WorldWideScience

Sample records for chinook salmon parr

  1. Fall and winter microhabitat use and suitability for spring chinook salmon parr in a U.S. Pacific Northwest River

    Science.gov (United States)

    Favrot, Scott D.; Jonasson, Brian C.; Peterson, James T.

    2018-01-01

    Habitat degradation has been implicated as a primary threat to Pacific salmon Oncorhynchus spp. Habitat restoration and conservation are key toward stemming population declines; however, winter microhabitat use and suitability knowledge are lacking for small juvenile salmonids. Our objective was to characterize microhabitat use and suitability for spring Chinook Salmon Oncorhynchus tshawytscha parr during fall and winter. Using radiotelemetry techniques during October–February (2009–2011), we identified fall and winter microhabitat use by spring Chinook Salmon parr in Catherine Creek, northeastern Oregon. Tagged fish occupied two distinct gradient reaches (moderate and low). Using a mixed‐effects logistic regression resource selection function (RSF) model, we found evidence that microhabitat use was similar between free‐flowing and surface ice conditions. However, habitat use shifted between seasons; most notably, there was greater use of silt substrate and areas farther from the bank during winter. Between gradients, microhabitat use differed with greater use of large wood (LW) and submerged aquatic vegetation in the low‐gradient reach. Using a Bayesian RSF approach, we developed gradient‐specific habitat suitability criteria. Throughout the study area, deep depths and slow currents were most suitable, with the exception of the low‐gradient reach where moderate depths were optimal. Near‐cover coarse and fine substrates were most suitable in the moderate‐ and low‐gradient reaches, respectively. Near‐bank LW was most suitable throughout the study area. Multivariate principal component analyses (PCA) indicated co‐occurring deep depths supporting slow currents near cover were intensively occupied in the moderate‐gradient reach. In the low‐gradient reach, PCA indicated co‐occurring moderate depths, slow currents, and near‐bank cover were most frequently occupied. Our study identified suitable and interrelated microhabitat

  2. Water Quality - Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an ongoing Bonneville Power Administration funded project to annually collect, PIT tag, and release wild Chinook salmon parr in up to 17 streams of the...

  3. PIT Tag data - Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an ongoing Bonneville Power Administration funded project to annually collect, PIT tag, and release wild Chinook salmon parr in up to 17 streams of the...

  4. Monitoring the migrations of wild Snake River spring/summer chinook salmon smolts, 1995. Annual report

    International Nuclear Information System (INIS)

    Achord, S.; Eppard, M.B.; Sandford, B.P.; Matthews, G.M.

    1996-09-01

    We PIT tagged wild spring/summer chinook-salmon parr in the Snake River Basin in 1994 and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Darns during spring, summer, and fall 1995. This report details our findings. The goals of this study are to (1) characterize the migration timing of different wild stocks of Snake River spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence migration timing

  5. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    overwinter survival in the downstream areas. Fish from Catherine Creek showed no difference in detection rates between the fall and winter tag groups, indicating similar overwinter survival in the upper and lower rearing areas. Chinook salmon parr were generally associated with low velocity habitat types during winter in Catherine Creek, and both winter and summer in the Lostine River. In summer 1997, we PIT-tagged parr on Catherine Creek and the Minam and Imnaha rivers in order to monitor their subsequent migration as smolts through the Snake and Columbia River hydrosystem. We found significant differences among populations in smolt migration timing at Lower Granite Dam in 1998. Fish from Catherine Creek and the Minam and Imnaha rivers were detected in the hydrosystem at rates of 16.4, 20.5, and 28.1%, respectively. In 1998, we estimated parr abundance and the number of parr produced per redd in Catherine Creek and the Lostine River. We estimated that 429 mature, age 1+ male parr and 13,222 immature, age 0+ parr were present in Catherine Creek in August. An average of 29 mature, age 1+ male parr and 287 immature, age 0+ parr were produced from each redd constructed in 1996 and 1997, respectively. We estimated that 75 mature, age 1+ male parr and 40,748 immature, age 0+ parr were present in the Lostine River in August. An average of 3 mature, age 1+ male parr and 832 immature, age 0+ parr were produced from each redd constructed in 1996 and 1997, respectively. For every anadromous female spawner in Catherine Creek and the Lostine River in 1998, there were an estimated 13 and 3 mature male parr, respectively.

  6. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-07-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2002. The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, they are spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, the Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation.

  7. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha)

    Energy Technology Data Exchange (ETDEWEB)

    Farag, Aida M. [United States Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, P.O. Box 1089, Jackson, WY 83001 (United States)]. E-mail: aida_farag@usgs.gov; May, Thomas [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States); Marty, Gary D. [Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA 95616-8732 (United States); Easton, Michael [International EcoGen Inc., 2015 McLallen Court, North Vancouver, BC, Canada V7P 3H6 (Canada); Harper, David D. [United States Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, P.O. Box 1089, Jackson, WY 83001 (United States); Little, Edward E. [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States); Cleveland, Laverne [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States)

    2006-03-10

    This study was designed to determine fish health impairment of Chinook salmon (Oncorhynchus tshawytscha) exposed to chromium. Juvenile Chinook salmon were exposed to aqueous chromium concentrations (0-266 {mu}g l{sup -1}) that have been documented in porewater from bottom sediments and in well waters near salmon spawning areas in the Columbia River in the northwestern United States. After Chinook salmon parr were exposed to 24 and 54 {mu}g Cr l{sup -1} for 105 days, neither growth nor survival of parr was affected. On day 105, concentrations were increased from 24 to 120 {mu}g Cr l{sup -1} and from 54 to 266 {mu}g Cr l{sup -1} until the end of the experiment on day 134. Weight of parr was decreased in the 24/120 {mu}g Cr l{sup -1} treatment, and survival was decreased in the 54/266 {mu}g Cr l{sup -1} treatment. Fish health was significantly impaired in both the 24/120 and 54/266 {mu}g Cr l{sup -1} treatments. The kidney is the target organ during chromium exposures through the water column. The kidneys of fish exposed to the greatest concentrations of chromium had gross and microscopic lesions (e.g. necrosis of cells lining kidney tububules) and products of lipid peroxidation were elevated. These changes were associated with elevated concentrations of chromium in the kidney, and reduced growth and survival. Also, variations in DNA in the blood were associated with pathological changes in the kidney and spleen. These changes suggest that chromium accumulates and enters the lipid peroxidation pathway where fatty acid damage and DNA damage (expressed as chromosome changes) occur to cause cell death and tissue damage. While most of the physiological malfunctions occurred following parr exposures to concentrations {>=}120 {mu}g Cr l{sup -1}, nuclear DNA damage followed exposures to 24 {mu}g Cr l{sup -1}, which was the smallest concentration tested. The abnormalities measured during this study are particularly important because they are associated with impaired growth

  8. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, Craig D.; Nelson, Douglas D. [Nez Perce Tribe

    2008-11-17

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there

  9. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    approximately 14% of these fish leaving as early migrants. Juvenile spring chinook salmon PIT-tagged at trap sites in the fall and in upper rearing areas during winter were used to compare migration timing and survival to Lower Granite Dam of the early and late migrant groups. Juvenile spring chinook tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 May to 20 May 2001, with a median passage date of 17 May. Too few fish were collected and tagged to conduct detection rate and survival comparisons between migrant groups. PIT-tagged salmon from Catherine Creek trap were detected at Lower Granite Dam from 27 April to 13 July 2001. Early migrants were detected significantly earlier (median = 10 May) than late migrants (median = 1 June). Also, early migrants from Catherine Creek were detected at a significantly higher rate than fish tagged in upper rearing areas in the winter, suggesting better survival for fish that migrated out of upper rearing areas in the fall. Juvenile spring chinook salmon from the Lostine River were detected at Lower Granite Dam from 2 April through 4 July 2001. Early migrants were detected significantly earlier (median = 27 April) than late migrants (median = 14 May). However, there was no difference in detection rates between early and late migrants. Survival probabilities showed similar patterns as dam detection rates. Juvenile spring chinook salmon from the Minam River were detected at Lower Granite Dam from 8 April through 18 August 2001. Early migrants were detected significantly earlier (median = 28 April) than late migrants (median = 14 May). Late migrants from the Minam River were tagged at the trap in the spring. Spring chinook salmon parr PIT-tagged in summer 2000 on Catherine Creek and the Imnaha, Lostine, and Minam rivers were detected at Lower Granite Dam over an 87 d period from 8 April to 3 July 2001. The migratory period of individual populations ranged from 51 d (Imnaha River) to 67 d (Catherine Creek) in length

  10. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  11. Migratory behavior of Chinook salmon microjacks reared in artificial and natural environments

    Science.gov (United States)

    Hayes, Michael C.; Rubin, Steve P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.

    2015-01-01

    Emigration was evaluated for hatchery Chinook salmon (Oncorhynchus tshawytscha) microjacks (age-1 mature males) and immature parr (age-1 juveniles, both sexes) released from both a hatchery and a natural stream (fish released as fry). In the hatchery, volitional releases (∼14 to 15 months post-fertilization) to an adjacent river occurred during October–November. The hatchery release was monitored by using an experimental volitional release that diverted fish to a neighboring raceway. Fish captured during the experimental release (range 361–4,321 volitional migrants) were made up of microjacks and immature parr. Microjacks were found only in the migrant samples, averaged 18% (range 0–52%) of all migrants, and were rarely found in non-migrant samples. In comparison, immature parr were common in both the migrant and non-migrant samples. Microjacks were significantly longer (9%), heavier (36%), and had a greater condition factor (16%) than migrant immature parr (P<0.01). In addition, they differed significantly (P<0.01) from non-migrant immature parr; 10% longer, 44% heavier and 14% greater condition factor. In natural streams, microjacks were captured significantly earlier (P<0.01) than immature parr during the late-summer/fall migration and comprised 9–89% of all fish captured. Microjacks have the potential to contribute to natural spawning populations but can also represent a loss of productivity to hatchery programs or create negative effects by introducing non-native genes to wild populations and should be monitored by fishery managers.

  12. Molecular mechanisms of continuous light inhibition of Atlantic salmon parr-smolt transformation

    DEFF Research Database (Denmark)

    Steffansson, Sigurd O.E.; Nielsen, Tom O.; Ebbesson, Lars O.E.

    2007-01-01

    Atlantic salmon (Salmo salar) rely on changes in photoperiod for the synchronization of the developmental events constituting the parr-smolt transformation. In the absence of photoperiod cues, parr-smolt transformation is incomplete, and such 'pseudo-smolts' normally fail to adapt to seawater. Th...

  13. Chinook salmon Genetic Stock Identification data - Genetic Stock Identification of Washington Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project evaluates data from coded wire tagging with that from parental based tagging to identify stock of origin for Chinook salmon landed in Washington state...

  14. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    van der Naald, Wayne; Duff, Cameron; Friesen, Thomas A. (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2006-02-01

    Pacific salmon Oncorhynchus spp. populations have declined over the last century due to a variety of human impacts. Chum salmon O. keta populations in the Columbia River have remained severely depressed for the past several decades, while upriver bright (URB) fall Chinook salmon O. tschawytscha populations have maintained relatively healthy levels. For the past seven years we have collected data on adult spawning and juvenile emergence and outmigration of URB fall Chinook and chum salmon populations in the Ives and Pierce islands complex below Bonneville Dam. In 2004, we estimated 1,733 fall Chinook salmon and 336 chum salmon spawned in our study area. Fall Chinook salmon spawning peaked 19 November with 337 redds and chum salmon spawning peaked 3 December with 148 redds. Biological characteristics continue to suggest chum salmon in our study area are similar to nearby stocks in Hardy and Hamilton creeks, and Chinook salmon we observe are similar to upriver bright stocks. Temperature data indicated that 2004 brood URB fall Chinook salmon emergence began on 6 January and ended 27 May 2005, with peak emergence occurring 12 March. Chum salmon emergence began 4 February and continued through 2 May 2005, with peak emergence occurring on 21 March. Between 13 January and 28 June, we sampled 28,984 juvenile Chinook salmon and 1,909 juvenile chum salmon. We also released 32,642 fin-marked and coded-wire tagged juvenile fall Chinook salmon to assess survival. The peak catch of juvenile fall Chinook salmon occurred on 18 April. Our results suggested that the majority of fall Chinook salmon outmigrate during late May and early June, at 70-80 mm fork length (FL). The peak catch of juvenile chum salmon occurred 25 March. Juvenile chum salmon appeared to outmigrate at 40-55 mm FL. Outmigration of chum salmon peaked in March but extended into April and May.

  15. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    Science.gov (United States)

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  16. Post-mortem sporulation of Ceratomyxa shasta (Myxozoa) after death in adult Chinook salmon

    Science.gov (United States)

    Kent, Michael L.; Soderlund, K.; Thomann, E.; Schreck, Carl B.; Sharpton, T.J.

    2014-01-01

    Ceratomyxa shasta (Myxozoa) is a common gastrointestinal pathogen of salmonid fishes in the Pacific Northwest of the United States. We have been investigating this parasite in adult Chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. In prior work, we observed differences in the pattern of development of C. shasta in adult salmon compared to juvenile salmon. Adult salmon consistently had large numbers of prespore stages in many of the fish that survived to spawn in the fall. However, myxospores were rarely observed, even though they were exposed and presumably infected for months before spawning. We evaluated the ability of C. shasta to sporulate following fish death because it is reported that myxosores are common in carcasses of Chinook salmon. We collected the intestine from 30 adult salmon immediately after artificial spawning and death (T0). A total of 23 fish were infected with C. shasta based on histology, but only a few myxospores were observed in 1 fish by histology. Intestines of these fish were examined at T0 and T7 (latter held at 17 C for 7 days) using quantified wet mount preparations. An increase in myxospore concentrations was seen in 39% of these fish, ranging between a 1.5- to a 14.5-fold increase. The most heavily infected fish exhibited a 4.6-fold increase from 27,841 to 129,352 myxospores/cm. This indicates, supported by various statistical analyses, that under certain conditions presporogonic forms are viable and continue to sporulate after death in adult salmon. Considering the life cycle of C. shasta and anadromous salmon, the parasite may have evolved 2, non-mutually exclusive developmental strategies. In young fish (parr and smolts), the parasite sporulates shortly after infection and is released into freshwater from either live or dead fish before their migration to seawater, where the alternate host is absent. The second strategy occurs in adult salmon, particularly spring Chinook salmon, which become infected upon

  17. Quantifying Temperature Effects on Fall Chinook Salmon

    Energy Technology Data Exchange (ETDEWEB)

    Jager, Yetta [ORNL

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  18. Color photographic index of fall Chinook salmon embryonic development and accumulated thermal units.

    Directory of Open Access Journals (Sweden)

    James W Boyd

    Full Text Available BACKGROUND: Knowledge of the relationship between accumulated thermal units and developmental stages of Chinook salmon embryos can be used to determine the approximate date of egg fertilization in natural redds, thus providing insight into oviposition timing of wild salmonids. However, few studies have documented time to different developmental stages of embryonic Chinook salmon and no reference color photographs are available. The objectives of this study were to construct an index relating developmental stages of hatchery-reared fall Chinook salmon embryos to time and temperature (e.g., degree days and provide high-quality color photographs of each identified developmental stage. METHODOLOGY/PRINCIPAL FINDINGS: Fall Chinook salmon eggs were fertilized in a hatchery environment and sampled approximately every 72 h post-fertilization until 50% hatch. Known embryonic developmental features described for sockeye salmon were used to describe development of Chinook salmon embryos. A thermal sums model was used to describe the relationship between embryonic development rate and water temperature. Mean water temperature was 8.0 degrees C (range; 3.9-11.7 degrees C during the study period. Nineteen stages of embryonic development were identified for fall Chinook salmon; two stages in the cleavage phase, one stage in the gastrulation phase, and sixteen stages in the organogenesis phase. The thermal sums model used in this study provided similar estimates of fall Chinook salmon embryonic development rate in water temperatures varying from 3.9-11.7 degrees C (mean=8 degrees C to those from several other studies rearing embryos in constant 8 degrees C water temperature. CONCLUSIONS/SIGNIFICANCE: The developmental index provides a reasonable description of timing to known developmental stages of Chinook salmon embryos and was useful in determining developmental stages of wild fall Chinook salmon embryos excavated from redds in the Columbia River. This index

  19. Comparing life history characteristics of Lake Michigan’s naturalized and stocked Chinook Salmon

    Science.gov (United States)

    Kerns, Janice A; Rogers, Mark W.; Bunnell, David B.; Claramunt, Randall M.; Collingsworth, Paris D.

    2016-01-01

    Lake Michigan supports popular fisheries for Chinook Salmon Oncorhynchus tshawytscha that have been sustained by stocking since the late 1960s. Natural recruitment of Chinook Salmon in Lake Michigan has increased in the past few decades and currently contributes more than 50% of Chinook Salmon recruits. We hypothesized that selective forces differ for naturalized populations born in the wild and hatchery populations, resulting in divergent life history characteristics with implications for Chinook Salmon population production and the Lake Michigan fishery. First, we conducted a historical analysis to determine if life history characteristics changed through time as the Chinook Salmon population became increasingly naturalized. Next, we conducted a 2-year field study of naturalized and hatchery stocked Chinook Salmon spawning populations to quantify differences in fecundity, egg size, timing of spawning, and size at maturity. In general, our results did not indicate significant life history divergence between naturalized and hatchery-stocked Chinook Salmon populations in Lake Michigan. Although historical changes in adult sex ratio were correlated with the proportion of naturalized individuals, changes in weight at maturity were better explained by density-dependent factors. The field study revealed no divergence in fecundity, timing of spawning, or size at maturity, and only small differences in egg size (hatchery > naturalized). For the near future, our results suggest that the limited life history differences observed between Chinook Salmon of naturalized and hatchery origin will not lead to large differences in characteristics important to the dynamics of the population or fishery.

  20. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    Science.gov (United States)

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  1. Juvenile Chinook Salmon mortality in a Snake River Reservoir: Smallmouth Bass predation revisited

    Science.gov (United States)

    Erhardt, John M.; Tiffan, Kenneth F.; Connor, William P.

    2018-01-01

    Predation by nonnative fishes has been identified as a contributing factor in the decline of juvenile salmonids in the Columbia River basin. We examined the diet composition of Smallmouth Bass Micropterus dolomieu and estimated the consumption and predation loss of juvenile Chinook Salmon Oncorhynchus tshawytscha in Lower Granite Reservoir on the Snake River. We examined 4,852 Smallmouth Bass stomachs collected from shoreline habitats during April–September 2013–2015. Chinook Salmon were the second most commonly consumed fish by all size‐classes of Smallmouth Bass (≥150 mm TL) throughout the study. Over the 3 years studied, we estimated that a total of 300,373 Chinook Salmon were consumed by Smallmouth Bass in our 22‐km study area, of which 97% (291,884) were subyearlings (age 0) based on length frequency data. A majority of the loss (61%) occurred during June, which coincided with the timing of hatchery releases of subyearling fall Chinook Salmon. Compared to an earlier study, mean annual predation loss increased more than 15‐fold from 2,670 Chinook Salmon during 1996–1997 to 41,145 Chinook Salmon during 2013–2015 (in reaches that could be compared), despite lower contemporary Smallmouth Bass abundances. This increase can be explained in part by increases in Smallmouth Bass consumption rates, which paralleled increases in subyearling Chinook Salmon densities—an expected functional response by an opportunistic consumer. Smallmouth Bass are currently significant predators of subyearling Chinook Salmon in Lower Granite Reservoir and could potentially be a large source of unexplained mortality.

  2. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; McNatt, Regan A.; Hockersmith, Eric E. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-04-01

    Prior to 1992, decisions on dam operations and use of stored water relied on recoveries of branded hatchery fish, index counts at traps and dams, and flow patterns at the dams. The advent of PIT-tag technology provided the opportunity to precisely track the smolt migrations of many wild stocks as they pass through the hydroelectric complex and other monitoring sites on their way to the ocean. With the availability of the PIT tag, a more complete approach to these decisions was undertaken starting in 1992 with the addition of PIT-tag detections of several wild spring and summer chinook salmon stocks at Lower Granite Dam. Using data from these detections, we initiated development of a database on wild fish, addressing several goals of the Columbia River Basin Fish and Wildlife Program of the Pacific Northwest Electric Power Planning Council and Conservation Act (NPPC 1980). Section 304(d) of the program states, ''The monitoring program will provide information on the migrational characteristics of the various stocks of salmon and steelhead within the Columbia Basin.'' Further, Section 201(b) urges conservation of genetic diversity, which will be possible only if wild stocks are preserved. Section 5.9A.1 of the 1994 Fish and Wildlife Program states that field monitoring of smolt movement will be used to determine the best timing for water storage releases and Section 5.8A.8 states that continued research is needed on survival of juvenile wild fish before they reach the first dam with special attention to water quantity, quality, and several other factors. The goals of this ongoing study are as follows (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence these patterns. (4) Characterize the migrational behavior and

  3. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2014 - 12/31/2014

    Science.gov (United States)

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2015-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  4. Predation by northern squawfish on live and dead juvenile chinook salmon

    International Nuclear Information System (INIS)

    Gadomski, D.M.; Hall-Griswold, J.A.

    1992-01-01

    Northern squawfish Ptychocheilus oregonensis is a major predator of juvenile salmonids Oncorhynchus spp. migrating downstream through the Columbia River. High predation rates occur just below dams. If northern squawfish selectively consume salmonids killed or injured during dam passage, previous estimates of predation mortality may be too high. We conducted laboratory experiments that indicate northern squawfish prefer dead juvenile chinook salmon O. tshawytscha over live individuals. When equal numbers of dead and live chinook salmon were offered to northern squawfish maintained on a natural photoperiod (15 h light: 9 h darkness), significantly more (P < 0.05) dead than live fish were consumed, both in 1,400-L circular tanks and in an 11,300-L raceway (62% and 79% of prey consumed were dead, respectively). When dead and live juvenile chinook salmon were provided in proportions more similar to those below dams (20% dead, 80% live), northern squawfish still selected for dead prey (36% of fish consumed were dead). In additional experiments, northern squawfish were offered a proportion of 20% dead juvenile chinook salmon during 4-h periods of either light or darkness. The predators were much more selective for dead chinook salmon during bright light (88% of fish consumed were dead) than during darkness (31% were dead)

  5. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions

    Science.gov (United States)

    Jezorek, I.G.; Connolly, P.J.

    2010-01-01

    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or

  6. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    Science.gov (United States)

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2015-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  7. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha.

    Directory of Open Access Journals (Sweden)

    Bobbi M Johnson

    Full Text Available The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha. Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed "the four H's": habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins

  8. Captive Rearing Initiative for Salmon River Chinook Salmon, 1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  9. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom and...

  10. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Monitoring and Evaluation, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Weldert, Rey F.; Crump, Carrie A. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2003-03-01

    This is the fifth annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Conventional and captive broodstock supplementation techniques are being used to restore spring chinook salmon fisheries in these streams. Statement of Work Objectives for 2002: (1) Plan for, administer, coordinate and assist comanagers in GRESCP M&E activities. (2) Evaluate performance of supplemented juvenile spring chinook salmon. (3) Evaluate life history differences between wild and hatchery-origin (F{sub 1}) adult spring chinook salmon. (4) Describe life history characteristics and genetics of adult summer steelhead collected at weirs.

  11. Spawning distribution of fall chinook salmon in the Snake River: Annual report 1999

    International Nuclear Information System (INIS)

    Garcia, Aaron P.

    2000-01-01

    This report is separated into 2 chapters. The chapters are (1) Progress toward determining the spawning distribution of supplemented fall chinook salmon in the Snake River in 1999; and (2) Fall chinook salmon spawning ground surveys in the Snake River, 1999

  12. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin, Annual Report 1998

    International Nuclear Information System (INIS)

    James, Brenda B.; Pearsons, Todd N.; McMichael, Geoffrey A.

    1999-01-01

    Select ecological interactions and spring chinook salmon residual/precocial abundance were monitored in 1998 as part of the Yakima/Klickitat Fisheries Project's supplementation monitoring program. Monitoring these variables is part of an effort to help evaluate the factors that contribute to, or limit supplementation success. The ecological interactions that were monitored were prey consumption, competition for food, and competition for space. The abundance of spring chinook salmon life-history forms that have the potential to be influenced by supplementation and that have important ecological and genetic roles were monitored (residuals and precocials). Residual spring chinook salmon do not migrate to the ocean during the normal emigration period and continue to rear in freshwater. Precocials are those salmon that precocially mature in freshwater. The purpose of sampling during 1998 was to collect baseline data one year prior to the release of hatchery spring chinook salmon which occurred during the spring of 1999. All sampling that the authors report on here was conducted in upper Yakima River during summer and fall 1998. The stomach fullness of juvenile spring chinook salmon during the summer and fall averaged 12%. The food competition index suggested that mountain whitefish (0.59), rainbow trout (0.55), and redside shiner (0.55) were competing for food with spring chinook salmon. The space competition index suggested that rainbow trout (0.31) and redside shiner (0.39) were competing for space with spring chinook salmon but mountain whitefish (0.05) were not. Age-0 spring chinook salmon selected a fairly narrow range of microhabitat parameters in the summer and fall relative to what was available. Mean focal depths and velocities for age 0 spring chinook salmon during the summer were 0.5 m ± 0.2 m and 0.26 m/s ± 0.19 m/s, and during the fall 0.5 m ± 0.2 m and 0.24 m/s ± 0.18 m/s. Among potential competitors, age 1+ rainbow trout exhibited the greatest degree

  13. Validation of a freshwater Otolith microstructure pattern for Nisqually Chinook Salmon (Oncorhynchus tshawytscha)

    Science.gov (United States)

    Lind-Null, Angie; Larsen, Kim

    2011-01-01

    The Nisqually Fall Chinook salmon (Oncorhynchus tshawytscha) population is one of 27 stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem has taken place to assist in recovery of the stock since estuary habitat is a critical transition zone for juvenile fall Chinook salmon. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith microstructure analysis was selected as a tool to examine Chinook salmon life history, growth and residence in the Nisqually River estuary. The purpose of the current study is to incorporate microstructural analysis from the otoliths of juvenile Nisqually Chinook salmon collected at the downstream migrant trap within true freshwater (FW) habitat of the Nisqually River. The results from this analysis confirmed the previously documented Nisqually-specific FW microstructure pattern and revealed a Nisqually-specific microstructure pattern early in development (“developmental pattern”). No inter-annual variation in the microstructure pattern was visually observed when compared to samples from previous years. Furthermore, the Nisqually-specific “developmental pattern” and the FW microstructure pattern used in combination during analysis will allow us to recognize and separate with further confidence future unmarked Chinook salmon otolith collections into Nisqually-origin (natural or unmarked hatchery) and non-Nisqually origin categories. Freshwater mean increment width, growth rate and residence time were also calculated.

  14. Captive Rearing Initiative for Salmon River Chinook Salmon, 1998-1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  15. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    2003-12-01

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenile chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303

  16. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2012 – 12/31/2013: Annual report, 1991-029-00

    Science.gov (United States)

    Connor, William P.; Mullins, Frank; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St. John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2014-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  17. Migratory characteristics of spring chinook salmon in the Willamette River

    International Nuclear Information System (INIS)

    Snelling, J.C.; Schreck, C.B.; Bradford, C.S.; Davis, L.E.; Slater, C.H.; Beck, M.T.; Ewing, S.K.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na + /K + gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls

  18. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings Area...

  19. Pathogenesis and immune response in Atlantic salmon (Salmo salar L.) parr experimentally infected with salmon pancreas disease virus (SPDV).

    Science.gov (United States)

    Desvignes, L; Quentel, C; Lamour, F; le, Ven A

    2002-01-01

    Atlantic salmon parr were injected intraperitoneally with salmon pancreas disease virus (SPDV) grown on CHSE-214 cells. The viraemia, the histopathological changes in target organs and some immune parameters were taken at intervals up to 30 days post-infection (dpi). The earliest kind of lesion was necrosis of exocrine pancreas, appearing as soon as 2 dpi. It progressed towards complete tissue breakdown at 9 dpi before resolving gradually. Concurrent to this necrosis, a strong inflammatory response was in evidence from 9 dpi in the pancreatic area for a majority of fish. A necrosis of the myocardial cells of the ventricle occurred in infected fish mainly at 16 dpi and it faded thereafter. The monitoring of the plasma viral load showed a rapid haematogenous spreading of SPDV, peaking at 4 dpi, but also the absence of a secondary viraemia. No interferon (IFN) was detected following the infection of parr with SPDV, probably owing to an IFN activity in Atlantic salmon below the detection level of the technique. Neutralising antibodies against SPDV were in evidence from 16 dpi and they showed a time-related increasing titre and prevalence. The phagocytic activity in head-kidney leucocytes was always significantly higher in the infected fish than in the control fish, being particularly high by 9 dpi. Lysozyme and complement levels were both increased and they peaked significantly in the infected fish at 9 and 16 dpi respectively. These results demonstrated that an experimental infection of Atlantic salmon parr with SPDV provoked a stimulation of both specific and non-specific immunity with regards to the viraemia and the histopathology.

  20. AFSC/ABL: Movements of Yukon River Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, relatively pristine river basin. A total of...

  1. 50 CFR Table 47c to Part 679 - Percent of the AFA Inshore Sector's Pollock Allocation, Numbers of Chinook Salmon Used To...

    Science.gov (United States)

    2010-10-01

    ... Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and... Chinook salmon for the opt-out allocation (15,858) Column F Number of Chinook salmon for the opt-out...

  2. 50 CFR Table 47b to Part 679 - Percent of the AFA Mothership Sector's Pollock Allocation, Numbers of Chinook Salmon Used To...

    Science.gov (United States)

    2010-10-01

    ... Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and... of Chinook salmon for the opt-out allocation (2,220) Column F Number of Chinook salmon for the opt...

  3. Protein degradation systems in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. and brown trout Salmo trutta L.

    Science.gov (United States)

    Kantserova, Nadezda P; Lysenko, Liudmila A; Veselov, Alexey E; Nemova, Nina N

    2017-08-01

    Although protein degradation limits the rate of muscle growth in fish, the role of proteolytic systems responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. The study herein aims to evaluate the role of calpains (calcium-activated proteases) and proteasomes (ATP-dependent proteases) in mediating muscle protein turnover at different life stages in wild salmonids. Protease activities were estimated in Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) parr and smolts from the Indera River (Kola Peninsula, Russia). Calpain and proteasome activities in Atlantic salmon skeletal muscles were lower in smolts as compared with parr. Reduced muscle protein degradation accompanying Atlantic salmon parr-smolt transformation appeared to provide intense muscle growth essential for a minimum threshold size achievement that is required for smoltification. Calpain and proteasome activities in brown trout parr and smolts at age 3+ did not significantly differ. However, calpain activity was higher in smolts brown trout 4+ as compared with parr, while proteasome activity was lower. Results suggest that brown trout smoltification does not correspond with intense muscle growth and is more facultative and plastic in comparison with Atlantic salmon smoltification. Obtained data on muscle protein degradation capacity as well as length-weight parameters of fish reflect differences between salmon and trout in growth and smoltification strategies.

  4. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.P. [Pacific Northwest National Laboratory

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the

  5. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1986 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Li, Hiran W.; Hjort, Randy C.

    1986-08-01

    For the first time genetic similarities among chinook salmon and among steelhead trout stocks of the Columbia River were determined using a holistic approach including analysis of life history, biochemical, body shape and meristic characters. We examined between year differences for each of the stock characteristics and we also correlated the habitat characteristics with the wild stock characteristics. The most important principle for managing stocks of Columbia River chinook salmon and steelhead trout is that geographically proximal stocks tend to be like each other. Run timing and similarity of the stream systems should be taken into account when managing stocks. There are similarities in the classifications derived for chinook salmon and steelhead trout. Steelhead trout or chinook salmon tend to be genetically similar to other steelhead or chinook stocks, respectively, that originate from natal streams that are geographically close, regardless of time of freshwater entry. The primary exception Lo this trend is between stocks of spring and fall chinook in the upper Columbia River where fish with the different run timings are dissimilar, though geographically proximate stocks within a run form are generally very similar. Spring chinook stocks have stronger affinities to other spring chinook stocks that originate in the same side of the Cascade Range than to these Spring chinook stock: spawned on the other side of the Cascade Range. Spring chinook from west of the Cascades are more closely related to fall chinook than they are to spring chinook from east of the Cascades. Summer chinook can be divided into two main groups: (1) populations in the upper Columbia River that smolt as subyearlings and fall chinook stocks; and (2) summer chinook stocks from the Salmon River, Idaho, which smolt as yearlings and are similar to spring chinook stocks from Idaho. Fall chinook appear to comprise one large diverse group that is not easily subdivided into smaller subgroups. In

  6. Chinook Bycatch - Contemporary Salmon Genetic Stock Composition Estimates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to measure and monitor impacts on ESA-listed populations and to estimate overall Chinook salmon stock composition in bycatch...

  7. AFSC/ABL: 2007-2013 Chinook Salmon Bycatch Sample

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A genetic analyses of samples from the Chinook salmon (Oncorhynchus tshawytscha) bycatch from the 2007-2013 Bering Sea-Aleutian Island and Gulf of Alaska trawl...

  8. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju (Pacific Northwest National Laboratory)

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and

  9. Factors affecting aggressive behaviour of spawning migratory males towards mature male parr in masu salmon Oncorhynchus masou.

    Science.gov (United States)

    Watanabe, M; Maekawa, K

    2010-07-01

    This study examined whether dominant migratory males (adopting fighter tactics) of the masu salmon Oncorhynchus masou would more aggressively attack large mature male parr (adopting sneaker tactics) as large mature male parr are expected to have the potential to cause a greater decrease in fertilization success. The frequency of aggressive behaviour was not related to the body size of males, and it increased with the frequency of interactions with mature male parr. The fertilization success of mature male parr was much lower than migratory males, and no relationship was observed between fertilization success and aggressive behaviour. The low fertilization success of mature male parr, despite infrequent aggressive behaviour by migratory males, indicates that there might be little benefit for migratory males to attack mature male parr more aggressively according to their body size.

  10. Effects of Handling and Crowding on the Stress Response and Viability of Chinook Salmon Parr and Smolts, 1984 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Congleton, James L.

    1985-02-01

    Transportation of migrating chinook salmon smolts from Snake River dams to the Columbia River estuary has not reversed a downward trend in Idaho stocks of this species that first became apparent in the late 1960s. Poor survival of transported smolts may be a consequence of physiological responses to stressful events during collection and transportation. This study was undertaken to evaluate the intensity of stress responses in transported smolts, to determine if stress responses decrease the viability of transported smolts, and to investigate ways of avoiding or mitigating stressful events during transportation. 34 refs., 58 figs., 13 tabs.

  11. 50 CFR Table 47a to Part 679 - Percent of the AFA Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used...

    Science.gov (United States)

    2010-10-01

    ... Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out Allocation and... Catcher/Processor Sector's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-out... pollock Column E Number of Chinook salmon for the opt-out allocation (8,093) Column F Number of Chinook...

  12. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffnagle, Timothy L.; Hair, Donald; Gee, Sally

    2009-03-31

    The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program is designed to rapidly increase numbers of Chinook salmon in stocks that are in imminent danger of extirpation in Catherine Creek (CC), Lostine River (LR) and upper Grande Ronde River (GR). Natural parr are captured and reared to adulthood in captivity, spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation. Presmolt rearing was initially conducted at Lookingglass Fish Hatchery (LFH) but parr collected in 2003 and later were reared at Wallowa Fish Hatchery (WFH). Post-smolt rearing is conducted at Bonneville Fish Hatchery (BOH - freshwater) and at Manchester Research Station (MRS - saltwater). The CC and LR programs are being terminated, as these populations have achieved the goal of a consistent return of 150 naturally spawning adults, so the 2005 brood year was the last brood year collected for theses populations. The Grande Ronde River program continued with 300 fish collected each year. Currently, we are attempting to collect 150 natural parr and incorporate 150 parr collected as eggs from females with low ELISA levels from the upper Grande Ronde River Conventional Hatchery Program. This is part of a comparison of two methods of obtaining fish for a captive broodstock program: natural fish vs. those spawned in captivity. In August 2007, we collected 152 parr (BY 2006) from the upper Grande Ronde River and also have 155 Grande Ronde River parr (BY 2006) that were hatched from eyed eggs at LFH. During 2008, we were unable to collect natural parr from the upper Grande Ronde River. Therefore, we obtained 300 fish from low ELISA females from the upper Grande Ronde River Conventional Program. In October 2008 we obtained 170 eyed eggs from the upper Grande Ronde river Conventional

  13. Investigations into the early life history of naturally produced spring chinook salmon in the Grande Ronde River Basin: annual progress report project period 1 September 1998 to 31 August 1999; ANNUAL

    International Nuclear Information System (INIS)

    Jonasson, Brian C.

    2000-01-01

    downstream areas. Juveniles tagged as they left the upper rearing areas of Catherine Creek in fall and that overwintered in areas downstream were detected in the hydrosystem at a lower rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the upper rearing areas. Juveniles tagged as they left the upper rearing areas of the Lostine River in fall and that overwintered in areas downstream were detected in the hydrosystem at a similar rate to fish tagged during winter in the upper rearing areas, indicating similar overwinter survival in the upstream and downstream areas. Chinook salmon parr were generally associated with low velocity habitat types, that is pools, during both winter and summer in the Lostine River

  14. 76 FR 20302 - Listing Endangered and Threatened Species; 90-Day Finding on a Petition To List Chinook Salmon

    Science.gov (United States)

    2011-04-12

    ... a Petition To List Chinook Salmon AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... salmon (Oncorhynchus tshawytscha) in the Upper Klamath and Trinity Rivers Basin as threatened or... conduct a status review of the Chinook salmon in the Upper Klamath and Trinity Rivers Basin to determine...

  15. Water Temperature, Invertebrate Drift, and the Scope for Growth for Juvenile Spring Chinook Salmon.

    Science.gov (United States)

    Lovtang, J. C.; Li, H. W.

    2005-05-01

    We present a bioenergetic assessment of habitat quality based on the concept of the scope for growth for juvenile Chinook salmon. Growth of juvenile salmonids during the freshwater phase of their life history depends on a balance between two main factors: energy intake and metabolic costs. The metabolic demands of temperature and the availability of food play integral roles in determining the scope for growth of juvenile salmonids in stream systems. We investigated differences in size of juvenile spring Chinook salmon in relation to water temperature and invertebrate drift density in six unique study reaches in the Metolius River Basin, a tributary of the Deschutes River in Central Oregon. This project was initiated to determine the relative quality and potential productivity of habitat in the Metolius Basin prior to the reintroduction of spring Chinook salmon, which were extirpated from the middle Deschutes basin in the early 1970's due to the construction of a hydroelectric dam. Variations in the growth of juvenile Chinook salmon can be described using a multiple regression model of water temperature and invertebrate drift density. We also discuss the relationships between our bioenergetic model, variations of the ideal free distribution model, and physiological growth models.

  16. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Thomas; Sprague, Sherman; Bretz, Justin [Nez Perce Tribe

    2009-06-10

    .9 grams per fish, and Meadow Creek received 53,425 BY 2006 direct stream release parr at an average of 4.7 grams per fish. Natural and hatchery origin spring Chinook salmon pre-smolt emigrants were monitored from September - November 2006 and smolts from March-June 2007. Data on adult returns were collected from May-September. A suite of performance measures were calculated including total adult and spawner escapement, juvenile production, and survival probabilities. These measures were used to evaluate the effectiveness of supplementation and provide information on the capacity of the natural environment to assimilate and support supplemented salmon populations.

  17. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River : Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.

    2001-01-01

    This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dam that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.

  18. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  19. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjornn (Bjomn), Theodore C.

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on the Clearwater River to collect data on survival detection probabilities, and travel time.

  20. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 6, 1995--June 20, 1995

    International Nuclear Information System (INIS)

    Blenden, M.L.; Osborne, R.S.; Kucera, P.A.

    1996-01-01

    For the second consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 6 to June 20, 1995. We PIT tagged and released 421 wild chinook salmon smolts, 747 hatchery chinook salmon smolts (445 HxW and 302 HxH), 227 wild steelhead trout smolts and 1,296 hatchery steelhead trout smolts. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 78.4% for wild chinook salmon, 58.9% for hatchery chinook salmon (HxW), 56.6% for hatchery chinook salmon (HxH), 76.2% for wild steelhead trout, and 69.2% for hatchery steelhead trout. Peak outmigration of NPT tagged wild Imnaha River chinook salmon smolts occurred from early to mid-May at Lower Granite, Little Goose, and Lower Monumental Dams. Median and 90% passage dates for wild chinook salmon smolts at Lower Granite Dam were May 1 and May 11, respectively. Continuous spill at Lower Granite Dam was initiated on May 3 and lasted for 51 days. The 90% passage date of wild chinook salmon smolts at Lower Granite Dam (May 11) preceded peak Snake River and Lower Granite (June 6) flows by 26 days. Although hatchery chinook salmon exhibited a shorter outmigration period through the Snake River than their wild counterparts, peak arrival for both groups occurred at approximately the same time. Median and 90% passage dates at Lower Granite Dam for other PIT tagged groups were: hatchery chinook salmon (NPT-HxW) - May 2 and May 13; hatchery chinook salmon (FPC-HxH) - May 8 and May 15; wild steelhead trout - May 2 and May 9; and hatchery steelhead trout (NPT and FPC) - May 31 and June 16. Hatchery steelhead trout displayed small peaks in arrival timing at Lower Granite and Little Goose Dams in mid-May to mid-June

  1. Adult Chinook Salmon Abundance Monitoring in Lake Creek, Idaho, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave

    2002-12-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time- lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999 and 2001. The adult salmon spawner escapement estimate into Lake Creek in 2001 was 697 fish, the largest escapement since the project began. Jack salmon comprised 10% of the spring migration. Snow pack in the drainage was 38% of the average during the winter of 2000/2001. The first fish passage on Lake Creek was recorded on June 9, 19 days after installation of the fish counting station and two weeks earlier than previously reported. Peak net upstream movement of 52 adults occurred on June 22. Peak of total movement activity was July 3. The last fish passed through the Lake Creek fish counting station on September 6. Redd count expansion methods were compared to underwater video determined salmon spawner abundance in Lake Creek in 2001. Expanded index area redd count point estimates and intensive area redd counts in 2001, estimated from 1.3 percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers in Lake Creek have varied widely. In 2001 there were 2.07 fish per redd. In 1999, there were 3.58 fish per redd, and in 1998, with no jacks returning to spawn, there were 1.02 fish per redd. Migrating salmon in Lake Creek

  2. Early migration and estuary stopover of introduced chinook salmon population in the Lapataia River Basin, southern Tierra del Fuego Island

    Science.gov (United States)

    Chalde, T.; Fernández, D. A.

    2017-12-01

    Established populations of chinook salmon (Oncorhynchus tshawytscha) have recently been reported in South America, at both Atlantic and Pacific basins. Several studies have evaluated different aspects of their life histories; however, little is known about the use of the estuaries by the juveniles of these populations. We examined spawning time, seaward migration timing, growth rate, scale patterns, diet, and geometric morphometric, contrasting the early life history during freshwater and estuary residence of a chinook population established in Lapataia Basin. Fall run spawning took place in March-April and the parr emerged in September. Two distinct seaward migration patterns were identified from sein net fishing records: one population segment migrating earlier to the estuary in October and a second group migrating later in February. The growth rate of fish captured at the estuary was significantly higher than the fish captured in freshwater. In addition, higher scale intercirculi distances were observed in estuary fish showing differences in growth rate. The feeding habitat in fish captured in both environments changed through time from bottom feeding to surface feeding and from significant diet overlap to no overlap. The morphology of the fish captured at the estuary was associated with the elongation of the caudal peduncle and a decrease in the condition factor index, both changes related to smolt transformation. The earlier migration and the higher growth rate of juveniles in the estuary together with fish of 1 + yo captured in this environment reveal that the estuary of Lapataia Basin is not only a stopover for the chinook salmon, but also a key habitat to reside and feed previous to the final seaward migration.

  3. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    Science.gov (United States)

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  4. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  5. Assessing summer and fall chinook salmon restoration in the Upper Clearwater River and principal tributaries. Annual report 1994

    International Nuclear Information System (INIS)

    Arnsberg, B.D.; Statler, D.P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a

  6. 77 FR 5389 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2012-02-03

    ...; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery; Economic Data Collection AGENCY... Management Area (BSAI) in the Exclusive Economic Zone under the Fishery Management Plan for Groundfish of the... Management Program Economic Data Report (Chinook salmon EDR program). (a) Requirements. NMFS developed the...

  7. Migratory Characteristics of Spring Chinook Salmon in the Willamette River : Annual Report 1991.

    Energy Technology Data Exchange (ETDEWEB)

    Snelling, John C.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na{sup +}/K{sup +} gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls.

  8. Effects of hyporheic exchange flows on egg pocket water temperature in Snake River fall Chinook salmon spawning areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geist, D. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arntzen, E. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernethy, C. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002–2003 water year.

  9. Comparison of sperm motility subpopulation structure among wild anadromous and farmed male Atlantic salmon (Salmo salar) parr using a CASA system.

    Science.gov (United States)

    Caldeira, Carina; García-Molina, Almudena; Valverde, Anthony; Bompart, Daznia; Hassane, Megan; Martin, Patrick; Soler, Carles

    2018-04-13

    Atlantic salmon (Salmo salar) is an endangered freshwater species that needs help to recover its wild stocks. However, the priority in aquaculture is to obtain successful fertilisation and genetic variability to secure the revival of the species. The aims of the present work were to study sperm subpopulation structure and motility patterns in wild anadromous males and farmed male Atlantic salmon parr. Salmon sperm samples were collected from wild anadromous salmon (WS) and two generations of farmed parr males. Sperm samples were collected from sexually mature males and sperm motility was analysed at different times after activation (5 and 35s). Differences among the three groups were analysed using statistical techniques based on Cluster analysis the Bayesian method. Atlantic salmon were found to have three sperm subpopulations, and the spermatozoa in ejaculates of mature farmed parr males had a higher velocity and larger size than those of WS males. This could be an adaptation to high sperm competition because salmonid species are naturally adapted to this process. Motility analysis enables us to identify sperm subpopulations, and it may be useful to correlate these sperm subpopulations with fertilisation ability to test whether faster-swimming spermatozoa have a higher probability of success.

  10. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River: March 1, 1994--June 15, 1994; TOPICAL

    International Nuclear Information System (INIS)

    Ashe, B.L.; Miller, A.C.; Kucera, P.A.; Blenden, M.L.

    1995-01-01

    In 1994, the Nez Perce Tribe began a smolt monitoring study on the Imnaha River in cooperation with the Fish Passage Center (FPC). A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from March 1 to June 15, 1994. We PIT tagged and released 956 wild chinook salmon, 661 hatchery chinook salmon, 1,432 wild steelhead trout and 2,029 hatchery steelhead trout. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 62.2% for wild chinook salmon, 45.2% for hatchery chinook salmon, 51.3% for wild steelhead trout, and 34.3% for hatchery steelhead trout

  11. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Brian C.

    2000-01-01

    downstream areas. Juveniles tagged as they left the upper rearing areas of Catherine Creek in fall and that overwintered in areas downstream were detected in the hydrosystem at a lower rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the upper rearing areas. Juveniles tagged as they left the upper rearing areas of the Lostine River in fall and that overwintered in areas downstream were detected in the hydrosystem at a similar rate to fish tagged during winter in the upper rearing areas, indicating similar overwinter survival in the upstream and downstream areas. Chinook salmon parr were generally associated with low velocity habitat types, that is pools, during both winter and summer in the Lostine River.

  12. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

    Science.gov (United States)

    Lind-Null, Angela; Larsen, Kimberly; Reisenbichler, Reginald

    2007-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act. The preservation of the Nisqually delta ecosystem coupled with extensive restoration of approximately 1,000 acres of diked estuarine habitat is identified as the highest priority action for the recovery of naturally spawning Nisqually River Fall Chinook salmon (Oncorhynchus tshawytscha) in the Nisqually Chinook Recovery Plan. In order to evaluate the response of Chinook salmon to restoration, a pre-restoration baseline of life history diversity and estuary utilization must be established. Otolith analysis has been proposed as a means to measure Chinook salmon life history diversity, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: (1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, (2) compare pre and post restoration residence times and growth rates, and (3) suggest whether estuary restoration yields substantial benefits for Chinook salmon. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile Chinook salmon can exhibit a variety of life history trajectories ? some enter the sea (or Puget Sound) as fry, some rear in the estuary before entering the sea, and some rear in the river and then move rapidly through the estuary into the sea as smolts. The

  13. 75 FR 58337 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2010-09-24

    ... Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery published on.... 090511911-0307-02] RIN 0648-AX89 Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery; Correction AGENCY: National Marine Fisheries Service (NMFS...

  14. Spatial consistency of chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    Science.gov (United States)

    Klett, Katherine J.C.; Torgersen, Christian E.; Henning, Julie A.; Murray, Christopher J.

    2013-01-01

    We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991–2009 (500 m to 28 km resolution) and 2008–2009 (100–500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5 years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys.

  15. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

    2009-09-15

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  16. Hydraulic modelling of the spatial and temporal variability in Atlantic salmon parr habitat availability in an upland stream.

    Science.gov (United States)

    Fabris, Luca; Malcolm, Iain Archibald; Buddendorf, Willem Bastiaan; Millidine, Karen Jane; Tetzlaff, Doerthe; Soulsby, Chris

    2017-12-01

    We show how spatial variability in channel bed morphology affects the hydraulic characteristics of river reaches available to Atlantic salmon parr (Salmo salar) under different flow conditions in an upland stream. The study stream, the Girnock Burn, is a long-term monitoring site in the Scottish Highlands. Six site characterised by different bed geometry and morphology were investigated. Detailed site bathymetries were collected and combined with discharge time series in a 2D hydraulic model to obtain spatially distributed depth-averaged velocities under different flow conditions. Available habitat (AH) was estimated for each site. Stream discharge was used according to the critical displacement velocity (CDV) approach. CDV defines a velocity threshold above which salmon parr are not able to hold station and effective feeding opportunities or habitat utilization are reduced, depending on fish size and water temperature. An average value of the relative available habitat () for the most significant period for parr growth - April to May - was used for inter-site comparison and to analyse temporal variations over 40years. Results show that some sites are more able than others to maintain zones where salmon parr can forage unimpeded by high flow velocities under both wet and dry conditions. With lower flow velocities, dry years offer higher values of than wet years. Even though can change considerably across the sites as stream flow changes, the directions of change are consistent. Relative available habitat (RAH) shows a strong relationship with discharge per unit width, whilst channel slope and bed roughness either do not have relevant impact or compensate each other. The results show that significant parr habitat was available at all sites across all flows during this critical growth period, suggesting that hydrological variability is not a factor limiting growth in the Girnock. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  17. Proteomic analysis of chinook salmon (Oncorhynchus tshawytscha ovarian fluid.

    Directory of Open Access Journals (Sweden)

    Sheri L Johnson

    Full Text Available The ovarian, or coelomic, fluid that is released with the egg mass of many fishes is increasingly found to play an important role in several biological processes crucial for reproductive success. These include maintenance of oocyte fertility and developmental competence, prolonging of sperm motility, and enhancing sperm swimming speed. Here we examined if and how the proteome of chinook salmon (Oncorhynchus tshawytscha ovarian fluid varied among females and then sought to examine the composition of this fluid. Ovarian fluid in chinook salmon was analyzed using 1D SDS PAGE and LC-MS/MS tryptic digest screened against Mascot and Sequest databases. We found marked differences in the number and concentrations of proteins in salmon ovarian fluid across different females. A total of 174 proteins were identified in ovarian fluid, 47 of which were represented by six or more peptides, belonging to one of six Gene Ontology pathways. The response to chemical stimulus and response to hypoxia pathways were best represented, accounting for 26 of the 174 proteins. The current data set provides a resource that furthers our understanding of those factors that influence successful egg production and fertilisation in salmonids and other species.

  18. Activity of metabolic enzymes and muscle-specific gene expression in parr and smolts Atlantic salmon Salmo salar L. of different age groups.

    Science.gov (United States)

    Churova, Maria V; Meshcheryakova, Olga V; Veselov, Aleksey E; Efremov, Denis A; Nemova, Nina N

    2017-08-01

    This study was conducted to characterize the energy metabolism level and the features of muscle growth regulation during the development of Atlantic salmon (Salmo salar) inhabiting the Indera River (Kola Peninsula, Russia). The activities of aerobic and anaerobic enzymes (cytochrome c oxidase and lactate dehydrogenase) and carbohydrate metabolism enzymes (glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, and aldolase) were measured in muscle and liver tissue. Gene expression levels of myosin heavy chain (MyHC), myostatin (MSTN-1a), and myogenic regulatory factors (MRFs-MyoD1a, MyoD1b, MyoD1c, Myf5, myogenin) were measured in the white muscles of salmon parr of ages 0+, 1+, 2+, and 3+ and smolts of ages 2+ and 3+. Multidirectional changes in the activity of enzymes involved in aerobic and anaerobic energy metabolism with age were shown in the white muscles of the parr. The cytochrome c oxidase activity was higher in muscles of underyearlings (0+) and yearlings (1+) and decreased in 2+ and 3+ age groups. The activity of lactate dehydrogenase, in contrast, increased with age. The patterns of changes in expression levels of MyoD1a, MyoD1b, myogenin, MyHC, and MSTN-1a at different ages of the parr were similar. Particularly, the expression of these genes peaked in the yearling parr (1+) and then decreased in elder groups. The differences were revealed in parameters studied between the parr and smolts. The level of aerobic and anaerobic metabolism enzyme activities was higher in the white muscles of smolts than in parr. The activity of carbohydrate metabolism enzymes was decreased in the smolts' livers. The expression levels of MyHC, MyoD1a, MyoD1b, and myogenin were lower in smolts at age 2+ compared to parr. These findings expand our knowledge of age-related and stage-related features of energy metabolism and muscle development regulation in young Atlantic salmon in their natural habitat. The results might be used for monitoring of the salmon

  19. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    International Nuclear Information System (INIS)

    Patton, Gregory W; Dauble, Dennis D; Chamness, Mickie A; Abernethy, Cary S; McKinstry, Craig A

    2001-01-01

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs

  20. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Gallinat, Michael; Varney, Michelle

    2003-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River Spring Chinook Captive Broodstock Program during 2002. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program collected fish from five (1997-2001) brood years (BY). As of January 1, 2003, WDFW has approximately 11 BY 1998, 194 BY 1999, 314 BY 2000, 447 BY 2001, and 300 BY 2002 (for extra males) fish on hand at LFH. The 2002 eggtake from the 1997 brood year (Age 5) was 13,176 eggs from 10 ripe females. Egg survival was 22%. Mean fecundity based on the 5 fully spawned females was 1,803 eggs/female. The 2002 eggtake from the 1998 brood year (Age 4) was 143,709 eggs from 93 ripe females. Egg survival was 29%. Mean fecundity based on the 81 fully spawned females was 1,650 eggs/female. The 2002 eggtake from the 1999 brood year (Age 3) was 19,659 eggs from 18 ripe females. Egg survival was 55%. Mean fecundity based on the 18 fully spawned fish was 1,092 eggs/female. The total 2002 eggtake from the captive brood program was 176,544 eggs. A total of 120,833 dead eggs (68%) were removed with 55,711 live eggs remaining for the program. As of May 1, 2003 we had 46,417 BY 2002 captive brood progeny on hand A total of 20,592 excess BY 01 fish were marked as parr (AD/CWT) and

  1. Susceptibility of ocean- and stream-type Chinook salmon to isolates of the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV)

    Science.gov (United States)

    Hernandez, Daniel; Purcell, Maureen K.; Friedman, Carolyn S.; Kurath, Gael

    2016-01-01

    This study examined the susceptibility of Chinook salmon Oncorhynchus tshawytscha to viral strains from the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV) present in western North America. The goal of this investigation was to establish a baseline understanding of the susceptibility of ocean- and stream-type Chinook salmon to infection and mortality caused by exposure to commonly detected strains of L, U, and M IHNV. The L IHNV strain tested here was highly infectious and virulent in both Chinook salmon populations, following patterns previously reported for Chinook salmon. Furthermore, ocean- and stream-type Chinook salmon fry at 1 g can also become subclinically infected with U and M strains of IHNV without experiencing significant mortality. The stream-type life history phenotype was generally more susceptible to infection and suffered greater mortality than the ocean-type phenotype. Between the U and M genogroup strains tested, the U group strains were generally more infectious than the M group strains in both Chinook salmon types. Substantial viral clearance occurred by 30 d post exposure, but persistent viral infection was observed with L, U, and M strains in both host populations. While mortality decreased with increased host size in stream-type Chinook salmon, infection prevalence was not lower for all strains at a greater size. These results suggest that Chinook salmon may serve as reservoirs and/or vectors of U and M genogroup IHNV.

  2. AFSC/REFM: Amendment 91 Chinook Salmon Economic Data Report Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual series of economic data collected for years 2012 and forward for the Amendment 91 (A91) Chinook Salmon Economic Data Report (EDR). Reporting is required of...

  3. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Gallinat, Michael P.; Bumgarner, Joseph D.

    2002-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood during 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program will collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2001 BY fish have been selected. As of Jan 1, 2002, WDFW has 17 BY 1997, 159 BY 1998, 316 BY 1999, 448 BY 2000, and approximately 1,200 BY 2001 fish on hand at LFH. The 2001 eggtake from the 1997 brood year (Age 4) was 233,894 eggs from 125 ripe females. Egg survival was 69%. Mean fecundity based on the 105 fully spawned females was 1,990 eggs/female. The 2001 eggtake from the 1998 brood year (Age 3) was 47,409 eggs from 41 ripe females. Egg survival was 81%. Mean fecundity based on the 39 fully spawned females was 1,160 eggs/female. The total 2001 eggtake from the captive brood program was 281,303 eggs. As of May 1, 2002 we have 171,495 BY 2001 captive brood progeny on hand. A total of 20,592 excess fish were marked as parr (AD/CWT) and will be released during early May, 2002 into the Tucannon River (rkm 40-45). This will allow us to stay within our maximum allowed number (150,000) of smolts released. During April 2002, WDFW volitionally

  4. Escapement monitoring of adult chinook salmon in the Secesh River and Lake Creek, Idaho, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Faurot, Dave; Kucera, Paul A.

    2001-01-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  5. Movement and habitat studies of chinook salmon and white sturgeon. [Oncorhynchus tshawytscha, Acipenser transmontanus

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, J.M.

    1978-09-01

    Swimming depths of adult chinook salmon (Oncorhynchus tshawytscha), in relation to hydroelectric dam created gas supersaturation levels in the Snake River, were evaluated using pressure-sensitive radiofrequency transmitters. Gas saturation levels in spring 1976 ranged from 120 to 130% and chinook salmon depth of travel averaged 6.4 m. In fall 1976 and spring 1977, when gas saturation levels were below 108%, average salmon depths of travel were 3.0 and 4.0 m, respectively. In all cases, average depth of travel was below the critical zone (110% effective saturation), but spring 1976 chinook salmon traveled significantly deeper than fall 1976 and spring 1977 salmon. Internal and external radio transmitter attachment techniques were compared and results indicated the methods are equally reliable given proper insertion and attachment procedures. Percent returning and travel times to upstream dams were compared between equal numbers of radiotagged and spaghetti-anchor tagged control salmon. There were no significant differences in percent return or travel times between control and externally tagged salmon, but procedural difficulties involving internally tagged salmon altered their behavior to preclude such comparisons. Presence and operation of hydroelectric dams delayed salmon passage through the river and appeared to alter upstream migratory behavior. Movements of radiotagged white sturgeon (Acipenser transmontanus) from 1975 through 1977 were highly seasonal, beginning in June and ending in October. River temperatures apparently influenced both seasonal and diurnal movement activities. Movements began in June after water temperatures passed 13/sup 0/C and ceased when temperatures reached 13/sup 0/C (again) in autumn each year. Information derived from sturgeon carrying temperature sensing transmitters, combined with position determinations, indicated apparent diurnal movement cycles for sturgeon.

  6. Wenatchee Chinook Parentage - Evaluate the reproductive success of hatchery and wild Chinook salmon in the Wenatchee River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using genetic parentage analysis to measure the relative fitness of hatchery and wild spring run Chinook salmon that spawn in the Wenatchee River. In addition...

  7. Cryopreservation of Adult Male Spring and Summer Chinook Salmon Gametes in the Snake River Basin, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A.; Armstrong, Robyn D. (Nez Perce Tribe, Lapwai, ID)

    1998-06-01

    Chinook salmon populations in the Northwest are decreasing in number. The Nez Perce Tribe was funded in 1997 by the Bonneville Power Administration to coordinate and initiate gene banking of adult male gametes from Endangered Species Act (ESA) listed spring and summer chinook salmon in the Snake River basin.

  8. 77 FR 19597 - Listing Endangered and Threatened Species; 12-Month Finding on a Petition To List Chinook Salmon...

    Science.gov (United States)

    2012-04-02

    ... broodstock origin, history, and genetics for these three Chinook salmon hatchery stocks and concluded that... Science Center, USFWS, and U.S. Forest Service with expertise in the biology, genetics, and ecology of... specific expertise on UKTR Chinook salmon genetics, and the other reviewer has expertise in the ecology of...

  9. Chinook Salmon Adult Abundance Monitoring in Lake Creek, Idaho, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul

    2003-11-01

    Underwater time- lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999, 2001 and 2002. The adult salmon spawner escapement into Lake Creek in 2002 was 410 fish. Jack salmon comprised 7.1 percent of the run. Estimated hatchery composition was 6.1 percent of the spawning run. The first fish passage on Lake Creek was recorded on June 26, 15 days after installation of the fish counting station. Peak net upstream movement of 41 adults occurred on July 8. Peak of total movement activity was August 18. The last fish passed through the Lake Creek fish counting station on September 2. Snow pack in the drainage was 91% of the average during the winter of 2001/2002. Video determined salmon spawner abundance was compared to redd count expansion method point estimates in Lake Creek in 2002. Expanded index area redd count and extensive area redd count point estimates in 2002, estimated from one percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion methods varied from two percent fewer to 55 percent greater in 2001, 11 to 46 percent fewer in 1999 and 104 to 214 percent greater in 1998. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers determined by video abundance and multiple pass redd counts of the larger extensive survey

  10. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    Science.gov (United States)

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam

  11. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    Science.gov (United States)

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent

  12. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjomn (Bjornn), Theodore C.

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).

  13. Fall chinook salmon survival and supplementation studies in the Snake River and Lower Snake River reservoirs: Annual report 1995

    International Nuclear Information System (INIS)

    Williams, John G.; Bjornn, Theodore C.

    1997-01-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2)

  14. Escapement Monitoring of Adult Chinook Salmon in the Secesh River and Lake Creek, Idaho, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    2001-04-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  15. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries of these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.

  16. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    International Nuclear Information System (INIS)

    Geist, D.R.; Oregon State Univ., Corvallis, OR; Dauble, D.D.

    1998-01-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost

  17. Migratory Characteristics of Juvenile Spring Chinook Salmon in the Willamette River : Completion Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate.

  18. Migratory characteristics of juvenile spring chinook salmon in the Willamette River. Completion report 1994

    International Nuclear Information System (INIS)

    Schreck, C.B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate

  19. Cedar River Chinook genotypes - Estimate relative reproductive success of hatchery and wild fall Chinook salmon in the Cedar River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using genetic pedigree information to estimate the reproductive success of hatchery and wild fall-run Chinook salmon spawning in the Cedar River, Washington....

  20. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Program, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2000.

  1. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2001.

  2. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Lofy, Peter T. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherine Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.

  3. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

    2009-02-19

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation

  4. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of

  6. Effects of sex steroids, sex, and sexual maturity on cortisol production: an in vitro comparison of chinook salmon and rainbow trout interrenals.

    Science.gov (United States)

    McQuillan, H James; Lokman, P Mark; Young, Graham

    2003-08-01

    Sex steroids appear to be responsible for hyperactivation of the hypothalamus-pituitary-interrenal (HPI) axis that occurs in mature semelparous Pacific salmon as a prelude to post-spawning (programmed) death. This study was undertaken to examine the direct effects of sex steroids on interrenal activity of semelparous (chinook salmon) and iteroparous (rainbow trout) salmonids using an in vitro incubation system. In addition, phenotypic sex differences in cortisol production by interrenals of sexually mature (spawning) rainbow trout and chinook salmon were investigated. Interrenal tissue from juvenile and sexually mature chinook salmon and rainbow trout was incubated for 48 h in culture medium containing either no steroid (controls), 1 microM estradiol (E2) or 1 microM 11-ketotestosterone (11-KT). This tissue was then challenged for 3h with either pregnenolone, dibutyryladenosine 3('):5(')-cyclic monophosphate (dbcAMP) or forskolin, or synthetic human adrenocorticotropic hormone (ACTH(1-24)). Sex differences in in vitro interrenal cortisol production were assessed using separate tissue pools challenged with the same agents. Cortisol in media was measured by radioimmunoassay. E2 suppressed the ability of juvenile chinook salmon interrenals to utilize pregnenolone as substrate for cortisol synthesis. In mature female chinook salmon the suppressive effect of E2 was less pronounced, but was observed as a reduced response of interrenals to both pregnenolone and dbcAMP. E2 did not affect ACTH(1-24) stimulated cortisol production. Immature and mature rainbow trout interrenals were both relatively insensitive to E2. 11-KT did not affect cortisol production by juvenile chinook salmon and juvenile or mature rainbow trout, and had only minor effects in male and female spawning chinook salmon. In mature chinook salmon and rainbow trout, the interrenals of females were more responsive to ACTH stimulation and showed a greater utilization of pregnenolone as a substrate than

  7. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  8. Diel and seasonal variation in food habits of Atlantic salmon parr in a small stream

    Science.gov (United States)

    Grader, M.; Letcher, B.H.

    2006-01-01

    The diel and seasonal food habits of young-of-year (YOY) and post-young-of-year (PYOY) Atlantic salmon (Salmo salar) parr were assayed over the course of 11 months in the West Brook, Massachusetts USA. Gut fullness of YOY salmon did not vary significantly among months. PYOY salmon exhibited significant seasonal differences in gut fullness, with peak fullness occurring in the spring and late fall. Significant diel differences in PYOY gut fullness occurred in June and April, with peak fullness always occurring at dawn. Prey composition varied substantially among months. Dominant prey items of PYOY salmon were baetid mayflies in June, July, and August, limnephilid caddisflies in October and November, and ephemerellid mayflies in February and April. Few differences in prey composition between PYOY and YOY salmon were observed. Fish growth was unrelated to prey availability, but gut fullness explained up to 97% of growth variation across seasons. Results suggest that spring and fall are critical periods of feeding for PYOY salmon and that diel feeding intensity shifts seasonally.

  9. Snake River Fall Chinook Salmon life history investigations

    Science.gov (United States)

    Erhardt, John M.; Bickford, Brad; Hemingway, Rulon J.; Rhodes, Tobyn N.; Tiffan, Kenneth F.

    2017-01-01

    Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993). Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the

  10. Analysis of Chinook Salmon in the Columbia River from an Ecosystem Perspective. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lichatowich, James A.; Mobrand, Lars E.

    1995-01-01

    Ecosystem Diagnosis and Treatment (EDT) methodology was applied to the analysis of chinook salmon in the mid-Columbia subbasins which flow through the steppe and steppe-shrub vegetation zones. The EDT examines historical changes in life history diversity related to changes in habitat. The emphasis on life history, habitat and historical context is consistent with and ecosystem perspective. This study is based on the working hypothesis that the decline in chinook salmon was at least in part due to a loss of biodiversity defined as the intrapopulation life history diversity. The mid Columbia subbasins included in the study are the Deschutes, John Day, Umatilla, Tucannon and Yakima.

  11. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  12. Evaluation of fall chinook salmon spawning adjacent to the In-Situ Redox Manipulation treatability test site, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Mueller, R.P.; Geist, D.R.

    1998-10-01

    The In Situ Redox Manipulation (ISRM) experiment is being evaluated as a potential method to remove contaminants from groundwater adjacent to the Columbia River near the 100-D Area. The ISRM experiment involves using sodium dithionate (Na 2 O 6 S 2 ) to precipitate chromate from the groundwater. The treatment will likely create anoxic conditions in the groundwater down-gradient of the ISRM treatability test site; however, the spatial extent of this anoxic plume is not exactly known. Surveys were conducted in November 1997, following the peak spawning of fall chinook salmon. Aerial surveys documented 210 redds (spawning nests) near the downstream island in locations consistent with previous surveys. Neither aerial nor underwater surveys documented fall chinook spawning in the vicinity of the ISRM treatability test site. Based on measurements of depth, velocity, and substrate, less than 1% of the study area contained suitable fall chinook salmon spawning habitat, indicating low potential for fall chinook salmon to spawn in the vicinity of the ISRM experiment

  13. Spatial consistency of Chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Klett, Katherine J.; Torgersen, Christian; Henning, Julie; Murray, Christopher J.

    2013-04-28

    We investigated the spawning patterns of Chinook salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington (USA) using a unique set of fine- and coarse-scale 35 temporal and spatial data collected during bi-weekly aerial surveys conducted in 1991-2009 (500 m to 28 km resolution) and 2008-2009 (100-500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held global positioning system (GPS) synchronized with in-flight audio recordings. We examined spatial patterns of Chinook salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook salmon spawned in the same sections each year with little variation among years. On a coarse scale, five years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years resulting in a minimum correlation coefficient of 0.90 (adjusted P = 0.002). Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations (P < 0.001). On a finer temporal scale, we observed that salmon spawned in the same sections during the first and last week (2008: P < 0.02; and 2009: P < 0.001). Redds were clustered in both 2008 and 2009 (P < 0.001). Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook salmon spawning surveys.

  14. AFSC/ABL: Stock composition, timing, and spawning distribution of Yukon River Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radio telemetry was used to determine the distribution, locate spawning sites, and evaluate the tagging response of wild Chinook salmon Oncorhynchus tshawytscha...

  15. A Virus-like disease of chinook salmon

    Science.gov (United States)

    Ross, A.J.; Pelnar, J.; Rucker, R.R.

    1960-01-01

    Consideration is given to a recurring disease of early feeding chinook salmon fingerlings at the Coleman, California, Federal Fish Cultural Station. The infection becomes manifest in the early spring months at low water temperatures and abates as the water temperature rises. Bacteriological studies have failed to yield the presence of a disease agent, either by cultural or staining procedures. The disease has been successfully transmitted from infected fish to healthy fish by the injection of bacteria-free filtrates prepared from diseased fish tissue. The causative agent is therefore believed to be a virus-like entity.

  16. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    Science.gov (United States)

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  17. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    Science.gov (United States)

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  18. Creel survey sampling designs for estimating effort in short-duration Chinook salmon fisheries

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2013-01-01

    Chinook Salmon Oncorhynchus tshawytscha sport fisheries in the Columbia River basin are commonly monitored using roving creel survey designs and require precise, unbiased catch estimates. The objective of this study was to examine the relative bias and precision of total catch estimates using various sampling designs to estimate angling effort under the assumption that mean catch rate was known. We obtained information on angling populations based on direct visual observations of portions of Chinook Salmon fisheries in three Idaho river systems over a 23-d period. Based on the angling population, Monte Carlo simulations were used to evaluate the properties of effort and catch estimates for each sampling design. All sampling designs evaluated were relatively unbiased. Systematic random sampling (SYS) resulted in the most precise estimates. The SYS and simple random sampling designs had mean square error (MSE) estimates that were generally half of those observed with cluster sampling designs. The SYS design was more efficient (i.e., higher accuracy per unit cost) than a two-cluster design. Increasing the number of clusters available for sampling within a day decreased the MSE of estimates of daily angling effort, but the MSE of total catch estimates was variable depending on the fishery. The results of our simulations provide guidelines on the relative influence of sample sizes and sampling designs on parameters of interest in short-duration Chinook Salmon fisheries.

  19. Effect of dietary α-tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum)

    Science.gov (United States)

    Welker, T.L.; Congleton, J.L.

    2009-01-01

    A three-variable central composite design coupled with surface-response analysis was used to examine the effects of dietary ??-tocopherol + ascorbic acid (TOCAA), selenium (Se), and iron (Fe) on indices of oxidative stress in juvenile spring Chinook salmon. Each dietary factor was tested at five levels for a total of fifteen dietary combinations (diets). Oxidative damage in liver and kidney (lipid peroxidation, protein carbonyls) and erythrocytes (erythrocyte resistance to peroxidative lysis, ERPL) was determined after feeding experimental diets for 16 (early December) and 28 (early March) weeks. Only TOCAA influenced oxidative stress in this study, with most measures of oxidative damage decreasing (liver lipid peroxidation in December and March; ERPL in December; liver protein carbonyl in March) with increasing levels of TOCAA. We also observed a TOCAA-stimulated increase in susceptibility of erythrocytes to peroxidative lysis in March at the highest levels of TOCAA. The data suggest that under most circumstances a progressive decrease in oxidative stress occurs as dietary TOCAA increases, but higher TOCAA concentrations can stimulate oxidative damage in some situations. Higher levels of TOCAA in the diet were required in March than in December to achieve comparable levels of protection against oxidative damage, which may have been due to physiological changes associated with the parr-smolt transformation. Erythrocytes appeared to be more sensitive to variation in dietary levels of TOCAA than liver and kidney tissues. Using the March ERPL assay results as a baseline, a TOCAA level of approximately 350-600 mg/kg diet would provide adequate protection against lipid peroxidation under most circumstances in juvenile Chinook salmon. ?? 2008 The Authors.

  20. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; James, Brenda B.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al

  1. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    Science.gov (United States)

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  2. Coronary ligation reduces maximum sustained swimming speed in Chinook salmon, Oncorhynchus tshawytscha

    DEFF Research Database (Denmark)

    Farrell, A P; Steffensen, J F

    1987-01-01

    The maximum aerobic swimming speed of Chinook salmon (Oncorhynchus tshawytscha) was measured before and after ligation of the coronary artery. Coronary artery ligation prevented blood flow to the compact layer of the ventricular myocardium, which represents 30% of the ventricular mass, and produced...

  3. Fish research project -- Oregon: Investigations into the early life history of naturally produced spring chinook salmon in the Grande Ronde River Basin. Annual progress report, 1 September 1995--31 August 1996

    International Nuclear Information System (INIS)

    Jonasson, B.C.; Carmichael, R.W.; Keefe, M.

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grande Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek

  4. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 23--June 24, 1996. Annual report 1996

    International Nuclear Information System (INIS)

    Blendon, M.L.; Rocklage, S.J.; Kucera, P.A.

    1997-04-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts

  5. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    International Nuclear Information System (INIS)

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon

  6. Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA); James, Brenda B. (Cascade Aquatics, Ellensburg, WA)

    2005-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003; Pearsons et al. 2004). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers

  7. Otolith analysis of pre-restoration habitat use by Chinook salmon in the delta-flats and nearshore regions of the Nisqually River Estuary

    Science.gov (United States)

    Lind-Null, Angie; Larsen, Kim

    2010-01-01

    The Nisqually Fall Chinook population is one of 27 salmon stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent on the estuary. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith analysis was selected as a tool to examine Chinook salmon life history, growth, and residence in the Nisqually River estuary. Previously funded work on samples collected in 2004 (marked and unmarked) and 2005 (unmarked only) partially established a juvenile baseline on growth rates and length of residence associated with various habitats (freshwater, forested riverine tidal, emergent forested transition, estuarine emergent marsh, delta-flats and nearshore). However, residence times and growth rates for the delta-flats (DF) and nearshore (NS) habitats have been minimally documented due to small sample sizes. The purpose of the current study is to incorporate otolith microstructural analysis using otoliths from fish collected within the DF and NS habitats during sampling years 2004-08 to increase sample size and further evaluate between-year variation in otolith microstructure. Our results from this analysis indicated the delta-flats check (DFCK) on unmarked and marked Chinook samples in 2005-08 varied slightly in appearance from that seen on samples previously analyzed only from 2004. A fry migrant life history was observed on otoliths of unmarked Chinook collected in 2005, 2007, and 2008. Generally, freshwater mean increment width of unmarked fish, on average, was smaller compared to marked

  8. Assessment of the flow-survival relationship obtained by Sims and Ossiander (1981) for Snake River spring/summer chinook salmon smolts. Final report

    International Nuclear Information System (INIS)

    Steward, C.R.

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic's chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts

  9. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.

    1999-05-01

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from

  10. Spring outmigration of wild and hatchery chinook salmon and steelhead trout smolts from the Imnaha River, Oregon, February 23--June 24, 1996. Annual report 1996; ANNUAL

    International Nuclear Information System (INIS)

    Blendon, M.L.; Rocklage, S.J.; Kucera, P.A.

    1997-01-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wild chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts

  11. John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring; Fish Research Project Oregon, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W.; Claire, Glenda M.; Seals, Jason

    2002-01-01

    The four objectives of this report are: (1) Estimate annual spawner escapement and number of spring chinook salmon redds in the John Day River basin; (2) Determine sex ratio, age composition, length-at-age of spawners, and proportion of natural spawners that are hatchery origin strays; (3) Determine adequacy of historic index surveys for indexing spawner abundance and for detecting changes in spawner distribution through time; and (4) Estimate smolt-to-adult survival for spring chinook salmon emigrating from the John Day River basin.

  12. Streamflow effects on spawning, rearing, and outmigration of fall-run chinook salmon (Oncorhynchus tshawytscha) predicted by a spatial and individual-based model

    International Nuclear Information System (INIS)

    Jager, H.I.; Sale, M.J.; Cardwell, H.E.; Deangelis, D.L.; Bevelhimer, M.J.; Coutant, C.C.

    1994-01-01

    The thread posed to Pacific salmon by competing water demands is a great concern to regulators of the hydropower industry. Finding the balance between fish resource and economic objectives depends on our ability to quantify flow effects on salmon production. Because field experiments are impractical, simulation models are needed to predict the effects of minimum flows on chinook salmon during their freshwater residence. We have developed a model to simulate the survival and development of eggs and alevins in redds and the growth, survival, and movement of juvenile chinook in response to local stream conditions (flow, temperature, chinook and predator density). Model results suggest that smolt production during dry years can be increased by raising spring minimum flows

  13. Compliance Monitoring of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Ploskey, Gene R.; Deng, Zhiqun; Carlson, Thomas J.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of yearling and subyearling Chinook salmon and steelhead smolts at John Day Dam during the spring and summer outmigrations in 2012. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 for spring migrants and greater than or equal to 0.93 for summer migrants, estimated with a standard error (SE) less than or equal to 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 3 km downstream of the dam, as well as the forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required in the Columbia Basin Fish Accords (Fish Accords). A virtual/paired-release design was used to estimate dam passage survival at John Day Dam. The approach included releases of smolts, tagged with acoustic micro-transmitters, above John Day Dam that contributed to the formation of a virtual release at the face of John Day Dam. A survival estimate from this release was adjusted by a paired release below John Day Dam. A total of 3376 yearling Chinook salmon, 5726 subyearling Chinook salmon, and 3239 steelhead smolts were used in the virtual releases. Sample sizes for the below-dam paired releases (R2 and R3, respectively) were 997 and 995 for yearling Chinook salmon smolts, 986 and 983 for subyearling Chinook salmon smolts, and 1000 and 1000 for steelhead smolts. The Juvenile Salmon Acoustic Telemetry System (JSATS) tags were manufactured by Advanced Telemetry Systems. Model SS300 tags, weighing 0.304 g in air, were surgically implanted in yearling and subyearling Chinook salmon, and Model SS130 tag, weighing 0.438 g in air, were surgically implanted in juvenile steelhead for this investigation. The intent of the spring study was to estimate dam passage survival during both 30% and 40% spill conditions. The two

  14. Assessment of the Flow-Survival Relationship Obtained by Sims and Ossiander (1981) for Snake River Spring/Summer Chinook Salmon Smolts, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R. (Cleveland R.)

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic`s chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts.

  15. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John; Nugent, Michael; Brock, Wendy (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the fourth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2000 field season.

  16. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John

    2002-01-24

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the third year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1999 field season.

  17. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach in the Columbia River, 1998 Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John; Newsome, Todd; Nugent, Michael (Washington Department of Fish and Wildlife, Olympia, WA)

    2001-07-27

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the second year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fish species, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1998 field season.

  18. Toxicity of agricultural subsurface drainwater from the San Joaquin Valley, California to juvenile chinook salmon and striped bass

    Science.gov (United States)

    Saiki, Michael K.; Jennings, Mark R.; Wiedmeyer, Raymond H.

    1992-01-01

    Juvenile chinook salmon Oncorhynchus tshawytscha (40-50 mm total length, TL) and striped bass Morone saxatilis (30-40 mm TL) were exposed to serial dilutions (100, 50, 25, and 12.5%) of agricultural subsurface drainwater (WWD), reconstituted drainwater (RWWD), and reconstituted seawater (IO). Agricultural subsurface drainwater contained naturally elevated concentrations of major ions (such as sodium and sulfate) and trace elements (especially boron and selenium), RWWD contained concentrations of major ions that mimicked those in WWD but trace elements were not elevated, and IO contained concentrations of total dissolved salt that were similar to those in WWD and RWWD but chloride replaced sulfate as the dominant anion. After 28 d of static exposure, over 75% of the chinook salmon in 100% WWD had died, whereas none had died in other dilutions and water types. Growth of chinook salmon in WWD and RWWD, but not in IO, exhibited dilution responses. All striped bass died in 100% WWD within 23 d, whereas 19 of 20 striped bass had died in 100% RWWD after 28 d. In contrast, none died in 100% IO. Growth of striped bass was impaired only in WWD. Fish in WWD accumulated as much as 200 μg/g (dry-weight basis) of boron, whereas fish in control water accumulated less than 3.1 μg/g. Although potentially toxic concentrations of selenium occurred in WWD (geometric means, 158-218 μg/L), chinook salmon and striped bass exposed to this water type accumulated 5.7 μg Se/g or less. These findings indicate that WWD was toxic to chinook salmon and striped bass. Judging from available data, the toxicity of WWD was due primarily to high concentrations of major ions present in atypical ratios, to high concentrations of sulfate, or to both. High concentrations of boron and selenium also may have contributed to the toxicity of WWD, but their effects were not clearly delineated.

  19. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    Energy Technology Data Exchange (ETDEWEB)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    2012-03-01

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrally buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.

  20. Effect of survey design and catch rate estimation on total catch estimates in Chinook salmon fisheries

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2012-01-01

    Roving–roving and roving–access creel surveys are the primary techniques used to obtain information on harvest of Chinook salmon Oncorhynchus tshawytscha in Idaho sport fisheries. Once interviews are conducted using roving–roving or roving–access survey designs, mean catch rate can be estimated with the ratio-of-means (ROM) estimator, the mean-of-ratios (MOR) estimator, or the MOR estimator with exclusion of short-duration (≤0.5 h) trips. Our objective was to examine the relative bias and precision of total catch estimates obtained from use of the two survey designs and three catch rate estimators for Idaho Chinook salmon fisheries. Information on angling populations was obtained by direct visual observation of portions of Chinook salmon fisheries in three Idaho river systems over an 18-d period. Based on data from the angling populations, Monte Carlo simulations were performed to evaluate the properties of the catch rate estimators and survey designs. Among the three estimators, the ROM estimator provided the most accurate and precise estimates of mean catch rate and total catch for both roving–roving and roving–access surveys. On average, the root mean square error of simulated total catch estimates was 1.42 times greater and relative bias was 160.13 times greater for roving–roving surveys than for roving–access surveys. Length-of-stay bias and nonstationary catch rates in roving–roving surveys both appeared to affect catch rate and total catch estimates. Our results suggest that use of the ROM estimator in combination with an estimate of angler effort provided the least biased and most precise estimates of total catch for both survey designs. However, roving–access surveys were more accurate than roving–roving surveys for Chinook salmon fisheries in Idaho.

  1. Self-reporting bias in Chinook salmon sport fisheries in Idaho: implications for roving creel surveys

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2013-01-01

    Self-reporting bias in sport fisheries of Chinook Salmon Oncorhynchus tshawytscha in Idaho was quantified by comparing observed and angler-reported data. A total of 164 observed anglers fished for 541 h and caught 74 Chinook Salmon. Fifty-eight fish were harvested and 16 were released. Anglers reported fishing for 604 h, an overestimate of 63 h. Anglers reported catching 66 fish; four less harvested and four less released fish were reported than observed. A Monte Carlo simulation revealed that when angler-reported data were used, total catch was underestimated by 14–15 fish (19–20%) using the ratio-of-means estimator to calculate mean catch rate. Negative bias was reduced to six fish (8%) when the means-of-ratio estimator was used. Multiple linear regression models to predict reporting bias in time fished had poor predictive value. However, actual time fished and a categorical covariate indicating whether the angler fished continuously during their fishing trip were two variables that were present in all of the top a priori models evaluated. Underreporting of catch and overreporting of time fished by anglers present challenges when managing Chinook Salmon sport fisheries. However, confidence intervals were near target levels and using more liberal definitions of angling when estimating effort in creel surveys may decrease sensitivity to bias in angler-reported data.

  2. Duration of effects of acute environmental changes on food anticipatory behaviour, feed intake, oxygen consumption, and cortisol release in Atlantic salmon parr.

    Science.gov (United States)

    Folkedal, Ole; Torgersen, Thomas; Olsen, Rolf Erik; Fernö, Anders; Nilsson, Jonatan; Oppedal, Frode; Stien, Lars H; Kristiansen, Tore S

    2012-01-18

    We compared behavioural and physiological responses and recovery time after different acute environmental challenges in groups of salmon parr. The fish were prior to the study conditioned to a flashing light signalling arrival of food 30 s later to study if the strength of Pavlovian conditioned food anticipatory behaviour can be used to assess how salmon parr cope with various challenges. The effect on anticipatory behaviour was compared to the effect on feed intake and physiological responses of oxygen hyper-consumption and cortisol excretion. The challenges were temperature fluctuation (6.5C° over 4 h), hyperoxia (up to 380% O(2) saturation over 4 h), and intense chasing for 10 min. Cortisol excretion was only elevated after hyperoxia and chasing, and returned to baseline levels after around 3 h or less. Oxygen hyper-consumption persisted for even shorter periods. Feed intake was reduced the first feeding after all challenges and recovered within 3 h after temperature and hyperoxia, but was reduced for days after chasing. Food anticipatory behaviour was reduced for a longer period than feed intake after hyperoxia and was low at least 6 h after chasing. Our findings suggest that a recovery of challenged Atlantic salmon parr to baseline levels of cortisol excretion and oxygen consumption does not mean full recovery of all psychological and physiological effects of environmental challenges, and emphasise the need for measuring several factors including behavioural parameters when assessing fish welfare. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. 1998-1999 evaluation of fall chinook and chum salmon spawning below Bonneville, The Dalles, John Day and McNary dams

    International Nuclear Information System (INIS)

    Naald, W.D. van der

    2001-01-01

    This report describes work conducted by the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW) from 1 October 1998 to 30 September 1999. The work is part of studies to evaluate spawning of fall chinook salmon (Oncorhynchus tshawytscha) and chum salmon (O. keta) below the four lowermost Columbia River dams under the Bonneville Power Administration's Project 99-003. The purpose of this project is twofold: (1) Document the existence of fall chinook and chum populations spawning below Bonneville Dam (river mile (RM) 145), The Dalles Dam (RM 192), John Day Dam (RM 216), and McNary Dam (RM 292) (Figure 1) and estimate the size of these populations; and (2) Profile stocks for important population characteristics; including spawning time, genetic make-up, emergence timing, migration size and timing, and juvenile to adult survival rates. Specific tasks conducted by ODFW and WDFW during this period were: (1) Documentation of fall chinook and chum spawning below Bonneville, The Dalles, John Day and McNary dams using on-water observations; (2) Collection of biological data to profile stocks in areas described in Task 1; (3) Determination of spawning population estimates and age composition, average size at return, and sex ratios in order to profile stocks in areas described in Task 1; (4) Collection of data to determine stock origin of adult salmon found in areas described in Task 1; (5) Determination of possible stock origins of adult salmon found in areas described in Task 1 using tag rates based on coded-wire tag recoveries and genetic baseline analysis; (6) Determination of emergence timing and hatching rate of juvenile fall chinook and chum below Bonneville Dam; (7) Determination of migration time and size for juvenile fall chinook and chum rearing in the area described in Task 6; (8) Investigation of feasibility of determining stock composition of juvenile fall chinook and chum rearing in the area described in Task 6

  4. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1996-08-01

    Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improve red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.

  5. 75 FR 7228 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management Measures...

    Science.gov (United States)

    2010-02-18

    ... submit attachments to electronic comments in Microsoft Word, Excel, WordPerfect, or Adobe PDF file... the addition of an IPA that could impose rewards for avoiding Chinook salmon bycatch, penalties for...

  6. Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)

    International Nuclear Information System (INIS)

    RH Visser

    2000-01-01

    The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., the Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities

  7. Effect of Ichthyophonus on blood plasma chemistry of spawning Chinook salmon and their resulting offspring in a Yukon River tributary.

    Science.gov (United States)

    Floyd-Rump, T P; Horstmann-Dehn, L A; Atkinson, S; Skaugstad, C

    2017-01-24

    Ichthyophonus is a protozoan parasite of Alaska Chinook salmon Oncorhynchus tshawytscha. In this study, we determined whether spawning Chinook salmon in the Yukon River drainage exhibited a measurable stress response (i.e. elevated plasma cortisol concentrations) and detectable changes in selected blood plasma chemistry parameters when infected with Ichthyophonus. The resulting alevin were also analyzed for any differences in blood plasma chemistry caused by parental infection with Ichthyophonus. In 2010, 2011, and 2012, spawning adult Chinook salmon were collected from the Salcha River, Alaska, USA, and the prevalence of Ichthyophonus in these fish was 7.8, 6.3, and 8.3%, respectively. Fish with no clinical signs of Ichthyophonus and Ichthyophonus-positive parents were cross-fertilized to investigate potential second-generation effects as a result of Ichthyophonus infection. We found no significant difference in cortisol concentrations in blood plasma between Ichthyophonus-positive and -negative adults or between alevin from Ichthyophonus-positive and -negative parents. There were no significant differences in blood plasma parameters (e.g. alanine aminotransferase, creatine kinase, glucose) of Ichthyophonus-negative and -positive adults, with the exception of aspartate aminotransferase, which was significantly higher in plasma of Ichthyophonus-negative adults. All clinical chemistry parameters for alevin resulting from both Ichthyophonus-negative and -positive parents were not significantly different. Based on this study, which has a limited sample size and low prevalence of Ichthyophonus, offspring of Chinook salmon appear to suffer no disadvantage as a result of Ichthyophonus infection in their parents on the Salcha River.

  8. Pathological and immunological responses associated with differential survival of Chinook salmon following Renibacterium salmoninarum challenge

    Science.gov (United States)

    Metzger, David C.; Elliott, Diane G.; Wargo, Andrew; Park, Linda K.; Purcell, Maureen K.

    2010-01-01

    Chinook salmon Oncorhynchus tshawytscha are highly susceptible to Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD). Previously we demonstrated that introduced Chinook salmon from Lake Michigan, Wisconsin (WI), USA, have higher survival following R. salmoninarum challenge relative to the progenitor stock from Green River, Washington, USA. In the present study, we investigated the pathological and immunological responses that are associated with differential survival in the 2 Chinook salmon stocks following intra-peritoneal R. salmoninarum challenge of 2 different cohort years (2003 and 2005). Histological evaluation revealed delayed appearance of severe granulomatous lesions in the kidney and lower overall prevalence of membranous glomerulopathy in the higher surviving WI stock. The higher survival WI stock had a lower bacterial load at 28 d post-infection, as measured by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). However, at all other time points, bacterial load levels were similar despite higher mortality in the more susceptible Green River stock, suggesting the possibility that the stocks may differ in their tolerance to infection by the bacterium. Interferon-γ, inducible nitric oxide synthase (iNOS), Mx-1, and transferrin gene expression were up-regulated in both stocks following challenge. A trend of higher iNOS gene expression at later time points (≥28 d post-infection) was observed in the lower surviving Green River stock, suggesting the possibility that higher iNOS expression may contribute to greater pathology in that stock.

  9. Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hall-Griswold, J.A.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID)

    1996-12-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.

  10. Idaho habitat/natural production monitoring: Part 1. Annual report 1995

    International Nuclear Information System (INIS)

    Hall-Griswold, J.A.; Petrosky, C.E.

    1996-11-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game's 1992--1996 Anadromous Fish Management Plan

  11. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pearsons, Todd N.; Johnson, Christopher L.; James, Brenda B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation

  12. Evidence of deepwater spawning of fall chinook salmon (Oncorhynchus tshawytscha): spawning near Ives and Pierce Island of the Columbia River, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Mueller, Robert P.; Dauble, Dennis D.

    2000-01-01

    Fall chinook salmon Oncorhynchus tshawytscha, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by Washington Department of Fisheries and Wildlife (WDFW) biologists in 1993 (Hymer 1997). Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives island. Limited spawning ground surveys were conducted in the area around Ives and Pierce Islands during 1994-1997 and based on these surveys it was believed that fall chinook salmon successfully spawned in this area. The size of this population from 1994 to 1996 was estimated at 1,800 to 5,200 fish (Hymer 1997). Recently, chum salmon were also documented spawning downstream of Bonneville Dam. Chum salmon O. kisutch were listed as threatened under the Endangered Species Act (ESA) in March, 1999. There are several ongoing investigations to define the physical habitat characteristics associated with fall chinook and chum salmon spawning areas downstream of Bonneville Dam. A major concern is to determine what flows (i.e. surface elevations) are necessary to ensure their long-term survival. Our objective was to locate deepwater spawning locations in the main Columbia River channel and to collect additional data on physical habitat parameters at the site. This objective is consistent with the high priority that the Northwest Power Planning Council's Independent Advisory Board and the salmon managers have placed on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin

  13. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.; Abernethy, Cary S.

    2004-09-24

    The development of the Snake River hydroelectric system has affected fall chinook salmon smolts by shifting their migration timing to a period when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations to improve water temperature and flow conditions during the juvenile chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by PNNL that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall chinook salmon spawning areas. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The hydrologic regime during the 2002?2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, the results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures

  14. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Permit Number 1011 (formerly Permit No. 973) authorized ODFW to take listed spring chinook salmon juveniles from Catherine Creek and the Lostine and Grande Ronde rivers for scientific research and enhancement purposes. Special condition 2a specified the need for an annual report prior to initiation of next years work.

  15. Idaho supplementation studies. Annual progress report, January 1--December 31, 1993

    International Nuclear Information System (INIS)

    Leitzinger, E.J.; Plaster, K.; Hassemer, P.; Sankovich, P.

    1996-12-01

    Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon, Oncorhynchus tshawytscha, in Idaho as part of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. The objectives are to: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; and (3) determine which supplementation strategies provide the quickest and highest response in natural production without adverse effects on productivity. Field work began in 1991 with the collection of baseline data from treatment and some control streams. Full implementation began in 1992 with baseline data collection on treatment and control streams and releases of supplementation fish into several treatment streams. Field methods included snorkeling to estimate chinook salmon parr populations, PIT tagging summer parr to estimate parr-to-smolt survival, multiple redd counts to estimate spawning escapement and collect carcass information. Screw traps were used to trap and PIT tag outmigrating chinook salmon during the spring and fall outmigration. Weirs were used to trap and enumerate returning adult salmon in select drainages

  16. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  17. Floodplain farm fields provide novel rearing habitat for Chinook salmon.

    Directory of Open Access Journals (Sweden)

    Jacob V E Katz

    Full Text Available When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha. Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g were reared on two hectares for six weeks (Feb-March between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon.

  18. Reconstructing the Migratory Behavior and Long-Term Survivorship of Juvenile Chinook Salmon under Contrasting Hydrologic Regimes.

    Directory of Open Access Journals (Sweden)

    Anna M Sturrock

    Full Text Available The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith (87Sr/(86Sr in adult Chinook salmon (Oncorhynchus tshawytcha returning to the Stanislaus River in the California Central Valley (USA to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000 and drier (2003 year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10% and greater smolt contributions in the drier year (13% vs. 44%. These data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate.

  19. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish And Wildlife, La Grande, OR)

    2003-03-01

    Permit Number 1011 (formerly Permit No. 973) authorized ODFW to take listed spring chinook salmon juveniles from Catherine Creek and the Lostine and Grande Ronde rivers for scientific research and enhancement purposes. Special condition 2a specified the need for an annual report prior to initiation of next year's work.

  20. Estuarine and marine diets of out-migrating Chinook Salmon smolts in relation to local zooplankton populations, including harmful blooms

    Science.gov (United States)

    Chittenden, C. M.; Sweeting, R.; Neville, C. M.; Young, K.; Galbraith, M.; Carmack, E.; Vagle, S.; Dempsey, M.; Eert, J.; Beamish, R. J.

    2018-01-01

    Changes in food availability during the early marine phase of wild Chinook Salmon (O. tshawytscha) are being investigated as a cause of their recent declines in the Salish Sea. The marine survival of hatchery smolts, in particular, has been poor. This part of the Salish Sea Marine Survival Project examined the diet of young out-migrating Chinook Salmon for four consecutive years in the Cowichan River estuary and in Cowichan Bay, British Columbia, Canada. Local zooplankton communities were monitored during the final year of the study in the Cowichan River estuary, Cowichan Bay, and eastward to the Salish Sea to better understand the bottom-up processes that may be affecting Chinook Salmon survival. Rearing environment affected body size, diet, and distribution in the study area. Clipped smolts (hatchery-reared) were larger than the unclipped smolts (primarily naturally-reared), ate larger prey, spent very little time in the estuary, and disappeared from the bay earlier, likely due to emigration or mortality. Their larger body size may be a disadvantage for hatchery smolts if it necessitates their leaving the estuary prematurely to meet energy needs; the onset of piscivory began at a forklength of approximately 74 mm, which was less than the average forklength of the clipped fish in this study. The primary zooplankton bloom occurred during the last week of April/first week of May 2013, whereas the main release of hatchery-reared Chinook Salmon smolts occurs each year in mid-May-this timing mismatch may reduce their survival. Gut fullness was correlated with zooplankton biomass; however, both the clipped and unclipped smolts were not observed in the bay until the bloom of harmful Noctiluca was finished-20 days after the maximum recorded zooplankton abundance. Jellyfish medusa flourished in nearshore areas, becoming less prevalent towards the deeper waters of the Salish Sea. The sizable presence of Noctiluca and jellyfish in the zooplankton blooms may be repelling

  1. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399

  2. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1984-1985 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Sharpe, Cameron; Li, Hiram W. (Oregon State University, Oregon Cooperative Fishery Research Unit, Corvallis, OR)

    1985-09-21

    Fish were collected from 60 stocks of chinook salmon and 62 stocks of steelhead trout. Electrophoretic analyses were completed on 43 stocks of chinook salmon and 41 stocks of steelhead trout and meristic counts were completed on 43 stocks of chinook and 41 stocks of steelhead. Statistical comparisons between year classes of our electrophoretic data indicate that most enzyme systems are stable over time but some may be dynamic and should be used with caution in our analyses. We also compared neighboring stocks of both spring chinook and steelhead trout. These comparisons were between stocks of the same race from adjacent stream systems and/or hatcheries. Differences in isozyme gene frequencies can be used to estimate genetic segregation between pairs of stocks. Analysis of the chinook data suggests that, as expected, the number of statistically significant differences in isozyme gene frequencies increases as the geographic distance between stocks increases. The results from comparisons between adjacent steelhead stocks were inconclusive and must await final analysis with more data. Cluster analyses using either isozyme gene frequencies or meristic characters both tended to group the chinook and steelhead stocks by geographic areas and by race and both methods resulted in generally similar grouping patterns. However, cluster analyses using isozyme gene frequencies produced more clusters than the analyses using meristic characters probably because of the greater number of electrophoretic characters compared to the number of meristic characters. Heterozygosity values for each stock were computed using the isozyme gene frequencies. The highest heterozygosity values for chinook were observed in summer chinook and the hatchery stocks while the lowest values were observed in the spring chinook and wild stocks. The results of comparisons of heterozygosity values among areas were inconclusive. The steelhead heterozygosity values were higher in the winter stocks than in the

  3. Competing conservation objectives for predators and prey: estimating killer whale prey requirements for Chinook salmon.

    Directory of Open Access Journals (Sweden)

    Rob Williams

    Full Text Available Ecosystem-based management (EBM of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca and their primary prey, Chinook salmon (Oncorhynchus tshawytscha. Both species have at-risk conservation status and transboundary (Canada-US ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of

  4. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

    2012-09-01

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

  5. Physicochemical characteristics of the hyporheic zone affect redd site selection of chum and fall chinook salmon, Columbia River, 2001

    International Nuclear Information System (INIS)

    Geist, David R.

    2001-01-01

    Chum salmon (Oncorhynchus keta) may historically have been the most abundant species of Columbia River salmon, contributing as much as 50% of the total biomass of all salmon in the Pacific Ocean prior to the 1940's (Neave 1961). By the 1950's, however, run sizes to the Columbia River dropped dramatically and in 1999 the National Marine Fisheries Service (NMFS) listed Columbia River chum salmon as threatened under the Endangered Species Act (ESA; NMFS 1999). Habitat degradation, water diversions, harvest, and artificial propagation are the major human-induced factors that have contributed to the species decline (NMFS 1998). Columbia River chum salmon spawn exclusively in the lower river below Bonneville Dam, including an area near Ives Island. The Ives Island chum salmon are part of the Columbia River evolutionary significant unit (ESU) for this species, and are included in the ESA listing. In addition to chum salmon, fall chinook salmon (O. tshawytscha) also spawn at Ives Island. Spawning surveys conducted at Ives Island over the last several years show that chum and fall chinook salmon spawned in clusters in different locations (US Fish and Wildlife Service and Washington Department of Fish and Wildlife, unpublished data). The presence of redd clusters suggested that fish were selecting specific habitat features within the study area (Geist and Dauble 1998). Understanding the specific features of these spawning areas is needed to quantify the amount of habitat available to each species so that minimum flows can be set to protect fish and maintain high quality habitat

  6. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis: An Additional Year

    Science.gov (United States)

    Lind-Null, Angie; Larsen, Kim

    2009-01-01

    The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the Federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent upon the estuary. A pre-restoration baseline that includes characterization of life history types, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and determine restoration success. Otolith analysis was selected to examine Chinook salmon life history, growth, and residence in the Nisqually Estuary. Previously funded work on wild samples collected in 2004 established the growth rate and length of residence associated with various habitats. The purpose of the current study is to build on the previous work by incorporating otolith microstructure analysis from 2005 (second sampling year), to verify findings from 2004, and to evaluate between-year variation in otolith microstructure. Our results from this second year of analysis indicated no inter-annual variation in the appearance of the tidal delta check (TDCK) and delta-flats check (DFCK). However, a new life history type (fry migrant) was observed on samples collected in 2005. Fish caught in the tidal delta regardless of capture date spent an average of 17 days in the tidal delta. There was a corresponding increase in growth rate as the fish migrated from freshwater (FW) to tidal delta to nearshore (NS) habitats. Fish grew 33 percent faster in the tidal delta than in FW habitat and slightly faster (14 percent) in the delta flats (DF) habitat compared to the tidal delta.

  7. Concentrations of boron, molybdenum, and selenium in chinook salmon

    Science.gov (United States)

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  8. Determine movement patterns and survival rates of Central Valley Chinook salmon, steelhead and their predators using acoustic tags.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The project’s objective is to document movement patterns and survival rates of Chinook salmon, steelhead, green sturgeon, and other fish from several sources in...

  9. Distribution, feeding and growth of hatchery-reared Atlantic salmon (Salmo salar L. parr stocked into rivers with various abiotic conditions

    Directory of Open Access Journals (Sweden)

    Nikolaev A. M.

    2017-06-01

    Full Text Available Within the research of efficiency of Atlantic salmon the artificial reproduction, feeding rate, distribution and growth of farm-raised one-year-old Atlantic salmon have been examined. The fish has been released into nursery areas with different hydrological characteristics located in the Rivers Kola, Umba, Srednyaya and Akkim in the Murmansk region. The observations have being conducted for 1–5 months since the moment of fish release. In natural habitat, juveniles rapidly distribute downstream and upstream regardless of water temperature, depth and current velocity. In all examined nursery areas adapting one-year-old juveniles prefer to stay at weak current sites close to the shore, hiding in the gravel. In all the cases farmed parr shows high feed rate, but qualitative composition of their food differs significantly from food composition of wild juveniles. Revealed peculiarities of adapting parr's distribution and qualitative food composition indicate the impact of long-term rearing at hatcheries on fish behavior. Growth rate of one-year-old juveniles is arcwise connected with fraction composition of gravel and the level of bottom fouling: the bigger bottom rocks are and the thicker the fouling is, the more intensive fish growth is. The revealed correlations have been described with equations of linear regression. Connections between juvenile growth and water temperature, current velocity and depth of the area have not been detected. The research outcomes could provide a basis for scientific advice for planning release sites and number of released one-year-old Atlantic salmon by hatcheries in the Murmansk region.

  10. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  11. Survival estimates for the passage of juvenile chinook salmon through Snake River dams and reservoirs. Annual report 1993

    International Nuclear Information System (INIS)

    Iwamoto, R.N.; Muir, W.D.; Sandford, B.P.; McIntyre, K.W.; Frost, D.A.; Williams, J.G.; Smith, S.G.; Skalski, J.R.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers

  12. Survival of Juvenile Chinook Salmon Passing the Bonneville Dam Spillway in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Zimmerman, Shon A.; Durham, Robin E.; Fischer, Eric S.; Kim, Jina; Townsend, R. L.; Skalski, J. R.; Buchanan, Rebecca A.; McComas, Roy L.

    2008-12-01

    The U.S. Army Corps of Engineers Portland District (CENWP) funds numerous evaluations of fish passage and survival on the Columbia River. In 2007, the CENWP asked Pacific Northwest National Laboratory to conduct an acoustic telemetry study to estimate the survival of juvenile Chinook salmon passing the spillway at Bonneville Dam. This report documents the study results which are intended to be used to improve the conditions juvenile anadromous fish experience when passing through the dams that the Corps operates on the river.

  13. Coronary ligation reduces maximum sustained swimming speed in Chinook salmon, Oncorhynchus tshawytscha

    DEFF Research Database (Denmark)

    Farrell, A P; Steffensen, J F

    1987-01-01

    The maximum aerobic swimming speed of Chinook salmon (Oncorhynchus tshawytscha) was measured before and after ligation of the coronary artery. Coronary artery ligation prevented blood flow to the compact layer of the ventricular myocardium, which represents 30% of the ventricular mass, and produced...... a statistically significant 35.5% reduction in maximum swimming speed. We conclude that the coronary circulation is important for maximum aerobic swimming and implicit in this conclusion is that maximum cardiac performance is probably necessary for maximum aerobic swimming performance....

  14. Tucannon River Spring Chinook Salmon Captive Brood Program, FY 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-06-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  15. Spawning distribution of fall chinook salmon in the Snake River : annual report 1998.; ANNUAL

    International Nuclear Information System (INIS)

    Garcia, Aaron P.

    1999-01-01

    In 1998 data was collected on the spawning distribution of the first adult fall chinook salmon to return from releases of yearling hatchery fish upriver of Lower Granite Dam. Yearling fish were released at three locations with the intent of distributing spawning throughout the existing habitat. The project was designed to use radio-telemetry to determine if the use of multiple release sites resulted in widespread spawning

  16. Multigenerational outbreeding effects in Chinook salmon (Oncorhynchus tshawytscha).

    Science.gov (United States)

    Lehnert, Sarah J; Love, Oliver P; Pitcher, Trevor E; Higgs, Dennis M; Heath, Daniel D

    2014-08-01

    Outbreeding, mating between genetically divergent individuals, may result in negative fitness consequences for offspring via outbreeding depression. Outbreeding effects are of notable concern in salmonid research as outbreeding can have major implications for salmon aquaculture and conservation management. We therefore quantified outbreeding effects in two generations (F1 hybrids and F2 backcrossed hybrids) of Chinook salmon (Oncorhynchus tshawytscha) derived from captively-reared purebred lines that had been selectively bred for differential performance based on disease resistance and growth rate. Parental lines were crossed in 2009 to create purebred and reciprocal hybrid crosses (n = 53 families), and in 2010 parental and hybrid crosses were crossed to create purebred and backcrossed hybrid crosses (n = 66 families). Although we found significant genetic divergence between the parental lines (FST = 0.130), reciprocal F1 hybrids showed no evidence of outbreeding depression (hybrid breakdown) or favorable heterosis for weight, length, condition or survival. The F2 backcrossed hybrids showed no outbreeding depression for a suite of fitness related traits measured from egg to sexually mature adult life stages. Our study contributes to the current knowledge of outbreeding effects in salmonids and supports the need for more research to better comprehend the mechanisms driving outbreeding depression.

  17. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffnagle, Timothy; Carmichael, Richard; Noll, William

    2003-12-01

    The Grande Ronde Basin once supported large runs of chinook salmon Oncorhynchus tshawytscha and estimated peak escapements in excess of 10,000 occurred as recently as the late 1950's (U.S. Army Corps of Engineers 1975). Natural escapement declines in the Grande Ronde Basin have been severe and parallel those of other Snake River populations. Reduced productivity has primarily been attributed to increased mortality associated with downstream and upstream migration past eight dams and reservoirs in the Snake and Columbia rivers. Reduced spawner numbers, combined with human manipulation of previously important spawning and rearing habitat in the Grande Ronde Basin, have resulted in decreased spawning distribution and population fragmentation of chinook salmon in the Grande Ronde Basin (Figure 1; Table 1). Escapement of spring/summer chinook salmon in the Snake River basin included 1,799 adults in 1995, less than half of the previous record low of 3,913 adults in 1994. Catherine Creek, Grande Ronde River and Lostine River were historically three of the most productive populations in the Grande Ronde Basin (Carmichael and Boyce 1986). However, productivity of these populations has been poor for recent brood years. Escapement (based on total redd counts) in Catherine Creek and Grande Ronde and Lostine rivers dropped to alarmingly low levels in 1994 and 1995. A total of 11, 3 and 16 redds were observed in 1994 in Catherine Creek, upper Grande Ronde River and Lostine River, respectively, and 14, 6 and 11 redds were observed in those same streams in 1995. In contrast, the maximum number of redds observed in the past was 505 in Catherine Creek (1971), 304 in the Grande Ronde River (1968) and 261 in 1956 in the Lostine River (Tranquilli et al 2003). Redd counts for index count areas (a standardized portion of the total stream) have also decreased dramatically for most Grande Ronde Basin streams from 1964-2002, dropping to as low as 37 redds in the 119.5 km in the index

  18. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River, Annual Report 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.; Burge, Howard L.

    1999-12-01

    This report summarizes results of research activities conducted primarily in 1997 and 1998. This report communicates significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin.

  19. 77 FR 14304 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2012-03-09

    .... 110207103-2041-02] RIN 0648-BA80 Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery; Economic Data Collection; Correction AGENCY: National Marine... Management in the Bering Sea Pollock Fishery; Economic Data Collection published on February 3, 2012. This...

  20. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R. [Oregon Department of Fish and Wildlife

    2009-04-10

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations, however, remain depressed relative to historic levels. Between the completion of the life history and natural escapement study in 1984 and the start of this project in 1998, spring Chinook spawning surveys did not provide adequate information to assess age structure, progeny-to-parent production values, smolt-to-adult survival (SAR), or natural spawning escapement. Further, only very limited information is available for steelhead life history, escapement, and productivity measures in the John Day subbasin. Numerous habitat protection and rehabilitation projects to improve salmonid freshwater production and survival have also been implemented in the basin and are in need of effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed background information for developing context for project-specific effectiveness monitoring efforts. To meet the data needs as index stocks, to assess the long-term effectiveness of habitat projects, and to differentiate freshwater and ocean survival, sufficient annual estimates of spawner escapement, age structure, SAR, egg-to-smolt survival, smolt-per-redd ratio, and freshwater habitat use are essential. We have begun to meet this need through spawning ground surveys initiated for spring Chinook salmon in 1998 and smolt PIT-tagging efforts initiated in 1999. Additional sampling and analyses to meet these goals

  1. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow.

    Science.gov (United States)

    O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A

    2013-12-01

    Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing.

  2. A Two-Stage Information-Theoretic Approach to Modeling Landscape-Level Attributes and Maximum Recruitment of Chinook Salmon in the Columbia River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, William L.; Lee, Danny C.

    2000-11-01

    Many anadromous salmonid stocks in the Pacific Northwest are at their lowest recorded levels, which has raised questions regarding their long-term persistence under current conditions. There are a number of factors, such as freshwater spawning and rearing habitat, that could potentially influence their numbers. Therefore, we used the latest advances in information-theoretic methods in a two-stage modeling process to investigate relationships between landscape-level habitat attributes and maximum recruitment of 25 index stocks of chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin. Our first-stage model selection results indicated that the Ricker-type, stock recruitment model with a constant Ricker a (i.e., recruits-per-spawner at low numbers of fish) across stocks was the only plausible one given these data, which contrasted with previous unpublished findings. Our second-stage results revealed that maximum recruitment of chinook salmon had a strongly negative relationship with percentage of surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and private moderate-high impact managed forest. That is, our model predicted that average maximum recruitment of chinook salmon would decrease by at least 247 fish for every increase of 33% in surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and privately managed forest. Conversely, mean annual air temperature had a positive relationship with salmon maximum recruitment, with an average increase of at least 179 fish for every increase in 2 C mean annual air temperature.

  3. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gass, Carrie; Olson, Jim M. (US Fish and Wildlife Service, idaho Fishery Resource Office, Ahsahka, ID)

    2004-11-01

    In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

  4. Infectious Hematopoietic Necrosis Virus Transmission and Disease among Juvenile Chinook Salmon Exposed in Culture Compared to Environmentally Relevant Conditions

    Directory of Open Access Journals (Sweden)

    J. Scott Foott

    2006-02-01

    Full Text Available The dynamics of IHNV infection and disease were followed in a juvenile Chinook salmon population both during hatchery rearing and for two weeks post-release. Cumulative weekly mortality increased from 0.03%–3.5% as the prevalence of viral infection increased from 2%–22% over the same four-week period. The majority of the infected salmon was asymptomatic. Salmon demonstrating clinical signs of infection shed 1000 pfu mL-1 of virus into the water during a 1 min observation period and had a mean concentration of 106 pfu mL-1 in their mucus. The high virus concentration detected in mucus suggests that it could act as an avenue of transmission in high density situations where dominance behavior results in nipping. Infected smolts that had migrated 295 km down river were collected at least two weeks after their release. The majority of the virus positive smolts was asymptomatic. A series of transmission experiments was conducted using oral application of the virus to simulate nipping, brief low dose waterborne challenges, and cohabitation with different ratios of infected to naïve fish. These studies showed that asymptomatic infections will occur when a salmon is exposed for as little as 1 min to >102 pfu mL-1, yet progression to clinical disease is infrequent unless the challenge dose is >104 pfu mL-1. Asymptomatic infections were detected up to 39 d post-challenge. No virus was detected by tissue culture in natural Chinook juveniles cohabitated with experimentally IHNV-infected hatchery Chinook at ratios of 1:1, 1:10, and 1:20 for either 5 min or 24 h. Horizontal transmission of the Sacramento River strain of IHNV from infected juvenile hatchery fish to wild cohorts would appear to be a low ecological risk. The study results demonstrate key differences between IHNV infections as present in a hatchery and the natural environment. These differences should be considered during risk assessments of the impact of IHNV infections on wild salmon and

  5. Smolt migration characteristics and mainstem Snake and Columbia River detection rates of pit-tagged Grande Ronde and Imnaha River naturally produced spring chinook salmon. 1993, 1994 and 1995 annual reports

    International Nuclear Information System (INIS)

    Walters, T.R.; Carmichael, R.W.; Keefe, M.L.; Sankovich, P.

    1997-01-01

    This reports on the second, third, and fourth years of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally produced spring chinook salmon (Oncorhynchus tshawytscha) from Northeast Oregon streams. The goal of this project is to develop an understanding of interpopulational and interannual variation in several early life history parameters of naturally produced spring and summer chinook salmon in the Grande Ronde and Imnaha River subbasins. This project will provide information to assist chinook salmon population recovery efforts. Specific populations included in the study are: (1) Catherine Creek; (2) Upper Grande Ronde River; (3) Lostine River; (4) Imnaha River; (5) Wenaha River; and (6) Minam River. In this document, the authors present findings and activities from research completed in 1993, 1994, and 1995

  6. Tucannon River spring chinook salmon captive brood program, FY 2000 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-01-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  7. Vertebral column regionalisation in Chinook salmon, Oncorhynchus tshawytscha.

    Science.gov (United States)

    De Clercq, A; Perrott, M R; Davie, P S; Preece, M A; Wybourne, B; Ruff, N; Huysseune, A; Witten, P E

    2017-10-01

    Teleost vertebral centra are often similar in size and shape, but vertebral-associated elements, i.e. neural arches, haemal arches and ribs, show regional differences. Here we examine how the presence, absence and specific anatomical and histological characters of vertebral centra-associated elements can be used to define vertebral column regions in juvenile Chinook salmon (Oncorhynchus tshawytscha). To investigate if the presence of regions within the vertebral column is independent of temperature, animals raised at 8 and 12 °C were studied at 1400 and 1530 degreedays, in the freshwater phase of the life cycle. Anatomy and composition of the skeletal tissues of the vertebral column were analysed using Alizarin red S whole-mount staining and histological sections. Six regions, termed I-VI, are recognised in the vertebral column of specimens of both temperature groups. Postcranial vertebrae (region I) carry neural arches and parapophyses but lack ribs. Abdominal vertebrae (region II) carry neural arches and ribs that articulate with parapophyses. Elastic- and fibrohyaline cartilage and Sharpey's fibres connect the bone of the parapophyses to the bone of the ribs. In the transitional region (III) vertebrae carry neural arches and parapophyses change stepwise into haemal arches. Ribs decrease in size, anterior to posterior. Vestigial ribs remain attached to the haemal arches with Sharpey's fibres. Caudal vertebrae (region IV) carry neural and haemal arches and spines. Basidorsals and basiventrals are small and surrounded by cancellous bone. Preural vertebrae (region V) carry neural and haemal arches with modified neural and haemal spines to support the caudal fin. Ural vertebrae (region VI) carry hypurals and epurals that represent modified haemal and neural arches and spines, respectively. The postcranial and transitional vertebrae and their respective characters are usually recognised, but should be considered as regions within the vertebral column of teleosts

  8. Performance Assessment of Suture Type in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.

    2009-02-27

    The objective of this study was to determine the best overall suture material to close incisions from the surgical implantation of Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic microtransmitters in subyearling Chinook salmon Oncorhynchus tshawytscha. The effects of seven suture materials, four surgeons, and two water temperatures on suture retention, incision openness, tag retention, tissue inflammation, and tissue ulceration were quantified. The laboratory study, conducted by researchers at the Pacific Northwest National Laboratory, supports a larger effort under way for the U.S. Army Corps of Engineers, Portland District, aimed at determining the suitability of acoustic telemetry for estimating short- and longer-term (30-60 days) juvenile-salmonid survival at Columbia and Snake River dams and through the lower Columbia River.

  9. Genetic differences in growth, migration, and survival between hatchery and wild steelhead and Chinook salmon: Introduction and executive summary

    Science.gov (United States)

    Rubin, Steve P.; Reisenbichler, Reginald; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    This report presents results of studies testing for genetically based differences in performance (growth, migration, and survival) between hatchery and wild populations of steelhead and Chinook salmon (Project Number 90-052). The report is organized into 10 chapters with a general study introduction preceding the first chapter. A growing body of data shows that domestication and a resulting loss of fitness for natural rearing occur in hatchery populations of anadromous salmonids; however, the magnitude of domestication will vary among species and hatchery programs. Better information on domestication is needed to accurately predict the consequences when hatchery and wild fish interbreed. The intent of hatchery supplementation is to increase natural production through introduction of hatchery fish into natural production areas. The goal of this study was to provide managers with information on the genetic risks of hatchery supplementation to wild populations of Columbia River Basin summer steelhead and spring Chinook salmon.

  10. Management of bacterial kidney disease in Chinook Salmon hatcheries based on broodstock testing by enzyme-linked immunosorbent assay: A multiyear study

    Science.gov (United States)

    Munson, A. Douglas; Elliott, Diane G.; Johnson, Keith

    2010-01-01

    From the mid-1980s through the early 1990s, outbreaks of bacterial kidney disease (BKD) caused by Renibacterium salmoninarum continued in Chinook salmon Oncorhynchus tshawytscha in Idaho Department of Fish and Game (IDFG) hatcheries despite the use of three control methods: (1) injection of returning adult fish with erythromycin to reduce prespawning BKD mortality and limit vertical transmission of R. salmoninarum, (2) topical disinfection of green eggs with iodophor, and (3) prophylactic treatments of juvenile fish with erythromycin-medicated feed. In addition, programs to manage BKD through measurement of R. salmoninarum antigen levels in kidney tissues from spawning female Chinook salmon by an enzyme-linked immunosorbent assay (ELISA) were tested over 13–15 brood years at three IDFG hatcheries. The ELISA results were used for either (1) segregated rearing of progeny from females with high ELISA optical density (OD) values (usually ≥0.25), which are indicative of high R. salmoninarum antigen levels, or (2) culling of eggs from females with high ELISA OD values. The ELISA-based culling program had the most profound positive effects on the study populations. Mortality of juvenile fish during rearing was significantly lower at each hatchery for brood years derived from culling compared with brood years for which culling was not practiced. The prevalence of R. salmoninarum in juvenile fish, as evidenced by detection of the bacterium in kidney smears by the direct fluorescent antibody test, also decreased significantly at each hatchery. In addition, the proportions of returning adult females with kidney ELISA OD values of 0.25 or more decreased 56–85% for fish reared in brood years during which culling was practiced, whereas the proportions of ELISA-negative adults increased 55–58%. This management strategy may allow IDFG Chinook salmon hatcheries to reduce or eliminate prophylactic erythromycin-medicated feed treatments. We recommend using ELISA

  11. Quantification of the probable effects of alternative in-river harvest regulations on recovery of Snake River fall chinook salmon. Final report

    International Nuclear Information System (INIS)

    Cramer, S.P.; Vigg, S.

    1996-03-01

    The goal of this study was to quantify the probable effects that alternative strategies for managing in-river harvest would have on recovery of Snake River fall chinook salmon. This report presents the analysis of existing data to quantify the way in which various in-river harvest strategies catch Snake River bright (SRB) fall chinook. Because there has been disagreement among experts regarding the magnitude of in-river harvest impacts on Snake River fall chinook, the authors compared the results from using the following three different methods to estimate in-river harvest rates: (1) use of run reconstruction through stock accounting of escapement and landings data to estimate harvest rate of SRB chinook in Zone 6 alone; (2) use of Coded Wire Tag (CWT) recoveries of fall chinook from Lyons Ferry Hatchery in a cohort analysis to estimate age and sex specific harvest rates for Zone 6 and for below Bonneville Dam; (3) comparison of harvest rates estimated for SRB chinook by the above methods to those estimated by the same methods for Upriver Bright (URB) fall chinook

  12. 76 FR 77757 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2011-12-14

    ... comments in Microsoft Word, Excel, WordPerfect, or Adobe PDF file formats only. Electronic copies of the... apportionment of PSC in that area, effectively rewarding the fleet in that area for its high levels of Chinook salmon PSC. The Council did not feel it was appropriate to reward the fleets for unacceptably high levels...

  13. Population Structure of Columbia River Basin Chinook Salmon and Steelhead Trout, Technical Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, E.L.; National Science Foundation (U.S.)

    2002-08-01

    The population structure of chinook salmon and steelhead trout is presented as an assimilation of the life history forms that have evolved in synchrony with diverse and complex environments over their Pacific range. As poikilotherms, temperature is described as the overwhelming environmental influence that determines what life history options occur and where they are distributed. The different populations represent ecological types referred to as spring-, summer-, fall, and winter-run segments, as well as stream- and ocean-type, or stream- and ocean-maturing life history forms. However, they are more correctly described as a continuum of forms that fall along a temporal cline related to incubation and rearing temperatures that determine spawn timing and juvenile residence patterns. Once new habitats are colonized, members of the founding populations spread through adaptive evolution to assume complementary life history strategies. The related population units are collectively referred to as a metapopulation, and members most closely associated within common temporal and geographic boundaries are designated as first-order metapopulations. Population structure of chinook salmon and steelhead in the Columbia Basin, therefore, is the reflection of the genetic composition of the founding source or sources within the respective region, shaped by the environment, principally temperature, that defines life history evolutionary strategy to maximize fitness under the conditions delineated. The complexity of structure rests with the diversity of opportunities over the elevations that exist within the Basin. Consistent with natural selection, rather than simply attempting to preserve populations, the challenge is to provide opportunities to expand their range to new or restored habitat that can accommodate genetic adaptation as directional environmental changes are elaborated. Artificial propagation can have a critical role in this process, and the emphasis must be placed on

  14. Isolation and characterization of the fall Chinook aquareovirus

    Science.gov (United States)

    Makhsous, Negar; Jensen, Nicole L.; Haman, Katherine H.; Batts, William N.; Jerome, Keith R.; Winton, James; Greninger, Alexander L.

    2017-01-01

    BackgroundSalmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae.MethodsThe virus was first found in 2014 as part of a routine adult broodstock screening program in which kidney and spleen tissue samples from healthy-appearing, adult fall Chinook salmon (Oncorhynchus tshawytscha) returning to a hatchery in Washington State produced cytopathic effects when inoculated onto a Chinook salmon embryo cell line (CHSE-214). The virus was not able to be confirmed by an RT-PCR assay using existing aquareovirus pan-species primers, and instead was identified by metagenomic next-generation sequencing. Metagenomic next-generation sequencing was used to recover the full genome and completed using 3′ RACE.ResultsThe genome of the fall Chinook aquareovirus contains 11 segments of double-stranded RNA totaling 23.3 kb, with each segment flanked by the canonical sequence termini found in the aquareoviruses. Sequence comparisons and a phylogenetic analysis revealed a nucleotide identity of 63.2% in the VP7 gene with the Green River Chinook virus, placing the new isolate in the species Aquareovirus B. A qRT-PCR assay was developed targeting the VP2, which showed rapid growth of the isolate during the initial 5 days in culture using CHSE-214 cells.ConclusionsThis sequence represents the first complete genome of an Aquareovirus B species. Future studies will be required to understand the potential pathogenicity and epidemiology of the fall Chinook aquareovirus.

  15. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-06-12

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  16. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dales Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-02-01

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  17. Identification of Saprolegnia Spp. Pathogenic in Chinook Salmon : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Whisler, Howard C.

    1997-06-01

    This project has developed procedures to assess the role of the fungal parasite, Saprolegnia in the biology of salmon, particularly adult Chinook, in the Columbia River Basin. Both morphological and DNA ``fingerprinting`` surveys reveal that Saprolegnia parasitica (=S. diclina, Type I) is the most common pathogen of these fish. In the first phase of this study 92% of 620 isolates, from salmon lesions, conformed to this taxa of Saprolegnia. In the current phase, the authors have developed variants of DNA fingerprinting (RAPD and SWAPP analysis) that permit examination of the sub-structure of the parasite population. These results confirm the predominance of S. parasitica, and suggest that at least three different sub-groups of this fungus occur in the Pacific N.W., USA. The use of single and paired primers with PCR amplification permits identification of pathogenic types, and distinction from other species of the genus considered to be more saprophytic in character. A year`s survey of saprolegniaceous fungi from Lake Washington indicated that the fish-pathogen was not common in the water column. Where and how fish encounter this parasite can be approached with the molecular tags identified in this project.

  18. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in the Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.

  19. Idaho Habitat/Natural Production Monitoring Part I, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hall-Griswold, Judy A.; Leitzinger, Eric J.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID

    1995-11-01

    A total of 333 stream sections were sampled in 1994 to monitor in chinook salmon and steelhead trout parr populations in Idaho. Percent carry capacity and density estimates were summarized by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon. These data were also summarized by cells and subbasins as defined in Idaho Department of Fish and Game`s 1992-1996 Anadromous Fish Management Plan.

  20. Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2008 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Wayne H.; Schricker, Jaym' e; Ruzychi, James R. (Oregon Department of Fish and Wildlife)

    2009-02-13

    The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluate project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and summer

  1. Combined effects of climate change and bank stabilization on shallow water habitats of chinook salmon.

    Science.gov (United States)

    Jorgensen, Jeffrey C; McClure, Michelle M; Sheer, Mindi B; Munn, Nancy L

    2013-12-01

    Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the

  2. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    International Nuclear Information System (INIS)

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxin and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via β-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents

  3. Cost-effective management alternatives for Snake River Chinook salmon: a biological-economic synthesis.

    Science.gov (United States)

    Halsing, David L; Moore, Michael R

    2008-04-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  4. Compliance Monitoring of Subyearling Chinook Salmon Smolt Survival and Passage at Bonneville Dam, Summer 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at Bonneville Dam during summer 2012, as required by the 2008 Federal Columbia River Power System Biological Opinion. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 1 km below the dam, as well as forebay residence time, tailrace egress, and spill passage efficiency, as required in the 2008 Columbia Basin Fish Accords.

  5. Relative survival of juvenile chinook salmon (Oncorhynchus tshawyischa) through a Bonneville dam on the Columbia River

    International Nuclear Information System (INIS)

    Ferguson, J.

    1993-01-01

    The Bonneville Dam second powerhouse bypass system for juvenile salmon has one 6.1-m submersible travelling screen in each intake of all eight turbines, for a total of 24 screens. These screens set up a hydraulic cushion that deflects juvenile salmon away from the turbine intakes and into vertical bulkhead slots, from which they exit by their own volition into a collection gallery that travels the length of the powerhouse to a dewatering station and the outlet. A multiple-year evaluation was conducted on the comparative survival of subyearling chinook salmon through various passage modes at the dam. Using this information, operational scenarios could then be formulated to provide additional juvenile protection while meeting power system demands. In the summer, the juvenile salmon that passed through the bypass system had significantly lower survival rates than upper and lower turbine, spillway, and downstream control groups. Predation by northern squawfish (Ptychocheilus oregonensis) was suspected to have been the cause of high mortalities among bypassed fish. No significant differences existed between survival rates of upper and lower turbine groups. 7 refs., 2 figs., 1 tab

  6. Sequence features and phylogenetic analysis of the stress protein Hsp90α in chinook salmon Oncorhynchus tshawytscha, a poikilothermic vertebrate

    Science.gov (United States)

    Palmisano, Aldo N.; Winton, James R.; Dickhoff, Walton W.

    1999-01-01

    We cloned and sequenced a chinook salmon Hsp90 cDNA; sequence analysis shows it to be Hsp90??. Phylogenetic analysis supports the hypothesis that ?? and ?? paralogs of Hsp90 arose as a result of a gene duplication event and that they diverged early in the evolution of vertebrates, before tetrapods separated from the teleost lineage. Among several differences distinguishing poikilothermic Hsp90?? sequences from their bird and mammal orthologs, the teleost versions specifically lack a characteristic QTQDQP phosphorylation site near the N-terminus. We used the cDNA to develop an RNA (Northern) blot to quantify cellular Hsp90 mRNA levels. Chinook salmon embryonic (CHSE-214) cells responded to heat shock with a rapid rise in Hsp90 mRNA through 4 h, followed by a gradual decline over the next 20 h. Hsp90 mRNA level may be useful as a stress indicator, especially in a laboratory setting or in response to acute heat stress.

  7. Captive Rearing Program for Salmon River Chinook Salmon, 2000 Project Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2002-04-01

    During 2000, the Idaho Department of Fish and Game (IDFG) continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were collected to establish captive cohorts from three study streams and included 503 eyed-eggs from East Fork Salmon River (EFSR), 250 from the Yankee Fork Salmon River, and 304 from the West Fork Yankee Fork Salmon River (WFYF). After collection, the eyed-eggs were immediately transferred to the Eagle Fish Hatchery, where they were incubated and reared by family group. Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease before the majority (approximately 75%) were transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through sexual maturity. Smolt transfers included 158 individuals from the Lemhi River (LEM), 193 from the WFYF, and 372 from the EFSR. Maturing fish transfers from the Manchester facility to the Eagle Fish Hatchery included 77 individuals from the LEM, 45 from the WFYF, and 11 from the EFSR. Two mature females from the WFYF were spawned in captivity with four males in 2000. Only one of the females produced viable eggs (N = 1,266), which were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 70) from the Lemhi River were released into Big Springs Creek to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Fifteen of the 17 suspected redds spawned by captive-reared parents in Big Springs Creek were hydraulically sampled to assess survival to the eyed stage of development. Eyed-eggs were collected from 13 of these, and

  8. Framework for Assessing Viability of Threatened and Endangered Chinook Salmon and Steelhead in the Sacramento–San Joaquin Basin

    Directory of Open Access Journals (Sweden)

    Steven T. Lindley

    2007-02-01

    Full Text Available Protected evolutionarily significant units (ESUs of salmonids require objective and measurable criteria for guiding their recovery. In this report, we develop a method for assessing population viability and two ways to integrate these population-level assessments into an assessment of ESU viability. Population viability is assessed with quantitative extinction models or criteria relating to population size, population growth rate, the occurrence of catastrophic declines, and the degree of hatchery influence. ESU viability is assessed by examining the number and distribution of viable populations across the landscape and their proximity to sources of catastrophic disturbance. Central Valley spring-run and winter-run Chinook salmon ESUs are not currently viable, according to the criteria-based assessment. In both ESUs, extant populations may be at low risk of extinction, but these populations represent a small portion of the historical ESUs, and are vulnerable to catastrophic disturbance. The winter-run Chinook salmon ESU, in the extreme case, is represented by a single population that spawns outside of its historical spawning range. We are unable to assess the status of the Central Valley steelhead ESU with our framework because almost all of its roughly 80 populations are classified as data deficient. The few exceptions are those populations with a closely associated hatchery, and the naturally-spawning fish in these streams are at high risk of extinction. Population monitoring in this ESU is urgently needed. Global and regional climate change poses an additional risk to the survival of salmonids in the Central Valley. A literature review suggests that by 2100, mean summer temperatures in the Central Valley region may increase by 2-8°C, precipitation will likely shift to more rain and less snow, with significant declines in total precipitation possible, and hydrographs will likely change, especially the the southern Sierra Nevada mountains

  9. Stress of formalin treatment in juvenile spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri)

    Science.gov (United States)

    Wedemeyer, Gary; Yasutake, W.T.

    1973-01-01

    The physiological stress of 200 ppm formalin treatments at 10 C is more severe in the juvenile steelhead trout (Salmo gairdneri) than in the spring chinook salmon (Oncorhynchus tshawytscha). In the steelhead, a marked hypochloremia follows a 1-hr treatment and recovery requires about 24 hr. During longer treatments, hypercholesterolemia together with reduced regulatory precision, hypercortisolemia, alkaline reserve depletion, and hypocapnia unaccompanied by a fall in blood pH occur — suggestive of compensated respiratory alkalosis. In the spring chinook, hypochloremia and reduced plasma cholesterol regulatory precision are the significant treatment side effects but recovery requires only a few hours.Formalin treatments also cause epithelial separation, hypertrophy, and necrosis in the gills of both fishes but again, consistent with the physiological dysfunctions, these are more severe in the steelhead.

  10. Migratory Behavior and Physiological Development as Potential Determinants of Life History Diversity in Fall Chinook Salmon in the Clearwater River

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey, Western Fisheries Research Center, 5501-A Cook-Underwood Road Cook Washington 98605 USA; Kock, Tobias J. [U.S. Geological Survey, Western Fisheries Research Center, 5501-A Cook-Underwood Road Cook Washington 98605 USA; Connor, William P. [U.S. Fish and Wildlife Service, Idaho Fishery Resource Office, Post Office Box 18 Ahsahka Idaho 81530 USA; Richmond, Marshall C. [Pacific Northwest National Laboratory, Post Office Box 999 Richland Washington 99352 USA; Perkins, William A. [Pacific Northwest National Laboratory, Post Office Box 999 Richland Washington 99352 USA

    2018-03-01

    We studied the influence of behavior, water velocity, and physiological development on the downstream movement of subyearling fall Chinook Salmon Oncorhynchus tshawytscha in free-flowing and impounded reaches of the Clearwater and Snake rivers as potential mechanisms that might explain life history diversity in this stock. Movement rates and the percentage of radio-tagged fish that moved faster than the average current velocity were highest in the free-flowing Clearwater River compared to impounded reaches. This provided support for our hypothesis that water velocity is a primary determinant of downstream movement regardless of a fish’s physiological development. In contrast, movement rates slowed and detections became fewer in impounded reaches where velocities were much lower. The percentage of fish that moved faster than the average current velocity continued to decline and reached zero in the lower-most reach of Lower Granite Reservoir suggesting that behavioral disposition to move downstream was low. These findings contrast those of a similar, previous study of Snake River subyearlings in spite of hydrodynamic conditions being similar. Physiological differences between Snake and Clearwater river migrants shed light on this disparity. Subyearlings from the Clearwater River were parr-like in their development and never showed an increase in gill Na+/K+-ATPase activity as did smolts from the Snake River. The later emergence timing and cooler rearing temperatures in the Clearwater River may suppress normal physiological development that causes many fish to delay downstream movement and adopt a yearling life history strategy.

  11. The Influence of Tag Presence on the Mortality of Juvenile Chinook Salmon Exposed to Simulated Hydroturbine Passage: Implications for Survival Estimates and Management of Hydroelectric Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Brown, Richard S.; Stephenson, John R.; Pflugrath, Brett D.; Colotelo, Alison HA; Gingerich, Andrew J.; Benjamin, Piper L.; Langeslay, Mike; Ahmann, Martin L.; Johnson, Robert L.; Skalski, John R.; Seaburg, Adam; Townsend, Richard L.

    2012-05-01

    Each year, millions of fish have telemetry tags (acoustic, radio, inductive) surgically implanted to assess their passage and survival through hydropower facilities. One route of passage of particular concern is through hydro turbines, in which fish may be exposed to a range of potential injuries, including barotraumas from rapid decompression. The change in pressure from acclimation to exposure (nadir) has been found to be an important factor in predicting the likelihood of mortality and injury for juvenile Chinook salmon undergoing rapid decompression associated with simulated turbine passage. The presence of telemetry tags has also been shown to influence the likelihood of injury and mortality for juvenile Chinook salmon. This research investigated the likelihood of mortality and injury for juvenile Chinook salmon carrying telemetry tags and exposed to a range of simulated turbine passage. Several factors were examined as predictors of mortal injury for fish undergoing rapid decompression, and the ratio of pressure change and tag burden were determined to be the most predictive factors. As the ratio of pressure change and tag burden increase, the likelihood of mortal injury also increases. The results of this study suggest that previous survival estimates of juvenile Chinook salmon passing through hydro turbines may have been biased due to the presence of telemetry tags, and this has direct implications to the management of hydroelectric facilities. Realistic examples indicate how the bias in turbine passage survival estimates could be 20% or higher, depending on the mass of the implanted tags and the ratio of acclimation to exposure pressures. Bias would increase as the tag burden and pressure ratio increase, and have direct implications on survival estimates. It is recommended that future survival studies use the smallest telemetry tags possible to minimize the potential bias that may be associated with carrying the tag.

  12. Network-scale spatial and temporal variation in Chinook salmon (Oncorhynchus tshawytscha) redd distributions: patterns inferred from spatially continuous replicate surveys

    Science.gov (United States)

    Daniel J. Isaak; Russell F. Thurow

    2006-01-01

    Spatially continuous sampling designs, when temporally replicated, provide analytical flexibility and are unmatched in their ability to provide a dynamic system view. We have compiled such a data set by georeferencing the network-scale distribution of Chinook salmon (Oncorhynchus tshawytscha) redds across a large wilderness basin (7330 km2) in...

  13. Costs of climate change: Economic value of Yakima River salmon

    International Nuclear Information System (INIS)

    Anderson, D.M.; Shankle, S.A.; Scott, M.J.; Neitzel, D.A.; Chatters, J.C.

    1992-07-01

    This work resulted from a continuing multidisciplinary analysis of species preservation and global change. The paper explores the economic cost of a potential regional warming as it affects one Pacific Northwest natural resource, the spring chinook salmon (Oncorhynchus tshcawytscha). Climate change and planned habitat improvements impact the production and economic value of soling chinook salmon of the Yakima River tributary of the Columbia River in eastern Washington. The paper presents a derivation of the total economic value of a chinook salmon, which includes the summation of the existence, commercial, recreational, and capital values of the fish. When currently available commercial, recreational, existence, and capital values for chinook salmon were applied to estimated population changes, the estimated change in the economic value per fish associated with reduction of one fish run proved significant

  14. Discovering Alaska's Salmon: A Children's Activity Book.

    Science.gov (United States)

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  15. Assessing the suitability of a partial water reuse system for rearing juvenile Chinook salmon Oncorhynchus tshawytscha for stocking in Washington State

    Science.gov (United States)

    Health and welfare of juvenile Chinook salmon Oncorhynchus tshawytsha reared in a pilot circular tank-based partial water reuse system in Washington State were evaluated in comparison to fish from the same spawn reared in a flow-through raceway, in order to assess the suitability of using water reus...

  16. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Lysenko, Liudmila A; Kantserova, Nadezda P; Kaivarainen, Elena I; Krupnova, Marina Yu; Nemova, Nina N

    2017-09-01

    Growth-related dynamics of intracellular protease activities in four year classes of the Atlantic salmon (Salmo salar L. 1758) parr and smolts inhabiting salmon rivers of northwestern Russia (the White Sea basin) were studied. Cathepsin B, cathepsin D, proteasome, and calpain activities in the skeletal muscles of salmon were assessed to investigate their relative contribution to the total protein degradation as well as to young fish growth process. It was confirmed that calpain activity dominates in salmon muscles while proteasome plays a minor role, in contrast to terrestrial vertebrates. Calpain and proteasome activities were maximal at the early post-larval stage (in parrs 0+) and declined with age (parrs 1+ through 2+) dropping to the lowest level in salmon smolts. Annual growth increments and proteolytic activities of calpains and proteasome in the muscles of salmon juveniles changed with age in an orchestrated manner, while lysosomal cathepsin activities increased with age. Comparing protease activities and growth increments in salmon parr and smolts we suggested that the partial suppression of the protein degradation could be a mechanism stimulating efficient growth in smoltifying salmon. Growth and smoltification-related dynamics of protease activities was quite similar in salmon populations from studied spawning rivers, such as Varzuga and Indera; however, some habitat-related differences were observed. Growth increments and protease activities varied in salmon parr 0+ (but not on later ages) inhabiting either main rivers or small tributaries apparently due to habitat difference on the resources for fish growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Using broad landscape level features to predict redd densities of steelhead trout (Oncorhynchus mykiss) and Chinook Salmon (Oncorhynchus tshawytscha) in the Methow River watershed, Washington

    Science.gov (United States)

    Romine, Jason G.; Perry, Russell W.; Connolly, Patrick J.

    2013-01-01

    We used broad-scale landscape feature variables to model redd densities of spring Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Methow River watershed. Redd densities were estimated from redd counts conducted from 2005 to 2007 and 2009 for steelhead trout and 2005 to 2009 for spring Chinook salmon. These densities were modeled using generalized linear mixed models. Variables examined included primary and secondary geology type, habitat type, flow type, sinuosity, and slope of stream channel. In addition, we included spring effect and hatchery effect variables to account for high densities of redds near known springs and hatchery outflows. Variables were associated with National Hydrography Database reach designations for modeling redd densities within each reach. Reaches were assigned a dominant habitat type, geology, mean slope, and sinuosity. The best fit model for spring Chinook salmon included sinuosity, critical slope, habitat type, flow type, and hatchery effect. Flow type, slope, and habitat type variables accounted for most of the variation in the data. The best fit model for steelhead trout included year, habitat type, flow type, hatchery effect, and spring effect. The spring effect, flow type, and hatchery effect variables explained most of the variation in the data. Our models illustrate how broad-scale landscape features may be used to predict spawning habitat over large areas where fine-scale data may be lacking.

  18. Impact of stressors on transmission potential of Renibacterium salmoninarum in Chinook salmon

    Science.gov (United States)

    Purcell, Maureen K.; Winton, James R.

    2014-01-01

    Renibacterium salmoninarum is the causative agent of bacterial kidney disease (BKD) affecting several species of Pacific salmon.  The severity of BKD can range from a chronic infection to overt disease with high mortality as in the case of large losses of adult Chinook salmon (Oncorhynchus tshawytscha) in the Great Lakes during late 1980s. The goal of this study was to empirically evaluate how environmental stressors relevant to the Great Lakes impact R. salmoninarum disease progression and bacterial shedding, the latter parameter being a proxy of horizontal transmission. In the first study (Aim 1), we focused on how endogenous host thiamine levels and dietary fatty acids impacted resistance of Chinook salmon to R. salmoninarum. Juvenile fish were fed one of four experimental diets, including a (1) thiamine replete diet formulated with fish oil, (2) thiamine deplete diet formulated with fish oil, (3) thiamine replete diet formulated with soybean oil, and (4) thiamine deplete diet formulated with soybean oil, before being challenged with buffer or R. salmoninarum. We observed significantly higher mortality in the R. salmoninarum infected groups relative to the corresponding mock controls in only the thiamine replete diet groups. We also observed a significant effect of time and diet on kidney bacterial load and bacterial shedding, with a significant trend towards higher shedding and bacterial load in the fish oil – thiamine replete diet group. However, during the course of the study, unexpected mortality occurred in all groups attributed to the myxozoan parasite Ceratomyxa shasta. Since the fish were dually-infected with C. shasta, we evaluated parasite DNA levels (parasitic load) in the kidney of sampled fish. We found that parasite load varied across time points but there was no significant effect of diet. However, parasite load did differ significantly between the mock and R. salmoninarum challenge groups with a trend towards longer persistence of C. shasta

  19. Antioxidant nutrition in Atlantic salmon (Salmo salar parr and post-smolt, fed diets with high inclusion of plant ingredients and graded levels of micronutrients and selected amino acids

    Directory of Open Access Journals (Sweden)

    Kristin Hamre

    2016-11-01

    Full Text Available The shift from marine to plant-based ingredients in fish feeds affects the dietary concentrations and bioavailability of micronutrients, amino acids and lipids and consequently warrants a re-evaluation of dietary nutrient recommendations. In the present study, an Atlantic salmon diet high in plant ingredients was supplemented with graded levels of nutrient premix (NP, containing selected amino acids, taurine, cholesterol, vitamins and minerals. This article presents the results on the antioxidant nutrients vitamin C, E and selenium (Se, and effects on tissue redox status. The feed ingredients appeared to contain sufficient levels of vitamin E and Se to cover the requirements to prevent clinical deficiency symptoms. The body levels of α-tocopherol (TOH in parr and that of Se in parr and post-smolt showed a linear relationship with dietary concentration, while α-TOH in post-smolt seemed to be saturable with a breakpoint near 140 mg kg−1. Ascorbic acid (Asc concentration in the basal feed was below the expected minimum requirement, but the experimental period was probably too short for the fish to develop visible deficiency symptoms. Asc was saturable in both parr and post-smolt whole body at dietary concentrations of 190 and 63–89 mg kg−1, respectively. Maximum whole body Asc concentration was approximately 40 mg kg−1 in parr and 14 mg kg−1 in post-smolt. Retention ranged from 41 to 10% in parr and from −206 to 12% in post-smolt with increasing NP supplementation. This indicates that the post-smolts had an extraordinarily high consumption of Asc. Analyses of glutathione (GSH and glutathione disulphide (GSSG concentrations and the calculated GSH based redox potentials in liver and muscle tissue, indicated only minor effects of diets on redox regulation. However, the post-smolt were more oxidized than the parr. This was supported by the high consumption of Asc and high expression of gpx1 and gpx3 in liver. Based on the present trials

  20. Survival and Passage of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead at McNary Dam, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, James S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodley, Christa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ploskey, Gene R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carpenter, Scott M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hennen, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fischer, Eric S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Batton, George [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cushing, Aaron W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Etherington, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greiner, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ingraham, John M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Jin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martinez, Jayson J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, T. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rayamajhi, Bishes [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seaburg, Adam [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skalski, J. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Townsend, Richard L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-23

    The study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead at McNary Dam as stipulated by the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. This study supports the USACE’s continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  1. Survival and Passage of Yearling and Subyearling Chinook Salmon and Steelhead at The Dalles Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Skalski, J. R.; Carlson, Thomas J.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Fischer, Eric S.; Hughes, James S.; Khan, Fenton; Kim, Jin A.; Townsend, Richard L.

    2011-12-01

    The acoustic telemetry study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) for the U.S. Army Corps of Engineers, Portland District (USACE). The purpose of the study was to estimate dam passage survival and other performance measures for yearling and subyearling Chinook salmon and steelhead at The Dalles Dam as stipulated by the 2008 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS) and 2008 Columbia Basin Fish Accords.

  2. Outbreaks of phaeohyphomycosis in the chinook salmon (Oncorhynchus tshawytscha) caused by Phoma herbarum.

    Science.gov (United States)

    Faisal, Mohamed; Elsayed, Ehab; Fitzgerald, Scott D; Silva, Victor; Mendoza, Leonel

    2007-01-01

    Phoma herbarum has been associated with two outbreaks of systemic mycosis in hatchery-reared chinook salmon (Oncorhynchus tshawytscha) fingerlings. Affected fish exhibited abnormal swimming behavior, exophthalmia, multiple rounded areas of muscle softening, protruded hemorrhagic vents, and abdominal swelling. In all affected fish, swimbladders were filled with whitish creamy viscous fungal mass, surrounded by dark red areas in swimbladder walls, kidneys, and musculature. Clinical and histopathological examinations suggest that the infection may have started primarily in the swimbladder and then spread to the kidneys, gastrointestinal tract, and surrounding musculature. Consistent microscopical findings included broad septate branched fungal hyaline hyphae, 5-12 microm in diameter within the swimbladder, stomach, and often within and adjacent to blood vessels. Profuse growths of woolly brown fungal colonies were obtained from swimbladders and kidneys on Sabouraud medium. On corn meal agar the formation of pycnidia, characteristic of Phoma spp., was detected within 10 days of incubation. Morphological and molecular analyses identified this fungus as Phoma herbarum. This report underscores systemic fungal infections as a threat to raceway-raised salmon.

  3. AFSC/ABL: Chinook allozyme baseline

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Allozyme variation was used to examine population genetic structure of adult chinook salmon, Oncorhynchus tshawytscha, collected between 1988 and 1993 from 22...

  4. Assessing the accuracy of a polymerase chain reaction test for Ichthyophonus hoferi in Yukon River Chinook salmon Oncorhynchus tshawytscha.

    Science.gov (United States)

    Whipps, Christopher M; Burton, Tamara; Watral, Virginia G; St-Hilaire, Sophie; Kent, Michael L

    2006-01-30

    Ichthyophonus hoferi Plehn & Mulsow, 1911, is a cosmopolitan, protistan pathogen of marine fishes. It is prevalent in mature returning Chinook salmon Oncorhynchus tshawytscha in the Yukon River watershed, and may be associated with prespawning mortality. We developed and evaluated a polymerase chain reaction (PCR) test for I. hoferi using primers specific to the parasite's small subunit rDNA. The test has a minimum detection limit of approximately 10(-5) parasite spores per reaction and does not cross-react with the closely related salmon parasites Dermocystidium salmonis or Sphaerothecum destruens. Sensitivity and specificity of the PCR test used on somatic muscle and heart tissue for detecting infected fish were determined using 334 Chinook salmon collected from the Yukon River at 2 locations (Tanana and Emmonak) in 2003 and 2004. The true infection status of the fish was determined by testing somatic muscle, heart and kidney tissue using histological evaluation, culture, and PCR. The severity of infection was grouped into 2 categories, light and heavy infection. The probability of detecting a heavily infected fish (sensitivity of the test) was generally much higher than the probability of detecting light infection, suggesting that more than one tissue and/or method should be used to accurately detect light or early infection by I. hoferi. The probability of correctly identifying a negative fish (specificity of the test) was always greater than 94% regardless of the tissue used, infection severity, sampling site or year of collection.

  5. Costs of living for juvenile Chinook salmon (Oncorhynchus tshawytscha) in an increasingly warming and invaded world

    Science.gov (United States)

    Kuehne, Lauren M.; Olden, Julian D.; Duda, Jeffrey J.

    2012-01-01

    Rapid environmental change in freshwater ecosystems has created a need to understand the interactive effects of multiple stressors, with temperature and invasive predators identified as key threats to imperiled fish species. We tested the separate and interactive effects of water temperature and predation by non-native smallmouth bass (Micropterus dolomieu) on the lethal (mortality) and sublethal (behavior, physiology, and growth) effects for juvenile Chinook salmon (Oncorhynchus tshawytscha) in seminatural stream channel experiments. Over 48 h trials, there was no difference in direct predation with warmer temperatures, but significant interactive effects on sublethal responses of juvenile salmon. Warmer temperatures resulted in significantly stronger and more variable antipredator responses (surface shoaling and swimming activity), while physiological indicators (plasma glucose, plasma cortisol) suggested suppression of physiological mechanisms in response to the combined stressors. These patterns corresponded with additive negative growth in predation, temperature, and combined treatments. Our results suggest that chronic increases in temperature may not increase direct predation over short periods, but can result in significant sublethal costs with negative implications for long-term development, disease resistance, and subsequent size-selective mortality of Pacific salmon.

  6. Surveys on Gyrodactylus parasites onwild Atlantic salmon in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Heinecke, Rasmus Demuth; Buchmann, Kurt

    Gyrodactylus salaris is a monogenean ectoparasite parasitizing salmonids in freshwater. This parasite is highly pathogenic to both Norwegian and Scottish salmon and has decimated the salmon populations in 45 Norwegian rivers after anthropogenic transfer from Sweden. G. salaris has also been found...... on several occasions in Danish rainbow trout farms but has never been recorded as a pathogenic parasite on Danish wild salmon. In the present study the occurrence of G. salaris and other Gyrodactylus parasites on wild Danish salmon fry and parr were monitored. Electrofishing was conducted in three river......-systems (River Skjern, Ribe and Varde) and 0+ and 1+ salmon were collected and sacrificed using an overdose of MS222. During spring or summer time more salmon fry and parr will be collected. The fins were excised and fins and body were conserved separately in 96% ethanol. In the laboratory, the fins and body...

  7. Genetic variation in bacterial kidney disease (BKD) susceptibility in Lake Michigan Chinook Salmon and its progenitor population from the Puget Sound

    Science.gov (United States)

    Purcell, Maureen K.; Hard, Jeffrey J.; Neely, Kathleen G.; Park, Linda K.; Winton, James R.; Elliott, Diane G.

    2014-01-01

    Mass mortality events in wild fish due to infectious diseases are troubling, especially given the potential for long-term, population-level consequences. Evolutionary theory predicts that populations with sufficient genetic variation will adapt in response to pathogen pressure. Chinook Salmon Oncorhynchus tshawytscha were introduced into Lake Michigan in the late 1960s from a Washington State hatchery population. In the late 1980s, collapse of the forage base and nutritional stress in Lake Michigan were thought to contribute to die-offs of Chinook Salmon due to bacterial kidney disease (BKD). Previously, we demonstrated that Lake Michigan Chinook Salmon from a Wisconsin hatchery have greater survival following BKD challenge relative to their progenitor population. Here, we evaluated whether the phenotypic divergence of these populations in BKD susceptibility was due to selection rather than genetic drift. Comparison of the overall magnitude of quantitative trait to neutral marker divergence between the populations suggested selection had occurred but a direct test of quantitative trait divergence was not significant, preventing the rejection of the null hypothesis of differentiation through genetic drift. Estimates of phenotypic variation (VP), additive genetic variation (VA) and narrow-sense heritability (h2) were consistently higher in the Wisconsin relative to the Washington population. If selection had acted on the Wisconsin population there was no evidence of a concomitant loss of genetic variation in BKD susceptibility. The Renibacterium salmoninarum exposures were conducted at both 14°C and 9°C; the warmer temperature accelerated time to death in both populations and there was no evidence of phenotypic plasticity or a genotype-by-environment (G × E) interaction. High h2 estimates for BKD susceptibility in the Wisconsin population, combined with a lack of phenotypic plasticity, predicts that future adaptive gains in BKD resistance are still possible and

  8. Wild Steelhead Studies, Salmon and Clearwater Rivers, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Holubetz, Terry B; Leth, Brian D.

    1997-05-01

    To enumerate chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss adult escapements, weirs were operated in Marsh, Chamberlain, West Fork Chamberlain, and Running creeks. Beginning in late July 1994, a juvenile trap was installed in Running Creek to estimate juvenile outmigrants. Plans have been completed to install a weir in Rush Creek to enumerate steelhead adult escapement beginning in spring 1995. Design and agreements are being developed for Johnson Creek and Captain John Creek. Data collected in 1993 and 1994 indicate that spring chinook salmon and group-B steelhead populations and truly nearing extinction levels. For example, no adult salmon or steelhead were passed above the West Fork Chamberlain Creek weir in 1984, and only 6 steelhead and 16 chinook salmon were passed into the important spawning area on upper Marsh Creek. Group-A steelhead are considerably below desirable production levels, but in much better status than group-B stocks. Production of both group-A and group-B steelhead is being limited by low spawning escapements. Studies have not been initiated on wild summer chinook salmon stocks.

  9. Monitoring of Subyearling Chinook Salmon Survival and Passage at Bonneville Dam, Summer 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

    2012-09-01

    The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through the dam and downstream through 81 km of tailwater.

  10. Research on Captive Broodstock Programs for Pacific Salmon, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A. (National Marine Fisheries Service)

    2005-11-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Accomplishments detailed in this report and those since the last project review period (FY 2003) are listed below by major objective. Objective 1: (i) Developed tools for monitoring the spawning success of captively reared Chinook salmon that can now be used for evaluating the reintroduction success of ESA-listed captive broodstocks in their natal habitats. (ii) Developed an automated temperature controlled rearing system to test the effects of seawater rearing temperature on reproductive success of Chinook salmon. Objective 2: (i) Determined that Columbia River sockeye salmon imprint at multiple developmental stages and the length of exposure to home water is important for successful imprinting. These results can be utilized for developing successful reintroduction strategies to minimize straying by ESA-listed sockeye salmon. (ii) Developed behavioral and physiological assays for imprinting in sockeye salmon. Objective 3: (i) Developed growth regime to reduce age-two male maturation in spring Chinook salmon, (ii) described reproductive cycle of returning hatchery Snake River spring Chinook salmon relative to captive broodstock, and (iii) found delays in egg development in captive broodstock prior to entry to fresh water. (iv) Determined that loss of Redfish Lake sockeye embryos prior to hatch is largely due to lack of egg fertilization rather than embryonic mortality. Objective 4 : (i) Demonstrated safety and efficacy limits against bacterial kidney disease (BKD) in fall Chinook of attenuated R. salmoninarum vaccine and commercial vaccine Renogen, (ii) improved prophylactic and therapeutic

  11. Post-release attributes and survival of hatchery and natural fall chinook salmon in the Snake River : annual report 2000-2001

    International Nuclear Information System (INIS)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.

    2003-01-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001

  12. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River; 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-02-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001.

  13. Avoidance of thermal effluent by juvenile chinook salmon (Oncorhynchus tshowytscha) and its implications in waste heat management

    International Nuclear Information System (INIS)

    Gray, R.H.

    1977-03-01

    Knowledge of behavioral responses of aquatic organisms to thermal discharges at power plants is essential to evaluate thermal exposure and subsequent effects on survival and ecological success. Instantaneous responses of juvenile salmon that encountered a simulated river-thermal plume interface were assessed in a model raceway with a thermal discharge. Fish movement and response to the discharge were recorded on videotape. Juvenile chinook salmon (Oncorhynchus tshawytscha) tested under three discharge conditions (no plume, ambient plume and heated plume) avoided plume temperatures greater than 9 to 11 0 C above ambient. Fish occasionally oriented to the discharge current, but were not attracted to the thermal component of the plume when plume ΔT's were below the avoidance level of 11 0 C. Fish did not pass to the lower end of the raceway when plume ΔT exceeded 9 to 11 0 C. The responses noted in our experiments suggest organismic behavior may prevent juvenile salmon in nature from experiencing lethal conditions from thermal discharges and have application in waste heat management and utilization

  14. Salmon returns and consumer fitness: growth and energy storage in stream-dwelling salmonids increases with spawning salmon abundance

    Science.gov (United States)

    We examined how biomass of marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and nitrogen stable isotope ratios (d15N) of stream-dwelling fishes. We sampled coho salmon (Oncorhynchus kisutch) parr and juvenile Dolly Varden (Salvelinus malma) d...

  15. Compliance Monitoring of Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Johnson, Gary E.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at The Dalles Dam during summer 2012. Under the 2008 Federal Columbia River Power System Biological Opinion, dam passage survival is required to be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal to 0.015. The study also estimated survival from the forebay 2 km upstream of the dam and through the tailrace to 2 km downstream of the dam, forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required by the 2008 Columbia Basin Fish Accords.

  16. Estimating juvenile Chinook salmon (Oncorhynchus tshawytscha) abundance from beach seine data collected in the Sacramento–San Joaquin Delta and San Francisco Bay, California

    Science.gov (United States)

    Perry, Russell W.; Kirsch, Joseph E.; Hendrix, A. Noble

    2016-06-17

    Resource managers rely on abundance or density metrics derived from beach seine surveys to make vital decisions that affect fish population dynamics and assemblage structure. However, abundance and density metrics may be biased by imperfect capture and lack of geographic closure during sampling. Currently, there is considerable uncertainty about the capture efficiency of juvenile Chinook salmon (Oncorhynchus tshawytscha) by beach seines. Heterogeneity in capture can occur through unrealistic assumptions of closure and from variation in the probability of capture caused by environmental conditions. We evaluated the assumptions of closure and the influence of environmental conditions on capture efficiency and abundance estimates of Chinook salmon from beach seining within the Sacramento–San Joaquin Delta and the San Francisco Bay. Beach seine capture efficiency was measured using a stratified random sampling design combined with open and closed replicate depletion sampling. A total of 56 samples were collected during the spring of 2014. To assess variability in capture probability and the absolute abundance of juvenile Chinook salmon, beach seine capture efficiency data were fitted to the paired depletion design using modified N-mixture models. These models allowed us to explicitly test the closure assumption and estimate environmental effects on the probability of capture. We determined that our updated method allowing for lack of closure between depletion samples drastically outperformed traditional data analysis that assumes closure among replicate samples. The best-fit model (lowest-valued Akaike Information Criterion model) included the probability of fish being available for capture (relaxed closure assumption), capture probability modeled as a function of water velocity and percent coverage of fine sediment, and abundance modeled as a function of sample area, temperature, and water velocity. Given that beach seining is a ubiquitous sampling technique for

  17. Assessment of High Rates of Precocious Male Maturation in a Spring Chinook Salmon Supplementation Hatchery Program, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Donald; Beckman, Brian; Cooper, Kathleen

    2003-08-01

    The Yakima River Spring Chinook Salmon Supplementation Project in Washington State is currently one of the most ambitious efforts to enhance a natural salmon population in the United States. Over the past five years we have conducted research to characterize the developmental physiology of naturally- and hatchery-reared wild progeny spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River basin. Fish were sampled at the main hatchery in Cle Elum, at remote acclimation sites and, during smolt migration, at downstream dams. Throughout these studies the maturational state of all fish was characterized using combinations of visual and histological analysis of testes, gonadosomatic index (GSI), and measurement of plasma 11-ketotestosterone (11-KT). We established that a plasma 11-KT threshold of 0.8 ng/ml could be used to designate male fish as either immature or precociously maturing approximately 8 months prior to final maturation (1-2 months prior to release as 'smolts'). Our analyses revealed that 37-49% of the hatchery-reared males from this program undergo precocious maturation at 2 years of age and a proportion of these fish appear to residualize in the upper Yakima River basin throughout the summer. An unnaturally high incidence of precocious male maturation may result in loss of potential returning anadromous adults, skewing of female: male sex ratios, ecological, and genetic impacts on wild populations and other native species. Precocious male maturation is significantly influenced by growth rate at specific times of year and future studies will be conducted to alter maturation rates through seasonal growth rate manipulations.

  18. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves throughout

  19. Bedform morphology of salmon spawning areas in a large gravel-bed river

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.

    2007-05-01

    While the importance of river channel morphology to salmon spawning habitat is increasingly recognized, quantitative measures of the relationships between channel morphology and habitat use are lacking. Such quantitative measures are necessary as management and regulatory agencies within the Pacific Northwestern region of the USA, and elsewhere, seek to quantify potential spawning habitat and develop recovery goals for declining salmon populations. The objective of this study was to determine if fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Snake River, Idaho, USA, were correlated with specific bed form types at the pool-riffle scale. A bed form differencing technique was used to objectively quantify the longitudinal riverbed profile into four distinct pool-riffle units that were independent of discharge. The vertical location of thalweg points within these units was quantified with a riffle proximity index. Chinook salmon spawning areas were mapped and correlated with the pool-riffle units through the use of cross-tabulation tables. The results indicate that 84% of fall Chinook salmon spawning areas were correlated with riffles (Chi-square=152.1, df=3, p<0.001), with 53% of those areas located on the upstream side of riffle crests. The majority of Snake River fall Chinook salmon spawning occurred at a vertical location within 80% of the nearest riffle crest elevation. The analyses of bed form morphology will assist regional fish mangers in quantifying existing and potential fall Chinook salmon spawning habitat, and will provide a quantitative framework for evaluating general ecological implications of channel morphology in large gravel-bed rivers.

  20. Strait of Georgia chinook and coho fishery

    National Research Council Canada - National Science Library

    Argue, A. W

    1983-01-01

    The chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon fishery in the Strait of Georgia, between Vancouver Island and the mainland of British Columbia, is a valuble sport and commercial resource...

  1. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project, Treatment Definitions and Descriptions, and Biological Specifications for Facility Design, Final Report 1999

    International Nuclear Information System (INIS)

    Hager, Robert C.; Costello, Ronald J.

    1999-01-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions)

  2. Gauging resource exploitation by juvenile Chinook salmon (Oncorhynchus tshawytscha) in restoring estuarine habitat

    Science.gov (United States)

    Davis, Melanie; Ellings, Christopher S.; Woo, Isa; Hodgson, Sayre; Larsen, Kimberly A.; Nakai, Glynnis

    2018-01-01

    In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out-migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post-restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density-dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.

  3. A rapid assessment method to estimate the distribution of juvenile Chinook Salmon in tributary habitats using eDNA and occupancy estimation

    Science.gov (United States)

    Matter, A.; Falke, Jeffrey A.; López, J. Andres; Savereide, James W.

    2018-01-01

    Identification and protection of water bodies used by anadromous species are critical in light of increasing threats to fish populations, yet often challenging given budgetary and logistical limitations. Noninvasive, rapid‐assessment, sampling techniques may reduce costs and effort while increasing species detection efficiencies. We used an intrinsic potential (IP) habitat model to identify high‐quality rearing habitats for Chinook Salmon Oncorhynchus tshawytscha and select sites to sample throughout the Chena River basin, Alaska, for juvenile occupancy using an environmental DNA (eDNA) approach. Water samples were collected from 75 tributary sites in 2014 and 2015. The presence of Chinook Salmon DNA in water samples was assessed using a species‐specific quantitative PCR (qPCR) assay. The IP model predicted over 900 stream kilometers in the basin to support high‐quality (IP ≥ 0.75) rearing habitat. Occupancy estimation based on eDNA samples indicated that 80% and 56% of previously unsampled sites classified as high or low IP (IP Salmon DNA from three replicate water samples was high (p = 0.76) but varied with drainage area (km2). A power analysis indicated high power to detect proportional changes in occupancy based on parameter values estimated from eDNA occupancy models, although power curves were not symmetrical around zero, indicating greater power to detect positive than negative proportional changes in occupancy. Overall, the combination of IP habitat modeling and occupancy estimation provided a useful, rapid‐assessment method to predict and subsequently quantify the distribution of juvenile salmon in previously unsampled tributary habitats. Additionally, these methods are flexible and can be modified for application to other species and in other locations, which may contribute towards improved population monitoring and management.

  4. 75 FR 52309 - Pacific Fishery Management Council; Tule Chinook Workgroup Meeting

    Science.gov (United States)

    2010-08-25

    ... management approach for Columbia River natural tule chinook . This meeting of the TCW is open to the public... approach as a formal conservation objective in the Salmon FMP. Although nonemergency issues not contained... Fishery Management Council; Tule Chinook Workgroup Meeting AGENCY: National Marine Fisheries Service (NMFS...

  5. Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary: An Overview of Research Results, 2002-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Bottom, Daniel L.; Anderson, Greer; Baptisa, Antonio

    2008-08-01

    From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zone to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon densities

  6. Characterization of estuary use by Nisqually Hatchery Chinook based on Otolith analysis

    Science.gov (United States)

    Lind-Null, Angie M.; Larsen, Kim A.; Reisenbichler, Reg

    2008-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem are planned to assist in recovery of the stock. A pre-restoration baseline including life history types, estuary residence time, growth rates, and habitat use are needed to evaluate the potential response of hatchery and wild Chinook salmon to restoration. Otolith analysis has been selected as a means to examine Chinook salmon life history, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: 1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, 2) compare pre- and post- restoration residence times and growth rates, 3) suggest whether estuary restoration yields substantial benefits for Chinook salmon through (1) and (2), and 4) compare differences in habitat use between hatchery and wild Chinook to further protect ESA listed stock. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile hatchery Chinook salmon are generally released as smolts that move quickly through the delta with much shorter residence times than for many wild fish and are not dependent on the delta as nursery habitat (Myers and Horton 1982; Mace 1983; Levings et al. 1986). The purpose of this study is to use and

  7. The effects of rival seminal plasma on sperm velocity in the alternative reproductive tactics of Chinook salmon.

    Science.gov (United States)

    Lewis, Jason A; Pitcher, Trevor E

    2017-04-01

    Sperm competition is prevalent and intense in many animal mating systems, and is a major force driving evolution of such mating systems. The objective of this study was to determine the effect of seminal plasma on sperm velocity of male Chinook salmon (Onchorhynchus tshawytscha), which possesses a mating system with male alternative reproductive tactics and intense sperm competition. Male Chinook salmon either adopt a small, precocious sneaking tactic (jack) or a large, dominant tactic (hooknose). To test whether the seminal plasma can effect sperm velocity amongst sperm competitors, two experiments were done whereby males were paired based upon the alternative tactic each male adopted, with the first experiment consisting of jack-hooknose pairs (N = 16) and the second experiment consisting of jack-jack and hooknose-hooknose pairs (N = 12 and 14, respectively). Within each pair, milt of each male was manipulated such that seminal plasma was removed and swapped between the males in each pair and sperm velocity was measured. Jack seminal plasma caused a significant decrease (∼11.9%) in hooknose sperm velocity while causing a significant increase in jack sperm velocity (∼7%), while alternatively, hooknose seminal plasma had no affect on sperm velocity of jack or other hooknose males. This study shows that rival seminal plasma may affect the outcome of sperm competition between males; males adopting a sneaking tactic, that spawn in a disadvantageous mating position, may be able to compensate for this deficit by being more competitive through the effects of their seminal plasma on their competitor's sperm velocity. Copyright © 2016. Published by Elsevier Inc.

  8. Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

    2012-11-15

    The purpose of this study was to evaluate dam passage survival of subyearling Chinook salmon (Oncorhynchus tshawytscha; CH0) at John Day Dam (JDA) during summer 2010. This study was conducted by researchers from the Pacific Northwest National Laboratory (PNNL) in collaboration with the Pacific States Marine Fisheries Commission (PSMFC) and the University of Washington (UW). The study was designed to estimate the effects of 30% and 40% spill treatment levels on single release survival rates of CH0 passing through two reaches: (1) the dam, and 40 km of tailwater, (2) the forebay, dam, and 40 km of tailwater. The study also estimated additional passage performance measures which are stipulated in the Columbia Basin Fish Accords.

  9. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hager, Robert C. (Hatchery Operations Consulting); Costello, Ronald J. (Mobrand Biometrics, Inc., Vashon Island, WA)

    1999-10-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

  10. Fish Research Project, Oregon, Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin, Annual Progress Report, Project Period: September 1, 1996 - August 31, 1997; ANNUAL

    International Nuclear Information System (INIS)

    Brian C. Jonasson; J. Vincent Tranquilli; MaryLouise Keefe; Richard W. Carmichael

    1998-01-01

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving upper rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in pool

  11. Research Plan to Determine Timing, Location, Magnitude and Cause of Mortality for Wild and Hatchery Spring/Summer Chinook Salmon Smolts Above Lower Granite Dam. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lower Granite Migration Study Steering Committee

    1993-10-01

    From 1966 to 1968, Raymond estimated an average survival rate of 89% for yearling chinook salmon (Oncorhynchus tshawytscha) migrating from trap sites on the Salmon River to Ice Harbor Dam, which was then the uppermost dam on the Snake River. During the 1970s, the estimated survival rate declined as the proportion of hatchery fish increased and additional dams were constructed. Recent survival indices for yearling chinook salmon smolts in the Snake River Basin indicate that substantial mortalities are occurring en route to Lower Granite Dam, now the uppermost dam on the Snake River. Detection rates for wild and hatchery PIT-tagged smolts at Lower Granite Dam have been much lower than expected. However, for wild fish, there is considerable uncertainty whether overwinter mortality or smolt loss during migration is the primary cause for low survival. Efforts to rebuild these populations will have a better chance of success after the causes of mortality are identified and addressed. Information on the migrational characteristics and survival of wild fish are especially needed. The goal of this initial planning phase is to develop a research plan to outline potential investigations that will determine the timing, location, magnitude, and cause of smolt mortality above Lower Granite Dam.

  12. Captive Rearing Program for Salmon River Chinook Salmon : Project Progress Report, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2003-10-01

    During 2001, the Idaho Department of Fish and Game continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 311) and the West Fork Yankee Fork Salmon River (WFYF; N = 272) to establish brood year 2001 culture cohorts. The eyed-eggs were incubated and reared by family group at the Eagle Fish Hatchery (Eagle). Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to the majority of them being transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through maturity. Smolt transfers included 210 individuals from the Lemhi River (LEM), 242 from the WFYF, and 178 from the EFSR. Maturing fish transfers from Manchester to Eagle included 62 individuals from the LEM, 72 from the WFYF, and 27 from the EFSR. Additional water chilling capacity was added at Eagle in 2001 to test if spawn timing could be advanced by temperature manipulations, and adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) water temperature groups while at Eagle. Twenty-five mature females from the LEM (11 chilled, 14 ambient) were spawned in captivity with 23 males with the same temperature history in 2001. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage of development averaged 37.9% and did not differ significantly between the two temperature groups. A total of 8,154 eyed-eggs from these crosses were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 89) were released into the WFYF to evaluate their reproductive performance. After release, fish

  13. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Pacific Salmon EFH Identified by USGS... 660—Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC) USGS HUC State(s) Hydrologic Unit... 18010206 CA/OR Upper Klamath River Chinook and coho salmon Iron Gate Dam 18010207 CA Shasta River Chinook...

  14. Impact of Ichthyophonus infection on spawning success of Yukon River Chinook salmon Oncorhynchus tshawytscha.

    Science.gov (United States)

    Hamazaki, Toshihide; Kahler, Eryn; Borba, Bonnie M; Burton, Tamara

    2013-11-06

    We examined the impacts of Ichthyophonus infection on spawning success of Yukon River Chinook salmon Oncorhynchus tshawytscha at spawning grounds of the Chena and Salcha Rivers, Alaska, USA. During the period 2005 to 2006, 1281 salmon carcasses (628 male, 652 female) were collected throughout the spawning season and from the entire spawning reaches of the Chena and Salcha Rivers. For each fish, infection status was determined by culture method and visual inspection of lesions of heart tissue as uninfected (culture negative), infected without lesions (culture positive with no visible lesions), and infected with lesions (culture positive with visible lesions), and spawning status was determined by visually inspecting the percentage of gametes remaining as full-spawned (50%). Among the 3 groups, the proportion of full-spawned (i.e. spawning success) females was lower for those infected without lesions (69%) than those uninfected (87%) and infected with lesions (86%), but this did not apply to males (uninfected 42%, infected without lesions 38%, infected with lesions 41%). At the population level, the combined (infected and uninfected) proportion of female spawning success was 86%, compared to 87% when all females were assumed uninfected. These data suggest that while Ichthyophonus infection slightly reduces spawning success of infected females, its impact on the spawning population as a whole appears minimal.

  15. Nez Perce Tribal Hatchery Complex; Operations and Maintenance and 2005 Annual Operation Plan, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Harty, Harold R.; Lundberg, Jeffrey H.; Penney, Aaron K. (Nez Perce Tribe, Lapwai, ID)

    2005-02-01

    The Nez Perce Tribal Hatchery (NPTH) responds directly to a need to mitigate for naturally-reproducing salmon in the Clearwater River subbasin. The overall goal is to produce and release fish that will survive to adulthood, spawn in the Clearwater River subbasin and produce viable offspring that will support future natural production and genetic integrity. Several underlying purposes of fisheries management will be maintained through this program: (1) Protect, mitigate, and enhance Columbia River subbasin anadromous fish resources. (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater River subbasin. (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project completion. (4) Sustain long-term fitness and genetic integrity of targeted fish populations. (5) Keep ecological and genetic impacts to non-target populations within acceptable limits. (6) Promote Nez Perce Tribal Management of Nez Perce Tribal hatchery Facilities and production areas within Nez Perce Treaty lands. Nez Perce Tribal Hatchery is a supplementation program that will rear and release spring, fall, and early-fall stocks of chinook salmon. Two life stages of spring chinook salmon will be released: parr and presmolts. Fall and early-fall chinook salmon will be released as subyearling smolts. The intent of NPTHC is to use conventional hatchery and Natural Rearing Enhancement Systems (NATURES) techniques to develop, increase and restore natural populations of spring and fall chinook salmon in the Clearwater River subbasin.

  16. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, Justin K.; Olson, Jill M. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-03-01

    In 2002 the Idaho Fisheries Resource Office continued working as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, broodstock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate the project data points and augment past data. Supplementation treatments included the release of 51,329 left ventral-clipped smolts into Clear Creek (750 were PIT tagged), and 12,000 unmarked coded-wire tagged parr into Pete King Creek (998 were PIT tagged). Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 579 naturally produced spring chinook juveniles in Clear Creek, and 54 on Pete King Creek, for minimum survival estimates to Lower Granite Dam. For Clear Creek, minimum survival estimates to Lower Granite Dam of hatchery produced supplementation and naturally produced PIT tagged smolts, were 36.0%, and 53.1%, respectively. For Pete King Creek, minimum survival estimates to Lower Granite Dam, of hatchery produced supplementation smolts and naturally produced smolts PIT tagged as parr and presmolts, were 18.8%, and 8.3%, respectively. Adults collected for broodstock in 2002 represented the final adult broodstock group collected for the ISS project. Twenty-six ventral clipped, and 28 natural adult spring chinook were transported above the weir. Monitoring and evaluation of spawning success was continued on Clear and Pete King creeks. A total of 69 redds were counted and 79 carcasses were recovered on Clear Creek. Two redds were observed and no carcasses were collected on Pete King Creek.

  17. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Axel, Gordon A.; Hockersmith, Eric E.

    2002-07-01

    This report details the 2001 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these data in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers.

  18. Blood types in Pacific salmon

    Science.gov (United States)

    Ridgway, G.L.; Klontz, G.W.

    1961-01-01

    Intraspecific differences in erythrocyte antigens (blood types) were shown to occur in four species of Pacific salmon, the sockeye or red salmon (Oncorhynchus nerka), the chinook or king salmon (0. tshawytscha), the chum salmon (O. keta), and the pink salmon (O. gorbuscha). Antisalmon-erythrocyte sera prepared in rabbits and chickens were used after absorption of species-specific antibodies. Some of these blood types were shown to differ in their frequency of occurrence between different geographic races. In addition, isoimmunizations were conducted on one race of sockeye salmon. Antisera of seven different specificities were prepared and at least eight different patterns of antigenic composition were displayed by the cells tested.

  19. Methylation changes associated with early maturation stages in the Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Pérez-Figueroa Andrés

    2011-10-01

    Full Text Available Abstract Background Early maturation in the Atlantic salmon is an interesting subject for numerous research lines. Prior to sea migration, parr can reach sexual maturation and successfully fertilize adult female eggs during the reproductive season. These individuals are known as precocious parr, mature parr or "sneakers". Reasons for early maturation are unknown and this transitory stage is usually considered to be a threshold trait. Here, we compare methylation patterns between mature and immature salmon parr from two different rivers in order to infer if such methylation differences may be related to their maturation condition. First we analyzed genetic differences between rivers by means of AFLPs. Then, we compared the DNA methylation differences between mature and immature parrs, using a Methylation-Sensitive Amplified Polymorphism (MSAP, which is a modification of the AFLPs method by making use of the differential sensitivity of a pair of restriction enzymes isoschizomeres to cytosine methylation. The tissues essayed included brain, liver and gonads. Results AFLPs statistical analysis showed that there was no significant differentiation between rivers or a significant differentiation between maturation states in each river. MSAP statistical analysis showed that among the three tissues sampled, the gonads had the highest number of significant single-locus variation among populations with 74 loci followed by brain with 70 and finally liver with only 12. Principal components analysis (PCA of the MSAP profiles revealed different profiles among different tissues (liver, brain and testis clearly separating maturation states in the testis tissue when compared to the liver. Conclusions Our results reveal that genetically-similar mature and immature salmon parr present high levels of DNA methylation variation in two of the three analyzed tissues. We hypothesize that early maturation may be mostly mediated by epigenetic processes rather than by

  20. Assessment of Barotrauma Resulting from Rapid Decompression of Depth Acclimated Juvenile Chinook Salmon Bearing Radio Telemetry Transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.; Stephenson, John R.; Abernethy, Cary S.; McKinstry, Craig A.; Theriault, Marie-Helene

    2007-09-06

    A multifactor study was conducted by Battelle for the US Army Corps of Engineers to assess the significance of the presence of a radio telemetry transmitter on the effects of rapid decompression from simulated hydro turbine passage on depth acclimated juvenile run-of-the-river Chinook salmon. Study factors were: (1) juvenile chinook salmon age;, subyearling or yearling, (2) radio transmitter present or absent, (3) three transmitter implantation factors: gastric, surgical, and no transmitter, and (4) four acclimation depth factors: 1, 10, 20, and 40 foot submergence equivalent absolute pressure, for a total of 48 unique treatments. Exposed fish were examined for changes in behavior, presence or absence of barotrauma injuries, and immediate or delayed mortality. Logistic models were used to test hypotheses that addressed study objectives. The presence of a radio transmitter was found to significantly increase the risk of barotrauma injury and mortality at exposure to rapid decompression. Gastric implantation was found to present a higher risk than surgical implantation. Fish were exposed within 48 hours of transmitter implantation so surgical incisions were not completely healed. The difference in results obtained for gastric and surgical implantation methods may be the result of study design and the results may have been different if tested fish had completely healed surgical wounds. However, the test did simulate the typical surgical-release time frame for in-river telemetry studies of fish survival so the results are probably representative for fish passing through a turbine shortly following release into the river. The finding of a significant difference in response to rapid decompression between fish bearing radio transmitters and those not implies a bias may exist in estimates of turbine passage survival obtained using radio telemetry. However, the rapid decompression (simulated turbine passage) conditions used for the study represented near worst case exposure

  1. Establishment of Chinook salmon (Oncorhynchus tshawytscha in Pacific basins of southern South America and its potential ecosystem implications Establecimiento del salmón Chinook (Oncorhynchus tshawytscha en cuencas del Pacífico sur de Sudamérica y sus potenciales implicancias ecosistémicas

    Directory of Open Access Journals (Sweden)

    DORIS SOTO

    2007-03-01

    Full Text Available Salmon and trout species are not native to the southern hemisphere, however rainbow and brown trout have been established a century in southern South America. Yet most attempts to introduce anadromous salmon failed until the onset of aquaculture by 1980. Escapes of Oncorhynchus tshawytscha (Chinook salmon from aquaculture after 1990 have apparently produced increasingly important reproductive returns "naturalized", to upper basins in Chile and Argentina south of 39º S. In this paper we show data on the historic and spatial occurrence of chinook salmon in four Pacific basins during the past decade. Our objective is to establish the progress of the settlement forecasting some ecosystem disruptions in order to project and manage potential impacts. In Chile, sampling took place from 1995 to 2005 including rivers Petrohué, Poicas, and Río Negro-Hornopiren, and Lake Puyehue, in the X Region. In Argentina sampled rivers were Futaleufú, Carrenleufú and Pico. In Chile and Argentina reproductive Chinooks ranged in size between 73 and 130 cm total length, being the smallest sizes those of Lake Puyehue where the population is apparently landlocked. In Río Petrohué, the size of the runs varied from year to year reaching in the peak season of 1996 and 2004 up to 500 kg of fish along 100 m of riverbank. Temporal distribution of juvenile Chinooks suggested mainly a typical ocean type as they are gone to sea within the first year of age. As seen in Petrohue, reproductive populations could import significant quantities of marine derived nutrients as they do in their original habitats thus disturbing natural cycles and balances. Chinook establishment in these pristine watersheds in southern South America poses new challenges for decision makers and fishermen since they may develop a fishery in the Pacific Ocean with consequences to other fishery resources. Additionally they also become a resource for sport fishing. Therefore there is the need of developing

  2. Upstream passage, spawning, and stock identification of fall chinook in the Snake River, 1992 and 1993. Final report

    International Nuclear Information System (INIS)

    Blankenship, H.L.; Mendel, G.W.

    1997-05-01

    This final report of the 3-year study summarizes activities and results for 1993. Study objectives were to: (1) determine the source of losses (or accounting errors) for adult chinook salmon between Ice Harbor Dam (IHR) and Lower Granite Dam (LGR), and upstream of LGR in the Snake River; (2) identify spawning locations upstream of LGR for calibration of aerial redd surveys, redd habitat mapping, carcass recovery for genetic stock profile analysis, and correction of estimated adult/redd ratios; and (3) estimate passage and migration times at Snake River. 200 fall chinook salmon were radio tagged and tracked with aerial, fixed-site, and ground mobile tracking. Fish were released upstream of IHR at Charbonneau Park (CHAR). 190 of the fish were tracked or relocated away from CHAR. 59 fish descended to below IHR without crossing Lower Monumental Dam (LMO). Another 128 salmon passed upstream of LMO without falling back at IHR. Only 80 salmon passed Little Goose Dam (LGO) without falling back at a downstream dam; 66 of these fish passed LGR. Many fish that fell back reascended the dams. A total of 72 salmon released at CHAR passed upstream of LGR, including fish that had fallen back and reascended a dam. Over 80 percent of the salmon that entered Lyons Ferry Hatchery each year had reached LGO before descending to the hatchery. Extensive wandering was documented between LMO and upstream of LGR before salmon entered Lyons Ferry Hatchery or the Tucannon River. In 1993, 41 salmon were found to be of hatchery origin when recovered. These fish entered Lyons Ferry Hatchery with similar movements to unmarked salmon. Each year a few salmon have remained near the hatchery without entering, which suggests the hatchery may have inadequate attraction flows. Fall chinook passed lower Snake River dams in 2-5 days each on average. Median travel times through LMO and LGO were 1.0-1.3 days each, which was slower than for spring chinook or steelhead in 1993. 5 refs., 21 figs., 20 tabs

  3. Testing advances in molecular discrimination among Chinook salmon life histories: evidence from a blind test.

    Science.gov (United States)

    Banks, Michael A; Jacobson, David P; Meusnier, Isabelle; Greig, Carolyn A; Rashbrook, Vanessa K; Ardren, William R; Smith, Christian T; Bernier-Latmani, Jeremiah; Van Sickle, John; O'Malley, Kathleen G

    2014-06-01

    The application of DNA-based markers toward the task of discriminating among alternate salmon runs has evolved in accordance with ongoing genomic developments and increasingly has enabled resolution of which genetic markers associate with important life-history differences. Accurate and efficient identification of the most likely origin for salmon encountered during ocean fisheries, or at salvage from fresh water diversion and monitoring facilities, has far-reaching consequences for improving measures for management, restoration and conservation. Near-real-time provision of high-resolution identity information enables prompt response to changes in encounter rates. We thus continue to develop new tools to provide the greatest statistical power for run identification. As a proof of concept for genetic identification improvements, we conducted simulation and blind tests for 623 known-origin Chinook salmon (Oncorhynchus tshawytscha) to compare and contrast the accuracy of different population sampling baselines and microsatellite loci panels. This test included 35 microsatellite loci (1266 alleles), some known to be associated with specific coding regions of functional significance, such as the circadian rhythm cryptochrome genes, and others not known to be associated with any functional importance. The identification of fall run with unprecedented accuracy was demonstrated. Overall, the top performing panel and baseline (HMSC21) were predicted to have a success rate of 98%, but the blind-test success rate was 84%. Findings for bias or non-bias are discussed to target primary areas for further research and resolution. © 2014 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  4. Neutral genetic variation in adult Chinook salmon (Oncorhynchus tshawytscha) affects brain-to-body trade-off and brain laterality

    Science.gov (United States)

    Heath, Daniel D.; Higgs, Dennis M.

    2017-01-01

    Low levels of heterozygosity can have detrimental effects on life history and growth characteristics of organisms but more subtle effects such as those on trade-offs of expensive tissues and morphological laterality, especially of the brain, have not been explicitly tested. The objective of the current study was to investigate how estimated differences in heterozygosity may potentially affect brain-to-body trade-offs and to explore how these heterozygosity differences may affect differential brain growth, focusing on directional asymmetry in adult Chinook salmon (Oncorhynchus tshawytscha) using the laterality and absolute laterality indices. Level of inbreeding was estimated as mean microsatellite heterozygosity resulting in four ‘inbreeding level groups’ (Very High, High, Medium, Low). A higher inbreeding level corresponded with a decreased brain-to-body ratio, thus a decrease in investment in brain tissue, and also showed a decrease in the laterality index for the cerebellum, where the left hemisphere was larger than the right across all groups. These results begin to show the role that differences in heterozygosity may play in differential tissue investment and in morphological laterality, and may be useful in two ways. Firstly, the results may be valuable for restocking programmes that wish to emphasize brain or body growth when crossing adults to generate individuals for release, as we show that genetic variation does affect these trade-offs. Secondly, this study is one of the first examinations to test the hypothesized relationship between genetic variation and laterality, finding that in Chinook salmon there is potential for an effect of inbreeding on lateralized morphology, but not in the expected direction. PMID:29308240

  5. Applying a two-dimensional morphodynamic model to assess impacts to Chinook salmon spawning habitat from dam removal

    Science.gov (United States)

    Lee, A. A.; Crosato, A.; Omer, A. Y. A.; Bregoli, F.

    2017-12-01

    The need for accurate and robust predictive methods of assessing fluvial ecosystems is highlighted by the accelerating practice of dam removal. Dam removal can be a restorative measure, but the sudden release of impounded sediment and change in flow regime may negatively impact aquatic biota and their habitat. This study assesses the performance of a quasi-three-dimensional morphodynamic numerical model, coupled with habitat suitability indices, to predict short-term impacts to Chinook salmon (Oncorhynchus tshawytscha) spawning habitat from dam removal. The 2007 removal of Marmot Dam on the Sandy River (Oregon, U.S.A.) is used as a case study. Delft3D-FLOW is employed to simulate changes in river channel topography, sediment composition and hydrodynamic conditions for a 20-kilometer reach of the Sandy River. The transport of non-uniform sediment and three-dimensional flow effects are included in the model. Output parameters such as flow depth, velocity and substrate are processed to evaluate habitat quality in the year following the Marmot Dam removal. Impacts are evaluated across four life-stages of Chinook salmon. As a hindcast analysis, the morphodynamic model sufficiently reproduces the evolution of river morphology at the reach-scale while requiring only a low level of calibration. The model performs well in predicting impacts to fish passage, but carries more uncertainty for developing life stages. By coupling flow-sediment-biota interactions, this method shows strong potential for habitat assessment in unsteady and non-uniform environments. Computation time is a primary constraint, as it limits grid-cell resolution, modelling of suspended sediment and capacity to characterize the sediment grain size distribution. Research on the effects of suspended sediment on habitat quality is ongoing, and further research is recommended for modelling reservoir erosion processes numerically.

  6. Estuarine chinook capacity - Estimating changes in juvenile Chinook rearing area and carrying capacity in estuarine and freshwater habitats of the Puget Sound region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project has two objectives: 1. Estimate the amount of rearing habitat available to juvenile Chinook salmon currently and historically (i.e., ~1850s) throughout...

  7. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry; Tezak, E.; Endicott, Rick

    2002-08-01

    The efficacy of captive broodstock programs depends on high in-culture survival and the fitness of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. The following summarizes some of the work performed and results from the FY 2001 performance period: (1) The incidence of male maturation of age-1 chinook salmon was significantly reduced by reducing growth in the first year of rearing. (2) Experimentally manipulated growth rates of captively-reared coho salmon had significant effects on female maturation rate, egg size, and fecundity, and the effects were stage-specific (i.e., pre-smolt vs. post-smolt). (3) A combination of Renogen and MT239 vaccination of yearling chinook salmon given an acute R. salmoninarum challenge had a significantly longer survival time than the mock-vaccinated group. The survival time was marginally higher than was seen in acutely challenged fish vaccinated with either Renogen or MT239 alone and suggests that a combination vaccine of Renogen and MT239 may be useful as both a prophylactic and therapeutic agent against BKD. (4) Full-sib (inbred) groups of chinook salmon have thus far exhibited lower ocean survival than half-sib and non-related groups. Effects of inbreeding on fluctuating asymmetry did not follow expected patterns. (5) Sockeye salmon were exposed to specific odorants at either the alevin/emergent fry stage or the smolt stage to determine the relative importance of odorant exposure during key developmental periods and the importance of exposure duration. (6) Experimental studies to determine the effects of exercise conditioning on steelhead reproductive behavior and the effects of male body size on chinook salmon fertilization success during natural spawning were completed.

  8. Salmon and steelhead genetics and genomics - Epigenetic and genomic variation in salmon and steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct analyses of epigenetic and genomic variation in Chinook salmon and steelhead to determine influence on phenotypic expression of life history traits. Genetic,...

  9. Physiological Assessment and Behavioral Interaction of Wild and Hatchery Juvenile Salmonids : The Relationship of Fish Size and Growth to Smoltification in Spring Chinook Salmon.

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, Brian R.; Larsen, Donald A.; Lee-Pawlak, Beeda; Dickhoff, Walton W.

    1996-10-01

    Experiments were performed to determine the relative influence of size and growth rate on downstream migratory disposition and physiology in yearling spring chinook salmon (Oncorhynchus tshawtscha) smolts. A group of juvenile chinook salmon was size graded into small and large categories with half the fish in each group reared at an elevated temperature, resulting in four distinct treatment groups: Large Warm (LW), Large Cool (LC), Small Warm (SW), and Small Cool (SC). Fish from warm-water treatment groups displayed significantly higher growth rates than cool-water groups. Fish were tagged and released into a natural creek where downstream movement was monitored. For each of the two releases, fish that migrated past a weir within the first 5 days postrelease had significantly higher spring growth rates than fish that did not migrate within that period. Significant differences in length for the same fish were only found in the second release. Also for the second release, fish from the warm water treatment groups were recovered in higher proportions than fish from cool water groups. The results indicate that increased growth rate in the spring has a positive relation to downstream migratory disposition. Furthermore, there is a relation between smolt size and migration; however, this relation is weaker than that found between growth rate and migration.

  10. Indirect effects of impoundment on migrating fish: temperature gradients in fish ladders slow dam passage by adult Chinook salmon and steelhead.

    Directory of Open Access Journals (Sweden)

    Christopher C Caudill

    Full Text Available Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp. often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T at four dams over four years. Some spring Chinook salmon (O. tshawytscha experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species.

  11. Distribution of FMRFamide-like immunoreactivity in the brain, retina and nervus terminalis of the sockeye salmon parr, Oncorhynchus nerka.

    Science.gov (United States)

    Ostholm, T; Ekström, P; Ebbesson, S O

    1990-09-01

    Neurons displaying FMRFamide(Phe - Met - Arg - Phe - NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously.

  12. Integrated Status and Effectiveness Monitoring Program Population Estimates for Juvenile Salmonids in Nason Creek, WA ; 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Matthew; Murdoch, Keely [Yakama Nation Fisheries Resource Management

    2009-07-20

    This report summarizes juvenile coho, spring Chinook, and steelhead salmon migration data collected at a 1.5m diameter cone rotary fish trap on Nason Creek during 2008; providing abundance and freshwater productivity estimates. We used species enumeration at the trap and efficiency trials to describe emigration timing and to estimate the number of emigrants. Trapping began on March 2, 2008 and was suspended on December 11, 2008 when snow and ice accumulation prevented operation. During 2008, 0 brood year (BY) 2006 coho, 1 BY2007 coho, 906 BY2006 spring Chinook, 323 BY2007 fry Chinook, 2,077 BY2007 subyearling Chinook, 169 steelhead smolts, 414 steelhead fry and 2,390 steelhead parr were trapped. Mark-recapture trap efficiency trials were performed over a range of stream discharge stages. A total of 2,639 spring Chinook, 2,154 steelhead and 12 bull trout were implanted with Passive Integrated Transponder (PIT) tags. Most PIT tagged fish were used for trap efficiency trials. We were unable to identify a statistically significant relationship between stream discharge and trap efficiency, thus, pooled efficiency estimates specific to species and trap size/position were used to estimate the number of fish emigrating past the trap. We estimate that 5,259 ({+-} 359; 95% CI) BY2006 Chinook, 16,816 ({+-} 731; 95% CI) BY2007 Chinook, and 47,868 ({+-} 3,780; 95% CI) steelhead parr and smolts emigrated from Nason Creek in 2008.

  13. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, Paul A. [Nez Perce Tribe Department of Fisheries Resources Management

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical

  14. Evidence for density-dependent changes in growth, downstream movement, and size of Chinook salmon subyearlings in a large-river landscape

    Science.gov (United States)

    Connor, William P.; Tiffan, Kenneth F.; Plumb, John M.; Moffit, Christine M.

    2013-01-01

    We studied the growth rate, downstream movement, and size of naturally produced fall Chinook Salmon Oncorhynchus tshawytscha subyearlings (age 0) for 20 years in an 8th-order river landscape with regulated riverine upstream rearing areas and an impounded downstream migration corridor. The population transitioned from low to high abundance in association with U.S. Endangered Species Act and other federally mandated recovery efforts. The mean growth rate of parr in the river did not decline with increasing abundance, but during the period of higher abundance the timing of dispersal from riverine habitat into the reservoir averaged 17 d earlier and the average size at the time of downstream dispersal was smaller by 10 mm and 1.8 g. Changes in apparent abundance, measured by catch per unit effort, largely explained the time of dispersal, measured by median day of capture, in riverine habitat. The growth rate of smolts in the reservoir declined from an average of 0.6 to 0.2 g/d between the abundance periods because the reduction in size at reservoir entry was accompanied by a tendency to migrate rather than linger and by increasing concentrations of smolts in the reservoir. The median date of passage through the reservoir was 14 d earlier on average, and average smolt size was smaller by 38 mm and 22.0 g, in accordance with density-dependent behavioral changes reflected by decreased smolt growth. Unexpectedly, smolts during the high-abundance period had begun to reexpress the migration timing and size phenotypes observed before the river was impounded, when abundance was relatively high. Our findings provide evidence for density-dependent phenotypic change in a large river that was influenced by the expansion of a recovery program. Thus, this study shows that efforts to recover native fishes can have detectable effects in large-river landscapes. The outcome of such phenotypic change, which will be an important area of future research, can only be fully judged by

  15. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin : Annual Report 2000 : Project Period 1 October 1999 to 30 November 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Monzyk, Fred R.

    2002-06-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring.

  16. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    Science.gov (United States)

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  17. Conservation of Native Fishes of the San Francisco Estuary: Considerations for Artificial Propagation of Chinook Salmon, Delta Smelt, and Green Sturgeon

    Directory of Open Access Journals (Sweden)

    Joshua A. Israel

    2011-04-01

    Full Text Available Many native fishes in the San Francisco Estuary and its watersheds have reached all-time low abundances. Some of these declining species (e.g., Chinook salmon Oncorhynchus tschawytscha have been under artificial propagation for decades. For others (e.g., delta smelt, Hypomesus transpacificus, and green sturgeon, Acipenser medirostris, this management option is just beginning to be discussed and implemented. Propagation strategies, in which organisms spend some portion of their lives in captivity, pose well-documented genetic and ecological threats to natural populations. Negative impacts of propagation have been documented for all Central Valley Chinook salmon runs, but limited efforts have been made to adapt hatchery operations to minimize the genetic and ecological threats caused by propagated fishes. A delta smelt propagation program is undergoing intensive design and review for operations and monitoring. However, if limiting factors facing this species in its estuarine habitat are not effectively addressed, captive propagation may not be a useful conservation approach, regardless of how carefully the propagation activity is designed or monitored. Scientifically defensible, ecologically based restoration programs that include monitoring and research aimed at quantifying natural population vital rates should be fully implemented before there is any attempt to supplement natural populations of delta smelt. Green sturgeon are also likely to face risks from artificial propagation if a large–scale program is implemented before this species’ limiting factors are better understood. In each of these cases, restoring habitats, and reducing loss from human actions, are likely to be the best strategy for rebuilding and supporting self–sustaining populations.

  18. Effects of ovarian fluid and genetic differences on sperm performance and fertilization success of alternative reproductive tactics in Chinook salmon.

    Science.gov (United States)

    Lehnert, S J; Butts, I A E; Flannery, E W; Peters, K M; Heath, D D; Pitcher, T E

    2017-06-01

    In many species, sperm velocity affects variation in the outcome of male competitive fertilization success. In fishes, ovarian fluid (OF) released with the eggs can increase male sperm velocity and potentially facilitate cryptic female choice for males of specific phenotypes and/or genotypes. Therefore, to investigate the effect of OF on fertilization success, we measured sperm velocity and conducted in vitro competitive fertilizations with paired Chinook salmon (Oncorhynchus tshawytscha) males representing two alternative reproductive tactics, jacks (small sneaker males) and hooknoses (large guarding males), in the presence of river water alone and OF mixed with river water. To determine the effect of genetic differences on fertilization success, we genotyped fish at neutral (microsatellites) and functional [major histocompatibility complex (MHC) II ß1] markers. We found that when sperm were competed in river water, jacks sired significantly more offspring than hooknoses; however, in OF, there was no difference in paternity between the tactics. Sperm velocity was significantly correlated with paternity success in river water, but not in ovarian fluid. Paternity success in OF, but not in river water alone, was correlated with genetic relatedness between male and female, where males that were less related to the female attained greater paternity. We found no relationship between MHC II ß1 divergence between mates and paternity success in water or OF. Our results indicate that OF can influence the outcome of sperm competition in Chinook salmon, where OF provides both male tactics with fertilization opportunities, which may in part explain what maintains both tactics in nature. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  19. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  20. Size, growth, and size‐selective mortality of subyearling Chinook Salmon during early marine residence in Puget Sound

    Science.gov (United States)

    Gamble, Madilyn M.; Connelly, Kristin A.; Gardner, Jennifer R.; Chamberlin, Joshua W.; Warheit, Kenneth I.; Beauchamp, David A.

    2018-01-01

    In marine ecosystems, survival can be heavily influenced by size‐selective mortality during juvenile life stages. Understanding how and when size‐selective mortality operates on a population can reveal underlying growth dynamics and size‐selective ecological processes affecting the population and thus can be used to guide conservation efforts. For subyearling Chinook Salmon Oncorhynchus tshawytscha in Puget Sound, previous research reported a strong positive relationship between marine survival and body mass during midsummer in epipelagic habitats within Puget Sound, suggesting that early marine growth drives survival. However, a fine‐scale analysis of size‐selective mortality is needed to identify specific critical growth periods and habitats. The objectives of this study were to (1) describe occupancy patterns across estuarine delta, nearshore marine, and offshore epipelagic habitats in Puget Sound; (2) describe changes in FL and weight observed across habitats and time; (3) evaluate evidence for size‐selective mortality; and (4) illustrate how marine survival of the stocks studied may be affected by variation in July weight. In 2014 and 2015, we sampled FLs, weights, and scales from seven hatchery‐origin and two natural‐origin stocks of subyearling Chinook Salmon captured every 2 weeks during out‐migration and rearing in estuary, nearshore, and offshore habitats within Puget Sound. Natural‐origin stocks had more protracted habitat occupancy patterns than hatchery‐origin stocks and were smaller than hatchery‐origin stocks in both years. Regardless of origin, subyearlings were longer and heavier and grew faster in offshore habitats compared to estuary and nearshore habitats. For all stocks, we found little evidence of size‐selective mortality among habitats in Puget Sound. These patterns were consistent in both years. Finally, the weights of subyearlings sampled during July in the offshore habitat predicted Puget Sound‐wide marine

  1. Investigations into the early life history of naturally produced spring chinook salmon and summer steelhead in the Grande Ronde River Basin : annual report 2000 : project period 1 October 1999 to 30 November 2000.; ANNUAL

    International Nuclear Information System (INIS)

    Monzyk, Fred R.; United States. Bonneville Power Administration. Environment, Fish and Wildlife.

    2002-01-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring

  2. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha from Diverse Genetic Stocks and a Large Spatial Extent.

    Directory of Open Access Journals (Sweden)

    Pascale A L Goertler

    Full Text Available Life history variation in Pacific salmon (Oncorhynchus spp. supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha from the Columbia River estuary over a two-year period (2010-2012. We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity.

  3. Food and feeding of juvenile chinook salmon in the central Columbia River in relation to thermal discharges and other environmental features

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.D. [Pacific Northwest Labs., Richland, WA (United States). Ecosystems Dept.

    1970-08-01

    The relationship of thermal discharges from operating Hanford reactors to food and feeding of juvenile chinook salmon (Oncorhynchus tshawytscha) in the central Columbia River, Washington was studied in 1968 and 1969. The primary objectives were to (1) evaluate the food composition and feeding activities of the fish and (2) determine if heated effluents influenced their welfare. Environmental conditions (seasonal changes in river temperatures and flow volumes) in relation to thermal requirements of young chinook are detailed. Data on food organisms utilized by the fish in 1968 and 1969 are presented, whereas analyses for possible thermal effects are based on the more extensive 1969 data. No consistent differences attributable to thermal increments were evident. The lack of detectable effects apparently results from the fact that the main discharge plumes occur in midriver and the effluents are well mixed before reaching inshore feeding areas. The transient nature of fish at each sampling site and the availability of food organisms in the river drift are ecological factors affecting critical thermal evaluation.

  4. How coarse is too coarse for salmon spawning substrates?

    Science.gov (United States)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.; Overstreet, B. T.

    2009-12-01

    Populations of Pacific salmon species have declined sharply in many rivers of the western US. Reversing these declines is a top priority and expense of many river restoration projects. To help restore salmon populations, managers often inject gravel into rivers, to supplement spawning habitat that has been depleted by gravel mining and the effects of dams—which block sediment and thus impair habitat downstream by coarsening the bed where salmon historically spawned. However, there is little quantitative understanding nor a methodology for determining when a river bed has become too coarse for salmon spawning. Hence there is little scientific basis for selecting sites that would optimize the restoration benefits of gravel injection (e.g., sites where flow velocities are suitable but bed materials are too coarse for spawning). To develop a quantitative understanding of what makes river beds too coarse for salmon spawning, we studied redds and spawning use in a series of California and Washington rivers where salmon spawning ability appears to be affected by coarse bed material. Our working hypothesis is that for a given flow condition, there is a maximum “threshold” particle size that a salmon of a given size is able to excavate and/or move as she builds her redd. A second, related hypothesis is that spawning use should decrease and eventually become impossible with increasing percent coverage by immovable particles. To test these hypotheses, we quantified the sizes and spatial distributions of immovably coarse particles in a series of salmon redds in each river during the peak of spawning. We also quantified spawning use and how it relates to percent coverage by immovable particles. Results from our studies of fall-run chinook salmon (Oncorhynchus tshawytsha) in the Feather River suggest that immovable particle size varies as a function of flow velocity over the redd, implying that faster water helps fish move bigger particles. Our Feather River study also

  5. Research on Captive Broodstock Technology for Pacific Salmon, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Penny; Pascho, Ronald; Hershberger, William K. (Northwest and Alaska Fisheries Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

    1996-01-01

    This report summarizes research on captive broodstock technologies conducted during 1995 under Bonneville Power Administration Project 93-56. Investigations were conducted by the National Marine Fisheries Service (NMFS) in cooperation with the US Fish and Wildlife Service, University of Washington, and Northwest Biological Science Center (US Geological Survey). Studies encompassed several categories of research, including fish husbandry, reproductive physiology, immunology, pathology, nutrition, and genetics. Captive broodstock programs are being developed and implemented to aid recovery of endangered Pacific salmon stocks. Like salmon hatchery programs, however, captive broodstock programs are not without problems and risks to natural salmon populations. The research projects described in this report were developed in part based on a literature review, Assessment of the Status of Captive Broodstock Technology for Pacific Salmon. The work was divided into three major research areas: (1) research on sockeye salmon; (2) research on spring chinook salmon; and (3) research on quantitative genetic problems associated with captive broodstock programs. Investigations of nutrition, reproductive physiology, fish husbandry, and fish health were integrated into the research on sockeye and spring chinook salmon. A description of each investigation and its major findings and conclusions is presented.

  6. Trophic ontogeny of fluvial Bull Trout and seasonal predation on Pacific Salmon in a riverine food web

    Science.gov (United States)

    Lowery, Erin D.; Beauchamp, David A.

    2015-01-01

    Bull Trout Salvelinus confluentus are typically top predators in their host ecosystems. The Skagit River in northwestern Washington State contains Bull Trout and Chinook Salmon Oncorhynchus tshawytschapopulations that are among the largest in the Puget Sound region and also contains a regionally large population of steelhead O. mykiss (anadromous Rainbow Trout). All three species are listed as threatened under the Endangered Species Act (ESA). Our objective was to determine the trophic ecology of Bull Trout, especially their role as predators and consumers in the riverine food web. We seasonally sampled distribution, diets, and growth of Bull Trout in main-stem and tributary habitats during 2007 and winter–spring 2008. Consumption rates were estimated with a bioenergetics model to (1) determine the annual and seasonal contributions of different prey types to Bull Trout energy budgets and (2) estimate the potential impacts of Bull Trout predation on juvenile Pacific salmon populations. Salmon carcasses and eggs contributed approximately 50% of the annual energy budget for large Bull Trout in main-stem habitats, whereas those prey types were largely inaccessible to smaller Bull Trout in tributary habitats. The remaining 50% of the energy budget was acquired by eating juvenile salmon, resident fishes, and immature aquatic insects. Predation on listed Chinook Salmon and steelhead/Rainbow Trout was highest during winter and spring (January–June). Predation on juvenile salmon differed between the two study years, likely due to the dominant odd-year spawning cycle for Pink Salmon O. gorbuscha. The population impact on ocean- and stream-type Chinook Salmon was negligible, whereas the impact on steelhead/Rainbow Trout was potentially very high. Due to the ESA-listed status of Bull Trout, steelhead, and Chinook Salmon, the complex trophic interactions in this drainage provide both challenges and opportunities for creative adaptive management strategies.

  7. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

    2002-08-30

    This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of

  8. Juvenile salmon usage of the Skeena River estuary.

    Science.gov (United States)

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  9. Evidence for an autumn downstream migration of Atlantic salmon Salmo salar (Linnaeus) and brown trout Salmo trutta (Linnaeus) parr to the Baltic Sea

    Science.gov (United States)

    Taal, Imre; Kesler, Martin; Saks, Lauri; Rohtla, Mehis; Verliin, Aare; Svirgsden, Roland; Jürgens, Kristiina; Vetemaa, Markus; Saat, Toomas

    2014-06-01

    In the eastern Baltic rivers, anadromous salmonid parr are known to smoltify and migrate to the sea from March until June, depending on latitude, climate and hydrological conditions. In this study, we present the first records of autumn descent of brown trout Salmo trutta and Atlantic salmon Salmo salar from the Baltic Sea Basin. Otolith microchemistry analyses revealed that these individuals hatched in freshwater and had migrated to the brackish water shortly prior to capture. The fish were collected in 2006, 2008, 2009 and 2013 from Eru Bay (surface salinity 4.5-6.5 ‰), Gulf of Finland. This relatively wide temporal range of observations indicates that the autumn descent of anadromous salmonids is not a random event. These results imply that autumn descent needs more consideration in the context of the effective stock management, assessment and restoration of Baltic salmonid populations and their habitats.

  10. Using cure models for analyzing the influence of pathogens on salmon survival

    Science.gov (United States)

    Ray, Adam R; Perry, Russell W.; Som, Nicholas A.; Bartholomew, Jerri L

    2014-01-01

    Parasites and pathogens influence the size and stability of wildlife populations, yet many population models ignore the population-level effects of pathogens. Standard survival analysis methods (e.g., accelerated failure time models) are used to assess how survival rates are influenced by disease. However, they assume that each individual is equally susceptible and will eventually experience the event of interest; this assumption is not typically satisfied with regard to pathogens of wildlife populations. In contrast, mixture cure models, which comprise logistic regression and survival analysis components, allow for different covariates to be entered into each part of the model and provide better predictions of survival when a fraction of the population is expected to survive a disease outbreak. We fitted mixture cure models to the host–pathogen dynamics of Chinook Salmon Oncorhynchus tshawytscha and Coho Salmon O. kisutch and the myxozoan parasite Ceratomyxa shasta. Total parasite concentration, water temperature, and discharge were used as covariates to predict the observed parasite-induced mortality in juvenile salmonids collected as part of a long-term monitoring program in the Klamath River, California. The mixture cure models predicted the observed total mortality well, but some of the variability in observed mortality rates was not captured by the models. Parasite concentration and water temperature were positively associated with total mortality and the mortality rate of both Chinook Salmon and Coho Salmon. Discharge was positively associated with total mortality for both species but only affected the mortality rate for Coho Salmon. The mixture cure models provide insights into how daily survival rates change over time in Chinook Salmon and Coho Salmon after they become infected with C. shasta.

  11. Canada-USA Salmon Shelf Survival Study, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Trudel, Marc; Tucker, Strahan; Morris, John

    2009-03-09

    nutrient concentration that year. This suggests nutrients were more effectively by phytoplankton in FY08. In addition, the abundance of lipid-rich northern copepods increased from FY05 to FY08, whereas lipid-poor southern copepods showed the opposite pattern, suggesting that growth conditions were more favorable to juvenile salmon in FY08 than in previous years. However, growth indices for juvenile coho salmon were near the 1998-2008 average, both off the west coast of Vancouver Island and Southeast Alaska, indicating that additional factors beside prey quality affect juvenile salmon growth in the marine environment. Catches of juvenile Chinook, sockeye and chum salmon off the west coast of Vancouver Island in June-July 2008 were the highest on record during summer since 1998, suggesting that early marine survival for the 2008 smolt year was high. Interestingly, the proportion of hatchery fish was high (80-100%) among the juvenile Columbia River Chinook salmon caught off the British Columbia coast during summer, suggest that relatively few wild Chinook salmon are produced in the Columbia River Chinook. In addition, we also recovered two coded-wire tagged juvenile Redfish Lake sockeye salmon in June 2008 off the west coast of British Columbia. As relatively few Redfish Lake sockeye smolts are tagged each year, this also suggests that early marine survival was high for these fish, and may result in a high return in 2009 if they mature at age three, or in 2010 if they mature at age four. To date, our research shows that different populations of Columbia River salmon move to different locations along the coastal zone where they establish their ocean feeding grounds and overwinter. We further show that ocean conditions experienced by juvenile Columbia River salmon vary among regions of the coast, with higher plankton productivity and temperatures off the west coast of Vancouver Island than in Southeast Alaska. Hence, different stocks of juvenile salmon originating from the

  12. Replacement of dietary soy- with air classified faba bean protein concentrate alters the hepatic transcriptome in Atlantic salmon (Salmo salar) parr.

    Science.gov (United States)

    De Santis, Christian; Crampton, Viv O; Bicskei, Beatrix; Tocher, Douglas R

    2015-12-01

    The production of carnivorous fish such as Atlantic salmon (Salmo salar) is dependent on the availability of high quality proteins for feed formulations. For a number of nutritional, strategic and economic reasons, the use of plant proteins has steadily increased over the years, however a major limitation is associated with the presence of anti-nutritional factors and the nutritional profile of the protein concentrate. Investigating novel raw materials involves understanding the physiological consequences associated with the dietary inclusion of protein concentrates. The primary aim of the present study was to assess the metabolic response of salmon to increasing inclusion of air-classified faba bean protein concentrate (BPC) in feeds as a replacement for soy protein concentrate (SPC). Specifically, we tested treatments with identical contents of fishmeal (222.4gkg(-1)) and progressively higher inclusion of BPC (0gkg(-1), 111.8gkg(-1), 223.6gkg(-1), 335.4gkg(-1), 447.2gkg(-1)) substituting SPC. This study demonstrated a dose-dependent metabolic response to a plant ingredient and was the first to compare the nutrigenomic transcriptional responses after substitution of terrestrial feed ingredients such as BPC and SPC without withdrawal of marine ingredients. It was found that after eight weeks a major physiological response in liver was only evident above 335.4gkg(-1) BPC and included decreased expression of metabolic pathways, and increased expression of genes regulating transcription and translation processes and the innate immune response. Furthermore, we showed that the nutritional stress caused by BPC resembled, at least at hepatic transcriptional level, that caused by soybean meal (included as a positive control in our experimental design). The outcomes of the present study suggested that Atlantic salmon parr might efficiently utilize moderate substitution of dietary SPC with BPC, with the optimum inclusion level being around 120gkg(-1)in the type of feeds

  13. Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics

    International Nuclear Information System (INIS)

    Viant, Mark R.; Pincetich, Christopher A.; Tjeerdema, Ronald S.

    2006-01-01

    Pesticide pulses in the Sacramento River, California, originate from storm-water discharges and non-point source aquatic pollution that can last from a few days to weeks. The Sacramento River and its tributaries have historically supported the majority of California's Chinook salmon (Oncorhynchus tshawytscha) spawning grounds. Three pesticides currently used in the Sacramento Valley - dinoseb, diazinon, and esfenvalerate - were chosen to model the exposure of salmon embryos to storm-water discharges. Static-renewal (96 h) exposures to eyed eggs and alevins resulted in both toxicity and significant changes in metabolism assessed in whole-embryo extracts by 1 H nuclear magnetic resonance (NMR) spectroscopy based metabolomics and HPLC with UV detection (HPLC-UV). The 96-h LC 5 values of eyed eggs and alevins exposed to dinoseb were 335 and 70.6 ppb, respectively, and the corresponding values for diazinon were 545 and 29.5 ppm for eyed eggs and alevins, respectively. The 96-h LC 5 of eyed eggs exposed to esfenvalerate could not be determined due to lack of mortality at the highest exposure concentration, but in alevins was 16.7 ppb. All esfenvalerate exposed alevins developed some degree of lordosis or myoskeletal abnormality and did not respond to stimulus or exhibit normal swimming behavior. ATP concentrations measured by HPLC-UV decreased significantly in eyed eggs due to 250 ppb dinoseb and 10 and 100 ppb esfenvalerate (p 1 H NMR metabolite fingerprints of eyed egg and alevin extracts revealed both dose-dependent and mechanism of action-specific metabolic effects induced by the pesticides. Furthermore, NMR based metabolomics proved to be more sensitive than HPLC-UV in identifying significant changes in sublethal metabolism of pesticide exposed alevins. In conclusion, we have demonstrated several benefits of a metabolomics approach for chemical risk assessment, when used in conjunction with a fish embryo assay, and have identified significant metabolic perturbations

  14. A test for the relative strength of maternal and stock effects in spring Chinook salmon (Oncorhynchus tshawytscha) from two different hatcheries (Study site: Warm Springs Hatchery; Stocks: Warm Springs Hatchery and Carson Hatchery; Year class: 1993): Chapter 10

    Science.gov (United States)

    Wetzel, Lisa A.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Stenberg, Karl D.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    An experiment was undertaken to determine the relative strength of maternal and stock effects in Chinook salmon (Oncorhynchus tshawytscha) reared in a common environment, as a companion study to our investigation of hatchery and wild Chinook salmon. Pure-strain and reciprocal crosses were made between two hatchery stocks (Carson and Warm Springs National Fish Hatcheries). The offspring were reared together in one of the hatcheries to the smolt stage, and then were transferred to a seawater rearing facility (USGS-Marrowstone Field Station). Differences in survival, growth and disease prevalence were assessed. Fish with Carson parentage grew to greater size at the hatchery and in seawater than the pure-strain Warm Springs fish, but showed higher mortality at introduction to seawater. The analyses of maternal and stock effects were inconclusive, but the theoretical responses to different combinations of maternal and stock effects may be useful in interpreting stock comparison studies.

  15. Genetic effects of ELISA-based segregation for control of bacterial kidney disease in Chinook salmon (Oncorhynchus tshawytscha)

    Science.gov (United States)

    Hard, J.J.; Elliott, D.G.; Pascho, R.J.; Chase, D.M.; Park, L.K.; Winton, J.R.; Campton, D.E.

    2006-01-01

    We evaluated genetic variation in ability of Chinook salmon (Oncorhynchus tshawytscha) to resist two bacterial pathogens: Renibacterium salmoninarum, the agent of bacterial kidney disease (BKD), and Listonella anguillarum, an agent of vibriosis. After measuring R. salmoninarum antigen in 499 adults by enzyme-linked immunosorbent assay (ELISA), we mated each of 12 males with high or low antigen levels to two females with low to moderate levels and exposed subsets of their progeny to each pathogen separately. We found no correlation between R. salmoninarum antigen level in parents and survival of their progeny following pathogen exposure. We estimated high heritability for resistance to R. salmoninarum (survival h2 = 0.890 ?? 0.256 (mean ?? standard error)) independent of parental antigen level, but low heritability for resistance to L. anguillarum (h2 = 0.128 ?? 0.078). The genetic correlation between these survivals (rA = -0.204 ?? 0.309) was near zero. The genetic and phenotypic correlations between survival and antigen levels among surviving progeny exposed to R. salmoninarum were both negative (rA = -0.716 ?? 0.140; rP = -0.378 ?? 0.041), indicating that variation in antigen level is linked to survival. These results suggest that selective culling of female broodstock with high antigen titers, which is effective in controlling BKD in salmon hatcheries, will not affect resistance of their progeny. ?? 2006 NRC.

  16. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-01-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  17. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-10-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  18. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at John Day Dam, Spring 2010

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

    2012-11-15

    The purpose of this study was to compare dam passage survival, at two spill treatment levels, of yearling Chinook salmon and steelhead smolts at John Day Dam during spring 2010. The two treatments were 30% and 40% spill out of total project discharge. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated forebay residence time, tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. However, by agreement among the stakeholders, this study was not an official BiOp compliance test because the long-term passage measures at John Day Dam have yet to be finalized and another year of spill-treatment testing was desired.

  19. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    Science.gov (United States)

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (spoils to create shallow water habitat, (2) provide evidence for shallow water habitat use by natural subyearlings, (3) provide evidence against large-scale use of shallow water habitat by reservoir-type juveniles, (4) suggest that the depth criterion for defining shallow water habitat (i.e., food web, and intra-specific competition would help to better inform the long-term management plan.

  20. Performance Assessment of Bi-Directional Knotless Tissue-Closure Device in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2010 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, Christa M.; Bryson, Amanda J.; Carpenter, Scott M.; Knox, Kasey M.; Gay, Marybeth E.; Wagner, Katie A.

    2012-09-10

    In 2010, researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) conducted a compliance monitoring study—the Lower Columbia River Acoustic Transmitter Investigations of Dam Passage Survival and Associated Metrics 2010 (Carlson et al. in preparation)—for the U.S. Army Corps of Engineers (USACE), Portland District. The purpose of the compliance study was to evaluate juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passage routes and survival through the lower three Columbia River hydroelectric facilities as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp; NOAA Fisheries 2008) and the Columbia Basin Fish Accords (Fish Accords; 3 Treaty Tribes and Action Agencies 2008).

  1. Response of ecosystem metabolism to low densities of spawning Chinook Salmon

    Science.gov (United States)

    Joseph R. Benjamin; J. Ryan Bellmore; Grace A. Watson

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to salmon runs. We explored whether low densities...

  2. Acoustic Telemetry Studies of Juvenile Chinook Salmon Survival at the Lower Columbia Projects in 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Zimmerman, Shon A.; Durham, Robin E.; Fischer, Eric S.; Kim, Jina; Townsend, Richard L.; Skalski, John R.; McComas, Roy L.

    2008-02-01

    The Portland District of the U.S. Army Corps of Engineers contracted with the Pacific Northwest National Laboratory (PNNL) to conduct three studies using acoustic telemetry to estimate detection probabilities and survival of juvenile Chinook salmon at three hydropower projects on the lower Columbia River. The primary goals were to estimate detection and survival probabilities based on sampling with JSATS equipment, assess the feasibility of using JSATS for survival studies, and estimate sample sizes needed to obtain a desired level of precision in future studies. The 2006 JSATS arrays usually performed as well or better than radio telemetry arrays in the JDA and TDA tailwaters, and underperformed radio arrays in the BON tailwater, particularly in spring. Most of the probabilities of detection on at least one of all arrays in a tailwater exceeded 80% for each method, which was sufficient to provide confidence in survival estimates. The probability of detection on one of three arrays includes survival and detection probabilities because fish may die or pass all three arrays undetected but alive.

  3. Salinity effects on plasma ion levels, cortisol, and osmolality in Chinook salmon following lethal sampling.

    Science.gov (United States)

    Stewart, Heather A; Noakes, David L G; Cogliati, Karen M; Peterson, James T; Iversen, Martin H; Schreck, Carl B

    2016-02-01

    Studies on hydromineral balance in fishes frequently employ measurements of electrolytes following euthanasia. We tested the effects of fresh- or salt-water euthanasia baths of tricaine mesylate (MS-222) on plasma magnesium (Mg(2+)) and sodium (Na(+)) ions, cortisol and osmolality in fish exposed to saltwater challenges, and the ion and steroid hormone fluctuations over time following euthanasia in juvenile spring Chinook salmon (Oncorhynchus tshawytscha). Salinity of the euthanasia bath affected plasma Mg(2+) and Na(+) concentrations as well as osmolality, with higher concentrations in fish euthanized in saltwater. Time spent in the bath positively affected plasma Mg(2+) and osmolality, negatively affected cortisol, and had no effect on Na(+) concentrations. The difference of temporal trends in plasma Mg(2+) and Na(+) suggests that Mg(2+) may be more sensitive to physiological changes and responds more rapidly than Na(+). When electrolytes and cortisol are measured as endpoints after euthanasia, care needs to be taken relative to time after death and the salinity of the euthanasia bath. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Investigations of bull trout (Salvelinus confluentus), steelhead trout (Oncorhynchus mykiss), and spring chinook salmon (O. tshawytscha) interactions in Southeast Washington streams. Final report 1992

    International Nuclear Information System (INIS)

    Underwood, K.D.; Martin, S.W.; Schuck, M.L.; Scholz, A.T.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed

  5. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams. Final Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Keith D.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed.

  6. Exposure of Atlantic salmon parr (Salmo salar) to a combination of resin acids and a water soluble fraction of diesel fuel oil: A model to investigate the chemical causes of pigmented salmon syndrome

    International Nuclear Information System (INIS)

    Croce, B.; Scottish Environmental Protection Agency, Aberdeen; Stagg, R.M.

    1997-01-01

    Pigmented salmon syndrome is a pollutant-induced hemolytic anemia and hyperbilirubinemia. As part of an investigation of this condition, S2 Atlantic salmon parr (Salmo salar) were exposed to a diesel fuel oil, water soluble fraction (WSF) in combination with a mixture of three resin acids (isopimaric, dehydroabietic, and abietic acids) in a continuous-flow freshwater system. The total nominal concentrations of resin acids in the exposure tanks were 10, 50, and 100 microg/L; the diesel WSF was generated in situ and provided a mean hydrocarbon concentration of 2.0 ± 0.1 mg/L (n = 12) during the 9-d exposure period. Exposure to the diesel WSF alone depressed liver bilirubin UDP-glucuronosyl transferase (UDPGT) activity and induced phenol UDPGT activity. Exposure to the diesel WSF in the absence or presence of resin acids induced liver cytochrome P4501A and increased the concentrations in the plasma of the enzymes lactate dehydrogenase, alkaline phosphatase, and glutamic oxaloacetic transaminase. The combined exposure to diesel WSF with either 50 or 100 microg/L total resin acid caused significant elevations in the concentrations of bilirubin in the plasma and many of these fish had yellow pigmentation on the ventral surface and around the gill arches. The results demonstrate that exposure to combinations of two groups of contaminants can result in the manifestation of toxic effects not apparent from exposure to either of these chemicals in isolation

  7. Biochemical and Physiological Responses in Atlantic Salmon (Salmo salar) Following Dietary Exposure to Copper and Cadmium

    International Nuclear Information System (INIS)

    Lundebye, A.-K.; Berntssen, M.H.G.; Bonga, S.E.Wendelaar; Maage, A.

    1999-01-01

    Three experiments were conducted with Atlantic salmon (Salmo salar) to assess the effects of dietary exposure to copper and cadmium. The results presented here provide an overview, details of each experiment will be published in full elsewhere. In the first experiment, salmon parr exposed for four weeks to 35 and 700 mg Cu kg -1 diet had significantly elevated intestinal copper concentrations, cell proliferation (PCNA) and apoptosis rates compared to control fish. No differences were observed in gill or plasma copper concentrations among the groups. In contrast to the controls, the Cu exposed groups did not grow significantly during the exposure period. The second experiment (three months exposure) was conducted to assess the effects of dietary copper (control, 35, 500, 700, 900 or 1750 mg Cu kg -1 diet) on growth and feed utilization in salmon fingerlings. Growth was significantly reduced after three months exposure to dietary Cu concentrations above 500 mg kg -1 . Similarly, copper body burdens were significantly higher in fish exposed to elevated dietary copper concentrations (above 35 mg Cu kg -1 diet). In the third experiment, salmon parr were exposed to one of six dietary cadmium concentrations (0, 0.5, 5, 25, 125 or 250 mg Cd kg -1 diet) for four months. Cadmium accumulated in the liver>intestine>gills of exposed fish. Rates of apoptosis and cell proliferation in the intestine increased following exposure to dietary cadmium. Exposure to elevated concentrations of dietary cadmium had no effect on growth in salmon parr. Results from these studies indicate that cellular biomarkers have potential as early warning signs of negative effects on the overall fitness of an organism

  8. Effects of salinity on trace elements in otoliths of Masu salmon

    International Nuclear Information System (INIS)

    Nagata, Yoshihisa; Arai, Nobuaki; Sakamoto, Wataru; Tago, Yasuhiko; Yoshida, Koji

    1997-01-01

    PIXE was adopted for analysis of trace elements in otoliths of Masu salmon Oncorhynchus masou masou to examine relationship between trace elements and environmental salinity. The otoliths were removed from salmon juveniles reared in four values of salinity and wild ones. The otolith Sr concentrations of reared individuals are positively related to salinity and there is significant difference between freshwater and seawater. The otoliths of smolts contain more Sr than those of parrs. It seems that the Sr concentrations in otoliths of Masu salmon reflect salinity where they had stayed and show the migration pattern. (author)

  9. The influence of hydrology and waterway distance on population structure of Chinook salmon Oncorhynchus tshawytscha in a large river.

    Science.gov (United States)

    Olsen, J B; Beacham, T D; Wetklo, M; Seeb, L W; Smith, C T; Flannery, B G; Wenburg, J K

    2010-04-01

    Adult Chinook salmon Oncorhynchus tshawytscha navigate in river systems using olfactory cues that may be influenced by hydrologic factors such as flow and the number, size and spatial distribution of tributaries. Thus, river hydrology may influence both homing success and the level of straying (gene flow), which in turn influences population structure. In this study, two methods of multivariate analysis were used to examine the extent to which four indicators of hydrology and waterway distance explained population structure of O. tshawytscha in the Yukon River. A partial Mantel test showed that the indicators of hydrology were positively associated with broad-scale (Yukon basin) population structure, when controlling for the influence of waterway distance. Multivariate multiple regression showed that waterway distance, supplemented with the number and flow of major drainage basins, explained more variation in broad-scale population structure than any single indicator. At an intermediate spatial scale, indicators of hydrology did not appear to influence population structure after accounting for waterway distance. These results suggest that habitat changes in the Yukon River, which alter hydrology, may influence the basin-wide pattern of population structure in O. tshawytscha. Further research is warranted on the role of hydrology in concert with waterway distance in influencing population structure in Pacific salmon.

  10. Surgically Implanted JSATS Micro-Acoustic Transmitters Effects on Juvenile Chinook Salmon and Steelhead Tag Expulsion and Survival, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, Christa M.; Carpenter, Scott M.; Carter, Kathleen M.; Wagner, Katie A.; Royer, Ida M.; Knox, Kasey M.; Kim, Jin A.; Gay, Marybeth E.; Weiland, Mark A.; Brown, Richard S.

    2011-09-16

    The purpose of this study was to evaluate survival model assumptions associated with a concurrent study - Acoustic Telemetry Evaluation of Dam Passage Survival and Associated Metrics at John Day, The Dalles, and Bonneville Dams, 2010 by Thomas Carlson and others in 2010 - in which the Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate the survival of yearling and subyearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) migrating through the Federal Columbia River Power System (FCRPS). The micro-acoustic transmitter used in these studies is the smallest acoustic transmitter model to date (12 mm long x 5 mm wide x 4 mm high, and weighing 0.43 g in air). This study and the 2010 study by Carlson and others were conducted by researchers from the Pacific Northwest National Laboratory and the University of Washington for the U.S. Army Corps of Engineers, Portland District, to meet requirements set forth by the 2008 FCRPS Biological Opinion. In 2010, we compared survival, tag burden, and tag expulsion in five spring groups of yearling Chinook salmon (YCH) and steelhead (STH) and five summer groups of subyearling Chinook salmon (SYC) to evaluate survival model assumptions described in the concurrent study. Each tagging group consisted of approximately 120 fish/species, which were collected and implanted on a weekly basis, yielding approximately 600 fish total/species. YCH and STH were collected and implanted from late April to late May (5 weeks) and SYC were collected and implanted from mid-June to mid-July (5 weeks) at the John Day Dam Smolt Monitoring Facility. The fish were collected once a week, separated by species, and assigned to one of three treatment groups: (1) Control (no surgical treatment), (2) Sham (surgical implantation of only a passive integrated transponder [PIT] tag), and (3) Tagged (surgical implantation of JSATS micro-acoustic transmitter [AT] and PIT tags). The test fish were held for 30 days in indoor

  11. Monitoring and evaluation plan for the Nez Perce Tribal Hatchery

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R.

    1996-08-01

    The Nez Perce Tribe has proposed to build and operate the Nez Perce Tribal Hatchery (NPTH) in the Clearwater River subbasin of Idaho for the purpose of restoring self-sustaining populations of spring, summer, and fall chinook salmon to their native habitats. The project comprises a combination of incubation and rearing facilities, satellite rearing facilities, juvenile and adult collection sites, and associated production and harvest management activities. As currently conceived, the NPTH program will produce approximately 768,000 spring chinook parr, 800,000 summer chinook fry, and 2,000,000 fall chinook fry on an annual basis. Hatchery fish would be spawned, reared, and released under conditions that promote wild-type characteristics, minimize genetic changes in both hatchery and wild chinook populations, and minimize undesirable ecological interactions. The primary objective is to enable hatchery-produced fish to return to reproduce naturally in the streams in which they are released. These and other characteristics of the project are described in further detail in the Nez Perce Tribal Hatchery Master Plan, the 1995 Supplement to the Master Plan, and the Nez Perce Tribal Hatchery Program Environmental Impact Statement. The report in hand is referred to in project literature as the NPTH Monitoring and Evaluation (M&E) Plan. This report describes monitoring and evaluation activities that will help NPTH managers determine whether they were successful in restoring chinook salmon populations and avoiding adverse ecological impacts.

  12. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

  13. Performance of salmon fishery portfolios across western North America

    Science.gov (United States)

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-01-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications. Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  14. Performance of salmon fishery portfolios across western North America.

    Science.gov (United States)

    Griffiths, Jennifer R; Schindler, Daniel E; Armstrong, Jonathan B; Scheuerell, Mark D; Whited, Diane C; Clark, Robert A; Hilborn, Ray; Holt, Carrie A; Lindley, Steven T; Stanford, Jack A; Volk, Eric C

    2014-12-01

    Quantifying the variability in the delivery of ecosystem services across the landscape can be used to set appropriate management targets, evaluate resilience and target conservation efforts. Ecosystem functions and services may exhibit portfolio-type dynamics, whereby diversity within lower levels promotes stability at more aggregated levels. Portfolio theory provides a framework to characterize the relative performance among ecosystems and the processes that drive differences in performance. We assessed Pacific salmon Oncorhynchus spp. portfolio performance across their native latitudinal range focusing on the reliability of salmon returns as a metric with which to assess the function of salmon ecosystems and their services to humans. We used the Sharpe ratio (e.g. the size of the total salmon return to the portfolio relative to its variability (risk)) to evaluate the performance of Chinook and sockeye salmon portfolios across the west coast of North America. We evaluated the effects on portfolio performance from the variance of and covariance among salmon returns within each portfolio, and the association between portfolio performance and watershed attributes. We found a positive latitudinal trend in the risk-adjusted performance of Chinook and sockeye salmon portfolios that also correlated negatively with anthropogenic impact on watersheds (e.g. dams and land-use change). High-latitude Chinook salmon portfolios were on average 2·5 times more reliable, and their portfolio risk was mainly due to low variance in the individual assets. Sockeye salmon portfolios were also more reliable at higher latitudes, but sources of risk varied among the highest performing portfolios. Synthesis and applications . Portfolio theory provides a straightforward method for characterizing the resilience of salmon ecosystems and their services. Natural variability in portfolio performance among undeveloped watersheds provides a benchmark for restoration efforts. Locally and regionally

  15. Idaho supplementation studies : five year report : 1992-1996

    International Nuclear Information System (INIS)

    Walters, Jody P.; Idaho. Dept. of Fish and Game; United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1999-01-01

    In 1991, the Idaho Supplementation Studies (ISS) project was implemented to address critical uncertainties associated with hatchery supplementation of chinook salmon Oncorhynchus tshawytscha populations in Idaho. The project was designed to address questions identified in the Supplementation Technical Work Group (STWG) Five-Year-Workplan (STWG 1988). Two goals of the project were identified: (1) assess the use of hatchery chinook salmon to increase natural populations in the Salmon and Clearwater river drainages, and (2) evaluate the genetic and ecological impacts of hatchery chinook salmon on naturally reproducing chinook salmon populations. Four objectives to achieve these goals were developed: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced fish; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; (3) determine which supplementation strategies (broodstock and release stage) provide the quickest and highest response in natural production without adverse effects on productivity; and (4) develop supplementation recommendations. This document reports on the first five years of the long-term portion of the ISS project. Small-scale studies addressing specific hypotheses of the mechanisms of supplementation effects (e.g., competition, dispersal, and behavior) have been completed. Baseline genetic data have also been collected. Because supplementation broodstock development was to occur during the first five years, little evaluation of supplementation is currently possible. Most supplementation adults did not start to return to study streams until 1997. The objectives of this report are to: (1) present baseline data on production and productivity indicators such as adult escapement, redd counts, parr densities, juvenile emigrant estimates, and juvenile survival to Lower Granite Dam (lower Snake

  16. Influence of Incision Location on Transmitter Loss, Healing, Incision Lengths, Suture Retention, and Growth of Juvenile Chinook Salmon

    Energy Technology Data Exchange (ETDEWEB)

    Panther, Jennifer L.; Brown, Richard S.; Gaulke, Greggory L.; Woodley, Christa M.; Deters, Katherine A.

    2010-05-11

    In this study, conducted by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District, we measured differences in survival and growth, incision openness, transmitter loss, wound healing, and erythema among abdominal incisions on the linea alba, lateral and parallel to the linea alba (muscle-cutting), and following the underlying muscle fibers (muscle-sparing). A total of 936 juvenile Chinook salmon were implanted with both Juvenile Salmon Acoustic Tracking System transmitters (0.43 g dry) and passive integrated transponder tags. Fish were held at 12°C (n = 468) or 20°C (n = 468) and examined once weekly over 98 days. We found survival and growth did not differ among incision groups or between temperature treatment groups. Incisions on the linea alba had less openness than muscle-cutting and muscle-sparing incisions during the first 14 days when fish were held at 12°C or 20°C. Transmitter loss was not different among incision locations by day 28 when fish were held at 12°C or 20°C. However, incisions on the linea alba had greater transmitter loss than muscle-cutting and muscle-sparing incisions by day 98 at 12°C. Results for wound closure and erythema differed among temperature groups. Results from our study will be used to improve fish-tagging procedures for future studies using acoustic or radio transmitters.

  17. Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha.

    Science.gov (United States)

    Bourret, S L; Kennedy, B P; Caudill, C C; Chittaro, P M

    2014-11-01

    Isotopic composition of (87) Sr:(86) Sr and natural elemental tracers (Sr, Ba, Mg, Mn and Ca) were quantified from otoliths in juvenile and adult Chinook salmon Oncorhynchus tshawytscha to assess the ability of otolith microchemistry and microstructure to reconstruct juvenile O. tshawytscha rearing habitat and growth. Daily increments were measured to assess relative growth between natal rearing habitats. Otolith microchemistry was able to resolve juvenile habitat use between reservoir and natal tributary rearing habitats (within headwater basins), but not among catchments. Results suggest that 90% (n = 18) of sampled non-hatchery adults returning to the Middle Fork Willamette River were reared in a reservoir and 10% (n = 2) in natal tributary habitat upstream from the reservoir. Juveniles collected in reservoirs had higher growth rates than juveniles reared in natal streams. The results demonstrate the utility of otolith microchemistry and microstructure to distinguish among rearing habitats, including habitats in highly altered systems. © 2014 The Fisheries Society of the British Isles.

  18. Investigations of bull trout (Salvelinus confluentus), steelhead trout (Oncorhynchus mykiss), and spring chinook salmon (O. tshawytscha) interactions in Southeast Washington streams. Final report 1992; FINAL

    International Nuclear Information System (INIS)

    Underwood, K.D.; Martin, S.W.; Schuck, M.L.; Scholz, A.T.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition among species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed

  19. Comparison of electronarcosis and carbon dioxide sedation effects on travel time in adult Chinook and Coho Salmon

    Science.gov (United States)

    Keep, Shane G; Allen, M. Brady; Zendt, Joseph S

    2015-01-01

    The immobilization of fish during handling is crucial in avoiding injury to fish and is thought to reduce handling stress. Chemical sedatives have been a primary choice for fish immobilization. However, most chemical sedatives accumulate in tissues, and often food fishes must be held until accumulations degrade to levels safe for human consumption. Historically, there have been few options for nonchemical sedation. Carbon dioxide (CO2) has been widely used for decades as a sedative, and while it does not require a degradation period, it does have drawbacks. The use of electronarcosis is another nonchemical option that does not require degradation time. However, little is known about the latent and delayed effects on migration rates of adult salmonids that have been immobilized with electricity. We compared the travel times of adult Chinook Salmon Oncorhynchus tshawytscha and Coho Salmon O. kisutch through a fishway at river kilometer (rkm) 4, and to rkm 16 and rkm 32 after being immobilized with either CO2 or electronarcosis. Travel times of fish treated with either CO2 or electronarcosis were similar within species. Because of the nearly instantaneous induction of and recovery from electronarcosis, we recommend it as an alternative to CO2 for handling large adult salmonids.

  20. Monitoring the Reproductive Success of Naturally Spawning Hatchery and Natural Spring Chinook Salmon in the Wenatchee River, 2008-2009 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J.; Williamson, Kevin S. [Northwest Fisheries Science Center

    2009-05-28

    We investigated differences in the statistical power to assign parentage between an artificially propagated and wild salmon population. The propagated fish were derived from the wild population, and are used to supplement its abundance. Levels of genetic variation were similar between the propagated and wild groups at 11 microsatellite loci, and exclusion probabilities were >0.999999 for both groups. The ability to unambiguously identify a pair of parents for each sampled progeny was much lower than expected, however. Simulations demonstrated that the proportion of cases the most likely pair of parents were the true parents was lower for propagated parents than for wild parents. There was a clear relationship between parentage assignment ability and the degree of linkage disequilibrium, the estimated effective number of breeders that produced the parents, and the size of the largest family within the potential parents. If a stringent threshold for parentage assignment was used, estimates of relative fitness were biased downward for the propagated fish. The bias appeared to be largely eliminated by either fractionally assigning progeny among parents in proportion to their likelihood of parentage, or by assigning progeny to the most likely set of parents without using a statistical threshold. We used a DNA-based parentage analysis to measure the relative reproductive success of hatchery- and natural-origin spring Chinook salmon in the natural environment. Both male and female hatchery-origin fish produced far fewer juvenile progeny per parent when spawning naturally than did natural origin fish. Differences in age structure, spawning location, weight and run timing were responsible for some of the difference in fitness. Male size and age had a large influence on fitness, with larger and older males producing more offspring than smaller or younger individuals. Female size had a significant effect on fitness, but the effect was much smaller than the effect of size on

  1. Otolith output - Project to study alternative life history types of fall Chinook based on otoliths

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The life-history complexity of Snake River fall Chinook salmon has hindered efforts to manage the ESU. In particular, the existence of an overwintering behavior in a...

  2. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    van der Naald, Wayne; Duff, Cameron; Brooks, Robert (Oregon Department of Fish and Wildlife, Columbia River Section, John Day, OR)

    2005-01-01

    In 2003 a total of 253 adult fall chinook and 113 chum were sampled for biological data in the Ives and Pierce islands area below Bonneville Dam. Vital statistics were developed from 221 fall chinook and 109 chum samples. The peak redd count for fall chinook was 190. The peak redd count for chum was 262. Peak spawning time for fall chinook was set at approximately 24 November. Peak spawning time for chum occurred approximately 24 November. There were estimated to be a total of 1,533 fall chinook spawning below Bonneville Dam in 2003. The study area's 2003 chum population was estimated to be 688 spawning fish. Temperature unit data suggests that below Bonneville Dam 2003 brood bright stock, fall chinook emergence began on January 6, 2004 and ended 28 April 2004, with peak emergence occurring 13 April. 2003 brood juvenile chum emergence below Bonneville Dam began 22 February and continued through 15 April 2004. Peak chum emergence took place 25 March. A total of 25,433 juvenile chinook and 4,864 juvenile chum were sampled between the dates of 20 January and 28 June 2004 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place during the month of June 2004 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2003 all of the fall chinook using the area below Bonneville Dam were of a late-spawning, bright stock. Observed spawning times, adult age and sex composition, GSI and DNA analysis, juvenile emergence

  3. Development of an Effective Transport Media for Juvenile Spring Chinook Salmon to Mitigate Stress and Improve Smolt Survival During Columbia River Fish Hauling Operations, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wedemeyer, Gary A.

    1985-02-01

    Selected transport media consisting of mineral salt additions (Na/sup +/, Cl/sup -/, Ca/sup + +/, PO/sub 4//sup -3/, HCO/sub 3//sup -/, and Mg/sup + +/), mineral salts plus tranquilizing concentrations of tricaine methane sulfonate (MS-222), or MS-222 alone were tested for their ability to mitigate stress and increase smolt survival during single and mixed species hauling of Columbia River spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri). Successful stress mitigation was afforded by several formulations as indicated by protection against life-threatening osmoregulatory and other physiological dysfunctions, and against immediate and delayed hauling mortality. Effects on the seawater survival and growth of smolts hauled in transport media were used as the overall criterion of success. Of the fourteen chemical formulations tested, 10 ppM MS-222 emerged as top-rated in terms of ability to mitigate physiological stress during single and mixed species transport of juvenile spring chinook salmon at hauling densities of 0.5 or 1.0 lb/gallon. Immediate and delayed mortalities from hauling stress were also reduced, but benefits to early marine growth and survival were limited to about the first month in seawater. The two physical factors tested (reduced light intensity and water temperature) were generally less effective than mineral salt additions in mitigating hauling stress, but the degree of protection afforded by reduced light intensity was nevertheless judged to be physiologically beneficial. 36 refs., 1 fig., 19 tabs.

  4. The interactive effects of climate change, riparian management, and a nonnative predator on stream-rearing salmon.

    Science.gov (United States)

    Lawrence, David J; Stewart-Koster, Ben; Olden, Julian D; Ruesch, Aaron S; Torgersen, Christian E; Lawler, Joshua J; Butcher, Don P; Crown, Julia K

    2014-06-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use-related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory, nonnative smallmouth bass have also been introduced into many northwestern streams, and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and nonnative species on stream-rearing salmon and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin. We compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of chinook salmon-rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing chinook salmon and potentially predatory bass in the early summer (two- to fourfold increase) and greater abundance of

  5. In situ biomonitoring of juvenile Chinook salmon (Onchorhynchus tshawytscha) using biomarkers of chemical exposures and effects in a partially remediated urbanized waterway of the Puget Sound, WA

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Eva [Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way Northeast, Suite 100, Seattle, WA 98105-6099 (United States); Kelley, Matthew; Zhou, Guo-Dong; He, Ling Yu; McDonald, Thomas; Wang, Shirley [Department of Environmental and Occupational Health, Texas A and M Health Science Center, College Station, TX 77843-1266 (United States); Duncan, Bruce [US Environmental Protection Agency, Region 10, 1200 Sixth Avenue, Seattle, WA 98101 (United States); Meador, James [Ecotoxicology Division, National Marine Fisheries Service, Seattle, WA 98105 (United States); Donnelly, Kirby [Department of Environmental and Occupational Health, Texas A and M Health Science Center, College Station, TX 77843-1266 (United States); Gallagher, Evan, E-mail: evang3@u.washington.edu [Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way Northeast, Suite 100, Seattle, WA 98105-6099 (United States)

    2010-10-15

    In situ biomonitoring has been used to assess the effects of pollution on aquatic species in heavily polluted waterways. In the current study, we used in situ biomonitoring in conjunction with molecular biomarker analysis to determine the effects of pollutant exposure in salmon caged in the Duwamish waterway, a Pacific Northwest Superfund site that has been subject to remediation. The Duwamish waterway is an important migratory route for Pacific salmon and has received historic inputs of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Juvenile pre-smolt Chinook salmon (Oncorhynchus tshawytscha) caged for 8 days in the three contaminated sites in close proximity within the Duwamish were analyzed for steady state hepatic mRNA expression of 7 exposure biomarker genes encompassing several gene families and known to be responsive to pollutants, including cytochrome P4501A (CYP1A) and CYP2K1, glutathione S-transferase {pi} class (GST-{pi}), microsomal GST (mGST), glutamylcysteine ligase catalytic subunit (GCLC), UDP-glucuronyltransferase family 1 (UDPGT), and type 2 deiodinase (type 2 DI, or D2). Quantitation of gene expression was accomplished by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in assays developed specifically for Chinook salmon genes. Gill PAH-DNA adducts were assessed as a chemical effects biomarker using {sup 32}P-postlabeling. The biomarkers in the field-caged fish were analyzed with respect to caged animals maintained at the hatchery receiving flow-through water. Chemical analysis of sediment samples from three field sampling sites revealed relatively high concentrations of total PAHs in one site (site B2, 6711 ng/g dry weight) and somewhat lower concentrations of PAHs in two adjacent sites (sites B3 and B4, 1482 and 1987 ng/g, respectively). In contrast, waterborne PAHs at all of the sampling sites were relatively low (<1 ng/L). Sediment PCBs at the sites ranged from a low of 421 ng/g at site B3

  6. The interactive effects of climate change, riparian management, and a non-native predators on stream-rearing salmon

    Science.gov (United States)

    Lawrence, David J.; Stewart-Koster, Ben; Olden, Julian D.; Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Butcher, Don P.; Crown, Julia K.

    2014-01-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We

  7. Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.

    Energy Technology Data Exchange (ETDEWEB)

    Senn, Harry G.

    1984-09-01

    The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

  8. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Science.gov (United States)

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River... Snake—Asotin 17060103 17060103 17060103 Upper Grande Ronde 17060104 Wallowa 17060105 Lower Grande Ronde...

  9. Evidence for a Peripheral Olfactory Memory in Imprinted Salmon

    Science.gov (United States)

    Nevitt, Gabrielle A.; Dittman, Andrew H.; Quinn, Thomas P.; Moody, William J., Jr.

    1994-05-01

    The remarkable homing ability of salmon relies on olfactory cues, but its cellular basis is unknown. To test the role of peripheral olfactory receptors in odorant memory retention, we imprinted coho salmon (Oncorhynchus kisutch) to micromolar concentrations of phenyl ethyl alcohol during parr-smolt transformation. The following year, we measured phenyl ethyl alcohol responses in the peripheral receptor cells using patch clamp. Cells from imprinted fish showed increased sensitivity to phenyl ethyl alcohol compared either to cells from naive fish or to sensitivity to another behaviorally important odorant (L-serine). Field experiments verified an increased behavioral preference for phenyl ethyl alcohol by imprinted salmon as adults. Thus, some component of the imprinted olfactory homestream memory appears to be retained peripherally.

  10. PCR testing can be as accurate as culture for diagnosis of Ichthyophonus hoferi in Yukon River Chinook salmon Oncorhynchus tshawytscha .

    Science.gov (United States)

    Hamazaki, Toshihide; Kahler, Eryn; Borba, Bonnie M; Burton, Tamara

    2013-07-09

    We evaluated the comparability of culture and PCR tests for detecting Ichthyophonus in Yukon River Chinook salmon Oncorhynchus tshawytscha from field samples collected at 3 locations (Emmonak, Chena, and Salcha, Alaska, USA) in 2004, 2005, and 2006. Assuming diagnosis by culture as the 'true' infection status, we calculated the sensitivity (correctly identifying fish positive for Ichthyophonus), specificity (correctly identifying fish negative for Ichthyophonus), and accuracy (correctly identifying both positive and negative fish) of PCR. Regardless of sampling locations and years, sensitivity, specificity, and accuracy exceeded 90%. Estimates of infection prevalence by PCR were similar to those by culture, except for Salcha 2005, where prevalence by PCR was significantly higher than that by culture (p < 0.0001). These results show that the PCR test is comparable to the culture test for diagnosing Ichthyophonus infection.

  11. Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by {sup 1}H NMR metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Viant, Mark R [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Pincetich, Christopher A [Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616-8588 (United States); Tjeerdema, Ronald S [Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616-8588 (United States)

    2006-05-25

    Pesticide pulses in the Sacramento River, California, originate from storm-water discharges and non-point source aquatic pollution that can last from a few days to weeks. The Sacramento River and its tributaries have historically supported the majority of California's Chinook salmon (Oncorhynchus tshawytscha) spawning grounds. Three pesticides currently used in the Sacramento Valley - dinoseb, diazinon, and esfenvalerate - were chosen to model the exposure of salmon embryos to storm-water discharges. Static-renewal (96 h) exposures to eyed eggs and alevins resulted in both toxicity and significant changes in metabolism assessed in whole-embryo extracts by {sup 1}H nuclear magnetic resonance (NMR) spectroscopy based metabolomics and HPLC with UV detection (HPLC-UV). The 96-h LC{sub 5} values of eyed eggs and alevins exposed to dinoseb were 335 and 70.6 ppb, respectively, and the corresponding values for diazinon were 545 and 29.5 ppm for eyed eggs and alevins, respectively. The 96-h LC{sub 5} of eyed eggs exposed to esfenvalerate could not be determined due to lack of mortality at the highest exposure concentration, but in alevins was 16.7 ppb. All esfenvalerate exposed alevins developed some degree of lordosis or myoskeletal abnormality and did not respond to stimulus or exhibit normal swimming behavior. ATP concentrations measured by HPLC-UV decreased significantly in eyed eggs due to 250 ppb dinoseb and 10 and 100 ppb esfenvalerate (p < 0.05). Phosphocreatine, as measured by HPLC-UV, decreased significantly in eyed eggs due to 250 ppb dinoseb, 10 and 100 ppb esfenvalerate, and 100 ppm diazinon (p < 0.05). Principal components analyses of {sup 1}H NMR metabolite fingerprints of eyed egg and alevin extracts revealed both dose-dependent and mechanism of action-specific metabolic effects induced by the pesticides. Furthermore, NMR based metabolomics proved to be more sensitive than HPLC-UV in identifying significant changes in sublethal metabolism of pesticide

  12. Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by {sup 1}H NMR metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Viant, Mark R. [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)]. E-mail: M.Viant@bham.ac.uk; Pincetich, Christopher A. [Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616-8588 (United States); Tjeerdema, Ronald S. [Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616-8588 (United States)

    2006-05-25

    Pesticide pulses in the Sacramento River, California, originate from storm-water discharges and non-point source aquatic pollution that can last from a few days to weeks. The Sacramento River and its tributaries have historically supported the majority of California's Chinook salmon (Oncorhynchus tshawytscha) spawning grounds. Three pesticides currently used in the Sacramento Valley - dinoseb, diazinon, and esfenvalerate - were chosen to model the exposure of salmon embryos to storm-water discharges. Static-renewal (96 h) exposures to eyed eggs and alevins resulted in both toxicity and significant changes in metabolism assessed in whole-embryo extracts by {sup 1}H nuclear magnetic resonance (NMR) spectroscopy based metabolomics and HPLC with UV detection (HPLC-UV). The 96-h LC{sub 5} values of eyed eggs and alevins exposed to dinoseb were 335 and 70.6 ppb, respectively, and the corresponding values for diazinon were 545 and 29.5 ppm for eyed eggs and alevins, respectively. The 96-h LC{sub 5} of eyed eggs exposed to esfenvalerate could not be determined due to lack of mortality at the highest exposure concentration, but in alevins was 16.7 ppb. All esfenvalerate exposed alevins developed some degree of lordosis or myoskeletal abnormality and did not respond to stimulus or exhibit normal swimming behavior. ATP concentrations measured by HPLC-UV decreased significantly in eyed eggs due to 250 ppb dinoseb and 10 and 100 ppb esfenvalerate (p < 0.05). Phosphocreatine, as measured by HPLC-UV, decreased significantly in eyed eggs due to 250 ppb dinoseb, 10 and 100 ppb esfenvalerate, and 100 ppm diazinon (p < 0.05). Principal components analyses of {sup 1}H NMR metabolite fingerprints of eyed egg and alevin extracts revealed both dose-dependent and mechanism of action-specific metabolic effects induced by the pesticides. Furthermore, NMR based metabolomics proved to be more sensitive than HPLC-UV in identifying significant changes in sublethal metabolism of pesticide

  13. Response of ecosystem metabolism to low densities of spawning Chinook salmon

    Science.gov (United States)

    Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to runs. We explored whether low densities (how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.

  14. Monitoring and Evaluation Plan for the Nez Perce Tribal Hatchery, 1996 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, Cleveland R.

    1996-08-01

    The Nez Perce Tribe has proposed to build and operate the Nez Perce Tribal Hatchery (NPTH) in the Clearwater River subbasin of Idaho for the purpose of restoring self-sustaining populations of spring, summer, and fall chinook salmon to their native habitats. The project comprises a combination of incubation and rearing facilities, satellite rearing facilities, juvenile and adult collection sites, and associated production and harvest management activities. As currently conceived, the NPTH program will produce approximately 768,000 spring chinook parr, 800,000 summer chinook fry, and 2,000,000 fall chinook fry on an annual basis. Hatchery fish would be spawned, reared, and released under conditions that promote wild-type characteristics, minimize genetic changes in both hatchery and wild chinook populations, and minimize undesirable ecological interactions. The primary objective is to enable hatchery-produced fish to return to reproduce naturally in the streams in which they are released. These and other characteristics of the project are described in further detail in the Nez Perce Tribal Hatchery Master Plan (Larson and Mobrand 1992), the 1995 Supplement to the Master Plan (Johnson et al. 1995), and the Nez Perce Tribal Hatchery Program Environmental Impact Statement (Bonneville Power Administration et al. 1996). The report in hand is referred to in project literature as the NPTH Monitoring and Evaluation (M&E) Plan. This report describes monitoring and evaluation activities that will help NPTH managers determine. whether they were successful in restoring chinook salmon populations and avoiding adverse ecological impacts. Program success will be gauged primarily by changes in the abundance and distribution of supplemented chinook populations. The evaluation of project-related impacts will focus on the biological effects of constructing and operating NPTH hatchery facilities, introducing hatchery fish into the natural environment, and removing or displacing wild

  15. AFSC/ABL: Eastern Bering Sea (BASIS) Coastal Research on Juvenile Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pacific salmon (Oncorhynchus spp.) runs in rivers that flow into the eastern Bering Sea have been inconsistent and at times very weak. Low returns of chinook (O....

  16. Vertical self-sorting behavior in juvenile Chinook salmon (Oncorhynchus tshawytscha): evidence for family differences and variation in growth and morphology

    Science.gov (United States)

    Unrein, Julia R.; Billman, E.J.; Cogliati, Karen M.; Chitwood, Rob S.; Noakes, David L. G.; Schreck, Carl B.

    2018-01-01

    Life history variation is fundamental to the evolution of Pacific salmon and their persistence under variable conditions. We discovered that Chinook salmon sort themselves into surface- and bottom-oriented groups in tanks within days after exogenous feeding. We hypothesised that this behaviour is correlated with subsequent differences in body morphology and growth (as measured by final length and mass) observed later in life. We found consistent morphological differences between surface and bottom phenotypes. Furthermore, we found that surface and bottom orientation within each group is maintained for at least one year after the phenotypes were separated. These surface and bottom phenotypes are expressed across genetic stocks, brood years, and laboratories and we show that the proportion of surface- and bottom-oriented offspring also differed among families. Importantly, feed delivery location did not affect morphology or growth, and the surface fish were longer than bottom fish at the end of the rearing experiment. The body shape of the former correlates with wild individuals that rear in mainstem habitats and migrate in the fall as subyearlings and the latter resemble those that remain in the upper tributaries and migrate as yearling spring migrants. Our findings suggest that early self-sorting behaviour may have a genetic basis and be correlated with other phenotypic traits that are important indicators for juvenile migration timing.

  17. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    Science.gov (United States)

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    1. Smallmouth bass (Micropterus dolomieu) have been widely introduced to fresh waters throughout the world to promote recreational fishing opportunities. In the Pacific Northwest (U.S.A.), upstream range expansions of predatory bass, especially into subyearling salmon-rearing grounds, are of increasing conservation concern, yet have received little scientific inquiry. Understanding the habitat characteristics that influence bass distribution and the timing and extent of bass and salmon overlap will facilitate the development of management strategies that mitigate potential ecological impacts of bass.2. We employed a spatially continuous sampling design to determine the extent of bass and subyearling Chinook salmon (Oncorhynchus tshawytscha) sympatry in the North Fork John Day River (NFJDR), a free-flowing river system in the Columbia River Basin that contains an upstream expanding population of non-native bass. Extensive (i.e. 53 km) surveys were conducted over 2 years and during an early and late summer period of each year, because these seasons provide a strong contrast in the river’s water temperature and flow condition. Classification and regression trees were applied to determine the primary habitat correlates of bass abundance at reach and channel-unit scales.3. Our study revealed that bass seasonally occupy up to 22% of the length of the mainstem NFJDR where subyearling Chinook salmon occur, and the primary period of sympatry between these species was in the early summer and not during peak water temperatures in late summer. Where these species co-occurred, bass occupied 60–76% of channel units used by subyearling Chinook salmon in the early summer and 28–46% of the channel units they occupied in the late summer. Because these rearing salmon were well below the gape limitation of bass, this overlap could result in either direct predation or sublethal effects of bass on subyearling Chinook salmon. The upstream extent of bass increased 10–23

  18. Crystallization and X-ray analysis of the salmon-egg lectin SEL24K

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Kenji [Department of Animal Science, University of California, Davis 95616 (United States); Fisher, Andrew J. [Department of Chemistry, University of California, Davis 95616 (United States); Hedrick, Jerry L., E-mail: jlhedrick@ucdavis.edu [Department of Animal Science, University of California, Davis 95616 (United States)

    2007-05-01

    The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) is released from the egg during the cortical reaction. The lectin functions in blocking polyspermy during the fertilization process. The egg lectin was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The crystal diffracted synchrotron-radiation X-rays to 1.63 Å resolution. The crystal belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 93.0, b = 73.6, c = 113.6 Å, α = 90, β = 92.82, γ = 90°. The crystal is likely to contain eight molecules in the asymmetric unit (V{sub M} = 2.3 Å{sup 3} Da{sup −1}), corresponding to a solvent content of 45.5%. A self-rotation function suggests an arrangement with 222 point symmetry within the asymmetric unit.

  19. AFSC/ABL: Origins of salmon seized from the F/V Arctic Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Samples of chum (Oncorhynchus keta), sockeye (O. nerka), and chinook salmon (O. tshawytscha) seized from the F/V Arctic Wind were analyzed to determine their region...

  20. Sneaker "jack" males outcompete dominant "hooknose" males under sperm competition in Chinook salmon (Oncorhynchus tshawytscha).

    Science.gov (United States)

    Young, Brent; Conti, David V; Dean, Matthew D

    2013-12-01

    In a variety of taxa, males deploy alternative reproductive tactics to secure fertilizations. In many species, small "sneaker" males attempt to steal fertilizations while avoiding encounters with larger, more aggressive, dominant males. Sneaker males usually face a number of disadvantages, including reduced access to females and the higher likelihood that upon ejaculation, their sperm face competition from other males. Nevertheless, sneaker males represent an evolutionarily stable strategy under a wide range of conditions. Game theory suggests that sneaker males compensate for these disadvantages by investing disproportionately in spermatogenesis, by producing more sperm per unit body mass (the "fair raffle") and/or by producing higher quality sperm (the "loaded raffle"). Here, we test these models by competing sperm from sneaker "jack" males against sperm from dominant "hooknose" males in Chinook salmon. Using two complementary approaches, we reject the fair raffle in favor of the loaded raffle and estimate that jack males were ∼1.35 times as likely as hooknose males to fertilize eggs under controlled competitive conditions. Interestingly, the direction and magnitude of this skew in paternity shifted according to individual female egg donors, suggesting cryptic female choice could moderate the outcomes of sperm competition in this externally fertilizing species.

  1. Immune and endocrine responses of adult spring Chinook salmon during freshwater migration and sexual maturation

    Science.gov (United States)

    Maule, A.G.; Schrock, R.M.; Slater, C.; Fitzpatrick, M.S.; Schreck, C. B.

    1996-01-01

    The immune –endocrine responses in spring chinook salmon (Oncorhynchus tshawytscha) were examined during their freshwater migration and final maturation. In 1990, migrating fish had high plasma cortisol titres (means 200 ng ml−1) and generated relatively few antibody-producing cells (APC) from peripheral blood leukocytes (PBL) (100 –200 per culture). After three weeks acclimation in constant environmental conditions, plasma cortisol was reduced and APC increased. There were no changes in number or affinity of glucocorticoid receptors. Concentrations of several sex steroids correlated with APC in females, but there were no such correlations in males. In 1993, fish in a hatchery had significantly greater cortisol concentrations in primary circulation than in secondary circulation, but sex steroid concentrations did not differ between circulations. Mean lysozyme activity in the primary and secondary circulation did not differ in June. In August, activity in the primary circulation was significantly less than that of the secondary, perhaps the result of acute stress associated with sampling. While some sex steroids correlated with lysozyme activity, the fact that in both years all endocrine and immune variables that correlated with each other also correlated with the date of sample, raises the question as to whether or not these are cause-and-effect relations.

  2. Effect of commercially available egg cures on the survival of juvenile salmonids.

    Directory of Open Access Journals (Sweden)

    Shaun Clements

    Full Text Available There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha and steelhead (O. mykiss with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  3. Effect of commercially available egg cures on the survival of juvenile salmonids

    Science.gov (United States)

    Clements, S.; Chitwood, R.; Schreck, C.B.

    2011-01-01

    There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha) and steelhead (O. mykiss) with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  4. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon

    Science.gov (United States)

    L.G. Crozier; A.P. Hendry; P.W. Lawson; T.P. Quinn; N.J. Mantua; J. Battin; R.G. Shaw; R.B. Huey

    2008-01-01

    Salmon life histories are finely tuned to local environmental conditions, which are intimately linked to climate. We summarize the likely impacts of climate change on the physical environment of salmon in the Pacific Northwest and discuss the potential evolutionary consequences of these changes, with particular reference to Columbia River Basin spring/summer Chinook (...

  5. Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers.

    Science.gov (United States)

    Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T

    2018-08-01

    Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.

  6. Differential survival among sSOD-1* genotypes in Chinook Salmon

    Science.gov (United States)

    Hayes, Michael C.; Reisenbichler, Reginald R.; Rubin, Stephen P.; Wetzel, Lisa A.; Marshall , Anne R.

    2011-01-01

    Differential survival and growth were tested in Chinook salmon Oncorhynchus tshawytscha expressing two common alleles, *–100 and *–260, at the superoxide dismutase locus (sSOD-1*). These tests were necessary to support separate studies in which the two alleles were used as genetic marks under the assumption of mark neutrality. Heterozygous adults were used to produce progeny with –100/–100, –100/–260, and –260/–260 genotypes that were reared in two natural streams and two hatcheries in the states of Washington and Oregon. The latter also were evaluated as returning adults. In general, the genotype ratios of juveniles reared at hatcheries were consistent with high survival and little or no differential survival in the hatchery. Adult returns at one hatchery were significantly different from the expected proportions, and the survival of the –260/–260 genotype was 0.56–0.89 times that of the –100/–100 genotype over four year-classes. Adult returns at a second hatchery (one year-class) were similar but not statistically significant: survival of the –260/–260genotype relative to the –100/–100 genotype was 0.76. The performance of the heterozygote group was intermediate at both hatcheries. Significant differences in growth were rarely observed among hatchery fish (one year-class of juveniles and one age-class of adult males) but were consistent with greater performance for the –100/–100 genotype. Results from two groups of juveniles reared in streams (one year-class from each stream) suggested few differences in growth, but the observed genotype ratios were significantly different from the expected ratios in one stream. Those differences were consistent with the adult data; survival for the –260/–260 genotype was 76% of that of the –100/–100 genotype. These results, which indicate nonneutrality among sSOD-1* genotypes, caused us to modify our related studies and suggest caution in the interpretation of results and analyses in

  7. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    Science.gov (United States)

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  8. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.; Dibrani, B.; Richmond, M.; Bleich, M.; Titzler, P..; Fu, T. [Pacific Northwest National Laboratory

    2006-01-01

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile

  9. A comparison of single-suture and double-suture incision closures in seaward-migrating juvenile Chinook salmon implanted with acoustic transmitters: implications for research in river basins containing hydropower structures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Deters, Katherine A.; Cook, Katrina V.; Eppard, M. B.

    2013-07-15

    Reductions in the size of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the ability to make shorter incisions that may warrant using only a single suture for closure. However, it is not known if one suture will sufficiently hold the incision closed, particularly when outward pressure is placed on the surgical site such as when migrating fish experience pressure changes associated with passage at hydroelectric dams. The objective of this research was to evaluate the effectiveness of single-suture incision closures on juvenile Chinook salmon (Oncorhynchus tshawytscha). Juvenile Chinook salmon were surgically implanted with a 2012 Juvenile Salmon Acoustic Telemetry System (JSATS) transmitter (0.30 g) and a passive integrated transponder tag (0.10 g) and incisions were closed with either one suture or two sutures. Mortality and tag retention were monitored and fish were examined after 7 and 14 days to evaluate tissue responses. In a separate experiment, surgically implanted fish were exposed to simulated turbine passage and then examined for expulsion of transmitters, expulsion of viscera through the incision, and mortal injury. With incisions closed using a single suture, there was no mortality or tag loss and similar or reduced tissue reaction compared to incisions closed with two sutures. Further, surgery time was significantly reduced when one suture was used, which leads to less handling and reduced stress. No tags were expelled during pressure scenarios and expulsion of viscera only occurred in two non-mortally injured fish (5%) with single sutures that were also exposed to very high pressure changes. No viscera expulsion was present in fish exposed to pressure scenarios likely representative of hydroturbine passage at many Columbia River dams (e.g. <2.7 ratio of pressure change; an acclimation pressure of 146.2 absolute kpa and a lowest exposure pressure of ~ 53.3 absolute kpa). Based on these results, we recommend the use of a

  10. Migratory Patterns of Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-flowing River Basin

    Science.gov (United States)

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  11. AFSC/ABL: Eastern Bering Sea (BASIS) Coastal Research on Juvenile Salmon (Oceanography data)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pacific salmon (Oncorhynchus spp.) runs in rivers that flow into the eastern Bering Sea have been inconsistent and at times very weak. Low returns of chinook (O....

  12. 75 FR 35440 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-06-22

    ... Chinook salmon population through removal of escaping hatchery-origin Chinook salmon adults to increase productivity and intra-population diversity and promote local adaptation, and (3) use Chinook salmon... hatchery-origin Chinook salmon removal on natural Chinook salmon productivity and develop an adaptive...

  13. Vaccination improves survival of Baltic salmon ( Salmo salar ) smolts in delayed release sea ranching (net-pen period)

    DEFF Research Database (Denmark)

    Buchmann, Kurt; Dalsgaard, Inger; Nielsen, Michael Engelbrecht

    1997-01-01

    Baltic salmon (Salmo salar) of the Finnish Iijoki stock were hatched and reared in freshwater in a salmon hatchery on the Danish island of Bornholm in the Baltic sea. Salmon parr were divided in three groups each comprising 22 000 fish. One group was vaccinated by intraperitoneal injection....... In contrast, no increase of titres was seen in the bath vaccinated and untreated groups. Marked cellular reactions in the abdominal cavity of injected fish were registered. A total of 3000 fish have been tagged and released to evaluate the effect of vaccination on the recapture rate. The implications...

  14. Future of Pacific salmon in the face of environmental change: Lessons from one of the world's remaining productive salmon regions

    Science.gov (United States)

    Schoen, Erik R.; Wipfli, Mark S.; Trammell, Jamie; Rinella, Daniel J.; Floyd, Angelica L.; Grunblatt, Jess; McCarthy, Molly D.; Meyer, Benjamin E.; Morton, John M.; Powell, James E.; Prakash, Anupma; Reimer, Matthew N.; Stuefer, Svetlana L.; Toniolo, Horacio; Wells, Brett M.; Witmer, Frank D. W.

    2017-01-01

    Pacific salmon Oncorhynchus spp. face serious challenges from climate and landscape change, particularly in the southern portion of their native range. Conversely, climate warming appears to be allowing salmon to expand northwards into the Arctic. Between these geographic extremes, in the Gulf of Alaska region, salmon are at historically high abundances but face an uncertain future due to rapid environmental change. We examined changes in climate, hydrology, land cover, salmon populations, and fisheries over the past 30–70 years in this region. We focused on the Kenai River, which supports world-famous fisheries but where Chinook Salmon O. tshawytscha populations have declined, raising concerns about their future resilience. The region is warming and experiencing drier summers and wetter autumns. The landscape is also changing, with melting glaciers, wetland loss, wildfires, and human development. This environmental transformation will likely harm some salmon populations while benefiting others. Lowland salmon streams are especially vulnerable, but retreating glaciers may allow production gains in other streams. Some fishing communities harvest a diverse portfolio of fluctuating resources, whereas others have specialized over time, potentially limiting their resilience. Maintaining diverse habitats and salmon runs may allow ecosystems and fisheries to continue to thrive amidst these changes.

  15. Influence of infection with Renibacterium salmoninarum on susceptibility of juvenile spring chinook salmon to gas bubble trauma

    Science.gov (United States)

    Weiland, L.K.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    During experiments in our laboratory to assess the progression and severity of gas bubble trauma (GBT) in juvenile spring chinook salmon Oncorhynchus tshawytscha, we had the opportunity to assess the influence of Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease, on the susceptibility of salmon to GBT. We exposed fish with an established infection of Rs to 120% total dissolved gas (TDG) for 96 h and monitored severity of GBT signs in the fins and gills, Rs infection level in kidneys by using an enzyme-linked immunosorbent assay (ELISA), and mortality. Mortality occurred rapidly after exposure to 120% TDG, with a LT20 (time necessary to kill 20% of the population) of about 37 h, which is at a minimum about 16% earlier than other bioassays we have conducted using fish that had no apparent signs of disease. Fish that died early (from 31 to 36 h and from 49 to 52 h) had significantly higher infection levels (mean ?? SE ELISA absorbance = 1.532 ?? 0.108) than fish that survived for 96h (mean ?? SE ELISA absorbance = 0.828 ?? 0.137). Fish that died early also had a significantly greater number of gill filaments occluded with bubbles than those that survived 96 h. Conversely, fish that survived for 96 h had a significantly higher median fin severity ranking than those that died early. Our results indicate that fish with moderate to high levels of Rs infection are more vulnerable to the effects of dissolved gas supersaturation (DGS) and die sooner than fish with lower levels of Rs infection. However, there is a substantial amount of individual variation in susceptibility to the apparent cumulative effects of DGS and Rs infection. Collectively, our findings have important implications to programs designed to monitor the prevalence and severity of GBT in juvenile salmonids in areas like the Columbia River basin and perhaps elsewhere.

  16. Recovery of barotrauma injuries in Chinook salmon, Oncorhynchus tshawytscha from exposure to pile driving sound.

    Directory of Open Access Journals (Sweden)

    Brandon M Casper

    Full Text Available Juvenile Chinook salmon, Oncorhynchus tshawytscha, were exposed to simulated high intensity pile driving signals to evaluate their ability to recover from barotrauma injuries. Fish were exposed to one of two cumulative sound exposure levels for 960 pile strikes (217 or 210 dB re 1 µPa(2·s SEL(cum; single strike sound exposure levels of 187 or 180 dB re 1 µPa(2⋅s SEL(ss respectively. This was followed by an immediate assessment of injuries, or assessment 2, 5, or 10 days post-exposure. There were no observed mortalities from the pile driving sound exposure. Fish exposed to 217 dB re 1 µPa(2·s SEL(cum displayed evidence of healing from injuries as post-exposure time increased. Fish exposed to 210 dB re 1 µPa(2·s SEL(cum sustained minimal injuries that were not significantly different from control fish at days 0, 2, and 10. The exposure to 210 dB re 1 µPa(2·s SEL(cum replicated the findings in a previous study that defined this level as the threshold for onset of injury. Furthermore, these data support the hypothesis that one or two Mild injuries resulting from pile driving exposure are unlikely to affect the survival of the exposed animals, at least in a laboratory environment.

  17. AFSC/ABL: Eastern Bering Sea (BASIS) Coastal Research on Juvenile Salmon (TSG-thermosalinigraph data)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pacific salmon (Oncorhynchus spp.) runs in rivers that flow into the eastern Bering Sea have been inconsistent and at times very weak. Low returns of chinook (O....

  18. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): Seasonal development and seawater acclimation

    DEFF Research Database (Denmark)

    Nilsen, Tom O; Ebbesson, Lars O E; Kiilerich, Pia

    2008-01-01

    The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt t...

  19. Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Johnson, June; Putnam, Scott

    2008-12-01

    River stocks of steelhead and spring/summer Chinook salmon still have significant natural reproduction and thus are the focal species for this project's investigations. The overall goal is to monitor the abundance, productivity, distribution, and stock-specific life history characteristics of naturally produced steelhead trout and Chinook salmon in Idaho (IDFG 2007). We have grouped project tasks into three objectives, as defined in our latest project proposal and most recent statement of work. The purpose of each objective involves enumerating or describing individuals within the various life stages of Snake River anadromous salmonids. By understanding the transitions between life stages and associated controlling factors, we hope to achieve a mechanistic understanding of stock-specific population dynamics. This understanding will improve mitigation and recovery efforts. Objective 1. Measure 2007 adult escapement and describe the age structure of the spawning run of naturally produced spring/summer Chinook salmon passing Lower Granite Dam. Objective 2. Monitor the juvenile production of Chinook salmon and steelhead trout for the major population groups (MPGs) within the Clearwater and Salmon subbasins. Objective 3. Evaluate life cycle survival and the freshwater productivity/production of Snake River spring/summer Chinook salmon. There are two components: update/refine a stock-recruit model and estimate aggregate smolt-to-adult survival. In this annual progress report, we present technical results for work done during 2007. Part 2 contains detailed results of INPMEP aging research and estimation of smolt-to-adult return rates for wild and naturally produced Chinook salmon (Objectives 1 and 3). Part 3 is a report on the ongoing development of a stock-recruit model for the freshwater phase of spring/summer Chinook salmon in the Snake River basin (Objective 3). Part 4 is a summary of the parr density data (Objective 2) collected in 2007 using the new site selection

  20. The Sea of Okhotsk and the Bering Sea as the region of natural aquaculture: Organochlorine pesticides in Pacific salmon

    International Nuclear Information System (INIS)

    Tsygankov, Vasiliy Yu.; Lukyanova, Olga N.; Khristoforova, Nadezhda K.

    2016-01-01

    Kuril Islands of the Sea of Okhotsk and the western part of the Bering Sea are an area of natural feeding of Pacific salmon, and the catch area of ones for food market. Food safety of products is an important task of aquaculture. Сoncentrations of HCHs (α-, β-, γ-) and DDT and its metabolites (DDD and DDE) were determined in organs of the pink (Oncorhynchus gorbuscha), chum (O. keta), chinook (O. tshawytscha), and sockeye (O. nerka), which caught from the natural aquaculture region of Russia (near the Kuril Islands (the northern-western part of the Pacific Ocean), the Sea of Okhotsk and the Bering Sea). The average total concentration of OCPs in organs of salmon from Western Pacific is lower than that in salmon from the North Pacific American coast and the Atlantic Ocean. The region can be used to grow smolts, which will be later released into the ocean. - Highlights: • The study area is area of natural feeding of Pacific salmon, and the catch area of ones for food market. • ΣOCPs in salmon muscle increases in the following: chum ≤ pink < chinook < sockeye. • ΣOCPs in salmon from study area is lower than that in ones from the Atlantic Ocean. • The salmon, which feeding in the study area, did not accumulate higher OCPs content.

  1. Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin.

    Directory of Open Access Journals (Sweden)

    John H Eiler

    Full Text Available Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002-2004. Most (97.5% of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28-40 km d-1 compared to upper basin stocks (52-62 km d-1. Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between "hares" (faster fish becoming slower and "tortoises" (slow but steady fish explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  2. Losses of Sacramento River Chinook Salmon and Delta Smelt to Entrainment in Water Diversions in the Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Wim J. Kimmerer

    2008-06-01

    Full Text Available Pumping at the water export facilities in the southern Sacramento-San Joaquin Delta kills fish at and near the associated fish-salvage facilities. Correlative analyses of salvage counts with population indices have failed to provide quantitative estimates of the magnitude of this mortality. I estimated the proportional losses of Sacramento River Chinook salmon (Oncorhynchus tshawytscha and delta smelt (Hypomesus transpacificus to place these losses in a population context. The estimate for salmon was based on recoveries of tagged smolts released in the upper Sacramento River basin, and recovered at the fish-salvage facilities in the south Delta and in a trawling program in the western Delta. The proportion of fish salvaged increased with export flow, with a mean value around 10% at the highest export flows recorded. Mortality was around 10% if pre-salvage losses were about 80%, but this value is nearly unconstrained. Losses of adult delta smelt in winter and young delta smelt in spring were estimated from salvage data (adults corrected for estimated pre-salvage survival, or from trawl data in the southern Delta (young. These losses were divided by population size and accumulated over the respective seasons. Losses of adult delta smelt were 1–50% (median 15% although the highest value may have been biased upward. Daily losses of larvae and juveniles were 0–8%, and seasonal losses accumulated were 0–25% (median 13%. The effect of these losses on population abundance was obscured by subsequent 50-fold variability in survival from summer to fall.

  3. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  4. Sneaker “jack” males outcompete dominant “hooknose” males under sperm competition in Chinook salmon (Oncorhynchus tshawytscha)

    Science.gov (United States)

    Young, Brent; Conti, David V; Dean, Matthew D

    2013-01-01

    In a variety of taxa, males deploy alternative reproductive tactics to secure fertilizations. In many species, small “sneaker” males attempt to steal fertilizations while avoiding encounters with larger, more aggressive, dominant males. Sneaker males usually face a number of disadvantages, including reduced access to females and the higher likelihood that upon ejaculation, their sperm face competition from other males. Nevertheless, sneaker males represent an evolutionarily stable strategy under a wide range of conditions. Game theory suggests that sneaker males compensate for these disadvantages by investing disproportionately in spermatogenesis, by producing more sperm per unit body mass (the “fair raffle”) and/or by producing higher quality sperm (the “loaded raffle”). Here, we test these models by competing sperm from sneaker “jack” males against sperm from dominant “hooknose” males in Chinook salmon. Using two complementary approaches, we reject the fair raffle in favor of the loaded raffle and estimate that jack males were ∼1.35 times as likely as hooknose males to fertilize eggs under controlled competitive conditions. Interestingly, the direction and magnitude of this skew in paternity shifted according to individual female egg donors, suggesting cryptic female choice could moderate the outcomes of sperm competition in this externally fertilizing species. PMID:24455130

  5. Differences in Ichthyophonus prevalence and infection severity between upper Yukon River and Tanana River chinook salmon, Oncorhynchus tshawytscha (Walbaum), stocks.

    Science.gov (United States)

    Kocan, R; Hershberger, P

    2006-08-01

    Two genetically distinct populations of chinook salmon, Oncorhynchus tshawytscha (Walbaum), were simultaneously sampled at the confluence of the Yukon and Tanana rivers in 2003. Upper Yukon-Canadian fish had significantly higher infection prevalence as well as more severe infections (higher parasite density in heart tissue) than the lower Yukon-Tanana River fish. Both populations had migrated the same distance from the mouth of the Yukon River at the time of sampling but had significantly different distances remaining to swim before reaching their respective spawning grounds. Multiple working hypotheses are proposed to explain the differences between the two stocks: (1) the two genetically distinct populations have different inherent resistance to infection, (2) genetically influenced differences in feeding behaviour resulted in temporal and/or spatial differences in exposure, (3) physiological differences resulting from different degrees of sexual maturity influenced the course of disease, and (4) the most severely infected Tanana River fish either died en route or fatigued and were unable to complete their migration to the Tanana River, thus leaving a population of apparently healthier fish.

  6. Physiological Stress Responses to Prolonged Exposure to MS-222 and Surgical Implantation in Juvenile Chinook Salmon

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodley, Christa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seaburg, Adam [Univ. of Washington, Seattle, WA (United States); Skalski, John R. [Univ. of Washington, Seattle, WA (United States); Eppard, Matthew B. [U.S. Army Corps of Engineers, Portland, OR (United States)

    2014-07-17

    While many studies have investigated the effects of transmitters on fish condition, behavior, and survival, to our knowledge, no studies have taken into account anesthetic exposure time in addition to tag and surgery effects. We investigated stress responses to prolonged MS-222 exposure after stage 4 induction in surgically implanted juvenile Chinook salmon (Oncorhynchus tshawytscha). Survival, tag loss, plasma cortisol concentration, and blood Na+, K+, Ca2+, and pH were measured immediately following anesthetic exposure and surgical implantation and 1, 7, and 14 days post-treatment. Despite the prolonged anesthetic exposure, 3-15 minutes post Stage 4 induction, there were no mortalities or tag loss in any treatment. MS-222 was effective at delaying immediate cortisol release during surgical implantation; however, osmotic disturbances resulted, which were more pronounced in longer anesthetic time exposures. From day 1 to day 14, Na+, Ca2+, and pH significantly decreased, while cortisol significantly increased. The cortisol increase was exacerbated by surgical implantation. There was a significant interaction between MS-222 time exposure and observation day for Na+, Ca2+, K+, and pH; variations were seen in the longer time exposures, although not consistently. In conclusion, stress response patterns suggest stress associated with surgical implantation is amplified with increased exposure to MS-222.

  7. Predictability of multispecies competitive interactions in three populations of Atlantic salmon Salmo salar.

    Science.gov (United States)

    Houde, A L S; Wilson, C C; Neff, B D

    2015-04-01

    Juvenile Atlantic salmon Salmo salar from three allopatric populations (LaHave, Sebago and Saint-Jean) were placed into artificial streams with combinations of four non-native salmonids: brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, Chinook salmon Oncorhynchus tshawytscha and coho salmon Oncorhynchus kisutch. Non-additive effects, as evidenced by lower performance than predicted from weighted summed two-species competition trials, were detected for S. salar fork length (LF ) and mass, but not for survival, condition factor or riffle use. These data support emerging theory on niche overlap and species richness as factors that can lead to non-additive competition effects. © 2015 The Fisheries Society of the British Isles.

  8. Nearshore circulation and water-column properties in the Skagit River Delta, northern Puget Sound, Washington: juvenile Chinook Salmon habitat availability in the Swinomish Channel

    Science.gov (United States)

    Grossman, Eric E.; Stevens, Andrew W.; Gelfenbaum, Guy; Curran, Christopher

    2007-01-01

    Time-series and spatial measurements of nearshore hydrodynamic processes and water properties were made in the Swinomish Channel to quantify the net direction and rates of surface water transport that influence habitat for juvenile Chinook salmon along their primary migratory corridor between the Skagit River and Padilla Bay in northern Puget Sound, Washington. During the spring outmigration of Skagit River Chinook between March and June 2007, currents measured with fixed acoustic doppler current profilers (ADCP) at the south and north end of the Swinomish Channel and with roving ADCP revealed that the currents are highly asymmetric with a dominant flow to the north (toward Padilla Bay). Maximum surface current velocities reached 1.5 m/s and were generally uniform across the channel near McGlinn Island Causeway. Transport times for surface water to travel the 11 km from the southern end of Swinomish Channel at McGlinn Island to Padilla Bay ranged from 2.1 hours to 5.5 days. The mean travel time was ~1 day, while 17 percent of the time, transport of water and passive particles occurred within 3.75 hours. Surface water in the Swinomish Channel during this time was generally very saline 20-27 psu, except south of the Rainbow Bridge in the town of La Conner where it ranged 0-15 psu depending on tide and Skagit River discharge. This salinity regime restricts suitable low salinity (

  9. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams : 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Steven W.

    1992-07-01

    Bull trout (Salvelinus confluentus) are native to many tributaries of the Snake River in southeast Washington. The Washington Department of Wildlife (WDW) and the American Fisheries Society (AFS) have identified bull trout as a species of special concern which means that they may become threatened or endangered by relatively, minor disturbances to their habitat. Steelhead trout/rainbow trout (Oncorhynchus mykiss) and spring chinook salmon (O.tshawytscha) are also native to several tributaries of the Snake river in southeast Washington. These species of migratory fishes are depressed, partially due to the construction of several dams on the lower Snake river. In response to decreased run size, large hatchery program were initiated to produce juvenile steelhead and salmon to supplement repressed tributary stocks, a practice known as supplementation. There is a concern that supplementing streams with artificially high numbers of steelhead and salmon may have an impact on resident bull trout in these streams. Historically, these three species of fish existed together in large numbers, however, the amount of high-quality habitat necessary for reproduction and rearing has been severely reduced in recent years, as compared to historic amounts. The findings of the first year of a two year study aimed at identifying species interactions in southeast Washington streams are presented in this report. Data was collected to assess population dynamics; habitat utilization and preference, feeding habits, fish movement and migration, age, condition, growth, and the spawning requirements of bull trout in each of four streams. A comparison of the indices was then made between the study streams to determine if bull trout differ in the presence of the putative competitor species. Bull trout populations were highest in the Tucannon River (supplemented stream), followed by Mill Creek (unsupplemented stream). Young of the year bull trout utilized riffle and cascade habitat the most in all

  10. The sound of migration: exploring data sonification as a means of interpreting multivariate salmon movement datasets

    Directory of Open Access Journals (Sweden)

    Jens C. Hegg

    2018-02-01

    Full Text Available The migration of Pacific salmon is an important part of functioning freshwater ecosystems, but as populations have decreased and ecological conditions have changed, so have migration patterns. Understanding how the environment, and human impacts, change salmon migration behavior requires observing migration at small temporal and spatial scales across large geographic areas. Studying these detailed fish movements is particularly important for one threatened population of Chinook salmon in the Snake River of Idaho whose juvenile behavior may be rapidly evolving in response to dams and anthropogenic impacts. However, exploring movement data sets of large numbers of salmon can present challenges due to the difficulty of visualizing the multivariate, time-series datasets. Previous research indicates that sonification, representing data using sound, has the potential to enhance exploration of multivariate, time-series datasets. We developed sonifications of individual fish movements using a large dataset of salmon otolith microchemistry from Snake River Fall Chinook salmon. Otoliths, a balance and hearing organ in fish, provide a detailed chemical record of fish movements recorded in the tree-like rings they deposit each day the fish is alive. This data represents a scalable, multivariate dataset of salmon movement ideal for sonification. We tested independent listener responses to validate the effectiveness of the sonification tool and mapping methods. The sonifications were presented in a survey to untrained listeners to identify salmon movements with increasingly more fish, with and without visualizations. Our results showed that untrained listeners were most sensitive to transitions mapped to pitch and timbre. Accuracy results were non-intuitive; in aggregate, respondents clearly identified important transitions, but individual accuracy was low. This aggregate effect has potential implications for the use of sonification in the context of crowd

  11. Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of Chinook salmon

    Science.gov (United States)

    Hess, Maureen A; Rabe, Craig D; Vogel, Jason L; Stephenson, Jeff J; Nelson, Doug D; Narum, Shawn R

    2012-01-01

    While supportive breeding programmes strive to minimize negative genetic impacts to populations, case studies have found evidence for reduced fitness of artificially produced individuals when they reproduce in the wild. Pedigrees of two complete generations were tracked with molecular markers to investigate differences in reproductive success (RS) of wild and hatchery-reared Chinook salmon spawning in the natural environment to address questions regarding the demographic and genetic impacts of supplementation to a natural population. Results show a demographic boost to the population from supplementation. On average, fish taken into the hatchery produced 4.7 times more adult offspring, and 1.3 times more adult grand-offspring than naturally reproducing fish. Of the wild and hatchery fish that successfully reproduced, we found no significant differences in RS between any comparisons, but hatchery-reared males typically had lower RS values than wild males. Mean relative reproductive success (RRS) for hatchery F1 females and males was 1.11 (P = 0.84) and 0.89 (P = 0.56), respectively. RRS of hatchery-reared fish (H) that mated in the wild with either hatchery or wild-origin (W) fish was generally equivalent to W × W matings. Mean RRS of H × W and H × H matings was 1.07 (P = 0.92) and 0.94 (P = 0.95), respectively. We conclude that fish chosen for hatchery rearing did not have a detectable negative impact on the fitness of wild fish by mating with them for a single generation. Results suggest that supplementation following similar management practices (e.g. 100% local, wild-origin brood stock) can successfully boost population size with minimal impacts on the fitness of salmon in the wild. PMID:23025818

  12. Assessment of a land-locked Atlantic salmon (Salmo salar L.) population as a potential genetic resource with a focus on long-chain polyunsaturated fatty acid biosynthesis.

    Science.gov (United States)

    Betancor, M B; Olsen, R E; Solstorm, D; Skulstad, O F; Tocher, D R

    2016-03-01

    The natural food for Atlantic salmon (Salmo salar) in freshwater has relatively lower levels of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) than found in prey for post-smolt salmon in seawater. Land-locked salmon such as the Gullspång population feed exclusively on freshwater type lipids during its entire life cycle, a successful adaptation derived from divergent evolution. Studying land-locked populations may provide insights into the molecular and genetic control mechanisms that determine and regulate n-3 LC-PUFA biosynthesis and retention in Atlantic salmon. A two factorial study was performed comparing land-locked and farmed salmon parr fed diets formulated with fish or rapeseed oil for 8 weeks. The land-locked parr had higher capacity to synthesise n-3 LC-PUFA as indicated by higher expression and activity of desaturase and elongase enzymes. The data suggested that the land-locked salmon had reduced sensitivity to dietary fatty acid composition and that dietary docosahexaenoic acid (DHA) did not appear to suppress expression of LC-PUFA biosynthetic genes or activity of the biosynthesis pathway, probably an evolutionary adaptation to a natural diet lower in DHA. Increased biosynthetic activity did not translate to enhanced n-3 LC-PUFA contents in the flesh and diet was the only factor affecting this parameter. Additionally, high lipogenic and glycolytic potentials were found in land-locked salmon, together with decreased lipolysis which in turn could indicate increased use of carbohydrates as an energy source and a sparing of lipid. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effects of rearing density and raceway conformation on growth, food conversion, and survival of juvenile spring chinook salmon

    Science.gov (United States)

    Ewing, R.D.; Sheahan, J.E.; Lewis, M.A.; Palmisano, Aldo N.

    2000-01-01

    Four brood years of juvenile spring chinook salmon Oncorhynchus tshawytscha were reared in conventional and baffled raceways at various rearing densities and loads at Willamette Hatchery, Oregon. A period of rapid linear growth occurred from August to November, but there was little or no growth from November to March when the fish were released. Both fall and winter growth rates were inversely related to rearing density. Final weight and length were also inversely related to rearing density. No significant relationship between load and any growth variable was observed. Fish reared at lower densities in conventional raceways tended to develop bimodal length distributions in winter and early spring. Fish reared in conventional raceways showed significantly larger growth rates and final lengths and weights than those reared in baffled raceways. Food conversions and average delivery times for feed were significantly greater in baffled than in conventional raceways. No significant relationships were observed between either rearing density or load and condition factor, food conversion, or mortality. Mortality was not significantly different between the two raceway types. When fish were transported to seawater for further rearing, there were no significant relationships between mortality in seawater and rearing density or load, but fish reared in baffled raceways had significantly higher mortality than those reared in conventional raceways.

  14. 78 FR 39282 - Proposed Information Collection Request; Comment Request; Willingness to Pay Survey for Salmon...

    Science.gov (United States)

    2013-07-01

    ... the Office of Management and Budget (OMB) for review and approval in accordance with the Paperwork... Business Information (CBI) or other information whose disclosure is restricted by statute. FOR FURTHER... the number of wild origin Chinook salmon and steelhead that return annually to the Willamette basin...

  15. Tucannon River Spring Chinook Captive Broodstock Program Final Environmental Assessment and Finding of No Significant Impact

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-05-24

    Bonneville Power Administration (BPA) is proposing to fund the Tucannon River Spring Chinook Captive Broodstock Program, a small-scale production initiative designed to increase numbers of a weak but potentially recoverable population of spring chinook salmon in the Tucannon River in the State of Washington. BPA has prepared an Environmental Assessment (EA) (DOE/EA-l326) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

  16. 77 FR 69796 - Fisheries of the Exclusive Economic Zone Off Alaska; Application for an Exempted Fishing Permit

    Science.gov (United States)

    2012-11-21

    ... concentrations of salmon and pollock for addressing experimental design criteria. The activities under the EFP... test a salmon excluder device for the Central Gulf of Alaska pollock trawl fishery. This activity is... approach the Central GOA Chinook salmon PSC limits of 18,316 Chinook salmon. If the EFP Chinook salmon were...

  17. Research on Captive Broodstock Programs for Pacific Salmon, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A.; Athos, Jaime I.; Dittman, Andrew H. (National Marine Fisheries Service)

    2004-07-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. We were able to develop an analytical method for optimizing the detection of spawning events in Chinook salmon using EMG signals. The method developed essentially captured the consistently greater frequency of higher EMG values associated with females cover digging immediately following spawning. However, females implanted with EMG tags retained the majority of their eggs, which significantly reduced their reproductive success compared to non-tagged females. Future work will include increased sample sizes, and modified tagging methods to reduce negative effects on reproductive success. Upper Columbia River sockeye salmon exposed to the odorants PEA, L-threonine, Larginine and L-glutamate were able to learn and remember these odorants as maturing adults up to 2.5 years after exposure. These results suggest that the alevin and smolt stages are both important developmental periods for successful olfactory imprinting. Furthermore, the period of time that fish are exposed to imprinting odors may be important for successful imprinting. Experimental fish exposed to imprinting odors as smolts for six or one weeks successfully imprinted to these odors but imprinting could not be demonstrated in smolts exposed to odors for only one day. A 2-3 C reduction in seawater rearing temperature during the fall and winter prior to final maturation had little effect on reproductive development of spring Chinook salmon. Body size at spawning and total ovary mass were similar between temperature treatments. The percentage of fertilized eggs was significantly higher for females exposed to the ambient temperature compared

  18. Chinook salmon use of spawning patches: relative roles of habitat quality, size, and connectivity.

    Science.gov (United States)

    Isaak, Daniel J; Thurow, Russell F; Rieman, Bruce E; Dunham, Jason B

    2007-03-01

    Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically

  19. PARR-2: reactor description and experiments

    International Nuclear Information System (INIS)

    Wyne, M.F.; Meghji, J.H.

    1990-12-01

    PARR-2 is a miniature neutron source reactor (MNSR) research reactor has been designed at the rate of 27 kW. Reactor assembly comprises of peaking characteristics with a self limiting flux. In this report reactor description with its assembly and instrumentation control system has been explained. The reactor engineering and physics experiments which can be performed on this reactor are explained in this report. PARR-2 is fueled with HEU fuel pins which are about 90% enriched in U-235. Specific requirements for the safety of the reactor, its building and the personnel, normal instrumentation as required in an industrial environment is sufficient. (A.B.)

  20. The design and analysis of salmonid tagging studies in the Columbia basin. Volume 8: A new model for estimating survival probabilities and residualization from a release-recapture study of fall chinook salmon (Oncorhynchus tschawytscha) smolts in the Snake River

    International Nuclear Information System (INIS)

    Lowther, A.B.; Skalski, J.

    1997-09-01

    Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake river fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging. These models do not utilize available capture history data from this second year and, thus, produce negatively biased estimates of survival probabilities. A new multinomial likelihood model was developed that results in biologically relevant, unbiased estimates of survival probabilities using the full two years of capture history data. This model was applied to 1995 Snake River fall chinook hatchery releases to estimate the true survival probability from one of three upstream release points (Asotin, Billy Creek, and Pittsburgh Landing) to Lower Granite Dam. In the data analyzed here, residualization is not a common physiological response and thus the use of CJS models did not result in appreciably different results than the true survival probability obtained using the new multinomial likelihood model

  1. Dynamics of Na+,K+,2Cl- cotransporter and Na+,K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar)

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Madsen, Steffen; Seidelin, Michel

    2002-01-01

    The dynamics of branchial Na+,K+,2Cl- cotransporter (NKCC) and Na+,K+-ATPase (NKA) expression were investigated in brown trout and Atlantic salmon during salinity shifts and the parr-smolt transformation, respectively. In the brown trout, Western blotting revealed that NKCC and NKA abundance...

  2. Beyond the mean: the role of variability in predicting ecological effects of stream temperature on salmon

    Science.gov (United States)

    E. Ashley Steel; Abby Tillotson; Donald A. Larson; Aimee H. Fullerton; Keith P. Denton; Brian R. Beckman

    2012-01-01

    Alterations in variance of riverine thermal regimes have been observed and are predicted with climate change and human development. We tested whether changes in daily or seasonal thermal variability, aside from changes in mean temperature, could have biological consequences by exposing Chinook salmon (Oncorhynchus tshawytscha) eggs to eight...

  3. Parrēsia ed exemplum. La parrēsia e i regimi aleturgici dell’exemplum a partire da L’ermeneutica del soggetto di Michel Foucault

    Directory of Open Access Journals (Sweden)

    Orazio Irrera

    2013-03-01

    Full Text Available Questo articolo cerca di esplorare il rapporto tra parrēsia ed exemplum negli ultimi Corsi al Collège de France di Michel Foucault. A partire da L’ermeneutica del soggetto, viene analizzato il campo semantico e pratico relativo alla direzione di coscienza stoica ed epicurea, in cui Foucault oppone la parrēsia all’adulazione e alla retorica per collocarla invece all’interno di un’importante serie di concetti: la paradosis (la trasmissione dei discorsi di verità, il kairos (il momento giusto, la circostanza opportuna e l’exemplum definito come «il cuore della parrēsia» poiché esso assicura l’adæquatio tra il soggetto di enunciazione e il soggetto di comportamento che si conforma alla verità espressa dal primo. Successivamente, viene posta l’attenzione sul legame tra parrēsia ed exemplum nell’ultimo Corso, Il coraggio della verità, per mettere in evidenza un’importante riconfigurazione all’interno della parrēsia cinica, in cui l’esempio appare come una categoria etica basata sulla permanenza e sull’identità a sé. Pertanto, esso si rivela inadeguato per questo regime aleturgico della parrēsia cinica, che invece consiste in un atteggiamento etico sperimentale, una mise à l’épreuve cui sottomettere la vita per arrivare a una trasformazione politica del mondo attraverso una continua e scandalosa provocazione degli altri, in grado di mettere in discussione la percezione di norme culturali e di abitudini consolidate.

  4. Pen Rearing and Imprinting of Fall Chinook Salmon, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Jerry F.; Macy, Thomas L.; Gardenier, James T.; Beeman, John W.

    1986-12-01

    Pen rearing studies during 1986 completed the second of three years intended for rearing and releasing upriver bright fall chinook salmon (Oncorhynchus tshawytscha) from two study sites, a backwater and a pond, adjacent to the Columbia River; both areas are located in the Jonn Day Reservoir. Results of this study in 1984 and 1985 showed that fish could be successfully reared in net pens and that growth and physiological development of the off-station reared fish proceeded at a faster rate than in fish reared at a hatchery. Transfer of fish from the hatchery to off-station sites at Social Security Pond (pond) and Rock Creek (backwater) during early March increased the period of rearing in 1986 by about four weeks. The increased period of rearing allowed all treatments of fed fish to reach a minimum weight of YU fish/lb by release. Differences in growth of fed fish between regular density treatments and additional, high density treatments (double and triple the regular densities) were not significantly different (P > 0.05), but growth of all fed fish reared off-station was again significantly better than that of hatchery reared fish (P < 0.05), Mortalities in all groups of fed fish were low. Physiological development of fed fish was similar in all treatments. At release, development of fish at Social Security Pond appeared to be somewhat ahead of fish at Rock Creek on the same dates however, none of the groups of fed fish achieved a high state of smoltification by release. Unfed fish grew poorly over the redring period, and at release were significantly smaller than either fed groups at the off-station sites, or the control groups reared at the hatchery (P < 0.05). Development of unfed fish toward smoltification was much slower than of fed fish. Mortality of all groups of unfed fish, including the barrier net, was relatively low. Health of all fish reared off-station remained good over the rearing period, and no outbreaks of disease were noted. On-site marking and

  5. The effect of nonylphenol on gene expression in Atlantic salmon smolts

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Laura S., E-mail: lrobertson@usgs.gov [USGS, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430 (United States); McCormick, Stephen D., E-mail: smccormick@usgs.gov [USGS, Leetown Science Center, Conte Anadromous Fish Research Center, Turners Falls, MA 01376 (United States)

    2012-10-15

    The parr-smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na{sup +}/K{sup +}-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers.

  6. Yakima/Klickitat Fisheries Project: Short Project Overview of Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.; Bosch, William J.

    2005-09-01

    The Yakima/Klickitat Fisheries Project (YKFP) is on schedule to ascertain whether new artificial production techniques can be used to increase harvest and natural production of spring Chinook salmon while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits. The Cle Elum Supplementation and Research Facility (CESRF) collected its first spring chinook brood stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. In these initial years of CESRF operation, recruitment of hatchery origin fish has exceeded that of fish spawning in the natural environment, but early indications are that hatchery origin fish are not as successful at spawning in the natural environment as natural origin fish when competition is relatively high. When competition is reduced, hatchery fish produced similar numbers of progeny as their wild counterparts. Most demographic variables are similar between natural and hatchery origin fish, however hatchery origin fish were smaller-at-age than natural origin fish. Long-term fitness of the target population is being evaluated by a large-scale test of domestication. Slight changes in predation vulnerability and competitive dominance, caused by domestication, were documented. Distribution of spawners has increased as a result of acclimation site location and salmon homing fidelity. Semi-natural rearing and predator avoidance training have not resulted in significant increases in survival of hatchery fish. However, growth manipulations in the hatchery appear to be reducing the number of precocious males produced by the YKFP and consequently increasing the number of migrants. Genetic impacts to non-target populations appear to be low because of the low stray rates of YKFP fish. Ecological impacts to valued non-target taxa were within containment objectives or impacts that

  7. Juvenile salmonid monitoring in the White Salmon River, Washington, post-Condit Dam removal, 2016

    Science.gov (United States)

    Jezorek, Ian G.; Hardiman, Jill M.

    2017-06-23

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and removed completely in 2012, allowing anadromous salmonids access to habitat that had been blocked for nearly 100 years. A multi-agency workgroup concluded that the preferred salmonid restoration alternative was natural recolonization with monitoring to assess efficacy, followed by a management evaluation 5 years after dam removal. Limited monitoring of salmon and steelhead spawning has occurred since 2011, but no monitoring of juveniles occurred until 2016. During 2016, we operated a rotary screw trap at river kilometer 2.3 (3 kilometers downstream of the former dam site) from late March through May and used backpack electrofishing during summer to assess juvenile salmonid distribution and abundance. The screw trap captured primarily steelhead (Oncorhynchus mykiss; smolts, parr, and fry) and coho salmon (O. kisutch; smolts and fry). We estimated the number of steelhead smolts at 3,851 (standard error = 1,454) and coho smolts at 1,093 (standard error = 412). In this document, we refer to O. mykiss caught at the screw trap as steelhead because they were actively migrating, but because we did not know migratory status of O. mykiss caught in electrofishing surveys, we simply refer to them as O. mykiss or steelhead/rainbow trout. Steelhead and coho smolts tagged with passive integrated transponder tags were subsequently detected downstream at Bonneville Dam on the Columbia River. Few Chinook salmon (O. tshawytscha) fry were captured, possibly as a result of trap location or effects of a December 2015 flood. Sampling in Mill, Buck, and Rattlesnake Creeks (all upstream of the former dam site) showed that juvenile coho were present in Mill and Buck Creeks, suggesting spawning had occurred there. We compared O. mykiss abundance data in sites on Buck and Rattlesnake Creeks to pre-dam removal data. During 2016, age-0 O. mykiss were more abundant in Buck Creek than in 2009 or

  8. Low level chronic irradiation of salmon. Annual progress report

    International Nuclear Information System (INIS)

    Hershberger, W.K.; Donaldson, L.R.; Bonham, K.; Brannon, E.L.

    1975-01-01

    A question of primary importance in the use of nuclear energy is what effect the effluent from a reactor will have on the aquatic life in the water used for cooling. Of particular concern in the Pacific Northwest are the effects of chronic irradiation on salmon that use the rivers for spawning and nursery area. The present program was designed in the early days of the atomic era to address this concern, and to provide some insight into the long-term consequences of exposure of fish to chronic, low levels of irradiation. The experimental techniques are described and data are summarized on irradiation effects on the entire life cycle of the chinook salmon. Also, long-term effects transmitted to future generations were assessed in F 1 offspring of irradiated parents

  9. Assessing the relative importance of local and regional processes on the survival of a threatened salmon population.

    Science.gov (United States)

    Miller, Jessica A; Teel, David J; Peterson, William T; Baptista, Antonio M

    2014-01-01

    Research on regulatory mechanisms in biological populations often focuses on environmental covariates. An integrated approach that combines environmental indices with organismal-level information can provide additional insight on regulatory mechanisms. Survival of spring/summer Snake River Chinook salmon (Oncorhynchus tshawytscha) is consistently low whereas some adjacent populations with similar life histories experience greater survival. It is not known if populations with differential survival respond similarly during early marine residence, a critical period in the life history. Ocean collections, genetic stock identification, and otolith analyses were combined to evaluate the growth-mortality and match-mismatch hypotheses during early marine residence of spring/summer Snake River Chinook salmon. Interannual variation in juvenile attributes, including size at marine entry and marine growth rate, was compared with estimates of survival and physical and biological metrics. Multiple linear regression and multi-model inference were used to evaluate the relative importance of biological and physical metrics in explaining interannual variation in survival. There was relatively weak support for the match-mismatch hypothesis and stronger evidence for the growth-mortality hypothesis. Marine growth and size at capture were strongly, positively related to survival, a finding similar to spring Chinook salmon from the Mid-Upper Columbia River. In hindcast models, basin-scale indices (Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO)) and biological indices (juvenile salmon catch-per-unit-effort (CPUE) and a copepod community index (CCI)) accounted for substantial and similar portions of variation in survival for juvenile emigration years 1998-2008 (R2>0.70). However, in forecast models for emigration years 2009-2011, there was an increasing discrepancy between predictions based on the PDO (50-448% of observed value) compared with those based on

  10. Assessing the relative importance of local and regional processes on the survival of a threatened salmon population.

    Directory of Open Access Journals (Sweden)

    Jessica A Miller

    Full Text Available Research on regulatory mechanisms in biological populations often focuses on environmental covariates. An integrated approach that combines environmental indices with organismal-level information can provide additional insight on regulatory mechanisms. Survival of spring/summer Snake River Chinook salmon (Oncorhynchus tshawytscha is consistently low whereas some adjacent populations with similar life histories experience greater survival. It is not known if populations with differential survival respond similarly during early marine residence, a critical period in the life history. Ocean collections, genetic stock identification, and otolith analyses were combined to evaluate the growth-mortality and match-mismatch hypotheses during early marine residence of spring/summer Snake River Chinook salmon. Interannual variation in juvenile attributes, including size at marine entry and marine growth rate, was compared with estimates of survival and physical and biological metrics. Multiple linear regression and multi-model inference were used to evaluate the relative importance of biological and physical metrics in explaining interannual variation in survival. There was relatively weak support for the match-mismatch hypothesis and stronger evidence for the growth-mortality hypothesis. Marine growth and size at capture were strongly, positively related to survival, a finding similar to spring Chinook salmon from the Mid-Upper Columbia River. In hindcast models, basin-scale indices (Pacific Decadal Oscillation (PDO and the North Pacific Gyre Oscillation (NPGO and biological indices (juvenile salmon catch-per-unit-effort (CPUE and a copepod community index (CCI accounted for substantial and similar portions of variation in survival for juvenile emigration years 1998-2008 (R2>0.70. However, in forecast models for emigration years 2009-2011, there was an increasing discrepancy between predictions based on the PDO (50-448% of observed value compared with

  11. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr

    International Nuclear Information System (INIS)

    Berntssen, Marc H.G.; Aatland, Aase; Handy, Richard D.

    2003-01-01

    Atlantic salmon (Salmo salar L.) parr were fed for 4 months on fish meal based diets supplemented with mercuric chloride (0, 10, or 100 mg Hg kg -1 DW) or methylmercury chloride (0, 5, or 10 mg Hg kg -1 DW) to assess the effects of inorganic (Hg) and organic dietary mercury on brain lipid peroxidation and neurotoxicity. Lipid peroxidative products, endogenous anti oxidant enzymes, brain histopathology, and overall behaviour were measured. Methylmercury accumulated significantly in the brain of fish fed 5 or 10 mg kg -1 by the end of the experiment, and inorganic mercury accumulated significantly in the brain only at 100 mg kg -1 exposure levels. No mortality or growth reduction was observed in any of the exposure groups. Fish fed 5 mg kg -1 methylmercury had a significant increase (2-fold) in the antioxidant enzyme super oxide dismutase (SOD) in the brain. At dietary levels of 10 mg kg -1 methylmercury, a significant increase (7-fold) was observed in lipid peroxidative products (thiobarbituric acid reactive substances, TBARS) and a subsequently decrease (1.5-fold) in anti oxidant enzyme activity (SOD and glutathione peroxidase, GSH-Px). Fish fed 10 mg kg -1 methylmercury also had pathological damage (vacoulation and necrosis), significantly reduced neural enzyme activity (5-fold reduced monoamine oxidase, MAO, activity), and reduced overall post-feeding activity behaviour. Pathological injury started in the brain stem and became more widespread in other areas of the brain at higher exposure levels. Fish fed 100 mg Hg kg -1 inorganic mercury had significant reduced neural MAO activity and pathological changes (astrocyte proliferation) in the brain, however, neural SOD and GSH-Px enzyme activity, lipid peroxidative products (TBARS), and post feeding behaviour did not differ from controls. Compared with other organs, the brain is particular susceptible for dietary methylmercury induced lipid peroxidative stress at relative low exposure concentrations. Doses of dietary

  12. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high

  13. Science advancements key to increasing management value of life stage monitoring networks for endangered Sacramento River winter-run Chinook salmon in California

    Science.gov (United States)

    Johnson, Rachel C.; Windell, Sean; Brandes, Patricia L.; Conrad, J. Louise; Ferguson, John; Goertler, Pascale A. L.; Harvey, Brett N.; Heublein, Joseph; Isreal, Joshua A.; Kratville, Daniel W.; Kirsch, Joseph E.; Perry, Russell W.; Pisciotto, Joseph; Poytress, William R.; Reece, Kevin; Swart, Brycen G.

    2017-01-01

    A robust monitoring network that provides quantitative information about the status of imperiled species at key life stages and geographic locations over time is fundamental for sustainable management of fisheries resources. For anadromous species, management actions in one geographic domain can substantially affect abundance of subsequent life stages that span broad geographic regions. Quantitative metrics (e.g., abundance, movement, survival, life history diversity, and condition) at multiple life stages are needed to inform how management actions (e.g., hatcheries, harvest, hydrology, and habitat restoration) influence salmon population dynamics. The existing monitoring network for endangered Sacramento River winterrun Chinook Salmon (SRWRC, Oncorhynchus tshawytscha) in California’s Central Valley was compared to conceptual models developed for each life stage and geographic region of the life cycle to identify relevant SRWRC metrics. We concluded that the current monitoring network was insufficient to diagnose when (life stage) and where (geographic domain) chronic or episodic reductions in SRWRC cohorts occur, precluding within- and among-year comparisons. The strongest quantitative data exist in the Upper Sacramento River, where abundance estimates are generated for adult spawners and emigrating juveniles. However, once SRWRC leave the upper river, our knowledge of their identity, abundance, and condition diminishes, despite the juvenile monitoring enterprise. We identified six system-wide recommended actions to strengthen the value of data generated from the existing monitoring network to assess resource management actions: (1) incorporate genetic run identification; (2) develop juvenile abundance estimates; (3) collect data for life history diversity metrics at multiple life stages; (4) expand and enhance real-time fish survival and movement monitoring; (5) collect fish condition data; and (6) provide timely public access to monitoring data in open data

  14. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    Science.gov (United States)

    Waldrop, Thomas; Summerfelt, Steven T.; Mazik, Patricia M.; Good, Christopher

    2018-01-01

    Swimming exercise, typically measured in body-lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5–2 BL/s) or low (salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.

  15. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. [Washington Department of Fish and Wildlife

    2009-06-12

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to

  16. Chinook salmon use of spawning patches: Relative roles of habitat quality, size, and connectivity

    Science.gov (United States)

    Isaak, D.J.; Thurow, R.F.; Rieman, B.E.; Dunham, J.B.

    2007-01-01

    Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km 2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically

  17. Bed stability in unconfined gravel bed mountain streams: With implications for salmon spawning viability in future climates

    Science.gov (United States)

    Jim McKean; Daniele Tonina

    2013-01-01

    Incubating eggs of autumn-spawning Chinook salmon (Oncorhynchus tshawytscha) could be at risk of midwinter high flows and substrate scour in a changing climate. A high-spatial-resolution multidimensional hydrodynamics model was used to assess the degree of scour risk in low-gradient unconfined gravel bed channels that are the favored environment for autumn-spawning...

  18. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.; Bleich, Matthew D.; Titzler, P. Scott; Fu, Tao

    2006-01-30

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key

  19. River food webs: Incorporating nature’s invisible fabric into river management

    Science.gov (United States)

    Andrea Watts; Ryan Bellmore; Joseph Benjamin; Colden Baxter

    2018-01-01

    Increasing the population of spring Chinook salmon and summer steelhead in Washington state’s Methow River is a goal of the Upper Columbia Spring Chinook Salmon and Steelhead Recovery Plan. Spring Chinook salmon and summer steelhead are listed as endangered and threatened, respectively, under the Endangered Species Act. Installing logjams and...

  20. Testes and brain gene expression in precocious male and adult maturing Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Houeix Benoit

    2010-03-01

    Full Text Available Abstract Background The male Atlantic salmon generally matures in fresh water upon returning after one or several years at sea. Some fast-growing male parr develop an alternative life strategy where they sexually mature before migrating to the oceans. These so called 'precocious' parr or 'sneakers' can successfully fertilise adult female eggs and so perpetuate their line. We have used a custom-built cDNA microarray to investigate gene expression changes occurring in the salmon gonad and brain associated with precocious maturation. The microarray has been populated with genes selected specifically for involvement in sexual maturation (precocious and adult and in the parr-smolt transformation. Results Immature and mature parr collected from a hatchery-reared stock in January were significantly different in weight, length and condition factor. Changes in brain expression were small - never more than 2-fold on the microarray, and down-regulation of genes was much more pronounced than up-regulation. Significantly changing genes included isotocin, vasotocin, cathepsin D, anamorsin and apolipoprotein E. Much greater changes in expression were seen in the testes. Among those genes in the testis with the most significant changes in expression were anti-Mullerian hormone, collagen 1A, and zinc finger protein (Zic1, which were down-regulated in precocity and apolipoproteins E and C-1, lipoprotein lipase and anti-leukoproteinase precursor which were up-regulated in precocity. Expression changes of several genes were confirmed in individual fish by quantitative PCR and several genes (anti-Mullerian hormone, collagen 1A, beta-globin and guanine nucleotide binding protein (G protein beta polypeptide 2-like 1 (GNB2L1 were also examined in adult maturing testes. Down-regulation of anti-Mullerian hormone was judged to be greater than 160-fold for precocious males and greater than 230-fold for November adult testes in comparison to July testes by this method. For

  1. Coalbed methane and salmon : assessing the risks

    International Nuclear Information System (INIS)

    Wendling, G.; Vadgama, J.; Holmes, R.

    2008-05-01

    The harmful environmental impacts from coalbed methane (CBM) development on land, water and wildlife have all been well documented based on experience in the United States and elsewhere. However, proposals to develop CBM resources in the headwaters region of northwest British Columbia raise a new issue regarding the impacts of CBM extraction on salmon. In order to begin addressing this knowledge gap and provide essential information for communities, this report presented an assessment of the risks of CBM development on salmon, with a specific focus on a tenure held by Shell Canada Limited in the Klappan region of Northwest British Columbia. The report provided a general overview of the CBM extraction process and of the environmental impacts typically associated with commercial-scale production. The Klappan Tenure location and geology were described along with the significance of its CBM reserves. The report also addressed the question of salmon presence within the tenure, drawing on existing field research to identify streams where coho, chinook and sockeye salmon have been observed. The report also contained assessments of potential risks associated with the two primary impact pathways, notably runoff and erosion effects arising from land disturbance, and stream flow and temperature effects arising from groundwater extraction. The report provided a brief overview of additional CBM-related impacts which could have indirect effects on salmon. Last, the report considered factors external to the Klappan project which could influence the nature and severity of impacts on salmon, including climate change; inadequate regulations; and cumulative impacts. It was concluded that CBM development should not occur without social license. Communities need to be empowered to decide whether or not they support CBM extraction in their area before development proceeds. 73 refs., 3 tabs., 26 figs

  2. Mathematical formulation of temperature fluctuation and control rod vibration in PARR

    International Nuclear Information System (INIS)

    Ansari, S.A.; Ayazuddin, S.K.

    This report describes the mathematical interpretation of experimental neutron noise spectra obtained for PARR core. A one dimensional thermal-hydraulic model of PARR core was developed to calculate the magnitude of neutron noise as a result of fluctuation in the core inlet coolant temperature. The sink structure of the neutron power spectral density as well as the dependence of observed neutron spectra on coolant velocity is also explained by the thermal hydraulic model. An attempt is made to explain the phenomena of control rod vibration by a simple eigen frequency vibration model. The calculated neutron power spectral density due to vibration and temperature noise were added and compared with the experimental power spectra obtained for PARR. (orig./A.B.)

  3. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Bottom, Daniel L.; Simenstad, Charles A.; Campbell, Lance [Northwest Fisheries Science Center

    2009-05-15

    In 2002 with support from the U.S. Army Corps of Engineers (USACE), an interagency research team began investigating salmon life histories and habitat use in the lower Columbia River estuary to fill significant data gaps about the estuary's potential role in salmon decline and recovery . The Bonneville Power Administration (BPA) provided additional funding in 2004 to reconstruct historical changes in estuarine habitat opportunities and food web linkages of Columbia River salmon (Onchorhynchus spp.). Together these studies constitute the estuary's first comprehensive investigation of shallow-water habitats, including selected emergent, forested, and scrub-shrub wetlands. Among other findings, this research documented the importance of wetlands as nursery areas for juvenile salmon; quantified historical changes in the amounts and distributions of diverse habitat types in the lower estuary; documented estuarine residence times, ranging from weeks to months for many juvenile Chinook salmon (O. tshawytscha); and provided new evidence that contemporary salmonid food webs are supported disproportionately by wetland-derived prey resources. The results of these lower-estuary investigations also raised many new questions about habitat functions, historical habitat distributions, and salmon life histories in other areas of the Columbia River estuary that have not been adequately investigated. For example, quantitative estimates of historical habitat changes are available only for the lower 75 km of the estuary, although tidal influence extends 217 km upriver to Bonneville Dam. Because the otolith techniques used to reconstruct salmon life histories rely on detection of a chemical signature (strontium) for salt water, the estuarine residency information we have collected to date applies only to the lower 30 or 35 km of the estuary, where fish first encounter ocean water. We lack information about salmon habitat use, life histories, and growth within the long tidal

  4. Radiological impact of the PARR-1 operation on the environment

    International Nuclear Information System (INIS)

    Bakhtyar, S.; Raza, S.S.; Tayyab, M.; Pervez, S.; Salahuddin, A.

    2005-01-01

    This paper presents a study related to the assessment of the radiological impact on the environment due to the operation of the Pakistan research reactor-1 (PARR-1) at the Pakistan Institute of Nuclear Sciences and Technology (PINSTECH), Islamabad. The parameters studied include the radioactivity releases in a gaseous form and also those originating from the liquid and solid wastes produced due to the operation of this research facility. The analysis is based on the environmental monitoring data for the last 10 years (1992-2002) and the conclusions have been drawn for the impact of the PARR-1 operation on the occupational workers as well as the general public living in the vicinity of the reactor site. Further, on the basis of this data, yearly average doses and the cumulative doses for the expected life of PARR-1, due to different radiation sources have been estimated. The analysis indicated that the maximum yearly doses at ground level for the occupational workers as well as for the public are a fraction of the International Atomic Energy Agency's (IAEA) defined limiting values. It is, therefore, concluded that the impact of the PARR-1 normal operation on the environment is negligible and it can be regarded as ''safe to the public as well as the occupational workers''. (orig.)

  5. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    Science.gov (United States)

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  6. Development of rations for the enhanced survival of salmon

    International Nuclear Information System (INIS)

    Ewing, R.D.; Lagasse, J.P.

    1990-12-01

    The nutritional quality of feed plays an important role in determining the health and ''fitness'' of smolts. Commercial fish meal, the major source of protein in salmon rations, may be reduced in quality from poor drying techniques during manufacture. Dietary stress in the hatchery may result. This investigation tests the hypothesis that protein quality of fish rations can influence the survival of smolts and the ultimate return of adults. The test involves a comparison between performances of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha) reared on rations containing very high quality protein derived from vacuum dried meals and those of fish reared on commercial rations, with commercial fish meal as a source of protein. Survival and return of several brood years of test and control fish are used to measure the influence of ration on survival. This report includes recovery data from these marked fish collected 1982 through September 1990

  7. Smolt monitoring at the head of lower granite reservoir and lower Granite Dam, annual report 1999 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife; Idaho. Dept. of Fish and Game.

    2001-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris

  8. Grande Ronde Basin endemic spring chinook salmon supplementation program

    International Nuclear Information System (INIS)

    1998-02-01

    As part of its responsibilities under the Northwest Power Act (Pacific Northwest Electric Power Planning and Conservation Act of 1980), Bonneville Power Administration (BPA) must mitigate the loss of fish, wildlife, and related spawning grounds and habitat attributable to power production at federal hydroelectric dams on the Columbia River and its tributaries. The federal dams have been identified as a major source of mortality for the listed Snake River salmon stocks. BPA also has responsibilities under the Endangered Species Act (ESA) of 1973 to operate in a way that does not jeopardize the continued existence of listed species and to use its agency resources to conserve listed species

  9. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Putnam, Scott A. [Idaho Department of Fish and Game

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The

  10. Latvian PR people are world class / Ada Parr

    Index Scriptorium Estoniae

    Parr, Ada

    2004-01-01

    Suhtekorraldusfirma Porter Novelli rahvusvahelise partnerluse juht suhtekorralduse osatähtsuse kasvust ettevõtete äritegevuses, suhtekorraldusturu olukorrast ja teenuste kvaliteedi tasemest Baltimaades. Vt. samas: Ada Parr recommends

  11. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Wayne

    2007-04-01

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during August and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5,138 juvenile

  12. Regulation of the glucocorticoid receptor mRNA levels in the gills of Atlantic salmon (Salmo salar during smoltification

    Directory of Open Access Journals (Sweden)

    MAZURAIS D.

    1998-07-01

    Full Text Available The regulation of the Glucocorticoid Receptor (GR transcript was investigated in the gills of Atlantic salmon (Salmo salar during the parr-smolt transformation. Sampling of parr and smolt fish was performed between December and July and in particular during the smoltification period occurring in spring. Quantification of GR transcripts revealed differences between the two groups in March and at the beginning of April. During these dates, the amounts of GR mRNA in parr gills were respectively three and two fold lower than those measured in smolts. In order to determine which factors are responsible for these differences, we studied the long-term effects of prolactin and Cortisol treatments on GR transcript in the gills of presmolt fish. The plasma levels of these two hormones respectively drop and rise during smoltification. Contrary to Cortisol long-term treatment which did not modify the amount of gill GR transcript, short-term treatment induced a significant decrease within 12 hours. Prolactin long-term treatment caused a significant increase of GR transcript abundance after 13 days of implant treatment. This result is unexpected with regard to those obtained in the smoltification analysis but is in agreement with previous studies performed in mammary gland revealing a positive control of PRL on GR in epithelial cells. Our data suggest that the regulation of the GR transcript during the parr-smolt transformation probably involves several hormonal factors.

  13. Genetic variation in threshold reaction norms for alternative reproductive tactics in male Atlantic salmon, Salmo salar.

    Science.gov (United States)

    Piché, Jacinthe; Hutchings, Jeffrey A; Blanchard, Wade

    2008-07-07

    Alternative reproductive tactics may be a product of adaptive phenotypic plasticity, such that discontinuous variation in life history depends on both the genotype and the environment. Phenotypes that fall below a genetically determined threshold adopt one tactic, while those exceeding the threshold adopt the alternative tactic. We report evidence of genetic variability in maturation thresholds for male Atlantic salmon (Salmo salar) that mature either as large (more than 1 kg) anadromous males or as small (10-150 g) parr. Using a common-garden experimental protocol, we find that the growth rate at which the sneaker parr phenotype is expressed differs among pure- and mixed-population crosses. Maturation thresholds of hybrids were intermediate to those of pure crosses, consistent with the hypothesis that the life-history switch points are heritable. Our work provides evidence, for a vertebrate, that thresholds for alternative reproductive tactics differ genetically among populations and can be modelled as discontinuous reaction norms for age and size at maturity.

  14. Nutrient fluxes and the recent collapse of coastal California salmon populations

    Science.gov (United States)

    Moore, Jonathan W.; Hayes, Sean A.; Duffy, Walter; Gallagher, Sean; Michel, Cyril J.; Wright, David

    2011-01-01

    Migratory salmon move nutrients both in and out of fresh waters during the different parts of their life cycle. We used a mass-balance approach to quantify recent changes in phosphorus (P) fluxes in six coastal California, USA, watersheds that have recently experienced dramatic decreases in salmon populations. As adults, semelparous Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon imported 8.3 and 10.4 times more P from the ocean, respectively, than they exported as smolts, while iteroparous steelhead (i.e., sea-run rainbow trout, Oncorhynchus mykiss) imported only 1.6 times more than they exported as kelts and smolts. Semelparous species whose life histories led them to import more nutrients were also the species whose populations decreased the most dramatically in California in recent years. In addition, the relationship between import and export was nonlinear, with export being proportionally more important at lower levels of import. This pattern was driven by two density-dependent processes — smolts were larger and disproportionately more abundant at lower spawner abundances. In fact, in four of our six streams we found evidence that salmon can drive net export of P at low abundance, evidence for the reversal of the "conveyor belt" of nutrients.

  15. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Brimmer, Arnold F.

    1994-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1994 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1994 snowpack was among the lowest since the beginning of the present drought, and the subsequent runoff was very poor. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1994. Total annual (hatchery + wild) chinook salmon catch at the Snake River trap was 1.5 times greater than in 1993. Hatchery and wild steelhead trout catches were similar to 1993. The Snake River trap collected 30 age 0 chinook salmon. Hatchery chinook salmon catch at the Clearwater River trap was 3.5 times higher than in 1993, and wild chinook salmon catch was 4.2 times higher. Hatchery steelhead trout trap catch was less than half of 1993 numbers because the trap was fishing near the north shore during the majority of the hatchery steelhead movement due to flow augmentations from Dworshak. Wild steelhead trout trap catch was 2 times higher than in 1993. The Salmon River trap was operated for about a month longer in 1994 than in 1993 due to extremely low flows. Hatchery chinook salmon catch was 1.4 times greater in 1994 than the previous year. Wild chinook salmon catch was slightly less in 1994. The 1994 hatchery steelhead trout collection did not change significantly from 1993 numbers. Wild steelhead trout collection in 1994 was 59% of the 1993 catch. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992).

  16. Deepening Thermocline Displaces Salmon Catch On The Oregon Coast

    Science.gov (United States)

    Harrison, C. S.; Lawson, P.

    2015-12-01

    Establishing a linkage between fish stock distributions and physical oceanography at a fine scale provides insights into the dynamic nature of near-shore ocean habitats. Characterization of habitat preferences adds to our understanding of the ecosystem, and may improve forecasts of distribution for harvest management. The Project CROOS (Collaborative Research on Oregon Ocean Salmon) Chinook salmon catch data set represents an unprecedented high-resolution record of catch location and depth, with associated in-situ temperature measurements and stock identification derived from genetic data. Here we connect this data set with physical ocean observations to gain understanding of how circulation affects salmon catch distributions. The CROOS observations were combined with remote and in situ observations of temperature, as well as a data assimilative regional ocean model that incorporates satellite and HF radar data. Across the CROOS data set, catch is primarily located within the upwelling front over the seamounts and reef structures associated with Heceta and Stonewall Banks along the shelf break. In late September of 2014 the anomalously warm "blob" began to arrive on the Oregon coast coincident with a strong downwelling event. At this time the thermocline deepened from 20 to 40 m, associated with a deepening of salmon catch depth. A cold "bulb" of water over Heceta Bank may have provided a thermal refuge for salmon during the initial onshore movement of the anomalously warm water. These observations suggest that a warming ocean, and regional warming events in particular, will have large effects on fish distributions at local and regional scales, in turn impacting fisheries.

  17. Differential expression of gill Na+,K+-ATPase alpha- and beta-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar

    DEFF Research Database (Denmark)

    Nilsen, Tom O.; Ebbesson, Lars O. E.; Madsen, Steffen S.

    2007-01-01

    This study examines changes in gill Na(+),K(+)-ATPase (NKA) alpha- and beta-subunit isoforms, Na(+),K(+),2Cl(-) cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, an...

  18. Contrasting effects of climate change in continental vs. oceanic environments on population persistence and microevolution of Atlantic salmon.

    Science.gov (United States)

    Piou, Cyril; Prévost, Etienne

    2013-03-01

    Facing climate change (CC), species are prone to multiple modifications in their environment that can lead to extinction, migration or adaptation. Identifying the role and interplay of different potential stressors becomes a key question. Anadromous fishes will be exposed to both river and oceanic habitat changes. For Atlantic salmon, the river water temperature, river flow and oceanic growth conditions appear as three main stressing factors. They could act on population dynamics or as selective forces on life-history pathways. Using an individual-based demo-genetic model, we assessed the effects of these factors (1) to compare risks of extinction resulting from CC in river and ocean, and (2) to assess CC effects on life-history pathways including the evolution of underlying genetic control of phenotypic plasticity. We focused on Atlantic salmon populations from Southern Europe for a time horizon of three decades. We showed that CC in river alone should not lead to extinction of Southern European salmon populations. In contrast, the reduced oceanic growth appeared as a significant threat for population persistence. An increase in river flow amplitude increased the risk of local extinction in synergy with the oceanic effects, but river temperature rise reduced this risk. In terms of life-history modifications, the reduced oceanic growth increased the age of return of individuals through plastic and genetic responses. The river temperature rise increased the proportion of sexually mature parr, but the genetic evolution of the maturation threshold lowered the maturation rate of male parr. This was identified as a case of environmentally driven plastic response that masked an underlying evolutionary response of plasticity going in the opposite direction. We concluded that to counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might

  19. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A.; Tezak, E.P. (National Marine Fisheries Service); Endicott, Rick (Long Live the Kings, Seattle, WA)

    2002-08-01

    In the 2000 Federal Columbia River Power System (FCRPS) Biological Opinion, NMFS identified six populations of steelhead and several salmon populations that had dropped to critically low levels and continue to decline. Following thorough risk-benefit analyses, captive propagation programs for some or all of the steelhead (Oncorhynchus mykiss) populations may be required to reduce the risk of extinction, and more programs may be required in the future. Thus, captive propagation programs designed to maintain or rebuild steelhead populations require intensive and rigorous scientific evaluation, much like the other objectives of BPA Project 1993-056-00 currently underway for chinook (O. tshawytscha) and sockeye salmon (O. nerka). Pacific salmon reared to the adult stage in captivity exhibit poor reproductive performance when released to spawn naturally. Poor fin quality and swimming performance, incomplete development of secondary sex characteristics, changes in maturation timing, and other factors may contribute to reduced spawning success. Improving natural reproductive performance is critical for the success of captive broodstock programs in which adult-release is a primary reintroduction strategy for maintaining ESA-listed populations.

  20. Conversion of Tobacco Biomass to Flavor Components by Means of Microwave and Parr Reactors

    Directory of Open Access Journals (Sweden)

    Ara Katayoun Mahdavi

    2017-04-01

    Full Text Available In the present work, microwave and Parr reactors were utilized for synthesis of pyrazines from plant-based biomass in the presence of ammonia and different amino acids. Using these techniques led to synthesis of a relatively wide range of pyrazines with sweet odor and chocolate-like smell. The optimum synthetic conditions to have maximum pyrazine yield for both the microwave and Parr reactions were 41 g of fructose/glucose syrup derived from cellulosic biomass, 28 mL NH4OH (30%, and 0.96 g L-threonine, 0.56 g L-valine, 0.5 g L-leucine, and 0.5 g L-isoleucine at 120 °C for 30 min. Quantitative results obtained via gas chromatography-mass spectrometry (GC-MS using the traditional open-heated oil bath method have been compared with data obtained via microwave and Parr reactors. In these two latter methods, sealed vessels under high pressure and higher temperature were used. The yield of synthesized pyrazines increased dramatically with both microwave and Parr reactors. Surprisingly, the yield of synthesized pyrazines was both reproducible and nearly two times higher via the Parr reactor than that observed with the microwave reactor under comparable conditions.

  1. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, annual report 1997 operations.; ANNUAL

    International Nuclear Information System (INIS)

    United States. Bonneville Power Administration. Division of Fish and Wildlife.

    1999-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris

  2. Effect of waterborne exposure to 4-tert-octylphenol and 17beta-estradiol on smoltification and downstream migration in Atlantic salmon, Salmo salar

    DEFF Research Database (Denmark)

    Bangsgaard, Karsten; Madsen, Steffen S; Korsgaard, Bodil

    2006-01-01

    Groups of Atlantic salmon parr (November, Exp. 1) or pre-smolts (March, Exp. 2) were exposed to estradiol-17beta (E2 conc.: nominal 500 ngl-1/actual 8-16 ngl-1) and two doses of tert-octylphenol (OP: nominal 25 µgl-1/actual 4.5-6.5 µgl-1 and OP: nominal 100 µgl-1/actual 10-30 µgl-1) for 26 days i...

  3. A modeled comparison of direct and food web-mediated impacts of common pesticides on Pacific salmon.

    Directory of Open Access Journals (Sweden)

    Kate H Macneale

    Full Text Available In the western United States, pesticides used in agricultural and urban areas are often detected in streams and rivers that support threatened and endangered Pacific salmon. Although concentrations are rarely high enough to cause direct salmon mortality, they can reach levels sufficient to impair juvenile feeding behavior and limit macroinvertebrate prey abundance. This raises the possibility of direct adverse effects on juvenile salmon health in tandem with indirect effects on salmon growth as a consequence of reduced prey abundance. We modeled the growth of ocean-type Chinook salmon (Oncorhynchus tshawytscha at the individual and population scales, investigating insecticides that differ in how long they impair salmon feeding behavior and in how toxic they are to salmon compared to macroinvertebrates. The relative importance of these direct vs. indirect effects depends both on how quickly salmon can recover and on the relative toxicity of an insecticide to salmon and their prey. Model simulations indicate that when exposed to a long-acting organophosphate insecticide that is highly toxic to salmon and invertebrates (e.g., chlorpyrifos, the long-lasting effect on salmon feeding behavior drives the reduction in salmon population growth with reductions in prey abundance having little additional impact. When exposed to short-acting carbamate insecticides at concentrations that salmon recover from quickly but are lethal to invertebrates (e.g., carbaryl, the impacts on salmon populations are due primarily to reductions in their prey. For pesticides like carbaryl, prey sensitivity and how quickly the prey community can recover are particularly important in determining the magnitude of impact on their predators. In considering both indirect and direct effects, we develop a better understanding of potential impacts of a chemical stressor on an endangered species and identify data gaps (e.g., prey recovery rates that contribute uncertainty to these

  4. Smolt monitoring at the head of Lower Granite Reservoir and Lower Granite Dam, 1998.; ANNUAL

    International Nuclear Information System (INIS)

    2000-01-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and

  5. Research on Captive Broodstock Programs for Pacific Salmon, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A. (National Marine Fisheries Service)

    2004-01-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated males in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River fish

  6. Qualitative Assessment: Evaluating the Impacts of Climate Change on Endangered Species Act Recovery Actions for the South Fork Nooksack River, WA

    Science.gov (United States)

    The South Fork Nooksack River (South Fork) is located in northwest Washington State and is home to nine species of Pacific salmon, including Nooksack early Chinook (aka, spring Chinook salmon), an iconic species for the Nooksack Indian Tribe. The quantity of salmon in the South F...

  7. Migratory behavior and physiological development as potential determinants of life history diversity in fall Chinook Salmon in the Clearwater River

    Science.gov (United States)

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.; Richmond, Marshall C.; Perkins, William A.

    2018-01-01

    We studied the influence of behavior, water velocity, and physiological development on the downstream movement of subyearling fall‐run Chinook Salmon Oncorhynchus tshawytscha in both free‐flowing and impounded reaches of the Clearwater and Snake rivers as potential mechanisms that might explain life history diversity in this stock. Movement rates and the percentage of radio‐tagged fish that moved faster than the average current velocity were higher in the free‐flowing Clearwater River than in impounded reaches. This supports the notion that water velocity is a primary determinant of downstream movement regardless of a fish's physiological development. In contrast, movement rates slowed and detections became fewer in impounded reaches, where water velocities were much lower. The percentage of fish that moved faster than the average current velocity continued to decline and reached zero in the lowermost reach of Lower Granite Reservoir, suggesting that the behavioral disposition to move downstream was low. These findings contrast with those of a similar, previous study of Snake River subyearlings despite similarity in hydrodynamic conditions between the two studies. Physiological differences between Snake and Clearwater River migrants shed light on this disparity. Subyearlings from the Clearwater River were parr‐like in their development and never showed the increase in gill Na+/K+‐ATPase activity displayed by smolts from the Snake River. Results from this study provide evidence that behavioral and life history differences between Snake and Clearwater River subyearlings may have a physiological basis that is modified by environmental conditions.

  8. Performance of PARR-1 with LEU Fuel

    International Nuclear Information System (INIS)

    Pervez, S.; Latif, M.; Bokhari, I.H.; Bakhtyar, S.

    2005-01-01

    Pakistan Research Reactor (PARR-1) went critical in 1965 with HEU fuel. The reactor core was converted to LEU fuel with power upgradation from 5 MW to 10 MW in 1992. The reactor has been operated with LEU fuel for about 10,000 hours and has produced about 66,000 MWh energy up to now. Average burn up of the irradiated fuel is about 42 %. The fuel performance during the last 12 years has been excellent. Post irradiation visual inspection of the fuel has revealed no abnormality. During operation there have been no signs of releases in the pool water establishing the full integrity of this fuel. The reactor has been mainly utilized for radioisotope production, beam tube experiments including neutron diffraction studies, neutron radiography etc. Studies have been completed to operate the reactor with a mixed core (HEU + LEU) to utilize the less burned HEU fuel elements. A major project of production of fission Moly using PARR-1 is in the final stages. (author)

  9. Sperm competition, but not major histocompatibility divergence, drives differential fertilization success between alternative reproductive tactics in Chinook salmon.

    Science.gov (United States)

    Lehnert, S J; Helou, L; Pitcher, T E; Heath, J W; Heath, D D

    2018-01-01

    Post-copulatory sexual selection processes, including sperm competition and cryptic female choice (CFC), can operate based on major histocompatibility (MH) genes. We investigated sperm competition between male alternative reproductive tactics [jack (sneaker) and hooknose (guard)] of Chinook salmon (Oncorhynchus tshawytscha). Using a full factorial design, we examined in vitro competitive fertilization success of paired jack and hooknose males at three time points after sperm activation (0, 15 and 60 s) to test for male competition, CFC and time effects on male fertilization success. We also examined egg-mediated CFC at two MH genes by examining both the relationship between competitive fertilization success and MH divergence as well as inheritance patterns of MH alleles in resulting offspring. We found that jacks sired more offspring than hooknose males at 0 s post-activation; however, jack fertilization success declined over time post-activation, suggesting a trade-off between sperm speed and longevity. Enhanced fertilization success of jacks (presumably via higher sperm quality) may serve to increase sneaker tactic competitiveness relative to dominant hooknose males. We also found evidence of egg-mediated CFC (i.e. female × male interaction) influencing competitive fertilization success; however, CFC was not acting on the MH genes as we found no relationship between fertilization success and MH II β 1 or MH I α 1 divergence and we found no deviations from Mendelian inheritance of MH alleles in the offspring. Our study provides insight into evolutionary mechanisms influencing variation in male mating success within alternative reproductive tactics, thus underscoring different strategies that males can adopt to attain success. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  10. Testing of candidate non-lethal sampling methods for detection of Renibacterium salmoninarum in juvenile Chinook salmon Oncorhynchus tshawytscha

    Science.gov (United States)

    Elliott, Diane G.; McKibben, Constance L.; Conway, Carla M.; Purcell, Maureen K.; Chase, Dorothy M.; Applegate, Lynn M.

    2015-01-01

    Non-lethal pathogen testing can be a useful tool for fish disease research and management. Our research objectives were to determine if (1) fin clips, gill snips, surface mucus scrapings, blood draws, or kidney biopsies could be obtained non-lethally from 3 to 15 g Chinook salmon Oncorhynchus tshawytscha, (2) non-lethal samples could accurately discriminate between fish exposed to the bacterial kidney disease agent Renibacterium salmoninarum and non-exposed fish, and (3) non-lethal samples could serve as proxies for lethal kidney samples to assess infection intensity. Blood draws and kidney biopsies caused ≥5% post-sampling mortality (Objective 1) and may be appropriate only for larger fish, but the other sample types were non-lethal. Sampling was performed over 21 wk following R. salmoninarum immersion challenge of fish from 2 stocks (Objectives 2 and 3), and nested PCR (nPCR) and real-time quantitative PCR (qPCR) results from candidate non-lethal samples were compared with kidney tissue analysis by nPCR, qPCR, bacteriological culture, enzyme-linked immunosorbent assay (ELISA), fluorescent antibody test (FAT) and histopathology/immunohistochemistry. R. salmoninarum was detected by PCR in >50% of fin, gill, and mucus samples from challenged fish. Mucus qPCR was the only non-lethal assay exhibiting both diagnostic sensitivity and specificity estimates >90% for distinguishing between R. salmoninarum-exposed and non-exposed fish and was the best candidate for use as an alternative to lethal kidney sample testing. Mucus qPCR R. salmoninarum quantity estimates reflected changes in kidney bacterial load estimates, as evidenced by significant positive correlations with kidney R. salmoninaruminfection intensity scores at all sample times and in both fish stocks, and were not significantly impacted by environmentalR. salmoninarum concentrations.

  11. Northeast Oregon Hatchery Spring Chinook Master Plan, Technical Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Ashe, Becky L.; Concannon, Kathleen; Johnson, David B.

    2000-04-01

    Spring chinook salmon populations in the Imnaha and Grande Ronde rivers are listed as threatened under the Endangered Species Act (ESA) and are at high risk of extirpation. The Nez Perce Tribe, the Confederated Tribes of the Umatilla Indian Reservation, and Oregon Department of Fish and Wildlife, are co-managers of conservation/restoration programs for Imnaha and Grande Ronde spring chinook salmon that use hatchery supplementation and conventional and captive broodstock techniques. The immediate goal of these programs is to prevent extirpation and provide the potential for restoration once factors limiting production are addressed. These programs redirect production occurring under the Lower Snake River Compensation Plan (LSRCP) from mitigation to conservation and restoration. Both the Imnaha and Grande Ronde conservation/restoration programs are described in ESA Section 10 permit applications and the co-managers refer to the fish production from these programs as the Currently Permitted Program (CPP). Recently, co-managers have determined that it is impossible to produce the CPP at Lookingglass Hatchery, the LSRCP facility intended for production, and that without additional facilities, production must be cut from these conservation programs. Development of new facilities for these programs through the Columbia Basin Fish and Wildlife Program is considered a new production initiative by the Northwest Power Planning Council (NPPC) and requires a master plan. The master plan provides the NPPC, program proponents and others with the information they need to make sound decisions about whether the proposed facilities to restore salmon populations should move forward to design. This master plan describes alternatives considered to meet the facility needs of the CPP so the conservation program can be fully implemented. Co-managers considered three alternatives: modify Lookingglass Hatchery; use existing facilities elsewhere in the Basin; and use new facilities in

  12. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    Science.gov (United States)

    Waldrop, Thomas; Summerfelt, Steven T.; Mazik, Patricia M.; Good, Christopher

    2018-01-01

    Swimming exercise, typically measured in body-lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5–2 BL/s) or low (exercise and DO concentration on growth, feed conversion, survival and fin condition. By study's end, both increased swimming speed and higher DO were independently associated with a statistically significant increase in growth performance (p exercise and dissolved oxygen at saturation during Atlantic salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.

  13. Growth and development of skeletal anomalies in diploid and triploid Atlantic salmon (Salmo salar) fed phosphorus-rich diets with fish meal and hydrolyzed fish protein

    Science.gov (United States)

    Puvanendran, Velmurugu; Riesen, Guido; Seim, Rudi Ripman; Hagen, Ørjan; Martínez-Llorens, Silvia; Falk-Petersen, Inger-Britt; Fernandes, Jorge M. O.; Jobling, Malcolm

    2018-01-01

    Diploid and triploid Atlantic salmon, Salmo salar were fed high-protein, phosphorus-rich diets (56–60% protein; ca 18g phosphorus kg-1 diet) whilst being reared at low temperature from start-feeding until parr-smolt transformation. Performances of salmon fed diets based on fish meal (STD) or a mix of fishmeal and hydrolysed fish proteins (HFM) as the major protein sources were compared in terms of mortality, diet digestibility, growth and skeletal deformities. Separate groups of diploids and triploids were reared in triplicate tanks (initially 3000 fish per tank; tank biomass ca. 620 g) from 0–2745 degree-days post-start feeding (ddPSF). Growth metrics (weight, length, condition factor) were recorded at ca. 4 week intervals, external signs of deformities to the operculum, jaws and spinal column were examined in parr sampled at 1390 ddPSF, and external signs of deformity and vertebral anomalies (by radiography) were examined in fish sampled at the end of the trial (2745 ddPSF). The triploid salmon generally had a lower mass per unit length, i.e. lower condition factor, throughout the trial, but this did not seem to reflect any consistent dietary or ploidy effects on either dietary digestibility or the growth of the fish. By the end of the trial fish in all treatment groups had achieved a weight of 50+ g, and had completed the parr-smolt transformation. The triploids had slightly, but significantly, fewer vertebrae (Triploids STD 58.74 ± 0.10; HFM 58.68 ± 0.05) than the diploids (Diploids STD 58.97 ± 0.14; HFM 58.89 ± 0.01), and the incidence of skeletal (vertebral) abnormalities was higher in triploids (Triploids STD 31 ± 0.90%; HFM 15 ± 1.44%) than in diploids (Diploids STD 4 ± 0.80%; HFM 4 ± 0.83%). The HFM diet gave a significant reduction in the numbers of triploid salmon with vertebral anomalies in comparison with the triploids fed the STD diet possibly as a result of differences in phosphorus bioavailability between the two diets. Overall, the

  14. Martin Parr in Mexico: Does Photographic Style Translate?

    Directory of Open Access Journals (Sweden)

    Timothy R. Gleason

    2011-11-01

    Full Text Available This study analyzes Martin Parr’s 2006 photobook, Mexico. Parr is a British documentary photographer best known for a direct photographic style that reflects upon “Englishness.”Mexico is his attempt to understand this foreign country via his camera. Mexico, as a research subject, is not a problem to solve but an opportunity to understand a photographer’s work. Parr’s Mexico photography (technique, photographic content, and interest in globalization, economics, and culture is compared to his previous work to explain how Parr uses fashion and icons to represent a culture or class. This article argues Parr’s primary subjects, heads/hats, food, and Christs, are photographed without excessive aesthetic pretensions so that the thrust of Parr’s message about globalization can be more evident:Mexico maintains many of its traditions and icons while adopting American brands.

  15. The Contribution of Tidal Fluvial Habitats in the Columbia River Estuary to the Recovery of Diverse Salmon ESUs

    Science.gov (United States)

    2013-05-01

    Chinook salmon (presumably subyearling) was the most prevalent life-history type detected at the Russian Island and Woody Island sites. The number of...Extend and refine the computational grid We extended the Virtual Columbia River to include regions upstream of Beaver Army, which previously served as...the Columbia River above Beaver Army and particularly above the confluence of the Willamette River. That process of calibration is highly iterative

  16. Chemical data for 7 streams in Salmon River Basin - Importance of biotic and abiotic features of salmon habitat implications for juvenile Chinook and steelhead growth and survival

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a large-scale, long-term comparative study that includes many streams (20+ streams in the Salmon River Basin, Idaho, including a few non-salmon streams for...

  17. Y-chromosomal DNA markers for discrimination of chemical substance and effluent effects on sexual differentiation in salmon.

    OpenAIRE

    Afonso, Luis O B; Smith, Jack L; Ikonomou, Michael G; Devlin, Robert H

    2002-01-01

    Chinook salmon alevins were exposed during their labile period for sex differentiation to different concentrations of bleached kraft mill effluent (BKME), primary sewage effluent, secondary sewage effluent (SE), 17ss-estradiol, testosterone, and nonylphenol. After exposure for 29 days post hatching (DPH), fish were allowed to grow until 103 and 179 DPH, at which time their genetic sex was determined using Y-chromosomal DNA markers and their gonadal sex was determined by histology. Independent...

  18. Induction of chinook salmon growth hormone promoter activity by the adenosine 3',5'-monophosphate (cAMP)-dependent pathway involves two cAMP-response elements with the CGTCA motif and the pituitary-specific transcription factor Pit-1.

    Science.gov (United States)

    Wong, A O; Le Drean, Y; Liu, D; Hu, Z Z; Du, S J; Hew, C L

    1996-05-01

    In this study, the functional role of two cAMP-response elements (CRE) in the promoter of the chinook salmon GH gene and their interactions with the transcription factor Pit-1 in regulating GH gene expression were examined. A chimeric construct of the chloramphenicol acetyltransferase (CAT) reporter gene with the CRE-containing GH promoter (pGH.CAT) was transiently transfected into primary cultures of rainbow trout pituitary cells. The expression of CAT activity was stimulated by an adenylate cyclase activator forskolin as well as a membrane-permeant cAMP analog 8-bromo-cAMP. Furthermore, these stimulatory responses were inhibited by a protein kinase A inhibitor H89, suggesting that these CREs are functionally coupled to the adenylate cyclase-cAMP-protein kinase A cascade. This hypothesis is supported by parallel studies using GH4ZR7 cells, a rat pituitary cell line stably transfected with dopamine D2 receptors. In this cell line, D2 receptor activation is known to inhibit adenylate cyclase activity and cAMP synthesis. Stimulation with a nonselective dopamine agonist, apomorphine, or a D2-specific agonist, Ly171555, suppressed the expression of pGH.CAT in GH4ZR7 cells, and this inhibition was blocked by simultaneous treatment with forskolin. These results indicate that inhibition of the cAMP-dependent pathway reduces the basal promoter activity of the CRE-containing pGH.CAT. The functionality of these CREs was further confirmed by deletion analysis and site-specific mutagenesis. In trout pituitary cells, the cAMP inducibility of pGH.CAT was inhibited after deleting the CRE-containing sequence from the GH promoter. When the CRE-containing sequence was cloned into a CAT construct with a viral thymidine kinase promoter, a significant elevation of cAMP inducibility was observed. This stimulatory response, however, was abolished by mutating the core sequence, CGTCA, in these CREs, suggesting that these cis-acting elements confer cAMP inducibility to the salmon GH gene

  19. Integrating subsistence practice and species distribution modeling: assessing invasive elodea's potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    Science.gov (United States)

    Luizza, Matthew W.; Evangelista, Paul H.; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-07-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state's vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska's first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon ( Oncorhynchus tshawytscha) and whitefish ( Coregonus nelsonii) subsistence. State models were applied to future climate (2040-2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  20. Development of a natural rearing system to improve supplemental fish quality: 1996-1998: final report; TOPICAL

    International Nuclear Information System (INIS)

    Maynard, Desmond J.

    2001-01-01

    This report covers the 1996-1998 Natural Rearing Enhancement System (NATURES) research for increasing hatchery salmon postrelease survival and producing fish with more wild-like behavior, physiology, and morphology prior to release. Experiments were conducted evaluating automatic subsurface feeders; natural diets; exercise systems; seminatural raceway habitat enriched with cover, structure, and substrate; and predator avoidance conditioning for hatchery salmonids. Automatic subsurface feed delivery systems did not affect chinook salmon depth distribution or vulnerability to avian predators. Live-food diets only marginally improved the ability of chinook salmon to capture prey in stream enclosures. A prototype exercise system that can be retrofitted to raceways was developed, however, initial testing indicated that severe amounts of exercise may increase in culture mortality. Rearing chinook salmon in seminatural raceway habitat with gravel substrate, woody debris structure, and overhead cover improved coloration and postrelease survival without impacting in-culture health or survival. Steelhead fry reared in enriched environments with structure, cover, and point source feeders dominated and outcompeted conventionally reared fish. Exposing chinook salmon to caged predators increased their postrelease survival. Chinook salmon showed an antipredator response to chemical stimuli from injured conspecifics and exhibited acquired predator recognition following exposure to paired predator-prey stimuli. The report also includes the 1997 Natural Rearing System Workshop proceedings

  1. Development of a Natural Rearing System to Improve Supplemental Fish Quality, 1996-1998 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Desmond J.

    2001-09-13

    This report covers the 1996-1998 Natural Rearing Enhancement System (NATURES) research for increasing hatchery salmon postrelease survival and producing fish with more wild-like behavior, physiology, and morphology prior to release. Experiments were conducted evaluating automatic subsurface feeders; natural diets; exercise systems; seminatural raceway habitat enriched with cover, structure, and substrate; and predator avoidance conditioning for hatchery salmonids. Automatic subsurface feed delivery systems did not affect chinook salmon depth distribution or vulnerability to avian predators. Live-food diets only marginally improved the ability of chinook salmon to capture prey in stream enclosures. A prototype exercise system that can be retrofitted to raceways was developed, however, initial testing indicated that severe amounts of exercise may increase in culture mortality. Rearing chinook salmon in seminatural raceway habitat with gravel substrate, woody debris structure, and overhead cover improved coloration and postrelease survival without impacting in-culture health or survival. Steelhead fry reared in enriched environments with structure, cover, and point source feeders dominated and outcompeted conventionally reared fish. Exposing chinook salmon to caged predators increased their postrelease survival. Chinook salmon showed an antipredator response to chemical stimuli from injured conspecifics and exhibited acquired predator recognition following exposure to paired predator-prey stimuli. The report also includes the 1997 Natural Rearing System Workshop proceedings.

  2. Incidence of physical injury of mature male parr in a natural population of brown trout

    DEFF Research Database (Denmark)

    Broberg, M.M.; Eg Nielsen, Einar; Dieperink, C.

    2000-01-01

    In a brown trout Salmo trutta population, there was a much higher frequency of injuries among mature male parr than among immature or female parr. The quantitative data are discussed in relation to spawning success and overall fitness. (C) 2000 The Fisheries Society of the British Isles....

  3. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Batten, G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cushing, Aaron W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Jin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Gary E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skalski, J. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Townsend, Richard L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seaburg, Adam [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodley, Christa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, James S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carpenter, Scott M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Etherington, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fischer, Eric S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greiner, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hennen, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martinez, Jayson J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, T. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rayamajhi, Bishes [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-02-15

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2011. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon using a virtual release, paired reference release survival model. This study supports the U.S. Army Corps of Engineers’ continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  4. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  5. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  6. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, Tyler; Monter, Tyrell J.; Skalski, John R.; Townsend, Richard L.; Zimmerman, Shon A.

    2011-12-01

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  7. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Kim, Jin A.; Royer, Ida M.; Batten, George W.; Cushing, Aaron W.; Carpenter, Scott M.; Etherington, D. J.; Faber, Derrek M.; Fischer, Eric S.; Fu, Tao; Hennen, Matthew J.; Mitchell, T. D.; Monter, Tyrell J.; Skalski, J. R.; Townsend, Richard L.; Zimmerman, Shon A.

    2012-09-01

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  8. Positive Darwinian selection in the piston that powers proton pumps in complex I of the mitochondria of Pacific salmon.

    Science.gov (United States)

    Garvin, Michael R; Bielawski, Joseph P; Gharrett, Anthony J

    2011-01-01

    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm.

  9. Positive Darwinian Selection in the Piston That Powers Proton Pumps in Complex I of the Mitochondria of Pacific Salmon

    Science.gov (United States)

    Garvin, Michael R.; Bielawski, Joseph P.; Gharrett, Anthony J.

    2011-01-01

    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm. PMID:21969854

  10. Integrating subsistence practice and species distribution modeling: assessing invasive elodea’s potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    Science.gov (United States)

    Luizza, Matthew; Evangelista, Paul; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-01-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state’s vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska’s first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon (Oncorhynchus tshawytscha) and whitefish (Coregonus nelsonii) subsistence. State models were applied to future climate (2040–2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  11. Qualitative Assessment: Evaluating the Impacts of Climate ...

    Science.gov (United States)

    The South Fork Nooksack River (South Fork) is located in northwest Washington State and is home to nine species of Pacific salmon, including Nooksack early Chinook (aka, spring Chinook salmon), an iconic species for the Nooksack Indian Tribe. The quantity of salmon in the South Fork, especially spring Chinook salmon, has dramatically declined from historic levels, due primarily to habitat degradation from the legacy impacts of various land uses such as commercial forestry, agriculture, flood control, and transportation infrastructure. Segments of the South Fork and some of its tributaries exceed temperature criteria established for the protection of cold-water salmonid populations, and were listed on Washington State’s Clean Water Act (CWA) 303(d) list of impaired waterbodies. High water temperatures in the South Fork are detrimental to fish and other native species that depend on cool, clean, well-oxygenated water. Of the nine salmon species, three have been listed as threatened under the federal Endangered Species Act (ESA) and are of high priority to restoration efforts in the South Fork—spring Chinook salmon, summer steelhead trout, and bull trout. Growing evidence shows that climate change will exacerbate legacy impacts. This qualitative assessment is a comprehensive analysis of climate change impacts on freshwater habitat and Pacific salmon in the South Fork. It also evaluates the effectiveness of restoration tools that address Pacific salmon recovery.

  12. Daytime habitat selection for juvenile parr brown trout (Salmo trutta in small lowland streams

    Directory of Open Access Journals (Sweden)

    Conallin J.

    2014-03-01

    Full Text Available Physical habitat is important in determining the carrying capacity of juvenile brown trout, and within freshwater management. Summer daytime physical habitat selection for the parr lifestage (7–20 cm juvenile brown trout (Salmo trutta was assessed in 6 small lowland streams. Habitat preference was determined for the four variables; water velocity, water depth, substrate and cover, and the preferences for physical habitat selection were expressed in terms of habitat suitability indices (HSI’s. The statistical confidence of HSI’s was evaluated using power analysis. It was found that a minimum of 22 fish observations was needed to have statistical confidence in the HSIs for water depth, and a minimum of 92 fish observations for water velocity during daytime summer conditions. Generally parr were utilising the deeper habitats, indicating preference for deeper water. Cover was also being selected for at all sites, but selection was inconsistent among sites for the variables substrate and velocity. The results indicate that during daytime summer conditions water depth is a significant variable for parr habitat selection in these small lowland streams, with cover also being important. Therefore, daytime refugia may be a critical limiting factor for parr in small lowland streams, and important for stream management actions under the Water Framework Directive.

  13. Hatchery evaluation report: Lyons Ferry Hatchery - fall chinook. Final report

    International Nuclear Information System (INIS)

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Fall Chinook). The audit is being conducted as a requirement of the Northwest Power Planning Council (NPPC) ''Strategy for Salmon'' and the Columbia River Basin Fish and Wildlife Program. Under the audit, the hatcheries are evaluated against policies and related performance measures developed by the Integrated Hatchery Operations Team (IHOT). IHOT is a multi-agency group established by the NPPC to direct the development of new basinwide standards for managing and operating fish hatcheries. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife

  14. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River and Estuary in 2009

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, Geoffrey A.; Harnish, Ryan A.; Bellgraph, Brian J.; Carter, Jessica A.; Ham, Kenneth D.; Titzler, P. Scott; Hughes, Michael S.

    2010-08-01

    The study reported herein was funded as part of the Anadromous Fish Evaluation Program, which is managed by the U.S. Army Corps of Engineers (USACE). The Anadromous Fish Evaluation Program study code is EST P 02 01: A Study of Salmonid Survival and Behavior through the Columbia River Estuary Using Acoustic Tags. The study was conducted by the Pacific Northwest National Laboratory (PNNL) and National Oceanic and Atmospheric Administration (NOAA) Fisheries for the USACE Portland District. Estimated survival of acoustic-tagged juvenile Chinook salmon and steelhead through the lower Columbia River and estuary in 2009 was lowest in the final 50 km of the estuary. Probability of survival was relatively high (>0.90) for yearling and subyearling Chinook salmon from the Bonneville Dam forebay (rkm 236) to Three-tree Point (rkm 49.6). Survival of juvenile Chinook salmon declined sharply through the lower 50 km of the estuary. Acoustic-tagged steelhead smolts did not survive as well as juvenile Chinook salmon between Bonneville Dam and the mouth of the Columbia River. Steelhead survival began to decline farther upstream (at rkm 86) relative to that of the Chinook salmon stocks. Subyearling Chinook salmon survival decreased markedly as the season progressed. It remains to be determined whether later migrating subyearling Chinook salmon are suffering increasing mortality as the season progresses or whether some portion of the apparent loss is due to fish extending their freshwater residence. This study provided the first glimpse into what promises to be a very informative way to learn more about how juvenile salmonid passage experiences through the FCRPS may influence their subsequent survival after passing Bonneville Dam. New information regarding the influence of migration pathway through the lower 50 km of the Columbia River estuary on probability of survival of juvenile salmonids, combined with increased understanding regarding the foraging distances and time periods of

  15. A multi-year analysis of spillway survival for juvenile salmonids as a function of spill bay operations at McNary Dam, Washington and Oregon, 2004-09

    Science.gov (United States)

    Adams, Noah S.; Hansel, Hal C.; Perry, Russell W.; Evans, Scott D.

    2012-01-01

    We analyzed 6 years (2004-09) of passage and survival data collected at McNary Dam to examine how spill bay operations affect survival of juvenile salmonids passing through the spillway at McNary Dam. We also examined the relations between spill bay operations and survival through the juvenile fish bypass in an attempt to determine if survival through the bypass is influenced by spill bay operations. We used a Cormack-Jolly-Seber release-recapture model (CJS model) to determine how the survival of juvenile salmonids passing through McNary Dam relates to spill bay operations. Results of these analyses, while not designed to yield predictive models, can be used to help develop dam-operation strategies that optimize juvenile salmonid survival. For example, increasing total discharge typically had a positive effect on both spillway and bypass survival for all species except sockeye salmon (Oncorhynchus nerka). Likewise, an increase in spill bay discharge improved spillway survival for yearling Chinook salmon (Oncorhynchus tshawytscha), and an increase in spillway discharge positively affected spillway survival for juvenile steelhead (Oncorhynchus mykiss). The strong linear relation between increased spill and increased survival indicates that increasing the amount of water through the spillway is one strategy that could be used to improve spillway survival for yearling Chinook salmon and juvenile steelhead. However, increased spill did not improve spillway survival for subyearling Chinook salmon and sockeye salmon. Our results indicate that a uniform spill pattern would provide the highest spillway survival and bypass survival for subyearling Chinook salmon. Conversely, a predominantly south spill pattern provided the highest spillway survival for yearling Chinook salmon and juvenile steelhead. Although spill pattern was not a factor for spillway survival of sockeye salmon, spill bay operations that optimize passage through the north and south spill bays maximized

  16. Research on Captive Broodstock Programs for Pacific Salmon; Assessment of Captive Broodstock Technologies, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry

    2004-01-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated males in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River fish

  17. 75 FR 18160 - Small Takes of Marine Mammals Incidental to Specified Activities; Antioch Bridge Seismic Retrofit...

    Science.gov (United States)

    2010-04-09

    ... Resources, National Marine Fisheries Service, 1315 East-West Highway, Silver Spring, MD 20910-3225 or by... apart. It will be constructed using approximately 160 24-in steel hollow shell piles, which will be... Sacramento River Winter-run Chinook salmon, threatened CV Spring-run Chinook salmon, threatened CV steelhead...

  18. Smolt Monitoring Program, Volume II, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fish Passage Center

    1987-02-01

    Smolt Monitoring Program Annual Report, 1986, Volume I, describes the results of travel time monitoring and other migrational characteristics of yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri). This volume presents the data from Fish Passage Center freeze brands used in the analysis of travel time for Lewiston, Lower Granite, Lower Monumental, Rock Island, McNary, and John Day dams. Summary of data collection procedures and explanation of data listings are presented in conjunction with the mark recapture data. Data for marked fish not presented in this report will be provided upon request. Daily catch statistics (by species), flow, and sample parameters for the smolt monitoring sites, Clearwater, Lewiston, Lower Granite, Lower Monumental, Rock Island, McNary, John Day, and Bonneville also will be provided upon request.

  19. Positive Darwinian selection in the piston that powers proton pumps in complex I of the mitochondria of Pacific salmon.

    Directory of Open Access Journals (Sweden)

    Michael R Garvin

    Full Text Available The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm.

  20. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    Science.gov (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  1. Influence of individual body size and variable thresholds on the incidence of a sneaker male reproductive tactic in Atlantic salmon.

    Science.gov (United States)

    Aubin-Horth, Nadia; Dodson, Julian J

    2004-01-01

    In the conditional strategy model, divergence in reproductive phenotypes depends on whether the individual's condition is above or below a genetically determined threshold. The relative contribution of the genetic and environmental components that lead to the expression of a reproductive tactic by an individual is not well understood. In the present field study, we determined when condition diverged between males that develop the mature parr phenotype and those that do not in Atlantic salmon (Salmo salar). We also investigated the uniformity of the threshold value in the population. We sampled mature parr and immature males at age one, of the same population at six different sites for four consecutive years. Our study provides an example of the interaction of genotype and environment on the expression of a reproductive tactic. Size was significantly greater for future mature parr than for future immature males as early as 20 days after hatching (emergence), suggesting that there may be a parental effect component in the tactic adopted, since no exogenous feeding takes place before this time. Size advantage at emergence was maintained through the next spring at age one to different degrees depending on the year, thus suggesting the presence of an environmental component of tactic expression. Our results support the contention that within the conditional strategy, the environment faced by a male and his condition at the moment of reproduction consistently predicts neither the environment faced by his offspring nor the fitness they will obtain by expressing the same tactic as their father. Furthermore, higher mean size at a site did not always translate into a higher proportion of mature parr, therefore supporting the hypothesis that thresholds vary across habitats within the same population.

  2. Coded-Wire Tag Expansion Factors for Chinook Salmon Carcass Surveys in California: Estimating the Numbers and Proportions of Hatchery-Origin Fish

    Directory of Open Access Journals (Sweden)

    Michael S. Mohr

    2013-12-01

    Full Text Available Recovery of fish with adipose fin clips (adc and coded-wire tags (cwt in escapement surveys allows calculation of expansion factors used in estimation of the total number of fish from each adc,cwt release group, allowing escapement to be resolved by age and stock of origin. Expanded recoveries are used to derive important estimates such as the total number and proportion of hatchery-origin fish present. The standard estimation scheme assumes accurate visual classification of adc status, which can be problematic for decomposing carcasses. Failure to account for this potential misclassification can lead to significant estimation bias. We reviewed sample expansion factors used for the California Central Valley Chinook salmon 2010 carcass surveys in this context. For upper Sacramento River fall-run and late fall-run carcass surveys, the estimated proportions of adc,cwt fish for fresh and non-fresh carcasses differed substantially, likely from the under-recognition of adc fish in non-fresh carcasses. The resulting estimated proportions of hatchery-origin fish in the upper Sacramento River fall-run and late fall-run carcass surveys were 2.33 to 2.89 times higher if only fresh carcasses are considered. Similar biases can be avoided by consideration of only fresh carcasses for which determination of adc status is relatively straightforward; however, restricting the analysis entirely to fresh carcasses may limit precision because of reduced sample size, and is only possible if protocols for sampling and recording data ensure that the sample data and results for fresh carcasses can be extracted. Thus we recommend sampling protocols that are clearly documented and separately track fresh versus non-fresh carcasses, either collecting only definitively adc fish or that carefully track non-fresh carcasses that are definitively adc versus those that are possibly adc. This would allow judicious use of non-fresh carcass data when sample sizes are otherwise

  3. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    Science.gov (United States)

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that

  4. Natural selection constrains personality and brain gene expression differences in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Thörnqvist, Per-Ove; Höglund, Erik; Winberg, Svante

    2015-04-01

    In stream-spawning salmonid fishes there is a considerable variation in the timing of when fry leave the spawning nests and establish a feeding territory. The timing of emergence from spawning nests appears to be related to behavioural and physiological traits, e.g. early emerging fish are bolder and more aggressive. In the present study, emerging Atlantic salmon (Salmo salar L.) alevins were sorted into three fractions: early, intermediate and late emerging. At the parr stage, behaviour, stress responses, hindbrain monoaminergic activity and forebrain gene expression were explored in fish from the early and late emerging fractions (first and last 25%). The results show that when subjected to confinement stress, fish from the late emerging fraction respond with a larger activation of the brain serotonergic system than fish from the early fraction. Similarly, in late emerging fish, stress resulted in elevated expression of mRNA coding for serotonin 1A receptors (5-HT1A), GABA-A receptor-associated protein and ependymin, effects not observed in fish from the early emerging fraction. Moreover, fish from the early emerging fraction displayed bolder behaviour than their late emerging littermates. Taken together, these results suggest that time of emergence, boldness and aggression are linked to each other, forming a behavioural syndrome in juvenile salmon. Differences in brain gene expression between early and late emerging salmon add further support to a relationship between stress coping style and timing of emergence. However, early and late emerging salmon do not appear to differ in hypothalamus-pituitary-interrenal (HPI) axis reactivity, another characteristic of divergent stress coping styles. © 2015. Published by The Company of Biologists Ltd.

  5. A Markov chain analysis of the movements of juvenile salmonids, including sockeye salmon, in the forebay of McNary Dam, Washington and Oregon, 2006-09

    Science.gov (United States)

    Adams, Noah S.; Hatton, Tyson W.

    2012-01-01

    facilitate comparison among species in this report, we combined JBS and turbine passage for yearling Chinook salmon, steelhead, and subyearling Chinook salmon even though we were able to differentiate between passage through the JBS or turbines for these three species. Information on passage proportions through the JBS and turbines can be found in the first report. Numerically summarizing the behavior of juvenile salmonids in the forebay of McNary Dam using the Markov chain analysis allowed us to confirm what had been previously summarized using visualization software. For example, within the powerhouse region, passage proportions among the three powerhouse areas were often greater in the southern and middle areas of the powerhouse compared to the northern area of the powerhouse for yearling and subyearling Chinook salmon. The opposite generally was observed for steelhead. The results of this analysis also allowed us to confirm and quantify the extent of milling behavior that was observed for steelhead. For fish that were first detected in the powerhouse region, less than 0.10 of the steelhead, on average, passed within each of the powerhouse areas. Instead, steelhead transitioned to adjoining areas in the spillway before passing the dam. In comparison, greater than 0.20 of the Chinook salmon passed within each of the powerhouse areas. Less milling behavior was observed for all species for fish that first approached the spillway. Compared to the powerhouse areas, a higher proportion of fish, regardless of species, passed the spillway areas and fewer transitioned to adjoining areas in the powerhouse. In addition to quantifying what had been previously speculated about the behavior of fish in the forebay of McNary Dam, the Markov chain analysis refined our understanding of how fish behavior and passage can be influenced by changes to the operations and structure of McNary Dam. For example, the addition of TSWs to the spillway area clearly influenced the passage of fish

  6. Salmon Supplementation Studies in Idaho Rivers; Idaho Supplementation Studies, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, Chris; Tabor, R.A.; Kinzer, Ryan (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2003-04-01

    This report summarizes brood year 1999 juvenile production and emigration data and adult return information for 2000 for streams studied by the Nez Perce Tribe for the cooperative Idaho Salmon Supplementation Studies in Idaho Rivers (ISS) project. In order to provide inclusive juvenile data for brood year 1999, we include data on parr, presmolt, smolt and yearling captures. Therefore, our reporting period includes juvenile data collected from April 2000 through June 2001 for parr, presmolts, and smolts and through June 2002 for brood year 1999 yearling emigrants. Data presented in this report include; fish outplant data for treatment streams, snorkel and screw trap estimates of juvenile fish abundance, juvenile emigration profiles, juvenile survival estimates to Lower Granite Dam (LGJ), redd counts, and carcass data. There were no brood year 1999 treatments in Legendary Bear or Fishing Creek. As in previous years, snorkeling methods provided highly variable population estimates. Alternatively, rotary screw traps operated in Lake Creek and the Secesh River provided more precise estimates of juvenile abundance by life history type. Juvenile fish emigration in Lake Creek and the Secesh River peaked during July and August. Juveniles produced in this watershed emigrated primarily at age zero, and apparently reared in downstream habitats before detection as age one or older fish at the Snake and Columbia River dams. Over the course of the ISS study, PIT tag data suggest that smolts typically exhibit the highest relative survival to Lower Granite Dam (LGJ) compared to presmolts and parr, although we observed the opposite trend for brood year 1999 juvenile emigrants from the Secesh River. SURPH2 survival estimates for brood year 1999 Lake Creek parr, presmolt, and smolt PIT tag groups to (LGJ) were 27%, 39%, and 49% respectively, and 14%, 12%, and 5% for the Secesh River. In 2000, we counted 41 redds in Legendary Bear Creek, 4 in Fishing Creek, 5 in Slate Creek, 153 in the

  7. Umatilla Hatchery Monitoring and Evaluation, 1997-1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Michael C.; Brown, Kassandra A.; Waln, Karen (Oregon Department of Fish and Wildlife, Portland, OR)

    1999-11-01

    This report summarizes monitoring and evaluation studies of salmonids reared at Umatilla Fish Hatchery (UFH) for the period November 1, 1997 to October 31, 1998. Studies at Umatilla Hatchery are designed to evaluate rearing of chinook salmon and steelhead in ''Michigan raceways''. Characteristics of Michigan raceways include high fish densities, rapid water turnover, oxygen supplementation, reuse of water, and baffles designed to reduce cleaning. Fish health at UFH and other facilities associated with the Umatilla program are intensively monitored and evaluated as part of the overall research project. Further, under the Integrated Hatchery Operations Team guidelines, specific requirements for fish health monitoring are mandatory and have become the responsibility of the fish health staff conducting studies at UFH. Additional studies include evaluations of sport fisheries in the Umatilla River and mass marking and straying of fall chinook salmon. Except for adult recovery data, an experiment designed to evaluate rearing subyearling fall chinook salmon in Michigan and Oregon raceways has been completed. We are currently in the second year of rearing subyearling fall chinook salmon at three densities. Experimental rearing of subyearling, fall release, and yearling spring chinook salmon, and steelhead has also been conducted. Although preliminary adult return data has been recovered, data on smolt-to-adult survival for all groups is incomplete. Conclusions in this report should be viewed as preliminary and used in conjunction with additional data as it becomes available.

  8. Distribution, stock composition and timing, and tagging response of wild Chinook Salmon returning to a large, free-flowing river basin

    Science.gov (United States)

    Eiler, John H.; Masuda, Michele; Spencer, Ted R.; Driscoll, Richard J.; Schreck, Carl B.

    2014-01-01

    Chinook Salmon Oncorhynchus tshawytscha returns to the Yukon River basin have declined dramatically since the late 1990s, and detailed information on the spawning distribution, stock structure, and stock timing is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio-tagged in the lower basin during 2002–2004 and tracked upriver. Fish traveled to spawning areas throughout the basin, ranging from several hundred to over 3,000 km from the tagging site. Similar distribution patterns were observed across years, suggesting that the major components of the run were identified. Daily and seasonal composition estimates were calculated for the component stocks. The run was dominated by two regional components comprising over 70% of the return. Substantially fewer fish returned to other areas, ranging from 2% to 9% of the return, but their collective contribution was appreciable. Most regional components consisted of several principal stocks and a number of small, spatially isolated populations. Regional and stock composition estimates were similar across years even though differences in run abundance were reported, suggesting that the differences in abundance were not related to regional or stock-specific variability. Run timing was relatively compressed compared with that in rivers in the southern portion of the species’ range. Most stocks passed through the lower river over a 6-week period, ranging in duration from 16 to 38 d. Run timing was similar for middle- and upper-basin stocks, limiting the use of timing information for management. The lower-basin stocks were primarily later-run fish. Although differences were observed, there was general agreement between our composition and timing estimates and those from other assessment projects within the basin, suggesting that the telemetry-based estimates provided a plausible approximation of the return. However, the short duration of the run, complex stock structure, and

  9. Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Steven P.; Neeley, Doug

    1993-06-01

    We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model to estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.

  10. Are hybrids between Atlantic salmon and brown trout suitable long-term hosts of Gyrodactylus salaris during winter?

    Science.gov (United States)

    Knudsen, R; Henriksen, E H; Gjelland, K Ø; Hansen, H; Hendrichsen, D K; Kristoffersen, R; Olstad, K

    2017-10-01

    The monogenean parasite Gyrodactylus salaris poses serious threats to many Atlantic salmon populations and presents many conservation and management questions/foci and challenges. It is therefore critical to identify potential vectors for infection. To test whether hybrids of native Atlantic salmon (Salmo salar) × brown trout (Salmo trutta) are suitable as reservoir hosts for G. salaris during winter, infected hybrid parr were released into a natural subarctic brook in the autumn. Six months later, 23.9% of the pit-tagged fish were recaptured. During the experimental period, the hybrids had a sixfold increase in mean intensity of G. salaris, while the prevalence decreased from 81% to 35%. There was high interindividual hybrid variability in susceptibility to infections. The maximum infrapopulation growth rate (0.018 day -1 ) of G. salaris throughout the winter was comparable to earlier laboratory experiments at similar temperatures. The results confirm that infrapopulations of G. salaris may reproduce on a hybrid population for several generations at low water temperatures (~1 °C). Wild salmon-trout hybrids are undoubtedly susceptible to G. salaris and represent an important reservoir host for the parasite independent of other co-occurring susceptible hosts. Consequently, these hybrids may pose a serious risk for G. salaris transmission to nearby, uninfected rivers by migratory individuals. © 2017 John Wiley & Sons Ltd.

  11. A Polyprotein-Expressing Salmonid Alphavirus Replicon Induces Modest Protection in Atlantic Salmon (Salmo Salar Against Infectious Pancreatic Necrosis

    Directory of Open Access Journals (Sweden)

    Azila Abdullah

    2015-01-01

    Full Text Available Vaccination is an important strategy for the control and prevention of infectious pancreatic necrosis (IPN in farmed Atlantic salmon (Salmo salar in the post-smolt stage in sea-water. In this study, a heterologous gene expression system, based on a replicon construct of salmonid alphavirus (SAV, was used for in vitro and in vivo expression of IPN virus proteins. The large open reading frame of segment A, encoding the polyprotein NH2-pVP2-VP4-VP3-COOH, as well as pVP2, were cloned and expressed by the SAV replicon in Chinook salmon embryo cells (CHSE-214 and epithelioma papulosum cyprini (EPC cells. The replicon constructs pSAV/polyprotein (pSAV/PP and pSAV/pVP2 were used to immunize Atlantic salmon (Salmo salar by a single intramuscular injection and tested in a subsequent IPN virus (IPNV challenge trial. A low to moderate protection against IPN was observed in fish immunized with the replicon vaccine that encoded the pSAV/PP, while the pSAV/pVP2 construct was not found to induce protection.

  12. Renovation of PARR instrumentation and controls

    International Nuclear Information System (INIS)

    Karim, A.; Haq, I.; Akhtar, K.M.; Alam, G.D.

    1987-01-01

    The Pakistan research reactor (PARR) was commissioned in 1965 and operated since then in accordance with the requirements. In the first instance, it was proposed that the controls and instrumentation be modernized according to the state of current technology and for meeting the more stringent safety, and operational needs. A computer has been added for data acquisition, logging and analysis. A closed circuit television system has been installed to monitor access of personnel to the reactor building and for viewing the reactor core with an underwater camera. This report gives a brief account of the old instrumentation and some details of the new replacements. (orig./A.B)

  13. Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California

    Science.gov (United States)

    Perry, Russell W.; Pope, Adam C.

    2018-05-11

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3 /s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta. In this report, we conduct four analyses to investigate the effect of the NDD and its proposed operation on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha). All analyses used the results of a Bayesian survival model that allowed us to simulate travel time, migration routing, and survival of juvenile Chinook salmon migrating through the Delta in response to NDD operations, which affected both inflows to the Delta and operation of the Delta Cross Channel (DCC). For the first analysis, we evaluated the effect of the NDD bypass rules on salmon survival. The NDD bypass rules are a set of operational rule curves designed to provide adaptive levels of fish protection by defining allowable diversion rates as a function of (1) Sacramento River discharge as measured at Freeport, and (2) time of year when endangered runs requiring the most protection are present. We determined that all bypass rule curves except constant low-level pumping (maximum diversion of 900 ft3 /s) could cause a sizeable decrease in survival by as

  14. Egg to Fry - Chinook Egg-to-Fry Survival

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Few estimates of Chinook egg-to-fry survival exist despite the fact that this is thought to be one of the life stages limiting production of many listed Chinook...

  15. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Joan B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01

    In 1999 the Cle Elum Hatchery began releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. In 1998 and 2000 through 2003 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. To date, only the bacterial pathogens have been detected and prevalences have been low. Prevalences have varied each year and these changes are attributed to normal fluctuation of prevalence. All of the pathogens detected are widely distributed in Washington State.

  16. Selection of fuel design for conversion and upgradation of Pakistan Research Reactor (PARR-1)

    International Nuclear Information System (INIS)

    Arshad, M.

    1991-01-01

    The Pakistan Research Reactor (PARR-1) is being converted from the use of Highly Enriched Uranium (HEU) to Low Enriched Uranium (LEU) fuel and its power is also being upgraded. In order to select new fuel for the converted and upgraded core ten different fuel element designs were analyzed and their relative performance was compared. Results of this study were later used to select appropriate design of the new fuel for PARR-1. This paper describes the computational methodology utilized for the analysis of various fuel element designs. Criteria for selecting the new fuel element are discussed and guidelines forming the selection basis of the new fuel design are given. (author)

  17. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  18. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon.

    Science.gov (United States)

    Crozier, L G; Hendry, A P; Lawson, P W; Quinn, T P; Mantua, N J; Battin, J; Shaw, R G; Huey, R B

    2008-05-01

    Salmon life histories are finely tuned to local environmental conditions, which are intimately linked to climate. We summarize the likely impacts of climate change on the physical environment of salmon in the Pacific Northwest and discuss the potential evolutionary consequences of these changes, with particular reference to Columbia River Basin spring/summer Chinook (Oncorhynchus tshawytscha) and sockeye (Oncorhynchus nerka) salmon. We discuss the possible evolutionary responses in migration and spawning date egg and juvenile growth and development rates, thermal tolerance, and disease resistance. We know little about ocean migration pathways, so cannot confidently suggest the potential changes in this life stage. Climate change might produce conflicting selection pressures in different life stages, which will interact with plastic (i.e. nongenetic) changes in various ways. To clarify these interactions, we present a conceptual model of how changing environmental conditions shift phenotypic optima and, through plastic responses, phenotype distributions, affecting the force of selection. Our predictions are tentative because we lack data on the strength of selection, heritability, and ecological and genetic linkages among many of the traits discussed here. Despite the challenges involved in experimental manipulation of species with complex life histories, such research is essential for full appreciation of the biological effects of climate change.

  19. Hood River and Pelton Ladder monitoring and evaluation project and Hood River fish habitat project : annual progress report 1999-2000.; ANNUAL

    International Nuclear Information System (INIS)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-01-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat[contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000

  20. "The Success of Captive Broodstock Programs Depends on High In-Culture Survival, ..." [from the Abstract], 2006-2007 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berejikian, Barry A. [National Marine Fisheries Service

    2009-04-08

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Accomplishments detailed in this report are listed below by major objective. Objective 1: This study documented that captively reared Chinook exhibited spawn timing similar to their founder anadromous population. An analysis of spawn timing data of captively reared Chinook salmon that had received different levels of antibiotic treatment did not suggest that antibiotic treatments during the freshwater or seawater phase of the life cycle affects final maturation timing. No effect of rearing density was found with respect to spawn timing or other reproductive behaviors. Objective 2: This study investigated the critical period(s) for imprinting for sockeye salmon by exposing juvenile salmon to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression differs between coho and sockeye salmon. While temporal patterns differ between these species, exposure to arginine elicited increases in odorant receptor mRNA expression in sockeye salmon. Objective 3: This study: (i) identified the critical period when maturation is initiated in male spring Chinook salmon and when body growth affects onset of puberty, (ii) described changes in the reproductive endocrine system during onset of puberty and throughout spermatogenesis in male spring Chinook salmon, (iii) found that the rate of oocyte development prior to vitellogenesis is related to body growth in female spring Chinook, and (iv) demonstrated that growth regimes which reduce early (age 2) male maturation slow the rate of primary and early

  1. Survival of migrating salmon smolts in large rivers with and without dams.

    Directory of Open Access Journals (Sweden)

    David W Welch

    2008-10-01

    Full Text Available The mortality of salmon smolts during their migration out of freshwater and into the ocean has been difficult to measure. In the Columbia River, which has an extensive network of hydroelectric dams, the decline in abundance of adult salmon returning from the ocean since the late 1970s has been ascribed in large measure to the presence of the dams, although the completion of the hydropower system occurred at the same time as large-scale shifts in ocean climate, as measured by climate indices such as the Pacific Decadal Oscillation. We measured the survival of salmon smolts during their migration to sea using elements of the large-scale acoustic telemetry system, the Pacific Ocean Shelf Tracking (POST array. Survival measurements using acoustic tags were comparable to those obtained independently using the Passive Integrated Transponder (PIT tag system, which is operational at Columbia and Snake River dams. Because the technology underlying the POST array works in both freshwater and the ocean, it is therefore possible to extend the measurement of survival to large rivers lacking dams, such as the Fraser, and to also extend the measurement of survival to the lower Columbia River and estuary, where there are no dams. Of particular note, survival during the downstream migration of at least some endangered Columbia and Snake River Chinook and steelhead stocks appears to be as high or higher than that of the same species migrating out of the Fraser River in Canada, which lacks dams. Equally surprising, smolt survival during migration through the hydrosystem, when scaled by either the time or distance migrated, is higher than in the lower Columbia River and estuary where dams are absent. Our results raise important questions regarding the factors that are preventing the recovery of salmon stocks in the Columbia and the future health of stocks in the Fraser River.

  2. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): Seasonal development and seawater acclimation

    Science.gov (United States)

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Kiilerich, P.; Bjornsson, B. Th; Madsen, Steffen S.; McCormick, S.D.; Stefansson, S.O.

    2008-01-01

    The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11??-hydroxysteroid dehydrogenase type-2 (11??-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4 days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11

  3. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

    2009-07-06

    River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

  4. An EST-based approach for identifying genes expressed in the intestine and gills of pre-smolt Atlantic salmon (Salmo salar

    Directory of Open Access Journals (Sweden)

    Adzhubei Alexei

    2005-12-01

    Full Text Available Abstract Background The Atlantic salmon is an important aquaculture species and a very interesting species biologically, since it spawns in fresh water and develops through several stages before becoming a smolt, the stage at which it migrates to the sea to feed. The dramatic change of habitat requires physiological, morphological and behavioural changes to prepare the salmon for its new environment. These changes are called the parr-smolt transformation or smoltification, and pre-adapt the salmon for survival and growth in the marine environment. The development of hypo-osmotic regulatory ability plays an important part in facilitating the transition from rivers to the sea. The physiological mechanisms behind the developmental changes are largely unknown. An understanding of the transformation process will be vital to the future of the aquaculture industry. A knowledge of which genes are expressed prior to the smoltification process is an important basis for further studies. Results In all, 2974 unique sequences, consisting of 779 contigs and 2195 singlets, were generated for Atlantic salmon from two cDNA libraries constructed from the gills and the intestine, accession numbers [Genbank: CK877169-CK879929, CK884015-CK886537 and CN181112-CN181464]. Nearly 50% of the sequences were assigned putative functions because they showed similarity to known genes, mostly from other species, in one or more of the databases used. The Swiss-Prot database returned significant hits for 1005 sequences. These could be assigned predicted gene products, and 967 were annotated using Gene Ontology (GO terms for molecular function, biological process and/or cellular component, employing an annotation transfer procedure. Conclusion This paper describes the construction of two cDNA libraries from pre-smolt Atlantic salmon (Salmo salar and the subsequent EST sequencing, clustering and assigning of putative function to 1005 genes expressed in the gills and/or intestine.

  5. 77 FR 42629 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2012-07-20

    ... salmon resource. The RIR included a qualitative discussion of the benefits of a PSC limit to users of... effects of a rule (and alternatives to the rule), or more general descriptive statements, if... Office of NMFS and the Alaska Fisheries Science Center research, draft, and support the management...

  6. Effects of feed quality and quantity on growth, early maturation and smolt development in hatchery-reared landlocked Atlantic salmon Salmo salar.

    Science.gov (United States)

    Norrgård, J R; Bergman, E; Greenberg, L A; Schmitz, M

    2014-10-01

    The effects of feed quality and quantity on growth, early male parr maturation and development of smolt characteristics were studied in hatchery-reared landlocked Atlantic salmon Salmo salar. The fish were subjected to two levels of feed rations and two levels of lipid content from first feeding until release in May of their second year. Salmo salar fed high rations, regardless of lipid content, grew the most and those fed low lipid feed with low rations grew the least. In addition, fish fed low lipid feed had lower body lipid levels than fish fed high lipid feed. Salmo salar from all treatments showed some reduction in condition factor (K) and lipid levels during their second spring. Smolt status was evaluated using both physiological and morphological variables. These results, based on gill Na(+) , K(+) -ATPase (NKA) enzyme activity, saltwater tolerance challenges and visual assessments, were consistent with each other, showing that S. salar from all treatments, except the treatment in which the fish were fed low rations with low lipid content, exhibited characteristics associated with smolting at 2 years of age. Sexually mature male parr from the high ration, high lipid content treatment were also subjected to saltwater challenge tests, and were found to be unable to regulate plasma sodium levels. The proportion of sexually mature male parr was reduced when the fish were fed low feed rations, but was not affected by the lipid content of the feed. Salmo salar fed low rations with low lipid content exhibited the highest degree of severe fin erosion. © 2014 The Fisheries Society of the British Isles.

  7. Aqueous exposure to Aroclor 1254 modulates the mitogenic response of Atlantic salmon anterior kidney T-cells: Indications of short- and long-term immunomodulation

    International Nuclear Information System (INIS)

    Iwanowicz, Luke R.; Lerner, Darren T.; Blazer, Vicki S.; McCormick, Stephen D.

    2005-01-01

    Polychlorinated biphenyls (PCBs) exist as persistent organic pollutants in numerous river systems in the United States. Unfortunately, some of these rivers are sites of active Atlantic salmon restoration programs, and polychlorinated biphenyls have been implicated as ancillary factors contributing to failed salmon restoration. Here, we investigate the immediate and chronic effects of intermediate duration aqueous PCB exposure (1 or 10 μg L -1 Aroclor 1254) on the mitogen-stimulated lymphoproliferative response of Atlantic salmon anterior kidney leukocytes (AKLs). A short-term study was designed to examine immunomodulation in Atlantic salmon smolts immediately following 21 days of aqueous exposure, while a long-term study evaluated chronic impacts in the mitogen response in parr 15 months post-exposure as larvae. The proliferative response of AKLs to the mitogens concanavalin A (CON A), phytohemaglutinnin-P (PHA-P), pokeweed mitogen (PWM), and lipopolysaccharide were used as an indice of immunomodulation. The proliferative response to the T-cell mitogens CON A and PHA-P was significantly increased in the 10 μg L -1 group (n = 10; P = 0.043 and 0.002, respectively) immediately following exposure of smolts. Additionally, The PHA-P response was significantly increased in the 1 μg L -1 exposure group (n = 10, P = 0.036). In fish treated as larvae and tested 15 months later, the PHA-P sensitive populations exhibited elevated proliferation in the 1 and 10 μg L -1 groups (n = 12, P -1 treated groups. These results demonstrate an immunomodulatory effect of PCBs on T-cell mitogen sensitive populations of lymphocytes in Atlantic salmon as well as long-term immunomodulation in PHA-P and PWM sensitive populations

  8. Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, Gerald D.

    1995-05-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. Bonifer Pond, Minthorn Springs and Imeques C-mem-ini-kem acclimation facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O, kisutch). Minthorn is also used for holding and spawning summer steelhead, fall chinook and coho salmon. In the spring of 1994, juvenile summer steelhead were acclimated at Bonifer and Minthorn. At Imeques C-mem-ini-kem, juvenile spring chinook were acclimated in the spring and fall. A total of 92 unmarked and 42 marked summer steelhead were collected for broodstock at Three Mile Dam from October 1, 1993 through May 2, 1994 and held at Minthorn. An estimated 234,432 green eggs were taken from 48 females. The eggs were transferred to Irrigon Hatchery for incubation and early rearing. Fingerlings were transferred to Umatilla Hatchery for final rearing and release into the Umatilla River in 1995. Fall chinook and coho salmon broodstock were not collected in 1994. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla River releases to ocean, Columbia River and Umatilla River fisheries. Total estimated juvenile adult survival rates are detailed in this document.

  9. Refurbishment of Pakistan research reactor (PARR-1) for stainless steel lining of the reactor pool

    International Nuclear Information System (INIS)

    Salahuddin, A.; Israr, M.; Hussain, M.

    2002-01-01

    Pakistan Research Reactor-1 (PARR-1) is a pool-type research reactor. Reactor aging has resulted in the increase of water seepage from the concrete walls of the reactor pool. To stop the seepage, it was decided to augment the existing pool walls with an inner lining of stainless steel. This could be achieved only if the pool walls could be accessed unhindered and without excessive radiation doses. For this purpose a partial decommissioning was done by removing all active core components including standard/control fuel elements, reflector elements, beam tubes, thermal shield, core support structure, grid plate and the pool's ceramic tiles, etc. An overall decommissioning program was devised which included procedures specific to each item. This led to the development of a fuel transport cask for transportation, and an interim fuel storage bay for temporary storage of fuel elements (until final disposal). The safety of workers and the environment was ensured by the use of specially designed remote handling tools, appropriate shielding and pre-planned exposure reduction procedures based on the ALARA principle. During the implementation of this program, liquid and solid wastes generated were legally disposed of. It is felt that the experience gained during the refurbishment of PARR-1 to install the stainless steel liner will prove useful and better planning and execution for the future decommissioning of PARR-1, in particular, and for other research reactors like PARR-2 (27 kW MNSR), in general. Furthermore, due to the worldwide activities on decommissioning, especially those communicated through the IAEA CRP on 'Decommissioning Techniques for Research Reactors', the importance of early planning has been well recognized. This has made possible the implementation of some early steps like better record keeping, rehiring of trained manpower, and creation of interim and final waste storage. (author)

  10. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and

  11. Movement and Harvest of Fish in Lake Saint Clair, Saint Clair River, and Detroit River

    Science.gov (United States)

    1985-01-01

    were tagged with vinyl tube Floy tags, with a nylon T-shaped base, inserted and anchored into the interneural process below the dorsal fin. Walleye...whitefish Coreyonus cluveaformis Chinook salmon Oncorhynchus tshawytscha Coho salmon OncorhynchUs kisutch Pink salmon Oncorhynchus rorbuscha Rainbow trout

  12. 75 FR 53025 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2010-08-30

    ... goals to sustain salmon resources for future generations. The next priority is for subsistence use under... areas of the BSAI (Area 1 in the AI subarea and Area 2 in the BS subarea), and established new closure... that NMFS pursue a proposed rule to remove the regulations requiring a preliminary AFA report. AI...

  13. Trapping and transportation of adult and juvenile salmon in the lower Umatilla River in northeast Oregon, 1996-1997. Umatilla River Basin Trap and Haul Program. Annual progress report, October 1996 - September 1997

    International Nuclear Information System (INIS)

    Zimmerman, B.; Duke, B.B.

    1997-09-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were collected at Threemile Dam from August 30, 1996 to August 26, 1997. A total of 2,477 summer steelhead (Oncorhynchus mykiss); 646 adult, 80 jack, and 606 subjack fall chinook (O. tshawytscha); 618 adult and 24 jack coho (O. kisutch); and 2,194 adult and four jack spring chinook (O. tshawytscha) were collected. All fish were trapped at the east bank facility. Of the fish collected, 22 summer steelhead; 18 adult and two jack fall chinook; five adult coho; and 407 adult and three jack spring chinook were hauled upstream from Threemile Dam. There were 2,245 summer steelhead; 70 adult, 51 jack and 520 subjack fall chinook; 593 adult and 24 jack coho; and 1,130 adult spring chinook released at Threemile Dam I In addition, 110 summer steelhead; 551 adult and 25 jack fall chinook; and 600 adult spring chinook were collected for broodstock. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts, The canal was open for a total of 210 days between December 16, 1996 and July 30, 1997. During that period, fish were bypassed back to the river 175 days and were trapped on 35 days, An estimated 1,675 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5), Approximately 80% of the juveniles transported were salmonids, No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was operated from October 4 to November 1, 1996 and from March 26 to July 7, 1997. The juvenile trap was not operated this year. 6 refs., 6 figs., 6 tabs

  14. Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2011

    Science.gov (United States)

    2012-05-01

    excluding salmon) while salmon were most predominant during spring 2010 and 2011 months. Four species of salmon and trout , unmarked and marked, were...salmonid catch), followed by chum salmon (10%), marked Chinook salmon (8%), coho salmon (8%), and steelhead trout (ə%). • The densities of juvenile...extract stomach contents from euthanized resident bluegill, pumpkinseed, killifish, and stickleback, we first removed and dissected the anterior digestive

  15. A comparative examination of cortisol effects on muscle myostatin and HSP90 gene expression in salmonids.

    Science.gov (United States)

    Galt, Nicholas J; McCormick, Stephen D; Froehlich, Jacob Michael; Biga, Peggy R

    2016-10-01

    Cortisol, the primary corticosteroid in teleost fishes, is released in response to stressors to elicit local functions, however little is understood regarding muscle-specific responses to cortisol in these fishes. In mammals, glucocorticoids strongly regulate the muscle growth inhibitor, myostatin, via glucocorticoid response elements (GREs) leading to muscle atrophy. Bioinformatics methods suggest that this regulatory mechanism is conserved among vertebrates, however recent evidence suggests some fishes exhibit divergent regulation. Therefore, the aim of this study was to evaluate the conserved actions of cortisol on myostatin and hsp90 expression to determine if variations in cortisol interactions have emerged in salmonid species. Representative salmonids; Chinook salmon (Oncorhynchus tshawytscha), cutthroat trout (Oncorhynchus clarki), brook trout (Salvelinus fontinalis), and Atlantic salmon (Salmo salar); were injected intraperitoneally with a cortisol implant (50μg/g body weight) and muscle gene expression was quantified after 48h. Plasma glucose and cortisol levels were significantly elevated by cortisol in all species, demonstrating physiological effectiveness of the treatment. HSP90 mRNA levels were elevated by cortisol in brook trout, Chinook salmon, and Atlantic salmon, but were decreased in cutthroat trout. Myostatin mRNA levels were affected in a species, tissue (muscle type), and paralog specific manner. Cortisol treatment increased myostatin expression in brook trout (Salvelinus) and Atlantic salmon (Salmo), but not in Chinook salmon (Oncorhynchus) or cutthroat trout (Oncorhynchus). Interestingly, the VC alone increased myostatin mRNA expression in Chinook and Atlantic salmon, while the addition of cortisol blocked the response. Taken together, these results suggest that cortisol affects muscle-specific gene expression in species-specific manners, with unique Oncorhynchus-specific divergence observed, that are not predictive solely based upon

  16. Daytime habitat selection for juvenile parr brown trout (Salmo trutta) in small lowland streams

    DEFF Research Database (Denmark)

    Conallin, J.; Boegh, E.; Olsen, M.

    2014-01-01

    Physical habitat is important in determining the carrying capacity of juvenile brown trout, and within freshwater management. Summer daytime physical habitat selection for the parr lifestage (7-20 cm) juvenile brown trout (Salmo trutta) was assessed in 6 small lowland streams. Habitat preference...... was determined for the four variables; water velocity, water depth, substrate and cover, and the preferences for physical habitat selection were expressed in terms of habitat suitability indices (HSI's). The statistical confidence of HSI's was evaluated using power analysis. It was found that a minimum of 22...... fish observations was needed to have statistical confidence in the HSIs for water depth, and a minimum of 92 fish observations for water velocity during daytime summer conditions. Generally parr were utilising the deeper habitats, indicating preference for deeper water. Cover was also being selected...

  17. Identifying salmon lice transmission characteristics between Faroese salmon farms

    DEFF Research Database (Denmark)

    Kragesteen, Trondur J.; Simonsen, Knud; Visser, AW

    2018-01-01

    Sea lice infestations are an increasing challenge in the ever-growing salmon aquaculture sector and cause large economic losses. The high salmon production in a small area creates a perfect habitat for parasites. Knowledge of how salmon lice planktonic larvae disperse and spread the infection...... between farms is of vital importance in developing treatment management plans to combat salmon lice infestations. Using a particle tracking model forced by tidal currents, we show that Faroese aquaculture farms form a complex network. In some cases as high as 10% of infectious salmon lice released at one...... for the entire Faroese salmon industry...

  18. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; McMichael, Geoffrey A. [Pacific Northwest National Laboratory

    2009-08-21

    In 2007, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. Monthly releases of radio-tagged fish ({approx}95/month) were made from May through October and releases of 122-149/month acoustic-tagged fish per month were made from August through October. We compared the size at release of our tagged fish to that which could have been obtained at the same time from in-river, beach seine collections made by the Nez Perce Tribe. Had we relied on in-river collections to obtain our fish, we would have obtained very few in June from the free-flowing river but by late July and August over 90% of collected fish in the transition zone were large enough for tagging. Detection probabilities of radio-tagged subyearlings were generally high ranging from 0.60 (SE=0.22) to 1.0 (SE=0) in the different study reaches and months. Lower detection probabilities were observed in the confluence and upper reservoir reaches where fewer fish were detected. Detection probabilities of acoustic-tagged subyearlings were also high and ranged from 0.86 (SE=0.09) to 1.0 (SE=0) in the confluence and upper reservoir reaches during August through October. Estimates of the joint probability of migration and survival generally declined in a downstream direction for fish released from June through August. Estimates were lowest in the transition zone (the lower 7 km of the Clearwater River) for the June release and lowest in the confluence area for July and August releases. The joint probability of migration and survival in these reaches was higher for the September and October releases, and were similar to those of fish released in May. Both fish weight and length at tagging were significantly correlated with the joint probability of migrating and surviving for both radio-tagged and acoustic-tagged fish. For both tag types, fish that were heavier at tagging had a

  19. Natural Production Monitoring and Evaluation; Idaho Department of Fish and Game, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Timothy; Johnson, June; Bunn, Paul (Idaho Department of Fish and Game, Boise, ID)

    2004-12-01

    This report covers the following 3 parts of the Project: Part 1--Monitoring age composition of wild adult spring and summer Chinook salmon returning to the Snake River basin in 2003 to predict smolt-to-adult return rates Part 2--Development of a stock-recruitment relationship for Snake River spring/summer Chinook salmon to forecast natural smolt production Part 3--Improve the precision of smolt-to-adult survival rate estimates for wild steelhead trout by PIT tagging additional juveniles.

  20. Kinetics of Mx expression in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar L.) parr in response to VHS-DNA vaccination

    DEFF Research Database (Denmark)

    Acosta, F.; Petrie, A.; Lockhart, K.

    2005-01-01

    vaccine or the synthetic double-stranded RNA, poly LC. In both species there was a rapid response to poly LC detectable from day 1, reaching maximum from days 3 to 9 and decreasing to background level by day 12. The peak level and return to background was reached slightly later in salmon. In both species...... the response to the VHS/DNA vaccine was slower to begin, not being detectable on days 1 and 3, but elevated levels were found on day 6. However, in the salmon part, the peak level was on day 6 and the signal disappeared by day 12, while in the rainbow trout, the response peaked at day 12 and lasted until day......The duration of the Mx mRNA response to an intramuscular injection of the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) gene DNA vaccine as well as to the control plasmid was determined in rainbow trout at 14 degreesC over a period of 11 weeks. The Mx response was detectable on day 7...