WorldWideScience

Sample records for chinook oregon department

  1. 2008 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Lake Billy Chinook, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  2. Northeast Oregon Hatchery Spring Chinook Master Plan, Technical Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Ashe, Becky L.; Concannon, Kathleen; Johnson, David B.

    2000-04-01

    Spring chinook salmon populations in the Imnaha and Grande Ronde rivers are listed as threatened under the Endangered Species Act (ESA) and are at high risk of extirpation. The Nez Perce Tribe, the Confederated Tribes of the Umatilla Indian Reservation, and Oregon Department of Fish and Wildlife, are co-managers of conservation/restoration programs for Imnaha and Grande Ronde spring chinook salmon that use hatchery supplementation and conventional and captive broodstock techniques. The immediate goal of these programs is to prevent extirpation and provide the potential for restoration once factors limiting production are addressed. These programs redirect production occurring under the Lower Snake River Compensation Plan (LSRCP) from mitigation to conservation and restoration. Both the Imnaha and Grande Ronde conservation/restoration programs are described in ESA Section 10 permit applications and the co-managers refer to the fish production from these programs as the Currently Permitted Program (CPP). Recently, co-managers have determined that it is impossible to produce the CPP at Lookingglass Hatchery, the LSRCP facility intended for production, and that without additional facilities, production must be cut from these conservation programs. Development of new facilities for these programs through the Columbia Basin Fish and Wildlife Program is considered a new production initiative by the Northwest Power Planning Council (NPPC) and requires a master plan. The master plan provides the NPPC, program proponents and others with the information they need to make sound decisions about whether the proposed facilities to restore salmon populations should move forward to design. This master plan describes alternatives considered to meet the facility needs of the CPP so the conservation program can be fully implemented. Co-managers considered three alternatives: modify Lookingglass Hatchery; use existing facilities elsewhere in the Basin; and use new facilities in

  3. 2007 Oregon Department of Forestry (ODF) Northwest Oregon Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This lidar dataset encompasses two areas in northwest Oregon. The northern area is located in Clatsop County, encompassing Clatsop State Forest ownership; the...

  4. Multiscale thermal refugia and stream habitat associations of chinook salmon in northwestern Oregon

    Science.gov (United States)

    Torgersen, Christian E.; Price, David M.; Li, Hiram W.; McIntosh, B.A.

    1999-01-01

    We quantified distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel-unit, reach-, and section-level spatial scales in a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. We investigated the effectiveness of thermal remote sensing for analyzing spatial patterns of stream temperature and assessed habitat selection by spring chinook salmon, evaluating whether thermal refugia might be responsible for the persistence of these stocks in rivers where water temperatures frequently exceed their upper tolerance levels (25A?C) during spawning migration. By presenting stream temperature and the ecology of chinook salmon in a historical context, we could evaluate how changes in riverine habitat and thermal spatial structure, which can be caused by land-use practices, may influence distributional patterns of chinook salmon. Thermal remote sensing provided spatially continuous maps of stream temperature for reaches used by chinook salmon in the upper subbasins of the Middle Fork and North Fork John Day River. Electivity analysis and logistic regression were used to test for associations between the longitudinal distribution of salmon and cool-water areas and stream habitat characteristics. Chinook salmon were distributed nonuniformly in reaches throughout each stream. Salmon distribution and cool water temperature patterns were most strongly related at reach-level spatial scales in the warm stream, the Middle Fork (maximum likelihood ratio: P 0.30). Pools were preferred by adult chinook salmon in both subbasins (Bonferroni confidence interval: P a?? 0.05); however, riffles were used proportionately more frequently in the North Fork than in the Middle Fork. Our observations of thermal refugia and their use by chinook salmon at multiple spatial scales reveal that, although heterogeneity in the longitudinal stream temperature profile may

  5. 2015 Oregon Department Forestry Lidar: Northwest OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GeoTerra, Inc. was selected by Oregon Department of Forestry to provide Lidar remote sensing data including LAZ files of the classified Lidar points and surface...

  6. 2015 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Green Peter

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data of the Green Peter study area for the Oregon LiDAR Consortium (OLC) in Linn County, Oregon. The collection of...

  7. 2012 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Green Peter

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI collected Light Detection and Ranging (LiDAR) data of the Green Peter study area for the Oregon LiDAR Consortium (OLC) in Linn County, Oregon. The collection of...

  8. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha in the Willamette River, Oregon, USA

    Science.gov (United States)

    Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.

    2014-01-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  9. 2015 Oregon Department Forestry Lidar DEM: Northwest OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GeoTerra, Inc. was selected by Oregon Department of Forestry to provide Lidar remote sensing data including LAZ files of the classified Lidar points and surface...

  10. 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Willamette Valley

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  11. 2012 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Rogue River Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI has collected Light Detection and Ranging (LiDAR) data of the Rogue River Study Area for the Oregon Department of Geology and Mineral Industries (DOGAMI),...

  12. 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: North Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology and Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  13. 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: North Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  14. 2007 Oregon Department of Geology and Mineral Industries (DoGAMI) LiDAR: Northwest Oregon and Portland Metro Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data for the Oregon Department of Geology and Mineral Industries (DoGAMI) and the Oregon...

  15. 2009 Oregon Parks and Recreation Department Lidar: Columbia River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set represents the lidar elevations along the Columbia River corridor in Oregon, including portions of the following counties: Gilliam, Hood River,...

  16. 2010 Oregon Parks and Recreation Department Lidar: Cottonwood Canyon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set represents the lidar elevations in portions of Gilliam and Sherman Counties, Oregon. This data set covers 35,902 acres and was collected between May 13...

  17. 2015 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar DEM: Upper Rogue 3DEP

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Upper Rogue 2015 study area. The collection of high...

  18. 2016 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: McKenzie River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) McKenzie River study area. This study area is located near...

  19. 2016 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar DEM: McKenzie River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) McKenzie River study area. This study area is located near...

  20. 2013 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Big Windy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In July of 2013, lightning strikes ignited three wildfires in southwest Oregon that became known as the Big Windy Complex. The fires were fully contained by the end...

  1. 2015 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar DEM: Upper Umpqua

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset encompasses 2209.5 square miles in southwestern Oregon. The highest hit digital surface models (DSM) represent the earth's surface with all vegetation...

  2. 2014 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Metro Portland, OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset encompasses 1221.6 square miles in portions of the greater Portland Metro area in the state of Oregon. The highest hit digital surface models (DSM)...

  3. 2014 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar DEM: Metro Portland, OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset encompasses 1221.6 square miles in portions of the greater Portland Metro area in the state of Oregon. The highest hit digital surface models (DSM)...

  4. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    2003-12-01

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenile chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303

  5. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Crater Lake Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  6. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Ochoco Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  7. 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Southwest Washington Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology and Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  8. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Eagle Point Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology and Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  9. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Mt. Shasta Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  10. 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Medford

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic lidar data for...

  11. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Umatilla Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  12. 2008 - 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) South Coast LiDAR Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology and Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  13. 2008 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Ontario

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic lidar data for...

  14. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Yambo Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  15. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Pine Creek Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  16. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Burns Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  17. 2012 Oregon Department of Interior, Bureau of Land Management (BLM) Lidar: Panther Creek Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Interior, Bureau of Land Management (BLM) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  18. 2008 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Camp Creek

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic lidar data for...

  19. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Umatilla Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology and Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  20. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Mt. Shasta Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology and Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  1. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Newberry Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology and Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  2. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Newberry Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  3. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Burns Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology and Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  4. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Klamath Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  5. Emigration of Natural and Hatchery Naco x (Chinook salmon; Oncorhynchus tshawytscha) and Heeyey (Steelhead; Oncorhynchus mykiss) Smolts from the Imnaha River, Oregon from 5 October 2006 to 21 June 2007, Annual Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Michaels, Brian; Espinosa, Neal (Nez Perce Tribe)

    2009-02-18

    This report summarizes the Nez Perce Tribe (NPT) Department of Fisheries Resources Management (DFRM) results for the Lower Snake River Compensation Plan (LSRCP) Hatchery Evaluation studies and the Imnaha River Smolt Monitoring Program (SMP) for the 2007 smolt migration from the Imnaha River, Oregon. These studies are closely coordinated and provide information about juvenile natural and hatchery spring/summer Naco x (Chinook Salmon; Oncorhynchus tshawytscha) and Heeyey (steelhead; O. mykiss) biological characteristics, emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam (MCD) on the Columbia River. These studies provide information on listed Naco x (Chinook salmon) and Heeyey (steelhead) for the Federal Columbia River Power System (FCRPS) Biological Opinion (NMFS 2000). The Lower Snake River Compensation Plan program's goal is to maintain a hatchery production program of 490,000 Naco x (Chinook salmon) and 330,000 Heeyey (steelhead) for annual release in the Imnaha River (Carmichael et al. 1998, Whitesel et al. 1998). These hatchery releases occur to compensate for fish losses due to the construction and operation of the four lower Snake River hydroelectric facilities. One of the aspects of the LSRCP hatchery evaluation studies in the Imnaha River is to determine natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolt performance, emigration characteristics and survival (Kucera and Blenden 1998). A long term monitoring effort was established to document smolt emigrant timing and post release survival within the Imnaha River, estimate smolt survival downstream to McNary Dam, compare natural and hatchery smolt performance, and collect smolt-to-adult return information. This project collects information for, and is part of, a larger effort entitled Smolt Monitoring by Federal and Non-Federal Agencies (BPA Project No. 198712700). This larger project provides data on movement of smolts out of major

  6. John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring; Fish Research Project Oregon, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W.; Claire, Glenda M.; Seals, Jason

    2002-01-01

    The four objectives of this report are: (1) Estimate annual spawner escapement and number of spring chinook salmon redds in the John Day River basin; (2) Determine sex ratio, age composition, length-at-age of spawners, and proportion of natural spawners that are hatchery origin strays; (3) Determine adequacy of historic index surveys for indexing spawner abundance and for detecting changes in spawner distribution through time; and (4) Estimate smolt-to-adult survival for spring chinook salmon emigrating from the John Day River basin.

  7. 2015 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Big Wood, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Big Wood 2015 study area. This study area is located in...

  8. 2007 Oregon Parks and Recreation Department Silver Falls State Park Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents the Lidar elevations for Silver Falls State Park in Marion County, Oregon. The LiDAR data was collected during March 2007. This was a leaf-off...

  9. 75 FR 68336 - Oregon Parks and Recreation Department; Notice of Application Accepted for Filing and Soliciting...

    Science.gov (United States)

    2010-11-05

    ... 30, 2010. d. Applicant: Oregon Parks and Recreation Department. e. Name of Project: Thompson's Mills... reference to this application must be accompanied by proof of service on all persons listed in the service...

  10. 2009 - 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Deschutes Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology June 14, 2010 30,161 31,969 10 Oct 12 - 17, 2009; May 29 - June 17, 2010 48,746 50,833 11 Oct 16 - Nov 5, 2009; May 28 - July 3,...

  11. 76 FR 43714 - Notice of Inventory Completion: Oregon State University Department of Anthropology, Corvallis, OR

    Science.gov (United States)

    2011-07-21

    ... National Park Service Notice of Inventory Completion: Oregon State University Department of Anthropology... Department of Anthropology has completed an inventory of human remains, in consultation with the appropriate Indian tribes, and has determined that there is a cultural affiliation between the human remains and...

  12. 76 FR 43716 - Notice of Inventory Completion: Oregon State University Department of Anthropology, Corvallis, OR

    Science.gov (United States)

    2011-07-21

    ... National Park Service Notice of Inventory Completion: Oregon State University Department of Anthropology... Department of Anthropology has completed an inventory of human remains, in consultation with the appropriate Indian tribes, and has determined that there is a cultural affiliation between the human remains and...

  13. Behavior, passage, and downstream migration of juvenile Chinook salmon from Detroit Reservoir to Portland, Oregon, 2014–15

    Science.gov (United States)

    Kock, Tobias J.; Beeman, John W.; Hansen, Amy C.; Hansel, Hal C.; Hansen, Gabriel S.; Hatton, Tyson W.; Kofoot, Eric E.; Sholtis, Matthew D.; Sprando, Jamie M.

    2015-11-16

    An evaluation was conducted to estimate dam passage survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) at Detroit Dam during a period of spill. To estimate dam passage survival, we used a paired-release recapture study design and released groups of tagged fish upstream (997 fish) and downstream (625 fish) of Detroit Dam. A total of 43 fish (6.8 percent) passed Detroit Dam from the upstream release group and passage occurred through regulating outlets (54.8 percent), spill bays (31.0 percent), and turbines (14.3 percent). We do not present dam passage survival estimates from 2014 because these estimates would have been highly uncertain due to the low number of fish that passed Detroit Dam during the study. Secondary objectives were addressed using data collected from tagged fish that were released at the downstream release site.

  14. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: US Forest Service (FS) Newberry Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  15. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Cascade Volcano Observatory (CVO) Newberry Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  16. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: US Forest Service (FS) Newberry Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology and Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  17. 2007 Oregon Parks and Recreation Department Lidar: Rogue River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This lidar data set was collected along the Rogue River Greenway and Recreation Corridor, between TouVelle State Park and downtown Grants Pass in portions of Jackson...

  18. 2012 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar DEM: Rogue River Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset encompasses portions of Coos, Curry, Douglas, Jackson, and Josephine Counties.The bare earth digital elevation model (DEM) represents the earth's surface...

  19. 2011 Oregon Parks and Recreation Department Lidar: Northeast (Clyde Holliday, Cove Palisades, Lake Owyhee, and White River Falls State Parks)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set provides the lidar elevations for four Oregon State Parks. The four state parks are Clyde Holliday (766 square acres) in Grant County, Cove Palisades...

  20. Migratory Characteristics of Juvenile Spring Chinook Salmon in the Willamette River : Completion Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate.

  1. Egg to Fry - Chinook Egg-to-Fry Survival

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Few estimates of Chinook egg-to-fry survival exist despite the fact that this is thought to be one of the life stages limiting production of many listed Chinook...

  2. Manchester Spring Chinook Broodstock Project : Progress Report, 2000.

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, W. Carlin; Wastel, Michael R.; Flagg, Thomas A. (Thomas Alvin)

    2000-11-01

    In spring 1995 the Idaho Department of Fish and Game (IDFG) and the Oregon Department of Fish and Wildlife (ODFW) initiated captive broodstocks as part of conservation efforts for ESA-listed stocks of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha). The need for this captive broodstock strategy was identified as critical in the National Marine Fisheries Service (NMFS) Proposed Recovery Plan for Snake River Salmon. These captive broodstock programs are being coordinated by the Bonneville Power Administration (BPA) through the Chinook Salmon Captive Propagation Technical Oversight Committee (CSCPTOC). Oregon's Snake River spring/summer chinook salmon captive broodstock program currently focuses on three stocks captured as juveniles from the Grande Ronde River Basin: the upper Grande Ronde River, Catherine Creek, and the Lostine River. Idaho's Snake River program includes three stocks captured as eggs and juveniles from the Salmon River Basin: the Lemhi River, East Fork Salmon River, and West Fork Yankee Fork. The majority of captive fish from each stock of the Grande Ronde Basin will be grown to maturity in freshwater at the ODFW Bonneville Hatchery. A minority of the Salmon River Basin stocks will be grown to maturity in freshwater at the IDFG Eagle Hatchery. However, the IDFG and ODFW requested that a portion of each group also be reared in protective culture in seawater. In August 1996, NMFS began a BPA funded project (Project 96-067-00) to rear Snake River spring/summer chinook salmon captive broodstocks in seawater at the NMFS Manchester Research Station. During 1997-1999, facilities modifications were undertaken at Manchester to provide secure facilities for rearing of these ESA-listed fish. This included construction of a building housing a total of twenty 6.1-m diameter fiberglass rearing tanks, upgrade of the Manchester salt water pumping and filtration/sterilization systems to a total capacity of 5,670 L/min (1,500 gpm), and

  3. Chinook Abundance - Linear Features [ds181

    Data.gov (United States)

    California Department of Resources — The dataset 'ds181_Chinook_ln' is a product of the CalFish Adult Salmonid Abundance Database. Data in this shapefile are collected from stream sections or reaches...

  4. AFSC/ABL: Chinook allozyme baseline

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Allozyme variation was used to examine population genetic structure of adult chinook salmon, Oncorhynchus tshawytscha, collected between 1988 and 1993 from 22...

  5. AFSC/ABL: 2009 Chinook Excluder Samples

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project genetically analyzed 1,620 chinook salmon samples from the 2009 spring salmon excluder device test. These samples were collected over a short period of...

  6. Chinook Critical Habitat, Coast - NOAA [ds124

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the California Coastal Evolutionary Significant Unit (ESU -...

  7. Differential performance Of ventral fin clipped and adipose fin clipped/coded-wire tagged spring Chinook Salmon at Warm Springs National Fish Hatchery, Oregon

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Warm Springs National Fish Hatchery is operated by the U.S. Fish and Wildlife Service, and is located on the Warm Springs River within the Confederated Tribes of the...

  8. Chinook salmon Genetic Stock Identification data - Genetic Stock Identification of Washington Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project evaluates data from coded wire tagging with that from parental based tagging to identify stock of origin for Chinook salmon landed in Washington state...

  9. The relationship between chinook conditions and women's physical and mental well-being

    Science.gov (United States)

    Verhoef, Marja J.; Rose, M. Sarah; Ramcharan, Savitri

    1995-09-01

    The objective of this study was (1) to determine the relationship between chinook conditions and physical and psychological symptoms in women aged 20 49 years, and (2) to examine the possibility of subgroups of chinook-sensitive women. The evidence for this relationship is at present merely anecdotal. The study carried out in 1985 1986 in Calgary comprises the secondary analysis of a large survey of various health and health-related factors, including different symptoms, of urban women aged 20 49 years. The interview date was used to link these data to days on which pre-chinook, chinook, post-chinook and non-chinook conditions occurred. Between November 1, 1985 and February 28, 1986, 182 women were interviewed on pre-chinook days, 74 on chinook days, 229 on post-chinook days and 886 on non-chinook days. Autonomic reactions and skin disorders were found to be significantly related to chinook conditions. None of the psychological symptoms was related to chinook conditions. However, a significant relationship was found between symptoms and chinook conditions in women with a history of emotional disorders. This type of information is important to educate chinook-sensitive women and health professionals as well as for hospital emergency departments in order to be able to prepare for potential increases in workload.

  10. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Desmond J.; McAuley, W. Carlin (National Marine Fisheries Service, Northwest Fisheries Science Center, Resource Enhancement and Utilization, Seattle, WA)

    2004-08-01

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs are intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates intended to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2003, NMFS cultured 1998, 1999, 2000, and 2001 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2002 to August 31, 2003.

  11. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, W. Carlin; Flagg, Thomas N. (National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA)

    2003-03-01

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs were intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA, provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates designed to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2001, NMFS cultured 1996, 1997, 1998, and 1999 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2000 to August 31, 2001.

  12. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, W. Carlin; Maynard, Desmond J. (National Marine Fishereis Service, Northwest Fisheries Science Center, Seattle, WA)

    2003-03-01

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs were intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA, provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates designed to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2002, NMFS cultured 1996, 1997, 1998, 1999, and 2000 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2001 to August 31, 2002.

  13. The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Volume XVII : Effects of Ocean Covariates and Release Timing on First Ocean-Year Survival of Fall Chinook Salmon from Oregon and Washington Coastal Hatcheries.

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Caitlin; Skalski, John R.

    2001-05-01

    Effects of oceanographic conditions, as well as effects of release-timing and release-size, on first ocean-year survival of subyearling fall chinook salmon were investigated by analyzing CWT release and recovery data from Oregon and Washington coastal hatcheries. Age-class strength was estimated using a multinomial probability likelihood which estimated first-year survival as a proportional hazards regression against ocean and release covariates. Weight-at-release and release-month were found to significantly effect first year survival (p < 0.05) and ocean effects were therefore estimated after adjusting for weight-at-release. Negative survival trend was modeled for sea surface temperature (SST) during 11 months of the year over the study period (1970-1992). Statistically significant negative survival trends (p < 0.05) were found for SST during April, June, November and December. Strong pairwise correlations (r > 0.6) between SST in April/June, April/November and April/December suggest the significant relationships were due to one underlying process. At higher latitudes (45{sup o} and 48{sup o}N), summer upwelling (June-August) showed positive survival trend with survival and fall (September-November) downwelling showed positive trend with survival, indicating early fall transition improved survival. At 45{sup o} and 48{sup o}, during spring, alternating survival trends with upwelling were observed between March and May, with negative trend occurring in March and May, and positive trend with survival occurring in April. In January, two distinct scenarios of improved survival were linked to upwelling conditions, indicated by (1) a significant linear model effect (p < 0.05) showing improved survival with increasing upwelling, and (2) significant bowl-shaped curvature (p < 0.05) of survival with upwelling. The interpretation of the effects is that there was (1) significantly improved survival when downwelling conditions shifted to upwelling conditions in January (i

  14. Post-release behavior and movement patterns of Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) after capture using alternative commercial fish gear, lower Columbia River, Washington and Oregon, 2013

    Science.gov (United States)

    Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.

    2014-01-01

    Commercial salmon Oncorhynchus spp. fishers traditionally have used gill nets, and more recently tangle nets, to capture adult salmon in the lower Columbia River, Washington and Oregon, but these gear types are not selective and can result in unintentional injury or death to non-target species, which is a problem when wild or Endangered Species Act-listed salmon are present. Gill and tangle nets capture fish through physical retention. Gill nets have mesh sizes that are slightly larger than the diameter of the head of the target species so that a fish moving through the net becomes entangled behind its operculum. Tangle nets have mesh sizes that are smaller than the diameter of the head of the target species so that a fish becomes entangled by its teeth or jaw. The Washington Department of Fish and Wildlife (WDFW) has been evaluating Merwin traps, beach seines, and purse seines during the past decade to determine if these are viable alternative commercial fishing gear types that would reduce negative effects to non-target fish, including wild salmon. As opposed to gill and tangle nets, these alternative gear types capture fish without physical restraint. The nets encircle the area where a fish or school of fish is located and eliminate the ability of those fish to escape. Because fish are not physically restrained by the gear, it is believed that the likelihood of injury and death would be reduced, allowing the safe release of non-target fish.

  15. AFSC/ABL: 2007-2013 Chinook Salmon Bycatch Sample

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A genetic analyses of samples from the Chinook salmon (Oncorhynchus tshawytscha) bycatch from the 2007-2013 Bering Sea-Aleutian Island and Gulf of Alaska trawl...

  16. Chinook Bycatch - Contemporary Salmon Genetic Stock Composition Estimates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to measure and monitor impacts on ESA-listed populations and to estimate overall Chinook salmon stock composition in bycatch...

  17. Chinook Critical Habitat, Central Valley - NOAA [ds125

    Data.gov (United States)

    California Department of Resources — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the Central Valley Spring-run Evolutionary Significant Unit...

  18. AFSC/ABL: Movements of Yukon River Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, relatively pristine river basin. A total of...

  19. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher

  20. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  1. Cedar River Chinook genotypes - Estimate relative reproductive success of hatchery and wild fall Chinook salmon in the Cedar River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using genetic pedigree information to estimate the reproductive success of hatchery and wild fall-run Chinook salmon spawning in the Cedar River, Washington....

  2. Wenatchee Chinook Parentage - Evaluate the reproductive success of hatchery and wild Chinook salmon in the Wenatchee River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are using genetic parentage analysis to measure the relative fitness of hatchery and wild spring run Chinook salmon that spawn in the Wenatchee River. In addition...

  3. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries of these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.

  4. Annual Coded Wire Tag Program; Oregon Missing Production Groups, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mark A.; Mallette, Christine; Murray, William M.

    1998-03-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife's Annual Coded Wire Tag Program - Oregon Missing Production Groups Project. Tule stock fall chinook were caught primarily in British Columbia and Washington ocean, and Oregon freshwater fisheries. Up-river bright stock fall chinook contributed primarily to Alaska and British Columbia ocean commercial, and Columbia River gillnet and other freshwater fisheries. Contribution of Rogue stock fall chinook released in the lower Columbia River occurred primarily in Oregon ocean commercial and Columbia river gillnet fisheries. Willamette stock spring chinook contributed primarily to Alaska and British Columbia ocean commercial, Oregon freshwater sport and Columbia River gillnet fisheries. Willamette stock spring chinook released by CEDC contributed to similar ocean fisheries, but had much higher catch in gillnet fisheries than the same stocks released in the Willamette system. Up-river stocks of spring chinook contributed almost exclusively to Columbia River sport fisheries and other freshwater recovery areas. The up-river stocks of Columbia River summer steelhead contributed primarily to the Columbia River gillnet and other freshwater fisheries. Coho ocean fisheries from Washington to California were closed or very limited from 1994 through 1997 (1991 through 1994 broods). This has resulted in a greater average percent of catch for other fishery areas. Coho stocks released by ODFW below Bonneville Dam contributed mainly to Oregon and Washington ocean, Columbia Gillnet and other freshwater fisheries. Coho stocks released in the Klaskanine River and Youngs Bay area had similar ocean catch, but much higher contribution to gillnet fisheries than the other coho releases. Coho stocks released above Bonneville Dam had similar contribution to ocean fisheries as other coho releases. However, they

  5. Research management peer exchange hosted by the Oregon Department of Transportation Research Group, August 20-24, 2001. Summary report.

    Science.gov (United States)

    2001-05-01

    The team began this peer exchange with a review of the first Oregon Peer Exchange conducted in may, 1998. The review included a summary of recommendations made and the changes made as a result of the 1998 Peer Exchange Report. : The primary focus of ...

  6. Development of a Willingness to Pay Survey for Willamette Basin Spring Chinook and Winter Steelhead Recovery

    Science.gov (United States)

    Salmon fisheries are a high-profile icon of the Pacific Northwest. Spring Chinook and winter-run steelhead are both listed as federally endangered species in the Willamette basin, the most populated and developed watershed in Oregon. Despite being a high profile issue, there are ...

  7. Trapping and Transportation of Adult and Juvenile Salmon in the Lower Umatilla River in Northeast Oregon: Umatilla River Basin Trap and Haul Program, October 1994-September 1995.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Brian C.; Duke, Bill B.

    1995-09-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were collected at Threemile Dam from August 26, 1994 to June 27, 1995. A total of 1,531 summer steelhead (Oncorhynchus mykiss); 688 adult, 236 jack, and 368 subjack fall chinook (O. tshawvtscha); 984 adult and 62 jack coho (O. kisutch) ; and 388 adult and 108 jack spring chinook (O. tshawvtscha) were collected. All fish were trapped at the east bank facility. Of the fish collected, 971 summer steelhead; 581 adult and 27 jack fall chinook; 500 adult and 22 jack coho; and 363 adult and 61 jack spring chinook were hauled upstream from Threemile Dam. There were also 373 summer steelhead; 12 adult, 186 jack and 317 subjack fall chinook; 379 adult and 32 jack coho; and 15 adult and one jack spring chinook released at Threemile Dam. In addition, 154 summer steelhead were hauled to Bonifer and Minthorn for brood. The Westland Canal facility, located near the town of Echo, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The facility operated for a total of 179 days between December 2, 1994 and July 19, 1995. During that period, fish were bypassed back to the river 137 days and were trapped 42 days. Three steelhead kelts and an estimated 1,560 pounds of juvenile fish were transported from the Westland Canal trap to the Umatilla River boat ramp at rivermile 0.5. Approximately 98% of the fish transported this year were salmonids. The Threemile Dam west bank juvenile bypass began operating March 25, 1995 and was closed on June 16, 1995. The juvenile trap was operated by Oregon Department of Fish and Wildlife research personnel from April 1, 1995 through the summer to monitor juvenile outmigration.

  8. Oregon's mobility needs : social service provider survey

    Science.gov (United States)

    1999-06-01

    In 1998, the Oregon Department of Transportation undertook the Social Services Provider Survey as part of an investigation of the transportation needs of mobility impaired individuals in Oregon. This survey was designed to gain information about the ...

  9. Estuarine chinook capacity - Estimating changes in juvenile Chinook rearing area and carrying capacity in estuarine and freshwater habitats of the Puget Sound region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project has two objectives: 1. Estimate the amount of rearing habitat available to juvenile Chinook salmon currently and historically (i.e., ~1850s) throughout...

  10. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.

    1999-05-01

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from

  11. PIT Tag data - Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an ongoing Bonneville Power Administration funded project to annually collect, PIT tag, and release wild Chinook salmon parr in up to 17 streams of the...

  12. Water Quality - Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an ongoing Bonneville Power Administration funded project to annually collect, PIT tag, and release wild Chinook salmon parr in up to 17 streams of the...

  13. AFSC/ABL: Stock composition, timing, and spawning distribution of Yukon River Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radio telemetry was used to determine the distribution, locate spawning sites, and evaluate the tagging response of wild Chinook salmon Oncorhynchus tshawytscha...

  14. Otolith output - Project to study alternative life history types of fall Chinook based on otoliths

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The life-history complexity of Snake River fall Chinook salmon has hindered efforts to manage the ESU. In particular, the existence of an overwintering behavior in a...

  15. AFSC/REFM: Amendment 91 Chinook Salmon Economic Data Report Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual series of economic data collected for years 2012 and forward for the Amendment 91 (A91) Chinook Salmon Economic Data Report (EDR). Reporting is required of...

  16. 2012 Oregon Lidar Consortium (OLC) Lidar: Keno (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Oregon Keno Study Area for the Oregon Department of Geology and Mineral...

  17. Testing for genetic differences in survival and growth between hatchery and wild Chinook salmon from Warm Springs River, Oregon (Study sites: Warm Springs Hatchery and Little White Salmon River; Stocks: Warm Springs hatchery and Warm Springs River wild; Year classes: 1992 and 1996): Chapter 8

    Science.gov (United States)

    Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Leonetti,; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.

    2012-01-01

    The program at Warm Springs National Fish Hatchery in north - central Oregon was initiated with spring Chinook salmon Oncorhynchus tshawytscha from the Warm Springs River. Managers included wild fish in the broodstock most years and avoided artificial selection to minimize genetic divergence from the wild founder population. We tested for genetic differences in survival and growth between the hatchery and wild populations to ascertain whether this goal has been achieved. Progeny of hatchery x hatchery (HH), hatchery female x wild male (HW), and wild x wild (WW) crosses were genetically marked at the sSOD - 1* allozyme locus and released together as unfed fry in hatchery ponds in 1992 and 1996 and in the Little White Salmon River, in south - central Washington, in 1996. Fish were evaluated to returning adult at the hatchery and over their freshwater residence of 16 months in the stream. The three crosses differed on several measures including survival to outmigration in the stream (WW>HH>HW) and juvenile growth in the hatchery (1992 year - class; WW>HW>HH); however, results may have been confounded. The genetic marks were found to differentially effect survival in a companion study (HH mark favored over WW mark; HW mark intermediate). Furthermore, HW survival in the current study was neither intermediate, as would be expect ed from additive genetic effects, nor similar to that of HH fish as would be expected from maternal effects since HW and HH fish were maternal half - siblings. Finally, the unexpected performance of HW fish precludes ruling out maternal differences between hatchery and wild mothers as the cause of differences between HH and WW fish. The key finding that survival of HH fish in a stream was 0.91 that for WW fish, indicating a small loss of fitness for natural rearing in the hatchery population, is valid only if three conditions hold: (1) any selection on the genetic marks was in the same direction as in the companion study, (2) lower survival in

  18. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    Science.gov (United States)

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.

  19. Sprague River Oregon Bars 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  20. Sprague River Oregon Centerline 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  1. Sprague River Oregon Floodplain 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  2. Sprague River Oregon Floodplain 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  3. Umpqua River Oregon Geologic Floodplain

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  4. Sprague River Oregon Centerline 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  5. Sprague River Oregon Centerline 1975

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  6. Sprague River Oregon Centerline 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  7. A method for examining the impacts of Oregon land use laws on forest lands and farmlands

    Science.gov (United States)

    David L. Azuma; Gary Lettman; Erica Hanson

    2009-01-01

    Over the past 8 years, the Pacific Northwest Research Station Forest Inventory and Analysis unit, in conjunction with the Oregon Department of Forestry, Oregon Department of Agriculture, and Oregon Department of Land Conservation and Development, has researched the effect of Oregon's land use laws on the conversion and development of land. The studies have used...

  8. Channel centerline for the Rogue River, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Rogue River drains 13,390 square kilometers of southwestern Oregon before flowing into the Pacific Ocean near the town of Gold Beach, Oregon. The Rogue River...

  9. Research notes : study recommends changes to Oregon's driver improvement program.

    Science.gov (United States)

    2008-05-01

    The purpose of the Oregon Department of Transportation-Driver and Motor Vehicle Services (DMV) Driver Improvement Program (DIP) is to improve traffic safety by temporarily restricting unsafe drivers or removing them from Oregons highways through t...

  10. Mammal Observations-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the Oregon OCS Data Release presents marine mammal observations from U.S. Geological Survey (USGS) field activity 2014-607-FA in the Oregon Outer...

  11. Channel centerline for the Rogue River, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Rogue River drains 13,390 square kilometers of southwestern Oregon before flowing into the Pacific Ocean near the town of Gold Beach, Oregon. The Rogue River...

  12. Determine movement patterns and survival rates of Central Valley Chinook salmon, steelhead and their predators using acoustic tags.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The project’s objective is to document movement patterns and survival rates of Chinook salmon, steelhead, green sturgeon, and other fish from several sources in...

  13. Mitochondrial DNA variation in chinook salmon and chum salmon detected by restriction enzyme analysis of polymerase chain reaction products

    Science.gov (United States)

    Cronin, M.; Spearman, R.; Wilmot, R.; Patton, J.; Bickman, J.

    1993-01-01

    We analyze intraspecific mitochondrial DNA variation in chinook salmon from drainages in the Yukon River, the Kenai River, and Oregon and California rivers; and chum salmon from the Yukon River and vancouver Island, and Washington rivers. For each species, three different portions of the mtDNA molecule were amplified seperately using the polymerase chain reaction and then digested with at least 19 restrictions enzymes. Intraspecific sequence divergences between haplotypes were less than 0.01 base subsitution per nucleotide. Nine chum salmon haplotypes were identified. Yukon River chum salmon stocks displayed more haplotypes (8) occurred in all areas. Seven chinook salmon haplotypes were identified. Four haplotypes occurred in the Yukon and Kenai rviers and four occured in the Oregon/California, with only one haplotype shared between the regions. Sample sizes were too small to quantify the degree of stock seperation among drainages, but the patterns of variation that we observed suggest utility of the technique in genetic stock identification.

  14. Smolt Quality Assessment of Spring Chinook Salmon : Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zaugg, Waldo S.

    1991-04-01

    The physiological development and physiological condition of spring chinook salmon are being studied at several hatcheries in the Columbia River Basin. The purpose of the study is to determine whether any or several smolt indices can be related to adult recovery and be used to improve hatchery effectiveness. The tests conducted in 1989 on juvenile chinook salmon at Dworshak, Leavenworth, and Warm Springs National Fish Hatcheries, and the Oregon State Willamette Hatchery assessed saltwater tolerance, gill ATPase, cortisol, insulin, thyroid hormones, secondary stress, fish morphology, metabolic energy stores, immune response, blood cell numbers, and plasma ion concentrations. The study showed that smolt development may have occurred before the fish were released from the Willamette Hatchery, but not from the Dworshak, Leavenworth, or Warm Springs Hatcheries. These results will be compared to adult recovery data when they become available, to determine which smolt quality indices may be used to predict adult recovery. The relative rankings of smolt quality at the different hatcheries do not necessarily reflect the competency of the hatchery managers and staff, who have shown a high degree of professionalism and expertise in fish rearing. We believe that the differences in smolt quality are due to the interaction of genetic and environmental factors. One aim of this research is to identify factors that influence smolt development and that may be controlled through fish husbandry to regulate smolt development. 35 refs., 27 figs., 5 tabs.

  15. Regeneration in United States Department of Agriculture Forest Service mixed conifer partial cuttings in the Blue Mountains of Oregon and Washington.

    Science.gov (United States)

    K.W. Seidel; S. Conrade. Head

    1983-01-01

    A survey in the Blue Mountains of north-eastern Oregon and southeastern Washington showed that, on the average, partial cuts in the grand fir/big huckleberry community were well stocked with a mixture of advance, natural post-harvest, and planted reproduction of a number of species. Partial cuts in the mixed conifer/pinegrass community had considerably fewer seedlings...

  16. Comparative Survival Study (CSS) of PIT-Tagged Spring/Summer Chinook and Summer Steelhead : 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Comparative Survival Study Oversight Committee and Fish Passage Center

    2008-12-02

    comments of the most recent regional technical review conducted by the Independent Scientific Advisory Board and Independent Scientific Review Panel (ISAB and ISRP 2007). This report completes the 3-salt returns from migration years 2004 for wild and hatchery Chinook and steelhead (all returns are to Lower Granite Dam). For wild and hatchery Chinook, this report also provides 3-salt returns from migration year 2005 and 2-salt returns from migration year 2006 through a cutoff date of August 13, 2008. For wild and hatchery steelhead, it provides completed 2-salt returns for wild and hatchery steelhead that outmigrated in 2005 (any 3-salt returns of PIT-tagged steelhead are few, but will occur after July 1, 2008). All of the Chinook salmon evaluated in the CSS study exhibit a stream-type life history. All study fish used in this report were uniquely identifiable based on a PIT-tag implanted in the body cavity during (or before) the smolt life stage and retained through their return as adults. These tagged fish can then be detected as juveniles and adults at several locations of the Snake and Columbia rivers. Reductions in the number of individuals detected as the tagged fish grow older provide estimates of survival. This allows comparisons of survival over different life stages between fish with different experiences in the hydrosystem (e.g. transportation vs. in-river migrants and migration through various numbers of dams) as illustrated in Figure 1.1. The CSS is a long term study within the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (NPCC FWP) and is funded by Bonneville Power Administration (BPA). Study design and analyses are conducted through a CSS Oversight Committee with representation from Columbia River Inter-Tribal Fish Commission (CRITFC), Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), U.S. Fish and Wildlife Service (USFWS), and Washington Department of Fish and Wildlife (WDFW

  17. Yakima/Klickitat Fisheries Project: Short Project Overview of Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.; Bosch, William J.

    2005-09-01

    The Yakima/Klickitat Fisheries Project (YKFP) is on schedule to ascertain whether new artificial production techniques can be used to increase harvest and natural production of spring Chinook salmon while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits. The Cle Elum Supplementation and Research Facility (CESRF) collected its first spring chinook brood stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. In these initial years of CESRF operation, recruitment of hatchery origin fish has exceeded that of fish spawning in the natural environment, but early indications are that hatchery origin fish are not as successful at spawning in the natural environment as natural origin fish when competition is relatively high. When competition is reduced, hatchery fish produced similar numbers of progeny as their wild counterparts. Most demographic variables are similar between natural and hatchery origin fish, however hatchery origin fish were smaller-at-age than natural origin fish. Long-term fitness of the target population is being evaluated by a large-scale test of domestication. Slight changes in predation vulnerability and competitive dominance, caused by domestication, were documented. Distribution of spawners has increased as a result of acclimation site location and salmon homing fidelity. Semi-natural rearing and predator avoidance training have not resulted in significant increases in survival of hatchery fish. However, growth manipulations in the hatchery appear to be reducing the number of precocious males produced by the YKFP and consequently increasing the number of migrants. Genetic impacts to non-target populations appear to be low because of the low stray rates of YKFP fish. Ecological impacts to valued non-target taxa were within containment objectives or impacts that

  18. Study of Wild Spring Chinook Salmon in the John Day River System, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, Robert B.

    1986-02-01

    A study of wild spring chinook salmon was conducted in the John Day River, Oregon: (1) recommend harvest regulations to achieve escapement goals in the John Day River; (2) recommend adtustments in timing of fish passage operations at Columbia River dams that will increase survival of John Day migrants; (3) recommend habitat or environmental improvements that will increase production of spring chinook salmon; (4) determine escapement goals for wild spring chinook salmon in the John Day River; and (5) recommend procedures for hatchery supplementation in the John Day River in the event it becomes necessary to artificially maintain the run of spring chinook salmon. Juveniles were captured as smolts during migration and as fingerlings during summer rearing. Juveniles were coded-wire tagged, and recoveries of tagged adults were used to assess contribution to ocean and Columbia River fisheries, timing of adult migrations through the Columbia River in relation to fishing seasons, and age and size of fish in fisheries. Scoop traps and seines were used to determine timing of smolt migrations through the John Day River. In addition, recoveries of tagged smolts at John Day Dam, The Dalles Dam, and Jones Beach were used to determine migration timing through the Columbia River. We examined freshwater life history of spring chinook salmon in the John Day River and related it to environmental factors. We looked at adult holding areas, spawning, incubation and emergence, fingerling rearing distribution, size and growth of juveniles and scales. Escapement goals fo the John Day River as well as reasons for declines in John Day stocks were determiend by using stock-recruitment analyses. Recommendations for hatchery supplementation in the John Day were based on results from other study objectives.

  19. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of

  20. Infections by Renibacterium salmoninarum and Nanophyetus salmincola Chapin are associated with reduced growth of juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), in the Northeast Pacific Ocean.

    Science.gov (United States)

    Sandell, T A; Teel, D J; Fisher, J; Beckman, B; Jacobson, K C

    2015-04-01

    We examined 1454 juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), captured in nearshore waters off the coasts of Washington and Oregon (USA) from 1999 to 2004 for infection by Renibacterium salmoninarum, Nanophyetus salmincola Chapin and skin metacercariae. The prevalence and intensities for each of these infections were established for both yearling and subyearling Chinook salmon. Two metrics of salmon growth, weight residuals and plasma levels of insulin-like growth factor-1, were determined for salmon infected with these pathogens/parasites, both individually and in combination, with uninfected fish used for comparison. Yearling Chinook salmon infected with R. salmoninarum had significantly reduced weight residuals. Chinook salmon infected with skin metacercariae alone did not have significantly reduced growth metrics. Dual infections were not associated with significantly more severe effects on the growth metrics than single infections; the number of triple infections was very low and precluded statistical comparison. Overall, these data suggest that infections by these organisms can be associated with reduced juvenile Chinook salmon growth. Because growth in the first year at sea has been linked to survival for some stocks of Chinook salmon, the infections may therefore play a role in regulating these populations in the Northeast Pacific Ocean. © 2014 John Wiley & Sons Ltd.

  1. Sprague River Oregon Centerline Sycan 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  2. Umpqua River Oregon Active Channel 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  3. Sprague River Oregon Centerline North Fork 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  4. Sprague River Oregon Built Features 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  5. Sprague River Oregon Centerline North Fork 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  6. Umpqua River Oregon Active Channel 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  7. Umpqua River Oregon Active Channel 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  8. Umpqua River Oregon Active Channel 1994

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  9. Sprague River Oregon Centerline North Fork 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  10. Umpqua River Oregon Active Channel 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  11. Sprague River Oregon Centerline Sycan 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  12. Sprague River Oregon Centerline Sycan 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  13. DCS Hydrology Submission for Lincoln County, Oregon

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The hydrology dataset for Lincoln County, Oregon includes proposed 10-, 50-, 100-, and 500-year discharges for Salmon River, Schooner Creek, Drift Creek, Siletz...

  14. Sprague River Oregon Centerline North Fork 1975

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  15. Sprague River Oregon Centerline Sycan circa 1870

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  16. Sprague River Oregon Centerline Sycan 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  17. Sprague River Oregon Built Features 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  18. Sprague River Oregon Centerline South Fork 1975

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  19. Sprague River Oregon Centerline Sycan 1975

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  20. Northern Oregon 6 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 6-second North Coast Oregon Elevation Grid provides bathymetric data in ASCII raster format of 6-second resolution in geographic coordinates. This grid is...

  1. Central Oregon 6 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 6-second Central Coastal Oregon Elevation Grid provides bathymetric data in ASCII raster format of 6-second resolution in geographic coordinates. This grid is...

  2. Floodplain Mapping Submission for Oregon County, MO

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping study deliverables depict and quantify the flood risks for Oregon County, MO. The City of Thayer and the Missouri State Emergency Management...

  3. Oregon High Desert Discovery : An Overview

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a plan to link five BLM and FWS areas in southeast Oregon in order to provide better services for visitors. In order to most effectively and efficiently...

  4. Sprague River Oregon Centerline South Fork 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  5. Residential Energy Efficiency Potential: Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oregon single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. The Oregon Geothermal Planning Conference

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development

  7. Distribution and survival of adult hatchery spring Chinook Salmon radio-tagged and released upstream of Warm Springs National Fish Hatchery in 2008: Progress report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Warm Springs River supports the largest population of wild spring Chinook salmon (Oncorhynchus tshawytscha) in the Deschutes River Basin. Located on the Warm...

  8. Fall transport - A study to compare smolt-to-adult return rates (SARs) of Snake River fall Chinook salmon under alternative transport and dam operational strategies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This U.S. Army Corps of Engineers (USACE)-funded study that began in 2005 compares the SARs of PIT tagged juvenile hatchery Snake River fall Chinook that are split...

  9. A method for characterizing late-season low-flow regime in the upper Grand Ronde River Basin, Oregon

    Science.gov (United States)

    Kelly, Valerie J.; White, Seth

    2016-04-19

    This report describes a method for estimating ecologically relevant low-flow metrics that quantify late‑season streamflow regime for ungaged sites in the upper Grande Ronde River Basin, Oregon. The analysis presented here focuses on sites sampled by the Columbia River Inter‑Tribal Fish Commission as part of their efforts to monitor habitat restoration to benefit spring Chinook salmon recovery in the basin. Streamflow data were provided by the U.S. Geological Survey and the Oregon Water Resources Department. Specific guidance was provided for selection of streamgages, development of probabilistic frequency distributions for annual 7-day low-flow events, and regionalization of the frequency curves based on multivariate analysis of watershed characteristics. Evaluation of the uncertainty associated with the various components of this protocol indicates that the results are reliable for the intended purpose of hydrologic classification to support ecological analysis of factors contributing to juvenile salmon success. They should not be considered suitable for more standard water-resource evaluations that require greater precision, especially those focused on management and forecasting of extreme low-flow conditions.

  10. Quantifying Temperature Effects on Fall Chinook Salmon

    Energy Technology Data Exchange (ETDEWEB)

    Jager, Yetta [ORNL

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  11. Chinook

    Directory of Open Access Journals (Sweden)

    Marie Christine Bernard

    2012-11-01

    Full Text Available « [Là] où Marie Christine Bernard excelle, c’est dans la sobriété, le non-dit qui contraint le lecteur à combler le silence avec ses propres émotions, avec la douleur de ses cicatrices, avec les souvenirs secrets des blessures de tous ses âges accumulés. » — Christiane Laforge L’auteure enseigne les Lettres au collège d’Alma, au Québec. Plusieurs fois primés, ses livres sont connus au Canada anglais, aux Etats-Unis et en Europe. Elle écrit de la poésie, du théâtre, des chansons et des nouvelles en plus de ses romans grand public et jeunesse. Mademoiselle Personne, paru en 2008, lui a valu le prix France-Québec. Son dernier roman très attendu, Autoportrait au revolver, paru en septembre dernier, reçoit déjà un accueil enthousiaste.

  12. Wetted channel and bar features for the Rogue River, Oregon in 1967 and 1969

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Rogue River drains 13,390 square kilometers of southwestern Oregon before flowing into the Pacific Ocean near the town of Gold Beach, Oregon. The Rogue River...

  13. Report on Oregon Spotted Frog Egg Mass Surveys 2013-2015

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Oregon spotted frogs (Rana pretiosa) were once common across wetlands throughout western Washington and Oregon and were found in northern California and southern...

  14. Seismic vulnerability of Oregon state highway bridges : mitigation strategies to reduce major mobility risks.

    Science.gov (United States)

    2009-11-01

    The Oregon Department of Transportation and Portland State University evaluated the seismic : vulnerability of state highway bridges in western Oregon. The study used a computer program : called REDARS2 that simulated the damage to bridges within a t...

  15. Wetted channel and bar features for the Rogue River, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Rogue River drains 13,390 square kilometers of southwestern Oregon before flowing into the Pacific Ocean near the town of Gold Beach, Oregon. The Rogue River...

  16. Channel centerline for the Rogue River, Oregon in 1967 and 1969

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Rogue River drains 13,390 square kilometers of southwestern Oregon before flowing into the Pacific Ocean near the town of Gold Beach, Oregon. The Rogue River...

  17. Wetted channel and bar features for the Rogue River, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Rogue River drains 13,390 square kilometers of southwestern Oregon before flowing into the Pacific Ocean near the town of Gold Beach, Oregon. The Rogue River...

  18. Oregon Spotted Frog (Rana pretiosa) Monitoring in the Oregon Cascades 2012-2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains information from visual encounter surveys conducted between 2012 and 2016 by USGS as part of an ongoing Oregon spotted frog (Rana pretiosa)...

  19. Monitoring Oregon Silverspot Butterfly Habitat Restoration Methods: Willapa Bay National Wildlife Refuge and Oregon Coast NWRs

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Oregon Silverspot Butterfly is thought to be extirpated from the northern portion oftheir historic range. Currently the entire population is only known to...

  20. Oregon Spotted Frog (Rana pretiosa) Monitoring in the Oregon Cascades 2012-2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains information from visual encounter surveys conducted between 2012 and 2015 by USGS as part of an ongoing Oregon spotted frog (Rana pretiosa)...

  1. Oregon Spotted Frog Monitoring in the Oregon Cascades 2012-2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains information from visual encounter surveys conducted between 2012 and 2016 by USGS as part of an ongoing Oregon spotted frog (Rana pretiosa)...

  2. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office: FY 1999 Watershed Restoration Projects : Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Shawn W.

    2001-03-01

    The John Day River is the second longest free-flowing river in the contiguous United States and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1999, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional eleven (11

  3. Trout Creek Mountain project, Oregon

    OpenAIRE

    Hatfield, Doc; Hatfield, Connie

    1995-01-01

    The Trout Creek Mountain experience is an example of how the land and the people can win by building bridges of understanding and common interest between concerned constituencies. Love of the land, its natural resources, and realization of a need for changing grazing practices to reverse the degradation of riparian areas were the common interests that caused environmentalists, ranchers, the BLM, the Oregon Department of Fish and Wildlife, and the U.S. Fish and Wildlife Service to work togethe...

  4. Spawning Success of Hatchery Spring Chinook Salmon Outplanted as Adults in the Clearwater River Basin, Idaho, 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Steven P.; Ackerman, Nichlaus; Witty, Kenneth L.

    2002-04-16

    The study described in this report evaluated spawning distribution, overlap with naturally-arriving spawners, and pre-spawning mortality of spring chinook salmon, Oncorhynchus tshawytscha, outplanted as adults in the Clearwater River Subbasin in 2001. Returns of spring chinook salmon to Snake River Basin hatcheries and acclimation facilities in 2001 exceeded needs for hatchery production goals in Idaho. Consequently, management agencies including the U.S. Fish and Wildlife Service (FWS), Idaho Department of Fish and Game (IDFG) and Nez Perce Tribe (NPT) agreed to outplant chinook salmon adults as an adaptive management strategy for using hatchery adults. Adult outplants were made in streams or stream sections that have been typically underseeded with spawners. This strategy anticipated that outplanted hatchery chinook salmon would spawn successfully near the areas where they were planted, and would increase natural production. Outplanting of adult spring chinook salmon from hatcheries is likely to be proposed in years when run sizes are similar to those of the 2001 run. Careful monitoring of results from this year's outplanting can be used to guide decisions and methods for future adult outplanting. Numbers of spring chinook salmon outplanted was based on hatchery run size, hatchery needs, and available spawning habitat. Hatcheries involved in outplanting in the Clearwater Basin included Dworshak National Fish Hatchery, Kooskia National Fish Hatchery, Clearwater Anadromous Fish Hatchery, and Rapid River Fish Hatchery. The NPT, IDFG, FWS, and the National Marine Fisheries Service (NMFS) agreed upon outplant locations and a range of numbers of spring chinook salmon to be outplanted (Table 1). Outplanting occurred mainly in the Selway River Subbasin, but additional outplants were made in tributaries to the South Fork Clearwater River and the Lochsa River (Table 1). Actual outplanting activities were carried out primarily by the NPT with supplemental outplanting

  5. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, Bruce

    2004-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving

  6. Northeast Oregon Hatchery Project, Final Siting Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  7. Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Scott

    2009-04-10

    Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by the construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass

  8. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John; Nugent, Michael; Brock, Wendy (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the fourth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2000 field season.

  9. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach in the Columbia River, 1998 Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John; Newsome, Todd; Nugent, Michael (Washington Department of Fish and Wildlife, Olympia, WA)

    2001-07-27

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the second year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fish species, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1998 field season.

  10. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John; Nugent, Michael; Brock, Wendy (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-05-29

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach of the Columbia River. The evaluation, in the fifth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2001 field season.

  11. Evaluation of Juvenile Fall Chinook Salmon Stranding on the Hanford Reach of the Columbia River, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John

    2002-01-24

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the third year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1999 field season.

  12. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office: Watershed Restoration Projects: Annual Report, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    1999-10-01

    The John Day River is the second longest free-flowing river in the contiguous US and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1998, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional ten (10) watershed

  13. Tsunami Preparedness in Oregon (video)

    Science.gov (United States)

    Filmed and edited by: Loeffler, Kurt; Gesell, Justine

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. This video about tsunami preparedness in Oregon distinguishes between a local tsunami and a distant event and focus on the specific needs of this region. It offers guidelines for correct tsunami response and community preparedness from local emergency managers, first-responders, and leading experts on tsunami hazards and warnings, who have been working on ways of making the tsunami affected regions safer for the people and communities on a long-term basis. This video was produced by the US Geological Survey (USGS) in cooperation with Oregon Department of Geology and Mineral Industries (DOGAMI).

  14. A Guide for School Councils and Minority Communities. The Oregon Educational Act for the 21st Century: Implications for Ethnic Minority Students.

    Science.gov (United States)

    Laguardia, Armando; Nave, Gary

    The Oregon Professional Development Center (OPDC) was created by the Oregon Department of Education to support school councils in the state as they make local changes to meet the requirements of the Oregon Educational Act for the 21st Century. School councils will be established at every school in Oregon, charged with three main areas of work:…

  15. Landslide Inventory for the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified...

  16. Aerial photo mosaic of the Nehalem River, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  17. Port Orford, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Orford, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. Garibaldi, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Garibaldi, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Baskett Slough - Oregon White Oak Restoration- North Butte

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Willamette Valley National Wildlife Refuge Complex (WVNWRC) holds some of the largest and best examples of Oregon white oak habitat remaining in the Valley....

  20. Newport, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Newport, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Florence, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Florence, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  2. Aerial photo mosaic of Hunter Creek, Oregon in 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  3. Channel centerline for the Nehalem River, Oregon in 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  4. Umpqua River Oregon North Umpqua PhotoMosaic 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  5. Aerial photo mosaic of the Tillamook basin, Oregon in 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  6. Umpqua River Oregon Coast Range PhotoMosaic 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  7. Channel centerline for the Nehalem River, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  8. Erosion and deposition for Fanno Creek, Oregon 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In 2010, the U.S. Geological Survey (USGS) began investigating the sources and sinks of organic matter in Fanno Creek, a tributary of the Tualatin River, Oregon....

  9. Umpqua River Oregon Garden Valley PhotoMosaic 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  10. Umpqua River Oregon Garden Valley PhotoMosaic 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  11. GSFLOW model of the upper Deschutes Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional integrated groundwater/surface-water model was developed for the upper Deschutes Basin in central Oregon to better understand groundwater and...

  12. Seaside, Oregon 1/3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1/3-second Seaside Oregon Elevation Grid provides bathymetric data in ASCII raster format of 1/3-second resolution in geographic coordinates. This grid is...

  13. Aerial photo mosaic of Hunter Creek, Oregon in 1965

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  14. Final Critical Habitat for Oregon Spotted Frog (Rana pretiosa)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify, in general, the areas of FINAL critical habitat for Rana pretiosa (Oregon Spotted Frog). Maps published in the Federal Register 2016.

  15. Umpqua River Oregon Aerial Photograph Data for 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  16. Channel centerline for the Coquille River, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Coquille River system is an unregulated system that encompasses 2,745 square kilometers of southwestern Oregon and flows into the Pacific Ocean near the town of...

  17. Channel centerline for the Nehalem River, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  18. Channel centerline for Hunter Creek, Oregon in 1965

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  19. Oregon High Desert Interpretive Center : Economic feasibility and impact analysis

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a proposal to construct a High Desert Interpretive Center to inform visitors to Harney County, Oregon of the opportunities for education, recreation and...

  20. Backscatter-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This Data Release contains data from the U.S. Geological Survey (USGS) survey of the Oregon outer Continental shelf (OCS) Floating Wind Farm Site in 2014. The...

  1. Bathymetry Hillshade-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This Data Release contains data from the USGS survey of the Oregon OCS Floating Wind Farm Site in 2014. The shaded-relief raster was generated from bathymetry data...

  2. Aerial photo mosaic of the Nehalem River, Oregon in 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  3. Contours-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data release contains data from the USGS field activity 2014-607-FA, a survey of the Oregon Outer Continental Shelf (OCS) Floating Wind Farm Site in 2014. The...

  4. Investigation of persistent seabird mortalities along the Oregon Coast

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — From 1978 until 1997, Oregon experienced large annual die-offs of common murres (Uria aalge) from July to October. The mortality was predominantly among juveniles,...

  5. Oregon Crest-to-Coast Environmental Monitoring Transect Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The US Environmental Protection Agency - Western Ecology Division (EPA) has been monitoring above- and belowground climate data from 23 locations along an Oregon...

  6. Oregon Spotted Frog (Rana pretiosa) Monitoring at Jack Creek 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains information from mark-recapture surveys conducted in 2015 by USGS as part of an ongoing Oregon spotted frog (Rana pretiosa) monitoring effort...

  7. Newport, Oregon 1/3 arc-second DEM

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1/3-second Newport, Oregon Elevation Grid provides bathymetric data in ASCII raster format of 1/3-second resolution in geographic coordinates. This grid is...

  8. Geologic Observations-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the Oregon Outer Continental Shelf (OCS) Floating Windfarm Suite Data Release presents geological observations from video collected on U.S. Geological...

  9. Hydrographic Data from Oregon Waters, 1970 - 1971 (NODC Accession 7400004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data were collected by Oregon State University personnel aboard the R/V YAQUINA and the R/V CAYUSE. Most of the cruises were concerned with surveying hydrographic...

  10. NOAA Ship Oregon II Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  11. NOAA Ship Oregon II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  12. Fall Chinook Aclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, Bruce

    2004-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, and will ultimately work towards achieving

  13. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2004-01-01

    Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of

  14. 78 FR 18967 - Walla Walla Basin Spring Chinook Hatchery Program

    Science.gov (United States)

    2013-03-28

    ... Bonneville Power Administration Walla Walla Basin Spring Chinook Hatchery Program AGENCY: Bonneville Power... Tribes of the Umatilla Indian Reservation's (CTUIR) proposal to construct and operate a hatchery for spring Chinook salmon in the Walla Walla River basin. The hatchery would expand facilities at the site of...

  15. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collection in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006

  16. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  17. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collection in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007

  18. Department of the Air Force Environmental Statement. Construction and Operation of the West Coast OTH-B Radar System, Lake and Klamath Counties, Oregon; Modoc and Sacramento Counties, California; Pierce County, Washington; Elmore County, Idaho

    Science.gov (United States)

    1984-02-01

    503) 092.4461 Practice Limited to Orthodontics May 10, 1983 Klamath County Chamber of Commerce 125 North 8th St. Klamath Falls, Oregon 97601 Dear Sirs...other facilities are articulated In various manuals and documents. An example of one of these is, "Systems Manual, Operation and Maintenance, Real

  19. Warm Springs National Fish Hatchery evaluation and anadromous fish study on the Warm Springs Indian Reservation of Oregon: 1975-1989

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 1975 the USFWS began studies designed to define the biological characteristics of wild spring chinook (Oncorhynchus tshawytscha) and steelhead (O. mykiss) in the...

  20. South Oregon Coast Reinforcement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  1. Fall Chinook Distribution, Pacific Northwest (updated March, 2006)

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — This dataset is a record of fish distribution and activity for FALL CHINOOK contained in the StreamNet database. This feature class was created based on linear event...

  2. Spring Chinook Distribution, Pacific Northwest (updated March, 2006)

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — This dataset is a record of fish distribution and activity for SPRING CHINOOK contained in the StreamNet database. This feature class was created based on linear...

  3. Summer Chinook Distribution, Pacific Northwest (updated March, 2006)

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — This dataset is a record of fish distribution and activity for SUMMER CHINOOK contained in the StreamNet database. This feature class was created based on linear...

  4. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, Bruce

    2003-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving

  5. Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2008 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Wayne H.; Schricker, Jaym' e; Ruzychi, James R. (Oregon Department of Fish and Wildlife)

    2009-02-13

    The John Day River subbasin supports one of the last remaining intact wild populations of spring Chinook salmon and summer steelhead in the Columbia River Basin. These populations remain depressed relative to historic levels and limited information is available for steelhead life history. Numerous habitat protection and rehabilitation projects have been implemented in the basin to improve salmonid freshwater production and survival. However, these projects often lack effectiveness monitoring. While our monitoring efforts outlined here will not specifically measure the effectiveness of any particular project, they will provide much needed programmatic or watershed (status and trend) information to help evaluate project-specific effectiveness monitoring efforts as well as meet some data needs as index stocks. Our continued monitoring efforts to estimate salmonid smolt abundance, age structure, SAR, smolts/redd, freshwater habitat use, and distribution of critical life states will enable managers to assess the long-term effectiveness of habitat projects and to differentiate freshwater and ocean survival. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the level of emphasis by the NWPPC Fish and Wildlife Program, Independent Scientific Advisory Board (ISAB), Independent Scientific Review Panel (ISRP), NOAA National Marine Fisheries Service (NMFS), and the Oregon Plan for Salmon and Watersheds (OWEB). Each of these groups have placed priority on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. The objective is to estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook Oncorhynchus tshawytscha and summer

  6. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

  7. Northeast Oregon Hatchery Project, Conceptual Design Report, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery (Montgomery Watson, Bellevue, WA)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  8. Oregon: Library Automation Developments.

    Science.gov (United States)

    Brandis, Rushton

    1996-01-01

    Discusses Oregon library automation projects, including Internet connectivity and a statewide multitype library network; a bibliographic information system with college and university libraries, including a union catalog; a Portland Area Library System that connects multitype libraries; and library staff training for the Internet. (LRW)

  9. 75 FR 17954 - Noncompetitive Lease of Public Land; Josephine County, Oregon

    Science.gov (United States)

    2010-04-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management Noncompetitive Lease of Public Land; Josephine County, Oregon AGENCY: Bureau of..., Page 449 in Josephine County, Oregon, Deed Records, more particularly described as that portion lying...

  10. Analysis of populations of the sudden oak death pathogen in Oregon forests

    Science.gov (United States)

    Zhian N. Kamvar; Everett M. Hansen; Alan M. Kanaskie; Meredith M. Larsen; Niklaus J. Grünwald

    2017-01-01

    Sudden oak death, caused by the oomycete Phytophthora ramorum, was first discovered in California toward the end of the 20th century and subsequently emerged on tanoak forests in Oregon before its first detection in 2001 by aerial surveys. The Oregon Department of Forestry has since monitored the epidemic and sampled symptomatic tanoak trees from...

  11. Suspension, Expulsion, and Achievement of English Learner Students in Six Oregon Districts. REL 2015-094

    Science.gov (United States)

    Burke, Arthur

    2015-01-01

    This study examines the rates of exclusionary discipline (i.e., suspensions and expulsions) among English learners and non-English learners in six diverse Oregon districts that serve a third of the state's English learner students. Using 2011/12 databases from the Oregon Department of Education, the study found that differences in suspension and…

  12. AFSC/NMML/CCEP: Diet of Pacific harbor seals at Umpqua River, Oregon and Columbia River, Oregon/Washington during 1994 through 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1994 to 2005, The National Marine Mammal Laboratories' California Current Ecosystem Program (AFSC/NOAA) collected fecal samples at the Umpqua River, Oregon and...

  13. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook...

  14. Yakima River Spring Chinook Enhancement Study, 1985 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fast, David E.

    1986-02-01

    The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook salmon in the Yakima River basin. The objectives were to: (1) determine the abundance, distribution and survival of naturally produced fry and smolts in the Yakima River; (2) evaluate different methods of fry and smolt supplementation into the natural rearing environment while maintaining as much as possible the gentic integrity of naturally produced stocks; (3) locate and define areas in the watershed which may be used for the rearing of spring chinook; (4) define strategies for enhancing natural production of spring chinook in the Yakima River; and (5) determine physical and biological limitations for production within the system.

  15. Isolation and characterization of the fall Chinook aquareovirus

    Science.gov (United States)

    Makhsous, Negar; Jensen, Nicole L.; Haman, Katherine H.; Batts, William N.; Jerome, Keith R.; Winton, James; Greninger, Alexander L.

    2017-01-01

    BackgroundSalmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae.MethodsThe virus was first found in 2014 as part of a routine adult broodstock screening program in which kidney and spleen tissue samples from healthy-appearing, adult fall Chinook salmon (Oncorhynchus tshawytscha) returning to a hatchery in Washington State produced cytopathic effects when inoculated onto a Chinook salmon embryo cell line (CHSE-214). The virus was not able to be confirmed by an RT-PCR assay using existing aquareovirus pan-species primers, and instead was identified by metagenomic next-generation sequencing. Metagenomic next-generation sequencing was used to recover the full genome and completed using 3′ RACE.ResultsThe genome of the fall Chinook aquareovirus contains 11 segments of double-stranded RNA totaling 23.3 kb, with each segment flanked by the canonical sequence termini found in the aquareoviruses. Sequence comparisons and a phylogenetic analysis revealed a nucleotide identity of 63.2% in the VP7 gene with the Green River Chinook virus, placing the new isolate in the species Aquareovirus B. A qRT-PCR assay was developed targeting the VP2, which showed rapid growth of the isolate during the initial 5 days in culture using CHSE-214 cells.ConclusionsThis sequence represents the first complete genome of an Aquareovirus B species. Future studies will be required to understand the potential pathogenicity and epidemiology of the fall Chinook aquareovirus.

  16. Isolation and characterization of the fall Chinook aquareovirus.

    Science.gov (United States)

    Makhsous, Negar; Jensen, Nicole L; Haman, Katherine H; Batts, William N; Jerome, Keith R; Winton, James R; Greninger, Alexander L

    2017-09-05

    Salmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae. The virus was first found in 2014 as part of a routine adult broodstock screening program in which kidney and spleen tissue samples from healthy-appearing, adult fall Chinook salmon (Oncorhynchus tshawytscha) returning to a hatchery in Washington State produced cytopathic effects when inoculated onto a Chinook salmon embryo cell line (CHSE-214). The virus was not able to be confirmed by an RT-PCR assay using existing aquareovirus pan-species primers, and instead was identified by metagenomic next-generation sequencing. Metagenomic next-generation sequencing was used to recover the full genome and completed using 3' RACE. The genome of the fall Chinook aquareovirus contains 11 segments of double-stranded RNA totaling 23.3 kb, with each segment flanked by the canonical sequence termini found in the aquareoviruses. Sequence comparisons and a phylogenetic analysis revealed a nucleotide identity of 63.2% in the VP7 gene with the Green River Chinook virus, placing the new isolate in the species Aquareovirus B. A qRT-PCR assay was developed targeting the VP2, which showed rapid growth of the isolate during the initial 5 days in culture using CHSE-214 cells. This sequence represents the first complete genome of an Aquareovirus B species. Future studies will be required to understand the potential pathogenicity and epidemiology of the fall Chinook aquareovirus.

  17. OR State Profile. Oregon: Oregon State Assessment System (OSAS)

    Science.gov (United States)

    Center on Education Policy, 2010

    2010-01-01

    This paper provides information about Oregon State Assessment System. Its purpose is to assess proficiency in the Essential Skills for the purpose of earning a regular or modified high school diploma. Oregon Assessment of Knowledge and Skills is also used for federal accountability purposes under No Child Left Behind. [For the main report,…

  18. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1996-08-01

    Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improve red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.

  19. Monitoring and Evaluation of Supplemented Spring Chinook Salmon and Life Histories of Wild Summer Steelhead in the Grande Ronde Basin, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Crump, Carrie A.; Weldert, Rey L. [Confederated Tribes of the Umatilla Indian Reservation

    2009-04-10

    This is the ninth annual report for a multi-year project designed to monitor and evaluate supplementation of endemic spring Chinook salmon in Catherine Creek and the upper Grande Ronde River. These two streams historically supported anadromous fish populations that provided significant tribal and non-tribal fisheries, but in recent years, have experienced severe declines in abundance. Conventional and captive broodstock supplementation methods are being used to restore these spring Chinook salmon populations. Spring Chinook salmon populations in Catherine Creek and the upper Grande Ronde River, and other streams in the Snake River Basin have experienced severe declines in abundance over the past two decades (Nehlsen et al. 1991). A supplementation program was initiated in Catherine Creek and the upper Grande Ronde River, incorporating the use of both captive and conventional broodstock methods, in order to prevent extinction in the short term and eventually rebuild populations. The captive broodstock component of the program (BPA Project 199801001) uses natural-origin parr collected by seining and reared to maturity at facilities near Seattle, Washington (Manchester Marine Laboratory) and Hood River, Oregon (Bonneville Hatchery). Spawning occurs at Bonneville Hatchery, and resulting progeny are reared in hatcheries. Shortly before outmigration in the spring, juveniles are transferred to acclimation facilities. After an acclimation period of about 2-4 weeks, volitional release begins. Any juveniles remaining after the volitional release period are forced out. The conventional broodstock component uses returning adults collected at traps near the spawning areas, transported to Lookingglass Hatchery near Elgin, Oregon, held, and later spawned. The resulting progeny are reared, acclimated, and released similar to the captive broodstock component. All progeny released receive one or more marks including a fin (adipose) clip, codedwire tag, PIT tag, or visual implant

  20. Biotopes of the Oregon outer continental shelf (OCS) proposed wind farm site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This biotope raster is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The biotopes mapped in this area have been...

  1. Channel centerline for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  2. Environmental Contaminants in River Otter (Lontra canadensis) Collected from the Willamette River, Oregon, 1996-99

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Willamette River originates in the Cascade Mountains southeast of Eugene, Oregon and makes a 300 mile northward journey through the Willamette Valley, joining...

  3. Wetted channel and bar features for the Nehalem River, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  4. Channel centerline for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  5. Region 1 Acoustic Bat Inventory: National Wildlife Refuges in Eastern Oregon, Eastern Washington, and Idaho

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Bat species were inventoried on National Wildlife Refuges in Eastern Oregon, Eastern Washington, and Idaho using acoustic methods. Samples were collected between...

  6. Acoustic backscatter from 2013 interferometric swath bathymetry systems survey of Columbia River Mouth, Oregon and Washington

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the USGS data release presents acoustic backscatter data for the Columbia River Mouth, Oregon and Washington. The acoustic backscatter data of the...

  7. The Economic Impact of Ecotourism on the Malheur National Wildlife Refuge Area, Oregon

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A study of the economic impact of ecotourism and the demographics of ecotourists was conducted at Malheur National Wildlife Refuge, Oregon, from June1993-May 1994....

  8. Location of Photographs Showing Landslide Features in the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data points represent locations of photographs taken of landslides in the Little North Santiam River Basin, Oregon. Photos were taken in spring of 2010 during field...

  9. Avian abundance and oak mistletoe survey data from the Willamette Valley, Oregon, 2013-2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset includes two spreadsheets: The "Avian_abundance_oak_mistletoe_bird_data" spreadsheet contains data regarding Oregon White Oak tree (Quercus garryana)...

  10. Bullet fragments in Belding's ground squirrels in Oregon and California in 2014-2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The dataset includes specifics on fragments of bullets recovered from shot Belding's ground squirrels from Oregon and California. Ground squirrels were radiographed...

  11. Wetted channel and bar features for Hunter Creek, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  12. Wetted channel and bar features for Hunter Creek, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  13. Channel centerline for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  14. Aerial photo mosaic of the Wilson and Kilchis Rivers, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  15. Aerial photo mosaic of the Tillamook and Trask Rivers, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  16. Landslide Deposit Boundaries for the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This layer is an inventory of existing landslides deposits in the Little North Santiam River Basin, Oregon (2009). Each landslide deposit shown on this map has been...

  17. Final Critical Habitat for the Oregon Silverspot Butterfly (Speyeria zerene hippolyta)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify, in general, the areas where final critical habitat for the Oregon Silverspot Butterfly (Speyeria zerene hippolyta) occur.

  18. Wetted channel and bar features for the Nehalem River, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  19. Head Scarp Boundary for the Landslides in the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Polygons represent head scarps and flank scarps associated with landslide deposits in the Little North Santiam River Basin, Oregon. This work was completed as part...

  20. Hydrodynamic modeling of the mouth of the Columbia River, Oregon and Washington, 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A process-based numerical model of the mouth of the Columbia River (MCR) and estuary, Oregon and Washington, was applied to simulate hydrodynamic conditions for the...

  1. Seafloor character of the Oregon outer continental shelf (OCS) proposed wind farm site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This seafloor-character raster is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The substrate classes mapped in...

  2. Oregon Spotted Frog (Rana pretiosa) Monitoring at Jack Creek 2015-2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains information from mark-recapture and egg mass surveys conducted 2015-2016 by USGS as part of an ongoing Oregon spotted frog (Rana pretiosa)...

  3. Social Vulnerability Index (SoVI) for Oregon based on 2000 Census Block Groups

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data depicts the social vulnerability of Oregon census block groups to environmental hazards. Data were culled primarily from the 2000 Decennial Census.

  4. Stream Temperature Data in the Willow-Whitehorse watershed of SE Oregon, 2011-15

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset includes stream temperatures from a network of 100 data loggers that was installed throughout the Willow-Whitehorse watershed of SE Oregon in September...

  5. Stream Temperature Data in the Little Blitzen watershed of SE Oregon, 2009-15

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset includes stream temperatures from two data loggers installed at one site in the Little Blitzen River of SE Oregon as part of a redband trout...

  6. Development of an Environmental Flow Framework for the McKenzie River Basin, Oregon

    Science.gov (United States)

    Risley, John; Wallick, J. Rose; Waite, Ian; Stonewall, Adam J.

    2010-01-01

    The McKenzie River is a tributary to the Willamette River in northwestern Oregon. The McKenzie River is approximately 90 miles in length and has a drainage area of approximately 1,300 square miles. Two major flood control dams, a hydropower dam complex, and two hydropower canals significantly alter streamflows in the river. The structures reduce the magnitude and frequency of large and small floods while increasing the annual 7-day minimum streamflows. Stream temperatures also have been altered by the dams and other anthropogenic factors, such as the removal of riparian vegetation and channel simplification. Flow releases from one of the flood control dams are cooler in the summer and warmer in the fall in comparison to unregulated flow conditions before the dam was constructed. In 2006, the Oregon Department of Environmental Quality listed a total of 112.4, 6.3, and 55.7 miles of the McKenzie River basin mainstem and tributary stream reaches as thermally impaired for salmonid rearing, salmonid spawning, and bull trout, respectively. The analyses in this report, along with previous studies, indicate that dams have altered downstream channel morphology and ecologic communities. In addition to reducing the magnitude and frequency of floods, dams have diminished sediment transport by trapping bed material. Other anthropogenic factors, such as bank stabilization, highway construction, and reductions of in-channel wood, also have contributed to the loss of riparian habitat. A comparison of aerial photography taken in 1939 and 2005 showed substantial decreases in secondary channels, gravel bars, and channel sinuosity, particularly along the lower alluvial reaches of the McKenzie River. In addition, bed armoring and incision may contribute to habitat degradation, although further study is needed to determine the extent of these processes. Peak streamflow reduction has led to vegetation colonization and stabilization of formerly active bar surfaces. The large flood control

  7. STRAWBERRY MOUNTAIN WILDERNESS, OREGON.

    Science.gov (United States)

    Thayer, T.P.; Stotelmeyer, Ronald B.

    1984-01-01

    The Strawberry Mountain Wilderness extends 18 mi along the crest of the Strawberry Range and comprises about 53 sq mi in the Malheur National Forest, Grant County, Oregon. Systematic geologic mapping, geochemical sampling and detailed sampling of prospect workings was done. A demonstrated copper resource in small quartz veins averaging at most 0. 33 percent copper with traces of silver occurs in shear zones in gabbro. Two small areas with substantiated potential for chrome occur near the northern edge of the wilderness. There is little promise for the occurrence of additional mineral or energy resources in the Strawberry Mountain Wilderness.

  8. Pygmy rabbit surveys on state lands in Oregon

    Science.gov (United States)

    Hagar, Joan; Lienkaemper, George

    2007-01-01

    The pygmy rabbit (Brachylagus idahoensis) is classified by the federal government as a species of concern (i.e., under review by the U.S. Fish and Wildlife Service for consideration as a candidate for listing as threatened or endangered under the Endangered Species Act) because of its specialized habitat requirements and evidence of declining populations. The Oregon Department of Fish and Wildlife (ODFW) lists pygmy rabbits as “sensitive-vulnerable,” meaning that protective measures are needed if sustainable populations are to be maintained over time (Oregon Natural Heritage Program, 2001). The Oregon Natural Heritage Program considers this species to be threatened with extirpation from Oregon. Pygmy rabbits also are a species of concern in all the other states where they occur (NatureServe, 2004). The Washington population, known as the Columbia Basin pygmy rabbit, was listed as endangered by the federal government in 2003. Historically, pygmy rabbits have been collected from Deschutes, Klamath, Crook, Lake, Grant, Harney, Baker, and Malheur Counties in Oregon. However, the geographic range of pygmy rabbit in Oregon may have decreased in historic times (Verts and Carraway, 1998), and boundaries of the current distribution are not known. Not all potentially suitable sites appear to be occupied, and populations are susceptible to rapid declines and local extirpation (Weiss and Verts, 1984). In order to protect and manage remaining populations on State of Oregon lands, Oregon Department of Fish and Wildlife needs to identify areas currently occupied by pygmy rabbits, as well as suitable habitats. The main objective of this survey was document to presence or absence of pygmy rabbits on state lands in Malheur, Harney, Lake, and Deschutes counties. Knowledge of the location and extent of pygmy rabbit populations can provide a foundation for the conservation and management of this species in Oregon. The pygmy rabbit is just one of a suite of species of concern

  9. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hager, Robert C. (Hatchery Operations Consulting); Costello, Ronald J. (Mobrand Biometrics, Inc., Vashon Island, WA)

    1999-10-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

  10. The 3D Elevation Program: summary for Oregon

    Science.gov (United States)

    Carswell, William J.

    2014-01-01

    Elevation data are essential to a broad range of business uses, including forest resources management, wildlife and habitat management, national security, recreation, and many others. In the State of Oregon, elevation data are critical for river and stream resource management; forest resources management; water supply and quality; infrastructure and construction management; wildfire management, planning and response; natural resources conservation; and other business uses. Today, high-density light detection and ranging (lidar) data are the primary source for deriving elevation models and other datasets. The Oregon Lidar Consortium (OLC), led by the Oregon Department of Geology and Mineral Industries (DOGAMI), has developed partnerships with Federal, State, Tribal, and local agencies to acquire quality level 1 data in areas of shared interest. The goal of OLC partners is to acquire consistent, high-resolution and high-quality statewide coverage to support existing and emerging applications enabled by lidar data.

  11. 75 FR 68350 - Oregon Trail Wind Park, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-11-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Oregon Trail Wind Park, LLC; Supplemental Notice That Initial Market-Based... supplemental notice in the above-referenced proceeding of Oregon Trail Wind Park, LLC's application for market...

  12. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    Science.gov (United States)

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  13. OLALLIE ROADLESS AREA, OREGON.

    Science.gov (United States)

    Walker, George W.; Neumann, Terry R.

    1984-01-01

    The Olallie Roadless Area, Oregon, is devoid of mines and mineral prospects, and a mineral-resource evaluation of the area did not identify any mineral-resource potential. There is no evidence that fossil fuels are present in the roadless area. Nearby areas in Clackamas, Marion, Jefferson, and Wasco Counties are characterized by higher-than-normal heat flow and by numerous thermal springs, some of which have been partly developed. this may indicate that the region has some, as yet undefined, potential for the development of geothermal energy. Lack of thermal springs or other evidence of localized geothermal anomalies within the roadless area may be the result of masking by young, nonconductive rock units and by the flooding out and dilution of rising thermal waters by cool meteoric water.

  14. Chinook Abundance - Point Features [ds180

    Data.gov (United States)

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  15. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R. [Oregon Department of Fish and Wildlife

    2009-04-10

    include an estimate of smolt abundance and SAR rates, and an updated measure of the freshwater distribution of critical life stages. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the high level of emphasis the NWPPC Fish and Wildlife Program, Subbasin Summaries, NMFS, and the Oregon Plan for Salmon and Watersheds have placed on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. By implementing the proposed program we have been able to address many of the goals for population status monitoring, such as defining areas currently used by spring Chinook for holding and spawning habitats and determining range expansion or contraction of summer rearing and spawning populations. The BiOp describes these goals as defining population growth rates (adult monitoring), detecting changes in those growth rates or relative abundance in a reasonable time (adult/juvenile monitoring), estimating juvenile abundance and survival rates (juvenile/smolt monitoring), and identifying stage-specific survival (adult-to-smolt, smolt-to-adult).

  16. Oregon Trail Mushrooms geothermal loan guaranty application, Malheur County, Oregon: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The action assessed is the guaranty of a loan by the Geothermal Loan Guaranty Office of the US Department of Energy (DOE) to finance the construction and operation of a mushroom-growing facility that will use geothermal (hot) water for process and space heat. The project consists of two separate facilities: a growing facility located just outside of the eastern limit of the city of Vale, Oregon (Malheur County, Oregon) and a composting facility located about 6.4 km (4 miles) southwest of the city limits (also in Malheur County, Oregon). Five test wells have been drilled into the geothermal resource at the growing site. Either well No. 4 or well No. 5 will serve as a production well. All geothermal fluids will be reinjected into the geothermal aquifer, so either well No. 3 will be used for this purpose, wells Nos. 1 and 2 will be deepened, or a new well will be drilled on the site. A cold-water well will be drilled at the growing site, and another will be drilled at the composting site. The environmental effects of the proposed project are not expected to be significant.

  17. Acquisition of polychlorinated biphenyls (PCBs) by Pacific chinook salmon: an exploration of various exposure scenarios.

    Science.gov (United States)

    Hope, Bruce K

    2012-07-01

    In 2011, as part of an update to its state water quality standards (WQS) for protection of human health, the State of Oregon adopted a fish consumption rate of 175 g/day for freshwater and estuarine finfish and shellfish, including anadromous species. WQS for the protection of human health whose derivation is based in part on anadromous fish, create the expectation that implementation of these WQS will lead to lower contaminant levels in returning adult fish. Whether this expectation can be met is likely a function of where and when such fish are exposed. Various exposure scenarios have been advanced to explain acquisition of bioaccumulative contaminants by Pacific salmonids. This study examined 16 different scenarios with bioenergetics and toxicokinetic models to identify those where WQS might be effective in reducing polychlorinated biphenyls (PCBs)--a representative bioaccumulative contaminant--in returning adult Fall chinook salmon, a representative salmonid. Model estimates of tissue concentrations and body burdens in juveniles and adults were corroborated with observations reported in the literature. Model results suggest that WQS may effect limited (< approximately 2 ×) reductions in PCB levels in adults who were resident in a confined marine water body or who transited a highly contaminated estuary as out-migrating juveniles. In all other scenarios examined, WQS would have little effect on PCB levels in returning adults. Although the results of any modeling study must be interpreted with caution and are not necessarily applicable to all salmonid species, they do suggest that the ability of WQS to meet the expectation of reducing contaminant loadings in anadromous species is limited. Copyright © 2012 SETAC.

  18. Landslide inventory for the Little North Santiam River Basin, Oregon

    Science.gov (United States)

    Sobieszczyk, Steven

    2010-01-01

    This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide characteristics recorded in the database are portrayed with symbology on this map. The specific characteristics shown for each landslide are the activity of landsliding, landslide features, deep or shallow failure, type of landslide movement, and confidence of landslide interpretation. These landslide characteristics are determined primarily on the basis of geomorphic features, or landforms, observed for each landslide. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  19. The Oregon Public Health Policy Institute: Building Competencies for Public Health Practice.

    Science.gov (United States)

    Luck, Jeff; Yoon, Jangho; Bernell, Stephanie; Tynan, Michael; Alvarado, Carla Sarai; Eversole, Tom; Mosbaek, Craig; Beathard, Candice

    2015-08-01

    The Oregon Public Health Policy Institute (PHPI) was designed to enhance public health policy competencies among state and local health department staff. The Oregon Health Authority funded the College of Public Health and Human Sciences at Oregon State University to develop the PHPI curriculum in 2012 and offer it to participants from 4 state public health programs and 5 local health departments in 2013. The curriculum interspersed short instructional sessions on policy development, implementation, and evaluation with longer hands-on team exercises in which participants applied these skills to policy topics their teams had selected. Panel discussions provided insights from legislators and senior Oregon health experts. Participants reported statistically significant increases in public health policy competencies and high satisfaction with PHPI overall.

  20. The Oregon Public Health Policy Institute: Building Competencies for Public Health Practice

    Science.gov (United States)

    Yoon, Jangho; Bernell, Stephanie; Tynan, Michael; Alvarado, Carla Sarai; Eversole, Tom; Mosbaek, Craig; Beathard, Candice

    2015-01-01

    The Oregon Public Health Policy Institute (PHPI) was designed to enhance public health policy competencies among state and local health department staff. The Oregon Health Authority funded the College of Public Health and Human Sciences at Oregon State University to develop the PHPI curriculum in 2012 and offer it to participants from 4 state public health programs and 5 local health departments in 2013. The curriculum interspersed short instructional sessions on policy development, implementation, and evaluation with longer hands-on team exercises in which participants applied these skills to policy topics their teams had selected. Panel discussions provided insights from legislators and senior Oregon health experts. Participants reported statistically significant increases in public health policy competencies and high satisfaction with PHPI overall. PMID:26066925

  1. Captive Rearing Initiative for Salmon River Chinook Salmon, 1998-1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  2. Captive Rearing Initiative for Salmon River Chinook Salmon, 1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  3. Libraries in Oregon: MedlinePlus

    Science.gov (United States)

    ... this page: https://medlineplus.gov/libraries/oregon.html Libraries in Oregon To use the sharing features on ... Albany Samaritan Albany General Hospital Stanley K. Davis Library 1046 6th Ave. SW Albany, OR 97321 541- ...

  4. Laboratory analysis of diet of Pacific harbor seals at Umpqua River, Oregon and Columbia River, Oregon/Washington conducted from 1994-06-23 to 2005-09-03 (NCEI Accession 0139413)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1994 to 2005, The National Marine Mammal Laboratories' California Current Ecosystem Program (AFSC/NOAA) collected fecal samples at the Umpqua River, Oregon and...

  5. Teenage Suicide in Oregon 1983-1985.

    Science.gov (United States)

    Oregon State Dept. of Human Resources, Portland.

    During the 3-year period from 1983 through 1985, 80 Oregon teenagers intentionally took their own lives, making suicide second only to accidents as the leading cause of death among Oregon teenagers. Data on suicides committed by individuals between the ages of 10 and 19 were retrieved from death certificates on file with the Oregon Health Division…

  6. Coastal and Marine Ecological Classifcation Standard (CMECS) geoforms of the Oregon outer continental shelf (OCS) proposed wind farm site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This polygon shapefile is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The polygons have attribute values for...

  7. Wetted channel and bar features for the Tillamook, Trask, Wilson, Kilchis, and Miami Rivers, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  8. Distribution of sand dollars on the sea floor on the inner continental shelf off the northern Oregon and southern Washington

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington...

  9. Vessel-mounted acoustic Doppler current profiler (ADCP) data from the mouth of the Columbia River, Oregon and Washington, 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Spatial surveys of water column currents were performed between June 14 and 16, 2013, in the mouth of the Columbia River, Oregon and Washington. These data were...

  10. Aerial photo mosaic of the Powers Reach and Broadbent Reach, South Fork Coquille River, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Coquille River system is an unregulated system that encompasses 2,745 square kilometers of southwestern Oregon and flows into the Pacific Ocean near the town of...

  11. Surface-sediment grain-size data from the mouth of the Columbia River, Oregon and Washington, 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the USGS data release presents sediment grain-size data from samples collected from the mouth of the Columbia River, Oregon and Washington, in 2013....

  12. PROBZONES - Generalized 100- and 500-year flood zones for Seaside, Oregon, determined by probabilistic tsunami hazard analysis

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — PROBZONES is a generalized polygon layer outlining areas in the Seaside-Gearhart, Oregon, area subject to the 100-year and 500-year flood as determined by...

  13. Spawning Distribution of Fall Chinook Salmon in the Snake River : Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Aaron P.

    2000-04-01

    This report is separated into 2 chapters. The chapters are (1) Progress toward determining the spawning distribution of supplemented fall chinook salmon in the Snake River in 1999; and (2) Fall chinook salmon spawning ground surveys in the Snake River, 1999.

  14. Evaluation of Beginner Driver Education in Oregon

    Directory of Open Access Journals (Sweden)

    Dan Mayhew

    2017-02-01

    Full Text Available Although driver education (DE is widely accepted as an effective teen driver safety measure and widely available in the United States, Canada and elsewhere, evaluations have generally failed to show that such formal programs actually produce safer drivers. To address the issue of safety effects as part of a larger investigation, two studies were conducted to examine whether the Oregon Department of Transportation (ODOT-approved DE program was associated with reductions in collisions and convictions. In the first study, DE status among a relatively small sample of teens who completed an online survey was not found to have a significant effect on collisions and convictions. In the second study, of a much larger population of teen drivers, DE status was associated with a lower incidence of collisions and convictions. On balance, this suggests that the safety effects of DE are either neutral, based on the results of the first Oregon study, or cautiously optimistic based on the results of the second study. The implications of these findings are discussed in terms of making improvements in DE that are evidence-based, and the need for further evaluation to establish that improved and new programs meet their safety objectives.

  15. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.; Bleich, Matthew D.; Titzler, P. Scott; Fu, Tao

    2006-01-30

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key

  16. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    van der Naald, Wayne; Duff, Cameron; Friesen, Thomas A. (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2006-02-01

    Pacific salmon Oncorhynchus spp. populations have declined over the last century due to a variety of human impacts. Chum salmon O. keta populations in the Columbia River have remained severely depressed for the past several decades, while upriver bright (URB) fall Chinook salmon O. tschawytscha populations have maintained relatively healthy levels. For the past seven years we have collected data on adult spawning and juvenile emergence and outmigration of URB fall Chinook and chum salmon populations in the Ives and Pierce islands complex below Bonneville Dam. In 2004, we estimated 1,733 fall Chinook salmon and 336 chum salmon spawned in our study area. Fall Chinook salmon spawning peaked 19 November with 337 redds and chum salmon spawning peaked 3 December with 148 redds. Biological characteristics continue to suggest chum salmon in our study area are similar to nearby stocks in Hardy and Hamilton creeks, and Chinook salmon we observe are similar to upriver bright stocks. Temperature data indicated that 2004 brood URB fall Chinook salmon emergence began on 6 January and ended 27 May 2005, with peak emergence occurring 12 March. Chum salmon emergence began 4 February and continued through 2 May 2005, with peak emergence occurring on 21 March. Between 13 January and 28 June, we sampled 28,984 juvenile Chinook salmon and 1,909 juvenile chum salmon. We also released 32,642 fin-marked and coded-wire tagged juvenile fall Chinook salmon to assess survival. The peak catch of juvenile fall Chinook salmon occurred on 18 April. Our results suggested that the majority of fall Chinook salmon outmigrate during late May and early June, at 70-80 mm fork length (FL). The peak catch of juvenile chum salmon occurred 25 March. Juvenile chum salmon appeared to outmigrate at 40-55 mm FL. Outmigration of chum salmon peaked in March but extended into April and May.

  17. Clean Energy Works Oregon Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andria [City of Portland; Cyr, Shirley [Clean Energy Works

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  18. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  19. Western juniper in eastern Oregon.

    Science.gov (United States)

    Donald R. Gedney; David L. Azuma; Charles L. Bolsinger; Neil. McKay

    1999-01-01

    This report analyzes and summarizes a 1988 inventory of western juniper (Juniperus occidentalis Hook.) in eastern Oregon. This inventory, conducted by the Pacific Northwest Research Station of the USDA Forest Service, was intensified to meet increased need for more information about the juniper resource than was available in previous inventories. A...

  20. Timber resources of southwest Oregon.

    Science.gov (United States)

    Patricia M. Bassett

    1979-01-01

    This report presents statistics from a 1973 inventory of timber resources of Douglas County and from a 1974 inventory of timber resources of Coos, Curry, Jackson, and Josephine Counties, Oregon. Tables presented are of forest area and of timber volume, growth, and mortality.

  1. Lakeview, Oregon, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management (LM), Washington, DC (United States); Hall, Steve [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-03-01

    9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other maintenance needs or cause for a follow-up or contingency inspection. Disposal cell riprap is evaluated annually to ensure continued long-term protection of the cell from erosion during a severe precipitation event. Degradation of the rock riprap was first observed at the site in the mid-1990s. Rock gradation monitoring of the riprap on the west side slope has been performed as part of the annual inspection since 1997 to determine the mean diameter (D50) value. As prescribed by the monitoring procedure, the rock monitoring is routinely conducted at random locations. However, at the U.S. Nuclear Regulatory Commission’s (NRC’s) request, the 2015 rock monitoring approach deviated from the normal procedure by using a pre-established monitoring grid in a subset area of the west side slope. This changed the monitoring approach from random sampling to biased sampling. The D50 value measured during the 2015 gradation monitoring is 2.39 inches, which falls below the original D50 design size range of 2.7–3.9 inches for the Type B size side slope riprap. At NRC’s request, rock durability monitoring was added to the gradation monitoring in 2009 to monitor durability by rock type. Results of the 2015 durability monitoring showed that74 percent of the total rock sampled is durability class code A rock with an assigned durability class of “highly durable” or durability class code B “durable” rock, and that over 90 percent of the 3-inch or larger rock is durability class code A or B. The rock durability

  2. Stock Identification of Columbia River Chinook Salmon and Steelhead Trout, 1986 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl B.; Li, Hiran W.; Hjort, Randy C.

    1986-08-01

    For the first time genetic similarities among chinook salmon and among steelhead trout stocks of the Columbia River were determined using a holistic approach including analysis of life history, biochemical, body shape and meristic characters. We examined between year differences for each of the stock characteristics and we also correlated the habitat characteristics with the wild stock characteristics. The most important principle for managing stocks of Columbia River chinook salmon and steelhead trout is that geographically proximal stocks tend to be like each other. Run timing and similarity of the stream systems should be taken into account when managing stocks. There are similarities in the classifications derived for chinook salmon and steelhead trout. Steelhead trout or chinook salmon tend to be genetically similar to other steelhead or chinook stocks, respectively, that originate from natal streams that are geographically close, regardless of time of freshwater entry. The primary exception Lo this trend is between stocks of spring and fall chinook in the upper Columbia River where fish with the different run timings are dissimilar, though geographically proximate stocks within a run form are generally very similar. Spring chinook stocks have stronger affinities to other spring chinook stocks that originate in the same side of the Cascade Range than to these Spring chinook stock: spawned on the other side of the Cascade Range. Spring chinook from west of the Cascades are more closely related to fall chinook than they are to spring chinook from east of the Cascades. Summer chinook can be divided into two main groups: (1) populations in the upper Columbia River that smolt as subyearlings and fall chinook stocks; and (2) summer chinook stocks from the Salmon River, Idaho, which smolt as yearlings and are similar to spring chinook stocks from Idaho. Fall chinook appear to comprise one large diverse group that is not easily subdivided into smaller subgroups. In

  3. Assimilation efficiency of PBDE congeners in Chinook salmon.

    Science.gov (United States)

    Dietrich, Joseph P; Strickland, Stacy A; Hutchinson, Greg P; Van Gaest, Ahna L; Krupkin, Alex B; Ylitalo, Gina M; Arkoosh, Mary R

    2015-03-17

    Polybrominated diphenyl ether (PBDE) flame retardants are environmental contaminants that can accumulate in biota. PBDE accumulation in an organism depends on exposure, assimilation efficiency, and elimination/metabolism. Net assimilation efficiency represents the fraction of the contaminant that is retained in the organism after exposure. In the present study, congener-specific estimates of net PBDE assimilation efficiencies were calculated from dietary exposures of juvenile Chinook salmon. The fish were exposed to one to eight PBDE congeners up to 1500 ng total PBDEs/g food. Mean assimilation efficiencies varied from 0.32 to 0.50 for BDE congeners 28, 47, 99, 100, 153, and 154. The assimilation efficiency of BDE49 was significantly greater than 100%, suggesting biotransformation from higher brominated congeners. Whole body concentrations of BDE49 significantly increased with both exposure to increasing concentrations of BDE99 and decreasing fish lipid levels, implying lipid-influenced debromination of BDE99 to BDE49. Excluding BDE49, PBDE assimilation efficiency was not significantly related to the numbers of congeners in the diets, or congener hydrophobicity, but was greater in foods with higher lipid levels. Estimates of PBDE assimilation efficiency can be used in bioaccumulation models to assess threats from PBDE exposure to Chinook salmon health and recovery efforts, as well as to their predators.

  4. Proteomic analysis of chinook salmon (Oncorhynchus tshawytscha ovarian fluid.

    Directory of Open Access Journals (Sweden)

    Sheri L Johnson

    Full Text Available The ovarian, or coelomic, fluid that is released with the egg mass of many fishes is increasingly found to play an important role in several biological processes crucial for reproductive success. These include maintenance of oocyte fertility and developmental competence, prolonging of sperm motility, and enhancing sperm swimming speed. Here we examined if and how the proteome of chinook salmon (Oncorhynchus tshawytscha ovarian fluid varied among females and then sought to examine the composition of this fluid. Ovarian fluid in chinook salmon was analyzed using 1D SDS PAGE and LC-MS/MS tryptic digest screened against Mascot and Sequest databases. We found marked differences in the number and concentrations of proteins in salmon ovarian fluid across different females. A total of 174 proteins were identified in ovarian fluid, 47 of which were represented by six or more peptides, belonging to one of six Gene Ontology pathways. The response to chemical stimulus and response to hypoxia pathways were best represented, accounting for 26 of the 174 proteins. The current data set provides a resource that furthers our understanding of those factors that influence successful egg production and fertilisation in salmonids and other species.

  5. Oregon Department of Transportation research leader : fall 2008.

    Science.gov (United States)

    2008-01-01

    The newsletter includes: : 1) To ensure safe travel through construction work zones, Traffic Control Plans (TCPs) are developed to communicate required traffic control measures to the construction team. The quality of the design and implementation of...

  6. Differential survival among sSOD-1* genotypes in Chinook Salmon

    Science.gov (United States)

    Hayes, Michael C.; Reisenbichler, Reginald R.; Rubin, Stephen P.; Wetzel, Lisa A.; Marshall , Anne R.

    2011-01-01

    Differential survival and growth were tested in Chinook salmon Oncorhynchus tshawytscha expressing two common alleles, *–100 and *–260, at the superoxide dismutase locus (sSOD-1*). These tests were necessary to support separate studies in which the two alleles were used as genetic marks under the assumption of mark neutrality. Heterozygous adults were used to produce progeny with –100/–100, –100/–260, and –260/–260 genotypes that were reared in two natural streams and two hatcheries in the states of Washington and Oregon. The latter also were evaluated as returning adults. In general, the genotype ratios of juveniles reared at hatcheries were consistent with high survival and little or no differential survival in the hatchery. Adult returns at one hatchery were significantly different from the expected proportions, and the survival of the –260/–260 genotype was 0.56–0.89 times that of the –100/–100 genotype over four year-classes. Adult returns at a second hatchery (one year-class) were similar but not statistically significant: survival of the –260/–260genotype relative to the –100/–100 genotype was 0.76. The performance of the heterozygote group was intermediate at both hatcheries. Significant differences in growth were rarely observed among hatchery fish (one year-class of juveniles and one age-class of adult males) but were consistent with greater performance for the –100/–100 genotype. Results from two groups of juveniles reared in streams (one year-class from each stream) suggested few differences in growth, but the observed genotype ratios were significantly different from the expected ratios in one stream. Those differences were consistent with the adult data; survival for the –260/–260 genotype was 76% of that of the –100/–100 genotype. These results, which indicate nonneutrality among sSOD-1* genotypes, caused us to modify our related studies and suggest caution in the interpretation of results and analyses in

  7. Evaluation of the hydraulic and biological performance of the portable floating fish collector at Cougar Reservoir and Dam, Oregon, 2014

    Science.gov (United States)

    Beeman, John W.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Hansen, Amy C.; Hansen, Gabriel S.; Hatton, Tyson W.; Sprando, Jamie M.; Smith, Collin D.; Adams, Noah S.

    2016-01-12

    The biological and hydraulic performance of a new portable floating fish collector (PFFC) located in a cul-de-sac within the forebay of Cougar Dam, Oregon, was evaluated during 2014. The purpose of the PFFC was to explore surface collection as a means to capture juvenile salmonids at one or more sites using a small, cost-effective, pilot-scale device. The PFFC used internal pumps to draw attraction flow over an inclined plane about 3 meters (m) deep, through a flume at a design velocity of as much as 6 feet per second (ft/s), and to empty a small amount of water and any entrained fish into a collection box. Performance of the PFFC was evaluated at 64 cubic feet per second (ft3/s) (Low) and 109 ft3/s (High) inflow rates alternated using a randomized-block schedule from May 27 to December 16, 2014. The evaluation of the biological performance was based on trap catch; behaviors, locations, and collection of juvenile Chinook salmon (Oncorhynchus tshawytscha) tagged with acoustic transmitters plus passive integrated transponder (PIT) tags; collection of juvenile Chinook salmon implanted with only PIT tags; and untagged fish monitored near and within the PFFC using acoustic cameras. The evaluation of hydraulic performance was based on measurements of water velocity and direction of flow in the PFFC.

  8. PINE CREEK ROADLESS AREA, OREGON.

    Science.gov (United States)

    Walker, George W.; Denton, David K.

    1984-01-01

    Examination of the Pine Creek Roadless Area, Oregon indicates that there is little likelihood for the occurrence of energy or metallic mineral resources in the area. No mines or mineral prospects were identified during the investigation. Although nearby parts of Harney Basin are characterized by higher than normal heat flow, indicating that the region as a whole may have some as yet undefined potential for the occurrence of the geothermal energy resources, no potential for this resource was identified in the roadless area.

  9. Snake River fall Chinook reproductive success - Juvenile life history changes in Snake River fall Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This population historically migrated as subyearling smolts, but in recent years, the yearling life history has become more common. Environmental conditions...

  10. Evaluation of Juvenile Fall Chinook Stranding on the Hanford Reach, 1997-1999 Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Paul; Nugent, John; Price, William (Washington Department of Fish and Wildlife, Olympia, WA)

    1999-02-15

    Pilot work conducted in 1997 to aid the development of the study for the 1998 Evaluation of Juvenile Fall Chinook Stranding on The Hanford Reach. The objectives of the 1997 work were to: (1) identify juvenile chinook production and rearing areas..., (2) identify sampling sites and develop the statistical parameters necessary to complete the study, (3) develop a study plan..., (4) conduct field sampling activities...

  11. Snake River Fall Chinook Salmon life history investigations

    Science.gov (United States)

    Erhardt, John M.; Bickford, Brad; Hemingway, Rulon J.; Rhodes, Tobyn N.; Tiffan, Kenneth F.

    2017-01-01

    Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993). Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the

  12. Nocardiosis in freshwater reared Chinook salmon (Oncorhynchus tshawytscha).

    Science.gov (United States)

    Brosnahan, C L; Humphrey, S; Knowles, G; Ha, H J; Pande, A; Jones, J B

    2017-07-01

    An investigation was conducted to identify the cause of mortalities in freshwater reared Chinook salmon (Oncorhynchus tshawytscha). Mortalities occurred in juvenile salmon, at a salmon rearing facility in the South Island of New Zealand. The affected fish were from a pen inside the facility with no surrounding pens or other year classes affected. Clinically affected fish presented with skin lesions. The majority of skin lesions were unruptured, boil-like, raised circular masses up to 4 cm in diameter, particularly on the dorsolateral aspects and the flank. A number of fish presented with large ulcers resulting from rupturing of the raised lesions described above. This clinical presentation showed similarities to that of furunculosis caused by typical Aeromonas salmonicida, a bacterium exotic to New Zealand. Samples were taken from two representative fish in the field for histopathology, bacterial culture and molecular testing. Histopathological findings included granulomatous lesions in the kidney, liver, spleen and muscle. When stained with Fite-Faraco modified acid fast stain filamentous branching rods were identified within these granulomas. Following bacterial culture of kidney swabs pure growth of small white matt adherent colonies was observed. This isolate was identified as a Nocardia species by biochemical testing and nucleotide sequencing of the partial 16S rRNA gene. All samples were negative for A. salmonicida based on bacterial culture and PCR testing. Nocardiosis caused by a Nocardia species. Nocardiosis in these fish was caused by a previously undescribed Nocardia species that differs from the species known to be pathogenic to fish: N. asteroides, N. salmonicida and N. seriole. This bacterium is likely to be a new or unnamed environmental species of Nocardia that has the potential to cause disease in Chinook salmon under certain conditions. The clinical presentation of this Nocardia species manifested as raised, boil-like skin lesions which has

  13. Spatial variability of Chinook salmon spawning distribution and habitat preferences

    Science.gov (United States)

    Cram, Jeremy M.; Torgersen, Christian; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2017-01-01

    We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.

  14. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  15. Fish Research Project Oregon; Umatilla Hatchery Monitoring and Evaluation, 1994-1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Michael C.; Waln, Karen; Carmichael, Richard W. (Oregon Department of Fish and Wildlife, Portland, OR)

    1996-01-01

    The Northwest Power Planning Council`s Columbia River Basin Fish and Wildlife Program authorized construction of the Umatilla Hatchery in 1986. Measure 703 of the program amended the original authorization for the hatchery and specified evaluation of the Michigan type of rearing using oxygen supplementation to reach production goals of 290,000 lb of chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus nzykiss). The hatchery was completed in the fall of 1991. Partial justification for the hatchery was to develop considerable knowledge and understanding of new production and supplementation techniques. The use of the Michigan raceways in rearing at Umatilla Hatchery was selected because it could increase smolt production given the limited hatchery well water supply and allow comparison of Michigan raceways with the standard Oregon raceways. Results of testing the Michigan raceways will have systematic application in the Columbia Basin. The Umatilla Hatchery is the foundation for rehabilitating chinook salmon and enhancing steelhead in the Umatilla River and is expected to contribute significantly to the Northwest Power Planning Council`s goal of doubling salmon production in the Columbia Basin. Hatchery production goals and a comprehensive monitoring and evaluation plan were presented in the Umatilla Hatchery Master Plan . The Comprehensive Plan for Monitoring and Evaluation of Umatilla Hatchery was approved by the Northwest Power Planning Council as a critical adaptive management guide for fisheries rehabilitation in the Umatilla River. Monitoring and evaluation will be used to increase knowledge about uncertainties inherent in the fisheries rehabilitation and will complement the developing systematic monitoring and evaluation program. This report covers the first four years of the monitoring of the hatchery.

  16. Enhanced sidescan-sonar TIFF images in a UTM projection on the inner continental shelf off the northern Oregon and southern Washington

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington...

  17. Sediment Grab Samples from the inner continental shelf off the northern Oregon and southern Washington coast from U.S. Geological Survey field activity 1998-014-FA

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington...

  18. Surficial geology interpretive map from the inner continental shelf off the northern Oregon and southern Washington coast based on sidescan-sonar imagery and sediment samples

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington...

  19. Zooplankton data collected from unidentified platforms in Coastal Waters of Washington / Oregon; 22 May 1979 to 06 August 1980 (NODC Accession 9800143)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton data were collected using zooplankton net and bottle casts in Coastal Waters of Washington / Oregon from unidentified platforms from Canada. Data were...

  20. Zooplankton data collected from zooplankton net casts in Coastal Waters of Washington / Oregon; 01 January 1969 to 31 December 1972 (NODC Accession 9800078)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton data were collected using zooplankton net casts in Coastal Waters of Washington / Oregon. Data were collected from 01 January 1969 to 31 December 1972 by...

  1. CTD observations off Oregon and California : R/V Wecoma, W8205A and Code 2 Leg 8, 18 May - 4 June 1982 (NODC Accession 8300136)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile were collected using CTD casts from R.V. WECOMA in the coastal waters of California and Oregon from 18 May 1982 to 04 June 1982. Data were...

  2. Archive of Geosample Data and Information from the Oregon State University (OSU) College of Earth, Ocean and Atmospheric Sciences (CEOAS) Marine Geology Repository (MGR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon State University Marine Geology Repository (OSU-MGR) is a partner in the Index to Marine and Lacustrine Geological Samples (IMLGS) database, contributing...

  3. Oregon regional intelligent transportation systems (ITS) integration program. Final phase III report, I-5/Barbur Boulevard Parallel Corridor Traffic Management Demonstration Project

    Science.gov (United States)

    2005-07-01

    This report presents the results of the evaluation of the I-5/Barbur Boulevard Parallel Corridor Traffic Management Demonstration Project, a cooperative project between the Oregon Department of Transportation (ODOT) and the City of Portland to integr...

  4. Hydrographic observations over the Washington-Oregon continental shelf and slope from the Winter Spring (WISP) experiment, Feb 1975 to Mar 1975 (NODC Accession 0114634)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of hydrographic casts are from the WISP project (WInter SPring experiment in the Washington-Oregon Continental Shelf and Slope during February- March 1975)....

  5. 2010-2011 US Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) Topobathy Lidar: Oregon and Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These files contain topographic and bathymetric lidar data collected with the Leica ALS60 (topo) and SHOALS-1000T (bathy) systems along the coasts of Oregon and...

  6. EFH Conservation Areas off Washington, Oregon, and California for NMFS' Final Rule Implementing Amendment 19 to the Pacific Coast Groundfish Fishery Management Plan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data depict Essential Fish Habitat (EFH) conservation areas off Washington, Oregon, and California. The coordinate locations are from NMFS' Final Rule to...

  7. NCCOS Assessment: Groundfish biodiversity hotspots off the Pacific Coast of Oregon from 1971-09-05 to 2010-09-20 (NCEI Accession 0156467)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises maps of predicted long-term groundfish biodiversity hotspot probabilities off the Pacific Coast of Oregon. Predicted hotspot probabilities...

  8. Natural History of Oregon Coast Mammals

    Science.gov (United States)

    Chris Maser; Bruce R. Mate; Jerry F. Franklin; C.T. Dyrness

    1981-01-01

    The book presents detailed information on the biology, habitats, and life histories of the 96 species of mammals of the Oregon coast. Soils, geology, and vegetation are described and related to wildlife habitats for the 65 terrestrial and 31 marine species. The book is not simply an identification guide to the Oregon coast mammals but is a dynamic portrayal of their...

  9. 76 FR 8917 - Pears Grown in Oregon and Washington; Continuance Referendum

    Science.gov (United States)

    2011-02-16

    ...: Teresa Hutchinson, Marketing Specialist, or Gary D. Olson, Regional Manager, Northwest Marketing Field...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 927 Pears Grown in Oregon and Washington; Continuance Referendum AGENCY: Agricultural Marketing Service, USDA. ACTION: Referendum order. SUMMARY: This...

  10. The Status of Microcomputers in Oregon Public Schools. A Statewide Survey.

    Science.gov (United States)

    Lamon, William E.

    This statewide survey (parelleling a 1983 study) was conducted by the Oregon Department of Education in 1985 to assess the status of microcomputer usage and instructional microcomputing in the public schools of the state. A total of 1,181 principals responded to the mailed questionnaire for a response rate of 96% as opposed to 90% in 1983. The…

  11. 75 FR 44936 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Howard Elliot Johnson Fuels and...

    Science.gov (United States)

    2010-07-30

    ... [Federal Register Volume 75, Number 146 (Friday, July 30, 2010)] [Notices] [Page 44936] [FR Doc No: C1-2010-17803] DEPARTMENT OF AGRICULTURE Forest Service Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Howard Elliot Johnson Fuels and Vegetation Management Project EIS Correction In...

  12. Eradication of an exotic ambrosia beetle, Xylosandrus crassiusculus (Motschulsky), in Oregon

    Science.gov (United States)

    James R. LaBonte

    2011-01-01

    The Oregon Department of Agriculture (ODA) has been monitoring an industrial plant in The Dalles, OR, for exotic wood boring insects since 1998. This plant receives raw railroad ties from British Columbia and several localities in the United States, including Arkansas, Missouri, and Texas.

  13. New Lepidoptera records for the Blue Mountains of eastern Oregon.

    Science.gov (United States)

    David G. Grimble; Roy C. Beckwith; Paul C. Hammond

    1993-01-01

    Black-light trap collections in mixed-coniferous forests in eastern Oregon resulted in the identification of one Arctiidae, six Noctuidae, and one Geometridae species not previously known to occur in Oregon. The ranges of 18 other species of Noctuidae, known previously in Oregon from only the Cascade and Coast Ranges, were extended to northeastern Oregon.

  14. Landslide assessment of Newell Creek Canyon, Oregon City, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Growney, L.; Burris, L.; Garletts, D.; Walsh, K. (Portland State Univ., OR (United States). Dept. of Geology)

    1993-04-01

    A study has been conducted in Newell Creek Canyon near Oregon City, Oregon, T3S, T2S, R2E. A landslide inventory has located 53 landslides in the 2.8 km[sup 2] area. The landslides range in area from approximately 15,000m[sup 2] to 10m[sup 2]. Past slides cover an approximate 7% of the canyon area. Landslide processes include: slump, slump-translational, slump-earthflow and earthflow. Hard, impermeable clay-rich layers in the Troutdale Formation form the failure planes for most of the slides. Slopes composed of Troutdale material may seem to be stable, but when cuts and fills are produced, slope failure is common because of the perched water tables and impermeable failure planes. Good examples of cut and fill failures are present on Highway 213 which passes through Newell Creek Canyon. Almost every cut and fill has failed since the road construction began. The latest failure is in the fill located at mile-post 2.1. From data gathered, a slope stability risk map was generated. Stability risk ratings are divided into three groups: high, moderate and low. High risk of slope instability is designated to all landslides mapped in the slide inventory. Moderate risk is designated to slopes in the Troutdale Formation greater than 8[degree]. Low risk is designated to slopes in the Troutdale Formation less than 8[degree].

  15. DESCHUTES CANYON ROADLESS AREA, OREGON.

    Science.gov (United States)

    Walker, George W.; Winters, Richard A.

    1984-01-01

    An examination of the Deschutes Canyon Roadless Area, Oregon indicated that the area is devoid of mines and active mineral prospects or claims and that there is little likelihood for the occurrence of metallic or nonmetallic mineral resources. There is no evidence to indicate that mineral fuels are present in the roadless area. Nearby parts of central Jefferson County on the Warm Springs Indian Reservation are characterized by higher-than-normal heat flow and by numerous thermal springs, some of which have been partly developed. This may indicate that the region has some as yet undefined potential for the development of geothermal energy.

  16. Cascade Mountain Range in Oregon

    Science.gov (United States)

    Sherrod, David R.

    2016-01-01

    The Cascade mountain system extends from northern California to central British Columbia. In Oregon, it comprises the Cascade Range, which is 260 miles long and, at greatest breadth, 90 miles wide (fig. 1). Oregon’s Cascade Range covers roughly 17,000 square miles, or about 17 percent of the state, an area larger than each of the smallest nine of the fifty United States. The range is bounded on the east by U.S. Highways 97 and 197. On the west it reaches nearly to Interstate 5, forming the eastern margin of the Willamette Valley and, farther south, abutting the Coast Ranges. 

  17. An Annual Report to the Legislature on Oregon Public Schools. Oregon Statewide Report Card. 2014-2015

    Science.gov (United States)

    Oregon Department of Education, 2015

    2015-01-01

    The Oregon Statewide Report Card is an annual publication required by law (ORS 329.115), which reports on the state of public schools and their progress towards the goals of the Oregon Educational Act for the 21st Century. The purpose of the Oregon Report Card is to monitor trends among school districts and Oregon's progress toward achieving the…

  18. Location of photographs showing landslide features in the Little North Santiam River Basin, Oregon

    Science.gov (United States)

    Sobieszczyk, Steven

    2010-01-01

    Data points represent locations of photographs taken of landslides in the Little North Santiam River Basin, Oregon. Photos were taken in spring of 2010 during field verification of landslide locations (deposits previously mapped using LiDAR-derived imagery). The photographs depict various landslide features, such as scarps, pistol-butt trees, or colluvium deposits. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  19. Cryopreservation of Adult Male Spring and Summer Chinook Salmon Gametes in the Snake River Basin, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A.; Armstrong, Robyn D. (Nez Perce Tribe, Lapwai, ID)

    1998-06-01

    Chinook salmon populations in the Northwest are decreasing in number. The Nez Perce Tribe was funded in 1997 by the Bonneville Power Administration to coordinate and initiate gene banking of adult male gametes from Endangered Species Act (ESA) listed spring and summer chinook salmon in the Snake River basin.

  20. Migratory Characteristics of Spring Chinook Salmon in the Willamette River : Annual Report 1991.

    Energy Technology Data Exchange (ETDEWEB)

    Snelling, John C.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na{sup +}/K{sup +} gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls.

  1. Spatial consistency of chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    Science.gov (United States)

    Klett, Katherine J.C.; Torgersen, Christian E.; Henning, Julie A.; Murray, Christopher J.

    2013-01-01

    We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991–2009 (500 m to 28 km resolution) and 2008–2009 (100–500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5 years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys.

  2. Foraging and growth potential of juvenile Chinook Salmon after tidal restoration of a large river delta

    Science.gov (United States)

    David, Aaron T.; Ellings, Christopher; Woo, Isa; Simenstad, Charles A.; Takekawa, John Y.; Turner, Kelley L.; Smith, Ashley L.; Takekawa, Jean E.

    2014-01-01

    We evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook Salmon Oncorhynchus tshawytscha. Several studies have assessed the value of restored tidal wetlands for juvenile Pacific salmon Oncorhynchus spp., but few have used integrative measures of salmon performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, Washington, where recent dike removals restored tidal flow to 364 ha of marsh—the largest tidal marsh restoration project in the northwestern contiguous United States. We sampled fish assemblages, water temperatures, and juvenile Chinook Salmon diet composition and consumption rates in two restored and two reference tidal channels during a 3-year period after restoration; these data were used as inputs to a bioenergetics model to compare Chinook Salmon foraging performance and growth potential between the restored and reference channels. We found that foraging performance and growth potential of juvenile Chinook Salmon were similar between restored and reference tidal channels. However, Chinook Salmon densities were significantly lower in the restored channels than in the reference channels, and growth potential was more variable in the restored channels due to their more variable and warmer (2°C) water temperatures. These results indicate that some—but not all—ecosystem attributes that are important for juvenile Pacific salmon can recover rapidly after large-scale tidal marsh restoration.

  3. Pen rearing and imprinting of fall Chinook salmon

    Science.gov (United States)

    Beeman, J.W.; Novotny, J.F.

    1994-01-01

    Results of rearing upriver bright fall chinook salmon juveniles in net pens and a barrier net enclosure in two backwater areas and a pond along the Columbia River were compared with traditional hatchery methods. Growth, smoltification, and general condition of pen-reared fish receiving supplemental feeding were better than those of fish reared using traditional methods. Juvenile fish receiving no supplemental feeding were generally in poor condition resulting in a net loss of production. Rearing costs using pens were generally lower than in the hatchery. However, low adult returns resulted in greater cost per adult recovery than fish reared and released using traditional methods. Much of the differences in recovery rates may have been due to differences in rearing locations, as study sites were as much as 128 mi upstream from the hatcheries and study fish may have incurred higher mortality associated with downstream migration than control fish. Fish reared using these methods could be a cost-effective method of enhancing salmon production in the Columbia River Basin.

  4. Identification of Saprolegnia Spp. Pathogenic in Chinook Salmon : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Whisler, Howard C.

    1997-06-01

    This project has developed procedures to assess the role of the fungal parasite, Saprolegnia in the biology of salmon, particularly adult Chinook, in the Columbia River Basin. Both morphological and DNA ``fingerprinting`` surveys reveal that Saprolegnia parasitica (=S. diclina, Type I) is the most common pathogen of these fish. In the first phase of this study 92% of 620 isolates, from salmon lesions, conformed to this taxa of Saprolegnia. In the current phase, the authors have developed variants of DNA fingerprinting (RAPD and SWAPP analysis) that permit examination of the sub-structure of the parasite population. These results confirm the predominance of S. parasitica, and suggest that at least three different sub-groups of this fungus occur in the Pacific N.W., USA. The use of single and paired primers with PCR amplification permits identification of pathogenic types, and distinction from other species of the genus considered to be more saprophytic in character. A year`s survey of saprolegniaceous fungi from Lake Washington indicated that the fish-pathogen was not common in the water column. Where and how fish encounter this parasite can be approached with the molecular tags identified in this project.

  5. Opportunities for silvicultural treatment in western Oregon.

    Science.gov (United States)

    Colin D. MacLean

    1980-01-01

    A recent Forest Survey inventory of western Oregon has been analyzed to determine the extent of physical opportunities to increase wood production through silvicultural treatment. Results are presented by owner group and by geographic unit.

  6. Why the Oregon CCO experiment could founder.

    Science.gov (United States)

    Stecker, Eric C

    2014-08-01

    The most recent Oregon Medicaid experiment is the boldest attempt yet to limit health care spending. Oregon's approach using a Medicaid waiver from the Centers for Medicare and Medicaid Services utilizes global payments with two-sided risk at two levels - coordinated care organizations (CCOs) and the state. Equally important, the Oregon experiment mandates coverage of medical, behavioral, and dental health care using flexible coverage, with the locus of delivery innovation focused at the individual CCO level and with financial consequences for quality-of-care metrics. But insightful design alone is insufficient to overcome the vexing challenge of cost containment on a two- to five-year time horizon; well-tuned execution is also necessary. There are a number of reasons that the Oregon CCO model faces an uphill struggle in implementing the envisioned design. Copyright © 2014 by Duke University Press.

  7. Effects of Habitat Enhancement on Steelhead Trout and Coho Salmon Smolt Production, Habitat Utilization, and Habitat Availability in Fish Creek, Oregon, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everest, Fred H.; Reeves, Gordon H. (Oregon State University, Pacific Northwest Forest and Range Experiment Station, Corvallis, OR); Hohler, David B. (Mount Hood National Forest, Clackamas River Ranger District, Estacada, OR)

    1987-06-01

    Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, was continued in fiscal year 1986 by the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Research Station (PNW), USDA Forest Service. The study began in 1982 when PNW entered into an agreement with the Mt. Hood National Forest to evaluate fish habitat improvements in the Fish Creek basin on the Estacada Ranger District. The project was initially conceived as a 5-year effort (1982-1986) to be financed with Forest Service funds. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration (BPA) entered into an agreement with the Mt. Hood National Forest to cooperatively fund work on Fish Creek. Habitat improvement work in the basin is guided by the Fish Creek Habitat Rehabilitation-Enhancement Framework developed cooperatively by the Estacada Ranger District, the Oregon Department of Fish and Wildlife, and the Pacific Northwest Research Station (see Appendix 2). The framework examines potential factors limiting production of salmonids in the basin, and the appropriate habitat improvement measures needed to address the limiting factors. Habitat improvement work in the basin has been designed to: (1) improve quantity, quality, and distribution of spawning habitat for coho and spring chinook salmon and steelhead trout, (2) increase low flow rearing habitat for steelhead trout and coho salmon, (3) improve overwintering habitat for coho salmon and steelhead trout, (4) rehabilitate riparian vegetation to improve stream shading to benefit all species, and (5) evaluate improvement projects from a drainage wide perspective. The objectives of the evaluation include: (1) Drainage-wide evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat

  8. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA)

    2003-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second in a series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2002 and March 31, 2003. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack

  9. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA); Schroder, Steven L. (Washington Department of Fish and Wildlife, Olympia, WA); Johnston, Mark V. (yakama Nation, Toppenish, WA)

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second

  10. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.P. [Pacific Northwest National Laboratory

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the

  11. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Program, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2000.

  12. Analysis of Chinook Salmon in the Columbia River from an Ecosystem Perspective. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lichatowich, James A.; Mobrand, Lars E.

    1995-01-01

    Ecosystem Diagnosis and Treatment (EDT) methodology was applied to the analysis of chinook salmon in the mid-Columbia subbasins which flow through the steppe and steppe-shrub vegetation zones. The EDT examines historical changes in life history diversity related to changes in habitat. The emphasis on life history, habitat and historical context is consistent with and ecosystem perspective. This study is based on the working hypothesis that the decline in chinook salmon was at least in part due to a loss of biodiversity defined as the intrapopulation life history diversity. The mid Columbia subbasins included in the study are the Deschutes, John Day, Umatilla, Tucannon and Yakima.

  13. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2001.

  14. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

    2009-09-15

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  15. Landslide deposit boundaries for the Little North Santiam River Basin, Oregon

    Science.gov (United States)

    Sobieszczyk, Steven

    2010-01-01

    This layer is an inventory of existing landslides deposits in the Little North Santiam River Basin, Oregon (2009). Each landslide deposit shown on this map has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide characteristics recorded in the database are portrayed with symbology on this map. The specific characteristics shown for each landslide are the activity of landsliding, landslide features, deep or shallow failure, type of landslide movement, and confidence of landslide interpretation. These landslide characteristics are determined primarily on the basis of geomorphic features, or landforms, observed for each landslide. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey.Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  16. Trophic interactions and consumption rates of subyearling Chinook Salmon and nonnative juvenile American Shad in Columbia River reservoirs

    Science.gov (United States)

    Haskell, Craig A.; Beauchamp, David A.; Bollins, Stephen M

    2017-01-01

    We used a large lampara seine coupled with nonlethal gastric lavage to examine the diets and estimate consumption rates of subyearling Chinook Salmon Oncorhynchus tshawytscha during July and August 2013. During August we also examined the diet and consumption rates of juvenile American Shad Alosa sapidissima, a potential competitor of subyearling Chinook Salmon. Subyearling Chinook Salmon consumed Daphnia in July but switched to feeding on smaller juvenile American Shad in August. We captured no juvenile American Shad in July, but in August juvenile American Shad consumed cyclopoid and calanoid copepods. Stomach evacuation rates for subyearling Chinook Salmon were high during both sample periods (0.58 h−1 in July, 0.51 h−1 in August), and daily ration estimates were slightly higher than values reported in the literature for other subyearlings. By switching from planktivory to piscivory, subyearling Chinook Salmon gained greater growth opportunity. While past studies have shown that juvenile American Shad reduce zooplankton availability for Chinook Salmon subyearlings, our work indicates that they also become important prey after Daphnia abundance declines. The diet and consumption data here can be used in future bioenergetics modeling to estimate the growth of subyearling Chinook Salmon in lower Columbia River reservoirs.

  17. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River : Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.

    2001-01-01

    This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dam that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.

  18. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish And Wildlife, La Grande, OR)

    2003-03-01

    Permit Number 1011 (formerly Permit No. 973) authorized ODFW to take listed spring chinook salmon juveniles from Catherine Creek and the Lostine and Grande Ronde rivers for scientific research and enhancement purposes. Special condition 2a specified the need for an annual report prior to initiation of next year's work.

  19. Characterization and mode of inheritance of a paroxysmal dyskinesia in Chinook dogs.

    Science.gov (United States)

    Packer, R A; Patterson, E E; Taylor, J F; Coates, J R; Schnabel, R D; O'Brien, D P

    2010-01-01

    Paroxysmal dyskinesias are episodes of abnormal, involuntary movement or muscle tone, distinguished from seizures by the character of the episode and lack of seizure activity on ictal EEG. Paroxysmal dyskinesia is an inherited, autosomal recessive disorder in Chinook dogs. Families of Chinook dogs with paroxysmal dyskinesia. Pedigrees and medical histories were reviewed for 299 Chinook dogs. A family of 51 dogs was used for analysis. Episodes were classified as seizures, paroxysmal dyskinesia, or unknown, and segregation analysis was performed. Paroxysmal dyskinesia was identified in 16 of 51 dogs and characterized by an inability to stand or ambulate, head tremors, and involuntary flexion of 1 or multiple limbs, without autonomic signs or loss of consciousness. Episode duration varied from minutes to an hour. Inter-ictal EEGs recorded on 2 dogs with dyskinesia were normal. Three dogs with dyskinesia also had generalized tonic-clonic seizures. One of 51 dogs had episodes of undetermined type. Phenotype was unknown for 6 of 51 dogs, and 28 dogs were unaffected. Segregation was consistent with an autosomal recessive trait. This movement disorder is prevalent in the Chinook breed, and consistent with a partially penetrant autosomal recessive or polygenic trait. Insufficient evidence exists for definitive localization; episodes may be of basal nuclear origin, but atypical seizures and muscle membrane disorders remain possible etiologies. The generalized seizures may be a variant phenotype of the same mutation that results in dyskinesia, or the 2 syndromes may be independent. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  20. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Chinook Salmon.

    Science.gov (United States)

    1983-10-01

    4 Fecundity, Eggs, and Alevins .. .. ...... ........ ......... 4 Fry and Smolts. .. .... ....... ....... ....... ...... 4...Eggs, and Alevins spawn between August and November. These fish travel upstream slowly and Female chinook salmon produce 3,000 remain for protracted...eggs hatch in the late fall or early spawning proceeds. The female depos- winter. The alevins remain in the its a portion of her ova in the gravel

  1. An exploratory assessment of thiamine status in western Alaska Chinook salmon (Oncorhynchus tshawytscha)

    Science.gov (United States)

    Honeyfield, Dale C.; Murphy, James M.; Howard, Katherine G.; Strasburger, Wesley W.; Matz, A.C.

    2017-01-01

    This study was conducted to investigate the thiamine status of Chinook salmon Oncorhynchus tshawytscha. Egg thiamine levels in Yukon and Kuskokwim River Chinook were examined in 2001 and 2012. Muscle and liver thiamine in Chinook, coho O. kisutch, chum O. keta, and pink O. gorbuscha salmon were measured in northern Bering Sea juveniles and the percentage of the diet containing thiaminase, an enzyme that destroys thiamine, was calculated. Only 23% of the eggs were thiamine replete (> 8.0 nmol·g-1) in 2012. Seventy-four percent of the eggs had thiamine concentrations (1.5–8.0 nmol·g-1) which can lead to mortality from secondary eff ects of thiamine defi ciency. Only 3% of the eggs had salmon (9.6). Thiaminase-containing prey in Chinook (63%) and coho (36%) stomachs were elevated compared to those of chum (3%) and pink (5%) salmon. These results provide evidence of egg thiamine being less than fully replete. Thiamine deficiency was not observed in juvenile muscle tissue, but differences were present among species reflecting the percentage of diet containing thiaminase. Additional studies are recommended.

  2. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Permit Number 1011 (formerly Permit No. 973) authorized ODFW to take listed spring chinook salmon juveniles from Catherine Creek and the Lostine and Grande Ronde rivers for scientific research and enhancement purposes. Special condition 2a specified the need for an annual report prior to initiation of next years work.

  3. The physiological response of chinook salmon smolts to two methods of radio-tagging

    DEFF Research Database (Denmark)

    Jepsen, Niels; Davis, L.E.; Schreck, C.B.

    2001-01-01

    Smolts of hatchery-reared chinook salmon Oncorhynchus tshawytscha were radio-tagged by gastric insertion or surgical implant, and their physiological response was measured and compared to that of control insertion or surgical implant, and their physiological response was measured and compared...

  4. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  5. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  6. Trichinella surveillance in black bears (Ursus americanus) from Oregon, USA.

    Science.gov (United States)

    Mortenson, J A; Kent, M L; Fowler, D R; Chomel, B B; Immell, D A

    2014-01-01

    We used serology and muscle digestion to test black bears (Ursus americanus) from western Oregon, USA, for Trichinella. Results indicate black bears in Oregon are not part of a sylvatic cycle for Trichinella, and risk of human exposure to Trichinella larvae from eating black bear meat from Oregon appears low.

  7. Oregon geology - parent of the soil, foundation for the vine

    Science.gov (United States)

    Wells, Ray

    2006-01-01

    This presentation describes USGS geologic mapping in western Oregon, geologic map products, a thumbnail sketch of geologic history, a discussion of new mapping in progress in northwest Oregon, a tour of northwest Oregon geologic units, their relation to new American Viticultural Areas, and online sources of information.

  8. Digital images of sea floor still photos on the inner continental shelf off the northern Oregon and southern Washington coast from U.S. Geological Survey field activity 1998-014-FA

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington...

  9. Digital photographs of sediment grab samples from the sea floor on the inner continental shelf off the northern Oregon and southern Washington coast from U.S. Geological Survey field activity 1998-014-FA

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington...

  10. Digitized images of sea floor video on the inner continental shelf off the northern Oregon and southern Washington coast from U.S. Geological Survey field activity 1998-014-FA

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington...

  11. Current meter data from moored current meter casts in the Columbia River estuary - Washington/Oregon as part of the Low Level Waste Ocean Disposal project from 13 August 1979 - 27 September 1984 (NODC Accession 9500016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Columbia River estuary - Washington/Oregon from August 13, 1979 to September 27, 1984. Data...

  12. Temperature profiles from expendable bathythermograph (XBT) casts from NOAA Ship Oregon in the Gulf of Alaska in support of the Integrated Global Ocean Services System (IGOSS) project from 1975-06-24 to 1975-07-17 (NCEI Accession 7500904)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from NOAA Ship Oregon in support of the Integrated Global Ocean Services System (IGOSS) project. Data were collected by the National Marine...

  13. Temperature profiles from expendable bathythermograph (XBT) casts from NOAA Ship Oregon in the Gulf of Alaska in support of the Integrated Global Ocean Services System (IGOSS) project from 1975-05-12 to 1975-05-21 (NCEI Accession 7500609)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from NOAA Ship Oregon in support of the Integrated Global Ocean Services System (IGOSS) project. Data were collected by the National Marine...

  14. Temperature profiles from expendable bathythermograph (XBT) casts from NOAA Ship Oregon in the Gulf of Alaska in support of the Integrated Global Ocean Services System (IGOSS) project from 1975-05-01 to 1975-05-05 (NCEI Accession 7500479)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from NOAA Ship Oregon in support of the Integrated Global Ocean Services System (IGOSS) project. Data were collected by the National Marine...

  15. Current meter data from moored current meter casts in the Coastal Waters of Washington/Oregon as part of the Land-Margin Ecosystem Research (LEML) project, 06 May 1997 - 19 October 1997 (NODC Accession 9800193)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Coastal Waters of Washington/Oregon from May 6, 1997 to October 19, 1997. Data were...

  16. Temperature profiles from STD casts from the Oregon Coast from the YAQUINA as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 07 August 1972 to 26 August 1972 (NODC Accession 9800111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from STD casts from the Oregon Coast from the YAQUINA from 07 August 1972 to 26 August 1972. Data were collected by the...

  17. New Approaches to Tsunami Hazard Mitigation Demonstrated in Oregon

    Science.gov (United States)

    Priest, G. R.; Rizzo, A.; Madin, I.; Lyles Smith, R.; Stimely, L.

    2012-12-01

    Oregon Department of Geology and Mineral Industries and Oregon Emergency Management collaborated over the last four years to increase tsunami preparedness for residents and visitors to the Oregon coast. Utilizing support from the National Tsunami Hazards Mitigation Program (NTHMP), new approaches to outreach and tsunami hazard assessment were developed and then applied. Hazard assessment was approached by first doing two pilot studies aimed at calibrating theoretical models to direct observations of tsunami inundation gleaned from the historical and prehistoric (paleoseismic/paleotsunami) data. The results of these studies were then submitted to peer-reviewed journals and translated into 1:10,000-12,000-scale inundation maps. The inundation maps utilize a powerful new tsunami model, SELFE, developed by Joseph Zhang at the Oregon Health & Science University. SELFE uses unstructured computational grids and parallel processing technique to achieve fast accurate simulation of tsunami interactions with fine-scale coastal morphology. The inundation maps were simplified into tsunami evacuation zones accessed as map brochures and an interactive mapping portal at http://www.oregongeology.org/tsuclearinghouse/. Unique in the world are new evacuation maps that show separate evacuation zones for distant versus locally generated tsunamis. The brochure maps explain that evacuation time is four hours or more for distant tsunamis but 15-20 minutes for local tsunamis that are invariably accompanied by strong ground shaking. Since distant tsunamis occur much more frequently than local tsunamis, the two-zone maps avoid needless over evacuation (and expense) caused by one-zone maps. Inundation mapping for the entire Oregon coast will be complete by ~2014. Educational outreach was accomplished first by doing a pilot study to measure effectiveness of various approaches using before and after polling and then applying the most effective methods. In descending order, the most effective

  18. Production Data - North Puget Sound Chinook salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Fisheries is a cooperator with the Washington Department of Fish and Wildlife and the Lummi, Nooksack, and Stillaguamish Tribes in a 10-year program to rebuild...

  19. Water quality data - North Puget Sound Chinook salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Fisheries is a cooperator with the Washington Department of Fish and Wildlife and the Lummi, Nooksack, and Stillaguamish Tribes in a 10-year program to rebuild...

  20. Growth Data - North Puget Sound Chinook salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Fisheries is a cooperator with the Washington Department of Fish and Wildlife and the Lummi, Nooksack, and Stillaguamish Tribes in a 10-year program to rebuild...

  1. Fish Culture - North Puget Sound Chinook salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Fisheries is a cooperator with the Washington Department of Fish and Wildlife and the Lummi, Nooksack, and Stillaguamish Tribes in a 10-year program to rebuild...

  2. Oregon spotted frog (Rana pretiosa) monitoring in the Oregon Cascades 2012-2016

    Science.gov (United States)

    Adams, Michael J.; Pearl, Christopher A.; Mccreary, Brome; Galvan, Stephanie; Rowe, Jennifer

    2017-01-01

    This dataset contains information from visual encounter surveys conducted between 2012 and 2016 by USGS as part of an ongoing Oregon spotted frog (Rana pretiosa) monitoring effort in the Oregon Cascade Mountain Range. We surveyed 91 sites using a rotating frame design in the Klamath and Deschutes Basins, Oregon, which encompass most of the species' core extant range. Data consist of spotted frog counts aggregated by date, location, and life stage, as well as data on environmental conditions at the time of each survey.

  3. 77 FR 3500 - VTECH Communications, Inc., Human Factors Department, Beaverton, OR; Amended Certification...

    Science.gov (United States)

    2012-01-24

    ... Communications, Inc., Human Factors Department, Beaverton, OR; Amended Certification Regarding Eligibility To... the subject firm should read VTech Communications, Inc., Human Factors Department, Beaverton, Oregon. New information also shows that the Human Factors Department does not include on-site leased workers...

  4. Creating Open Textbooks: A Unique Partnership between Oregon State University Libraries and Press and Open Oregon State

    Science.gov (United States)

    Chadwell, Faye A.; Fisher, Dianna M.

    2016-01-01

    This article presents Oregon State University's experience launching an innovative Open Textbook initiative in spring 2014. The partners, Open Oregon State and the Oregon State University Libraries and Press, aimed to reduce the cost of course materials for students while ensuring the content created was peer-reviewed and employed multimedia…

  5. Inspection of surveillance activities and administrative leave policy at Bonneville Power Administration, Portland, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The authors conducted an inspection of surveillance activities and administrative leave policy at the Bonneville Power Administration, Portland, Oregon. The purpose of their inspection was to determine if a covert video surveillance operation conducted at Bonneville Power Administration was consistent with Department of Energy policies and procedures and other applicable regulations and procedures, and to determine if administrative leave policies and procedures used at Bonneville Power Administration in a specific instance were consistent with Department of Energy requirements and the Code of Federal Regulations. This inspection focused on a specific incident that occurred in 1989 on the 5th floor of the BPA Headquarters Building located in Portland, Oregon. The incident involved the soiling of an employee`s personal property with what appeared to be urine.

  6. 77 FR 58354 - Bend-Fort Rock Ranger District; Oregon; Withdrawal of Notice for Preparation of an Environmental...

    Science.gov (United States)

    2012-09-20

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Bend-Fort Rock Ranger District; Oregon; Withdrawal of Notice for... Bend-Fort Rock Ranger District and FHWA are withdrawing their intent to prepare an Environmental Impact... FURTHER INFORMATION CONTACT: Amy Tinderholt, Project Leader, Bend- Fort Rock Ranger District, 63095...

  7. 75 FR 1724 - Tart Cherries Grown in the States of Michigan, New York, Pennsylvania, Oregon, Utah, Washington...

    Science.gov (United States)

    2010-01-13

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 930 Tart Cherries Grown in the States of... grown in Michigan, New York, Pennsylvania, Oregon, Utah, Washington, and Wisconsin, and provides growers... recommendation will include an analysis of the pertinent factors and issues, including the impact of a proposed...

  8. 75 FR 18428 - Sweet Onions Grown in the Walla Walla Valley of Southeast Washington and Northeast Oregon...

    Science.gov (United States)

    2010-04-12

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 956 Sweet Onions Grown in the Walla Walla... the handling of sweet onions grown in the Walla Walla Valley of southeast Washington and northeast Oregon. The marketing order is administered locally by the Walla Walla Sweet Onion Marketing Committee...

  9. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River, Annual Report 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.; Burge, Howard L.

    1999-12-01

    This report summarizes results of research activities conducted primarily in 1997 and 1998. This report communicates significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin.

  10. Relationships Between Landscape Habitat Variables and Chinook Salmon Production in the Columbia River Basin, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, William L.; Lee, Danny C.

    1999-09-01

    This publication concerns the investigation of potential relationships between various landscape habitat variables and estimates of fish production from 25 index stocks of spring/summer chinook salmon with the Columbia River Basin.

  11. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam in 2002. This was the seventh year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 479,358 yearlings released from the Fall Chinook Acclimation Project facilities exceeded the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,545 PIT tagged yearlings from Pittsburg Landing, 7,482 from Big Canyon and 2,487 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium to high with 43-62% of fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 146.7 mm (146.2-147.2 mm) at Captain John Rapids to 164.8 mm (163.5-166.1 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.14 at Pittsburg Landing and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 88.6% (86.0-91.1%) for Pittsburg Landing to 97.0% (92.4-101.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 54.3% (50.2-58.3%) for Big Canyon to 70.5% (65.4-75.5%) for Pittsburg Landing. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 8.1 river kilometers per

  12. Chinook Salmon Adult Abundance Monitoring; Hydroacoustic Assessment of Chinook Salmon Escapement to the Secesh River, Idaho, 2002-2004 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; McKinstry, C.; Mueller, R.

    2004-01-01

    Accurate determination of adult salmon spawner abundance is key to the assessment of recovery actions for wild Snake River spring/summer Chinook salmon (Onchorynchus tshawytscha), a species listed as 'threatened' under the Endangered Species Act (ESA). As part of the Bonneville Power Administration Fish and Wildlife Program, the Nez Perce Tribe operates an experimental project in the South Fork of the Salmon River subbasin. The project has involved noninvasive monitoring of Chinook salmon escapement on the Secesh River between 1997 and 2000 and on Lake Creek since 1998. The overall goal of this project is to accurately estimate adult Chinook salmon spawning escapement numbers to the Secesh River and Lake Creek. Using time-lapse underwater video technology in conjunction with their fish counting stations, Nez Perce researchers have successfully collected information on adult Chinook salmon spawner abundance, run timing, and fish-per-redd numbers on Lake Creek since 1998. However, the larger stream environment in the Secesh River prevented successful implementation of the underwater video technique to enumerate adult Chinook salmon abundance. High stream discharge and debris loads in the Secesh caused failure of the temporary fish counting station, preventing coverage of the early migrating portion of the spawning run. Accurate adult abundance information could not be obtained on the Secesh with the underwater video method. Consequently, the Nez Perce Tribe now is evaluating advanced technologies and methodologies for measuring adult Chinook salmon abundance in the Secesh River. In 2003, the use of an acoustic camera for assessing spawner escapement was examined. Pacific Northwest National Laboratory, in a collaborative arrangement with the Nez Perce Tribe, provided the technical expertise to implement the acoustic camera component of the counting station on the Secesh River. This report documents the first year of a proposed three-year study to determine

  13. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Ogburn, Parker N. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2003-03-01

    This is the second annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2001: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring chinook Supplementation Program (GRESCP). (2) Plan detailed GRESCP Monitoring and Evaluation for future years. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (4) Plan for data collection needs for bull trout. (5) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (6) Collect summer steelhead. (7) Monitor adult endemic spring chinook salmon populations and collect broodstock. (8) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (9) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations. (10) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (11) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program. (12) Monitor water quality at facilities. (13) Document accomplishments and needs to permitters, comanagers, and funding agencies. (14) Communicate Project results to the scientific community.

  14. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Lofy, Peter T. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherine Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.

  15. Metallurgy Department

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The activities of the Metallurgy Department at Risø during 1981 are described. The work is presented in three chapters: General Materials Research, Technology and Materials Development, Fuel Elements. Furthermore, a survey is given of the department's participation in international collaboration...

  16. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.; Dibrani, B.; Richmond, M.; Bleich, M.; Titzler, P..; Fu, T. [Pacific Northwest National Laboratory

    2006-01-01

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile

  17. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

    2009-02-19

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation

  18. Captive Rearing Program for Salmon River Chinook Salmon, 2000 Project Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2002-04-01

    During 2000, the Idaho Department of Fish and Game (IDFG) continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were collected to establish captive cohorts from three study streams and included 503 eyed-eggs from East Fork Salmon River (EFSR), 250 from the Yankee Fork Salmon River, and 304 from the West Fork Yankee Fork Salmon River (WFYF). After collection, the eyed-eggs were immediately transferred to the Eagle Fish Hatchery, where they were incubated and reared by family group. Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease before the majority (approximately 75%) were transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through sexual maturity. Smolt transfers included 158 individuals from the Lemhi River (LEM), 193 from the WFYF, and 372 from the EFSR. Maturing fish transfers from the Manchester facility to the Eagle Fish Hatchery included 77 individuals from the LEM, 45 from the WFYF, and 11 from the EFSR. Two mature females from the WFYF were spawned in captivity with four males in 2000. Only one of the females produced viable eggs (N = 1,266), which were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 70) from the Lemhi River were released into Big Springs Creek to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Fifteen of the 17 suspected redds spawned by captive-reared parents in Big Springs Creek were hydraulically sampled to assess survival to the eyed stage of development. Eyed-eggs were collected from 13 of these, and

  19. Captive Rearing Program for Salmon River Chinook Salmon : Project Progress Report, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David A.

    2003-10-01

    During 2001, the Idaho Department of Fish and Game continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 311) and the West Fork Yankee Fork Salmon River (WFYF; N = 272) to establish brood year 2001 culture cohorts. The eyed-eggs were incubated and reared by family group at the Eagle Fish Hatchery (Eagle). Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to the majority of them being transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through maturity. Smolt transfers included 210 individuals from the Lemhi River (LEM), 242 from the WFYF, and 178 from the EFSR. Maturing fish transfers from Manchester to Eagle included 62 individuals from the LEM, 72 from the WFYF, and 27 from the EFSR. Additional water chilling capacity was added at Eagle in 2001 to test if spawn timing could be advanced by temperature manipulations, and adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) water temperature groups while at Eagle. Twenty-five mature females from the LEM (11 chilled, 14 ambient) were spawned in captivity with 23 males with the same temperature history in 2001. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage of development averaged 37.9% and did not differ significantly between the two temperature groups. A total of 8,154 eyed-eggs from these crosses were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 89) were released into the WFYF to evaluate their reproductive performance. After release, fish

  20. 2015 State Geodatabase for Oregon

    Data.gov (United States)

    US Census Bureau, Department of Commerce — The 2015 TIGER Geodatabases are extracts of selected nation based and state based geographic and cartographic information from the U.S. Census Bureau's Master...

  1. Length and Age Trends of Chinook Salmon in the Nushagak River, Alaska, Related to Commercial and Recreational Fishery Selection and Exploitation

    National Research Council Canada - National Science Library

    Kendall, Neala W; Quinn, Thomas P

    2011-01-01

    .... Average body sizes or ages of many western North American populations of Chinook salmon Oncorhynchus tshawytscha, including the Nushagak River population in Bristol Bay, Alaska, have declined over...

  2. Neurocysticercosis in Oregon, 1995–2000

    Science.gov (United States)

    Hoffmann, Christopher J.; Kohn, Melvin A.

    2004-01-01

    The unexpected death of a teenager from neurocysticercosis prompted an investigation of this disease in Oregon. We found 89 hospitalizations, 43 newly diagnosed cases, and 6 deaths from 1995 to 2000. At least five cases occurred in persons who had not traveled or lived outside the United States. Enhanced surveillance for neurocysticercosis is warranted. PMID:15109424

  3. Indicators of cull in western Oregon conifers.

    Science.gov (United States)

    Paul E. Aho

    1982-01-01

    Descriptions and color photographs of important fungal sporophores (conks), other indicators of cull (wounds), and associated decays in western Oregon conifers are provided to aid timber markers, cruisers, and scalers in identifying them. Cull factors are given for the indicators by tree species.

  4. Timber resources of Douglas County, Oregon.

    Science.gov (United States)

    Colin D. MacLean

    1976-01-01

    This report summarizes a 1973 timber resource inventory of Douglas County, Oregon. Detailed tables of forest area, timber volume, growth, mortality, and cut are presented. A discussion of the present resource situation highlights the condition of cutover lands and the opportunities for silvicultural treatment.

  5. Juniper for Streambank Stabilization in Eastern Oregon

    Science.gov (United States)

    Guy R. Sheeter; Errol W. Claire

    1989-01-01

    Cut juniper trees (Juniperous osteosperma Hook.) anchored along eroded streambanks proved beneficial in stabilizing 96 percent of the erosion on eight streams evaluated in eastern Oregon over a 14-year-period. Juniper revetment was a successful substitute for costly rock structures on straight or slightly curved banks, but failed when placed on outside curves or when...

  6. Distribution of Pacific Marten in Coastal Oregon

    Science.gov (United States)

    Katie M Moriarty; John D Bailey; Sharon E Smythe; Jake Verschuyl

    2016-01-01

    Information on the distribution of rare and little known species is critical for managers and biologists challenged with species conservation in an uncertain future. Pacific Martens (Martes caurina) historically resided throughout Oregon and northern California’s coastal forests, but were considered extinct until 1996 when a population in northern...

  7. Riparian Protection Rules for Oregon Forests

    Science.gov (United States)

    George G. Ice; Robert L. Beschta; Raymond S. Craig; James R. Sedell

    1989-01-01

    Forest Practice Rules under the Oregon Forest Practices Act were modified in 1987 to increase protection of riparian areas adjacent to timber harvest operations. These modifications addressed concerns about water quality protection and retaining trees as sources of large woody debris for future stream channel structure. The rule changes triggered debate about the...

  8. Myxomatosis in domestic rabbits in Oregon.

    Science.gov (United States)

    Patton, N M; Holmes, H T

    1977-09-15

    An epizootic of myxomatosis involved 26 rabbitries in western Oregon. Major clinical signs were inflammation and edema of the eyelids, conjunctiva, and anogenital area. Mortality ranged from 20 to 50%. On histologic examination, intracytoplasmic inclusion bodies were readily apparent in the epithelial cells of the conjunctiva. Lymphoid depletion of the spleen was also a common finding.

  9. Teaching Biochemistry Online at Oregon State University

    Science.gov (United States)

    Ahern, Kevin

    2017-01-01

    A strategy for growing online biochemistry courses is presented based on successes in ecampus at Oregon State University. Four free drawing cards were key to the effort--YouTube videos, iTunes U online free course content, an Open Educational Resource textbook--Biochemistry Free and Easy, and a fun set of educational songs known as the Metabolic…

  10. Compliance Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2010

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Carlson, Thomas J.; Skalski, John R.

    2010-12-21

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon smolts at The Dalles Dam during summer 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 2 km below the dam The forebay-to-tailrace survival estimate satisfies the “BRZ-to-BRZ” survival estimate called for in the Fish Accords. , as well as the forebay residence time, tailrace egress time, and spill passage efficiency, as required in the Columbia Basin Fish Accords. The estimate of dam survival for subyearling Chinook salmon at The Dalles in 2010 was 0.9404 with an associated standard error of 0.0091.

  11. Tucannon River Spring Chinook Captive Broodstock Program Final Environmental Assessment and Finding of No Significant Impact

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-05-24

    Bonneville Power Administration (BPA) is proposing to fund the Tucannon River Spring Chinook Captive Broodstock Program, a small-scale production initiative designed to increase numbers of a weak but potentially recoverable population of spring chinook salmon in the Tucannon River in the State of Washington. BPA has prepared an Environmental Assessment (EA) (DOE/EA-l326) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

  12. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    Science.gov (United States)

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  13. Spatial consistency of Chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Klett, Katherine J.; Torgersen, Christian; Henning, Julie; Murray, Christopher J.

    2013-04-28

    We investigated the spawning patterns of Chinook salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington (USA) using a unique set of fine- and coarse-scale 35 temporal and spatial data collected during bi-weekly aerial surveys conducted in 1991-2009 (500 m to 28 km resolution) and 2008-2009 (100-500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held global positioning system (GPS) synchronized with in-flight audio recordings. We examined spatial patterns of Chinook salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook salmon spawned in the same sections each year with little variation among years. On a coarse scale, five years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years resulting in a minimum correlation coefficient of 0.90 (adjusted P = 0.002). Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations (P < 0.001). On a finer temporal scale, we observed that salmon spawned in the same sections during the first and last week (2008: P < 0.02; and 2009: P < 0.001). Redds were clustered in both 2008 and 2009 (P < 0.001). Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook salmon spawning surveys.

  14. Using a Genetic mixture model to study Phenotypic traits: Differential fecundity among Yukon river Chinook Salmon

    Science.gov (United States)

    Bromaghin, J.F.; Evenson, D.F.; McLain, T.H.; Flannery, B.G.

    2011-01-01

    Fecundity is a vital population characteristic that is directly linked to the productivity of fish populations. Historic data from Yukon River (Alaska) Chinook salmon Oncorhynchus tshawytscha suggest that length-adjusted fecundity differs among populations within the drainage and either is temporally variable or has declined. Yukon River Chinook salmon have been harvested in large-mesh gill-net fisheries for decades, and a decline in fecundity was considered a potential evolutionary response to size-selective exploitation. The implications for fishery conservation and management led us to further investigate the fecundity of Yukon River Chinook salmon populations. Matched observations of fecundity, length, and genotype were collected from a sample of adult females captured from the multipopulation spawning migration near the mouth of the Yukon River in 2008. These data were modeled by using a new mixture model, which was developed by extending the conditional maximum likelihood mixture model that is commonly used to estimate the composition of multipopulation mixtures based on genetic data. The new model facilitates maximum likelihood estimation of stock-specific fecundity parameters without first using individual assignment to a putative population of origin, thus avoiding potential biases caused by assignment error.The hypothesis that fecundity of Chinook salmon has declined was not supported; this result implies that fecundity exhibits high interannual variability. However, length-adjusted fecundity estimates decreased as migratory distance increased, and fecundity was more strongly dependent on fish size for populations spawning in the middle and upper portions of the drainage. These findings provide insights into potential constraints on reproductive investment imposed by long migrations and warrant consideration in fisheries management and conservation. The new mixture model extends the utility of genetic markers to new applications and can be easily adapted

  15. Effect of survey design and catch rate estimation on total catch estimates in Chinook salmon fisheries

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2012-01-01

    Roving–roving and roving–access creel surveys are the primary techniques used to obtain information on harvest of Chinook salmon Oncorhynchus tshawytscha in Idaho sport fisheries. Once interviews are conducted using roving–roving or roving–access survey designs, mean catch rate can be estimated with the ratio-of-means (ROM) estimator, the mean-of-ratios (MOR) estimator, or the MOR estimator with exclusion of short-duration (≤0.5 h) trips. Our objective was to examine the relative bias and precision of total catch estimates obtained from use of the two survey designs and three catch rate estimators for Idaho Chinook salmon fisheries. Information on angling populations was obtained by direct visual observation of portions of Chinook salmon fisheries in three Idaho river systems over an 18-d period. Based on data from the angling populations, Monte Carlo simulations were performed to evaluate the properties of the catch rate estimators and survey designs. Among the three estimators, the ROM estimator provided the most accurate and precise estimates of mean catch rate and total catch for both roving–roving and roving–access surveys. On average, the root mean square error of simulated total catch estimates was 1.42 times greater and relative bias was 160.13 times greater for roving–roving surveys than for roving–access surveys. Length-of-stay bias and nonstationary catch rates in roving–roving surveys both appeared to affect catch rate and total catch estimates. Our results suggest that use of the ROM estimator in combination with an estimate of angler effort provided the least biased and most precise estimates of total catch for both survey designs. However, roving–access surveys were more accurate than roving–roving surveys for Chinook salmon fisheries in Idaho.

  16. Compliance Monitoring of Subyearling Chinook Salmon Smolt Survival and Passage at Bonneville Dam, Summer 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at Bonneville Dam during summer 2012, as required by the 2008 Federal Columbia River Power System Biological Opinion. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 1 km below the dam, as well as forebay residence time, tailrace egress, and spill passage efficiency, as required in the 2008 Columbia Basin Fish Accords.

  17. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest). Chinook Salmon.

    Science.gov (United States)

    1986-04-01

    fin is moderately forked; America are distributed from the adipose is stout and prominent; a Sacramento-San Joaquin River system free- tipoed flesh...chinook salmon. 2 The adult has prominent irregular migration of juveniles (Figure 3). black spots on back, upper sides, External physical appearance...s....i 14%, winter 21%, and spring 11% (Reavis 1983). Figure 3. Adult migration, spawning,1and juvenile downstream migration of The separation of

  18. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    James, Brenda B.; Pearsons, Todd N.; McMichael, Geoffrey A. (Washington Department of Fish and Wildlife, Olympia, WA)

    1999-12-01

    Select ecological interactions and spring chinook salmon residual/precocial abundance were monitored in 1998 as part of the Yakima/Klickitat Fisheries Project's supplementation monitoring program. Monitoring these variables is part of an effort to help evaluate the factors that contribute to, or limit supplementation success. The ecological interactions that were monitored were prey consumption, competition for food, and competition for space. The abundance of spring chinook salmon life-history forms that have the potential to be influenced by supplementation and that have important ecological and genetic roles were monitored (residuals and precocials). Residual spring chinook salmon do not migrate to the ocean during the normal emigration period and continue to rear in freshwater. Precocials are those salmon that precocially mature in freshwater. The purpose of sampling during 1998 was to collect baseline data one year prior to the release of hatchery spring chinook salmon which occurred during the spring of 1999. All sampling that the authors report on here was conducted in upper Yakima River during summer and fall 1998. The stomach fullness of juvenile spring chinook salmon during the summer and fall averaged 12%. The food competition index suggested that mountain whitefish (0.59), rainbow trout (0.55), and redside shiner (0.55) were competing for food with spring chinook salmon. The space competition index suggested that rainbow trout (0.31) and redside shiner (0.39) were competing for space with spring chinook salmon but mountain whitefish (0.05) were not. Age-0 spring chinook salmon selected a fairly narrow range of microhabitat parameters in the summer and fall relative to what was available. Mean focal depths and velocities for age 0 spring chinook salmon during the summer were 0.5 m {+-} 0.2 m and 0.26 m/s {+-} 0.19 m/s, and during the fall 0.5 m {+-} 0.2 m and 0.24 m/s {+-} 0.18 m/s. Among potential competitors, age 1+ rainbow trout exhibited the

  19. Pathological and immunological responses associated with differential survival of Chinook salmon following Renibacterium salmoninarum challenge

    Science.gov (United States)

    Metzger, David C.; Elliott, Diane G.; Wargo, Andrew; Park, Linda K.; Purcell, Maureen K.

    2010-01-01

    Chinook salmon Oncorhynchus tshawytscha are highly susceptible to Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD). Previously we demonstrated that introduced Chinook salmon from Lake Michigan, Wisconsin (WI), USA, have higher survival following R. salmoninarum challenge relative to the progenitor stock from Green River, Washington, USA. In the present study, we investigated the pathological and immunological responses that are associated with differential survival in the 2 Chinook salmon stocks following intra-peritoneal R. salmoninarum challenge of 2 different cohort years (2003 and 2005). Histological evaluation revealed delayed appearance of severe granulomatous lesions in the kidney and lower overall prevalence of membranous glomerulopathy in the higher surviving WI stock. The higher survival WI stock had a lower bacterial load at 28 d post-infection, as measured by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). However, at all other time points, bacterial load levels were similar despite higher mortality in the more susceptible Green River stock, suggesting the possibility that the stocks may differ in their tolerance to infection by the bacterium. Interferon-γ, inducible nitric oxide synthase (iNOS), Mx-1, and transferrin gene expression were up-regulated in both stocks following challenge. A trend of higher iNOS gene expression at later time points (≥28 d post-infection) was observed in the lower surviving Green River stock, suggesting the possibility that higher iNOS expression may contribute to greater pathology in that stock.

  20. Creel survey sampling designs for estimating effort in short-duration Chinook salmon fisheries

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2013-01-01

    Chinook Salmon Oncorhynchus tshawytscha sport fisheries in the Columbia River basin are commonly monitored using roving creel survey designs and require precise, unbiased catch estimates. The objective of this study was to examine the relative bias and precision of total catch estimates using various sampling designs to estimate angling effort under the assumption that mean catch rate was known. We obtained information on angling populations based on direct visual observations of portions of Chinook Salmon fisheries in three Idaho river systems over a 23-d period. Based on the angling population, Monte Carlo simulations were used to evaluate the properties of effort and catch estimates for each sampling design. All sampling designs evaluated were relatively unbiased. Systematic random sampling (SYS) resulted in the most precise estimates. The SYS and simple random sampling designs had mean square error (MSE) estimates that were generally half of those observed with cluster sampling designs. The SYS design was more efficient (i.e., higher accuracy per unit cost) than a two-cluster design. Increasing the number of clusters available for sampling within a day decreased the MSE of estimates of daily angling effort, but the MSE of total catch estimates was variable depending on the fishery. The results of our simulations provide guidelines on the relative influence of sample sizes and sampling designs on parameters of interest in short-duration Chinook Salmon fisheries.

  1. Class I MHC polymorphism and evolution in endangered California Chinook and other Pacific salmon.

    Science.gov (United States)

    Garrigan, D; Hedrick, P W

    2001-08-01

    Twelve MHC class I exon 2 sequences were uncovered in a sample from the endangered Sacramento River winter-run Chinook salmon in the central valley of California. Phylogenetic analysis of the 12 sequences indicates that the alleles descend from two of six major allelic lineages found among four Pacific salmon species. Nine of the 12 alleles belong to an allelic lineage that began diversifying 8 million years ago, just prior to the estimated time of Chinook speciation. The most recent common ancestor of all 12 winter-run alleles is estimated to be 15 million years ago, approximately 5 million years before the radiation of the Pacific salmon species. The average nonsynonymous distance among the peptide binding-region codons of exon 2 for the 12 alleles is significantly higher than the average synonymous distance in these codons. We estimate the symmetrical overdominant selection coefficient against homozygotes for this exon to be 0.038. Thus, strong positive and balancing selection has maintained functional diversity in the peptide-binding region of the exon over millions of years and this variation has not yet been substantially eliminated by increased genetic drift due to the recent dramatic decline in abundance of this Chinook salmon population.

  2. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-07-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2002. The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, they are spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, the Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation.

  3. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffnagle, Timothy L.; Hair, Don; Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2004-07-01

    BPA Fish and Wildlife Program Project Number 1998-01-001 provides funding for the Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program. This report satisfies the requirement that an annual report be submitted for FY 2003. The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, these fish are spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation. This report covers activities conducted and provides data analyses for the Grande Ronde Spring Chinook Salmon Captive broodstock Program from 1 January--31 December 2003. Since the fiscal year ends in the middle of the spawning period, an annual report based on calendar year is more logical. This document is the FY 2003 annual report. Detailed information on historic and present population status, project background, goals and objectives, significance to regional programs and relationships to other programs, methods and previous results are available in the 1995-2002 Project Status Report (Hoffnagle et al 2003).

  4. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    Science.gov (United States)

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  5. Longitudinal patterns of fish assemblages, aquatic habitat, and water temperature in the Lower Crooked River, Oregon

    Science.gov (United States)

    Torgersen, Christian E.; Hockman-Wert, David P.; Bateman, Douglas S.; Leer, David W.; Gresswell, Robert E.

    2007-01-01

    The Lower Crooked River is a remarkable groundwater-fed stream flowing through vertical basalt canyons in the Deschutes River Valley ecoregion in central Oregon (Pater and others, 1998). The 9-mile section of the river between the Crooked River National Grasslands boundary near Ogden Wayside and river mile (RM) 8 is protected under the National Wild and Scenic Rivers Act (16 U.S.C. 1271-1287) for its outstandingly remarkable scenic, recreational, geologic, hydrologic, wildlife, and botanical values (ORVs), and significant fishery and cultural values. Groundwater springs flow directly out of the canyon walls into the Lower Crooked River and create a unique hydrologic setting for native coldwater fish, such as inland Columbia Basin redband trout (Oncorhynchus mykiss gairdneri). To protect and enhance the ORVs that are the basis for the wild and scenic designation, the Bureau of Land Management (BLM) has identified the need to evaluate, among other conditions, fish presence and habitat use of the Lower Crooked River. The results of this and other studies will provide a scientific basis for communication and cooperation between the BLM, Oregon Water Resources Department, Oregon Department of Fish and Wildlife (ODFW) and all water users within the basin. These biological studies initiated by the BLM in the region reflect a growing national awareness of the impacts of agricultural and municipal water use on the integrity of freshwater ecosystems.

  6. Polybrominated diphenyl ethers in outmigrant juvenile Chinook salmon from the lower Columbia River and Estuary and Puget Sound, Washington.

    Science.gov (United States)

    Sloan, Catherine A; Anulacion, Bernadita F; Bolton, Jennie L; Boyd, Daryle; Olson, O Paul; Sol, Sean Y; Ylitalo, Gina M; Johnson, Lyndal L

    2010-02-01

    Previous studies have examined the presence, distribution, and concentrations of toxic contaminants in two major waterways in the Pacific Northwest: the lower Columbia River and Estuary (LCR&E) and Puget Sound, Washington. However, those studies have not reported on the levels of polybrominated diphenyl ethers (PBDEs) in juvenile Chinook salmon (Onchorynchus tshawytscha). Populations of Chinook salmon from the LCR&E and Puget Sound are declining, and some stocks are currently listed as "threatened" under the Endangered Species Act. Bioaccumulation of contaminants, including PBDEs, by juvenile Chinook salmon in the LCR&E and Puget Sound is of concern due to the potential toxicity of the contaminants and associated sublethal effects in fish. In this article, we present the concentrations of PBDEs measured in gutted bodies and stomach contents of outmigrant juvenile Chinook salmon collected at six sites in the LCR&E and four sites in Puget Sound. For comparison, we also analyzed gutted bodies of juvenile Chinook salmon from eight hatcheries in the LCR&E as well as samples of the hatchery fish feeds. The mean summation SigmaPBDE concentrations measured in bodies of juvenile Chinook salmon from the different sites ranged from 350 to 2800 ng/g lipid weight, whereas those in stomach contents ranged from less than the quantitation limit (salmon samples collected from the LCR&E and Puget Sound. These results show that outmigrant juvenile Chinook salmon in the LCR&E and Puget Sound have been exposed to PBDEs in the environment and that these chemicals are bioaccumulating in their tissues; thus, the potential effects of PBDEs on these salmon should be further investigated.

  7. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2001. This was the sixth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 318,932 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,503 PIT tagged yearlings from Pittsburg Landing, 7,499 from Big Canyon and 2,518 from Captain John Rapids. The Washington Department of Fish and Wildlife released 991 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 155.4 mm (154.7-156.1 mm) at Captain John Rapids to 171.6 mm (170.7-172.5 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.02 at Lyons Ferry Hatchery to 1.16 at Big Canyon and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.4% (73.2-75.5%) for Big Canyon to 85.2% (83.5-87.0%) for Captain John Rapids. Estimated survival from release

  8. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2000. This was the fifth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 397,339 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,477 PIT tagged yearlings from Pittsburg Landing, 7,421 from Big Canyon and 2,488 from Captain John Rapids. The Washington Department of Fish and Wildlife released 980 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 157.7 mm (157.3-158.1 mm) at Big Canyon to 172.9 mm (172.2-173.6 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Captain John Rapids and Lyons Ferry Hatchery to 1.12 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.0% (84.7-89.4%) for Pittsburg Landing to 95.2% (91.5-98.9%) for Captain John Rapids. Estimated survival from release to

  9. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimation Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at

  10. Environmental Flow Assessments in the McKenzie and Santiam River Basins, Oregon

    Science.gov (United States)

    Risley, J. C.; Bach, L.; Budai, C.; Duffy, K.

    2012-12-01

    studies included a geomorphic and ecological characterization of both rivers using reach characterization, historical channel mapping, aerial photography, and specific gage analysis methods. Decreased flooding and decreased sediment supply resulting from the dams likely contributed to a decrease in gravel bars, which are critical to salmonid spawning. Secondary channel features and sinuosity also decreased. However, other anthropogenic factors, such as bank stabilization revetments, land filling, and channel dredging, have also impacted channel morphology in both basins. Exemplar native terrestrial and aquatic species of interest and used in developing environmental flows for both river basins include black cottonwood, red alder, bull trout, spring Chinook, Oregon chub, red-legged frogs, and western pond turtles. Suggestions for future bio-monitoring and investigations were also provided in the study reports. References: Risley, John, Wallick, J.R., Waite, Ian, and Stonewall, Adam, 2010, Development of an environmental flow framework for the McKenzie River basin, Oregon: U.S. Geological Survey Scientific Investigations Report 2010-5016, 94 p. Risley, J.C., Wallick, J.R., Mangano, J.F., and Jones, K.F., 2012, An environmental streamflow assessment for the Santiam River basin, Oregon: U.S. Geological Survey Open-File Report 2012-1133, 66 p.

  11. Monitoring and Mapping Off-Channel Water Quality in the Willamette River, Oregon

    Science.gov (United States)

    Buccola, N. L.; Rounds, S. A.; Smith, C.; Anderson, C.; Jones, K.; Mangano, J.; Wallick, R.

    2016-12-01

    The floodplain of the Willamette River in northwestern Oregon includes remnant slower-moving sloughs, side-channels, and alcoves that provide rearing habitat and potential cool-water sources for native cold-water fish species, such as the federally threatened Chinook salmon. The mapping and characterization of the hydraulics and water sources of these off-channel areas is the first step toward protecting and restoring these resources for future generations. A primary focus of this study is to determine how flow management can increase the habitat value of these off-channel areas, especially during summer low-flow periods when water temperatures in the main channel regularly exceed lethal temperatures for salmonids. The U.S. Geological Survey, in cooperation with U.S. Army Corps of Engineers and Oregon State University, has been measuring the characteristics of off-channel water quality in the Willamette River under a variety of water levels in summer 2015-16. About 30 diverse off-channel sites within the Willamette floodplain are being monitored and compared with conditions in the main channel. Hourly water temperature, conductivity, and dissolved oxygen (DO) data are being collected at a subset of these sites. Some deep off-channel pools have substantial, consistent cool-water inflows that can dominate locally, allowing them to function as cold-water refuges for salmonids at varying mainstem Willamette flows. Other sloughs have varying characteristics due to intermittent connections to the main channel, depending on river levels. A vibrant community of algae and aquatic macrophytes often coincide with thick layers of fine sediment or organic detritus near the bed, producing low DO zones (<5 mg/L) in many slower-moving off-channel areas. We propose some preliminary hydro-geomorphic categories to better explain cool inflows as sourced from regional groundwater aquifers or localized subsurface river features. A better understanding of the processes governing the

  12. Chinook Salmon Spawning Requires More Than Just Velocity, Depth, and Substrate

    Science.gov (United States)

    Pasternack, G. B.; Tu, D.; Wyrick, J. R.; Massa, D.; Bratovich, P.; Johnson, T.

    2012-12-01

    Everyone knows that Chinook salmon spawn on porous coarse gravel and fine cobble where velocities are moderate and depths are low, and that these local conditions predominate in riffles in river reaches with a slope of 0.01-0.03. In any river network there can be vast areas meeting these multi-scalar criteria and yet spawners are not equally or randomly distributed throughout, but are commonly clustered in a small fraction of the total available physical microhabitat. The purpose of this study was to investigate numerous heterogeneous physical variables that can further explain Chinook spawner behavior. Tested variables included morphological unit size, flow-dependent optimal microhabitat patch size, distance from water's edge, local decadal topographic change magnitude, dominant decadal topographic change process, and spatial scale of statistically significant temporal persistence of returns to past spawning sites. For all but the last variable, the performance metric was the forage ratio (FR) comparing % occurrence to % availability for each test variable. When FR 2, then occurrence is half of and more than double the random expectation, respectively. The testbed for the study was the 37.5-km lower Yuba River in California for which there exists a 1-m resolution 2D model of the whole river at discharges ranging from 0.2-22 times bankfull, a morphological unit map, a substrate map, a 1.524-m resolution topographic change map (adjusted for uncertainty), a map of the spatial pattern of topographic change processes, bioverified habitat suitability curves for velocity, depth, and substrate, and two years of river-long observations of Chinook redds (>6700 redds total). Chinook spawners were found to prefer and avoid specific sizes of riffles, runs, and riffle transition as well as specific sizes of flow-dependent optimal mesohabitat patches. They also preferred areas that had eroded 0.3-0.6 m in the last decade. There was no association with distance from water's edge

  13. Oregon Sustainability Center: Weighing Approaches to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Settlemyre, Kevin [Sustainable IQ, Inc., Arlington, MA (United States); Bosnic, Zorana [HOK, San Francisco, CA (United States)

    2013-10-01

    The Oregon Sustainability Center (OSC) was to represent a unique public/private partnership between the city of Portland, Oregon, state government, higher education, non-profit organizations, and the business community. A unique group of stakeholders partnered with the U.S. Department of Energy (DOE) technical expert team (TET) to collaboratively identify, analyze, and evaluate solutions to enable the OSC to become a high-performance sustainability landmark in downtown Portland. The goal was to build a new, low-energy mixed-use urban high-rise that consumes at least 50 percent less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program.1 In addition, the building design was to incorporate renewable energy sources that would account for the remaining energy consumption, resulting in a net zero building. The challenge for the CBP DOE technical team was to evaluate factors of risk and components of resiliency in the current net zero energy design and analyze that design to see if the same high performance could be achieved by alternative measures at lower costs. In addition, the team was to use a “lens of scalability” to assess whether or not the strategies could be applied to more projects. However, a key component of the required project funding did not pass, and therefore this innovative building design was discontinued while it was in the design development stage.

  14. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju (Pacific Northwest National Laboratory)

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and

  15. Rhabdochlamydia spp. in an Oregon raptor.

    Science.gov (United States)

    Jouffroy, Sophie J; Schlueter, Andrew H; Bildfell, Robert J; Rockey, Daniel D

    2016-07-01

    PCR-based approach was used to examine the rate of Chlamydia positivity in raptors from wild bird rehabilitation centers in Oregon. Three of 82 birds were identified as positive for Chlamydia with this PCR. Sequence analysis of 16S ribosomal DNA from 2 of these birds confirmed the presence of DNA from phylum Chlamydiae. One bird was positive for Chlamydia psittaci in both choanal and cloacal swabs. The second bird, a louse-infested red-tailed hawk, had evidence of choanal colonization by "Candidatus Rhabdochlamydia" spp. Our study describes evidence of this Chlamydia-like organism in the United States. This survey also suggests that the carriage rate of C. psittaci is low in raptors in Oregon wild bird rehabilitation centers, and that care must be taken in the design of PCR primers for phylum Chlamydiae such that colonization by insect endosymbionts is not mistaken for an infection by known chlamydial pathogens. © 2016 The Author(s).

  16. TEMPERATURE RELATIONS OF CENTRAL OREGON MARINE INTERTIDAL INVERTEBRATES.

    Science.gov (United States)

    MARINE BIOLOGY, OREGON), (* INVERTEBRATES , ECOLOGY), SEA WATER, TIDES, SURFACE TEMPERATURE, DIURNAL VARIATIONS, TEMPERATURE, ECHINODERMATA, GASTROPODA, PELECYPODA, BARNACLES, SALINITY, REPRODUCTION(PHYSIOLOGY)

  17. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, Appendix, 1989 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Vreeland, Robert R.

    1989-10-01

    This document contains 43 appendices for the Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries'' report. This study was initiated to determine the distribution, contribution, and value of artificially propagated fall Chinook Salmon from the Columbia River.

  18. Effects of hyporheic exchange flows on egg pocket water temperature in Snake River fall Chinook salmon spawning areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geist, D. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arntzen, E. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernethy, C. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002–2003 water year.

  19. Geothermal research, Oregon Cascades: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Priest, G.R.; Black, G.L.

    1988-10-27

    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  20. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  1. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rocklage, Stephen J. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain

  2. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rocklage, Stephen J. Nez Perce Tribe, Department of Fisheries Resource Management, Lapawi, ID)

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2004. This was the ninth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 414,452 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 4,983 PIT tagged yearlings from Pittsburg Landing, 4,984 from Big Canyon and 4,982 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered low with 53-94% rating not detected to low. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 154.6 mm (154.0-155.2 mm) at Pittsburg Landing to 163.0 mm (162.6-163.4 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.16 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.7% (72.9-76.5%) for Big Canyon to 88.1% (85.7-90.6%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 45.3% (39.2-51.5%) for Pittsburg Landing to 52.1% (42.9-61.2%) for Big Canyon. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.5 river kilometers per day (rkm/d) for Captain John Rapids to 12.8 rkm/d for Pittsburg Landing. Median migration

  3. Temperature and salinity profiles from CTD casts from NOAA Ship OREGON II and other PLATFORMS from the North Atlantic Ocean and other sea areas in support of the Integrated Global Ocean Services System (IGOSS) from 1992-01-01 to 1992-01-31 (NODC Accession 9200041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from NOAA Ship OREGON II and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were collected...

  4. Physical, chemical, and other data from bottle casts from the Coastal Waters of Washington/Oregon from the THOMAS G. THOMPSON as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 11 July 1973 to 21 July 1973 (NODC Accession 7601145)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical, and other data were collected from bottle casts in the Coastal Waters of Washington/Oregon from the THOMAS G. THOMPSON from 11 July 1973 to 21...

  5. Physical, current, and other data from CTD and current meters from FIXED PLATFORMS from the Coastal Waters of Washington/Oregon and other locations in support of the Fisheries-Oceanography Cooperative Investigations (FOCI) project from 01 August 2000 to 29 August 2000 (NODC Accession 0000652)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, current, and other data were collected from CTD and current meters from FIXED PLATFORMS from Coastal Waters of Washington/Oregon and other locations from...

  6. Current, CTD, and other data from the YAQUINA and other platforms from the coastal waters of Washington/Oregon as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 28 January 1975 to 01 September 1975 (NODC Accession 7800403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current, CTD, and other data were collected from the YAQUINA and other platforms from the coastal waters of Washington/Oregon from 28 January 1975 to 01 September...

  7. Life, death, and metabolic activity in marine bacteria: Assessment of cell-specific activity levels in marine systems of differing trophic states, collected by the R/V WECOMA from 2002-04-26 to 2002-05-20 off the Oregon coast (NODC Accession 0013799)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bacterial, physical, and other data were collected from bottle and CTD casts from the R/V WECOMA from 26 April 2002 to 20 May 2002. Data were collected by Oregon...

  8. Compilation of ocean circulation and other data from ADCP current meters, CTD casts, tidal gauges, and other instruments from a World-Wide distribution by Oregon State University and other institutions as part of World Ocean Circulation Experiment (WOCE) and other projects from 24 November 1985 to 30 December 2000 (NODC Accession 0000649)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Compilation of ocean circulation and other data were collected from a World-Wide distribution by Oregon State University (OSU) and other institutions as part of...

  9. Oceanographic station, temperature profiles, meteorological, and other data from XBT and bottle casts from NOAA Ship OREGON II as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1972-07-13 to 1972-08-08 (NODC Accession 7300271)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profiles, meteorological, and other data were collected from bottle and XBT casts from NOAA Ship OREGON II from 13 July 1972 to 08...

  10. Macronutrient data from bottle casts from the R/V WECOMA off the coast of Washington and Oregon in support of the National Science Foundation (NSF) Coastal Ocean Processes (CoOP) and River Influences on Shelf Ecosystems (RISE) projects from 08 July 2004 to 13 June 2006 (NODC Accession 0049434)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CoOP RISE program collected CTD and water chemistry (macronutrients, chlorophyll) data during four cruises from 2004-2006 off the Oregon and Washington coast,...

  11. Primary productivity data from bottle casts from the R/V WECOMA off the coast of Washington and Oregon in support of the National Science Foundation (NSF) Coastal Ocean Processes (CoOP) and River Influences on Shelf Ecosystems (RISE) projects from 08 July 2004 to 13 June 2006 (NODC Accession 0053783)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CoOP RISE program collected CTD and biological primary productivity, chlorophyll data during four cruises from 2004-2006 off the Oregon and Washington coast,...

  12. Genetic characteristics of red foxes In northeastern Oregon

    Science.gov (United States)

    Gregory A Green; Benjamin N Sacks; Leonard J Erickson; Keith B Aubry

    2017-01-01

    The Rocky Mountain Red Fox (Vulpes vulpes macroura), once common in the Blue Mountains ecoregion of northeastern Oregon, was considered rare in eastern Oregon by the 1930s and thought to be extirpated by the 1960s, when putatively new Red Fox populations began to appear. Although the new foxes were long presumed to be nonnative (originating from...

  13. Seasonal species composition of invertebrates in several Oregon streams.

    Science.gov (United States)

    Pamela E. Porter; William R. Meehan

    1987-01-01

    The invertebrate communities ofeight Oregon streams were sampled seasonally from 1974 to 1976. Benthic, drift, and two types of aerial-trap samples were collected. Occurrence and percentage composition are summarized by sample type, season, and geographic area (coastal, Cascade, central, and eastern Oregon). Within 276 families, 426 taxa were identified; the 20...

  14. Potential effects of climate change on Oregon crops

    Science.gov (United States)

    This talk will discuss: 1) potential changes in the Pacific Northwest climate with global climate change, 2) how climate change can affect crops, 3) the diversity of Oregon agriculture, 4) examples of potential response of Oregon crops – especially dryland winter wheat, and 5) br...

  15. Oregon's High School Dropouts: Examining the Economic and Social Costs

    Science.gov (United States)

    House, Emily Anne

    2010-01-01

    This analysis presents the public costs of high school dropouts in Oregon. It examines how dropouts in the state dramatically impact state finances through reduced tax revenues, increased Medicaid costs, and high incarceration rates. This study describes how much high school dropouts cost Oregon's tax-payers each year, and how much could be saved…

  16. Aspen restoration in the Blue Mountains of northeast Oregon

    Science.gov (United States)

    Diane M. Shirley; Vicky Erickson

    2001-01-01

    In the Blue Mountains of northeast Oregon, quaking aspen is on the western fringe of its range. It exists as small, scattered, remnant stands of rapidly declining trees. Although little is known about the historic distribution of aspen in Oregon, it is believed that stands were once larger and more widely distributed. Decline of the species is attributed to fire...

  17. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves throughout

  18. Historic and Present Distribution of Chinook Salmon and Steelhead in the Calaveras River

    Directory of Open Access Journals (Sweden)

    Glenda Marsh

    2007-07-01

    Full Text Available Interest is great in projects that would restore Central Valley steelhead (Oncorhynchus mykiss and Central Valley Chinook salmon (Oncorhynchus tshawytscha to California drainages where they have historically existed and where there is good quality habitat upstream of instream barriers. The Calaveras River has garnered renewed attention for its potential to support these anadromous fish. I evaluated migration opportunity in the Calaveras River, and whether these salmonids could have been present in the river historically, by comparing historical anecdotal and documented observations of Chinook salmon and steelhead to recorded flows in the river and Mormon Slough, the primary migration corridors. Collected data show that these fish used the river before New Hogan Dam was constructed in 1964. Three different Central Valley Chinook salmon runs, including fall-, late-fall- and spring-run salmon, and steelhead may have used the river before the construction of New Hogan Dam. Fall and possibly winter run and steelhead used the river after dam construction. The timing and amount of flows in the Calaveras River, both before and after the construction of New Hogan Dam, provided ample opportunity for salmonids to migrate up the river in the fall, winter, and spring seasons when they were observed. Flows less than 2.8 m3/s (100 ft3/s can attract fish into the lower river channel and this was likely the case in the past, as well. Even in dry years of the past, flows in the river exceeded 5.6 m3/s (200 ft3/s, enough for fish to migrate and spawn. Today, instream barriers and river regulation, which reduced the number of high flow events, has led to fewer opportunities for salmon to enter the river and move upstream to spawning areas even though upstream spawning conditions are still adequate. Improving migration conditions would allow salmonids to utilize upstream spawning areas once again.

  19. Survival of Juvenile Chinook Salmon Passing the Bonneville Dam Spillway in 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Zimmerman, Shon A.; Durham, Robin E.; Fischer, Eric S.; Kim, Jina; Townsend, R. L.; Skalski, J. R.; Buchanan, Rebecca A.; McComas, Roy L.

    2008-12-01

    The U.S. Army Corps of Engineers Portland District (CENWP) funds numerous evaluations of fish passage and survival on the Columbia River. In 2007, the CENWP asked Pacific Northwest National Laboratory to conduct an acoustic telemetry study to estimate the survival of juvenile Chinook salmon passing the spillway at Bonneville Dam. This report documents the study results which are intended to be used to improve the conditions juvenile anadromous fish experience when passing through the dams that the Corps operates on the river.

  20. Survival and Passage of Yearling and Subyearling Chinook Salmon and Steelhead at The Dalles Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Skalski, J. R.; Carlson, Thomas J.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Fischer, Eric S.; Hughes, James S.; Khan, Fenton; Kim, Jin A.; Townsend, Richard L.

    2011-12-01

    The acoustic telemetry study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) for the U.S. Army Corps of Engineers, Portland District (USACE). The purpose of the study was to estimate dam passage survival and other performance measures for yearling and subyearling Chinook salmon and steelhead at The Dalles Dam as stipulated by the 2008 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS) and 2008 Columbia Basin Fish Accords.

  1. Monitoring of Subyearling Chinook Salmon Survival and Passage at Bonneville Dam, Summer 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

    2012-09-01

    The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through the dam and downstream through 81 km of tailwater.

  2. Compliance Monitoring of Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2012

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Johnson, Gary E.

    2013-05-01

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at The Dalles Dam during summer 2012. Under the 2008 Federal Columbia River Power System Biological Opinion, dam passage survival is required to be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal to 0.015. The study also estimated survival from the forebay 2 km upstream of the dam and through the tailrace to 2 km downstream of the dam, forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required by the 2008 Columbia Basin Fish Accords.

  3. Monitoring of Subyearling Chinook Salmon Survival and Passage at Bonneville Dam, Summer 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

    2011-02-01

    The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through the dam and downstream through 81 km of tailwater.

  4. Tucannon River Spring Chinook Salmon Captive Brood Program, FY 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bumgarner, Joseph D.; Gallinat, Michael P.

    2001-06-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood program from program inception (1997) through April 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will eventually sustain itself. The project goal is to rear captive salmon to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination with the current hatchery supplementation program (132,000 smolts), and wild production, is expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The Master Plan, Environmental Assessment, and most facility modifications at LFH were completed for the Tucannon River spring chinook captive broodstock program during FY2000 and FY2001. DNA samples collected since 1997 have been sent to the WDFW genetics lab in Olympia for baseline DNA analysis. Results from the genetic analysis are not available at this time. The captive broodstock program is planned to collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2000 BY fish have been selected. As of April 30, 2001, WDFW has 172 BY 1997, 262 BY 1998, 407 BY 1999, and approximately 1,190 BY 2000 fish on hand at LFH. Twelve of 13 mature 97 BY females were spawned in 2000. Total eggtake was 14,813. Mean fecundity was 1,298 eggs/female based on 11 fully spawned females. Egg survival to eye-up was 47.3%. This low survival was expected for three year old captive broodstock females. As of April 30, 2001, WDFW has 4,211 captive broodstock progeny on hand. These fish will be tagged with blank wire tag without fin clips and

  5. Coronary ligation reduces maximum sustained swimming speed in Chinook salmon, Oncorhynchus tshawytscha

    DEFF Research Database (Denmark)

    Farrell, A P; Steffensen, J F

    1987-01-01

    a statistically significant 35.5% reduction in maximum swimming speed. We conclude that the coronary circulation is important for maximum aerobic swimming and implicit in this conclusion is that maximum cardiac performance is probably necessary for maximum aerobic swimming performance.......The maximum aerobic swimming speed of Chinook salmon (Oncorhynchus tshawytscha) was measured before and after ligation of the coronary artery. Coronary artery ligation prevented blood flow to the compact layer of the ventricular myocardium, which represents 30% of the ventricular mass, and produced...

  6. Does CO2 enhance short-term storage success of Chinook salmon (Oncorhynchus tshawytscha) milt?

    Science.gov (United States)

    Bencic, D C; Ingermann, R L; Cloud, J G

    2001-07-01

    Successful short-term storage of salmonid milt depends on numerous factors, including temperature, fluid volume, and gaseous environment, with storage at low temperatures under an atmosphere of 100% O2 being the most common method. Salmonid sperm maintained in a storage environment with elevated carbon dioxide (CO2) levels, such as the approximately 4% CO2 in exhaled air, are not motile when activated. While these modest levels of CO2 inhibit sperm motility, the effect is reversible within hours after exposure to a CO2-free oxygenated environment. Therefore, the effect of CO2 (as a component gas in the storage environment) on chinook salmon (Oncorhynchus tshawytscha) sperm motility and viability was examined. The hypothesis of the current investigation was that CO2-exposure with subsequent CO2 removal would be beneficial during short-term chinook salmon milt storage. Milt samples were collected from mature (adult) and precocious (jack) male chinook salmon and stored under various CO2 and O2 levels at 3 to 4 degrees C for up to 14 days. Milt samples were then removed from the incubation environments and maintained under CO2-free humidified air with continuous mixing for 4 h at 10 degrees C before analysis of motility. The resultant motility of samples incubated under 3.5% or less CO2 was not different than controls during the 14 d incubation period; motility of samples stored under higher CO2 tensions were significantly lower. The motility of samples incubated under 3.5% CO2 reached the maximum recovered motility after 2 h exposure to CO2-free humidified air, while the motility of sperm incubated under 13.4% CO2 levels recovered no motility even after 6 h exposure to CO2-free humidified air. The motility of samples incubated under normoxia was significantly greater than that of samples incubated under hyperoxia (approximately 90% O2) at both 7 and 14 d, regardless of the CO2 level. Sperm viability was relatively unaltered by any of the incubation conditions examined

  7. WINDIGO-THIELSEN ROADLESS AREA, OREGON.

    Science.gov (United States)

    Sherrod, David R.; Benham, John R.

    1984-01-01

    The results of a mineral survey indicate that the Windigo-Thielsen Roadless Area, in Oregon has little promise for the occurrence of metallic mineral or fossil fuel resources. Abundant cinder deposits occur in the area, but numerous other large volume deposits are available in the region, closer to markets. The geothermal potential of the High Cascades province cannot be realistically evaluated without data on the subsurface thermal and hydrologic regime that can only be provided by deep drill holes. Several deep holes could be drilled outside the roadless areas of the High Cascades from which extrapolations of the geothermal potential of the province could be made.

  8. District-heating system, La Grande, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The area suggested for district heating feasibility study encompassed slightly over 400 acres extending north and south from the geographic center of the city. This district was subdivided into 8 areas, which include the Grande Ronde Hospital, Eastern Oregon State College, La Grande school district, one institutional area, one commercial area and three residential areas. Basic space heating loads developed for the various areas after a survey by county personnel and computation using a computer program form the basis for this economic feasibility study.

  9. Utility regulation and the legislative process in Oregon: a case study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This case study discusses the strategies employed by the Public Utility Commissioner and the Oregon Department of Energy in the design, passage and implementation of a set of energy conservation bills. Information is included on the development of new legislation for energy conservation and management, on developing public acceptance of such legislation, and the cooperation received from utility companies to affect implementation. The lessons in strategy and tactics and the skillful use of the legislative process to get the package of bills enacted should have immediate value for those about to undertake a similar effort in their state. (LCL)

  10. 77 FR 21624 - Pears Grown in Oregon and Washington; Assessment Rate Decrease for Processed Pears

    Science.gov (United States)

    2012-04-11

    ...The Department of Agriculture is adopting, as a final rule, without change, an interim rule that decreased the assessment rate established for the Processed Pear Committee (Committee) for the 2011- 2012 and subsequent fiscal periods from $8.41 to $7.73 per ton of summer/fall processed pears handled. The Committee locally administers the marketing order which regulates the handling of processed pears grown in Oregon and Washington. The Committee recommended the assessment rate decrease because the summer/fall processed pear promotion budget for the 2011-2012 fiscal period was reduced.

  11. 78 FR 21521 - Pears Grown in Oregon and Washington; Assessment Rate Decrease for Processed Pears

    Science.gov (United States)

    2013-04-11

    ...The Department of Agriculture is adopting, as a final rule, without change, an interim rule that decreased the assessment rate established for the Processed Pear Committee (Committee) for the 2012- 2013 and subsequent fiscal periods from $7.73 to $7.00 per ton of summer/fall processed pears. The Committee locally administers the marketing order that regulates the handling of processed pears grown in Oregon and Washington. The Committee recommended the assessment rate decrease because the summer/fall processed pear promotion budget for the 2012-2013 fiscal period was reduced.

  12. 77 FR 21623 - Pears Grown in Oregon and Washington; Assessment Rate Decrease for Fresh Pears

    Science.gov (United States)

    2012-04-11

    ...The Department of Agriculture is adopting, as a final rule, without change, an interim rule that decreased the assessment rate established for the Fresh Pear Committee (Committee) for the 2011-2012 and subsequent fiscal periods from $0.501 to $0.471 per standard box or equivalent of fresh winter pears handled. The Committee locally administers the marketing order which regulates the handling of fresh pears grown in Oregon and Washington. The Committee recommended the assessment rate decrease because the fresh winter pear promotion budget for the 2011-2012 fiscal period was reduced.

  13. 77 FR 46112 - Call for Nominations for Advisory Groups, Oregon/Washington

    Science.gov (United States)

    2012-08-02

    ...The Secretary of the Department of the Interior requests public nominations for persons to serve on Oregon/Washington Bureau of Land Management (BLM) Resource Advisory Councils and the Steens Mountain Advisory Council. Citizens who serve on these groups provide advice and recommendations to the BLM on land use planning and management of the National System of Public Lands within their geographic areas and management options for a specific National Landscape Conservation System site. The BLM will accept public nominations for 30 days after the publication of this notice.

  14. Exploring the Whitehorse Fishway : a guide to the travels of the Yukon River Chinook salmon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The Yukon Energy Corporation is the major producer of electrical energy in the Yukon. The Whitehorse Rapids Hydroelectricity Facility was constructed in 1956 to meet the demand for electricity in many growing Yukon communities. Electricity is generated by four turbines and seven diesel generators that are used to meet peak demand in winter. Two wind turbines on top of Haeckel Hill are also part of the Whitehorse/Aishihik/Faro power grid. The Whitehorse dam backed up the Yukon River and formed the Schwatka Lake reservoir. The dam includes fish ladders, barrier dams, fish screens and diversion channels to allow salmon coming from the Bering Sea to bypass the dam and reach their spawning grounds upstream. Viewing platforms allow visitors to see how the fish get past the dam. The Whitehorse Rapids Fish Hatchery was built in 1983 by the Yukon Energy Corporation to support the dwindling stock of Chinook salmon. The hatchery has an annual capacity of about 300,000 salmon fry which are released into Wolf Creek. This guide presents the life cycle of the Chinook salmon and briefly describes other fish that live in Yukon waters including grayling, longnose sucker, pike, inconnu, trout, and whitefish. figs.

  15. Preliminary Optimization for Spring-Run Chinook Salmon Environmental Flows in Lassen Foothill Watersheds

    Science.gov (United States)

    Ta, J.; Kelsey, R.; Howard, J.; Hall, M.; Lund, J. R.; Viers, J. H.

    2014-12-01

    Stream flow controls physical and ecological processes in rivers that support freshwater ecosystems and biodiversity vital for services that humans depend on. This master variable has been impaired by human activities like dam operations, water diversions, and flood control infrastructure. Furthermore, increasing water scarcity due to rising water demands and droughts has further stressed these systems, calling for the need to find better ways to identify and allocate environmental flows. In this study, a linear optimization model was developed for environmental flows in river systems that have minimal or no regulation from dam operations, but still exhibit altered flow regimes due to surface water diversions and groundwater abstraction. Flow regime requirements for California Central Valley spring-run Chinook salmon (Oncorhynchus tshawytscha) life history were used as a test case to examine how alterations to the timing and magnitude of water diversions meet environmental flow objectives while minimizing impact to local water supply. The model was then applied to Mill Creek, a tributary of the Sacramento River, in northern California, and its altered flow regime that currently impacts adult spring-run Chinook spawning and migration. The resulting optimized water diversion schedule can be used to inform water management decisions that aim to maximize benefit for the environment while meeting local water demands.

  16. Food and growth parameters of juvenile chinook in the central Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.D.

    1994-10-01

    Juvenile chinook, salmon (Oncorhynchus tshawytscha) in the Hanford area of the free-flowing central Columbia River, Washington consume almost entirely adult and larval stages of aquatic insects. The diet is dominated by midges (Diptera: Chironomidae). By numbers, adult midges provided 64 and 58% of the diet and larval midges 17 and 18% of the diet, in 1968 and 1969, respectively. The families Hydropsychidae (Trichoptera), Notonectidae (Hemiptera) and Hypogastruridae (Collembola) are of minor numerical importance with a combined utilization of 7% in 1968 and 15% in 1969. Distinctive features of food and feeding activity of juvenile chinook at Hanford are fourfold: (1) the fish utilize relatively few insect groups, predominantly Chironomidae; (2) they depend largely upon autochthonous river organisms; (3) they visually select living prey drifting, floating or swimming in the water; and (4) they are apparently habitat opportunists to a large extent. Analyses were made of variations in diet and numbers of insects consumed between six sampling stations distributed along a 38 km section of the river. Data are provided on feeding intensity, fish lengths, length-weight relationships, and coefficients of condition. Seasonal changes in river temperature and discharge, as well as variations in regulated flow levels are environmental features influencing feeding, growth, and emigration of fish in the Hanford environs.

  17. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

    2012-09-01

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

  18. Genetic characterization of naturally spawned Snake River fall-run Chinook salmon

    Science.gov (United States)

    Marshall, A.R.; Blankenship, H.L.; Connor, W.P.

    1999-01-01

    We sampled juvenile Snake River chinook salmon Oncorhynchus tshawytscha to genetically characterize the endangered Snake River fall-run population. Juveniles from fall and spring–summer lineages coexisted in our sampling areas but were differentiated by large allozyme allele frequency differences. We sorted juveniles by multilocus genotypes into putative fall and spring lineage subsamples and determined lineage composition using maximum likelihood estimation methods. Paired sMEP-1* and PGK-2* genotypes—encoding malic enzyme (NADP+) and phosphoglycerate kinase, respectively—were very effective for sorting juveniles by lineage, and subsamples estimated to be 100% fall lineage were obtained in four annual samples. We examined genetic relationships of these fall lineage juveniles with adjacent populations from the Columbia River and from Lyons Ferry Hatchery, which was established to perpetuate the Snake River fall-run population. Our samples of naturally produced Snake River fall lineage juveniles were most closely aligned with Lyons Ferry Hatchery samples. Although fall-run strays of Columbia River hatchery origin found on spawning grounds threaten the genetic integrity of the Snake River population, juvenile samples (a) showed distinctive patterns of allelic diversity, (b) were differentiated from Columbia River populations, and (c) substantiate earlier conclusions that this population is an important genetic resource. This first characterization of naturally produced Snake River fall chinook salmon provides a baseline for monitoring and recovery planning.

  19. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

    2011-02-01

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

  20. p,p'-DDE depresses the immune competence of chinook salmon (Oncorhynchus tshawytscha) leukocytes

    Science.gov (United States)

    Misumi, Ichiro; Vella, Anthony T.; Leong, Jo-Ann C.; Nakanishi, Teruyuki; Schreck, Carl B.

    2005-01-01

    p,p′-DDE, the main metabolite of DDT, is still detected in aquatic environments throughout the world. Here, the effects and mechanisms by which p,p′-DDE exposure might affect the immune system of chinook salmon (Oncorhynchus tshawytscha) was studied. Isolated salmon splenic and pronephric leukocytes were incubated with different concentrations of p,p′-DDE, and cell viability, induction of apoptosis, and mitogenic responses were measured by flow cytometry and Alamar Blue assay. p,p′-DDE significantly reduced cell viability and proliferation and increased apoptosis. The effect of p,p′-DDE on pronephric leukocytes was more severe than on splenic leukocytes, likely because pronephric leukocytes had a higher proportion of granulocytes, cells that appear more sensitive to p,p′-DDE. The effect of p,p′-DDE on leukocytes appeared to vary between developmental stages or seasonal differences. The mitogenic response of leukocytes of chinook salmon exposed to p,p′-DDE in vivo exhibited a biphasic dose–response relationship. Only leukocytes isolated from salmon treated with 59 ppm p,p′-DDE had a significantly lower percentage of Ig+ blasting cells than controls, although the response was biphasic. These results support the theory that exposure to chemical contaminants could lead to an increase in disease susceptibility and mortality of fish due to immune suppression.

  1. 77 FR 19597 - Listing Endangered and Threatened Species; 12-Month Finding on a Petition To List Chinook Salmon...

    Science.gov (United States)

    2012-04-02

    ... UKTR Chinook salmon ESU, the overall extinction risk of the ESU is considered to be low over the next... not in danger of extinction throughout all or a significant portion of its range, nor is it likely to... suggests a polyphyletic pattern of run timing evolution (Myers et al., 1998; Waples et al., 2004), with...

  2. 75 FR 20815 - Notice of Intent To Prepare an Environmental Assessment and to Conduct San Joaquin River Chinook...

    Science.gov (United States)

    2010-04-21

    ... the potential impacts of the proposed reintroduction of spring-run Chinook salmon to the mainstem of...), and section 10(a)(1)(A) of the ESA. This proposed reintroduction includes designating an experimental... Scope The proposed planning area for the proposed reintroduction will consist of the aquatic ecosystems...

  3. Movements of adult chinook salmon during spawning migration in a metals-contaminated system, Coeur d'Alene River, Idaho

    Science.gov (United States)

    Goldstein, J.N.; Woodward, D.F.; Farag, A.M.

    1999-01-01

    Spawning migration of adult male chinook salmon Oncorhynchus tshawytscha was monitored by radio telemetry to determine their response to the presence of metals contamination in the South Fork of the Coeur d'Alene River, Idaho. The North Fork of the Coeur d'Alene River is relatively free of metals contamination and was used as a control. In all, 45 chinook salmon were transported from their natal stream, Wolf Lodge Creek, tagged with radio transmitters, and released in the Coeur d'Alene River 2 km downstream of the confluence of the South Fork and the North Fork of the Coeur d'Alene River. Fixed telemetry receivers were used to monitor the upstream movement of the tagged chinook salmon through the confluence area for 3 weeks after release. During this period, general water quality and metals concentrations were monitored in the study area. Of the 23 chinook salmon observed to move upstream from the release site and through the confluence area, the majority (16 fish, 70%) moved up the North Fork, and only 7 fish (30%) moved up the South Fork, where greater metals concentrations were observed. Our results agree with laboratory findings and suggest that natural fish populations will avoid tributaries with high metals contamination.

  4. 77 FR 42629 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Science.gov (United States)

    2012-07-20

    ... entities was rejected. The ``universe'' of entities to be considered in a FRFA generally includes only... group, gear type, geographic area), that segment would be considered the universe for purposes of this... area were unacceptably high. Limited information on the origin of Chinook salmon in the GOA indicates...

  5. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-06-12

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  6. Mortality of Yearling Chinook Salmon Prior to Arrival at Lower Granite Dam, on the Snake River : Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, Albert E.

    1991-10-01

    Efforts have been initiated to develop a research plan that will provide insight into causes of, and ultimately solutions to, the apparent excessive mortality of juvenile chinook upstream from Lower Granite Dam on the Snake River. In the context of the proposed salmon stock listings under the Endangered Species Act, issues that potentially affect wild stocks of spring chinook salmon probably warrant immediate consideration and resolution. Mark-recapture data at Lower Granite Dam indicate that few yearling chinook salmon (Oncorhynchus tshawytscha) smolts survive to that site after release from various hatcheries. Upriver stocks of yearling spring and summer chinook exhibit pronounced losses en route to the dam. In 1989 and 1990, only about 8 to 18% of PIT-tagged representatives from McCall or Sawtooth hatchery were detected at the dam. General survival indices for these stocks indicate that perhaps only 15 to 35% of the yearlings survived to that site. This suggests these stocks may sustain as much mortality traversing this unobstructed reach of river as the general population would passing through the entire hydroelectric complex.

  7. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dales Dam, Spring 2011

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

    2012-02-01

    The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

  8. Water velocity, turbulence, and migration rate of subyearling fall Chinook salmon in the free-flowing and impounded Snake River

    Science.gov (United States)

    Tiffan, Kenneth F.; Kock, Tobias J.; Haskell, Craig A.; Connor, William P.; Steinhorst, R. Kirk

    2009-01-01

    We studied the migratory behavior of subyearling fall Chinook salmon Oncorhynchus tshawytscha in free-flowing and impounded reaches of the Snake River to evaluate the hypothesis that velocity and turbulence are the primary causal mechanisms of downstream migration. The hypothesis states that impoundment reduces velocity and turbulence and alters the migratory behavior of juvenile Chinook salmon as a result of their reduced perception of these cues. At a constant flow (m3 /s), both velocity (km/d) and turbulence (the SD of velocity) decreased from riverine to impounded habitat as cross-sectional areas increased. We found evidence for the hypothesis that subyearling Chinook salmon perceive velocity and turbulence cues and respond to these cues by varying their behavior. The percentage of the subyearlings that moved faster than the average current speed decreased as fish made the transition from riverine reaches with high velocities and turbulence to upper reservoir reaches with low velocities and turbulence but increased to riverine levels again as the fish moved further down in the reservoir, where velocity and turbulence remained low. The migration rate (km/d) decreased in accordance with longitudinal reductions in velocity and turbulence, as predicted by the hypothesis. The variation in migration rate was better explained by a repeatedmeasures regression model containing velocity (Akaike’s information criterion ¼ 1,769.0) than a model containing flow (2,232.6). We conclude that subyearling fall Chinook salmon respond to changes in water velocity and turbulence, which work together to affect the migration rate.

  9. Low productivity of Chinook salmon strongly correlates with high summer stream discharge in two Alaskan rivers in the Yukon drainage

    Science.gov (United States)

    Neuswanger, Jason R.; Wipfli, Mark S.; Evenson, Matthew J.; Hughes, Nicholas F.; Rosenberger, Amanda E.

    2015-01-01

    Yukon River Chinook salmon (Oncorhynchus tshawytscha) populations are declining for unknown reasons, creating hardship for thousands of stakeholders in subsistence and commercial fisheries. An informed response to this crisis requires understanding the major sources of variation in Chinook salmon productivity. However, simple stock–recruitment models leave much of the variation in this system’s productivity unexplained. We tested adding environmental predictors to stock–recruitment models for two Yukon drainage spawning streams in interior Alaska — the Chena and Salcha rivers. Low productivity was strongly associated with high stream discharge during the summer of freshwater residency for young-of-the-year Chinook salmon. This association was more consistent with the hypothesis that sustained high discharge negatively affects foraging conditions than with acute mortality during floods. Productivity may have also been reduced in years when incubating eggs experienced major floods or cold summers and falls. These freshwater effects — especially density dependence and high discharge — helped explain population declines in both rivers. They are plausible as contributors to the decline of Chinook salmon throughout the Yukon River drainage.

  10. Persistent organic pollutants in chinook salmon (Oncorhynchus tshawytscha): implications for resident killer whales of British Columbia and adjacent waters.

    Science.gov (United States)

    Cullon, Donna L; Yunker, Mark B; Alleyne, Carl; Dangerfield, Neil J; O'Neill, Sandra; Whiticar, Michael J; Ross, Peter S

    2009-01-01

    We measured persistent organic pollutant (POP) concentrations in chinook salmon (Oncorhynchus tshawytscha) in order to characterize dietary exposure in the highly contaminated, salmon-eating northeastern Pacific resident killer whales. We estimate that 97 to 99% of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dichlorodiphenyltrichloroethane (DDT), and hexachlorocyclohexane (HCH) in returning adult chinook were acquired during their time at sea. Highest POP concentrations (including PCBs, PCDDs, PCDFs, and DDT) and lowest lipids were observed in the more southerly chinook sampled. While feeding by salmon as they enter some more POP-contaminated near-shore environments inevitably contribute to their contamination, relationships observed between POP patterns and both lipid content and delta13C also suggest a migration-related metabolism and loss of the less-chlorinated PCB congeners. This has implications for killer whales, with the more PCB-contaminated salmon stocks in the south partly explaining the 4.0 to 6.6 times higher estimated daily intake for sigmaPCBs in southern resident killer whales compared to northern residents. We hypothesize that the lower lipid content of southerly chinook stocks may cause southern resident killer whales to increase their salmon consumption by as much as 50%, which would further increase their exposure to POPs.

  11. Temporal variation in synchrony among chinook salmon (Oncorhynchus tshawytscha) redd counts from a wilderness area in central Idaho

    Science.gov (United States)

    D. J. Isaak; R. F. Thurow; B. E. Rieman; J. B. Dunham

    2003-01-01

    Metapopulation dynamics have emerged as a key consideration in conservation planning for salmonid fishes. Implicit to many models of spatially structured populations is a degree of synchrony, or correlation, among populations. We used a spatially and temporally extensive database of chinook salmon (Oncorhynchus tshawytscha) redd counts from a wilderness area in central...

  12. Adult Chinook Salmon Abundance Monitoring in Lake Creek, Idaho, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave

    2002-12-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time- lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999 and 2001. The adult salmon spawner escapement estimate into Lake Creek in 2001 was 697 fish, the largest escapement since the project began. Jack salmon comprised 10% of the spring migration. Snow pack in the drainage was 38% of the average during the winter of 2000/2001. The first fish passage on Lake Creek was recorded on June 9, 19 days after installation of the fish counting station and two weeks earlier than previously reported. Peak net upstream movement of 52 adults occurred on June 22. Peak of total movement activity was July 3. The last fish passed through the Lake Creek fish counting station on September 6. Redd count expansion methods were compared to underwater video determined salmon spawner abundance in Lake Creek in 2001. Expanded index area redd count point estimates and intensive area redd counts in 2001, estimated from 1.3 percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers in Lake Creek have varied widely. In 2001 there were 2.07 fish per redd. In 1999, there were 3.58 fish per redd, and in 1998, with no jacks returning to spawn, there were 1.02 fish per redd. Migrating salmon in Lake Creek

  13. Adult Chinook Salmon Abundance Monitoring in the Secesh River and Lake Creek, Idaho, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A.

    2001-05-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control population under the Idaho Salmon Supplementation study. This project has demonstrated the successful application of underwater video adult salmon abundance monitoring technology in Lake Creek in 1998 and 1999. Emphasis of the project in 2000 was to determine if the temporary fish counting station could be installed early enough to successfully estimate adult spring and summer chinook salmon abundance in the Secesh River (a larger stream). Snow pack in the drainage was 93% of the average during the winter of 1999/2000, providing an opportunity to test the temporary count station structure. The temporary fish counting station was not the appropriate technology to determine adult salmon spawner abundance in the Secesh River. Due to its temporary nature it could not be installed early enough, due to high stream discharge, to capture the first upstream migrating salmon. A more permanent structure used with underwater video, or other technology needs to be utilized for accurate salmon escapement monitoring in the Secesh River. A minimum of 813 adult chinook salmon spawners migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. Of these fish, more than 324 migrated upstream into Lake Creek. The first upstream migrating adult chinook salmon passed the Secesh River and Lake Creek sites prior to operation of the fish counting stations on June 22. This was 17 and 19 days earlier than the first fish arrival at Lake Creek in 1998 and 1999

  14. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffnagle, Timothy; Carmichael, Richard; Noll, William

    2003-12-01

    The Grande Ronde Basin once supported large runs of chinook salmon Oncorhynchus tshawytscha and estimated peak escapements in excess of 10,000 occurred as recently as the late 1950's (U.S. Army Corps of Engineers 1975). Natural escapement declines in the Grande Ronde Basin have been severe and parallel those of other Snake River populations. Reduced productivity has primarily been attributed to increased mortality associated with downstream and upstream migration past eight dams and reservoirs in the Snake and Columbia rivers. Reduced spawner numbers, combined with human manipulation of previously important spawning and rearing habitat in the Grande Ronde Basin, have resulted in decreased spawning distribution and population fragmentation of chinook salmon in the Grande Ronde Basin (Figure 1; Table 1). Escapement of spring/summer chinook salmon in the Snake River basin included 1,799 adults in 1995, less than half of the previous record low of 3,913 adults in 1994. Catherine Creek, Grande Ronde River and Lostine River were historically three of the most productive populations in the Grande Ronde Basin (Carmichael and Boyce 1986). However, productivity of these populations has been poor for recent brood years. Escapement (based on total redd counts) in Catherine Creek and Grande Ronde and Lostine rivers dropped to alarmingly low levels in 1994 and 1995. A total of 11, 3 and 16 redds were observed in 1994 in Catherine Creek, upper Grande Ronde River and Lostine River, respectively, and 14, 6 and 11 redds were observed in those same streams in 1995. In contrast, the maximum number of redds observed in the past was 505 in Catherine Creek (1971), 304 in the Grande Ronde River (1968) and 261 in 1956 in the Lostine River (Tranquilli et al 2003). Redd counts for index count areas (a standardized portion of the total stream) have also decreased dramatically for most Grande Ronde Basin streams from 1964-2002, dropping to as low as 37 redds in the 119.5 km in the index

  15. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    Science.gov (United States)

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  16. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, Craig D.; Nelson, Douglas D. [Nez Perce Tribe

    2008-11-17

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there

  17. Geology and mineral resources of the Sheldon-Hart Mountain National Wildlife Refuge Complex (Oregon and Nevada), the Southeastern Oregon and North-Central Nevada, and the Southern Idaho and Northern Nevada (and Utah) Sagebrush Focal Areas: Chapter B in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Vikre, Peter G.; Benson, Mary Ellen; Bleiwas, Donald I.; Colgan, Joseph P.; Cossette, Pamela M.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; du Bray, Edward A.; Fernette, Gregory L.; Glen, Jonathan M.G.; Haacke, Jon E.; Hall, Susan M.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Mihalasky, Mark J.; Rytuba, James J.; Shaffer, Brian N.; Stillings, Lisa M.; Wallis, John C.; Williams, Colin F.; Yager, Douglas B.; Zürcher, Lukas

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of selected locatable minerals in lands proposed for withdrawal that span the Nevada, Oregon, Idaho, and Utah borders. In this report, the four study areas evaluated were (1) the Sheldon-Hart Mountain National Wildlife Refuge Complex SFA in Washoe County, Nevada, and Harney and Lake Counties, Oregon; (2) the Southeastern Oregon and North-Central Nevada SFA in Humboldt County, Nevada, and Harney and Malheur Counties, Oregon; (3) the Southern Idaho and Northern Nevada SFA in Cassia, Owyhee, and Twin Falls Counties, Idaho, Elko County, Nevada, and Box Elder County, Utah; and (4) the Nevada additions in Humboldt and Elko Counties, Nevada.

  18. A Simple Model that Identifies Potential Effects of Sea-Level Rise on Estuarine and Estuary-Ecotone Habitat Locations for Salmonids in Oregon, USA

    Science.gov (United States)

    Flitcroft, Rebecca; Burnett, Kelly; Christiansen, Kelly

    2013-07-01

    Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon ( Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and freshwater environments. Access to a variety of estuarine habitat has been shown to enhance juvenile life-history diversity, thereby contributing to the resilience of many salmonid species. Our study is focused on the effect of sea-level rise on the availability, complexity, and distribution of estuarine, and low-freshwater habitat for Chinook salmon ( Oncorhynchus tshawytscha), steelhead (anadromous O. mykiss), and coho salmon ( O. kisutch) along the Oregon Coast under future climate change scenarios. Using LiDAR, we modeled the geomorphologies of five Oregon estuaries and estimated a contour associated with the current mean high tide. Contour intervals at 1- and 2-m increments above the current mean high tide were generated, and changes in the estuary morphology were assessed. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting the changes in estuary shape. For each salmonid species, changes in the amount and complexity of estuarine edge habitats varied by estuary. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance salmonid habitat under future climatic conditions.

  19. Assessment of the Flow-Survival Relationship Obtained by Sims and Ossiander (1981) for Snake River Spring/Summer Chinook Salmon Smolts, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R. (Cleveland R.)

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic`s chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts.

  20. A Geographically Variable Water Quality Index Used in Oregon.

    Science.gov (United States)

    Dunnette, D. A.

    1979-01-01

    Discusses the procedure developed in Oregon to formulate a valid water quality index which accounts for the specific conditions in the water body of interest. Parameters selected include oxygen depletion, BOD, eutrophication, dissolved substances, health hazards, and physical characteristics. (CS)