12. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    Science.gov (United States)

    Martinenghi, E.; Di Sieno, L.; Contini, D.; Sanzaro, M.; Pifferi, A.; Dalla Mora, A.

    2016-07-01

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm2 together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).

  13. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems.

    Science.gov (United States)

    Martinenghi, E; Di Sieno, L; Contini, D; Sanzaro, M; Pifferi, A; Dalla Mora, A

    2016-07-01

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm(2) together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems). PMID:27475542

  14. 3,3'-Dinitroamino-4,4'-azoxyfurazan and its derivatives: an assembly of diverse N-O building blocks for high-performance energetic materials.

    Science.gov (United States)

    Zhang, Jiaheng; Shreeve, Jean'ne M

    2014-03-19

    On the basis of a design strategy that results in the assembly of diverse N-O building blocks leading to energetic materials, 3,3'-dinitroamino-4,4'-azoxyfurazan and its nitrogen-rich salts were obtained and fully characterized via spectral and elemental analyses. Oxone (potassium peroxomonosulfate) is an efficient oxidizing agent for introducing the azoxy N-oxide functionality into the furazan backbone, giving a straightforward and low-cost synthetic route. On the basis of heats of formation calculated with Gaussian 03 and combined with experimentally determined densities, energetic properties (detonation velocity, pressure and specific impulse) were obtained using the EXPLO v6.01 program. These new molecules exhibit high density, moderate to good thermal stability, acceptable impact and friction sensitivities, and excellent detonation properties, which suggest potential applications as energetic materials. Interestingly, 3,3'-dinitroamino-4,4'-azoxyfurazan (4) has the highest calculated crystal density of 2.02 g cm(-3) at 173 K (gas pycnometer measured density is 1.96 g cm(-3) at 298 K) for N-oxide energetic compounds yet reported. Another promising compound is the hydroxylammonium salt (6), which has four different kinds of N-O moieties and a detonation performance superior to those of 1,3,5,7-tetranitrotetraazacyclooctane (HMX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclododecane (CL-20). Furthermore, computational results, viz., NBO charges and ESP, also support the superior qualities of the newly prepared compounds and the design strategy. PMID:24571188

  15. Correlation functions of the chiral stress-tensor multiplet in $N$=4 SYM

    CERN Document Server

    Chicherin, Dmitry; Eden, Burkard; Heslop, Paul; Korchemsky, Gregory P; Mason, Lionel; Sokatchev, Emery

    2015-01-01

    We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.

  16. Chiral Invariance of Massive Fermions

    OpenAIRE

    Das, A.(University of Arizona, Tucson, AZ, 85721, USA); Hott, M

    1994-01-01

    We show that a massive fermion theory, while not invariant under the conventional chiral transformation, is invariant under a $m$-deformed chiral transformation. These transformations and the associated conserved charges are nonlocal but reduce to the usual transformations and charges when $m=0$. The $m$-deformed charges commute with helicity and satisfy the conventional chiral algebra.

  17. Chiral Electroweak Currents in Nuclei

    CERN Document Server

    Riska, D O

    2016-01-01

    The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  18. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  19. Chiral Quantum Optics

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter

    2016-01-01

    At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...

  20. Baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  1. Baryon chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2011-01-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order ${\\cal O}(q^6)$ and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  2. Chiral quark model

    Indian Academy of Sciences (India)

    H Weigel

    2003-11-01

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.

  3. Baryon chiral perturbation theory

    Science.gov (United States)

    Scherer, S.

    2012-03-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order Script O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  4. Chiral perturbation theory

    International Nuclear Information System (INIS)

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  5. 园林砌块小建筑中的方钢梁柱加固施工法%Reinforcement Construction Method of Square Steel Beam-column in Garden Block Small Building

    Institute of Scientific and Technical Information of China (English)

    马可; 谭昇

    2014-01-01

    物园小建筑用砌块更好,简便易行,在园林坡地上建造较为节省,用方钢构架焊牢在砌块洞中,成为梁、柱连接加固体系,替代山体中的现浇混凝土笼舍,简化了施工,是动物界饲养笼舍的推广性设计方式。%It’s better to adopt blocks in the small buildings of zoo, which is easy for walking. Building in the garden slopes is more economic, with square steel frame welding in the block hole, to become a beam, column connection reinforcement system to replace the cast-in-place concrete cage in mountain simplifies the construction, which is the widely design method for animal feeding cage.

  6. Chiral Heat Wave and wave mixing in chiral media

    CERN Document Server

    Chernodub, M N

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective excitation associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This excitation, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. We find that the coupled waves - which are coherent fluctuations of the vector, axial and energy currents - have generally different velocities compared to the velocities of the individual waves. We also demonstrate that rotating chiral systems subjected to external magnetic field possess non-propagating metastable thermal excitations, the Dense Hot Spots.

  7. Chiral forces and molecular dissymmetry

    International Nuclear Information System (INIS)

    Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected

  8. Interweaving Chiral Spirals

    CERN Document Server

    Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D

    2011-01-01

    We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...

  9. STELLAR POPULATIONS OF Lyα EMITTERS AT z ∼ 6-7: CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS FROM GALAXY BUILDING BLOCKS

    International Nuclear Information System (INIS)

    We investigate the stellar populations of Lyα emitters (LAEs) at z = 5.7 and 6.6 in a 0.65 deg2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with the Subaru/Suprime-Cam, United Kingdom Infrared Telescope/Wide Field Infrared Camera, and Spitzer/Infrared Array Camera (IRAC). We produce stacked multiband images at each redshift from 165 (z = 5.7) and 91 (z = 6.6) IRAC-undetected objects to derive typical spectral energy distributions (SEDs) of z ∼ 6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) z-dropout galaxies of similar MUV, with a spectral slope β ∼ -3, but at the same time they have red UV-to-optical colors with detection in the 3.6 μm band. Using SED fitting we find that the stacked LAEs have low stellar masses of ∼(3-10) x 107 Msun, very young ages of ∼1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z = 6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical colors while keeping the UV colors sufficiently blue. We infer that typical LAEs at z ∼ 6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lyα escape fraction from z = 5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons of f ionesc ∼ 0.6 at z = 5.7 and ∼0.9 at z = 6.6. We also compare the stellar populations of our LAEs with those of stacked HST/WFC3 z-dropout galaxies.

  10. Building blocks for meta-synthesis: data integration tables for summarising, mapping, and synthesising evidence on interventions for communicating with health consumers

    Directory of Open Access Journals (Sweden)

    Kaufman Caroline A

    2009-03-01

    Full Text Available Abstract Background Systematic reviews have developed into a powerful method for summarising and synthesising evidence. The rise in systematic reviews creates a methodological opportunity and associated challenges and this is seen in the development of overviews, or reviews of systematic reviews. One of these challenges is how to summarise evidence from systematic reviews of complex interventions for inclusion in an overview. Interventions for communicating with and involving consumers in their care are frequently complex. In this article we outline a method for preparing data integration tables to enable review-level synthesis of the evidence on interventions for communication and participation in health. Methods and Results Systematic reviews published by the Cochrane Consumers and Communication Review Group were utilised as the basis from which to develop linked steps for data extraction, evidence assessment and synthesis. The resulting output is called a data integration table. Four steps were undertaken in designing the data integration tables: first, relevant information for a comprehensive picture of the characteristics of the review was identified from each review, extracted and summarised. Second, results for the outcomes of the review were assessed and translated to standardised evidence statements. Third, outcomes and evidence statements were mapped into an outcome taxonomy that we developed, using language specific to the field of interventions for communication and participation. Fourth, the implications of the review were assessed after the mapping step clarified the level of evidence available for each intervention. Conclusion The data integration tables represent building blocks for constructing overviews of review-level evidence and for the conduct of meta-synthesis. Individually, each table aims to improve the consistency of reporting on the features and effects of interventions for communication and participation; provides a

  11. Three-dimensional roselike α-Ni(OH){sub 2} assembled from nanosheet building blocks for non-enzymatic glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Pan [College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025 (China); Lei, Yuting [College of Life Sciences, Guizhou University, Guiyang 550025 (China); Lu, Shengjun, E-mail: shjlu71@163.com [College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025 (China); Wang, Qing [College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025 (China); Liu, Qibin, E-mail: qbliu2@263.net [Guizhou Key Laboratory for Microstructure and Strength of Materials, Guiyang, Guizhou 550003 (China)

    2015-06-23

    Highlights: • High-quality roselike α-Ni(OH){sub 2} can be obtained via a self-assembly process with the assistance of PEG. • The Ni(OH){sub 2}-RS have bimodal porosity in the mesoporous regime with large specific surface areas. • This work developed a highly sensitive biosensor based on Ni(OH){sub 2}-RS for the determination of glucose. • This biosensor shows a wide linear range of 0.87 μM–10.53 mM and a lower detection limit of 0.08 μM. - Abstract: Glucose detection plays very important roles in diagnostics and management of diabetes. The search for novel catalytic materials with appropriate architectures is the key step in the fabrication of highly sensitive glucose sensors. In this work, α-Ni(OH){sub 2} roselike structures (Ni(OH){sub 2}-RS) assembled from nanosheet building blocks were successfully synthesized by a hydrothermal method through the hydrolysis of nickel chloride in the mixed solvents of water and ethanol with the assistance of polyethylene glycol (PEG). The structure and morphology of the roselike α-Ni(OH){sub 2} were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and N{sub 2} adsorption–desorption isotherm measurement. TEM and FE-SEM images showed that the synthesized Ni(OH){sub 2} was roselike and the size of the leaf-shaped nanosheet was about 5 nm in thickness, which leads to larger active surface areas and faster electron transfer for the detection of glucose. Compared with the bare GCE and bulk Ni(OH){sub 2}/GCE, the Ni(OH){sub 2}-RS/GCE had higher catalytic activity toward the oxidation of glucose. Under the optimal conditions, the Ni(OH){sub 2}-RS/GCE offers a variety of merits, such as a wide linear response window for glucose concentrations ranging from 0.87 μM to 10.53 mM, short response time (3 s), a lower detection limit of 0.08 μM (S/N = 3), as well as long term stability and

  12. Heart Block

    Science.gov (United States)

    ... the signal causes the heart to contract and pump blood. Heart block occurs if the electrical signal is ... degree heart block limits the heart's ability to pump blood to the rest of the body. This type ...

  13. Population Blocks.

    Science.gov (United States)

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  14. E-Block: A Tangible Programming Tool with Graphical Blocks

    Directory of Open Access Journals (Sweden)

    Danli Wang

    2013-01-01

    Full Text Available This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transferred to computer by microcomputers and then translated into semantic information. The system applies wireless and infrared technologies and provides user with feedbacks on both screen and programming blocks. Preliminary user studies using observation and user interview methods are shown for E-Block's prototype. The test results prove that E-Block is attractive to children and easy to learn and use. The project also highlights potential advantages of using single chip microcomputer (SCM technology to develop tangible programming tools for children.

  15. Two-stages of chiral selectivity in the molecular self-assembly of tryptophan

    Science.gov (United States)

    Guisinger, Nathan

    Both chirality and molecular assembly are essential and key components to life. In this study we explore the molecular assembly of the amino acid tryptophan (both L- and D- chiralities) on Cu(111). Our investigation utilizes low temperature scanning tunneling microscopy to observe resulting assemblies at the molecular scale. We find that depositing a racemic mixture of both L- and D- tryptophan results in the assembly of basic 6 molecule ``Lego'' structures that are enantiopure. These enantiopure ``Legos'' further assemble into 1-dimensional chains one block at a time. These resulting chains are also enantiopure with chiral selectivity occurring at two stages of assembly. Utilizing scanning tunneling spectroscopy we are able to probe the electronic structure of the chiral Legos that give insight into the root of the observed selectivity. Two-stages of chiral selectivity in the molecular self-assembly of tryptophan.

  16. Chiral Biomarkers in Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  17. A Chiral Granular Gas

    Science.gov (United States)

    Tsai, J.-C.; Ye, Fangfu; Rodriguez, Juan; Gollub, J. P.; Lubensky, T. C.

    2005-05-01

    Inspired by rattleback toys, we created small chiral wires that rotate in a preferred direction on a vertically oscillating platform and quantified their motion with experiment and simulation. We demonstrate experimentally that angular momentum of rotation about particle centers of mass is converted to collective angular momentum of center-of-mass motion in a granular gas of these wires, and we introduce a continuum model that explains our observations.

  18. Chiral Crystal Growth under Grinding

    OpenAIRE

    Saito, Yukio; Hyuga, Hiroyuki

    2008-01-01

    To study the establishment of homochirality observed in the crystal growth experiment of chiral molecules from a solution under grinding, we extend the lattice gas model of crystal growth as follows. A lattice site can be occupied by a chiral molecule in R or S form, or can be empty. Molecules form homoclusters by nearest neighbor bonds. They change their chirality if they are isolated monomers in the solution. Grinding is incorporated by cutting and shafling the system randomly. It is shown ...

  19. Chiral squaring and KLT relations

    OpenAIRE

    Schreiber, Anders

    2016-01-01

    We demonstrate that amplitudes based on matter supermultiplets can be combined to provide amplitudes of vector supermultiplets by means of KLT relations. In practice we do this by developing a procedure for removing supersymmetry supercharges from super Yang-Mills theory and supergravity supermultiplets, reducing them to vector and chiral supermultiplets respectively. This way, we reduce the super KLT relations to chiral KLT relations making chiral squaring of amplitudes manifest. We study th...

  20. Chiral dynamics and baryon resonances

    OpenAIRE

    Hyodo, Tetsuo

    2010-01-01

    The structure of baryon resonance in coupled-channel meson-baryon scattering is studied from the viewpoint of chiral dynamics. The meson-baryon scattering amplitude can be successfully described together with the properties of the resonance in the scattering, by implementing the unitarity condition for the amplitude whose low energy structure is constrained by chiral theorem. Recently, there have been a major progress in the study of the structure of the resonance in chiral dynamics. We revie...

  1. Chiral nuclear thermodynamics

    CERN Document Server

    Fiorilla, Salvatore; Weise, Wolfram

    2011-01-01

    We calculate the equation of state of nuclear matter for arbitrary isospin-asymmetry up to three loop order in the free energy density in the framework of in-medium chiral perturbation theory. In our approach 1\\pi- and 2\\pi-exchange dynamics with the inclusion of the \\Delta-isobar excitation as an explicit degree of freedom, corresponding to the long- and intermediate-range correlations, are treated explicitly. Few contact terms fixed to reproduce selected known properties of nuclear matter encode the short-distance physics. Two-body as well as three-body forces are systematically included. We find a critical temperature of about 15 MeV for symmetric nuclear matter. We investigate the dependence of the liquid-gas first-order phase transition on isospin-asymmetry. In the same chiral framework we calculate the chiral condensate of isospin-symmetric nuclear matter at finite temperatures. The contribution of the \\Delta-isobar excitation is essential for stabilizing the condensate. As a result, we find no indicati...

  2. Generalized simplicial chiral models

    CERN Document Server

    Alimohammadi, M

    2000-01-01

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...

  3. Generalized simplicial chiral models

    International Nuclear Information System (INIS)

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, the simplicial chiral models are generalized through replacing the term Tr(AA†) in the Lagrangian of these models by an arbitrary class function of AA†; V(AA†). This is the same method used in defining the generalized two-dimensional Yang-Mills theories (gYM2) from ordinary YM2. We call these models the 'generalized simplicial chiral models'. Using the results of the one-link integral over a U(N) matrix, the large-N saddle-point equations for eigenvalue density function ρ(z) in the weak (β>βc) and strong (βc) regions are computed. In d=2, where the model is in some sense related to the gYM2 theory, the saddle-point equations are solved for ρ(z) in the two regions, and the explicit value of critical point βc is calculated for V(B)=Tr Bn (B=AA†). For V(B)=Tr B2,Tr B3, and TrB4, the critical behaviour of the model at d=2 is studied, and by calculating the internal energy, it is shown that these models have a third order phase transition

  4. Chirality and protein folding

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinska, Joanna I; Cieplak, Marek [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland)

    2005-05-11

    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.

  5. Chirality and protein folding

    Science.gov (United States)

    Kwiecinska, Joanna I.; Cieplak, Marek

    2005-05-01

    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.

  6. Chiral squaring and KLT relations

    CERN Document Server

    Schreiber, Anders

    2016-01-01

    We demonstrate that amplitudes based on matter supermultiplets can be combined to provide amplitudes of vector supermultiplets by means of KLT relations. In practice we do this by developing a procedure for removing supersymmetry supercharges from super Yang-Mills theory and supergravity supermultiplets, reducing them to vector and chiral supermultiplets respectively. This way, we reduce the super KLT relations to chiral KLT relations making chiral squaring of amplitudes manifest. We study these chiral KLT relations, discussing permutation symmetry and vanishing relations. Finally some explicit calculations are done to show how the relations work in detail.

  7. The chiral magnetic effect in hydrodynamical approach

    OpenAIRE

    Sadofyev, A. V.; Isachenkov, M. V.

    2010-01-01

    In quark-gluon plasma nonzero chirality can be induced by the chiral anomaly. When a magnetic field is applied to a system with nonzero chirality an electromagnetic current is induced along the magnetic field. This phenomenon is called the chiral magnetic effect. In this paper appearance of the chiral magnetic effect in hydrodynamical approximation is shown. We consider a hydrodynamical model for chiral liquid with two independent currents of left and right handed particles in the presence of...

  8. Parity-violating macroscopic force between chiral molecules and source mass

    CERN Document Server

    Hu, Yonghong; Xu, Qing; Luo, Jun

    2008-01-01

    A theory concerning non-zero macroscopic chirality-dependent force between a source mass and homochiral molecules due to the exchange of light particles is presented in this paper. This force is proposed to have opposite sign for molecules with opposite chirality. Using the central field approximation, we calculate this force between a copper block and a vessel of chiral molecules (methyl phenyl carbinol nitrite). The magnitude of force is estimated with the published limits of the scalar and pseudo-scalar coupling constants. Based on our theoretical model, this force may violate the equivalence principle when the homochiral molecules are used to be the test masses.

  9. Two-step crystal engineering of porous nets from [Cr3(μ 3-O)(RCO2)6] and [Cu3(μ 3-Cl)(RNH2)6Cl6] molecular building blocks

    KAUST Repository

    Elsaidi, Sameh K.

    2013-01-01

    Two porous nets have been prepared via a 2-step crystal engineering approach that links decorated trigonal prismatic [Cr3(μ 3-O)(CO2)6] and [Cu3(μ 3-Cl)(RNH2)6Cl6] molecular building blocks, MBBs. tp-PMBB-5-acs-1 is a rare example of a rigid acs underlying net whereas tp-PMBB-6-stp-1, an stp underlying net, exhibits free NH2 groups in its channels and a relatively high isosteric heat of adsorption for CO2. © 2013 The Royal Society of Chemistry.

  10. Chiral Symmetry and the Nucleon-Nucleon Interaction

    Directory of Open Access Journals (Sweden)

    Ruprecht Machleidt

    2016-04-01

    Full Text Available We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD via chiral effective field theory (EFT. During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (N N interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the N N potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. The final result allows for a full assessment of the validity of the chiral EFT approach to the N N interaction.

  11. CHIRAL SYMMETRIES IN NUCLEAR PHYSICS

    International Nuclear Information System (INIS)

    The theoretical concepts of a chirally symmetric meson field theory are reviewed and an overview of the most relevant applications in nuclear physics is given. This includes a unified description of the vacuum properties of hadrons, finite nuclei and hot, dense and strange nuclear matter in an extended chiral SU(3)L/SU(3)R σ-ω model

  12. Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities. PMID:17597467

  13. Mass-Selective Chiral Analysis.

    Science.gov (United States)

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-12

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here. PMID:27070181

  14. Mass-Selective Chiral Analysis

    Science.gov (United States)

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-01

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here.

  15. Chiral Nuclear Dynamics II

    CERN Document Server

    Rho, Mannque

    2008-01-01

    This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and

  16. Entwicklung neuer chiraler Metathesekatalysatoren

    OpenAIRE

    Schlesiger, David Alexander

    2012-01-01

    Diese Arbeit befasst sich im ersten Teil mit der Synthese chiraler Rutenium-Metathesekatalysatoren. Diese zeichnen sich durch eine Monosubstitution im Rückgrat des N-heterocyclischen Carben-Liganden (NHC-Liganden) aus. Der Katalysator wurde hierbei ausgehend von L-Valin hergestellt. Der Weg verlief über eine Sulfamidat-Zwischenstufe und war bezüglich Ausbeute und Flexibilität dem ursprünglichen Syntheseweg überlegen. Die hoch flexible Route über das Sulfamidat ermöglichte die Herstellung des ...

  17. Preferential rotation of chiral dipoles in isotropic turbulence

    CERN Document Server

    Kramel, Stefan; Toschi, Federico; Voth, Greg A

    2016-01-01

    Particles in the shape of chiral dipoles show a preferential rotation in three dimensional homogeneous isotropic turbulence. A chiral dipole consists of a rod with two helices of opposite handedness, one at each end. We can use 3d printing to fabricate these particles with length in the inertial range and track their rotations in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles will align with the extensional eigenvectors of the strain rate tensor and the helical ends will respond to the strain field by spinning around its long axis. The mean of the measured spinning rate is non-zero and reflects the average stretching the particles experience. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using Lagrangian velocity gradients from high resolution direct numerical simulations. The stat...

  18. 福州双杭近代商业街区典型建筑类型及其建筑特色分析%Analysis of Representative Building Types and Characteristic in Fuzhou Shuanghang Modern Commercial Block

    Institute of Scientific and Technical Information of China (English)

    黄婧琳; 毛键源

    2012-01-01

    As a modern commercial center of Fuzhou , Shuanghang block has strong regional characteristics and contains a lot of kind of building types. This essay comprehensively analysis all kinds of building types in Shuanghang block. Especially . This essay has detail analysis on hall's special practise and provenance, commerce garden characteristics of Fuzhou chamber, typically line of business and typically residence Shangxia hang crossing.%作为近代福州商业中心,双杭街区是具有浓郁地域特色的历史商业街区,包含众多建筑类型.该文对其建筑进行全面的梳理和分类,并细致分析不同会馆的特色做法及其出处,福州商会园林建筑特色,上、下杭路口的两典型行当和双杭街区两种类型的住宅.

  19. On Chiral and Nonchiral 1D Supermultiplets

    CERN Document Server

    Toppan, Francesco

    2011-01-01

    In this talk I discuss and clarify some issues concerning chiral and nonchiral properties of the one-dimensional supermultiplets of the N-Extended Supersymmetry. Quaternionic chirality can be defined for N=4,5,6,7,8. Octonionic chirality for N=8 and beyond. Inequivalent chiralities only arise when considering several copies of N=4 or N=8 supermultiplets.

  20. Repulsive Casimir Force in Chiral Metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E.N.; Soukoulis, C.M.

    2009-09-04

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  1. Repulsive Casimir Force in Chiral Metamaterials

    OpenAIRE

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2009-01-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  2. Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.

    Science.gov (United States)

    Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M

    2011-10-01

    Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks. PMID:20924860

  3. Chiral limit of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.

    1994-12-31

    This talk contains an analysis of quenched chiral perturbation theory and its consequences. The chiral behavior of a number of quantities such as the pion mass m{sub pi}{sup 2}, the Bernard-Golterman ratios R and {sub X}, the masses of nucleons, and the kaon B-parameter are examined to see if the singular terms induced by the additional Goldstone boson, {eta}{prime}, are visible in present data. The overall conclusion (different from that presented at the lattice meeting) of this analysis is that even though there are some caveats attached to the indications of the extra terms induced by {eta}{prime} loops, the standard expressions break down when extrapolating the quenched data with m{sub q} < m{sub s}/2 to physical light quarks. I then show that due to the single and double poles in the quenched {eta}{prime}, the axial charge of the proton cannot be calculated using the Adler-Bell-Jackiw anomaly condition. I conclude with a review of the status of the calculation of light quark masses from lattice QCD.

  4. Chiral symmetry and scalars

    International Nuclear Information System (INIS)

    The suggestion by Jaffe that if σ is a light q2q-bar2 state 0++ then even the fundamental chiral transformation properties of the σ becomes unclear, has stimulated much interest. Adler pointed out that in fact the seminal work on chiral symmetry via PCAC consistency, is really quite consistent with the σ being predominantly q2q-bar2. This interpretation was actually backed by subsequent work on effective Lagrangian methods for linear and non linear realizations. More recent work of Achasov suggests that intermediate four-quark states determine amplitudes involving other scalars a0(980) and f0(980) below 1 GeV, and the report by Ning Wu that study on σ meson in J/ψ → ωπ+π- continue to support a non qq-bar σ with mass as low as 390 MeV. It is also noted that more recent re-analysis of πK scattering by S. Ishida et al. together with the work of the E791 Collaboration, support the existence of the scalar κ particle with comparatively light mass as well

  5. Chiral fiber optical isolator

    Science.gov (United States)

    Kopp, Victor I.; Zhang, Guoyin; Zhang, Sheng; Genack, Azriel Z.; Neugroschl, Dan

    2009-02-01

    We propose an in-fiber chiral optical isolator based on chiral fiber polarizer technology and calculate its performance by incorporating the magnetic field into the scattering matrix. The design will be implemented in a special preform, which is passed through a miniature heat zone as it is drawn and twisted. The birefringence of the fiber is controlled by adjusted the diameter of a dual-core optical fiber. By adjusting the twist, the fiber can convert linear to circular polarization and reject one component of circular polarization. In the novel central portion of the isolator, the fiber diameter is large. The effective birefringence of the circular central core with high Verdet constant embedded in an outer core of slightly smaller index of refraction is small. The central potion is a non-reciprocal polarization converter which passes forward traveling left circularly polarized (LCP) light as LCP, while converting backward propagating LCP to right circularly polarized (RCP) light. Both polarizations of light traveling backwards are scattered out of the isolator. Since it is an all-glass structure, we anticipate that the isolator will be able to handle several watts of power and will be environmentally robust.

  6. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  7. Moduli stabilisation for chiral global models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-10-15

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r

  8. Building Numbers from Primes

    Science.gov (United States)

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  9. Quarks, baryons and chiral symmetry

    CERN Document Server

    Hosaka, Atsushi

    2001-01-01

    This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w

  10. Front-Form Chiral Multiplets

    CERN Document Server

    Gómez-Rocha, María

    2012-01-01

    In this article we point out that the unitary transformation that relates the chiral basis $\\{R; I J^{PC}\\}$ and the $\\{I; ^{2S+1}L_J \\}$ basis, which was already derived for canonical spin in instant form, is also applicable in light-cone representations. From the most general expression for the Clebsch-Gordan coefficients of the Poincar\\'e group one can see that the chiral limit brings the angular momentum coupling into a simple form that permits a clear relation in terms of SU(2) Clebsch-Gordan coefficients. It provides a tool of measurement of chiral symmetry in relativistic composite systems.

  11. Chiral Fermions on the Lattice

    CERN Document Server

    Bietenholz, Wolfgang

    2010-01-01

    In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.

  12. Field induced spin chirality and chirality switching in magnetic multilayers

    International Nuclear Information System (INIS)

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman–Kittel–Kasuya–Yosida and the Dsyaloshinsky–Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness. - Highlights: • Field-induced spin chirality in magnetic multilayers is explained. • The roles of the RKKY, the DM and the Zeeman interactions are clarified. • Theoretical analysis of the chirality factor is in agreement with experimental data

  13. Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics

    CERN Document Server

    Ruggieri, M; Chernodub, M

    2016-01-01

    We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.

  14. Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

    OpenAIRE

    Xiaohong Wang; Heinz C. Schröder; Müller, Werner E. G.

    2014-01-01

    Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA) and has been cloned from the calcareous sponge s...

  15. Research of Mind Map Based Knowledge Blocks Building in Teaching%教学中基于思维导图的知识块建构研究

    Institute of Scientific and Technical Information of China (English)

    胡艺文; 吴迪; 陈绍东

    2011-01-01

    思维导图作为一种认知工具,直观且形象地阐明了在认知领域中学习者的知识建构方式。本文尝试将思维导图融入物理学习中,并通过实践探索了基于思维导图的知识块5E建构方法,为教学中应用思维导图工具帮助学生建构可扩展的知识块提供参考。%As a cognitive tool, mind map intuitive and vividly illustrates the learner in the cognitive domain of knowledge in construction methods. This article attempts to integrate into the physical mind map leaming and through practice and exploration of the knowledge-based mind map block 5E constructivist approach to teaching the application of mind mapping tool to help students construct knowledge can be extended to provide a reference block.

  16. Chiral allyl silane additions to chiral α-substituted aldehydes

    International Nuclear Information System (INIS)

    Chiral allyl silane 3 reacted with chiral α-methyl-β-siloxy-aldehydes to afford the corresponding 1,4-syn-products with good diastereo-selectivities independent of the absolute stereochemistry of these aldehydes. The best selectivities are observed when the reactions are carried out by trans metallation of the allyl silane 3 using Tin (IV) Chloride in CH2 CL2 at -78 deg C, before addition of the aldehydes. (author)

  17. Spectral study of a chiral limit without chiral condensate

    OpenAIRE

    Bietenholz, Wolfgang; Hip, Ivan

    2009-01-01

    Random Matrix Theory (RMT) has elaborated successful predictions for Dirac spectra in field theoretical models. However, a generic assumption by RMT has been a non-vanishing chiral condensate $\\Sigma$ in the chiral limit. Here we consider the 2-flavour Schwinger model, where this assumption does not hold. We simulated this model with dynamical overlap hypercube fermions, and entered terra incognita by analysing this Dirac spectrum. The usual RMT prediction for the unfolded level spacing distr...

  18. Chiral Induction with Chiral Conformational Switches in the Limit of Low "Sergeants to Soldiers" Ratio

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Bombis, Christian; Knudsen, Martin Markvard;

    2014-01-01

    " mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data we demonstrate successful chiral induction with a very low concentration of seeding...... molecules down to 3%. The microscopic mechanism for the observed chiral induction is suggested to involve nucleation of the intrinsically chiral seeds, allowing for effective transfer and amplification of chirality to large numbers of soldier target molecules....

  19. Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E. coli

    Directory of Open Access Journals (Sweden)

    Martin Collin H

    2010-11-01

    Full Text Available Abstract Background The ability to synthesize chiral building block molecules with high optical purity is of considerable importance to the fine chemical and pharmaceutical industries. Production of one such compound, 3-hydroxyvalerate (3HV, has previously been studied with respect to the in vivo or in vitro enzymatic depolymerization of biologically-derived co-polymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate. However, production of this biopolymeric precursor typically necessitates the supplementation of a secondary carbon source (e.g., propionate into the culture medium. In addition, previous approaches for producing 3HV have not focused on its enantiopure synthesis, and thus suffer from increased costs for product purification. Results Here, we report the selective biosynthesis of each 3HV stereoisomer from a single, renewable carbon source using synthetic metabolic pathways in recombinant strains of Escherichia coli. The product chirality was controlled by utilizing two reductases of opposing stereoselectivity. Improvement of the biosynthetic pathway activity and host background was carried out to elevate both the 3HV titers and 3HV/3HB ratios. Overall, shake-flask titers as high as 0.31 g/L and 0.50 g/L of (S-3HV and (R-3HV, respectively, were achieved in glucose-fed cultures, whereas glycerol-fed cultures yielded up to 0.19 g/L and 0.96 g/L of (S-3HV and (R-3HV, respectively. Conclusions Our work represents the first report of direct microbial production of enantiomerically pure 3HV from a single carbon source. Continued engineering of host strains and pathway enzymes will ultimately lead to more economical production of chiral 3HV.

  20. Chiral crystal of a C2v-symmetric 1,3-diazaaulene derivative showing efficient optical second harmonic generation

    KAUST Repository

    Ma, Xiaohua

    2011-03-01

    Achiral nonlinear optical (NLO) chromophores 1,3-diazaazulene derivatives, 2-(4â€-aminophenyl)-6-nitro-1,3-diazaazulene (APNA) and 2-(4â€-N,N-diphenylaminophenyl)-6-nitro-1,3-diazaazulene (DPAPNA), were synthesized with high yield. Despite the moderate static first hyperpolarizabilities (β0) for both APNA [(136 ± 5) à - 10-30 esu] and DPAPNA [(263 ± 20) à - 10-30 esu], only APNA crystal shows a powder efficiency of second harmonic generation (SHG) of 23 times that of urea. It is shown that the APNA crystallization driven cooperatively by the strong H-bonding network and the dipolar electrostatic interactions falls into the noncentrosymmetric P2 12121 space group, and that the helical supramolecular assembly is solely responsible for the efficient SHG response. To the contrary, the DPAPNA crystal with centrosymmetric P-1 space group is packed with antiparalleling dimmers, and is therefore completely SHG-inactive. 1,3-Diazaazulene derivatives are suggested to be potent building blocks for SHG-active chiral crystals, which are advantageous in high thermal stability, excellent near-infrared transparency and high degree of designing flexibility. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 Optical crystals based on 1,3-diazaazulene derivatives are reported as the first example of organic nonlinear optical crystal whose second harmonic generation activity is found to originate solely from the chirality of their helical supramolecular orientation. The strong H-bond network forming between adjacent choromophores is found to act cooperatively with dipolar electrostatic interactions in driving the chiral crystallization of this material. Copyright © 2011 Wiley Periodicals, Inc.

  1. Life's chirality from prebiotic environments

    Science.gov (United States)

    Gleiser, Marcelo; Walker, Sara Imari

    2012-10-01

    A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.

  2. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    B Ananthanarayan

    2003-11-01

    A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  3. Chiral anomaly on a lattice

    CERN Document Server

    Mickelsson, J

    1996-01-01

    A calculation of the chiral anomaly on a finite lattice without fermion doubling is presented . The lattice gauge field is defined in the spirit of noncommutative geometry. Standard formulas for the continuum anomaly are obtained as a limit.

  4. Theoretical Optical Potential Derived From Nucleon-Nucleon Chiral Potentials

    CERN Document Server

    Vorabbi, M; Giusti, C

    2015-01-01

    Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this process has been extensively studied in the last years, a consistent description starting from microscopic two- and many-body forces is still missing. Purpose: In this work we study the domain of applicability of microscopic chiral potentials in the construction of an optical potential. Methods: We basically followed the KMT approach to build a microscopic complex optical potential and then we performed some test calculations on $^{16}$O at different energies. Results: Our conclusion is that a particular set of potentials (with spectral function regularization and a cut-off for the Lippmann-Schwinger equation at relatively high energies $\\sim 600$ MeV) has the best performances reproducing the scattering observables. Conclusions: Our work shows that building an optical potential within Chiral Perturbation Theory is a promising approach to the description of elastic proton scattering, in particul...

  5. Chiral selection of single helix formed by diblock copolymers confined in nanopores.

    Science.gov (United States)

    Deng, Hanlin; Qiang, Yicheng; Zhang, Tingting; Li, Weihua; Yang, Tao

    2016-09-21

    Chiral selection has attracted tremendous attention from the scientific communities, especially from biologists, due to the mysterious origin of homochirality in life. The self-assembly of achiral block copolymers confined in nanopores offers a simple but useful model of forming helical structures, where the helical structures possess random chirality selection, i.e. equal probability of left-handedness and right-handedness. Based on this model, we study the stimulus-response of chiral selection to external conditions by introducing a designed chiral pattern onto the inner surface of a nanopore, aiming to obtain a defect-free helix with controllable homochirality. A cell dynamics simulation based on the time-dependent Ginzburg-Landau theory is carried out to demonstrate the tuning effect of the patterned surface on the chiral selection. Our results illustrate that the chirality of the helix can be successfully controlled to be consistent with that of the tailored surface patterns. This work provides a successful example for the stimulus response of the chiral selection of self-assembled morphologies from achiral macromolecules to external conditions, and hence sheds light on the understanding of the mechanism of the stimulus response. PMID:27536966

  6. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  7. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  8. Chiral symmetry and lattice fermions

    CERN Document Server

    Creutz, Michael

    2013-01-01

    Lattice gauge theory and chiral perturbation theory are among the primary tools for understanding non-perturbative aspects of QCD. I review several subtle and sometimes controversial issues that arise when combining these techniques. Among these are one failure of partially quenched chiral perturbation theory when the valence quarks become lighter than the average sea quark mass and a potential ambiguity in comparisons of perturbative and lattice properties of non-degenerate quarks.

  9. The quest for modular nanocages: Tbo -MOF as an archetype for mutual substitution, functionalization, and expansion of quadrangular pillar building blocks

    KAUST Repository

    Eubank, Jarrod F.

    2011-09-14

    A new blueprint network for the design and synthesis of porous, functional 3D metal-organic frameworks (MOFs) has been identified, namely, the tbo net. Accordingly, tbo-MOFs based on this unique (3,4)-connected net can be exclusively constructed utilizing a combination of well-known and readily targeted [M(R-BDC)]n MOF layers [i.e., supermolecular building layers (SBLs)] based on the edge-transitive 4,4 square lattice (sql) (i.e., 2D four-building units) and a novel pillaring strategy based on four proximal isophthalate ligands from neighboring SBL membered rings (i.e., two pairs from each layer) covalently cross-linked through an organic quadrangular core (e.g., tetrasubstituted benzene). Our strategy permits the rational design and synthesis of isoreticular structures, functionalized and/or expanded, that possess extra-large nanocapsule-like cages, high porosity, and potential for gas separation and storage, among others. Thus, tbo-MOF serves as an archetypal tunable, isoreticular MOF platform for targeting desired applications. © 2011 American Chemical Society.

  10. Ghost Block

    OpenAIRE

    Webb, Neil

    2011-01-01

    Filmed on the English south coast 'Ghost Block' depicts the uncanny and eerie atmosphere at the site of a WW2 coastal defence line. The concrete cubes were used as an anti-invasion blockade against potential landing forces. This protection line now slowly decaying and becoming enmeshed into the environment still acts as a defence to repel unwanted visitors. The area is a natural reserve to nesting birds that often lay eggs directly onto the beach surface. The blocks act as a final barrier ...

  11. Smoothing of geoelectrical resistivity profiles in order to build a 3D model: A case study from an outcropping limestone block

    Science.gov (United States)

    Tóth, Krisztina; Kovács, Gábor

    2014-05-01

    Geoelectrical imaging is one of the most common survey methods in the field of shallow geophysics. In order to get information from the subsurface electric current is induced into the ground. In our summer camp organized by the Department of Geophysics and Space Sciences, Eötvös Loránd University we have carried out resistivity surveys to get more accurate information about the lithology of the Dorog basin located in the Transdanubian range, Middle Hungary. This study focused on the outcropping limestone block located next to the village Leányvár in the Dorog basin. The main aim of the research is the impoundment of the subsurface continuation of the limestone outcrop. Cable problems occurred during field survey therefore the dataset obtained by the measurement have become very noisy thus we had to gain smoothed data with the appropriate editing steps. The goal was to produce an optimized model to demonstrate the reality beneath the subsurface. In order to achieve better results from the noisy dataset we changed some parameters based on the description of the program. Whereas cable problems occurred we exterminated the bad datum points visually and statistically as well. Because of the noisiness we increased the value of the so called damping factor which is a variable parameter in the equation used by the inversion routine responsible for smoothing the data. The limitation of the range of model resistivity values based on our knowledge about geological environment was also necessary in order to avoid physically unrealistic results. The purpose of the modification was to obtain smoothed and more interpretable geoelectric profiles. The geological background combined with the explanation of the profiles gave us the approximate location of the block. In the final step of the research we created a 3D model with proper location and smoothed resistivity data included. This study was supported by the Hungarian Scientific Research Fund (OTKA NK83400) and was realized

  12. Restoration of Chiral Symmetry in Excited Hadrons

    International Nuclear Information System (INIS)

    Physics of the low-lying and high-lying hadrons in the light flavor sector is reviewed. While the low-lying hadrons are strongly affected by the spontaneous breaking of chiral symmetry, in the high-lying hadrons the chiral symmetry is restored. A manifestation of the chiral symmetry restoration in excited hadrons is a persistence of the chiral multiplet structure in both baryon and meson spectra. Meson and baryon chiral multiplets are classified. A relation between the chiral symmetry restoration and the string picture of excited hadrons is discussed. (author)

  13. Using the Chiral Organophosphorus Derivatizing Agents for Determination of the Enantiomeric Composition of Chiral Carboxylic Acids by 31PNMR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Chao CHE; Zhong Ning ZHANG; Gui Lan HUANG; Xin Xing WANG; Zhao Hai QIN

    2004-01-01

    The use of chiral organophosphorus derivatizing agents prepared in situ from chiral tartrate or chiral diamine for the 31PNMR determination of the enantiomeric composition of chiral carboxylic acids is described. The method is accurate, reliable and convenient.

  14. Epidural block

    Science.gov (United States)

    ... Drugs & Supplements Videos & Tools Español You Are Here: Home ... It numbs or causes a loss of feeling in the lower half your body. This lessens the pain of contractions during childbirth. An epidural block may also be used to ...

  15. Statistical cryptanalysis of block ciphers

    OpenAIRE

    Junod, Pascal

    2005-01-01

    Since the development of cryptology in the industrial and academic worlds in the seventies, public knowledge and expertise have grown in a tremendous way, notably because of the increasing, nowadays almost ubiquitous, presence of electronic communication means in our lives. Block ciphers are inevitable building blocks of the security of various electronic systems. Recently, many advances have been published in the field of public-key cryptography, being in the understanding of involved securi...

  16. Statistical cryptanalysis of block ciphers

    OpenAIRE

    Junod, Pascal; Vaudenay, Serge

    2007-01-01

    Since the development of cryptology in the industrial and academic worlds in the seventies, public knowledge and expertise have grown in a tremendous way, notably because of the increasing, nowadays almost ubiquitous, presence of electronic communication means in our lives. Block ciphers are inevitable building blocks of the security of various electronic systems. Recently, many advances have been published in the field of public-key cryptography, being in the understanding of involved securi...

  17. Chiral symmetry in rotating systems

    Science.gov (United States)

    Malik, Sham S.

    2015-08-01

    The triaxial rotating system at critical angular momentum I ≥Iband exhibits two enatiomeric (the left- and right-handed) forms. These enatiomers are related to each other through dynamical chiral symmetry. The chiral symmetry in rotating system is defined by an operator χ ˆ =Rˆy (π) T ˆ, which involves the product of two distinct symmetries, namely, continuous and discrete. Therefore, new guidelines are required for testing its commutation with the system Hamiltonian. One of the primary objectives of this study is to lay down these guidelines. Further, the possible impact of chiral symmetry on the geometrical arrangement of angular momentum vectors and investigation of observables unique to nuclear chiral-twins is carried out. In our model, the angular momentum components (J1, J2, J3) occupy three mutually perpendicular axes of triaxial shape and represent a non-planar configuration. At certain threshold energy, the equation of motion in angular momentum develops a second order phase transition and as a result two distinct frames (i.e., the left- and right-handed) are formed. These left- and right-handed states correspond to a double well system and are related to each other through chiral operator. At this critical angular momentum, the centrifugal and Coriolis interactions lower the barrier in the double well system. The tunneling through the double well starts, which subsequently lifts the degeneracy among the rotational states. A detailed analysis of the behavior of rotational energies, spin-staggering, and the electromagnetic transition probabilities of the resulting twin-rotational bands is presented. The ensuing model results exhibit similarities with many observed features of the chiral-twins. An advantage of our formalism is that it is quite simple and it allows us to pinpoint the understanding of physical phenomenon which lead to chiral-twins in rotating systems.

  18. Quantum Integrable Systems from Conformal Blocks

    CERN Document Server

    Chen, Heng-Yu

    2016-01-01

    In this note, we extend the striking connections between quantum integrable systems and conformal blocks recently found in http://arxiv.org/abs/1602.01858 in several directions. First, we explicitly demonstrate that the action of quartic conformal Casimir operator on general d-dimensional scalar conformal blocks, can be expressed in terms of certain combinations of commuting integrals of motions of the two particle hyperbolic BC2 Calogero-Sutherland system. The permutation and reflection properties of the underlying Dunkl operators play crucial roles in establishing such a connection. Next, we show that the scalar superconformal blocks in SCFTs with four and eight supercharges and suitable chirality constraints can also be identified with the eigenfunctions of the same Calogero-Sutherland system, this demonstrates the universality of such a connection. Finally, we observe that the so-called "seed" conformal blocks for constructing four point functions for operators with arbitrary space-time spins in four dime...

  19. Chiral hierarchical molecular nanostructures on two-dimensional surface by controllable trinary self-assembly.

    Science.gov (United States)

    Liu, Jia; Chen, Ting; Deng, Xin; Wang, Dong; Pei, Jian; Wan, Li-Jun

    2011-12-28

    The bottom-up fabrication of surface hierarchical nanostructures is of great importance for the development of molecular nanostructures for chiral molecular recognition and enantioselective catalysis. Herein, we report the construction of a series of 2D chiral hierarchical structures by trinary molecular self-assembly with copper phthalocyanine (CuPc), 2,3,7,8,12,13-hexahexyloxy-truxenone (TrO23), and 1,3,5-tris(10-carboxydecyloxy) benzene (TCDB). A series of flower-like chiral hierarchical molecular architectures with increased generations are formed, and the details of these structures are investigated by high resolution scanning tunneling microscopy (STM). The flower-like hierarchical molecular architectures could be described by a unified configuration in which the lobe of each architecture is composed of a different number of triangular shape building units (TBUs). The off-axis edge-to-edge packing of TBUs confers the organizational chirality of the hierarchical assemblies. On the other hand, the TBUs can tile the surface in a vertex-sharing configuration, resulting in the expansion of chiral unit cells, which thereby further modulate the periodicity of chiral voids in the multilevel hierarchical assemblies. The formation of desired hierarchical structures could be controlled through tuning the molar ratio of each component in liquid phase. The results are significant for the design and fabrication of multicomponent chiral hierarchical molecular nanostructures. PMID:22106949

  20. Chaos of chiral condensate

    CERN Document Server

    Hashimoto, Koji; Yoshida, Kentaroh

    2016-01-01

    Assigning a chaos index for vacua of generic quantum field theories is a challenging problem. We find chaotic behavior of chiral condensates of a quantum gauge theory at strong coupling limit, by using the AdS/CFT correspondence. We evaluate the time evolution of homogeneous quark condensates and in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at large 't Hooft coupling lambda. At an equivalent classical gravity picture, a Lyapunov exponent is readily defined. We show that the condensates exhibit chaotic behavior for energy density E > (6x10^2) (N_c/lambda^2) (m_q)^4 where m_q is the quark mass. The energy region of the chaotic vacua of the N=2 supersymmetric QCD increases for smaller N_c or larger lambda. The Lyapunov exponent is calculated as a function of the theory (N_c,lambda,E), showing that the N=2 supersymmetric QCD is more chaotic for smaller N_c.