WorldWideScience

Sample records for china life-cycle fossil

  1. Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010

    International Nuclear Information System (INIS)

    Life-cycle fossil primary energy consumption (FPEC) and greenhouse gas (GHG) emission intensity of nine types of dominant secondary energy (SE) pathways for China in 2010 are calculated with iterative methods, using the TLCAM (Tsinghua Life-cycle Analysis Model). Three major types of GHG (CO2, CH4 and N2O) are considered for GHG emission intensity, and non-combustion CH4 leakage during the feedstock production sub-stage is included. We found the following. (1) Life-cycle FPEC intensities in units of per MJ SE are obtained and used, in order of magnitude, for: raw coal (recovered only); raw natural gas (NG, recovered and processed only); raw oil (recovered and processed); final coal (finally transported to end-user); final NG (finally transported to end-user); diesel; gasoline; residual oil and electricity. (2) Although their upstream GHG emission intensities are small, their life-cycle intensities are 103.5, 68.3, 81.6, 99.3, 70.0, 101.6, 91.7, 93.5 and 226.4 g CO2,e/MJ SE, respectively, when direct GHG emissions are included. (3) Life-cycle intensities of both FPEC and GHG emissions for SE in China are higher than those in some other countries, because of the relatively low overall efficiency and high percentage of coal in the national energy mix. - Highlights: ► We calculate life-cycle energy use and GHG intensity of dominant secondary energy in China. ► Life-cycle GHG emission intensities are high and upstream intensities are low. ► The life-cycle energy and GHG intensities in China are higher than average in world

  2. Life cycle assessment of fossil energy use and greenhouse gas emissions in Chinese pear production

    OpenAIRE

    Liu, Y.; Langer, V; Høgh-Jensen, H.; Egelyng, H.

    2010-01-01

    An environmental life cycle assessment (LCA) was performed in China to investigate environmental consequences of the life cycle of pears in terms of fossil energy use and greenhouse gas emissions. The assessment identified activities that contributed significantly to pears’ environmental impacts from the cradle to the point of sale. Cultivation was identified as having the greatest greenhouse gas emissions in pear production chains, followed by the process of storage and transportation. The ...

  3. The cost analysis of hydrogen life cycle in China

    International Nuclear Information System (INIS)

    Currently, the increasing price of oil and the possibility of global energy crisis demand for substitutive energy to replace fossil energy. Many kinds of renewable energy have been considered, such as hydrogen, solar energy, and wind energy. Many countries including China have their own plan to support the research of hydrogen, because of its premier features. But, at present, the cost of hydrogen energy production, storage and transportation process is higher than that of fossil energy and its commercialization progress is slow. Life cycle cost analysis (LCCA) was used in this paper to evaluate the cost of hydrogen energy throughout the life cycle focused on the stratagem selection, to demonstrate the costs of every step and to discuss their relationship. Finally, the minimum cost program is as follows: natural gas steam reforming - high-pressure hydrogen bottles transported by car to hydrogen filling stations - hydrogen internal-combustion engines. (author)

  4. Development and Actuality of Life Cycle Cost Technique in China

    Institute of Scientific and Technical Information of China (English)

    GENG Jun-bao; JIN Jia-shan; LUO Yun; WU Yi-liang

    2012-01-01

    Life cycle cost technique is a powerful tool to make a scientific decision and a useful method of advancing the continuable development of the society. In this paper, development course, application actuality and up-to-date research trends of life cycle cost technique in China are summarized. Some suggestions are given on how to general- ize the application of life cycle cost technique which are used as the reference to study life cycle cost technique.

  5. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  6. Life Cycle Analysis on Fossil Energy Ratio of Algal Biodiesel: Effects of Nitrogen Deficiency and Oil Extraction Technology

    OpenAIRE

    Hou Jian; Yang Jing; Zhang Peidong

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from “cradle to grave.” Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeoda...

  7. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    International Nuclear Information System (INIS)

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case

  8. Life cycle assessment of biodiesel production in China.

    Science.gov (United States)

    Liang, Sai; Xu, Ming; Zhang, Tianzhu

    2013-02-01

    This study aims to evaluate energy, economic, and environmental performances of seven categories of biodiesel feedstocks by using the mixed-unit input-output life cycle assessment method. Various feedstocks have different environmental performances, indicating potential environmental problem-shift. Jatropha seed, castor seed, waste cooking oil, and waste extraction oil are preferred feedstocks for biodiesel production in the short term. Positive net energy yields and positive net economic benefits of biodiesel from these four feedstocks are 2.3-52.0% of their life cycle energy demands and 74.1-448.4% of their economic costs, respectively. Algae are preferred in the long term mainly due to their less arable land demands. Special attention should be paid to potential environmental problems accompanying feedstock choice: freshwater use, ecotoxicity potentials, photochemical oxidation potential, acidification potential and eutrophication potential. Moreover, key processes are identified by sensitivity analysis to direct future technology improvements. Finally, supporting measures are proposed to optimize China's biodiesel development. PMID:23238338

  9. Comparative life cycle assessment (LCA) of biodiesel and fossil diesel fuel

    International Nuclear Information System (INIS)

    Complementary to VlTO's demonstration project on the use of biodiesel as engine fuel (including on the road emission measurements) in Flanders, Belgium, a comparative life cycle assessment (LCA) has been carried out for rapeseed methyl ester (RME) and fossil diesel fuel. The primary concern of this study is the question as to whether or not the production of biodiesel is comparable to the production of fossil diesel fuel from an environmental point of view, taking into account all stages of the life cycle of these two products. The study covers: (1) a description of the LCA methodology used; (2) a definition of the goal and scope of the study: (3) an inventory of the consumption of energy and materials and the discharges to the environment, from the cradle to the grave, for both alternative fuels: (4) a comparative impact assessment; and (5) the interpretation of the results. The results of this comparative LCA can be used in the final decision making process next to the results of a social and economical assessment. 6 refs

  10. Towards Robust Energy Systems Modeling: Examinging Uncertainty in Fossil Fuel-Based Life Cycle Assessment Approaches

    Science.gov (United States)

    Venkatesh, Aranya

    Increasing concerns about the environmental impacts of fossil fuels used in the U.S. transportation and electricity sectors have spurred interest in alternate energy sources, such as natural gas and biofuels. Life cycle assessment (LCA) methods can be used to estimate the environmental impacts of incumbent energy sources and potential impact reductions achievable through the use of alternate energy sources. Some recent U.S. climate policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S. However, the LCA methods used to estimate potential reductions in environmental impact have some drawbacks. First, the LCAs are predominantly based on deterministic approaches that do not account for any uncertainty inherent in life cycle data and methods. Such methods overstate the accuracy of the point estimate results, which could in turn lead to incorrect and (consequent) expensive decision-making. Second, system boundaries considered by most LCA studies tend to be limited (considered a manifestation of uncertainty in LCA). Although LCAs can estimate the benefits of transitioning to energy systems of lower environmental impact, they may not be able to characterize real world systems perfectly. Improved modeling of energy systems mechanisms can provide more accurate representations of reality and define more likely limits on potential environmental impact reductions. This dissertation quantitatively and qualitatively examines the limitations in LCA studies outlined previously. The first three research chapters address the uncertainty in life cycle greenhouse gas (GHG) emissions associated with petroleum-based fuels, natural gas and coal consumed in the U.S. The uncertainty in life cycle GHG emissions from fossil fuels was found to range between 13 and 18% of their respective mean values. For instance, the 90% confidence interval of the life cycle GHG emissions of average natural gas consumed in the U.S was found to

  11. The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles

    International Nuclear Information System (INIS)

    A high energy return on energy investment (EROI) of an energy production process is crucial to its long-term viability. The EROI of conventional thermal electricity from fossil fuels has been viewed as being much higher than those of renewable energy life-cycles, and specifically of photovoltaics (PVs). We show that this is largely a misconception fostered by the use of outdated data and, often, a lack of consistency among calculation methods. We hereby present a thorough review of the methodology, discuss methodological variations and present updated EROI values for a range of modern PV systems, in comparison to conventional fossil-fuel based electricity life-cycles. - Highlights: ► We perform a review of the EROI methodology. ► We provide new calculations for PV compared to oil- and coal-based energy systems. ► If compared consistently, PV sits squarely in the same range of EROI as conventional fossil fuel life cycles.

  12. Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts.

    Science.gov (United States)

    Adom, Felix; Dunn, Jennifer B; Han, Jeongwoo; Sather, Norm

    2014-12-16

    Biomass-derived chemical products may offer reduced environmental impacts compared to their fossil-derived counterparts and could improve profit margins at biorefineries when coproduced with higher-volume, lower-profit margin biofuels. It is important to assess on a life-cycle basis the energy and environmental impacts of these bioproducts as compared to conventional, fossil-derived products. We undertook a life-cycle analysis of eight bioproducts produced from either algal-derived glycerol or corn stover-derived sugars. Selected on the basis of technology readiness and market potential, the bioproducts are propylene glycol, 1,3-propanediol, 3-hydroxypropionic acid, acrylic acid, polyethylene, succinic acid, isobutanol, and 1,4-butanediol. We developed process simulations to obtain energy and material flows in the production of each bioproduct and examined sensitivity of these flows to process design assumptions. Conversion process data for fossil-derived products were based on the literature. Conversion process data were combined with upstream parameters in the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to generate life-cycle greenhouse gas (GHG) emissions and fossil energy consumption (FEC) for each bioproduct and its corresponding petroleum-derived product. The bioproducts uniformly offer GHG emissions reductions compared to their fossil counterparts ranging from 39 to 86% on a cradle-to-grave basis. Similarly, FEC was lower for bioproducts than for conventional products. PMID:25380298

  13. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  14. Life Cycle Assessment of Motor Bike and Electric Bike in Urban Areas of China

    Institute of Scientific and Technical Information of China (English)

    DAI Du; LENG Ru-bo; ZHANG Cheng; WANG Cheng-tao

    2005-01-01

    Motor bikes (m-bike) and electric bikes (e-bike) are widely used in urban areas of China. Life cycle assessment of m-bike and e-bike are presented to compare their energy use and environmental emission in a life cycle span. An m-bike and an e-bike are disassembled to collect material composition data for the life cycle assessment. The results show that e-bike consumes less energy and has less global warming potential (GWP), biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), dissolved solids (DS), hydrocarbons (HC) than m-bike during life cycle. But e-bike generates more solid wastes, and more acidification potential (AP), heavy metal (HM) than m-bike. Advanced batteries and clean coal fired power plant technologies are recommended to promote e-bike use in urban area.

  15. Well-to-wheels life-cycle analysis of alternative fuels and vehicle technologies in China

    International Nuclear Information System (INIS)

    A well-to-wheels life cycle analysis on total energy consumptions and greenhouse-gas (GHG) emissions for alternative fuels and accompanying vehicle technologies has been carried out for the base year 2010 and projected to 2020 based on data gathered and estimates developed for China. The fuels considered include gasoline, diesel, natural gas, liquid fuels from coal conversion, methanol, bio-ethanol and biodiesel, electricity and hydrogen. Use of liquid fuels including methanol and Fischer–Tropsch derived from coal will significantly increase GHG emissions relative to use of conventional gasoline. Use of starch-based bio-ethanol will incur a substantial carbon disbenefit because of the present highly inefficient agricultural practice and plant processing in China. Electrification of vehicles via hybrid electric, plug-in hybrid electric (PHEV) and battery electric vehicle technologies offers a progressively improved prospect for the reduction of energy consumption and GHG emission. However, the long-term carbon emission reduction is assured only when the needed electricity is generated by zero- or low-carbon sources, which means that carbon capture and storage is a necessity for fossil-based feedstocks. A PHEV that runs on zero- or low-carbon electricity and cellulosic ethanol may be one of the most attractive fuel-vehicle options in a carbon-constrained world. - Highlights: ► Data and estimates unique to China are used in this analysis. ► Use of starch-based bio-ethanol will incur a substantial carbon disbenefit in China. ► Use of methanol derived from coal will incur even more carbon disbenefit. ► Plug-in-hybrid with cellulosic ethanol and clean electricity may be a viable option.

  16. Life-Cycle Assessment of Cookstove Fuels in India and China

    Science.gov (United States)

    A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are repo...

  17. Life Cycle GHG of NG-Based Fuel and Electric Vehicle in China

    OpenAIRE

    Qian Zhang; Xu Zhang; Xiliang Zhang; Xunmin Ou

    2013-01-01

    This paper compares the greenhouse gas (GHG) emissions of natural gas (NG)- based fuels to the GHG emissions of electric vehicles (EVs) powered with NG-to-electricity in China. A life-cycle model is used to account for full fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing. The reduction of life-cycle GHG emissions of EVs charged by electricity generated from NG, without utilizing carbon dioxide capture and storage (CCS) technology can be 36%–47% when co...

  18. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    Science.gov (United States)

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China. PMID:27297045

  19. An endpoint damage oriented model for life cycle environmental impact assessment of buildings in China

    Institute of Scientific and Technical Information of China (English)

    GU LiJing; LIN BoRong; GU DaoJin; ZHU YingXin

    2008-01-01

    The midpoint impact assessment methodology and several weighting methods that are currently used by most building Life cycle assessment (LCA) researchers in China, still have some shortcomings. In order to make the evaluation results have better temporal and spatial applicability, the endpoint impact assessment methodology was adopted in this paper. Based on the endpoint damage oriented concept, four endpoints of resource exhaustion, energy exhaustion, human health damage and ecosystem damage were selected according to the situation of China and the specialties of the building industry. Subsequently the formula for calculating each endpoint, the background value for normalization and the weighting factors were defined. Following that, an endpoint damage oriented model to evaluate the life cycle environmental impact of buildings in China was established. This model can produce an integrated indicator for environmental impact, and consequently provides references for directing the sustainable building design.

  20. Life Cycle GHG of NG-Based Fuel and Electric Vehicle in China

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2013-05-01

    Full Text Available This paper compares the greenhouse gas (GHG emissions of natural gas (NG- based fuels to the GHG emissions of electric vehicles (EVs powered with NG-to-electricity in China. A life-cycle model is used to account for full fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing. The reduction of life-cycle GHG emissions of EVs charged by electricity generated from NG, without utilizing carbon dioxide capture and storage (CCS technology can be 36%–47% when compared to gasoline vehicles. The large range change in emissions reduction potential is driven by the different generation technologies that could in the future be used to generate electricity in China. When CCS is employed in power plants, the GHG emission reductions increase to about 71%–73% compared to gasoline vehicles. It is found that compressed NG (CNG and liquefied NG (LNG fuels can save about 10% of carbon as compared to gasoline vehicles. However, gas-to-liquid (GTL fuel made through the Fischer-Tropsch method will likely lead to a life-cycle GHG emissions increase, potentially 3%–15% higher than gasoline, but roughly equal to petroleum-based diesel. When CCS is utilized, the GTL fueled vehicles emit roughly equal GHG emissions to petroleum-based diesel fuel high-efficient hybrid electric vehicle from the life-cycle perspective.

  1. Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China

    International Nuclear Information System (INIS)

    Highlights: ► We analyzed the life cycle energy intensity and GHG emissions of about 40 pathways of alternative vehicle fuels in China. ► Coal-based liquid fuel has higher life cycle energy intensities and first generation technology bio-fuel has relatively lower intensity. ► By 2020 electricity will have significantly lower GHG intensity and second generation technology bio-fuel will have near zero intensities. -- Abstract: Fossil energy consumption (FEC) and greenhouse gas (GHG) emission intensities of major alternative vehicle fuels (AVFs) in China are calculated and compared with conventional fuels by means of full life-cycle analysis. Currently most of the AVFs have not relatively obvious GHG emission reduction when compared to the gasoline pathway: (1) coal-based AVF has higher intensities in terms of both the FEC and GHG emissions; (2) electricity from the average Chinese grid has the GHG emission intensity similar to that of gasoline pathway although relatively lower FEC intensity; and (3) first generation technology bio-fuel has relatively lower GHG emission intensity and substantially lower FEC intensity. It is forecasted that by 2020 when still comparing to the gasoline pathway: (1) coal-based AVF will still have FEC and GHG emission intensities that are 1.5–1.8 and 1.8–2.5 time those of gasoline pathway, and the application of carbon capture and storage technology can reduce the GHG emission intensity of coal-based AVF; (2) electricity will have significantly lower GHG intensity; and (3) second generation technology bio-fuel will have near zero FEC and GHG intensities.

  2. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE)

    OpenAIRE

    Zhao, Y.; Wang, H.-T.; Lu, W.-J.; Damgaard, Anders; Christensen, Thomas Højlund

    2009-01-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH4 released from landfilling was the primary pollutant contributing to...

  3. Life cycle carbon emission flow analysis for electricity supply system: A case study of China

    International Nuclear Information System (INIS)

    The carbon emission embodied in trade is fundamental for allocation of responsibility between producers and consumers. This paper quantitatively analyzes embodied carbon emissions along the life cycle of electricity supply, based on network theory. A modified carbon emission flow model is established, based on life cycle assessment considering power losses. There is also a case study of China's interregional electricity supply system in 2010, focusing on two carbon emission carriers, electricity coal transportation and electricity transmission. Results show that the total carbon emission flow reached 169.355 MtCO2eq, i.e., 4.67% of the life cycle carbon emission. Of this, 61.1% was carried by electricity coal transportation before power generation and transmission, owing to an uneven distribution of coal resources. The eastern and southern regions are the major net sinks of carbon emission flows, representing 52.9% and 27.8% of the total, respectively, because of their enormous energy imports. In contrast, the Sanxi region and central China are major net sources of carbon emission flow. The proposed model may help allocate environmental responsibility among different regions, to guarantee balanced trans-regional development. - Highlights: • Hybrid model of LCA and carbon emission flow analysis is established. • Power supply system of China is abstracted as topological network. • Half of the carbon emission flow is carried by fuel transportation system

  4. Life cycle and career patterns of academic women in higher education in China today

    OpenAIRE

    2008-01-01

    It is an universal phenomenon of academic women’s lower representation in higher education. The topic of my study is “ Life Cycle and Career Patterns of Academic Women in Higher Education in China Today”. The aim of this study is to explore the situation and challenges academic women face in higher education in China today from a life course perspective. My research design is also to focus on gender issues in higher education. Gender is one of the central organizing principles around whi...

  5. Fuel life cycle emissions for electricity consumption in the world's gaming center-Macao SAR, China

    International Nuclear Information System (INIS)

    The gaming and hospitality sector has been expanding rapidly in recent years. Concurrently energy consumption in this sector has surged significantly. This paper reviews the literature on the relationship between electricity consumption and economic growth and introduces the 4-parameter logistic functions to model the growth of electricity consumption and other related parameters in the world's gaming center-Macao, China. The accuracy of the growth models were assessed by using the mean absolute percentage error and the root mean squared percentage error. The paper also introduces the application of life cycle analysis to greenhouse gases emissions for electricity consumption. As Macao in recent years has imported a significant amount of electricity from a coal-fired power plant in its nearby area - Zhuhai, the impact analysis included greenhouse gases emissions from the extraction, transportation, processing, and combustion along fuel life cycles in the local power plant as well as Zhuhai's power plant. We found that the emissions associated with the imported electricity contributed greatly to total emissions. -- Highlights: → We model electricity consumption and GDP using 4-parameter logistic functions. → We apply backward life cycle analysis to quantify greenhouse gases emissions. → Emissions associated with the imported electricity contributed greatly to emissions.

  6. Life cycle and performance based seismic design of major bridges in China

    Institute of Scientific and Technical Information of China (English)

    FAN Lichu

    2007-01-01

    The idea of life cycle and performance based seismic design of major bridges is introduced.Based on the key components and non-key components of a bridge and the consideration of the inspectability,replaceability,reparability,controllability and retrofitability of the bridge components,different seismic design levels and expected performance objectives are suggested for the major bridges in China.The vulnerability analysis and progressive collapse analysis,as well as risk assessment,are also proposed to be the important issues to study in order to guide the seismic design of major bridges in the future.

  7. Simulation-based life cycle assessment of energy efficiency of biomass-based ethanol fuel from different feedstocks in China

    International Nuclear Information System (INIS)

    Interests in biomass-based fuel ethanol (BFE) have been re-boosted due to oil shortage and environmental deterioration. Biomass-based fuel ethanol is renewable and, apparently, environmentally friendly. Biomass-based E10 (a blend of 10% ethanol and 90% gasoline by volume) is a promising conventional gasoline substitute, because vehicle engines require no modifications to run on E10 and vehicle warranties are unaffected. This paper presented life cycle assessments (LCAs) of energy efficiency of wheat-based E10 from central China, corn-based E10 from northeast China, and cassava-based E10 from southwest China. The respective energy flow-based evaluation model of wheat-, corn-, and cassava-based E10 was built based on data from pilot BFE plants. Monte Carlo method is applied to deal with the uncertain parameters and input and output variables of the evaluation model because of its wide application and easy development of statistical dispersion of calculated quantities. According to the assessment results, the average energy input/output ratio of wheat-based fuel ethanol (WFE), corn-based fuel ethanol (CFE), and cassava-based fuel ethanol (KFE) is 0.70, 0.75, and 0.54, respectively, and biomass-based E10 vehicle can have less fossil energy demand than gasoline-fueled ones.

  8. A hybrid life-cycle inventory for multi-crystalline silicon PV module manufacturing in China

    International Nuclear Information System (INIS)

    China is the world’s largest manufacturer of multi-crystalline silicon photovoltaic (mc-Si PV) modules, which is a key enabling technology in the global transition to renewable electric power systems. This study presents a hybrid life-cycle inventory (LCI) of Chinese mc-Si PV modules, which fills a critical knowledge gap on the environmental implications of mc-Si PV module manufacturing in China. The hybrid LCI approach combines process-based LCI data for module and poly-silicon manufacturing plants with a 2007 China IO-LCI model for production of raw material and fuel inputs to estimate ‘cradle to gate’ primary energy use, water consumption, and major air pollutant emissions (carbon dioxide, methane, sulfur dioxide, nitrous oxide, and nitrogen oxides). Results suggest that mc-Si PV modules from China may come with higher environmental burdens that one might estimate if one were using LCI results for mc-Si PV modules manufactured elsewhere. These higher burdens can be reasonably explained by the efficiency differences in China’s poly-silicon manufacturing processes, the country’s dependence on highly polluting coal-fired electricity, and the expanded system boundaries associated with the hybrid LCI modeling framework. The results should be useful for establishing more conservative ranges on the potential ‘cradle to gate’ impacts of mc-Si PV module manufacturing for more robust LCAs of PV deployment scenarios. (letter)

  9. A hybrid life-cycle inventory for multi-crystalline silicon PV module manufacturing in China

    Science.gov (United States)

    Yao, Yuan; Chang, Yuan; Masanet, Eric

    2014-11-01

    China is the world’s largest manufacturer of multi-crystalline silicon photovoltaic (mc-Si PV) modules, which is a key enabling technology in the global transition to renewable electric power systems. This study presents a hybrid life-cycle inventory (LCI) of Chinese mc-Si PV modules, which fills a critical knowledge gap on the environmental implications of mc-Si PV module manufacturing in China. The hybrid LCI approach combines process-based LCI data for module and poly-silicon manufacturing plants with a 2007 China IO-LCI model for production of raw material and fuel inputs to estimate ‘cradle to gate’ primary energy use, water consumption, and major air pollutant emissions (carbon dioxide, methane, sulfur dioxide, nitrous oxide, and nitrogen oxides). Results suggest that mc-Si PV modules from China may come with higher environmental burdens that one might estimate if one were using LCI results for mc-Si PV modules manufactured elsewhere. These higher burdens can be reasonably explained by the efficiency differences in China’s poly-silicon manufacturing processes, the country’s dependence on highly polluting coal-fired electricity, and the expanded system boundaries associated with the hybrid LCI modeling framework. The results should be useful for establishing more conservative ranges on the potential ‘cradle to gate’ impacts of mc-Si PV module manufacturing for more robust LCAs of PV deployment scenarios.

  10. Life-Cycle-Based Multicriteria Sustainability Evaluation of Industrial Parks: A Case Study in China

    Directory of Open Access Journals (Sweden)

    Jin Yang

    2012-01-01

    Full Text Available Along with increasing concerns on environmental protection and global warming mitigation, new industrial organization modes such as “Ecoindustrial Park” and “Low Carbon Industrial Park” are emerging. Since ecoindustrial parks and low carbon industrial parks may offer multifaceted benefits to the users, it naturally follows that the sustainability assessment of the industrial parks ought to adopt a multicriteria methodology. In this paper, a multicriteria sustainable evaluation framework is proposed in combination with the life cycle analysis and applied to a low carbon and high end industrial park (LCHE in Beijing, China. Results show that the LCHE industrial park can contribute to both energy-saving and greenhouse gas emission mitigations compared with other industrial parks. In terms of economic performance, although the economic profits are considerable, the investment per constructed area is relatively high. The results of sustainable analysis of the LCHE industrial park can thus shed light on future upgrading of industrial parks.

  11. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE)

    DEFF Research Database (Denmark)

    Zhao, Y.; Wang, H.-T.; Lu, W.-J.;

    2009-01-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including...... waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH4 released from landfilling was the primary pollutant contributing to global warming, and HCl and NH3 from incineration contributed most to acidification. Material recycling...... and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system...

  12. The Life Cycle of Bare Branch Families in China: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Quanbao Jiang

    2013-01-01

    Full Text Available China is characterized by a large number of men who are unable to marry, often referred to as “bare branches.” In this paper, we define the bare branch family and divide its life cycle into three stages: the unmarried co-resident with both parents, co-resident with a surviving parent, and living alone. As the childbearing age of parents increases, the age of a bare branch at the death of his parents decreases, and the duration of his living alone lengthens. An increase in the mother’s childbearing age, holding that of the father constant, shortens the stage of co-residence with both parents, and lengthens the stage of living alone.

  13. Life cycle of Chetoneura shennonggongensis (Diptera: Keroplatidae: Keroplatinae) from Jiangxi Province, China

    Institute of Scientific and Technical Information of China (English)

    Xue-Zhen Li; Chang-Ying Niu; Qiu-Ying Huang; Chao-Liang Lei; David W.Stanley

    2009-01-01

    We report the first description of the biology of non-bioluminescent Keroplatidae from China. The life cycle of Chetoneura shennonggongensis is documented from laboratory culture and from field observations. The larval stage usually lasts 8-10 months.Large amounts of pupae are observed in late June, where they remain suspended horizontally or vertically from silk threads. The pupal suspending postures differ from other Keroplatidae species. Sexual differentiation is evident from the pupal stage. July is the peak time of adult emergence. Mating usually takes place immediately upon female emergence if adult males are available. The adult life span is short. Females live a maximum of 5 days and males 7 days. Egg development time varies from 20-30 days depending on environmental temperature. Larvae hang long sticky silk threads with a series of mucous droplets to capture prey. Some behaviors associated with snare construction and prey capture are also described.

  14. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beibei [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Department of Geography and Environmental Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wei, Qi [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: Zhangb@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Bi, Jun [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China)

    2013-03-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%.

  15. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    International Nuclear Information System (INIS)

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%

  16. Comparison of municipal solid waste treatment technologies from a life cycle perspective in China.

    Science.gov (United States)

    Dong, Jun; Chi, Yong; Zou, Daoan; Fu, Chao; Huang, Qunxing; Ni, Mingjiang

    2014-01-01

    China has endured the increasing generation of municipal solid waste; hence, environmental analysis of current waste management systems is of crucial importance. This article presents a comprehensive life cycle assessment of three waste treatment technologies practiced in Hangzhou, China: landfill with and without energy recovery, and incineration with waste-to-energy. Adopting region-specific data, the study covers various environmental impacts, such as global warming, acidification, nutrient enrichment, photochemical ozone formation, human toxicity and ecotoxicity. The results show that energy recovery poses a positive effect in environmental savings. Environmental impacts decrease significantly in landfill with the utilization of biogas owing to combined effects by emission reduction and electricity generation. Incineration is preferable to landfill, but toxicity-related impacts also need to be improved. Furthermore, sensitivity analysis shows that the benefit of carbon sequestration will noticeably decrease global warming potential of both landfill scenarios. Gas collection efficiency is also a key parameter influencing the performance of landfill. Based on the results, improvement methods are proposed. Energy recovery is recommended both in landfill and incineration. For landfill, gas collection systems should be upgraded effectively; for incineration, great efforts should be made to reduce heavy metals and dioxin emissions. PMID:24163375

  17. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).

    Science.gov (United States)

    Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H

    2009-06-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection. PMID:19470539

  18. Early evolution of life cycles in embryophytes:A focus on the fossil evidence of gametophyte/sporophyte size and morphological complexity

    Institute of Scientific and Technical Information of China (English)

    Philippe GERRIENNE; Paul GONEZ

    2011-01-01

    Embryophytes (land plants) are distinguished from their green algal ancestors by diplobiontic life cycles,that is,alternation of multicellular gametophytic and sporophytic generations.The bryophyte sporophyte is small and matrotrophic on the dominant gametophyte; extant vascular plants have an independent,dominant sporophyte and a reduced gametophyte.The elaboration of the diplobiontic life cycle in embryophytes has been thoroughly discussed within the context of the Antithetic and the Homologous Theories.The Antithetic Theory proposes a green algal ancestor with a gametophyte-dominant haplobiontic life cycle.The Homologous Theory suggests a green algal ancestor with alternation of isomorphic generations.The shifts that led from haplobiontic to diplobiontic life cycles and from gametophytic to sporophytic dominance are most probably related with terrestrial habitats.Cladistic studies strongly support the Antithetic Theory in repeatedly identifying charophycean green algae as the closest relatives of land plants.In recent years,exceptionally well-preserved axial gametophytes have been described from the Rhynie chert (Lower Devonian,410 Ma),and the complete life cycle of several Rhynie chert plants has been reconstructed.All show an alternation of more or less isomorphic generations,which is currently accepted as the plesiomorphic condition among all early polysporangiophytes,including basal tracheophytes.Here we review the existing evidence for early embryophyte gametophytes.We also discuss some recently discovered plants preserved as compression fossils and interpreted as gametophytes.All the fossil evidence supports the Antithetic Theory and indicates that the gametophytic generation/sporophytic generation size and complexity ratios show a gradual decrease along the land plant phylogenetic tree.

  19. Energy, Environment, Economic Life Cycle Assessment of Cassava-based Ethanol Used as Automotive Fuel in Guangxi Province, China

    Institute of Scientific and Technical Information of China (English)

    HU Zhi-yuan; ZHANG Cheng; PU Geng-qiang; WANG Cheng-tao

    2005-01-01

    A life-cycle assessment (LCA) was carried out to compare the energy, environmental and economic impacts of converting cassava to fuel ethanol in Guangxi Province, China. The entire life cycle is a system that includes stages from cassava farming to ethanol fuel combustion. A computer-based model was developed to assess energy, environmental, and economic (EEE) life cycle implication of cassava-based ethanol fuel. The LCA results for fuel ethanol were compared to conventional gasoline (CG) as a base-line case. On the life-cycle bases, the use of cassava-based ethanol fuel in Guangxi may consume more energy but reduce greenhouse gas, VOC, and CO emissions. Life cycle cost results indicate that although fuel ethanol currently is not competitive compared to conventional gasoline, it has great potentials when there are subsidies and/or yields of cassava planting are improved. In terms of balancing the energy, environmental and economical, the introduction form of cassavabased ethanol fuel would be E10. The assessment results generated from this study provide an important reference for Guangxi policy makers to better understand the trade-offs among energy, environmental effects, and economics for the most effective using of regional energy resources.

  20. Clustering economic sectors in China on a life cycle basis to achieve environmental sustainability

    Institute of Scientific and Technical Information of China (English)

    Sai LIANG; Tianzhu ZHANG; Xiaoping JIA

    2013-01-01

    To improve material efficiency, industrial structure optimization becomes a focal point in Chinese industrial and environmental policies. It is crucial to cluster economic sectors and determine their priority for industrial and environmental policy implementation. Integrating a set of criteria, a hybrid input-output model and the hierarchical cluster analysis, this study clusters China's economic sectors and determines their priority on a life cycle basis. China's economic sectors are clustered into three clusters. Industrial structure changes (industrial policy) should encourage the development of sectors in cluster 1 and limit the development of sectors in cluster 2. Technology development and materials recycling (two environmental policies) should mainly focus on sectors in clusters 1 and 2. Future industrial policies in China should limit the development of two sectors named Manufacture of metal products and Extraction of petroleum and natural gas. Instead of limiting some industries by command-and- control, the best policy option is to remedy environmental standards and law enforcement. Enterprises belonging to the identified key sectors from the viewpoint of direct production impacts should be concerned to achieve enterprise sustainability. To achieve sustainable production chains, the identified key sectors from the viewpoint of accumulative production impacts should be concerned. For sustainable consumption, the identified key sectors from the viewpoint of consumption impacts should be concerned to transform consumption styles. Most of environmental pressure can be alleviated not only by technical improvements and material recycling, but also by the development of economic sectors in cluster 1.

  1. Characterization and normalization factors of abiotic resource depletion for life cycle impact assessment in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The availability of resources for economic activities differs between regions, and the importance of the resources is consequently observed to be different within regions compared to a global scale. With the current situation in Chinese mining industry and its statistic characteristics, the characterization procedures of abiotic resource in life cycle impact assessment (LCIA) have demonstrated certain limita-tions in the Chinese materials industry. The aim of this paper is to propose new characterization and normalization factors for abiotic resource depletion categories such as metals and non-renewable en- ergy resources in a Chinese context. The actual production of abiotic resources calculated by a modi- fied model is compared to the reserve base in line with the new national standard to determine char- acterization factors in equivalence units, with antimony as the reference mineral. The normalization factors are based on the total base reserves of the most important minerals in China. A case study on primary magnesium production using the Pidgeon process is used to compare LCIA results for abiotic resource categories that are between current LCIA factors and the new Chinese factors. These factors not only reflect the importance of abiotic resource with respect to region-specific resource depletion, but also can compare with the global factors.

  2. Characterization and normalization factors of abiotic resource depletion for life cycle impact assessment in China

    Institute of Scientific and Technical Information of China (English)

    GAO Feng; NIE ZuoRen; WANG ZhiHong; GONG XianZheng; ZUO TieYong

    2009-01-01

    The availability of resources for economic activities differs between regions, and the importance of the resources is consequently observed to be different within regions compared to a global scale. With the current situation in Chinese mining industry and its statistic characteristics, the characterization pro-cedures of abiotic resource in life cycle impact assessment (LCIA) have demonstrated certain limita-tions in the Chinese materials industry. The aim of this paper is to propose new characterization and normalization factors for abiotic resource depletion categories such as metals and non-renewable en-ergy resources in a Chinese context. The actual production of abiotic resources calculated by a modi-fied model is compared to the reserve base in line with the new national standard to determine char-acterization factors in equivalence units, with antimony as the reference mineral. The normalization factors are based on the total base reserves of the most important minerals in China. A case study on primary magnesium production using the Pidgeon process is used to compare LCIA results for abiotic resource categories that are between current LCIA factors and the new Chinese factors. These factors not only reflect the importance of abiotic resource with respect to region-specific resource depletion, but also can compare with the global factors.

  3. Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer

    Science.gov (United States)

    Sun, Yele; Jiang, Qi; Xu, Yisheng; Ma, Yan; Zhang, Yingjie; Liu, Xingang; Li, Weijun; Wang, Fei; Li, Jie; Wang, Pucai; Li, Zhanqing

    2016-03-01

    The North China Plain experiences frequent severe haze pollution during all seasons. Here we present the results from a summer campaign that was conducted at Xianghe, a suburban site located between the megacities of Beijing and Tianjin. Aerosol particle composition was measured in situ by an Aerosol Chemical Speciation Monitor along with a suite of collocated measurements during 1-30 June 2013. Our results showed that aerosol composition at the suburban site was overall similar to that observed in Beijing, which was mainly composed of organics (39%), nitrate (20%), and sulfate (18%). Positive matrix factorization of organic aerosol (OA) identified four OA factors with different sources and processes. While secondary organic aerosol dominated OA, on average accounting for 70%, biomass burning OA (BBOA) was also observed to have a considerable contribution (11%) for the entire study period. The contribution of BBOA was increased to 21% during the BB period in late June, indicating a large impact of agricultural burning on air pollution in summer. Biomass burning also exerted a significant impact on aerosol optical properties. It was estimated that ~60% enhancement of absorption at the ultraviolet spectral region was caused by the organic compounds from biomass burning. The formation mechanisms and sources of severe haze pollution episodes were investigated in a case study. The results highlighted two different mechanisms, i.e., regional transport and local sources, driving the haze life cycles differently in summer in the North China Plain. While secondary aerosol species dominated aerosol composition in the episode from regional transport, organics and black carbon comprised the major fraction in the locally formed haze episode.

  4. Life cycle implication of the potential commercialization of stover-based E85 in China

    International Nuclear Information System (INIS)

    This article discusses an integrated framework built to compute the cost of stover-based E85, as well as its life cycle energy efficiency and CO2 emission, with consideration of uncertainties of the policy-related factors, in China. Results show that co-product treatment greatly influenced the performance of E85 route. The calculated values of energy efficiency in co-product burning for electricity scenario (the base scenario) and that in co-product for selling scenario (the alternative scenario) are 4.41 and 3.61, respectively. CO2 emission of the stover-based route is 99.7% more than that of the gasoline route in the base scenario and 55.3% less than that of the gasoline in the alternative scenario. The costs of E85 in these two scenarios are 9.78 and 7.76 yuan/L, respectively. Based on the sensitivity and uncertainty analysis, the article suggests the following: (1) stover-based E85 is currently not competitive in terms of cost; (2) on the current stage, to make E85 competitive, policymakers should be concerned about stimulating processing innovation, providing subsidies on ethanol, feedstock and co-product, as well as raising gasoline price, rather than increasing carbon tax rate/promoting Cleaner Development Mechanism (CDM) projects or influencing consumers’ Willingness to Pay (WTP) for E85. - Highlights: ► A framework to compute stover-based E85 cost, energy efficiency and CO2 emission. ► Performance of stover-based E85 route depends largely on co-product treatment methods. ► Uncertainty of policy related factors is considered when simulating cost of E85. ► Stover-based E85 currently could hardly be competitive with gasoline in cost in China. ► Changes in consumers’ WTP and carbon tax rate have minor influences on the E85 cost.

  5. Life-cycle Energy Consumption of Urban Water System in Shenzhen, China

    Science.gov (United States)

    Li, W.; Liu, H.

    2015-12-01

    Within rapid urbanization and industrialization, Shenzhen, the first special economic zone in China, has been facing serious water shortage. More than 80% of water demand in Shenzhen, i.e., about 1.6 billion m3/yr, is satisfied by water diversion projects. A lot of energy has been used to extract, clean, store and transmit these water. In this paper, energy consumption of urban water system in Shenzhen, China was investigated from a life cycle perspective, and the water system can be divided into five subsystems, i.e., water diversion, water production & supply, household water use, sewage treatment and water reuse. Industrial water use was not considered here, because industrial production processes were so varied. The results showed that water diversion subsystem in Shenzhen consumed electricity of about 0.839 billion kWh/yr (0.53 kWh/m3), water production & supply subsystem about 1.241 billion kWh/yr (0.64 kWh/m3), household water use subsystem about 6.57 billion kWh/yr (9.65 kWh/m3) sewage treatment subsystem about 0.449 billion kWh/yr (0.29 kWh/m3) and water reuse treatment subsystem about 0.013 billion kWh/yr (0.33kWh/m3). So the human-related water system in Shenzhen consumes electricity of about 9.113 billion kWh/yr in total, accounting for about 11.0% of all the electricity use in Shenzhen. Among this, household water use subsystem consumed up to 72.1% of all electricity used in urban water system, followed by water production & supply subsystem (13.6%), water diversion subsystem (9.2%) and sewage treatment and reuse subsystem (5.1%). Unit energy consumption of sewage treatment and reuse subsystem was much less than that of water diversion subsystem, indicating local sewage resource development was advantageous on saving energy to water diversion from a long distance. Further, it implied that the best way to save energy in urban water system is to save portable water, since both water production and household use require to consume much energy.

  6. Life cycle study of coal-based dimethyl ether as vehicle fuel for urban bus in China

    International Nuclear Information System (INIS)

    With life cycle assessment (LCA) methodology, a life cycle model of coal-based dimethyl ether (CBDME) as a vehicle fuel is established for China. Its life cycle from well to wheel are divided into three phases. They are feedstock extraction, fuel production and fuel consumption in vehicle. The primary energy consumption (PEC) and global warming potential (GWP) of CBDME pathway are analyzed and compared with coal-based diesel (CBD) as a latent rival to replace conventional petroleum-based diesel (CPBD). This study demonstrates that the LCA methodology is very suitable and effective for the choice of vehicle fuels. One result is that the greenhouse gases (GHGs) emission of coal-based vehicle fuel pathways is usually concentrated on fuel production stage. The percentages of CBDME and CBD pathways both exceed 60%. The application of carbon capture and storage (CCS) is helpful for coal-based vehicle fuel pathways to improve their global warming effect dramatically. Compared with CBD pathway, CBDME pathway consumes less PEC and emits less GHGs emission as well. Even though the CCS and CH4-fired generation are used, the advantages of CBDME are still kept. For saving petroleum energy and reducing global warming effect, CBDME has greater potential than CBD to substitute CPBD under current fuel synthesis technologies. If the hurdles such as the maturity of engine and vehicle technologies, corresponding regulations and standards and infrastructures are reliably solved, CBDME will have better prospect in China

  7. A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China

    Directory of Open Access Journals (Sweden)

    Mingyue Pang

    2012-07-01

    Full Text Available Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA of its total nonrenewable energy (NE cost and associated greenhouse gas (GHG emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.

  8. Life cycle assessment of platform chemicals from fossil and lignocellulosic biomass scenarios : phenolic compounds, solvent, soft and hard plastic precursors

    OpenAIRE

    Martín Gallardo, Hipólito

    2011-01-01

    One of the challenges of our time is the substitution of the existing fossil based economy by a green economy within the framework of sustainable development of our society. Biomass, especially from lignocelluloses, is a promising solution for the substitution of fuels, energy, chemicals and materials from fossil sources in a so called ―Biorefinery‖. The production of chemicals from biomass presents higher mass and carbon theoretical efficiency, and it seems an interesting alternative to prov...

  9. Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors

    International Nuclear Information System (INIS)

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator’ 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step—the end-of-life stage—can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China.

  10. Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    International Nuclear Information System (INIS)

    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.

  11. Prioritization of Bioethanol Production Pathways in China based on Life Cycle Sustainability Assessment and Multi-Criteria Decision-Making

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Manzardo, Alessandro; Mazzi, Anna;

    2015-01-01

    Purpose The study objectives are two-fold: (i) combining the life cycle sustainability assessment (LCSA) framework and the multi-criteria decision-making (MCDM) methodology for sustainability assessment; (ii) determining the most sustainable scenario for bioethanol production in China according......’s proposed method investigates an illustrative case about three alternative bioethanol production scenarios (wheat-based, corn-based and cassava-based): the prior sequence (based on the sustainability performances) in descending order is cassava-based, corn-based and wheat-based. The proposed methodology...... is to test the combination of a MCDM methodology and LCSA for sustainability decision-making by studying three alternative pathways for bioethanol production in China. The proposed method feasibly enables the decision-makers/stakeholders to find the most sustainable scenario to achieve their objectives among...

  12. Life cycle and production of chironomidae (diptera) in Biandantang, a typical macrophytic lake (Hubei, China)

    Science.gov (United States)

    Yun-Jun, Yan

    2000-09-01

    The life cycle and annual production of four dominant species of Chironomids ( Chironomus plumosus, Chironomus sp., Clinotanypus sp., Tokunagayusurika akamusi) were studied with samples taken monthly in Biandantang Lake at eight stations from April, 1996 to March, 1997. Instarfrequency data showed C. plumosus was univoltine, while the other three were bivoltine. Production in wet weight (g/(m2·a)) calculated by the size-frequency method for each species were: C. plumosus, 2.663; Chironomus sp., 1.161; Clinotanypus sp., 0.270; T. akamusi, 1.476. Based on the mean standing stock, their P/B ratios were 3.2, 4.0, 6.2, and 4.4, respectively.

  13. LIFE CYCLE AND PRODUCTION OF CHIRONOMIDAE(DIPTERA) IN BIANDANTANG, A TYPICAL MACROPHYTIC LAKE (HUBEI, CHINA)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The life cycle and annual production of four dominant species of Chironomids (Chironomus plumosus, Chironomus sp., Clinotanypus sp., Tokunagayusurika akamusi) were studied with samples taken monthly in Biandantang Lake at eight stations from April, 1996 to March, 1997. Instar-frequency data showed C. plumosus was univoltine, while the other three were bivoltine. Production in wet weight (g/(m2.a)) calculated by the size-frequency method for each species were: C. plumosus, 2.663; Chironomus sp.,1.161 ;Clinotanypus sp., 0.270; T. akamusi, 1.476. Based on the mean standing stock, their P/B ratios were 3.2, 4.0, 6.2 and 4.4, respectively.

  14. Life cycle assessment of fossil and biomass power generation chains. An analysis carried out for ALSTOM Power Services

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Ch.

    2008-12-15

    This final report issued by the Technology Assessment Department of the Paul Scherrer Institute (PSI) reports on the results of an analysis carried out on behalf of the Alstom Power Services company. Fossil and biomass chains as well as co-combustion power plants are assessed. The general objective of this analysis is an evaluation of specific as well as overall environmental burdens resulting from these different options for electricity production. The results obtained for fuel chains including hard coal, lignite, wood, natural gas and synthetic natural gas are discussed. An overall comparison is made and the conclusions drawn from the results of the analysis are presented.

  15. Life cycle assessment of energy consumption and GHG emissions of olefins production from alternative resources in China

    International Nuclear Information System (INIS)

    Highlights: • Conduct a life cycle energy use and GHG emissions of olefins production processes. • Analyse effects of carbon capture and efficiency on alternative olefins production. • Analyse life cycle performance of Chinese olefins industry in three key periods. • Present the advantages and challenges of alternative olefins routes. - Abstract: Olefins are important platform chemicals widely used in industry. In terms of the short supply of oil resources, natural gas and coal are two significant alternative feedstocks. In this paper, energy consumption and GHG emissions of olefins production are analysed with life cycle assessment methods. Results showed the energy consumption and GHG emissions of natural gas-to-olefins are roughly equivalent to those of oil-to-olefins, while coal-to-olefins suffers from higher energy consumption and serious GHG emissions, including 5793 kg eq. CO2/t olefins of direct emissions and 5714 kg eq. CO2/t olefins of indirect emissions. To address the problem, the effect of carbon capture on coal-to-olefins is investigated. In comprehensive consideration of energy utilization, environmental impact, and economic benefit, the coal-to-olefins with 80% CO2 capture of the direct emissions is found to be an appropriate choice. With this carbon capture configuration, the direct emissions of the coal-to-olefins are reduced to 1161 kg eq. CO2/t olefins. However, the indirect emissions are still not captured, which should be strictly monitored and significantly reduced. Finally, a scenario analysis is conducted to estimate resource utilization and GHG emissions of olefins production of China in 2020. Several suggestions are also proposed for policy making on the sustainable development of olefins industry

  16. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: Case study of Tianjin, China

    International Nuclear Information System (INIS)

    The environmental impacts of municipal solid waste (MSW) management have been highlighted in China, due to the continually increasing amount of MSW being generated and the limited capacity of waste treatment facilities. Of particular interest is greenhouse gas (GHG) mitigation, aided by the Kyoto Mechanisms. China is an important case study for this global issue; however, an analysis of the entire life cycle of MSW management on GHG emissions is not available for China. This study evaluates the current and possible patterns of MSW management with regard to GHG emissions, using life cycle assessment (LCA), based on the Tianjin case. We assess the baseline scenario, reflecting the existing MSW management system, as well as a set of alternative scenarios, five exploring waste treatment technology innovations and one exploring integrated MSW management, to quantitatively predict potentials of GHG mitigation for Tianjin. Additionally, a sensitivity analysis is used to investigate the influence of landfill gas (LFG) collection efficiency, recycling rate and methodological choice, especially allocation, on the outcomes. The results show GHG emissions from Tianjin's MSW management system amount to 467.34 Mg CO2 eq. per year, based on the treatment of MSW collected in the central districts in 2006, and the key issue is LFG released. The integrated MSW management scenario, combining different improvement options, shows the highest GHG mitigation potential. Given the limited financial support and the current waste management practice in Tianjin, LFG utilization scenario would be the preferred choice. The sensitivity analysis of recycling rate shows an approximately linear relation of inverse proportion between recycling rate and total GHG emissions. Kitchen waste composting makes a considerable contribution to total GHG emissions reduction. Allocation choices result in differences in total quantitative outcomes, but preference orders and contributions analysis are found to be

  17. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China.

    Science.gov (United States)

    Zhao, Wei; van der Voet, Ester; Zhang, Yufeng; Huppes, Gjalt

    2009-02-15

    The environmental impacts of municipal solid waste (MSW) management have been highlighted in China, due to the continually increasing amount of MSW being generated and the limited capacity of waste treatment facilities. Of particular interest is greenhouse gas (GHG) mitigation, aided by the Kyoto Mechanisms. China is an important case study for this global issue; however, an analysis of the entire life cycle of MSW management on GHG emissions is not available for China. This study evaluates the current and possible patterns of MSW management with regard to GHG emissions, using life cycle assessment (LCA), based on the Tianjin case. We assess the baseline scenario, reflecting the existing MSW management system, as well as a set of alternative scenarios, five exploring waste treatment technology innovations and one exploring integrated MSW management, to quantitatively predict potentials of GHG mitigation for Tianjin. Additionally, a sensitivity analysis is used to investigate the influence of landfill gas (LFG) collection efficiency, recycling rate and methodological choice, especially allocation, on the outcomes. The results show GHG emissions from Tianjin's MSW management system amount to 467.34 Mg CO2 eq. per year, based on the treatment of MSW collected in the central districts in 2006, and the key issue is LFG released. The integrated MSW management scenario, combining different improvement options, shows the highest GHG mitigation potential. Given the limited financial support and the current waste management practice in Tianjin, LFG utilization scenario would be the preferred choice. The sensitivity analysis of recycling rate shows an approximately linear relation of inverse proportion between recycling rate and total GHG emissions. Kitchen waste composting makes a considerable contribution to total GHG emissions reduction. Allocation choices result in differences in total quantitative outcomes, but preference orders and contributions analysis are found to be

  18. Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock

    International Nuclear Information System (INIS)

    A life cycle inventory analysis has been conducted to assess the environmental load, specifically CO2 (fossil) emissions and global warming potential (GWP), associated to the production of hydrogen by the steam reforming of hydrocarbon feedstocks (methane and naphtha) and vegetable oils (rapeseed oil, soybean oil and palm oil). Results show that the GWPs associated with the production of hydrogen by steam reforming in a 100 years time frame are 9.71 and 9.46 kg CO2-equivalent/kg H2 for natural gas and naphtha, respectively. For vegetable oils, the GWP decreases to 6.42 kg CO2-equivalent/kg H2 for rapeseed oil, 4.32 for palm oil and 3.30 for soybean oil. A dominance analysis determined that the part of the process that has the largest effect on the GWP is the steam reforming reaction itself for the fossil fuel-based systems, which accounts for 56.7% and 74% of the total GWP for natural gas and naphtha, respectively. This contribution is zero for vegetable oil-based systems, for which harvesting and oil production are the main sources of CO2-eq emissions.(author)

  19. Life cycle analysis and choice of natural gas-based automotive alternative fuels in Chongqing Municipality,China

    Institute of Scientific and Technical Information of China (English)

    WU Rui; LI Guangyi; ZHANG Zongyi; REN Yulong; HAN Weijian

    2007-01-01

    Road transport produces significant amounts of emissions by using crude oil as the primary energy source.A reduction of emissions can be achieved by implementing alternative fuel chains.The objective of this study is to carry out an economic,environmental and energy (EEE) life cycle study on natural gas-based automotive fuels with conventional gasoline in an abundant region of China.A set of indices of four fuels/vehicle systems on the basis of life cycle are assessed in terms of impact of EEE,in which natural gas produces compressed natural gas (CNG),methanol,dimethylether (DME) and Fischer Tropsch diesel (FTD).The study included fuel production,vehicle production,vehicle operation,infrastructure and vehicle end of life as a system for each fuel/vehicle system.A generic gasoline fueled car is used as a baseline.Data have been reviewed and modified based on the best knowledge available to Chongqing local sources.Results indicated that when we could not change electric and hydrogen fuel cell vehicles into commercial vehicles on a large scale,direct use of CNG in a dedicated or bi-fuel vehicle is an economical choice for the region which is most energy efficient and more environmental friendly.The study can be used to support decisions on how natural gas resources can best be utilized as a fuel/energy resource for automobiles,and what issues need to be resolved in Chongqing.The models and approaches for this study can be applied to other regions of China as long as all the assumptions are well defined and modified to find a substitute automotive energy source and establish an energy policy in a specific region.

  20. Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions

    Directory of Open Access Journals (Sweden)

    Xiliang Zhang

    2013-09-01

    Full Text Available A life-cycle analysis (LCA of greenhouse gas (GHG emissions and energy use was performed to study bio-jet fuel (BJF production from micro-algae grown in open ponds under Chinese conditions using the Tsinghua University LCA Model (TLCAM. Attention was paid to energy recovery through biogas production and cogeneration of heat and power (CHP from the residual biomass after oil extraction, including fugitive methane (CH4 emissions during the production of biogas and nitrous oxide (N2O emissions during the use of digestate (solid residue from anaerobic digestion as agricultural fertilizer. Analyses were performed based on examination of process parameters, mass balance conditions, material requirement, energy consumptions and the realities of energy supply and transport in China (i.e., electricity generation and heat supply primarily based on coal, multiple transport modes. Our LCA result of the BJF pathway showed that, compared with the traditional petrochemical pathway, this new pathway will increase the overall fossil energy use and carbon emission by 39% and 70%, respectively, while decrease petroleum consumption by about 84%, based on the same units of energy service. Moreover, the energy conservation and emission reduction benefit of this new pathway may be accomplished by two sets of approaches: wider adoption of low-carbon process fuels and optimization of algae cultivation and harvest, and oil extraction processes.

  1. Life Cycle Analysis of Carbon Flow and Carbon Footprint of Harvested Wood Products of Larix principis-rupprechtii in China

    Directory of Open Access Journals (Sweden)

    Fei Lun

    2016-03-01

    Full Text Available Larix principis-rupprechtii is a native tree species in North China with a large distribution; and its harvested timbers can be used for producing wood products. This study focused on estimating and comparing carbon flows and carbon footprints of different harvested wood products (HWPs from Larix principis-ruppechtii based on the life cycle analysis (from seedling cultivation to HWP final disposal. Based on our interviews and surveys, the system boundary in this study was divided into three processes: the forestry process, the manufacturing process, and the use and disposal process. By tracking carbon flows of HWPs along the entire life cycle, we found that, for one forest rotation period, a total of 26.81 tC/ha sequestered carbon was transferred into these HWPs, 66.2% of which were still stored in the HWP when the rotation period had ended; however, the HWP carbon storage decreased to 0.25 tC/ha (only 0.9% left in the 100th year after forest plantation. The manufacturing process contributed more than 90% of the total HWP carbon footprint, but it was still smaller than the HWP carbon storage. In terms of the carbon storage and the carbon footprint, construction products had the largest net positive carbon balance compared to furniture and panel products. In addition, HWP are known to have a positive impact on global carbon mitigation because they can store parts of the sequestered carbon for a certain period of time and they have a substitution effect on carbon mitigation. Furthermore, there still exist great opportunities for carbon mitigation from HWPs through the use of cleaner energy and increasing the utilization efficiency of wood fuel.

  2. Reflection on Full Life Cycle Green Architectural Design of Passive Priority---Taking the Award Design of China Merchants Property 2013 Green Architectural Design Competition as an Example

    Institute of Scientific and Technical Information of China (English)

    ZhenHe Fan; Yan Qiao

    2014-01-01

    In the China merchants property 2013 green architectural design competition, feature of this award-winning program is the design method based on the principles of passive priority and comprehensive utilization of full life cycle. The passive priority can be achieved by building form derived from the simulation and analysis of wind environment, improvement of the building envelope insulation and the dehumidification of fresh air, the use of solar energy. The full life cycle utilization can be accomplished by the combination of exhibition and residents’ leisure activities, and the integration with local cultural tradition, thereby improving energy efficiency and the utilization of the building.

  3. External wall structure of green rural houses in Daqing, China, based on life cycle and ecological footprint theories

    Directory of Open Access Journals (Sweden)

    Hong Jin

    2015-09-01

    Full Text Available Daqing is situated in one of the severely cold regions of China. The living environment in this region is extremely poor because of the harsh climate and the backward economy. The external wall is an important component of the external envelope of buildings, and it greatly contributes to the indoor thermal environment. By taking the external wall as the research object, this study summarizes the characteristics of the external wall structure and analyzes the common materials used in existing rural residences. Specifically, we combine life cycle theory and ecological footprint (EF theory and introduce the green external wall structure, as well as its application in practice, in accordance with the local ecosystem. Results show that anecological residence offers a better environment and greater economic benefits than a traditional residence. The annual energy consumption, CO2 consumption, and EF of the ecological residence in this study are lower than those of the traditional residence by 69.61%, 17.5 t, and 99.47%, respectively.

  4. Life cycle and secondary production of two mayflies Leptophlebia sp. And Ephemera sp. In Heizhuchong stream, Hubei, China

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoyu; YAN Yunjun

    2008-01-01

    From June 2003 to June 2004,an investigation on the life cycle,production and trophic basis of dominant species of macrozoobenthos community in a second-order river of the Hanjiang River basin,Hubei,China was carried out.The results showed that the dominant species Leptophlebia sp.and Ephemera sp.appeared to develop two generations per year,and there was a small overlap in the two generations of both species.The pupation of Leptophlebia sp.mainly occurred in autumn and winter,while pupation of Ephemera sp.mainly took place in summer and winter.The standing stocks of the Leptophlebia sp.population and Ephemera sp.population had two peaks in a year.The cohort production and cohort P/B ratio of the Leptophlebia sp.population estimated by size frequency method were 19.018 1 g/m2.a and 5.7 respectively,while its annual production and P/B ratio were 38.036 2 g/m2.a and 11.4.The cohort production and cohort P/B ratio of the Ephemera sp.population were 38.015 9 g/m2.a and 5.9,while its annual production and P/B ratio were 76.0318 g/m2.a and 11.8.

  5. Life-cycle phosphorus management of the crop production–consumption system in China, 1980–2012

    International Nuclear Information System (INIS)

    Phosphorus (P) is an essential resource for agriculture and also a pollutant capable of causing eutrophication. The possibility of a future P scarcity and the requirement to improve the environment quality necessitate P management to increase the efficiency of P use. This study applied a substance flow analysis (SFA) to implement a P management procedure in a crop production–consumption (PMCPC) system model. This model determined the life-cycle P use efficiency (PUE) of the crop production–consumption system in China during 1980–2012. The system includes six subsystems: fertilizer manufacturing, crop cultivation, crop processing, livestock breeding, rural consumption, and urban consumption. Based on this model, the P flows and PUEs of the subsystems were identified and quantified using data from official statistical databases, published literature, questionnaires, and interviews. The results showed that the total PUE of the crop production–consumption system in China was low, notably from 1980 to 2005, and increased from 7.23% in 1980 to 20.13% in 2012. Except for fertilizer manufacturing, the PUEs of the six subsystems were also low. The PUEs in the urban consumption subsystem and the crop cultivation subsystem were less than 40%. The PUEs of other subsystems, such as the rural consumption subsystem and the livestock breeding subsystem, were also low and even decreased during these years. Measures aimed to improve P management practices in China have been proposed such as balancing fertilization, disposing livestock excrement, adjusting livestock feed, changing the diet of residents, and raising the waste disposal level, etc. This study also discussed several limitations related with the model and data. Conducting additional related studies on other regions and combining the analysis of risks with opportunities may be necessary to develop effective management strategies. - Highlights: • A model of P management of the crop production–consumption system

  6. Life-cycle phosphorus management of the crop production–consumption system in China, 1980–2012

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijun [School of Earth Environment, Anhui University of Science and Technology, Huainan 232001 (China); Yuan, Zengwei, E-mail: yuanzw@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Gao, Liangmin [School of Earth Environment, Anhui University of Science and Technology, Huainan 232001 (China); Zhang, Ling [College of Economics and Management, Nanjing Forestry University, Nanjing 210037 (China); Zhang, Yongliang [Policy Research Center for Environment and Economy, Ministry of Environmental Protection, Beijing 100029 (China)

    2015-01-01

    Phosphorus (P) is an essential resource for agriculture and also a pollutant capable of causing eutrophication. The possibility of a future P scarcity and the requirement to improve the environment quality necessitate P management to increase the efficiency of P use. This study applied a substance flow analysis (SFA) to implement a P management procedure in a crop production–consumption (PMCPC) system model. This model determined the life-cycle P use efficiency (PUE) of the crop production–consumption system in China during 1980–2012. The system includes six subsystems: fertilizer manufacturing, crop cultivation, crop processing, livestock breeding, rural consumption, and urban consumption. Based on this model, the P flows and PUEs of the subsystems were identified and quantified using data from official statistical databases, published literature, questionnaires, and interviews. The results showed that the total PUE of the crop production–consumption system in China was low, notably from 1980 to 2005, and increased from 7.23% in 1980 to 20.13% in 2012. Except for fertilizer manufacturing, the PUEs of the six subsystems were also low. The PUEs in the urban consumption subsystem and the crop cultivation subsystem were less than 40%. The PUEs of other subsystems, such as the rural consumption subsystem and the livestock breeding subsystem, were also low and even decreased during these years. Measures aimed to improve P management practices in China have been proposed such as balancing fertilization, disposing livestock excrement, adjusting livestock feed, changing the diet of residents, and raising the waste disposal level, etc. This study also discussed several limitations related with the model and data. Conducting additional related studies on other regions and combining the analysis of risks with opportunities may be necessary to develop effective management strategies. - Highlights: • A model of P management of the crop production–consumption system

  7. Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    China has promoted the use of electric vehicles vigorously since 2009; the program is still in its pilot phase. This study investigates the development of electric vehicle use in China from the perspectives of energy consumption and greenhouse-gas (GHG) emissions. Energy consumption and GHG emissions of plug-in hybrid electric vehicles (PHEVs) and pure battery electric vehicles (BEVs) are examined on the level of the regional power grid in 2009 through comparison with the energy consumption and GHG emissions of conventional gasoline internal combustion engine vehicles. The life-cycle analysis module in Tsinghua-LCAM, which is based on the GREET platform, is adopted and adapted to the life-cycle analysis of automotive energy pathways in China. Moreover, medium term (2015) and long term (2020) energy consumption and greenhouse-gas emissions of PHEVs and BEVs are projected, in accordance with the expected development target in the Energy Efficient and Alternative Energy Vehicles Industry Development Plan (2012–2020) for China. Finally, policy recommendations are provided for the proper development of electric vehicle use in China. - Highlights: • There was a marked difference in energy saving and GHG emission reduction for EVs powered by regional grids in China. • Energy saving and GHG emission reduction from EVs development will be more obvious in China in future. • EVs development will benefit the strategy of oil/ petroleum substitute in China

  8. Life Cycle Building Carbon Emissions Assessment and Driving Factors Decomposition Analysis Based on LMDI—A Case Study of Wuhan City in China

    OpenAIRE

    Yuanyuan Gong; Deyong Song

    2015-01-01

    Carbon emissions calculation at the sub-provincial level has issues in limited data and non-unified measurements. This paper calculated the life cycle energy consumption and carbon emissions of the building industry in Wuhan, China. The findings showed that the proportion of carbon emissions in the construction operation phase was the largest, followed by the carbon emissions of the indirect energy consumption and the construction material preparation phase. With the purpose of analyzing the ...

  9. Farm and product carbon footprints of China's fruit production--life cycle inventory of representative orchards of five major fruits.

    Science.gov (United States)

    Yan, Ming; Cheng, Kun; Yue, Qian; Yan, Yu; Rees, Robert M; Pan, Genxing

    2016-03-01

    Understanding the environmental impacts of fruit production will provide fundamental information for policy making of fruit consumption and marketing. This study aims to characterize the carbon footprints of China's fruit production and to figure out the key greenhouse gas emissions to cut with improved orchard management. Yearly input data of materials and energy in a full life cycle from material production to fruit harvest were obtained via field visits to orchards of five typical fruit types from selected areas of China. Carbon footprint (CF) was assessed with quantifying the greenhouse gas emissions associated with the individual inputs. Farm and product CFs were respectively predicted in terms of land use and of fresh fruit yield. Additionally, product CFs scaled by fruit nutrition value (vitamin C (Vc) content) and by the economic benefit from fruit production were also evaluated. The estimated farm CF ranged from 2.9 to 12.8 t CO2-eq ha(-1) across the surveyed orchards, whereas the product CF ranged from 0.07 to 0.7 kg CO2-eq kg(-1) fruit. While the mean product CFs of orange and pear were significantly lower than those of apple, banana, and peach, the nutrition-scaled CF of orange (0.5 kg CO2-eq g(-1) Vc on average) was significantly lower than others (3.0-5.9 kg CO2-eq g(-1) Vc). The income-scaled CF of orange and pear (1.20 and 1.01 kg CO2-eq USD(-1), respectively) was higher than apple, banana, and peach (0.87~0.39 kg CO2-eq USD(-1)). Among the inputs, synthetic nitrogen fertilizer contributed by over 50 % to the total greenhouse gas (GHG) emissions, varying among the fruit types. There were some tradeoffs in product CFs between fruit nutrition value and fruit growers' income. Low carbon production and consumption policy and marketing mechanism should be developed to cut down carbon emissions from fruit production sector, with balancing the nutrition value, producer's income, and climate change mitigation. PMID:26527344

  10. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  11. HIV Life Cycle

    Science.gov (United States)

    HIV Overview The HIV Life Cycle (Last updated 9/22/2015; last reviewed 9/22/2015) Key Points HIV gradually destroys the immune ... life cycle. What is the connection between the HIV life cycle and HIV medicines? Antiretroviral therapy (ART) ...

  12. What are the environmental benefits of electric vehicles? A life cycle based comparison of electric vehicles with biofuels, hydrogen and fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jungmeier, Gerfried; Canella, Lorenza; Beermann, Martin; Pucker, Johanna; Koenighofer, Kurt [JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz (Austria)

    2013-06-01

    The Renewable Energy Directive aims reaching a share of 10% of renewable fuels in Europe in 2020. These renewable fuels are transportation biofuels, renewable electricity and renewable hydrogen. In most European countries transportation biofuels are already on the transportation fuel market in significant shares, e.g. in Austria 7% by blending bioethanol to gasoline and biodiesel to diesel. Electric vehicles can significantly contribute towards creating a sustainable, intelligent mobility and intelligent transportation systems. They can open new business opportunities for the transportation engineering sector and electricity companies. But the broad market introduction of electric vehicles is only justified due to a significant improvement of the environmental impact compared to conventional vehicles. This means that in addition to highly efficient electric vehicles and renewable electricity, the overall environmental impact in the life cycle - from building the vehicles and the battery to recycling at the end of its useful life - has to be limited to an absolute minimum. There is international consensus that the environmental effects of electric vehicles (and all other fuel options) can only be analysed on the basis of life cycle assessment (LCA) including the production, operation and the end of life treatment of the vehicles. The LCA results for different environmental effects e.g. greenhouse gas emissions, primary energy consumption, eutrophication will be presented in comparison to other fuels e.g. transportation biofuels, gasoline, natural gas and the key factors to maximize the environmental benefits will be presented. The presented results are mainly based on a national research projects. These results are currently compared and discussed with international research activities within the International Energy Agency (lEA) in the Implementing Agreement on Hybrid and Electric Vehicles (IA-HEV) in Task 19 ''Life Cycle Assessment of Electric Vehicles

  13. The First Observation on Plant Cell Fossils in China

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; CUI Jinzhong

    2007-01-01

    For a long time, paleontologists have been focusing on hard parts of organisms during different geological periods while soft parts are rarely reported. Well-preserved plant cells, if found in fossils, are treated only as a rarity. Recent progress in research on fossil cytoplasm indicates that plant cytoplasm not only has excellent ultrastructures preserved but also may be a quite commonly seen fossil in strata. However, up to now there is no report of plant cell fossils in China yet. Here plant cell fossils are reported from Huolinhe Coal Mine (the early Cretaceous), Inner Mongolia, China. The presence of plant cytoplasm fossils in two cones on the same specimen not only provides further support for the recently proposed hypothesis on plant cytoplasm fossilization but also marks the first record of plant cytoplasm fossils in China, which suggests a great research potential in this new area.

  14. Life cycle management (LCM)

    DEFF Research Database (Denmark)

    Remmen, Arne; Thrane, Mikkel

    2004-01-01

    The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels.......The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels....

  15. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element of the...

  16. Family Life Cycle: 1980.

    Science.gov (United States)

    Norton, Arthur J.

    1983-01-01

    Used data from a 1980 national sample survey to show differences in the timing of major family life-cycle events according to age, social and economic characteristics, and marital history. Results suggest that age generational differences, more than any other factor, influence timing of life-cycle events. (Author/JAC)

  17. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China.

    Science.gov (United States)

    Li, Yi; Xiong, Wei; Zhang, Wenlong; Wang, Chao; Wang, Peifang

    2016-02-01

    To alleviate the water shortage in northern China, the Chinese government launched the world's largest water diversion project, the South-to-North Water Diversion Project (SNWDP), which delivers water from water-sufficient southern China to water-deficient northern China. However, an up-to-date study has not been conducted to determine whether the project is a favorable option to augment the water supply from an environmental perspective. The life cycle assessment (LCA) methodology integrated with a freshwater withdrawal category (FWI) was adopted to compare water supply alternatives in the water-receiving areas of the SNWDP, i.e., water diversion, wastewater reclamation and seawater desalination. Beijing, Tianjin, Jinan and Qingdao were studied as representative cities because they are the primary water-receiving areas of the SNWDP. The results revealed that the operation phase played the dominant role in all but one of the life cycle impact categories considered and contributed to more than 70% of their scores. For Beijing and Tianjin, receiving water through the SNWDP is the most sustainable option to augment the water supply. The result can be drawn in all of the water-receiving areas of the middle route of the SNWDP. For Jinan and Qingdao, the most sustainable option is the wastewater reclamation system. The seawater desalination system obtains the highest score of the standard impact indicators in all of the study areas, whereas it is the most favorable water supply option when considering the freshwater withdrawal impact. Although the most sustainable water supply alternative was recommended through an LCA analysis, multi-water resources should be integrated into the region's water supply from the perspective of water sustainability. The results of this study provide a useful recommendation on the management of water resources for China. PMID:26619399

  18. Carbon Footprint Analysis for Mechanization of Maize Production Based on Life Cycle Assessment: A Case Study in Jilin Province, China

    Directory of Open Access Journals (Sweden)

    Haina Wang

    2015-11-01

    Full Text Available The theory on the carbon footprint of agriculture can systematically evaluate the carbon emissions caused by artificial factors from the agricultural production process, which is the theoretical basis for constructing low-carbon agriculture and has important guiding significance for realizing low-carbon agriculture. Based on farm production survey data from Jilin Province in 2014, this paper aims to obtain a clear understanding of the carbon footprint of maize production through the following method: (1 one ton of maize production was evaluated systematically by using the Life Cycle Assessment (LCA; (2 the carbon emissions of the whole system were estimated based on field measurement data, (3 using the emission factors we estimated Jilin’s carbon footprint for the period 2006–2013, and forecasted it for the period from 2014 to 2020 using the grey system model GM (1, 1.

  19. Life Cycle Building Carbon Emissions Assessment and Driving Factors Decomposition Analysis Based on LMDI—A Case Study of Wuhan City in China

    Directory of Open Access Journals (Sweden)

    Yuanyuan Gong

    2015-12-01

    Full Text Available Carbon emissions calculation at the sub-provincial level has issues in limited data and non-unified measurements. This paper calculated the life cycle energy consumption and carbon emissions of the building industry in Wuhan, China. The findings showed that the proportion of carbon emissions in the construction operation phase was the largest, followed by the carbon emissions of the indirect energy consumption and the construction material preparation phase. With the purpose of analyzing the contributors of the construction carbon emissions, this paper conducted decomposition analysis using Logarithmic Mean Divisia Index (LMDI. The results indicated that the increasing buidling area was the major driver of energy consumption and carbon emissions increase, followed by the behavior factor. Population growth and urbanization, to some extent, increased the carbon emissions as well. On the contrary, energy efficiency was the main inhibitory factor for reducing the carbon emissions. Policy implications in terms of low-carbon construction development were highlighted.

  20. Life Cycle Sustainability Dashboard

    DEFF Research Database (Denmark)

    Traverso, Marzia; Finkbeiner, Matthias; Jørgensen, Andreas;

    2012-01-01

    One method to assess the sustainability performance of products is life cycle sustainability assessment (LCSA), which assesses product performance considering the environmental,economic, and social dimensions of the life cycle. The results of LCSA can be used to compare different products or to...... sustainability is the communicability of the results by means of a graphical representation (a cartogram), characterized by a suitable chromatic scale and ranking score. The integration of LCSA and the dashboard of sustainability into a so-called Life Cycle Sustainability Dashboard (LCSD) is described here. The...... support decision making toward sustainable production and consumption. In both cases, LCSA results could be too disaggregated and consequently too difficult to understand and interpret by decision makers. As non-experts are usually the target audience of experts and scientists, and are also involved in...

  1. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    A precondition for environmentally conscious management is the awareness of the environmental impact potentials created by an industrial company. There is an obvious need for management tools to support the implementation of relevant environmental criteria into the industrial decision making...... processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...... of the complete set of environmental objects in an industrial manufacturing company....

  2. Activating Strategies to Fossilization for English Learners in China

    Science.gov (United States)

    Li, Dan

    2009-01-01

    The paper attempts to explore the activating strategies to fossilizations for Chinese EFL learners. Fossilization, although always being ignored in China, still exerts its important role in blocking the EFL learning process for Chinese learners. To overcome this learning barrier, this paper is written to put forward the practical solutions to…

  3. Peaches Preceded Humans: Fossil Evidence from SW China

    OpenAIRE

    Tao Su; Peter Wilf; Yongjiang Huang; Shitao Zhang; Zhekun Zhou

    2015-01-01

    Peach (Prunus persica, Rosaceae) is an extremely popular tree fruit worldwide, with an annual production near 20 million tons. Peach is widely thought to have origins in China, but its evolutionary history is largely unknown. The oldest evidence for the peach has been Chinese archaeological records dating to 8000–7000 BP. Here, we report eight fossil peach endocarps from late Pliocene strata of Kunming City, Yunnan, southwestern China. The fossils are identical to modern peach endocarps, incl...

  4. Production dynamics and life cycle of dominant chironomids (Diptera, Chironomidae) in a subtropical stream in China: adaptation to variable flow conditions in summer and autumn

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The production dynamics and trophic basis of 7 dominant species of chironomids were investigated in the area of a second-order river of the Hanjiang River basin, in central China from June 2003 to June 2004. The results showed that Tvetenia discoloripes was by far the most abundant chironomid, dominating the overall standing stock of the taxa. In terms of life cycle, Chaetocladius sp.,Eukiefferiella potthasti and T. discoloripes developed 1 generation a year, whereas Microtendipes sp. and Pagastia sp. developed two, while Pentaneura sp. and Polypedilum sp. developed three. T. discoloripes was the most productive chironomid with 120.305 8 g/m2.a, Pentaneura sp.and E. potthasti had relatively high production values of >17 g/m2.a, and the rest were <10 g/m2.a. All the production temporal variation tended to follow biomass patterns. T. discoloripes, Chaetocladius sp. and Pagastia sp. concentrated most of their production in winter, whereas E. potthasti, Pentaneura sp. and Polypedilum sp. had relatively higher production throughout the year. Only Microtendipes sp. had a production that peaked in summer.The overlap in temporal distribution of production among the chironomid species was generally high (>0.5), especially for filter-collectors Microtendipes sp., Chaetocladius sp., Chaetocladius sp., T.discoloripes and Pagastia sp. All species except Pentaneura sp. consumed a large portion of amorphous detritus, constituting more than 90% of their diets, and contributing nearly 90% to their secondary production. All the 7 chironomids represent obvious adaptation to local highly variable climate in summer and autumn in life cycle pattern, production dynamics, and food type.

  5. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China

    International Nuclear Information System (INIS)

    China has the world's largest shale gas reserves, which might enable it to pursue a new pathway for electricity generation. This study employed hybrid LCI (life cycle inventory) models to quantify the ETW (extraction-to-wire) GHG (greenhouse gas) emissions and water consumption per kWh of coal- and shale gas-fired electricity in China. Results suggest that a coal-to-shale gas shift and upgrading coal-fired power generation technologies could provide pathways to less GHG and water intensive power in China. Compared to different coal-fired generation technologies, the ETW GHG emissions intensity of gas-fired CC (combined cycle) technology is 530 g CO2e/kWh, which is 38–45% less than China's present coal-fired electricity. Gas-fired CT (combustion turbine) technology has the lowest ETW water consumption intensity at 960 g/kWh, which is 34–60% lower than China's present coal-fired electricity. The GHG-water tradeoff of the two gas-fired power generation technologies suggests that gas-fired power generation technologies should be selected based on regional-specific water resource availabilities and electricity demand fluctuations in China. However, the low price of coal-fired electricity, high cost of shale gas production, insufficient pipeline infrastructures, and multiple consumers of shale gas resources may serve as barriers to a coal-to-shale gas shift in China's power sector in the near term. - Highlights: • The GHG and water footprints of coal- and shale gas-fired electricity are estimated. • A coal-to-shale gas shift can enable less GHG and water intensive power in China. • The GHG emissions of shale gas-fired combined cycle technology is 530 g CO2e/kWh. • The water consumption of shale gas-fired combustion turbine technology is 960 g/kWh. • Shale gas-fired power generation technologies selection should be regional-specific

  6. First Record of Fossil Mesocupes from China (Coleoptera: Archostemata: Cupedidae)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three new fossil species of the genus Mesocupes of fossil cupedids, M. angustilabialis sp.nov., M. latilabialis sp. nov. and M. collaris sp. nov., are described from the Jiulongshan Formation of Inner Mongolia, China. These new species are the first three records of fossil Mesocupes in China as well as the oldest ones in the world now. This finding also extends the geographical distribution of this genus from Central to East Asia. In addition, based on the ratio of the length of the last to the penultimate abdominal ventrites of new beetles distinctly lower than that of the species from the Karabastau Formation, the age of Daohugou fossil-bearing beds might be older than that of Karatau assemblage and consequently of Middle Jurassic.

  7. Production dynamics and life cycle of dominant chironomids (diptera, chironomidae) in a subtropical stream in China: adaptation to variable flow conditions in summer and autumn

    Science.gov (United States)

    Yan, Yunjun; Li, Xiaoyu

    2007-07-01

    The production dynamics and trophic basis of 7 dominant species of chironomids were investigated in the area of a second-order river of the Hanjiang River basin, in central China from June 2003 to June 2004. The results showed that Tvetenia discoloripes was by far the most abundant chironomid, dominating the overall standing stock of the taxa. In terms of lif ecycle, Chaetocladius sp., Eukiefferiella potthasti and T. discoloripes developed 1 generation a year, whereas Microtendipes sp. and Pagastia sp. developed two, while Pentaneura sp. and Polypedilum sp. developed three. T. discoloripes was the most productive chironomid with 120.305 8 g/m2. a, Pentaneura sp. and E. potthasti had relatively high production values of >17 g/m2.a, and the rest were 0.5), especially for filter-collectors Microtendipes sp., Chaetocladius sp., Chaetocladius sp., T. discoloripes and Pagastia sp. All species except Pentaneura sp. consumed a large portion of amorphous detritus, constituting more than 90% of their diets, and contributing nearly 90% to their secondary production. All the 7 chironomids represent obvious adaptation to local highly variable climate in summer and autumn in life cycle pattern, production dynamics, and food type.

  8. Peaches Preceded Humans: Fossil Evidence from SW China

    Science.gov (United States)

    Su, Tao; Wilf, Peter; Huang, Yongjiang; Zhang, Shitao; Zhou, Zhekun

    2015-11-01

    Peach (Prunus persica, Rosaceae) is an extremely popular tree fruit worldwide, with an annual production near 20 million tons. Peach is widely thought to have origins in China, but its evolutionary history is largely unknown. The oldest evidence for the peach has been Chinese archaeological records dating to 8000-7000 BP. Here, we report eight fossil peach endocarps from late Pliocene strata of Kunming City, Yunnan, southwestern China. The fossils are identical to modern peach endocarps, including size comparable to smaller modern varieties, a single seed, a deep dorsal groove, and presence of deep pits and furrows. These fossils show that China has been a critical region for peach evolution since long before human presence, much less agriculture. Peaches evolved their modern morphology under natural selection, presumably involving large, frugivorous mammals such as primates. Much later, peach size and variety increased through domestication and breeding.

  9. Peaches Preceded Humans: Fossil Evidence from SW China.

    Science.gov (United States)

    Su, Tao; Wilf, Peter; Huang, Yongjiang; Zhang, Shitao; Zhou, Zhekun

    2015-01-01

    Peach (Prunus persica, Rosaceae) is an extremely popular tree fruit worldwide, with an annual production near 20 million tons. Peach is widely thought to have origins in China, but its evolutionary history is largely unknown. The oldest evidence for the peach has been Chinese archaeological records dating to 8000-7000 BP. Here, we report eight fossil peach endocarps from late Pliocene strata of Kunming City, Yunnan, southwestern China. The fossils are identical to modern peach endocarps, including size comparable to smaller modern varieties, a single seed, a deep dorsal groove, and presence of deep pits and furrows. These fossils show that China has been a critical region for peach evolution since long before human presence, much less agriculture. Peaches evolved their modern morphology under natural selection, presumably involving large, frugivorous mammals such as primates. Much later, peach size and variety increased through domestication and breeding. PMID:26610240

  10. The software life cycle

    CERN Document Server

    Ince, Darrel

    1990-01-01

    The Software Life Cycle deals with the software lifecycle, that is, what exactly happens when software is developed. Topics covered include aspects of software engineering, structured techniques of software development, and software project management. The use of mathematics to design and develop computer systems is also discussed. This book is comprised of 20 chapters divided into four sections and begins with an overview of software engineering and software development, paying particular attention to the birth of software engineering and the introduction of formal methods of software develop

  11. Life cycle emissions from renewable energy technologies

    International Nuclear Information System (INIS)

    This paper presents the methodology used in the ETSU review, together with the detailed results for three of the technologies studied: wind turbines, photovoltaic systems and small, stand-alone solar thermal systems. These emissions are then compared with those calculated for both other renewables and fossil fuel technology on a similar life cycle basis. The life cycle emissions associated with renewable energy technology vary considerably. They are lowest for those technologies where the renewable resource has been concentrated in some way (e.g. over distance in the case of wind and hydro, or over time in the case of energy crops). Wind turbines have amongst the lowest emissions of all renewables and are lower than those for fossil fuel generation, often by over an order of magnitude. Photovoltaics and solar thermal systems have the highest life cycle emissions of all the renewable energy technologies under review. However, their emissions of most pollutants are also much lower than those associated with fossil fuel technologies. In addition, the emissions associated with PV are likely to fall further in the future as the conversion efficiency of PV cells increases and manufacturing technology switches to thin film technologies, which are less energy intensive. Combining the assessments of life cycle emissions of renewables with predictions made by the World Energy Council (WEC) of their future deployment has allowed estimates to be made of amount by which renewables could reduce the future global emissions of carbon dioxide, sulphur dioxide and nitrogen oxides. It estimated that under the WEC's 'Ecologically Driven' scenario, renewables might lead to significant reductions of between 3650 and 8375 Mt in annual CO2 emissions depending on the fossil fuel technology they are assumed to displace. (author)

  12. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential.

    Science.gov (United States)

    Xia, Longlong; Ti, Chaopu; Li, Bolun; Xia, Yongqiu; Yan, Xiaoyuan

    2016-06-15

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO2-NEB and Nr-NEB), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH4 emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH4 emissions dominated the carbon footprints, while NH3 volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404-701) TgCO2eqGHG and 10 (7.4-12.4) Tg Nr-N were released every year during 2001-2010 from staple food production. This caused the total damage costs of 325 (70-555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7TgCO2eqyr(-1) and 2.2TgNr-Nyr(-1) could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize farmers to gradually adopt knowledge-based managements. PMID:26971213

  13. 中国橡胶种植生命周期评价研究%Assessment of natural rubber plantation life cycle in China

    Institute of Scientific and Technical Information of China (English)

    徐杰峰; 王小文; 王乐力; 王伯铎; 林积泉; 宋超山

    2011-01-01

    Using China's natural rubber plantation as a case study, this paper classified natural rubber plantation life cycle into four stages-raw material, agrochemical production, natural rubber cultivation and transportation stages. The life-cycle assessment (LCA) method was used to evaluate potential environmental impacts of tapping 1.00 kg dry rubber under identified potential impacts, including global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), photochemical ozone creation potential (POCP), human toxicity potential (HTP) and abiotic depletion potential (ADP). This inventory analysis showed that the order of potential impacts of China's natural rubber plantation was as follows: AP > EP > GWP > HTP > POCP > ADP. The respective impact indices were 1 .76× 10-12, 4.31×10-13, 1.37×10-13, 1.96×10-15, 9.69×10-18 and 4.88×10-19, with an average impact index of 4.32× l0-13. Reduced chemical fertilizer utilization and enhanced fertilization efficiency were critical for mitigating the impact of rubber plantation on the environment. This could be achieved via effective reduced energy consumption, fertilizer production emissions, and soil fertilizer loss.%应用生命周期评价方法,以我国橡胶种植为例,把橡胶种植生命周期划分为原料、农资化、橡胶种植、运输等4个阶段,考虑了全球变暖(GWP)、环境酸化(AP)、水体富营养化(EP)、光化学烟雾形成(POCP)、人体健康损害(HTP)、不可更新资源消耗(ADP)等 6类潜在影响,对得到1 kg橡胶(以干胶计)的潜在环境影响进行了分析评价.结果表明,我国橡胶种植的各类影响排序为AP>EP>GWP>HTP>POCP>ADP,其影响指数分别为1.76E-12、4.31E-13、1.37E-13、1.96E-15、9.69E-18、4.88E-19,单一环境影响指数为4.32E-13.减少化肥施用量、提高施肥有效率是控制整个橡胶种植潜在影响大小的关键,其在有效降低上游直接生产能耗及其相应排放和下游损失

  14. Life cycle of mobile devices

    OpenAIRE

    T.V. Rohal; S.I. Naumenko; G.О Peresadko

    2011-01-01

    Article is devoted features of life cycle of mobile devices. The article highlighted a number of disadvantages associated with managing the life cycle of the product. Disadvantages include the orientation is not on the quality of mobile devices and their design, the obsolescence of digital products. The article drew attention to the need for process improvement life cycle management of mobile devices. For since this type of product is now the most popular among the population, consumers are i...

  15. China's INDC and non-fossil energy development

    Directory of Open Access Journals (Sweden)

    Jian-Kun He

    2015-09-01

    Full Text Available Global climate change promotes the energy system reform. Achieving a high proportion of renewable energy becomes the major countries' energy strategy. As proposed in its Intended Nationally Determined Contributions (INDC, China intends to raise the proportion of non-fossil energy in primary energy consumption to about 20% by 2030. That ambitious goal means the non-fossil energy supplies by 2030 will be 7–8 times that of 2005, and the annual increase rate is more than 8% within the 25 years. Besides, the capacity of wind power, solar power, hydropower and nuclear power reaches 400 GW, 350 GW, 450 GW, and 150 GW respectively, and China's non-fossil power capacity is even greater than the U.S.'s total power capacity. In addition, the scale of natural gas increases. Consequently, by 2030, the proportion of coal falls from the current 70% to below 50%, and the CO2 intensity of energy consumption decreases by 20% compared with the level of 2005, which play important roles in significantly reducing the CO2 intensity of GDP. Since China has confirmed to achieve the CO2 emissions peak around 2030, at that time, the newly added energy demand will be satisfied by non-fossil energy, and the consumption of fossil fuel will stop growing. By 2030, non-fossil energy accounts for 20%, and the large scale and sound momentum of new and renewable energy industry will support the growth of total energy demand, which plays a key role in CO2 emissions peaking and beginning to decline, and lays the foundation for establishing a new energy system dominated by new and renewable energy in the second half of the 21st century as well as finally achieving the CO2 zero-emission.

  16. China's INDC and non-fossil energy development

    Institute of Scientific and Technical Information of China (English)

    HE Jian-Kun

    2015-01-01

    Global climate change promotes the energy system reform. Achieving a high proportion of renewable energy becomes the major countries' energy strategy. As proposed in its Intended Nationally Determined Contributions (INDC), China intends to raise the proportion of non-fossil energy in primary energy consumption to about 20%by 2030. That ambitious goal means the non-fossil energy supplies by 2030 will be 7e8 times that of 2005, and the annual increase rate is more than 8%within the 25 years. Besides, the capacity of wind power, solar power, hy-dropower and nuclear power reaches 400 GW, 350 GW, 450 GW, and 150 GW respectively, and China's non-fossil power capacity is even greater than the U.S.'s total power capacity. In addition, the scale of natural gas increases. Consequently, by 2030, the proportion of coal falls from the current 70% to below 50%, and the CO2 intensity of energy consumption decreases by 20% compared with the level of 2005, which play important roles in significantly reducing the CO2 intensity of GDP. Since China has confirmed to achieve the CO2 emissions peak around 2030, at that time, the newly added energy demand will be satisfied by non-fossil energy, and the consumption of fossil fuel will stop growing. By 2030, non-fossil energy accounts for 20%, and the large scale and sound momentum of new and renewable energy industry will support the growth of total energy demand, which plays a key role in CO2 emissions peaking and beginning to decline, and lays the foundation for establishing a new energy system dominated by new and renewable energy in the second half of the 21st century as well as finally achieving the CO2 zero-emission.

  17. The Pneumocystis life cycle

    Directory of Open Access Journals (Sweden)

    Cécile-Marie Aliouat-Denis

    2009-05-01

    Full Text Available First recognised as "schizonts" of Trypanosoma cruzi, Pneumocystis organisms are now considered as part of an early-diverging lineage of Ascomycetes. As no robust long-term culture model is available, most data on the Pneumocystis cell cycle have stemmed from ultrastructural images of infected mammalian lungs. Although most fungi developing in animals do not complete a sexual cycle in vivo, Pneumocystis species constitute one of a few exceptions. Recently, the molecular identification of several key players in the fungal mating pathway has provided further evidence for the existence of conjugation and meiosis in Pneumocystisorganisms. Dynamic follow-up of stage-to-stage transition as well as studies of stage-specific proteins and/or genes would provide a better understanding of the still hypothetical Pneumocystislife cycle. Although difficult to achieve, stage purification seems a reasonable way forward in the absence of efficient culture systems. This mini-review provides a comprehensive overview of the historical milestones leading to the current knowledge available on the Pneumocystis life cycle.

  18. The LifeCycle model

    DEFF Research Database (Denmark)

    Krink, Thiemo; Løvbjerg, Morten

    2002-01-01

    Adaptive search heuristics are known to be valuable in approximating solutions to hard search problems. However, these techniques are problem dependent. Inspired by the idea of life cycle stages found in nature, we introduce a hybrid approach called the LifeCycle model that simultaneously applies...

  19. First record of Podocarpoid fossil wood in South China.

    Science.gov (United States)

    Li, Long; Jin, Jian-Hua; Quan, Cheng; Oskolski, Alexei A

    2016-01-01

    A new species of fossil conifer wood, Podocarpoxylon donghuaiense sp. nov., is described from the late Eocene of Nadu Formation in Baise Basin of the Guangxi Province, South China. This fossil wood is characterized by distinct growth rings, circular to oval tracheids in cross section, 1-2-seriate opposite pits on radial tracheid walls, uniseriate (rarely biseriate) rays, smooth end walls of ray parenchyma cells, and the absence of resin ducts, suggesting its affinity to Podocarpaceae. The new species is distinctive from other Cenozoic woods ascribed to this family by the combination of distinctive growth rings, the absence of axial parenchyma, the occurrence of bordered pits on tangential tracheid walls, and the occurrence of 3-4 cuppressoid or taxodioid pits on cross-fields. This represents the first record of podocarpoid fossil wood in South China and provides fossil evidence for the early dispersal and diversification of Podocarpaceae in eastern Asia as well as for mild temperate seasonal climate in this region during the late Eocene. PMID:27571780

  20. Introducing Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark AJ

    2015-01-01

    methodology projects and presents the international scientific discussions and methodological consensus attempts in consecutive working groups under the auspices of the Society of Environmental Toxicology and Chemistry (SETAC) as well as the UNEP/ SETAC Life Cycle Initiative, and the (almost) parallel......This chapter serves as an introduction to the presentation of the many aspects of life cycle impact assessment (LCIA) in this volume of the book series ‘LCA Compendium’. It starts with a brief historical overview of the development of life cycle impact assessment driven by numerous national LCIA...

  1. Towards Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Marzia Traverso

    2010-10-01

    Full Text Available Sustainability is nowadays accepted by all stakeholders as a guiding principle for both public policy making and corporate strategies. However, the biggest challenge for most organizations remains in the real and substantial implementation of the sustainability concept. The core of the implementation challenge is the question, how sustainability performance can be measured, especially for products and processes. This paper explores the current status of Life Cycle Sustainability Assessment (LCSA for products and processes. For the environmental dimension well established tools like Life Cycle Assessment are available. For the economic and social dimension, there is still need for consistent and robust indicators and methods. In addition to measuring the individual sustainability dimensions, another challenge is a comprehensive, yet understandable presentation of the results. The “Life Cycle Sustainability Dashboard” and the “Life Cycle Sustainability Triangle” are presented as examples for communication tools for both experts and non expert stakeholders.

  2. Total Product Life Cycle (TPLC)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Total Product Life Cycle (TPLC) database integrates premarket and postmarket data about medical devices. It includes information pulled from CDRH databases...

  3. Life cycle assessment of mobile phone housing

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-xin; WANG Ru-song; FU Hao; LIU Jing-ru

    2004-01-01

    The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential.Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two altemative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.

  4. Specification of life cycle assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Life Cycle Assessment is an environmental management tool for assessing the environmental impacts of a product of a process. life cycle assessment involves the evaluation of environmental impacts through all stages of life cycle of a product or process. In other words life cycle assessment has a cradle to graveapproach. Some results of life cycle assessment consist of pollution prevention, energy efficient system, material conservation, economic system and sustainable development. All power generation technologies affect the environment in one way or another. The main environmental impact does not always occur during operation of power plant. The life cycle assessment of nuclear power has entailed studying the entire fuel cycle from mine to deep repository, as well as the construction, operation and demolition of the power station. Nuclear power plays an important role in electricity production for several countries. even though the use of nuclear power remains controversial. But due to the shortage of fossil fuel energy resources many countries have started to try more alternation to their sources of energy production. A life cycle assessment could detect all environmental impacts of nuclear power from extracting resources, building facilities and transporting material through the final conversion to useful energy services

  5. Antifreeze life cycle assessment (LCA

    Directory of Open Access Journals (Sweden)

    Kesić Jelena

    2005-01-01

    Full Text Available Antifreeze based on ethylene glycol is a commonly used commercial product The classification of ethylene glycol as a toxic material increased the disposal costs for used antifreeze and life cycle assessment became a necessity. Life Cycle Assessment (LCA considers the identification and quantification of raw materials and energy inputs and waste outputs during the whole life cycle of the analyzed product. The objectives of LCA are the evaluation of impacts on the environment and improvements of processes in order to reduce and/or eliminate waste. LCA is conducted through a mathematical model derived from mass and energy balances of all the processes included in the life cycle. In all energy processes the part of energy that can be transformed into some other kind of energy is called exergy. The concept of exergy considers the quality of different types of energy and the quality of different materials. It is also a connection between energy and mass transformations. The whole life cycle can be described by the value of the total loss of exergy. The physical meaning of this value is the loss of material and energy that can be used. The results of LCA are very useful for the analyzed products and processes and for the determined conditions under which the analysis was conducted. The results of this study indicate that recycling is the most satisfactory solution for the treatment of used antifreeze regarding material and energy consumption but the re-use of antifreeze should not be neglected as a solution.

  6. Optimization of data life cycles

    Science.gov (United States)

    Jung, C.; Gasthuber, M.; Giesler, A.; Hardt, M.; Meyer, J.; Rigoll, F.; Schwarz, K.; Stotzka, R.; Streit, A.

    2014-06-01

    Data play a central role in most fields of science. In recent years, the amount of data from experiment, observation, and simulation has increased rapidly and data complexity has grown. Also, communities and shared storage have become geographically more distributed. Therefore, methods and techniques applied to scientific data need to be revised and partially be replaced, while keeping the community-specific needs in focus. The German Helmholtz Association project "Large Scale Data Management and Analysis" (LSDMA) aims to maximize the efficiency of data life cycles in different research areas, ranging from high energy physics to systems biology. In its five Data Life Cycle Labs (DLCLs), data experts closely collaborate with the communities in joint research and development to optimize the respective data life cycle. In addition, the Data Services Integration Team (DSIT) provides data analysis tools and services which are common to several DLCLs. This paper describes the various activities within LSDMA and focuses on the work performed in the DLCLs.

  7. Life cycle of remanufactured engines

    Institute of Scientific and Technical Information of China (English)

    YANG Ming; CHEN Ming

    2005-01-01

    The life cycle index of remanufactured engines was assessed by using the method of life cycle assessment (LCA). A remanufactured engine of a certain domestic brand was taken as researching object. Engine reproducing engineering was investigated from three aspects which were energy, material and environment. The application of LCA on remanufacturing engines was discussed in detail with a practical case. The results indicate that remanufackg CO2 , 6.09 kg CO, 1.01 kg NOx, 3. 985 kg SOx and 288. 725 kg solid waste. The remanufacturing of engines possesses great economic value and practicability.

  8. Sourcing Life Cycle Inventory Data

    Science.gov (United States)

    The collection and validation of quality lifecycle inventory (LCI) data can be the most difficult and time-consuming aspect of developing a life cycle assessment (LCA). Large amounts of process and production data are needed to complete the LCI. For many studies, the LCA analyst ...

  9. The product life cycle revisited

    DEFF Research Database (Denmark)

    Ulhøi, John Parm

    1995-01-01

    Efter et introduktionsafsnit følger afsnit II, hvor der gives en historisk analyse af Life Cycle Assessment (LCA) og Environmental Impact Assessment (EIA). I afsnit III munder analysen ud i en vurdering af ligheder og forskelle mellem LCA analyser og EIA analyser, og en diskussion følger af...

  10. Cambrian Fossil Embryos from Western Hunan,South China

    Institute of Scientific and Technical Information of China (English)

    DONG Xiping

    2009-01-01

    The exquisitely preserved fossil embryos of Markuelia recovered from the limestones of the Middle Cambrian Haoqiao Formation and Upper Cambrian Bitiao formation in western Hunan,South China are described and illustrated in detail for the first time.A new species Markuelia elegans sp.nov.is established based mainly on embryos from the Upper Cambrian.A few of animal's resting eggs,which are comparable with those of the Ediacaran Doushantuo Formation,have been also found in the Upper Cambrian of western Hunan.The membrane of oue egg from the uppermost Cambrian has been replaced by pyrite and the overgrowth of the pyrite crystals exhibits a unique inorganic reducing conditions promoted the excellent preservation for the Markuelia specimens.The study of Markuelia provides not only constraint on the anatomy,affinity,embryonic development and phylogenetic significance of this wormlike animal and but also opens a new window onto the evolution and development of the earliest animals.

  11. Fossil Association from the Lower Cambrian Yanjiahe Formation in the Yangtze Gorges Area, Hubei, South China

    Institute of Scientific and Technical Information of China (English)

    GUO Junfeng; Tsuyoshi KOMIYA; LI Yong; HAN Jian; ZHANG Xingliang; ZHANG Zhifei; OU Qiang; LIU Jianni; SHU Degan; Shigenori MARUYAMA

    2008-01-01

    Apart from previously reported Small Shelly Fossils (SSFs), a macroscopic fossil assemblage, comprising abundant algae, cone-shaped tubular fossil forms, and probable impressions of a megascopic metazoan, comes from the Lower Cambrian Yanjiahe Formation in the Yangtze Gorges area of western Hubei Province, south China. The visible fossils are preserved in thin-laminated siltstone or muddy siltstone intercalated between 8-15 mm-thick carbonate deposits, probably representing sedimentary settings of a constrained local depression in the shallow water carbonate platform during the Early Cambrian Meishucunian Stage. The macroscopic fossil association provides significant fossil evidence about the evolution of life from the late Precambrian to the 'Cambrian explosion' interval.

  12. Life cycle assessment of hydrogen energy pattern

    International Nuclear Information System (INIS)

    In the last decades transportation sector is a priority for environmental research. Indeed, it is the most impacting sector because it involves greenhouse emissions and fossil resources exhaustion. The Group of 'Ecole des Mines' (GEM), in France, carries out studies concerning clean and renewable energies for this sector with the 'H2-PAC' project. The GEM with four teams performs studies concerning energy systems for transportation sector and more particularly the hydrogen system. The four teams of the GEM work each one on a process of this system. More precisely, the team of Albi studies biomass gasification in order to produce synthesis gas. The team of Nantes studies purification of this gas to obtain pure hydrogen and hydrogen storage on activated carbon. The team of Paris studies fuel cell use and especially Polymer Exchange Membrane Fuel Cell. Finally, the team of St Etienne evaluates this system along its life cycle from an environmental point of view. This paper presents this environmental evaluation witch is realized according to Life Cycle Assessment (LCA) methodology. (authors)

  13. Life Cycle Assessment of Electricity Systems

    DEFF Research Database (Denmark)

    Turconi, Roberto

    Electricity systems represent a major source of global pollutants. Whilst currently relying heavily on fossil fuels, electricity systems are progressively shifting towards renewable sources to mitigate climate change and enhance energy security. The goal of this PhD project was to develop...... a systematic framework for the life cycle assessment (LCA) of electricity systems, which aimed at providing: •Scientifically sound recommendations for decision-making processes, leading to more sustainable energy systems; •Accurate and transparent LCA data for electricity supply, thereby increasing...... the robustness of LCA results for a multitude of products producing or consuming electricity throughout the lifecycle. The main findings in relation to: (i) electricity generation, (ii) power transmission and distribution and (iii) low-carbon electricity systems are reported in the following paragraphs. A great...

  14. Life cycle assessment of turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    This report forms part of the final reporting of the project 'LCA and turbines, which has been carried out as a cooperation between Vestas Wind Systems A/S and Tech-wise A/S on behalf of Elsam A/S. The goal of the project was to create a life cycle model for a big Vestas offshore turbine. Based on the offshore model an analysis has been prepared and this analysis will show the most significant environmental impacts a turbine will be subject to during its life cycle. Furthermore we have prepared a recommendation on how an improvement strategy on a selected area can be drafted. Finally, a preliminary environmental declaration of contents will be prepared for the turbine in question and 1 kWh generated from here. (BA)

  15. The Life Cycle Analysis Toolbox

    International Nuclear Information System (INIS)

    The life cycle analysis toolbox is a valuable integration of decision-making tools and supporting materials developed by Oak Ridge National Laboratory (ORNL) to help Department of Energy managers improve environmental quality, reduce costs, and minimize risk. The toolbox provides decision-makers access to a wide variety of proven tools for pollution prevention (P2) and waste minimization (WMin), as well as ORNL expertise to select from this toolbox exactly the right tool to solve any given P2/WMin problem. The central element of the toolbox is a multiple criteria approach to life cycle analysis developed specifically to aid P2/WMin decision-making. ORNL has developed numerous tools that support this life cycle analysis approach. Tools are available to help model P2/WMin processes, estimate human health risks, estimate costs, and represent and manipulate uncertainties. Tools are available to help document P2/WMin decision-making and implement programs. Tools are also available to help track potential future environmental regulations that could impact P2/WMin programs and current regulations that must be followed. An Internet-site will provide broad access to the tools

  16. Optimization of data life cycles

    International Nuclear Information System (INIS)

    Data play a central role in most fields of science. In recent years, the amount of data from experiment, observation, and simulation has increased rapidly and data complexity has grown. Also, communities and shared storage have become geographically more distributed. Therefore, methods and techniques applied to scientific data need to be revised and partially be replaced, while keeping the community-specific needs in focus. The German Helmholtz Association project 'Large Scale Data Management and Analysis' (LSDMA) aims to maximize the efficiency of data life cycles in different research areas, ranging from high energy physics to systems biology. In its five Data Life Cycle Labs (DLCLs), data experts closely collaborate with the communities in joint research and development to optimize the respective data life cycle. In addition, the Data Services Integration Team (DSIT) provides data analysis tools and services which are common to several DLCLs. This paper describes the various activities within LSDMA and focuses on the work performed in the DLCLs.

  17. Construction of life cycle assessment software system platform

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-ping; ZUO Yu-hui

    2007-01-01

    There has not been life cycle assessment (LCA) software applicable to China's products. To faciliate the develop-ment of LCA software system in China, we built an object-oriented LCA software system plantform based on LCA international standards ISO 14040 to ISO 14043 and the commonness of diverse products. The system includes six modules: disassembly module, data collection module, arithmetic module, drawing module, database module and control module. It evaluates all economic and environmental impacts during the whole life cycle of a product. The integrated life cycle inventory database system allows dynamic expansion, which makes the effort required for data collection reduce with the increase of the system's application. With the improvement of human environmental-awareness, the demand of environment-friendly products is increasing, and ecological design of products has become a critical part in products development. Consummation of the LCA software system will provide a powerful tool for designing and developing Chinese ecological products.

  18. Does It Have a Life Cycle?

    Science.gov (United States)

    Keeley, Page

    2010-01-01

    If life continues from generation to generation, then all plants and animals must go through a life cycle, even though it may be different from organism to organism. Is this what students have "learned," or do they have their own private conceptions about life cycles? The formative assessment probe "Does It Have a Life Cycle?" reveals some…

  19. Social Life Cycle Assessment Revisited

    Directory of Open Access Journals (Sweden)

    Ruqun Wu

    2014-07-01

    Full Text Available To promote the development of Social Life Cycle Assessment (SLCA, we conducted a comprehensive review of recently developed frameworks, methods, and characterization models for impact assessment for future method developers and SLCA practitioners. Two previous reviews served as our foundations for this review. We updated the review by including a comprehensive list of recently-developed SLCA frameworks, methods and characterization models. While a brief discussion from goal, data, and indicator perspectives is provided in Sections 2 to 4 for different frameworks/methods, the focus of this review is Section 5 where discussion on characterization models for impact assessment of different methods is provided. The characterization models are categorized into two types following the UNEP/SETAC guidelines: type I models without impact pathways and type II models with impact pathways. Different from methods incorporating type I/II characterization models, another LCA modeling approach, Life Cycle Attribute Assessment (LCAA, is also discussed in this review. We concluded that methods incorporating either type I or type II models have limitations. For type I models, the challenge lies in the systematic identification of relevant stakeholders and materiality issues; while for type II models, identification of impact pathways that most closely and accurately represent the real-world causal relationships is the key. LCAA may avoid these problems, but the ultimate questions differ from those asked by the methods using type I and II models.

  20. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  1. Technology development life cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  2. Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the U.S.

    Science.gov (United States)

    Huo, Hong; Cai, Hao; Zhang, Qiang; Liu, Fei; He, Kebin

    2015-05-01

    We evaluated the fuel-cycle emissions of greenhouse gases (GHGs) and air pollutants (NOx, SO2, PM10, and PM2.5) of electric vehicles (EVs) in China and the United States (U.S.), two of the largest potential markets for EVs in the world. Six of the most economically developed and populated regions in China and the U.S. were selected. The results showed that EV fuel-cycle emissions depend substantially on the carbon intensity and cleanness of the electricity mix, and vary significantly across the regions studied. In those regions with a low share of coal-based electricity (e.g., California), EVs can reduce GHG and air pollutant emissions (except for PM) significantly compared with conventional vehicles. However, in the Chinese regions and selected U.S. Midwestern states where coal dominates in the generation mix, EVs can reduce GHG emissions but increase the total and urban emissions of air pollutants. In 2025, EVs will offer greater reductions in GHG and air pollutant emissions because emissions from power plants will be better controlled; EVs in the Chinese regions examined, however, may still increase SO2 and PM emissions. Reductions of 60-85% in GHGs and air pollutants could be achieved were EVs charged with 80% renewable electricity or the electricity generated from the best available technologies of coal-fired power plants, which are futuristic power generation scenarios.

  3. A revisit of fossil-fuel subsidies in China: Challenges and opportunities for energy price reform

    International Nuclear Information System (INIS)

    Highlights: • We measure fossil-fuel subsidies and effects of subsidy removal in a systematic fashion during 2006–2010. • Fossil-fuel subsidies scale of China was CNY 881.94 billion in 2010, equivalent to 2.59% of GDP. • Impacts of removing subsidies on macroeconomic variables are examined by the CGE model. • Future policy should focus on designing transparent, targeted and efficient energy subsidies. - Abstract: Fossil-fuel subsidies contribute to the extensive growth of energy demand and the related carbon dioxide emissions in China. However, the process of energy price reform is slow, even though China faces increasing problems of energy scarcity and environmental deterioration. This paper focuses on analyzing fossil fuel subsidies in China by estimating subsidies scale and the implications for future reform. We begin by measuring fossil-fuel subsidies and the effects of subsidy removal in a systematic fashion during 2006–2010 using a price-gap approach. Results indicate that the oil price reform in 2009 significantly reduced China’s fossil-fuel subsidies and modified the subsidy structure. Fossil-fuel subsidies scale in China was 881.94 billion CNY in 2010, which was lower than the amount in 2006, equivalent to 2.59% of the GDP. The macro-economic impacts of removing fossil-fuel subsidies are then evaluated by the computable general equilibrium (CGE) model. Results demonstrate that the economic growth and employment will be negatively affected as well as energy demand, carbon dioxide and sulfur dioxide emissions. Finally, policy implications are suggested: first, risks of government pricing of energy are far from negligible; second, an acceptable macroeconomic impact is a criterion for energy price reform in China; third, the future energy policy should focus on designing transparent, targeted and efficient energy subsidies

  4. LIFE CYCLE ANALYSIS CONSTRUCTION OF HIGHWAYS

    OpenAIRE

    ЛІСНІЧЕНКО, Т. В.; Національний авіаційний університет

    2016-01-01

    It proposed and studied the life cycle of the construction of public roads. We considere allphases of construction: from design to repiar. The scheme of the life cycle of the constructionof public roads is proposed. Construction of highway is seen as a project. The life cycle of theproject, known as a set of logically interrelated works in the completion of which achieved oneof the main results of the project. The complex of road construction works related to construction,reconstruction and r...

  5. Workforce Planning over the Service Life Cycle

    OpenAIRE

    Ruwen Qin

    2011-01-01

    Services usually have a limited life under modern conditions of competition. The life cycle phenomenon is characterized by time-varying demand and a learning curve of workforce efficiency, making it difficult to determine staffing requirements. This paper initiates a study of the service life cycle phenomenon, from which the learning curve is found to be manageable through workforce planning. Therefore, optimal control is employed to model workforce planning over a service life cycle. An iter...

  6. Governance and the corporate life-cycle

    OpenAIRE

    Thomas O'Connor; Julie Byrne

    2015-01-01

    Purpose –The purpose of this paper is to examine whether corporate governance changes along the corporate life-cycle. Design/methodology/approach -In a sample of 205 firms from 21 emerging market countries and using a life-cycle proxy from the dividends literature, the authors use a governance-prediction model which examines whether corporate governance differs along the corporate life-cycle. Findings -Mature firms tend to practice better overall corporate governance. Discipline and independe...

  7. Life cycle of transformer oil

    Directory of Open Access Journals (Sweden)

    Đurđević Ksenija R.

    2008-01-01

    Full Text Available The consumption of electric power is constantly increasing due to industrialization and population growth. This results in much more severe operating conditions of transformers, the most important electrical devices that make integral parts of power transmission and distribution systems. The designed operating life of the majority of worldwide transformers has already expired, which puts the increase of transformer reliability and operating life extension in the spotlight. Transformer oil plays a very important role in transformer operation, since it provides insulation and cooling, helps extinguishing sparks and dissolves gases formed during oil degradation. In addition to this, it also dissolves moisture and gases from cellulose insulation and atmosphere it is exposed to. Further and by no means less important functions of transformer are of diagnostic purpose. It has been determined that examination and inspection of insulation oil provide 70% of information on transformer condition, which can be divided in three main groups: dielectric condition, aged transformer condition and oil degradation condition. By inspecting and examining the application oil it is possible to determine the condition of insulation, oil and solid insulation (paper, as well as irregularities in transformer operation. All of the above-mentioned reasons and facts create ground for the subject of this research covering two stages of transformer oil life cycle: (1 proactive maintenance and monitoring of transformer oils in the course of utilization with reference to influence of transformer oil condition on paper insulation condition, as well as the condition of the transformer itself; (2 regeneration of transformer oils for the purpose of extension of utilization period and paper insulation revitalization potential by means of oil purification. The study highlights advantages of oil-paper insulation revitalization over oil replacement. Besides economic, there are

  8. The business cycle and the life cycle

    OpenAIRE

    Paul Gomme; Richard Rogerson; Peter Rupert; Randall Wright

    2004-01-01

    The paper documents how cyclical fluctuations in market work vary over the life cycle and then assesses the predictions of a life-cycle version of the growth model for those observations. The analysis yields a simple but striking finding. The main discrepancy between the model and that data lies in the inability of the model to account for fluctuations in hours for individuals in the first half of their life cycle. The predictions for those in the latter half of the life cycle are quite close...

  9. Life Cycle Greenhouse Gas Emissions from Electricity Generation: A Comparative Analysis of Australian Energy Sources

    Directory of Open Access Journals (Sweden)

    Robert G. Hynes

    2012-03-01

    Full Text Available Electricity generation is one of the major contributors to global greenhouse gas emissions. Transitioning the World’s energy economy to a lower carbon future will require significant investment in a variety of cleaner technologies, including renewables and nuclear power. In the short term, improving the efficiency of fossil fuel combustion in energy generation can provide an important contribution. Availability of life cycle GHG intensity data will allow decision-makers to move away from overly simplistic assertions about the relative merits of certain fuels, and focus on the complete picture, especially the critical roles of technology selection and application of best practice. This analysis compares the life-cycle greenhouse gas (GHG intensities per megawatt-hour (MWh of electricity produced for a range of Australian and other energy sources, including coal, conventional liquefied natural gas (LNG, coal seam gas LNG, nuclear and renewables, for the Australian export market. When Australian fossil fuels are exported to China, life cycle greenhouse gas emission intensity in electricity production depends to a significant degree on the technology used in combustion. LNG in general is less GHG intensive than black coal, but the gap is smaller for gas combusted in open cycle gas turbine plant (OCGT and for LNG derived from coal seam gas (CSG. On average, conventional LNG burned in a conventional OCGT plant is approximately 38% less GHG intensive over its life cycle than black coal burned in a sub-critical plant, per MWh of electricity produced. However, if OCGT LNG combustion is compared to the most efficient new ultra-supercritical coal power, the GHG intensity gap narrows considerably. Coal seam gas LNG is approximately 13–20% more GHG intensive across its life cycle, on a like-for like basis, than conventional LNG. Upstream fugitive emissions from CSG (assuming best practice gas extraction techniques do not materially alter the life cycle

  10. Role of non-fossil energy in meeting China's energy and climate target for 2020

    International Nuclear Information System (INIS)

    China is the largest energy consumer and CO2 emitter in the world. The Chinese government faces growing challenges of ensuring energy security and reducing greenhouse gas emissions. To address these two issues, the Chinese government has announced two ambitious domestic indicative autonomous mitigation targets for 2020: increasing the ratio of non-fossil energy to 15% and reducing carbon dioxide emissions per unit of GDP by 40–45% from 2005 levels. To explore the role of non-fossil energy in achieving these two targets, this paper first provides an overview of current status of non-fossil energy development in China; then gives a brief review of GDP and primary energy consumption; next assesses in detail the role of the non-fossil energy in 2020, including the installed capacity and electricity generation of non-fossil energy sources, the share and role of non-fossil energy in the electricity structure, emissions reduction resulting from the shift to non-fossil energy, and challenges for accomplishing the mitigation targets in 2020; finally, conclusions and policy measures for non-fossil energy development are proposed.

  11. Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach

    International Nuclear Information System (INIS)

    Industrial parks have become the effective strategies for government to promote sustainable economic development due to the following advantages: shared infrastructure and concentrated industrial activities within planned areas. However, due to intensive energy consumption and dependence on fossil fuels, industrial parks have become the main areas for greenhouse gas emissions. Therefore, it is critical to quantify their carbon footprints so that appropriate emission reduction policies can be raised. The objective of this paper is to seek an appropriate method on evaluating the carbon footprint of one industrial park. The tiered hybrid LCA method was selected due to its advantages over other methods. Shenyang Economic and Technological Development Zone (SETDZ), a typical comprehensive industrial park in China, was chosen as a case study park. The results show that the total life cycle carbon footprint of SETDZ was 15.29 Mt, including 6.81 Mt onsite (direct) carbon footprint, 8.47 Mt upstream carbon footprint, and only 3201 t downstream carbon footprint. Analysis from industrial sector perspectives shows that chemical industry and manufacture of general purpose machinery and special purposes machinery sector were the two largest sectors for life cycle carbon footprint. Such a sector analysis may be useful for investigation of appropriate emission reduction policies. - Highlights: ► A hybrid LCA model was employed to calculate industrial park carbon footprint. ► A case study on SETDZ is done. ► Life cycle carbon footprint of SETDZ is 15.29 Mt. ► Upstream and onsite carbon footprints account for 55.40% and 44.57%, respectively. ► Chemical industry and machinery manufacturing sectors are the two largest sectors

  12. Life Cycle Assessment of electricity generation: overview and methodological issues

    DEFF Research Database (Denmark)

    Turconi, Roberto; Boldrin, Alessio; Astrup, Thomas Fruergaard

    Electricity production is currently responsible for a large share of global Greenhouse Gas (GHG), NOx and SO2 emissions, and their related environmental impacts. This study provides a critical review of the status of research on life cycle assessment (LCA) of electricity generation. NREL [1...... of emissions, those were divided among three life cycle phases: fuel provision, operation of the plant and infrastructure. It was possible to estimate typical emission factors for all technologies except for biomass, where methodological and technical aspects result in very variable outcomes. Within...... due to geographical factors and date and type of data used. We therefore suggest not to limit studies to GHG, and, to ensure comparability between studies, to transparently report emission factors for electricity production stating clearly the functional unit of the study, the efficiency for fossil...

  13. LIFE CYCLE ASSESSMENT: PRINCIPLES AND PRACTICE

    Science.gov (United States)

    The following document provides an introductory overview of Life Cycle Assessment (LCA) and describes the general uses and major components of LCA. This document is an update and merger of two previous EPA documents on LCA ("Life Cycle Assessment: Inventory Guidelines and Princip...

  14. General framework for bridge life cycle design

    Institute of Scientific and Technical Information of China (English)

    Junhai MA; Airong CHEN; Jun HE

    2009-01-01

    Based on a detailed illustration for bridge life cycle design which comprises the processes of service life design, aesthetics design, performance design, environ-mental and ecological design, inspection, maintenance and repair design as well as cost analysis, this paper presented a general framework for bridge life cycle design comprising three design phases and six design processes.

  15. Effective risk management SOGO life cycle management

    OpenAIRE

    Ali, Mohamed Omar

    2012-01-01

    After new or upgrade projects the offshore installation gets maintenance or support through the life cycle management organization at Siemens. Small to medium modification projects are executed by the life cycle management. Risk assessment on these projects show different risks when it comes to estimation and pricing of projects, planning and executing, resource management, competence and knowledge.

  16. International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance

    OpenAIRE

    2008-01-01

    The International Reference Life Cycle Data System (ILCD) provides a common basis for consistent, robust and quality-assured life cycle data and studies. Such data and studies support coherent SCP instruments, such as Ecolabelling, Ecodesign, Carbon footprinting, and Green Public Procurement. This guide is a component of the International Reference Life Cycle Data System (ILCD) Handbook. It provides technical guidance for detailed Life Cycle Assessment (LCA) studies and provides the technical...

  17. The life cycle emission of greenhouse gases associated with plant oils used as biofuel

    OpenAIRE

    Reijnders, L.

    2011-01-01

    Life cycle assessment of greenhouse gas emissions associated with biofuels should not only consider fossil fuel inputs, but also N2O emissions and changes in carbon stocks of (agro) ecosystems linked to the cultivation of biofuel crops. When this is done, current plant oils such as European rapeseed oil and oil from soybeans and oil palms cultivated on recently deforested soils have higher life cycle greenhouse gas emissions than conventional diesel.

  18. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  19. Oldest Known Lichen Fossils Found in South China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Lichens are believed to play a pioneering role in transforming the earth surface when they appeared on land hundreds of million years ago, paving the way for the evolution of terrestrial plants and animals. But most habitats where lichens dominate,such as tundra, mountains, and deserts, have a very low chance of preserving fossils. Until recently the earliest known lichen fossils were discovered in 1995 by Thomas N.Taylor, a University of Kansas researcher, from 400 million-year old deposits in Scotland.

  20. Preliminary investigations on fossil diversity variation of Mesozoic Marattialean ferns in China

    Institute of Scientific and Technical Information of China (English)

    Zikun JIANG; Yongdong WANG; and Ning TIAN

    2008-01-01

    The Marattiales is one of the oldest lineages of vascular plants with extensive fossil records dated back to the Carboniferous. Understanding the fossil diversity variation and distribution pattern is helpful for exploring the evolutionary history of this fern group. In this work, the preliminary analysis of diversity change and distribution of the Mesozoic Marattialean fossil records in China are reported covering the Triassic and Jurassic periods based on available published data. In addition, a brief discussion is made regarding to the potential causes for these variation and distribution of this fern group.

  1. Estimating soil carbon change and biofuel life-cycle greenhouse gas emissions with economic, ecosystem and life-cycle models

    Science.gov (United States)

    Qin, Z.; Dunn, J.; Kwon, H. Y.; Mueller, S.; Wander, M.

    2015-12-01

    Land-use change (LUC) resulting from biofuel feedstock production can alter soil organic carbon (SOC) stocks of lands producing those crops and the crops they displace, possibly resulting in greenhouse gas (GHG) emissions. LUC GHG emissions included in biofuel life cycle analysis (LCA) have at times been estimated to be so great that biofuels did not offer a greenhouse gas reduction compared to conventional fossil fuels. To improve the accuracy of emissions estimates, SOC changes must be considered at a finer spatial resolution and take into account climate, soil, land use and management factors. This study reports on the incorporation of global LUC as predicted by a computable general equilibrium model (i.e., GTAP) and spatially-explicit modeled SOC estimates (using surrogate CENTURY) for various biofuel feedstock scenarios into a widely-used LCA model (i.e., GREET). Resulting estimates suggest: SOC changes associated with domestic corn production might contribute 2-6% or offset as much as 5% of total corn ethanol life-cycle GHG emissions. On the other hand, domestic LUC GHG emissions for switchgrass ethanol have the potential offset up to 60% of GHG emissions in the fuel's life cycle. Further, large SOC sequestration is predicted for Miscanthus feedstock production, enabling Miscanthus-based ethanol systems to offset all life-cycle GHG emissions and create a net carbon sink. LUC GHG emissions for ethanol derived from corn stover are small compared to other sources. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm soil) were estimated to be 59-66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -7 - -0.6 for Miscanthus ethanol.

  2. A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings

    International Nuclear Information System (INIS)

    Highlights: • Three streams of life cycle studies, namely LCA, LCEA and LCCO2A, were compared. • Previous findings from the three streams were reviewed. • Cases led to discrepancies of results arising from different types of life cycle studies were discussed. • Limitations in using life cycle studies as decision tools for building design were identified. - Abstract: This paper provides a review on three streams of life cycle studies that have been frequently applied to evaluate the environmental impacts of building construction with a major focus on whether they can be used for decision making. The three streams are Life Cycle Assessment (LCA), Life Cycle Energy Assessment (LCEA) and Life Cycle Carbon Emissions Assessment (LCCO2A). They were compared against their evaluation objectives, methodologies, and findings. Although they share similar objectives in evaluating the environmental impacts over the life cycle of building construction, they show some differences in the major focuses of evaluation and methodologies employed. Generally, it has been revealed that quite consistent results can be derived from the three streams with regard to the relative contribution of different phases of life cycle. However, discrepancies occur among the findings obtained from the three streams when different compositions of fuel mixes are used in power generation, or when the overall impacts are not contributed mostly by greenhouse gases emissions. The use of different functional units in different studies also makes it difficult to compare results with benchmarks or results from previous studies. Besides, there are drawbacks in boundary scoping, methodology framework, data inventory and practices which impair their usefulness as a decision making support tool for sustainable building designs

  3. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon). PMID:26289204

  4. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A.; Feng, Kuishuang; Peters, Glen P.; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-01

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  5. Life Cycle Assessment and Risk Assessment

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    Life Cycle Assessment (LCA) is a tool for environmental assessment of product and systems – over the whole life cycle from acquisition of raw materials to the end-of-life of the product – and encompassing all environmental impacts of emissions and resource usage, e.g. global warming, acidification...... life cycle. The models for assessing toxic impacts in LCA are to a large extent based on those developed for RA, e.g. EUSES, and require basic information about the inherent properties of the emissions like solubility, LogKow,ED50 etc. Additionally, it is a prerequisite to know how to characterize the...

  6. Recent developments in Life Cycle Assessment

    DEFF Research Database (Denmark)

    Finnveden, Göran; Hauschild, Michael Zwicky; Ekvall, Tomas;

    2009-01-01

    Life Cycle Assessment is a tool to assess the environmental impacts and resources used throughout a product’s life cycle, i.e., from raw material acquisition, via production and use phases, to waste management. The methodological development in LCA has been strong, and LCA is broadly applied in...... on Life Cycle Impact Assessment we discuss the characteristics of the modelling as well as some recent developments for specific impact categories and weighting. In relation to the Interpretation the focus is on uncertainty analysis. Finally, we discuss recent developments in relation to some of the...

  7. Developing the Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas

    This thesis seeks to add to the development of the Social Life Cycle Assessment (SLCA), which can be defined as an assessment method for assessing the social impacts connected to the life cycle of a product, service or system. In such development it is important to realise that the SLCA is only...... appealing to the extent that it does what it is supposed to do. In this thesis, this goal of SLCA is defined as to support improvements of the social conditions for the stakeholders throughout the life cycle of the assessed product, system or service. This effect should arise through decision makers...... was also shown that the companies’ ability to obtain data throughout their products’ life cycles was very limited, for example because suppliers were unwilling to hand over this information to the companies or because the goods were bought on open markets furnished by a large number of unidentified...

  8. The Family Life Cycle and Social Change.

    Science.gov (United States)

    Glick, Paul C.

    1989-01-01

    Presents updated information on recent changes in selected stages of the family life cycle and in social developments that have contributed to these changes. Closes with differing outlooks regarding marital stability in the United States. (Author)

  9. Intercountry Adoption and the Family Life Cycle.

    Science.gov (United States)

    Deacon, Sharon A.

    1997-01-01

    Provides family therapists with an understanding of intercountry adoption. The special life-cycle issues of multinational families and the challenges intercountry adoptees face are discussed to help therapists treat such families more empathically and effectively. (Author/MKA)

  10. New radiocarbon dates for Milu (Elaphurus davidianus) sub-fossils from southeast China

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X.F. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Shen, C.D., E-mail: cdshen@gig.ac.cn [State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou (China); Ding, P.; Yi, W.X. [State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou (China); Fu, D.P.; Liu, K.X. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)

    2013-01-15

    Milu (Elaphurus davidianus, Pere David's deer) is one of the few species of large mammals that became extinct in the wild, but survived domestically. A good understanding of expansion and habitat is required if the reintroduction of Milu into the wild is to be implemented. Among the widely reported findings of Milu sub-fossils, only a small fraction have been dated. Here we report new AMS radiocarbon dates on Milu sub-fossil samples unearthed from two sites at Qingdun, Jiangsu and Fujiashan, Zhejiang in southeast China. These AMS {sup 14}C ages of Milu sub-fossils provide new evidence for the presence of Milu expansion in the lower reaches of the Yangtze River during the Holocene Optimum interval from 5000 yr BC to 3000 yr BC. These new ages also have important implications for the reconstruction of the paleoclimate and paleogeography during the Neolithic Period in southeast China.

  11. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination of...

  12. Consumer Debt Delinquency over Life Cycle Stages

    OpenAIRE

    Jing Jian Xiao; Rui Yao

    2011-01-01

    Consumer debt delinquency, as measured by being 60 or more days late in in debt payment, is an indicator of financial ill health. Using six datasets of the 1992-2007 U.S. Surveys of Consumer Finances, this study examines consumer debt delinquency over life cycle stages. Inspired by previous research (Du & Kamakura, 2006), fifteen life cycle stages are defined by household head’s age, marital status, and presence and age of children. Multivariate logistic results show that young couples status...

  13. Life Cycle Portfolio Choice: A Swiss Perspective

    OpenAIRE

    Florian Zainhofer

    2007-01-01

    We use panel data from the Swiss Labor Force Survey to estimate age-earnings profiles as well as transitory and permanent income shock variances for investor groups distinguished by gender, education and activity rate. Estimation results are then used to stylize several different Swiss investor types. Finally, we determine optimal life cycle consumption, savings and risky asset share for these investor types using a recent computational life cycle model of portfolio choice suggested by Cocco ...

  14. Life Cycle Assessment of a Norwegian Bridge

    OpenAIRE

    Dequidt, Thomas Charles Edouard

    2012-01-01

    Life cycle assessment (LCA) methodology aims at evaluating the environmental impacts of a product or system from a holistic approach. In this methodology, all life cycle phases of the product are identified and assessed, from the raw material acquisition to the end-of-life phase. This master thesis is dealing with the LCA of a Norwegian bridge. First, a literature review is realized by going through 14 bridge LCA references. Then, a detailed description of bridge LCA methodology ...

  15. The evaluation of full life - cycle efficiency of non - renewable energy of China%中国不可再生能源全生命周期效率评价研究

    Institute of Scientific and Technical Information of China (English)

    武春友; 赵奥; 卢小丽

    2012-01-01

    随着以煤炭、石油和天然气为主体的不可再生能源对我国经济发展的约束性日益突出,不可再生能源效率问题成为突破能源约束、确保经济可持续发展的关键所在。以往单纯强调能源投入与经济产出的效率评价模型无法从根本上对不可再生能源自源头开采直至终端利用的全过程效率进行测算,因此,本研究构建了不可再生能源全生命周期效率模型,运用DEA方法对1981—2009年中国不可再生能源全生命周期技术效率、规模效率、经济效率和环境效率进行实证研究。研究结果表明:在国家经济发展和相关政策背景下,中国不可再生能源全生命周期技术效率受技术水平和要素资源配置影响,呈波动变化态势;不可再生能源全生命周期链条具有较大的节能空闽,特别是开采端和终端利用环节;环境效率水平普遍较低,亟待通过技术层面和要素配置层面予以提升;效率测算结果通过计量经济学平稳、均衡检验,验证了模型构建的科学性和实证结果的可控性。最后,从技术层、要素配置、产业结构及政策约束层面,提出不可再生能源全生命周期效率改进与提升的相关对策建议。%With the bonding effect of non - renewable energy on economic development is increasingly prominent, the non - renewable energy efficiency becomes the vital key to break through the energy constraint as well as assure the economic sustainable development. The previous evaluation model that purely emphasizes on energy input and economic output is unable to estimate the whole efficiency from original mining to terminal utilization of non - renewable energy. Therefore, the full life - cycle efficiency model of non - renewable energy is construeted to analyze the technique efficieney, scale efficiency, economic efficiency, and environmental efficiency of China during the period of 1981 -2009 by means of

  16. Amazing Reptile Fossils from the Marine Triassic of China

    Institute of Scientific and Technical Information of China (English)

    LI Chun

    2010-01-01

    @@ Known as the"true terrestrial tetrapod,"reptiles mainly live on land.However,some reptile groups made a secondary adaptation to their life in water.Generally called"marine reptiles,"they are mostly extinct,and their fossils are found in Mesozoic marine deposits around the world.Ichthyosaurs and Plesiosaurs are the most famous marine reptiles that lived in the"dinosaur age,"namely the Jurassic and Cretaceous.Many more"sea monsters"were ruling the ocean in the Triassic period,when dinosaurs had just arisen from its archosaur ancestors.

  17. An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Hu, Mingming; van Roekel, Eric;

    2012-01-01

    According to the Life Cycle Assessment in Building and Construction: State-of-the-Art Report (2003), the dismantling and demolition stage of the building life cycle is only sometimes included in the Life Cycle Inventory (LCI) when doing Life Cycle Assessments (LCA). The reason that it is less inv...... dismantling and demolition processes are rare and reflect only the impacts to the environment and do not include data on economic and social impacts. The present study gives case specific environmental, economic and social LCI data for two demolition processes....

  18. Improving energy consumption structure: A comprehensive assessment of fossil energy subsidies reform in China

    International Nuclear Information System (INIS)

    Fossil energy subsidies reform would be an effective way to improve the energy consumption structure; however, the reform needs to be assessed comprehensively beforehand as it would exert uncertain impacts on economy, society and environment. In this paper, we use price-gap approach to estimate the fossil energy subsidies of China, then establish CGE model that contains pollutant emissions accounts and CO2 emissions account to stimulate the fossil energy subsidies reform under different scenarios, and the environmental economic analysis concept is introduced to monetize the pollutant reduction benefits. Furthermore, we analyze the possibility and scope of improving the energy consumption structure from the perspective of technical and economic analysis. Analytical results show that the energy consumption structure could be improved by different extent by removing coal or oil subsidies, while the economic and social indexes will be influenced distinctively. Meanwhile, the effects of cutting coal subsidies are more feasible than that of cutting oil subsidies overall. It is recommended to implement fossil energy subsidies gradually, cut the coal first and then cut oil subsidies successively. - Research highlights: → This paper estimates the scale of fossil energy subsidies of China in 2007 with price-gap approach. → We establish a Social Accounting Matrix and a CGE model extended with pollutant accounts. → We simulate the impacts of removing or cutting subsidies under three different scenarios. → We discuss the possibility and potential of improving energy consumption structure.

  19. Improving energy consumption structure: A comprehensive assessment of fossil energy subsidies reform in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei [School of Economics, Peking University, Haidian District, 5 Yi HeYuan AV., Beijing 100871 (China); Li Hong, E-mail: Lihong2008@pku.edu.cn [School of Economics, Peking University, Haidian District, 5 Yi HeYuan AV., Beijing 100871 (China)

    2011-07-15

    Fossil energy subsidies reform would be an effective way to improve the energy consumption structure; however, the reform needs to be assessed comprehensively beforehand as it would exert uncertain impacts on economy, society and environment. In this paper, we use price-gap approach to estimate the fossil energy subsidies of China, then establish CGE model that contains pollutant emissions accounts and CO{sub 2} emissions account to stimulate the fossil energy subsidies reform under different scenarios, and the environmental economic analysis concept is introduced to monetize the pollutant reduction benefits. Furthermore, we analyze the possibility and scope of improving the energy consumption structure from the perspective of technical and economic analysis. Analytical results show that the energy consumption structure could be improved by different extent by removing coal or oil subsidies, while the economic and social indexes will be influenced distinctively. Meanwhile, the effects of cutting coal subsidies are more feasible than that of cutting oil subsidies overall. It is recommended to implement fossil energy subsidies gradually, cut the coal first and then cut oil subsidies successively. - Research Highlights: > This paper estimates the scale of fossil energy subsidies of China in 2007 with price-gap approach. > We establish a Social Accounting Matrix and a CGE model extended with pollutant accounts. > We simulate the impacts of removing or cutting subsidies under three different scenarios. > We discuss the possibility and potential of improving energy consumption structure.

  20. Material Flow Analysis of Fossil Fuels in China during 2000–2010

    OpenAIRE

    Sheng Wang; Jing Dai; Meirong Su

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000–2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resour...

  1. A life cycle framework to support materials selection for Ecodesign: A case study on biodegradable polymers

    International Nuclear Information System (INIS)

    Highlights: • Life cycle framework to support material selection in Ecodesign. • Early design stage estimates and sensitivity analyses based on process-based models. • Sensitivity analysis to product geometry, industrial context and EoL scenarios. • Cost and environmental performance comparison – BDP vs. fossil based polymers. • Best alternatives mapping integrating cost and environmental performances. - Abstract: Nowadays society compels designers to develop more sustainable products. Ecodesign directs product design towards the goal of reducing environmental impacts. Within Ecodesign, materials selection plays a major role on product cost and environmental performance throughout its life cycle. This paper proposes a comprehensive life cycle framework to support Ecodesign in material selection. Dealing with new materials and technologies in early design stages, process-based models are used to represent the whole life cycle and supply integrated data to assess material alternatives, considering cost and environmental dimensions. An integrated analysis is then proposed to support decision making by mapping the best alternative materials according to the importance given to upstream and downstream life phases and to the environmental impacts. The proposed framework is applied to compare the life cycle performance of injection moulded samples made of four commercial biodegradable polymers with different contents of Thermo Plasticized Starch and PolyLactic Acid and a common fossil based polymer, Polypropylene. Instead of labelling materials just as “green”, the need to fully capture all impacts in the whole life cycle was shown. The fossil based polymer is the best economic alternative, but polymers with higher content of Thermo Plasticized Starch have a better environmental performance. However, parts geometry and EoL scenarios play a major role on the life cycle performance of candidate materials. The selection decision is then supported by mapping

  2. Experimental taphonomy and the anatomy and diversity of the earliest fossil vertebrates (Chengjiang Biota, Cambrian, China)

    Science.gov (United States)

    Purnell, Mark; Gabbott, Sarah; Murdock, Duncan; Cong, Peiyun

    2016-04-01

    The oldest fossil vertebrates are from the Lower Cambrian Chengjiang biota of China, which contains four genera of fish-like, primitive vertebrates: Haikouichthys, Myllokunmingia, Zhongjianichthys and Zhongxiniscus. These fossils play key roles in calibrating molecular clocks and informing our view of the anatomy of animals close to the origin of vertebrates, potentially including transitional forms between vertebrates and their nearest relatives. Despite the evident importance of these fossils, the degree to which taphonomic processes have affected their anatomical completeness has not been investigated. For example, some or all might have been affected by stemward slippage - the pattern observed in experimental decay of non-biomineralised chordates in which preferential decay of synapomorphies and retention of plesiomorphic characters would cause fossil taxa to erroneously occupy more basal positions than they should. This hypothesis is based on experimental data derived from decay of non-biomineralised chordates under laboratory conditions. We have expanded this analysis to include a broader range of potentially significant environmental variables; we have also compared and combined the results of experiments from several taxa to identify general patterns of chordate decay. Examination of the Chengjiang vertebrates in the light of these results demonstrates that, contrary to some assertions, experimentally derived models of phylogenetic bias are applicable to fossils. Anatomical and phylogenetic interpretations of early vertebrates that do not take taphonomic biases into account risk overestimating diversity and the evolutionary significance of differences between fossil specimens.

  3. Life cycle planning for nuclear plant staffing

    International Nuclear Information System (INIS)

    Current designs of new nuclear power plants include operational life cycles of 60 years. When the total life cycle of a new nuclear power program is considered, and includes all aspects from plant design selection to decommissioning, the total program duration may begin to approach 100 years. One hundred years of program duration requires multiple generations of workers. This paper will describe a process for considering staffing requirements for each phase of the nuclear power plant life cycle: 1) Plant Design Selection; 2) Site Selection; 3) Plant Licensing; 4) Construction; 5) Start Up/Testing; 6) Commercial Operations; 7) Shut Down/Safe Store; and 8) Decommissioning. During each of the eight life cycle phases, specific functional activities need to be performed. Thus, each phase has unique staffing requirements that must be analyzed to ensure safe and effective implementation of all required programs and activities. This paper will discuss the staffing functions relevant to each life cycle phase, and identify key drivers during each phase that directly impact staffing requirements for each of nine functional areas: 1) Operations; 2) Maintenance; 3) Work Management; 4) Radiation Protection; 5) Safety; 6) Regulatory Compliance; 7) Engineering and Technical Services; 8) Management and Support; and 9) Supply Chain. Issues surrounding management approaches will also be discussed, including the impacts of organizational design structures, out-sourcing, and work force planning. Additionally, potential impacts resulting from centralization and standardization across multiple nuclear plant sites will be discussed. (author)

  4. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  5. Implementing Life Cycle Assessment in Product development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh

    2003-01-01

    The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating the...... opportunities for introducing environmental criteria in the design process through meeting the information requirements of the designer on the different life cycle stages, producing an in-depth understanding of the attitudes of practitioners among product developers to the subject area, and an understanding of...... possible future directions for product development. An Environmentally Conscious Design method is introduced and trade-offs are presented between design degrees of freedom and environmental solutions. Life cycle design frameworks and strategies are addressed. The paper collects experiences and ideas around...

  6. Implementing Life Cycle Assessment in systems development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; McAloone, Timothy Charles

    2003-01-01

    derived from products and system, and calculate resource consumptions. However, the complexity of LCA poses restrictions to its use in current product and system development given the need for a reduction in product development cycle time which is needed to meet the increasing competitive pressures and...... discusses a number of possibilities which can be introduced in the design stage compared to the other life cycle stages of the product system. The paper collects experiences and ideas around the state-of-the-art in eco-design, from literature and personal experience and further provides eco-design life...... cycle assessment strategies. The paper reviews the current environmental evaluation practices with respect to product life cycles. As a number of deficiencies in LCA are identified, strategies are presented to provide a solution to many of the deficiencies. The result of the paper is a definition of the...

  7. Life Cycle Assessment and Risk Assessment

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    Life Cycle Assessment (LCA) is a tool for environmental assessment of product and systems – over the whole life cycle from acquisition of raw materials to the end-of-life of the product – and encompassing all environmental impacts of emissions and resource usage, e.g. global warming, acidification...... and toxicity. Whereas Risk Assessment (RA) aims to identify absolute risks, LCA assess potential or relative impacts. LCA is readily applicable to nanotechnologies and several studies have been carried out, but LCA faces large problems when addressing toxic impacts of nanomaterials emitted during the...... life cycle. The models for assessing toxic impacts in LCA are to a large extent based on those developed for RA, e.g. EUSES, and require basic information about the inherent properties of the emissions like solubility, LogKow,ED50 etc. Additionally, it is a prerequisite to know how to characterize the...

  8. Life-cycle assessment: an overview

    International Nuclear Information System (INIS)

    Life-cycle assessment (LCA) explained in this article, describes the physical behaviour of industrial systems when the inputs are raw materials from the earth and output, in the form of wastes of various kinds, are disposed of, again, in or on the earth. Recently, much interest in LCA has been generated by industry, politicians and academics, who have perceived the benefits of examining the true economics of industrial decision making, rather than the short term results. The relationship between LCA, which is system based and economics, which is product based, is explored, and the concept of life cycle inventories explained. (UK)

  9. The Product Life Cycle Theory: Empirical Evidence

    OpenAIRE

    Alicia Mullor-Sebastián

    1983-01-01

    This paper presents 3 empirical tests of the product life cycle theory based on U.S. trade data and on a relatively new data series providing information about a larger number of products and at a lower level of aggregation than the data used previously. The results of the tests strongly support the hypothesis that industrial product groups behave in the manner predicted by the product life cycle theory on world markets. In the case of individual products, however, the results provide less su...

  10. Life cycle assessment of waste paper management

    DEFF Research Database (Denmark)

    Merrild, Hanna Kristina; Damgaard, Anders; Christensen, Thomas Højlund

    2008-01-01

    The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing oil global warming potentials. The consequence of choosing...... results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system...

  11. Life-Cycle Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future.......The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future....

  12. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  13. MPC and A life cycle process

    International Nuclear Information System (INIS)

    Full text: An operationally effective material protection control and accounting (MPC and A) system must embody the full life cycle process. Life cycle embraces the conventional design and evaluation process outline (DEPO) for physical protection systems (PPS), a similar process for material control and accounting (MC and A) systems and supporting activities, but places additional emphasis on the implementation, operation/sustainment and retirement/replacement planning stages. The life cycle process begins with evaluation. Evaluation includes the determination of the MPC and A system objectives, the initial conceptual design of a new MPC and A system or the assessment of an existing system, the analysis of the design, and perhaps, the redesign or refinement of the system. The result is a conceptual system design that also considers how the PPS and MC and A systems are integrated with other site functions such as, protection forces, fire protection, emergency response and other functions. Upon establishing that the conceptual design meets the design objectives and reduces risk to an acceptable level, it is ready to be implemented. Implementation includes final system design, procurement, installation, operational testing, certification, attestation, and user acceptance. Full and effective operation requires the supporting activities of proper policies, personnel, procedures, training and administration. Equally important is sustaining the system. Included in sustainment is keeping the system at its peak operational capability by ensuring funding and personnel for operation, training, calibration, maintenance, replacement of components and subsystems, and adequate levels of spare parts. Finally, planning must occur in the life cycle process to determine timely retirement/replacement of the system or subsystems and to accommodate new threats or requirements. A key advantage of the life cycle prospective is the ability to see the need to include elements like

  14. Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China.

    Science.gov (United States)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Agrios, Konstantinos; Lee, Meehye; Salazar, Gary; Szidat, Sönke

    2016-06-21

    Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 μg m(-3)). The remaining 24 ± 11% (0.03-0.42 μg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 μg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions. PMID:27203471

  15. Life cycle assessment of the production of rare earth elements for energy applications: a review

    Directory of Open Access Journals (Sweden)

    Julio eNavarro

    2014-11-01

    Full Text Available Rare earth elements (REEs are a group of seventeen elements with similar chemical properties, including fifteen in the lanthanide group, yttrium, and scandium. Due to their unique physical and chemical properties REEs gain increasing importance in many new energy technologies and systems that contribute to reduce greenhouse gas emissions and fossil fuel depletion (e.g., wind turbine, electric vehicles, high efficiency lighting, batteries, and hydrogen storage. However, it is well known that production of REEs is far from environmentally sustainable as it requires significant material and energy consumption while generating large amounts of air/water emissions and solid waste. Although life cycle assessment (LCA has been accepted as the most comprehensive approach to quantify the environmental sustainability of a product or process, to date, there have been only very limited LCA studies on the production of REEs. With the continual growth of renewable energy and energy efficient technologies, global production of REEs will increase. Therefore reducing environmental footprints of REE production becomes critical and identifying environmental hotspots based on a holistic and comprehensive assessment on environmental impacts serves as an important starting point. After providing an overview of LCA methodology and a high-level description of the major REE production routes used from 1990s to today, this paper reviews the published LCA studies on the production of REEs. To date, almost all the LCA studies are based on process information collected from the operation of Mountain Pass facility in U.S. in 1990s and the operation of facilities in Bayan Obo, China. Knowledge gaps are identified and future research efforts are suggested to advance understanding on environmental impacts of REE production from the life cycle perspective.

  16. New fossil caddisfly from Middle Jurassic of Daohugou, Inner Mongolia, China (Trichoptera: Philopotamidae)

    Institute of Scientific and Technical Information of China (English)

    Meixia Wang; Yunyun Zhao; Dong Ren

    2009-01-01

    A new genus and new species, Juraphilopotamus lubricus gen. et sp. nov., from the Middle Jurassic Jiulongshan Formation of Daohugou, Inner Mongolia, China, is described and illustrated. It may be the first record of the family Philopotamidae in China, extending the geographic distribution of this family. A detailed description and illustration of the specimen along with a brief review of the fossil Philopotamidae are given. A proposal on dispersion and migration of Philopotamidae and problems of the paleoenvironment of the Daohugou beds are discussed.

  17. 10 CFR 436.12 - Life cycle cost methodology.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle cost methodology. 436.12 Section 436.12 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.12 Life cycle cost methodology. The life cycle cost...

  18. 10 CFR 436.19 - Life cycle costs.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of...

  19. Training Groups: A Basic Life Cycle Model.

    Science.gov (United States)

    Chadbourne, Joan

    1980-01-01

    Describes group training model that differs from the traditional T-group model in structure, leadership, and assumptions about learning. The life-cycle model is based on situational leadership, differential structures based on group maturity, and integration of conceptual and experiential learning. (Author)

  20. Monetary valuation in Life Cycle Assessment

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Weidema, Bo Pedersen; Brandão, Miguel;

    2015-01-01

    different impacts and/or with other economic costs and benefits. For this reason, monetary valuation has a great potential to be applied also in Life Cycle Assessment (LCA), especially in the weighting phase. However, several challenges limit its diffusion in the field, which resulted in only a few...

  1. Maintenance: Changing Role in Life Cycle Management

    NARCIS (Netherlands)

    Takata, S.; Kimura, F.; Houten, van F.J.A.M.; Westkamper, E.; Shpitalni, M.; Ceglarek, D.; Lee, J.

    2004-01-01

    As attention to environmental problems grows, product life cycle management is becoming a crucial issue in realizing a sustainable society. Our objective is to provide the functions necessary for such a society while minimizing material and energy consumption. From this viewpoint, we should redefine

  2. Life cycle assessment of carbon xerogels

    OpenAIRE

    Melon, Raphaëlle; Renzoni, Roberto; Léonard, Alexandre; Job, Nathalie; Léonard, Angélique

    2012-01-01

    In the framework of the SOMABAT European project, a life cycle assessment applied to the production of 1 kg of carbon xerogels was carried out by comparing three drying technologies (vacuum, microwave and convective drying). These carbon materials with controlled texture are thought to be used as active material at the anode side of Li-polymer battery.

  3. A model for life cycle records management

    Energy Technology Data Exchange (ETDEWEB)

    Tayfun, A.C.; Gibson, S.

    1996-10-01

    The primary objective of this paper is to update an old Records Management concept; the management of records according to the records life cycle. Accordingly, the authors are presenting a new version of the Records Management life cycle model and its associated elements. The basic concept is that every record progresses through three phases; a record is created, is used and maintained, and dispositioned. In this presentation, the authors update the very old straight line model and the more current circular model with a new model that essentially combines the two. The model portrays Records Management as having a distinct straight-line beginning, a circular use and maintenance phase, and a distinct straight-line end. The presentation maps Records Management Program elements and activities against the phases depicted in the model. The authors believe that this new records life cycle model is an enhanced physical representation of the process. This presentation is designed to help put all of the specialized Records Management topics that participants have heard about during the conference in the perspective of the records life cycle.

  4. Product Life Cycle - Quality Management Issues

    DEFF Research Database (Denmark)

    Alting, Leo; Majstorovic, Vidosav D.

    2004-01-01

    The strategic goal of our country is European and world integration. Within this context the management of sustainable development considered from the aspect of product’s life cycle and its quality management represents a real challenge for researchers, economy and educational system. The aim of...

  5. Planning Evaluation through the Program Life Cycle

    Science.gov (United States)

    Scheirer, Mary Ann; Mark, Melvin M.; Brooks, Ariana; Grob, George F.; Chapel, Thomas J.; Geisz, Mary; McKaughan, Molly; Leviton, Laura

    2012-01-01

    Linking evaluation methods to the several phases of a program's life cycle can provide evaluation planners and funders with guidance about what types of evaluation are most appropriate over the trajectory of social and educational programs and other interventions. If methods are matched to the needs of program phases, evaluation can and should…

  6. The life cycle of social media

    OpenAIRE

    Franses, Philip Hans

    2014-01-01

    markdownabstract__Abstract__ Using weekly data on the interest for 17 social media via Google trends and using quarterly data on actual users for 3 social media, it is reported in this letter that the life cycles of social media mimic those of durable consumer goods. On average, the popularity of social media peaks after 4 years since entry.

  7. Functional Family Therapy: A Life Cycle Perspective.

    Science.gov (United States)

    Wetchler, Joseph L.

    1985-01-01

    Functional family therapy model assesses family behavior from perspectives of interactional process and functional payoffs for the individual family members. Illustrates that functional needs change as a result of development, and that by including a family life cycle perspective in the assessment process, clinicians will get a clearer picture of…

  8. Updating the Life Cycle of the Family

    Science.gov (United States)

    Glick, Paul C.

    1977-01-01

    Changes from decade to decade in family life cycle patterns are analyzed for women who have married this century. Women entering marriage today are expected to have one to two fewer children, to end child-bearing three years sooner, and to have 11 more years of married life after the last child marries. (Author)

  9. Life cycle cost report of VHLW cask

    International Nuclear Information System (INIS)

    This document, the Life Cycle Cost Report (LCCR) for the VHLW Cask, presents the life cycle costs for acquiring, using, and disposing of the VHLW casks. The VHLW cask consists of a ductile iron cask body, called the shielding insert, which is used for storage and transportation, and ultimately for disposal of Defense High Level Waste which has been vitrified and placed into VHLW canisters. Each ductile iron VHLW shielding insert holds one VHLW canister. For transportation, the shielding insert is placed into a containment overpack. The VHLW cask as configured for transportation is a legal weight truck cask which will be licensed by NRC. The purpose of this LCCR is to present the development of the life cycle costs for using the VHLW cask to transport VHLW canisters from the generating sites to a disposal site. Life cycle costs include the cost of acquiring, operating, maintaining, and ultimately dispositioning the VHLW cask and its associated hardware. This report summarizes costs associated with transportation of the VHLW casks. Costs are developed on the basis of expected usage, anticipated source and destination locations, and expected quantities of VHLW which must be transported. DOE overhead costs, such as the costs associated with source and destination facility handling of the VHLW, are not included. Also not included are costs exclusive to storage or disposal of the VHLW waste

  10. Aquatic ecotoxicological indicators in life cycle assessment

    DEFF Research Database (Denmark)

    Pennington, David W.; Payet, Jerome; Hauschild, Michael Zwicky

    This paper compares available options for the aquatic ecotoxicological effect factor component in life cycle assessment (LCA). The effect factor is expressed here as the change in risk per unit change in cumulative exposure, ƒ´Effect/ƒ´Exposure. The comparison is restricted to approaches linked...

  11. Life cycle assessment of shredder residue management

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Damgaard, Anders; Brogaard, Line Kai-Sørensen;

    This report provides a life-cycle assessment (LCA) of the treatment of shredder residue (SR) in Denmark. The LCA was conducted for the Environmental Protection Agency by DTU Environment in the period March-July 2014, as part of a service agreement between the Danish Environmental Protection Agency...

  12. Multidisciplinary life cycle metrics and tools for green buildings.

    Science.gov (United States)

    Helgeson, Jennifer F; Lippiatt, Barbara C

    2009-07-01

    Building sector stakeholders need compelling metrics, tools, data, and case studies to support major investments in sustainable technologies. Proponents of green building widely claim that buildings integrating sustainable technologies are cost effective, but often these claims are based on incomplete, anecdotal evidence that is difficult to reproduce and defend. The claims suffer from 2 main weaknesses: 1) buildings on which claims are based are not necessarily "green" in a science-based, life cycle assessment (LCA) sense and 2) measures of cost effectiveness often are not based on standard methods for measuring economic worth. Yet, the building industry demands compelling metrics to justify sustainable building designs. The problem is hard to solve because, until now, neither methods nor robust data supporting defensible business cases were available. The US National Institute of Standards and Technology (NIST) Building and Fire Research Laboratory is beginning to address these needs by developing metrics and tools for assessing the life cycle economic and environmental performance of buildings. Economic performance is measured with the use of standard life cycle costing methods. Environmental performance is measured by LCA methods that assess the "carbon footprint" of buildings, as well as 11 other sustainability metrics, including fossil fuel depletion, smog formation, water use, habitat alteration, indoor air quality, and effects on human health. Carbon efficiency ratios and other eco-efficiency metrics are established to yield science-based measures of the relative worth, or "business cases," for green buildings. Here, the approach is illustrated through a realistic building case study focused on different heating, ventilation, air conditioning technology energy efficiency. Additionally, the evolution of the Building for Environmental and Economic Sustainability multidisciplinary team and future plans in this area are described. PMID:20050028

  13. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, R. [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)]. E-mail: kannan@pmail.ntu.edu.sg; Leong, K.C. [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)]. E-mail: mkcleong@ntu.edu.sg; Osman, Ramli [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ho, H.K. [School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tso, C.P. [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka (Malaysia)

    2005-08-15

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established.

  14. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  15. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    International Nuclear Information System (INIS)

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO2-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO2-eq/kWh by 2050.

  16. Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example

    International Nuclear Information System (INIS)

    Highlights: • This paper evaluates the life cycle carbon emission of nuclear power in a scenario based approach. • It quantifies the impacts to the LCA results from the change in design parameters. • The methodology can give indications towards preferred or favorable designs. • The findings contribute to the life cycle inventories of energy systems. - Abstract: The life cycle carbon emission factor (measured by t-CO2/GW h) of nuclear power is much lower than those of fossil fueled power generation technologies. However, the fact of nuclear energy being a low carbon power source comes with many assumptions. These assumptions range from system and process definitions, to input–output definitions, to system boundary and cut-off criteria selections, and life cycle inventory dataset. However, there is a somewhat neglected but critical aspect – the design aspect. This refers to the impacts on the life cycle carbon emissions from the change in design parameters related to nuclear power. The design parameters identified in this paper include: (1) the uranium ore grade, (2) the critical process technologies, represented by the average initial enrichment concentration of 235U in the reactor fuel, and (3) the size of the nuclear power reactor (measured by the generating capacity). If not properly tested, assumptions in the design aspect can lead to an erroneous estimation on the life cycle carbon emission factor of nuclear power. In this paper, a methodology is developed using the Process Chain Analysis (PCA) approach to quantify the impacts of the changes in the selected design parameters on the life cycle carbon emission factor of nuclear power. The concept of doing so broadens the scope of PCAs on energy systems from “one-off” calculation to analysis towards favorable/preferred designs. The findings from the analyses can serve as addition to the life cycle inventory database for nuclear power as well as provide indications for the sustainability of nuclear

  17. A life cycle analysis of the Canadian natural gas system

    International Nuclear Information System (INIS)

    A life cycle analysis (LCA) model has been developed for the Canadian natural gas industry using Battelle's Life-Cycle AdvantageTM model which was developed on behalf of the Canadian Gas Association and the Gas Research Institute of Canada. The model makes it possible to determine cradle to grave emissions of carbon dioxide, methane and nitrous oxides gases through each segment of the Canadian natural gas industry, including upstream, transmission, storage, distribution and end-use. Another advantage of the model is that it allows for a full fuel cycle comparison of natural gas with other fossil fuels on an equivalent end-use energy basis. This information is helpful when dealing with national climate change issues and for determining the role of natural gas in reducing Canada's greenhouse gas emissions as outlined in the Kyoto Protocol. The model was developed to address the need to have a defensible answer to future regulatory requirements regarding the full impact of natural gas systems and end use. This need became apparent with the sharp increase in new natural gas projects throughout Canada. 4 refs., 5 tabs., 2 figs

  18. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  19. The contribution of enzymes and process chemicals to the life cycle of ethanol

    International Nuclear Information System (INIS)

    Most life cycle studies of biofuels have not examined the impact of process chemicals and enzymes, both necessary inputs to biochemical production and which vary depending upon the technology platform (feedstock, pretreatment and hydrolysis system). We examine whether this omission is warranted for sugar-platform technologies. We develop life cycle ('well-to-tank') case studies for a corn dry-mill and for one 'mature' and two near-term lignocellulosic ethanol technologies. Process chemical and enzyme inputs contribute only 3% of fossil energy use and greenhouse gas (GHG) emissions for corn ethanol. Assuming considerable improvement compared to current enzyme performance, the inputs for the near-term lignocellulosic technologies studied are found to be responsible for 30%-40% of fossil energy use and 30%-35% of GHG emissions, not an insignificant fraction given that these models represent technology developers' nth plant performance. Mature technologies which assume lower chemical and enzyme loadings, high enzyme specific activity and on-site production utilizing renewable energy would significantly improve performance. Although the lignocellulosic technologies modeled offer benefits over today's corn ethanol through reducing life cycle fossil energy demand and GHG emissions by factors of three and six, achieving those performance levels requires continued research into and development of the manufacture of low dose, high specific activity enzyme systems. Realizing the benefits of low carbon fuels through biological conversion will otherwise not be possible. Tracking the technological performance of process conversion materials remains an important step in measuring the life cycle performance of biofuels.

  20. CdTe photovoltaics: Life cycle environmental profile and comparisons

    International Nuclear Information System (INIS)

    We discuss the emissions of cadmium throughout all the life stages of CdTe PV modules, from extracting, refining, and purifying the raw materials to producing, using, and disposing or recycling of the modules. Then, we compare these emissions with those in the life cycle of three different types of crystalline Si PV modules. The energy requirement and energy pay back times (EPBT) of CdTe PV modules are considerably shorter than that of crystalline Si modules, although the latter exhibit higher efficiencies. This difference is primarily due to the energy used to process silicon, a fraction of which is derived from fossil fuels, inevitably producing Cd and many other heavy-metal emissions. The lower energy requirement of CdTe PV results in lower emissions of all pollutants, including cadmium

  1. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    Science.gov (United States)

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  2. Life Cycle Assessment (The Use of Life Cycle Assessment for Aquaculture)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This research is aimed at the demonstration of the use of Life Cycle Assessment (LCA) in aquaculture for the development of process improvement. This work is being...

  3. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    Energy Technology Data Exchange (ETDEWEB)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  4. Life Cycle Exergy Analysis of Wind Energy Systems : Assessing and improving life cycle analysis methodology

    OpenAIRE

    Davidsson, Simon

    2011-01-01

    Wind power capacity is currently growing fast around the world. At the same time different forms of life cycle analysis are becoming common for measuring the environmental impact of wind energy systems. This thesis identifies several problems with current methods for assessing the environmental impact of wind energy and suggests improvements that will make these assessments more robust. The use of the exergy concept combined with life cycle analysis has been proposed by several researchers ov...

  5. Geochemical characteristics of fossil Solenites murrayana cuticles from the Jurassic in Lanzhou, northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, B.N.; Yan, D.F.; Xie, S.P.; Shi, Y.J.; Zhang, C.J.; Lin, Z.C. [Lanzhou University, Lanzhou (China)

    2006-07-01

    Through geochemical analysis on cuticles of the Jurassic fossil Solenites murrayuna L. et H. from the Yaojie Coalfield in Lanzhou, northwest China, and by comparison of geochemical features with its nearest living equivalent, Ginkgo biloba, we show that the characteristics of organic matter of the fossil plant cuticles accord with evolutionary features of asphalt in oil formation. The content analysis of organic matter indicates that the geochemistry is equivalent to rotten mud-sapropel humus types from Mesozoic and Cenozoic source rock in China. Some analysis data of organic matter indicate that Solenites murrayana cuticles are in a low mature stage, which coincides with the hydrocarbon generation model of cutinite in coal. Moreover, distribution features of soluble organic matter of cuticles show that fossil plant cuticles have a definite action in forming terrestrial high-wax oil, which has testified the contribution of high plants to waxness. The present study proves that Ginkgophytes abundant in the Jurassic were a high potential plant in the formation of coal-bed hydrocarbon.

  6. Model of environmental life cycle assessment for coal mining operations.

    Science.gov (United States)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. PMID:27092420

  7. Improving energy consumption structure: A comprehensive assessment of fossil energy subsidies reform in China

    Energy Technology Data Exchange (ETDEWEB)

    Wei Liu; Hong Li [Peking University, Beijing (China). School of Economics

    2011-07-15

    Fossil energy subsidies reform would be an effective way to improve the energy consumption structure; however, the reform needs to be assessed comprehensively beforehand as it would exert uncertain impacts on economy, society and environment. In this paper, we use price-gap approach to estimate the fossil energy subsidies of China, then establish CGE model that contains pollutant emissions accounts and CO{sub 2} emissions account to stimulate the fossil energy subsidies reform under different scenarios, and the environmental economic analysis concept is introduced to monetize the pollutant reduction benefits. Furthermore, we analyze the possibility and scope of improving the energy consumption structure from the perspective of technical and economic analysis. Analytical results show that the energy consumption structure could be improved by different extent by removing coal or oil subsidies, while the economic and social indexes will be influenced distinctively. Meanwhile, the effects of cutting coal subsidies are more feasible than that of cutting oil subsidies overall. It is recommended to implement fossil energy subsidies gradually, cut the coal first and then cut oil subsidies successively. 24 refs., 6 figs., 5 tabs.

  8. Life cycle management in product development

    DEFF Research Database (Denmark)

    Skelton, Kristen; Pattis, Anna

    The integration of Life Cycle Thinking (LCT) and Life Cycle Management (LCM) into business operations poses great challenges, as it requires a wider range of environmental responsibility often extending beyond a company's immediate control. Simultaneously, it offers many opportunities such as the...... reduction of a product's or industry’s environmental impacts, an increase in process efficiency or the interconnectedness within the organization itself or across a supply chain. Product development has been an area where application of LCM has been discussed most, since most product impacts are determined...... in the innovation and design phases. This comparative analysis explores the various approaches and challenges two companies are currently facing in their attempts to integrate LCT into their core product development processes....

  9. Life-Cycle Data Management at NOAA

    Science.gov (United States)

    de la Beaujardiere, J.

    2014-12-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates over a hundred observing systems which span the environment from the bottom of the ocean to the surface of the Sun. The resulting data are essential for immediate priorities such as weather forecasting, and the data also constitute an irreplaceable resource collected at great cost. It is therefore necessary to carefully preserve this information for ongoing scientific use, for new research and applications, and to ensure reproducibility of scientific conclusions. The NOAA data life-cycle includes activities in three major phases: planning and production, management of the resulting data, and usage activities. This paper will describe current work by the NOAA Environmental Data Management Committee (EDMC), Data Management Integration Team (DMIT), and the NOAA National Data Centers in areas including DM planning, documentation, cataloging, data access, and preservation and stewardship to improve and standardize policies and practices for life-cycle data management.

  10. Life Cycle Thinking in Impact Assessment

    DEFF Research Database (Denmark)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life...... cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which...... reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly...

  11. A Community Membership Life Cycle Model

    CERN Document Server

    Sonnenbichler, Andreas C

    2010-01-01

    Web 2.0 is transforming the internet: Information consumers become information producers and consumers at the same time. In virtual places like Facebook, Youtube, discussion boards and weblogs diversificated topics, groups and issues are propagated and discussed. Today an internet user is a member of lots of communities at different virtual places. "Real life" group membership and group behavior has been analyzed in science intensively in the last decades. Most interestingly, to our knowledge, user roles and behavior have not been adapted to the modern internet. In this work, we give a short overview of traditional community roles. We adapt those models and apply them to virtual online communities. We suggest a community membership life cycle model describing roles a user can take during his membership in a community. Our model is systematic and generic; it can be adapted to concrete communities in the web. The knowledge of a community's life cycle allows influencing the group structure: Stage transitions can...

  12. Asset Allocation Over the Life Cycle

    DEFF Research Database (Denmark)

    Fischer, Marcel; Kraft, Holger; Munk, Claus

    2013-01-01

    We study the welfare effect of tax-optimizing portfolio decisions in a life cycle model with unspanned labor income and realization-based capital gain taxation. For realistic parameterizations of our model, certainty equivalent welfare gains from fully tax-optimized portfolio decisions are less...... than 2% of present financial wealth and lifetime income compared to a heuristic portfolio policy ignoring the taxation of profits (capital gains, interest and dividend payments). Compared to a heuristic portfolio policy that only ignores the realization-based feature of capital gain taxation and...... instead assumes mark-to-market taxation, these gains are less than 0.5%. That is, our work provides a justification for ignoring taxes in life cycle portfolio choice problems - a wide-spread assumption in that literature. However, if capital gains are forgiven at death (as in the U.S.), investors with...

  13. Risk informed life cycle plant design

    International Nuclear Information System (INIS)

    Many facility life cycle activities including design, construction, fabrication, inspection and maintenance are evolving from a deterministic to a risk-informed basis. The risk informed approach uses probabilistic methods to evaluate the contribution of individual system components to total system performance. Total system performance considers both safety and cost considerations including system failure, reliability, and availability. By necessity, a risk-informed approach considers both the component's life cycle and the life cycle of the system. In the nuclear industry, risk-informed approaches, namely probabilistic risk assessment (PRA) or probabilistic safety assessment (PSA), have become a standard tool used to evaluate the safety of nuclear power plants. Recent studies pertaining to advanced reactor development have indicated that these new power plants must provide enhanced safety over existing nuclear facilities and be cost-competitive with other energy sources. Risk-informed approaches, beyond traditional PRA, offer the opportunity to optimize design while considering the total life cycle of the plant in order to realize these goals. The use of risk-informed design approaches in the nuclear industry is only beginning, with recent promulgation of risk-informed regulations and proposals for risk-informed codes. This paper briefly summarizes the current state of affairs regarding the use of risk-informed approaches in design. Key points to fully realize the benefit of applying a risk-informed approach to nuclear power plant design are then presented. These points are equally applicable to non-nuclear facilities where optimization for cost competitiveness and/or safety is desired. (author)

  14. Life cycle modelling for tourism areas

    OpenAIRE

    Alvares, Daniela; Lourenço, Júlia

    2005-01-01

    Modelling tourism development cycles associated with planning and investment cycles intends to be a contribution to the understanding of the tourism activity within a continuum process. It allows a better apprehension of the sequence of interdependencies that exist and can be addressed enlarging the well-known concept of tourism product and its life cycle. The proposed model can contribute for monitoring the tourism activity and improve its development in a sustainable way. If the tourist sit...

  15. Life cycle assessment of products in forestry

    OpenAIRE

    Košir, Boštjan

    1999-01-01

    This paper describes the structure of the method of life cycle assessment, with special focus on products in forestry. Some examples taken from foreign studies show the basic dilemmas and faults when using this method in forest management. We shall define the problem of proving ecological suitability, anddescribe the differences between forest certification and eco-labelling. Moreover, we shall explain the significance of ISO 14000 standards.

  16. Technoligical Life Cycles Regional Clusters Facing Disruption

    OpenAIRE

    Bent Dalum; Pedersen, Christian Ø. R.; Gert Villumsen

    2002-01-01

    The phenomenon of technological life cycles is argued to be of great importance in the development of regional clusters. New 'disruptive' technologies may initiate the emergence of new regional industrial clusters and/or create new opportunities for further development of existing ones. However, they may also result in stagnation and decline of the latter. The term disruptive refers to such significant changes in the basic technologies that may change the industrial landscape, even in the sho...

  17. Life Cycle Analysis of Soil Remediation Technologies

    OpenAIRE

    Cappuyns, Valérie; Bouckenooghe, Diederik; Van Breuseghem, Lien

    2009-01-01

    Life cycle analysis (LCA) was applied to evaluate remediation technologies for soil and groundwater contaminated with organic components. The environmental impact, cost and risk of three techniques, namely (1) vacuum enhanced recovery, (2) a new in situ thermal treatment technique and (3) soil excavation have been evaluated by means of different tools. Several LCA-based software packages were screened, with special attention for their easiness to use, the amount of data necessary to perform t...

  18. Life Cycle Assessment of Plastic Bag Production

    OpenAIRE

    Ruban, Anna

    2012-01-01

    The main focus of this report is to establish a comparative study of traditional and biodegradable vest-plastic bag production through the utilization of a life cycle assessment (LCA) approach. The measurements were made for the Ukrainian limited liability company “Polymer”, as a representative manufacturer, in order to calculate the environmental impact of plastic bag manufacturing, and identify the more environmental friendly item. This research is based on a literature review of the specia...

  19. Generalizing Agile Software Development Life Cycle

    Directory of Open Access Journals (Sweden)

    S. Bhalerao

    2009-11-01

    Full Text Available In last decade, various agile methods have been introduced and used by software industry. It has been observed that many practitioners are using hybrid of agile methods and traditional methods. The knowledge of agile software development process about the theoretical grounds, applicability in large development settings and connections to establish software engineering disciplines remain mostly in dark. It has been reported that it is difficult for average manager to implement agile method in the organization. Further, every agile method has its own development cycle that brings technological, managerial and environmental changes in organization. A proper roadmap of agile software development in the form of agile software development life cycle can be developed to address the aforesaid issues of agile software development process. Thus, there is strong need of agile software development life cycle that clearly defines the phases included in any agile method and also describes the artifacts of each phase. This generalization of agile software development life cycle provides the guideline for average developers about usability, suitability, applicability of agile methods.

  20. Life cycle management of service water systems

    International Nuclear Information System (INIS)

    As nuclear plants age, more attention must focus on age and time dependent degradation mechanisms such as corrosion, erosion, fatigue, etc. These degradation mechanisms can best be managed by developing a life cycle management plan which integrates past historical data, current conditions and future performance needs. In this paper we present two examples of life cycle management. In the first example, the 20-year maintenance history of a sea water cooling system (cement-lined, cast iron) is reviewed to develop attributes like maintenance cost, spare part inventory, corrosion, and repair data. Based on this information, the future expected damage rate was forecast. The cost of managing the future damage was compared with the cost to replace (in kind and with upgraded materials. A decision optimization scheme was developed to choose the least cost option from: a) Run as-is and repair; b) replace in kind; or c) replace with upgraded material and better design. In the second example, life cycle management techniques were developed for a ceilcote lined steel pipe cooling water system. Screens (fixed and traveling), filters, pumps, motors, valves, and piping were evaluated. (author)

  1. Rejuvenation of Fossil Sutures and Related Mesozoic Intracontinental Orogenies in South China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Huanan (South China) subcontinent was created by amalgamation of the Yangtze, Xianggan, Cathaysia and Zhemin microcontinents by the Guangxi orogeny in the Early Palaeozoic. The closure of the Tethyan Ocean and subsequent collision event outside the amalgamated continent reactivated fossil sutures and resulted in intracontinental (ensialic) orogenies in the Mesozoic. Based on evidence from deformation, molasse and granitoids, the Sichuan-Guizhou-Hunan-southern Hubei and Hunan-Jiangxi-Fujian Yanshanian fold-thrust systems and the Lower Yangtze-northwestern Fujian Indosinian fold-thrust system are thought to be intracontinental orogens. Their main features are as follows: intracontinental orogenies occurred areally, thrusting propagated towards the interior of the continental, they extend parallelly to the strikes of the fossil sutures, and the details of the temporal-spatial evolution of the orogens depend on subduction-collision events.

  2. Life cycle assessment study of a Chinese desktop personal computer

    International Nuclear Information System (INIS)

    Associated with the tremendous prosperity in world electronic information and telecommunication industry, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electronic and electric products (e-products). China's importance as both a consumer and supplier of e-products has grown at an unprecedented pace in recent decade. Hence, this paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese e-products from a global level. A desktop personal computer system has been selected to carry out a detailed and modular LCA which follows the ISO 14040 series. The LCA is constructed by SimaPro software version 7.0 and expressed with the Eco-indicator'99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the so-called CML method is used in order to estimate the influence of the choice of the assessment method on the result. Life cycle inventory information is complied by ecoinvent 1.3 databases, combined with literature and field investigations on the present Chinese situation. The established LCA study shows that that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing of such devices, the integrated circuits (ICs) and the Liquid Crystal Display (LCD) are those parts contributing most to the impact. As no other aspects are taken into account during the use phase, the impact is due to the way how the electricity is produced. The final process steps - i.e. the end of life phase - lead to a clear environmental benefit if a formal and modern, up-to-date technical system is assumed, like here in this study

  3. An ideal sealed source life-cycle

    Energy Technology Data Exchange (ETDEWEB)

    Tompkins, Joseph Andrew [Los Alamos National Laboratory

    2009-01-01

    we have today. This regulation created a new regulatory framework seen as promising at the time. However, now they recognize that, despite the good intentions, the NIJWP/85 has not solved any source disposition problems. The answer to these sealed source disposition problems is to adopt a philosophy to correct these regulatory issues, determine an interim solution, execute that solution until there is a minimal backlog of sources to deal with, and then let the mechanisms they have created solve this problem into the foreseeable future. The primary philosophical tenet of the ideal sealed source life cycle follows. You do not allow the creation (or importation) of any source whose use cannot be justified, which cannot be affordably shipped, or that does not have a well-delinated and affordable disposition pathway. The path forward dictates that we fix the problem by embracing the Ideal Source Life cycle. In figure 1, we can see some of the elements of the ideal source life cycle. The life cycle is broken down into four portions, manufacture, use, consolidation, and disposition. These four arbitrary elements allow them to focus on the ideal life cycle phases that every source should go through between manufacture and final disposition. As we examine the various phases of the sealed source life cycle, they pick specific examples and explore the adoption of the ideal life cycle model.

  4. U.S. Life Cycle Inventory Database Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  5. U.S. Life Cycle Inventory Database Roadmap (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  6. INTEGRATED CORPORATE STRUCTURE LIFE CYCLE MANAGEMENT MODELING AND ORGANIZATION

    OpenAIRE

    Naumenko, M.; Morozova, L.

    2011-01-01

    Integrated business structure presented as complementary pool of its participants skills. The methodical approach to integrated business structure life cycle modeling proposed. Recommendations of enterprises life cycles stages correlate are submitted.

  7. Human health impacts in the life cycle of future European electricity generation

    International Nuclear Information System (INIS)

    This paper presents Life Cycle Assessment (LCA) based quantification of the potential human health impacts (HHI) of base-load power generation technologies for the year 2030. Cumulative Greenhouse Gas (GHG) emissions per kWh electricity produced are shown in order to provide the basis for comparison with existing literature. Minimising negative impacts on human health is one of the key elements of policy making towards sustainable development: besides their direct impacts on quality of life, HHI also trigger other impacts, e.g. external costs in the health care system. These HHI are measured using the Life Cycle Impact Assessment (LCIA) methods “ReCiPe” with its three different perspectives and “IMPACT2002+”. Total HHI as well as the shares of the contributing damage categories vary largely between these perspectives and methods. Impacts due to climate change, human toxicity, and particulate matter formation are the main contributors to total HHI. Independently of the perspective chosen, the overall impacts on human health from nuclear power and renewables are substantially lower than those caused by coal power, while natural gas can have lower HHI than nuclear and some renewables. Fossil fuel combustion as well as coal, uranium and metal mining are the life cycle stages generating the highest HHI. - Highlights: • Life cycle human health impacts (HHI) due to electricity production are analysed. • Results are shown for the three ReCiPe perspectives and IMPACT2002+LCIA method. • Total HHI of nuclear and renewables are much below those of fossil technologies. • Climate change and human toxicity contribute most to total HHI. • Fossil fuel combustion and coal mining are the most polluting life cycle stages

  8. Life Cycle Concept and Management Practice in Industry

    OpenAIRE

    Razvigorova, E.; Acs, J.

    1988-01-01

    The workshop "Life Cycle Theory and Management Practice" demonstrated the widespread acceptance of the life cycle concept in the scientific community and in management practice. Based on a summary of the main terms and the various stages of life cycles for products, processes, and industries, and an description of the relationships between these phases and various aspects of organizations, industries and products, the value of using different life cycle concepts and the importance of the...

  9. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery

    International Nuclear Information System (INIS)

    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery. - Highlights: • A high diesel consumption is associated to the ethanol sugarcane life-cycle. • Sugarcane industry can provide sources of carbon and energy for the algae growing. • The sugarcane-algae integration can improve the ethanol life-cycle performance. • This integration is a promising pathway for the deployment of algae biodiesel. • There are still significant techno-economic barriers associated with algae biodiesel

  10. Chain modeling for life cycle systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, J.J. [Sandia National Lab., Albuquerque, NM (United States); Shapiro, V. [Univ. of Wisconsin, Madison, WI (United States). Spatial Automation Lab.

    1997-12-01

    Throughout Sandia`s history, products have been represented by drawings. Solid modeling systems have recently replaced drawings as the preferred means for representing product geometry. These systems are used for product visualization, engineering analysis and manufacturing planning. Unfortunately, solid modeling technology is inadequate for life cycle systems engineering, which requires maintenance of technical history, efficient management of geometric and non-geometric data, and explicit representation of engineering and manufacturing characteristics. Such information is not part of the mathematical foundation of solid modeling. The current state-of-the-art in life cycle engineering is comprised of painstakingly created special purpose tools, which often are incompatible. New research on {open_quotes}chain modeling{close_quotes} provides a method of chaining the functionality of a part to the geometric representation. Chain modeling extends classical solid modeling to include physical, manufacturing, and procedural information required for life cycle engineering. In addition, chain modeling promises to provide the missing theoretical basis for Sandia`s parent/child product realization paradigm. In chain modeling, artifacts and systems are characterized in terms of their combinatorial properties: cell complexes, chains, and their operators. This approach is firmly rooted in algebraic topology and is a natural extension of current technology. The potential benefits of this approach include explicit hierarchical and combinatorial representation of physics, geometry, functionality, test, and legacy data in a common computational framework that supports a rational decision process and partial design automation. Chain modeling will have a significant impact on design preservation, system identification, parameterization, system reliability, and design simplification.

  11. Comparison of Asian Aquaculture Products by Use of Statistically Supported Life Cycle Assessment

    NARCIS (Netherlands)

    Henriksson, P.J.G.; Rico Artero, A.; Zhang, W.; Nahid, S.S.A.; Newton, R.; Phan, L.T.; Zhang, Z.

    2015-01-01

    We investigated aquaculture production of Asian tiger shrimp, whiteleg shrimp, giant river prawn, tilapia, and pangasius catfish in Bangladesh, China, Thailand, and Vietnam by using life cycle assessments (LCAs), with the purpose of evaluating the comparative eco-efficiency of producing different aq

  12. Land use in life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mattila, T.; Helin, T.; Antikainen, R.; Soimakallio, S.; Pingoud, K.; Wessman, H.

    2011-07-01

    As human population is continuously increasing, productive land is becoming even more limited resource for biomass production. Land use and land use change cause various environmental impacts. At the moment the focus is on land use related greenhouse gas emissions, but changes in carbon cycles and storages, soil quality and soil net productivity, and loss of biodiversity are growing in importance. Additionally, changes in land use and land cover also affect water quality and availability. Currently, land use related terminology is diverse, and the methodologies to assess the impacts of land use and land use change are still partly under development. The aim of this study was to discuss how land use induced environmental impacts can be taken into consideration in the life cycle assessment (LCA). This report summarises the results of the FINLCA project's (Life Cycle Assessment Framework and Tools for Finnish Companies) two tasks (WP 2.1 land use and WP 5.2 biomaterials). The study was conducted in co-operation with the Finnish Environment Institute (SYKE) and VTT Technical Research Centre of Finland. As a result, we show that it is possible to make land use impact assessment with LCA. Indicators are available for climate impacts and for all the other identified land use impact categories (resource depletion, soil quality, and biodiversity). However, limited land use related data reduces the reliability of the results. Most widely used life cycle impact assessment (LCIA) methods (e.g. ReCiPe, CML or EI99) cover only one aspect of land use induced environmental impacts. Additionally, some of the land use indicator results are difficult to understand and communicate. From the company perspective, we considered that accounting of land occupation (m2a) and transformation (m2 from and to) is a good starting point together with the relatively simple ecological footprint indicator for productive land occupation (resource depletion). A more comprehensive and challenging

  13. Using life cycle costing for product management

    OpenAIRE

    Vlachy, Jan

    2014-01-01

    Introducing a case study on product management, this paper applies the Life Cycle Cost (LCC) method to solve a particular problem of design selection in the area of mechanical engineering. It is clearly explained and illustrated that various cost types need to be taken into account, ranging over the whole life of the product from concept to end-of-life, and related to an appropriate unit of utility. In order to achieve maximum effect, such a comprehensive economic analysis should ideally be u...

  14. Life Cycle Assessment of Wall Systems

    Science.gov (United States)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  15. Life Cycle Assessment in Spatial Planning

    DEFF Research Database (Denmark)

    Bidstrup, Morten; Pizzol, Massimo; Schmidt, Jannick Højrup

    2015-01-01

    spatial boundaries of a plan to further focus on global, indirect and cumulative impacts. These impacts are referred to as “systemic impacts”. This study proposes a Life Cycle Assessment (LCA) procedure which can be adopted in SEAs of various types of planning. The procedure represents a first step......Spatial planning establishes conditions for societal patterns of production and consumption. However, the assigned Strategic Environmental Assessments (SEA) tend to have a too narrow focus. In particular, there is a need for applying a system perspective in SEA, extending assessment beyond the...... little attention, and it highlights the role of spatial planners in facilitating cleaner production....

  16. Life cycle assessment, electricity generation and sustainability

    International Nuclear Information System (INIS)

    When making a choice between alternatives, in whatever field, it is essential to have regard for the complete set of costs and benefits, in the widest possible sense, that will result in each case. The preferred option should be that which confers the maximum benefit, although relevant objectives will often conflict and its identification may be far from straightforward. Life cycle assessment (LCA) is an environmental accounting tool for measuring the inputs and outputs of an option, whether a product, a process or an activity. This paper explains the principles and methodologies involved in LCA, its application to the nuclear sector, and to electricity generating options and sustainable development. (author)

  17. Life cycle analysis, Carbon footprint, Sustainability

    OpenAIRE

    Watkins, Richard

    2015-01-01

    The aim of Life Cycle Analysis is to try and evaluate the environmental impact of a device (or process), taking into account all the important contributing factors over its life. This can include the construction impacts and end of life issues, as well as any impact during the actual “use-phase” of the device. In the context of retail refrigeration, by far the dominant environmental impact results from the use of energy to run the refrigeration plant. This also applies to almost anything ...

  18. Aquatic ecotoxicological indicators in life cycle assessment

    DEFF Research Database (Denmark)

    Pennington, David W.; Payet, Jerome; Hauschild, Michael Zwicky

    2004-01-01

    This paper compares available options for the aquatic ecotoxicological effect factor component in life cycle assessment (LCA). The effect factor is expressed here as the change in risk per unit change in cumulative exposure, ƒ´Effect/ƒ´Exposure. The comparison is restricted to approaches linked...... basis represents the best available practice for use in LCA at this time, ƒ´PAFms/ƒ´C = 0.5/HC50; where ƒ´PAFms is the change in the (Potentially Affected) Fraction (PAF) of species that experiences an Increase in exposure above a specified effect level, accounting for the presence of complex background...

  19. Life cycle and sustainability of abrasive tools

    CERN Document Server

    Linke, Barbara

    2016-01-01

    This monograph focuses on abrasive tools for grinding, polishing, honing, and lapping operations. The book describes the life cycle of abrasive tools from raw material processing of abrasive grits and bonding, manufacturing of monolithic or multi-layered tools, tool use to tool end-of-life. Moreover, this work highlights sustainability challenges including economic, environmental, social and technological aspects. The target audience primarily comprises research and industry experts in the field of manufacturing, but the book may also be beneficial for graduate students.

  20. Software Development Life Cycle Security Issues

    Science.gov (United States)

    Kaur, Daljit; Kaur, Parminder

    2011-12-01

    Security is now-a-days one of the major problems because of many reasons. Security is now-a-days one of the major problems because of many reasons. The main cause is that software can't withstand security attacks because of vulnerabilities in it which are caused by defective specifications design and implementation. We have conducted a survey asking software developers, project managers and other people in software development about their security awareness and implementation in Software Development Life Cycle (SDLC). The survey was open to participation for three weeks and this paper explains the survey results.

  1. Geochemical evidence for non-marine depositional environment of foraminiferal fossils from the Nihewan Basin, China

    Institute of Scientific and Technical Information of China (English)

    王世杰; 刘秀明; 贾玉鹤; 董丽敏; 季宏兵

    2002-01-01

    From the first finding in 1970s, the findings of foraminiferal fossil assemblages in inland basins have been reported from time to time, especially in recent years. The debates on the depositional environment of foraminiferal fossils have become the hot spot of researches again in China. Based on the researches of trace element geochemistry and electron scanning microscope of shells of Quaternary foraminiferal fossils from the Xiaodukou section in the inland Nihewan basin, the original 87Sr/86Sr and other geochemical information of shells were believed to be preserved well and could be used to rebuild the geochemistry of contemporary waters where foraminifera deposited, although there existed some effects of burial diagenesis on the geochemistry of shells to a certain extent. The 87Sr/86Sr ratios of well-preserved Xiaodukou foraminiferal shells were measured, giving a range of 0.711190±25-0.712018±14, apparently higher than the value of contemporary seawater (0.709087-0.709147) and similar to that of the Sanggan River, proving that it represented the value of the ancient lacustrine water. The hyperbolic mixing models of 87Sr/86Sr-palaeosalinity and 87Sr/86Sr-Sr/Ca indicated that the contemporary waters where Xiaodukou foraminifera inhabited was an inland lake and there was no seawater input to the depositional environment.

  2. The earliest fossil record of Panorpidae (Mecoptera from the Middle Jurassic of China

    Directory of Open Access Journals (Sweden)

    He Ding

    2014-08-01

    Full Text Available The early history of Panorpidae (Mecoptera is poorly known due to sparse fossil records. Up to date, only nine fossil species have been described, all from the Paleogene, except the Early Cretaceous Solusipanorpa gibbidorsa Lin, 1980. However, we suggest S. gibbidorsa is too incompletely preserved to permit even family classification. A new genus with two new species, Jurassipanorpa impunctata gen. et sp. n. and Jurassipanorpa sticta sp. n., are described based on four well-preserved specimens from the late Middle Jurassic Jiulongshan Formation of Daohugou, Inner Mongolia, China. These two new species are the earliest fossil records of Panorpidae. The new genus is erected based on a combination of forewing characters: both R1 and Rs1 with two branches, 1A reaching posterior margin of wing distad of the forking of Rs from R1, and no crossveins or only one crossvein between veins of 1A and 2A. In all four specimens, long and robust setae ranging from 0.09 to 0.38 mm in length and pointing anteriorly, are present on anal veins of forewings. The function of these setae is enigmatic.

  3. 10 CFR 434.607 - Life cycle cost analysis criteria.

    Science.gov (United States)

    2010-01-01

    ... subpart A of 10 CFR part 436. When performing optional life cycle cost analyses of energy conservation opportunities the designer may use the life cycle cost procedures of subpart A of 10 CFR part 436 or OMB... practices of subpart A of 10 CFR part 436 shall not be included in the life cycle cost calculation....

  4. 19 CFR 207.27 - Short life cycle products.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative...

  5. 10 CFR 433.8 - Life-cycle costing.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle costing. 433.8 Section 433.8 Energy DEPARTMENT... FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.8 Life-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures set out in subpart...

  6. 10 CFR 455.64 - Life-cycle cost methodology.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle cost methodology. 455.64 Section 455.64 Energy..., Hospitals, Units of Local Government, and Public Care Institutions § 455.64 Life-cycle cost methodology. (a) The life-cycle cost methodology under § 455.63(b) of this part is a systematic comparison of...

  7. Residential Preferences and Moving Behavior: A Family Life Cycle Analysis.

    Science.gov (United States)

    McAuley, William J.; Nutty, Cheri L.

    The relationship of family life cycle changes to housing preferences and residential mobility is examined. Two residential decision-making issues are explored in detail--how family life cycle stages influence what people view as important to their choice of residential setting and what individuals at different family life cycle stages view as the…

  8. Life Cycle Assessment and Life Cycle Costing of a SOFC system for distributed power generation

    International Nuclear Information System (INIS)

    Highlights: • Assessment of 230 kW SOFC system from a life cycle perspective. • LCA–LCC toolbox developed to compare SOFC and MGT. • Eight sustainability indicators are identified as drivers for decision making. • Investment cost is a bottle-neck for SOFC systems. • SOFC systems show environmental–economic benefits for household applications. - Abstract: Through the combination of Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) in a dedicated toolbox, the aim of this paper is to evaluate both potential environmental impacts and potential costs of the operation of a 230 kW Solid Oxide Fuel Cell (SOFC) system. LCA and LCC methodologies have been here applied for a comparison with a conventional technology, i.e. Micro Gas Turbine (MGT) for distributed power generation applications. A contribution analysis for the SOFC system fuelled with natural gas, reveals that the fuel supply is responsible of a relevant share of the environmental impact. The same system, fed with biogas, shows environmental benefits on global and regional impact categories, depending on the power energy mix used during the digestion process. For both SOFC and MGT systems, the life cycle hotspots are identifiable in the operation stage for the global warming category, and in the fuel supply stage for all the remaining impact categories. The LCA–LCC comparison between SOFC and MGT systems, based on a toolbox embedding a set of 8 sustainability indicators for decision making, shows that the SOFC system presents environmental and economic benefits in a life cycle perspective, particularly for household application. However, cost results to be the most sensitive bottle-neck for benchmarking with traditional energy systems. Therefore, the SOFC system is preferable to the conventional MGT technology when the sustainability of investment cost is demonstrated, whilst a wide advantage in environmental performance along the life cycle has been proved

  9. Life Cycle Assessment : Life cycle assessment of a high speed centrifugal separator

    OpenAIRE

    Wiik, Marianne; Sahlin, Mikaela

    2007-01-01

    The main objective is to perform a life cycle assessment (LCA) on a hot milk high-speed centrifugal separator (HMRPX 918-HGV-74C, product number 881275 01 01. The purpose of a life cycle assessment (LCA) is to provide a picture of a product’s total environmental impact during its lifecycle. The study is carried out according to ISO 14 040, i.e. all methods, data and assumptions are accounted for in order to make an external review possible. An LCA could provide the basis for an Environmental ...

  10. Tracing fossil fuel CO2 using Δ14C in Xi'an City, China

    Science.gov (United States)

    Zhou, Weijian; Wu, Shugang; Huo, Wenwen; Xiong, Xiaohu; Cheng, Peng; Lu, Xuefeng; Niu, Zhenchuan

    2014-09-01

    Radiocarbon can be used to trace fossil fuel CO2 (CO2ff) in the atmosphere, because radiocarbon has been depleted in fossil fuels. Here we present our study on the spatial distribution and temporal variations of CO2ff in Xi'an City, China using Δ14C of both green foxtail (Setaria viridis, L. Beauv.) leaf samples and urban air samples collected in the recent years. Our results show that the CO2ff indicated by green foxtail ranged from 14.7 ± 1.7 to 52.6 ± 1.7 ppm, reflecting high CO2ff mole fractions in downtown, industrial areas, and at road sites, and low CO2ff mole fractions in public parks. Meanwhile, the monthly CO2ff reflected by air samples showed higher value in winter (57.8 ± 17.1 ppm) than that in summer (20.2 ± 9.8 ppm) due to the enhancement usage of coal burning and the poor dispersion condition of atmosphere. This study displays that the increased fossil fuel emission is associated with the fast development of Xi'an City in China. It is worth mentioning that the green foxtail samples can be used to map out the CO2ff spatial distribution on large scale quickly and conveniently, while the air samples can be used to trace the CO2ff temporal variations with high resolution effectively. Therefore the Δ14C of both green foxtail and air samples is a good indicator of CO2ff emission.

  11. Environmental damage costs from fossil electricity generation in China, 2000~2003

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Electricity consumption increases rapidly with the rapid development of China. The environmental damage costs of electricity generation are very important for both policy analysis and the proper management of the environment. A method was developed in this work to estimate gross environmental damage costs according to emission inventory and environmental cost factors, and to extend the costs from provincial to national level with population density. In this paper, sulfur dioxide (SO2),nitrogen oxides (NOx), particulate matter less than 10 μm in diameter (PM10), and carbon dioxide (CO2) from fossil fired power plants over 6000 kW were selected as index pollutants to quantify the environmental costs of damages on human health and global warming. With the new developed method, environmental damage costs, caused by 3 types of fired power plants in 30 provinces and 6 economic sectors during the years 2000 to 2003, were evaluated and analyzed. It can be seen that the calculated total national environmental damage costs of electricity have rapidly increased from 94930.87× 106 USD in 2000 to about 141041.39× 106 USD in 2003, with an average annual growth rate of 14.11%. Environmental damage costs of SO2, NOx, PM10, and CO2 are 69475.69× 106, 30079.29×106, 28931.84× 106, and 12554.57× 106 USD and account for 49.26%, 21.33%, 20.51%, and 8.90% of total environmental costs in fossil electricity generation, respectively. With regard to regional distribution, external costs caused by fossil electricity generation are mainly concentrated in the more populated and industrialized areas of China, i.e., the Eastern Central and Southeastern areas.

  12. International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Provisions and Action Steps

    OpenAIRE

    2010-01-01

    The International Reference Life Cycle Data System (ILCD) provides a common basis for consistent, robust and quality-assured life cycle data and studies. Such data and studies support coherent SCP instruments, such as Ecolabelling, Ecodesign, Carbon footprinting, and Green Public Procurement. This guide is a component of the International Reference Life Cycle Data System (ILCD) Handbook. It provides technical guidance for detailed Life Cycle Assessment (LCA) studies and provides the technical...

  13. Life cycle implications of urban green infrastructure

    International Nuclear Information System (INIS)

    Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint. - Highlights: → LCA methods can identify environmental tradeoffs for urban low impact development. → Energy and GHG payback time is sensitive to LID construction material choice. → LCA of LID upscaled from street to watershed level is expected to be nonlinear. - The benefits of low impact development and green infrastructure in cities can be modeled using life cycle assessment to understand and guide decisions for meeting sustainability goals.

  14. Thermoregulation in the life cycle of nematodes.

    Science.gov (United States)

    Devaney, Eileen

    2006-05-31

    An unanswered question in the biology of many parasites is the mechanism by which environmental (or external) and intrinsic signals are integrated to determine the switch from one developmental stage to the next. This is particularly pertinent for nematode parasites, many of which have a free-living stage in the environment prior to infection of the mammalian host, or for parasites such as filarial nematodes, which utilise an insect vector for transmission. The environmental changes experienced by a parasite upon infection of a mammalian host are extremely complex and poorly understood. However, the ability of a parasite to sense its new environment must be intrinsically linked to its developmental programme, as progression of the life cycle is dependent upon the infection event. In this review, the relationship between temperature and development in filarial nematodes and in the free-living species Caenorhabditis elegans is summarised, with a focus on the role of heat shock factor and heat shock protein 90 in the nematode life cycle. PMID:16620827

  15. Life Cycle Assessment of Completely Recyclable Concrete

    Directory of Open Access Journals (Sweden)

    Mieke De Schepper

    2014-08-01

    Full Text Available Since the construction sector uses 50% of the Earth’s raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  16. Life cycle assessment of electronic waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jinglan, E-mail: hongjing@sdu.edu.cn [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012 (China); Shi, Wenxiao [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Yutao [School of Life Science, Shandong University, Shanda South Road 27, Jinan 250100 (China); Chen, Wei [Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li, Xiangzhi, E-mail: xiangzhi@sdu.edu.cn [School of Medicine, Shandong University, Jinan 250012 (China)

    2015-04-15

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  17. Life cycle assessment of electronic waste treatment

    International Nuclear Information System (INIS)

    Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)

  18. Life Cycle Greenhouse Gas Emissions from Electricity Generation: A Comparative Analysis of Australian Energy Sources

    OpenAIRE

    Robert G. Hynes; Paul E. Hardisty; Tom S. Clark

    2012-01-01

    Electricity generation is one of the major contributors to global greenhouse gas emissions. Transitioning the World’s energy economy to a lower carbon future will require significant investment in a variety of cleaner technologies, including renewables and nuclear power. In the short term, improving the efficiency of fossil fuel combustion in energy generation can provide an important contribution. Availability of life cycle GHG intensity data will allow decision-makers to move away from over...

  19. Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis

    OpenAIRE

    Burcin Atilgan; Adisa Azapagic

    2016-01-01

    Turkey’s electricity mix is dominated by fossil fuels, but the country has ambitious future targets for renewable and nuclear energy. At present, environmental impacts of electricity generation in Turkey are unknown so this paper represents a first attempt to fill this knowledge gap. Taking a life cycle approach, the study considers eleven impacts from electricity generation over the period 1990–2014. All 516 power plants currently operational in Turkey are assessed: lignite, hard coal, natur...

  20. Molecular Fossils for Understanding Biodiversity During the Neoproterozoic-Cambrian Transition in China

    Science.gov (United States)

    Pi, Y.; Tuo, J.; McFadden, K.; Xiao, S.; Zhang, C. L.

    2005-12-01

    Neoproterozoic-Cambrian rocks in South China contain an extraordinary fossil record, including exceptionally well preserved animal embryos, acritarchs, and multi-cellular algae. The goal of this study was to evaluate the microbial diversity associated with these remarkably preserved fossil assemblages at the Neoproterozoic-Cambrian transition. Rock samples of 520-632 Ma in age were collected in the Yangtze Gorges area and southern Anhui Province, China. Samples were powdered and extracted for organic biomarkers. The content of bitumen A accounted for 4-16% of the rock material and most of it (49-79%) was asphaltenes. Saturated and aromatic hydrocarbons accounted for 2-6% and 1-3%, respectively. Analysis using GC-MS indicated the predominance of n-alkanes and less abundant isoprenoid alkanes in the saturated fractions. The n-alkanes were characterized by homologues dominated by C15-C17, which is consistent with the result of high thermal-evolution (Brocks et al., 2003. GCA 67:4321-4335). Hopanoids were present in less abundance and ranged from C29 to C32. A smaller amount of heavy-molecular-weight n-alkanes (C23-C39) was also detected, which indicated a source of high plants and must be contamination from younger organic matter. Still, patterns of variation can be detected among these samples. For example, the ratio of pristane to phytane was all greater than 1.0 except for one sample (JLW9.3) from Yangtze Gorges area. The results indicate that sample JLW9.3 might have been deposited in a reducing environment whereas the other samples might have been formed in relatively oxidative environments. The overall results, however, suggest that rock samples from the Neoproterozoic-Cambrian transition in China have gone through significant metamorphism; thus, understanding of microbial communities using molecular biomarkers in such altered rocks needs to be cautiously executed.

  1. A comparison of production system life cycle models

    Science.gov (United States)

    Attri, Rajesh; Grover, Sandeep

    2012-09-01

    Companies today need to keep up with the rapidly changing market conditions to stay competitive. The main issues in this paper are related to a company's market and its competitors. The prediction of market behavior is helpful for a manufacturing enterprise to build efficient production systems. However, these predictions are usually not reliable. A production system is required to adapt to changing markets, but such requirement entails higher cost. Hence, analyzing different life cycle models of the production system is necessary. In this paper, different life cycle models of the production system are compared to evaluate the distinctive features and the limitations of each model. Furthermore, the difference between product life cycle and production life cycle is summarized, and the effect of product life cycle on production life cycle is explained. Finally, a production system life cycle model, along with key activities to be performed in each stage, is proposed specifically for the manufacturing sector.

  2. Cotton Life Cycle Inventory & Life Cycle Assessment--A Landmark Benchmark for Cotton Sustainability

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Recently, Cotton Incorporated announced the completion of a comprehensive life cycle inventory and life cycJe analysis of cotton products. The endeavor is part of the Cotton Foundation VlSIQN 21 Project and included the participation of the National Cotton Council, Cotton Council International and Cotton Incorporated. The two-year study, managed by PE International,

  3. Combined methodology of optimization and life cycle inventory for a biomass gasification based BCHP system

    International Nuclear Information System (INIS)

    Biomass gasification based building cooling, heating, and power (BCHP) system is an effective distributed energy system to improve the utilization of biomass resources. This paper proposes a combined methodology of optimization method and life cycle inventory (LCI) for the biomass gasification based BCHP system. The life cycle models including biomass planting, biomass collection-storage-transportation, BCHP plant construction and operation, and BCHP plant demolition and recycle, are constructed to obtain economic cost, energy consumption and CO2 emission in the whole service-life. Then, the optimization model for the biomass BCHP system including variables, objective function and solution method are presented. Finally, a biomass BCHP case in Harbin, China, is optimized under different optimization objectives, the life-cycle performances including cost, energy and CO2 emission are obtained and the grey incidence approach is employed to evaluate their comprehensive performances of the biomass BCHP schemes. The results indicate that the life-cycle cost, energy efficiency and CO2 emission of the biomass BCHP system are about 41.9 $ MWh−1, 41% and 59.60 kg MWh−1 respectively. The optimized biomass BCHP configuration to minimize the life-cycle cost is the best scheme to achieve comprehensive benefit including cost, energy consumption, renewable energy ratio, steel consumption, and CO2 emission. - Highlights: • Propose the combined method of optimization and LCI for biomass BCHP system. • Optimize the biomass BCHP system to minimize the life-cycle cost, energy and emission. • Obtain the optimized life-cycle cost, energy efficiency and CO2 emission. • Select the best biomass BCHP scheme using grey incidence approach

  4. Life cycle assessment of photovoltaic electricity generation

    International Nuclear Information System (INIS)

    The paper presents the results of a life cycle assessment (LCA) of the electric generation by means of photovoltaic panels. It considers mass and energy flows over the whole production process starting from silica extraction to the final panel assembling, considering the most advanced and consolidate technologies for polycrystalline silicon panel production. Some considerations about the production cycle are reported; the most critical phases are the transformation of metallic silicon into solar silicon and the panel assembling. The former process is characterised by a great electricity consumption, even if the most efficient conversion technology is considered, the latter by the use of aluminium frame and glass roofing, which are very energy-intensive materials. Moreover, the energy pay back time (EPBT) and the potential for CO2 mitigation have been evaluated, considering different geographic collocations of the photovoltaic plant with different values of solar radiation, latitude, altitude and national energetic mix for electricity production

  5. Methodologies for Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Le Bocq, Agathe; Nazakina, Liudmila;

    2008-01-01

    product chain has to be assessed, whereas others claim that generic data can give a sufficiently accurate picture of the associated social impacts. Discussion. The SLCA approaches show that the perception of social impacts is very variable. An assessment focussing on social impacts created in the close...... in some cases give a reasonable impression of the social impacts that can be expected from the company performing the assessed process. Conclusions. This review gives an overview of the present development of SLCA by presenting the existing approaches to SLCA and discussing how they address the......Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several...

  6. Dependability Engineering in Software Life Cycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-10-15

    Recently, with the rapid development of digital computer and information processing technologies, nuclear I and C (Instrument and Control) system which needs safety-critical function has adopted digital technologies. Software used in safety-critical system must have high dependability. Dependability of the software may have several different attributes such as reliability, safety, confidentiality, integrity, availability, and real-time response. Also, such attributes need different levels of adherence. For shaping of the dependability, there are several dependability processes: fault prevention, fault tolerance, fault removal and fault forecasting. In this paper, we present an integrated model of dependability processes and software life cycle processes and dependability task. This paper is organized as follows. Section 2 describes related research by surveying dependability of the software and dependability processes. Section 3 describes our integrated dependability model and Section 4 shows the dependability task by the development phase. Section 5 concludes the paper.

  7. PROJECT GOVERNANCE – PHASES AND LIFE CYCLE

    Directory of Open Access Journals (Sweden)

    Robbert Titus DEENEN

    2007-01-01

    Full Text Available When talking about projects, the barrier is clear: successful and failed. Some fail due to different reasons, but lack of good project and risk management played a large part. Others succeed largely because of the rigorous and disciplined application of good project practices. But both groups illustrate many points that underline and demonstrate important concepts applicable to current projects. Systematic application of good methods leads to successful outcomes in projects of all types. All projects are fundamentally dependent on people, and human beings are not very different today than we were hundreds, or even thousands, of years ago. This paper uncovers main elements in projects area such as the concepts and governance of projects, with an underline of the main characteristics and the projects phases and life cycle that erase the uncertainty that joins all the projects built at any time.

  8. Life Cycle Assessment of Sugar Production (VB)

    DEFF Research Database (Denmark)

    Teljigovic, Mehmed; Mengiardi, Jon; Factor, Gabriela;

    1999-01-01

    The environmental organisation NOAH has proposed carrying out an environmental assessment of two different sugar productions (using sugar beet or sugar cane) in order to illustrate which of the systems has a higher environmental impact for sugar consumption in Denmark. Therefore a comparison will...... be made between sugar from sugar beet produced in Denmark versus sugar produces from sugar cane in a tropical country, Brazil, and transported afterwards to Denmark. To evaluate the environmental aspects of these two product systems a Life Cycle Assessement (LCA) will be carried out.From the results...... obtained in the present LCA of sugar produces from sugar canes or sugar beet it is difficult to make an immediate choice between the two possibilities. Indeed, Quantitative results from the EDIP (Environmental Design of Industrial Products) software are globally similar for both ways of producing sugar...

  9. Optimization of life cycle management costs

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, A.K. [Stone & Webster Engineering Corp., Boston, MA (United States)

    1994-12-31

    As can be seen from the case studies, a LCM program needs to address and integrate, in the decision process, technical, political, licensing, remaining plant life, component replacement cycles, and financial issues. As part of the LCM evaluations, existing plant programs, ongoing replacement projects, short and long-term operation and maintenance issues, and life extension strategies must be considered. The development of the LCM evaluations and the cost benefit analysis identifies critical technical and life cycle cost parameters. These {open_quotes}discoveries{close_quotes} result from the detailed and effective use of a consistent, quantifiable, and well documented methodology. The systematic development and implementation of a plant-wide LCM program provides for an integrated and structured process that leads to the most practical and effective recommendations. Through the implementation of these recommendations and cost effective decisions, the overall power production costs can be controlled and ultimately lowered.

  10. Stoichiometric implications of a biphasic life cycle.

    Science.gov (United States)

    Tiegs, Scott D; Berven, Keith A; Carmack, Douglas J; Capps, Krista A

    2016-03-01

    Animals mediate flows of elements and energy in ecosystems through processes such as nutrient sequestration in body tissues, and mineralization through excretion. For taxa with biphasic life cycles, the dramatic shifts in anatomy and physiology that occur during ontogeny are expected to be accompanied by changes in body and excreta stoichiometry, but remain little-explored, especially in vertebrates. Here we tested stoichiometric hypotheses related to the bodies and excreta of the wood frog (Lithobates sylvaticus) across life stages and during larval development. Per-capita rates of nitrogen (N) and phosphorus (P) excretion varied widely during larval ontogeny, followed unimodal patterns, and peaked midway through development (Taylor-Kollros stages XV and XII, respectively). Larval mass did not increase steadily during development but peaked at stage XVII and declined until the termination of the experiment at stage XXII. Mass-specific N and P excretion rates of the larvae decreased exponentially during development. When coupled with population-biomass estimates, population-level excretion rates were greatest at stages VIII-X. Percent carbon (C), N, and C:N of body tissue showed weak trends across major life stages; body P and C:P, however, increased sixfold during development from egg to adult. Our results demonstrate that intraspecific ontogenic changes in nutrient contents of excretion and body tissues can be significant, and that N and P are not always excreted proportionally throughout life cycles. These results highlight the dynamic roles that species play in ecosystems, and how the morphological and physiological changes that accompany ontogeny can influence ecosystem-level processes. PMID:26589522

  11. CANDU refurbishment - managing the life cycle

    International Nuclear Information System (INIS)

    All utilities that operate a nuclear power plant have an integrated plan for managing the condition of the plant systems, structures and components. With a sound plant life management program, after about 25 years of operation, replacement of certain reactor core components can give an additional 25 to 30 years of operation. This demonstrates the long-term economic strength of CANDU technology and justifies a long-term commitment to nuclear power. Indeed, replacement of pressure tubes and feeders with the most recent technology will also lead to increased capacity factors - due to reduced requirements for feeder inspections and repair, and eliminating the need for fuel channel spacer relocation which have caused additional and longer maintenance outages. Continuing the operation of CANDU units parallels the successful life extensions of reactors in other countries and provides the benefits of ongoing reliable operation, at an existing plant location, with the continued support of the host community. The key factors for successful, optimum management of the life cycle are: ongoing, effective plant life management programs; careful development of refurbishment scope, taking into account system condition assessments and a systematic safety review; and, a well-planned and well-executed retubing and refurbishment outage, where safety and risk management is paramount to ensure a successful project The paper will describe: the benefits of extended plant life; the outlook for refurbishment; the life management and refurbishment program; preparations for retubing of the reactor core; and, enhanced performance post-retubing. Given the potential magnitude of the program over the next 10 years, AECL will maintain a lead role providing overall support for retubing and plant Life Cycle Management programs and the CANDU Owners Group will provide a framework for collaboration among its Members. (author)

  12. New Genus and Species of Fossil Dragonflies (Insecta: Odonata) from the Yixian Formation of Northeastern China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two well-preserved fossil dragonflies from the Late Mesozoic Yixian Formation, Liaoning Province, China are described and assigned to a new genus, Sopholibellula gen. nov. in Araripelibellulidae Bechly, 1996, closely related to the type genus Araripelibellula. This new genus differs from Araripelibellula in the following characters: origins of RP and MA distinctly separated at arculus in both pairs of wings; anal loop wider and shorter, with Y-shaped veins inside; MA and IR2not zigzag; several small intercalary veins present in the postdiscoidal area of hindwing; cells smaller and much more dense, especially in the apex and hind margin; bigger in size. Structures, including head, abdomen and parts of legs, were first described in details of this family.

  13. An Early Cretaceous Ginkgo ovule-bearing organ fossil from Liaoning, Northeast China and its evolutionary implications

    Institute of Scientific and Technical Information of China (English)

    DENG Shenghui; YANG Xiaoju; ZHOU Zhiyan

    2004-01-01

    @@ Ginkgo is a very important gymnospermous genus that has only one surviving species, Ginkgo biloba L. As a so-called "living fossil", wild Ginkgo was found only in China, but it once flourished well and had a world-wide distribution in the Mesozoic. The earliest Ginkgo has been known from the Middle Jurassic, based on ovule-bearing organs[

  14. Life cycle assessment of peat utilisation in Finland

    International Nuclear Information System (INIS)

    Environmental issues related to the production of peat and its use in energy generation have been the subject of public debate and research over the past few years in Finland. Peat is both an indigenous and a locally utilised fuel. Finland has no fossil fuel resources, and the transportation distances of imported fuels into Finland are normally long. In Finland the large peat resources can be utilised locally and peat-burning power plants are situated near the peatlands. Peat production and energy conversion methods are being continuously developed to make use of the environmentally and technically best available technology. In Finland peat formation exceeds peat utilisation and an increase in peat utilisation is therefore sustainable. The life cycle assessment concept gives an opportunity to evaluate and improve the environmental quality of peat utilisation options. The study focuses on an inventory analysis, but some of the most common methods of impact assessment with valuation are also included. The study also includes a comparison of fossil fuels and a discussion part. All the calculated results are based on net emissions. The background emissions of natural peatland are subtracted from the emissions of the utilisation phases. Milled peat and sod peat are reported in this study. Horticultural peat is studied simultaneously, but it will be reported later. The Sod Wave, Haku and Tehoturve methods are studied for the production of peat. The power plants of the study are Kempele heating plant and Rauhalahti cogeneration plant. The functional unit is 1 MWh produced total energy. The temporal boundaries vary from 112 to 128 years, depending on the peat production methods used. The restoration time is 100 years in all options. The emissions of greenhouse gases are based on the reports of The Finnish Research Programme on Climate Change. The water emissions are based on control monitoring reports from 1994 and 1995. The water emissions of the restoration phase are

  15. Long-term shifts in life-cycle energy efficiency and carbon intensity.

    Science.gov (United States)

    Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier

    2013-03-19

    The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF. PMID:23409918

  16. Sustainable Bridge Procurement Considering Life-Cycle Cost, Life-Cycle Assessment and Aesthetics

    DEFF Research Database (Denmark)

    Safi, Mohammed; Du, Guangli; Simonsson, Peter

    2016-01-01

    The lack of a flexible but systematic approach for integrating lifecycle aspects into bridge investment decisions is a major obstacle hindering the procurement of sustainable bridge infrastructures. This paper addresses this obstacle by introducing a holistic approach that agencies could use to...... procure the most “sustainable” (lifecycle-efficient) bridge through a fair design-build (D-B) tendering process, considering all the main aspects: life-cycle cost (LCC), service life-span, aesthetic demands and environmental impacts (LCA)....

  17. Algal biofuels: key issues, sustainability and life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Irving Olsen, S.

    2011-05-15

    In recent years research activities are intensively focused on renewable fuels in order to fulfill the increasing energy demand and to reduce the fossil fuels consumption and external oil dependency either in order to provide local energetic resources and or as a means for reducing greenhouse gases (GHG) emissions to reduce the climate change effects. Among the various renewable energy sources algal biofuels is a very promising source of biomass as algae sequester huge quantities of carbon from atmosphere and are very efficient in utilizing the nutrients from the industrial effluent and municipal wastewater. Algae capture CO{sub 2} from atmosphere and industrial flue gases and transform it in to organic biomass that can be used for the production of biofuels. Like other biomass, algal biomass is also a carbon neutral source for the production of bioenergy. Therefore cultivation of algal biomass provides dual benefits; while being able to utilize nutrients in waste water thus reducing impacts on inland waters it produce biomass for the production of biofuels. However, reaching commercial scale production of algal biofuels is difficult. The main drawbacks include the harvesting of dry biomass and higher capital investment. The harvested algal biomass and its extracts can be efficiently converted to different biofuels such as bioethanol, biodiesel, biogas and biohydrogen by implementation of various process technologies. Comprehensive life cycle assessments (LCA) of algal biofuels illustrating environmental benefits and impacts can be a tool for policy decisions and for technology development. (Author)

  18. Comparison of different building shells - life cycle assessment.

    Science.gov (United States)

    Rixrath, Doris; Wartha, Christian

    2016-07-01

    The Renewable Energy and Efficiency Action (REACT) project is a European Union-funded cross-border cooperative venture featuring the participation of companies and researchers from the Austrian state of Burgenland and western Slovakia that is developing zero-energy concepts for newly built single-family homes. A variety of building structures are defined for family houses, and the different impacts they have on the environment are evaluated over the entire life cycle. This paper aims to compare the environmental impacts of different building shells during both the construction and the demolition phases. However, the operation phase of the building is not evaluated. One of the findings of the project thus far is that the demolition and disposal of building materials should be included in any such evaluation. For some environmental impact assessment categories, both demolition and disposal are important. The environmental impacts of various end-of-life scenarios can differ greatly based on the disposal method (e.g., landfill, incineration, recycling) chosen and on the proportion of recycled content. Furthermore, the results show that manufacturing building materials from renewable resources can have strong environmental impacts, particularly when substantial amounts of fossil fuel are required in their production. Integr Environ Assess Manag 2016;12:437-444. © 2016 SETAC. PMID:27332927

  19. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  20. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  1. Life cycle assessment of dairy farms.

    Science.gov (United States)

    Taufiq, Fierly Muhammad; Padmi, Tri; Rahardyan, Dan Benno

    2016-03-01

    In 2013 the population of dairy cattle in Indonesia had reached 636,000 head with a 4.61% growth rate per year. The inputs were energy, water, and feed. These inputs produced outputs, such as emissions, solid waste and liquid waste. This research compared the maintenance systems in modern farms and local farms. The data were collected from 30 local farmers and one modern farm. This research used the life cycle assessment (LCA) method. LCA is based on ISO 14040. LCA consists of several stages: the goal and scope definition, inventory analysis, impact assessment, and interpretation. This research used the cradle to gate concept and fat corrected milk (FCM) as the function unit. The impacts of these activities could generate global warming potential (GWP), acidification potential (AP), and eutrophication potential (EP). The calculations showed that the systems in local farms had the greatest emissions result over all impacts. In the case of local farms, the GWP was 2.34 kg CO2 eq/L of milk FCM, AP was 0.12 g SO2 eq/L of milk FCM, and EP was 18.28 g PO43- $P{O_{\\rm{4}}}^{{\\rm{3}} - }$ eq/L milk FCM. While the impact from the modern farm was GWP of 1.52 kg CO2 eq/L of milk FCM, AP of 0.02 g SO2 eq/L of milk FCM, and EP of 0.353 g PO43- $P{O_{\\rm{4}}}^{{\\rm{3}} - }$ eq/L of milk FCM. Based on the total-weighted result, the GWP had the greatest impact from the overall life cycle phase of milk production. The total-weighted result obtained was of 0.298 EUR/L of FCM from a local farm and 0.189 EUR/L of FCM from the modern farm. This amount could be used to remediate the global warming, acidification, and eutrophication impacts of milk production. PMID:26953699

  2. Life Cycle Design - a Route to the Sustainable Industrial Culture?

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Wenzel, Henrik; Alting, Leo

    1999-01-01

    In the attempt to reorient Society's development in a more sustainable direction attention is focused on the environmental impact of products and systems over their entire life cycle, but how can the environmental life cycle perspective be introduced into the design of new solutions and how much...... can be optained through life cycle design? The authors' experience with integration of environmental considerations in product development is presented, ranging from the detailed interactive approach to the EDIP-method through various simplified approaches. The potential for environmental improvements...... is reviewed and the overall question of to what extent life cycle design is a route to the sustainable industrial culture is discussed....

  3. Environmental life cycle analyses of wind turbines

    International Nuclear Information System (INIS)

    The aim of this investigation is to determine environmental aspects of (1) upscaling of both onshore and offshore turbines and (2) offshore versus onshore placement of turbines. Attention has also been paid to a couple of waste processing options in order to obtain a responsible disposal of dismissed wing blades of wind turbines. Shortcomings of the followed procedure for life cycle assessments are pinpointed in the field of the software package, the inventory and the normalization of effect scores both for classification and evaluation. Upscaling from a 300 kW wind turbine to a 500 kW wind turbine results in a decrease (20-50%) of all environmental impacts considered in this study both for an onshore and an offshore situation. This is caused by the fact that the increase of materials use turns out to be lower than the increase in energy production. However, smaller differences than assumed in this study in electricity production between the two types of wind turbines - depending on wind climate and design - will result in a lower decrease or even an increase in environmental impacts. Offshore placement leads to considerably higher environmental impacts compared to onshore placement (5-180%). However, offshore placement offers important advantages in the field of noise pollution, adverse effect on landscape and level of electricity production. 11 figs., 25 tabs., 41 refs

  4. The Life-cycle of Operons

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2005-11-18

    Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution is driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although most operons are closely spaced because of a neutral bias towards deletion and because of selection against large overlaps, highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution seems to be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed.

  5. The Life-cycle of Operons

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2007-03-15

    Operons are a major feature of all prokaryotic genomes, buthow and why operon structures vary is not well understood. To elucidatethe life-cycle of operons, we compared gene order between Escherichiacoli K12 and its relatives and identified the recently formed anddestroyed operons in E. coli. This allowed us to determine how operonsform, how they become closely spaced, and how they die. Our findingssuggest that operon evolution may be driven by selection on geneexpression patterns. First, both operon creation and operon destructionlead to large changes in gene expression patterns. For example, theremoval of lysA and ruvA from ancestral operons that contained essentialgenes allowed their expression to respond to lysine levels and DNAdamage, respectively. Second, some operons have undergone acceleratedevolution, with multiple new genes being added during a brief period.Third, although genes within operons are usually closely spaced becauseof a neutral bias toward deletion and because of selection against largeoverlaps, genes in highly expressed operons tend to be widely spacedbecause of regulatory fine-tuning by intervening sequences. Althoughoperon evolution may be adaptive, it need not be optimal: new operonsoften comprise functionally unrelated genes that were already inproximity before the operon formed.

  6. A life cycle perspective of coal use

    International Nuclear Information System (INIS)

    This work on life cycle analysis, covers a range of energy sources and technologies for steel and electricity production. A streamlined 'cradle to gate' approach was taken, with a focus on energy/technology comparisons, detailed understanding of the production chain, and an attempt to look particularly for opportunities to improve environmental performance as measured by greenhouse gas emissions. The results show that the use of coal and natural gas for steel-making may have comparable emission impacts, if slag from the blast furnace is fully utilised as clinker for cement making, and off gases from the furnace are used to produce electricity. They also indicate potential gains from increased use of scrap inputs, and from using coal bed methane at the mine. Overall a reduction in greenhouse gas intensity of up to 50% could be obtained. In the power production sector, LCA shows the largest possibilities for improvement through use of more efficient technologies, use of biomass to displace coal and utilisation of fly ash in cement making. One interesting technological possibility is combining solar thermal technology with coal power generation, which improves net solar efficiency to 30-40% (compared to 13% for photo-voltaic). Estimated additional costs for large-scale use of solar thermal in an existing coal plant are about 0.04 cents US/kWh. (author)

  7. Life cycle assessment for waste management

    Energy Technology Data Exchange (ETDEWEB)

    Barton, J.R. [Univ. of Leeds (United Kingdom). Dept. of Civil Engineering; Dalley, D.; Patel, V.S. [Aspinwall and Co., Shrewsbury (United Kingdom)

    1996-12-31

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practices. Life Cycle Assessment (LCA) is an emerging tool for ensuring such assessment is comprehensive and covers the full cradle to grave impacts associated with providing a product or service. This paper discusses aspects of a recent study commissioned by the UK Department of the Environment to assess how LCA methodology could be developed and applied to assist decision makers in waste management. It focuses on a method developed by the research contractors for identifying the environmental burdens that occur during the collection, treatment and disposal of non-hazardous waste. The method requires waste management activities to be defined as generic unit operations which are independent of the specific characteristics of the waste processed. These unit operations are used to flowsheet the specific system under study and burdens that are independent of the waste are identified. Waste-dependent burdens are identified separately by considering the interaction of unit operations and the specific characteristics exhibited by the waste under study. For identification purposes a restricted list of 10 characteristics is considered sufficient to highlight those burdens for which inventory data may be required. Comment is made on the potential to develop the identification method to provide quantified data for the burden inventory.

  8. Crop production without fossil fuel

    OpenAIRE

    Ahlgren, Serina

    2009-01-01

    With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this thesis was to evaluate different systems for biomass-based production of tractor fuel and mineral nitrogen fertilisers, which at present are the two largest fossil energy carriers in Swedish agriculture. The land use, energy input and environmental load of the systems were calculated using life cycle assessment methodology. Two categor...

  9. 3{sup rd} International Conference on Life Cycle Management. From analysis to implementation

    Energy Technology Data Exchange (ETDEWEB)

    Hellweg, S. (ed.) [ETH Zurich, Zurich (Switzerland); Rebitzer, G. (ed.) [Alcan Packaging Food Europe, Neuhausen am Rheinfall (Switzerland)

    2007-07-01

    The very broad subject of the conference was partitioned into 23 different chapters with a total of 187 oral and 119 poster presentations. The present report gives a description of the conference and the abstracts of the presentations. Life cycle assessment (LCA) bas become a powerful instrument during the last twenty years and its importance is still increasing. This development was possible because the field of application became broader and because clear rules for establishing LCA were developed. Authorities in many countries use LCA as one important basis for decision making. In the past, LCA was used to improve packaging and to decide whether used materials should be recycled or disposed off, by incineration with energy recovery. Recently, the LCA tool was very helpful in Switzerland for screening the environmental impact of different non fossil fuels, in view of new legislation which provides tax exemptions for certain biologically produced fuels. Another important and broadly utilized application of LCA is the evaluation of the environmental impact of different cars. For this purpose LCA integrates the environmental burden caused by different pollutants emitted by cars as carbon dioxide, nitrogen oxides or particulate matter (PM 10). In the future, LCA will likely be applied to additional fields, such as investments, where LCA are increasingly used as a tool to rate the sustainability of companies. Fundamental conditions for the use of LCA in all fields are a reliable scientific base of the inventories and a transparent elaboration of the LCA. As LCA will become increasingly important, an internationally harmonized system will have to guarantee that the results of LCA are objective and that the process is traceable. The concept of life cycle management (LCM) is gaining more and more acceptance from all stakeholder groups. Firms begin to see that environmental aspects are rather an opportunity for value creation than a cost driver. Additional benefits are

  10. Life cycle environmental impacts of UK shale gas

    International Nuclear Information System (INIS)

    Highlights: • First full life cycle assessment of shale gas used for electricity generation. • Comparison with coal, conventional and liquefied gas, nuclear, wind and solar PV. • Shale gas worse than coal for three impacts and better than renewables for four. • It has higher photochemical smog and terrestrial toxicity than the other options. • Shale gas a sound environmental option only if accompanied by stringent regulation. - Abstract: Exploitation of shale gas in the UK is at a very early stage, but with the latest estimates suggesting potential resources of 3.8 × 1013 cubic metres – enough to supply the UK for next 470 years – it is viewed by many as an exciting economic prospect. However, its environmental impacts are currently unknown. This is the focus of this paper which estimates for the first time the life cycle impacts of UK shale gas, assuming its use for electricity generation. Shale gas is compared to fossil-fuel alternatives (conventional gas and coal) and low-carbon options (nuclear, offshore wind and solar photovoltaics). The results suggest that the impacts range widely, depending on the assumptions. For example, the global warming potential (GWP100) of electricity from shale gas ranges from 412 to 1102 g CO2-eq./kWh with a central estimate of 462 g. The central estimates suggest that shale gas is comparable or superior to conventional gas and low-carbon technologies for depletion of abiotic resources, eutrophication, and freshwater, marine and human toxicities. Conversely, it has a higher potential for creation of photochemical oxidants (smog) and terrestrial toxicity than any other option considered. For acidification, shale gas is a better option than coal power but an order of magnitude worse than the other options. The impact on ozone layer depletion is within the range found for conventional gas, but nuclear and wind power are better options still. The results of this research highlight the need for tight regulation and

  11. Life-Cycle Inventory and Costs of Different Car Powertrains

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, Alexander

    2001-12-01

    This report contains two internal reports that document the data collected for a Ph.D. thesis (Roeder, A.: Integration of Life-Cycle Assessment and Energy Planning Models for the Evaluation of Car Power trains and Fuels, Dissertation ETH 14291, Zuerich/Villigen 2001). The aim of this thesis is a comparison of different car power trains and corresponding fuels under economic and ecological aspects. Such an analysis requires, of course, large amounts of data, and data mining was actually the most time-consuming part of the thesis. However, including a detailed documentation into the thesis would have made the latter far too bulky, so we decided to compile all data documentation into a single background document: the PSI report you are just reading. This report consists of two parts: The first part contains the life-cycle inventory (LCI), while the second part compiles the economic data. The LCI is based on the work of R. Frischknecht et al. that elaborated a very detailed inventory of energy systems in Switzerland (Frischknecht et al.: Oekoinventare von Energiesystemen, 3rd ed., BEW, Bern 1996). Processes already analysed in this reference (e.g. provision of most fossil energy carriers, basic processes such as standard materials or transport processes) have not been described here unless data quality requirements made a re-evaluation necessary (e.g. production of platinum- group metaIs). Within this report, you will find a description of the methodology used, the documentation of all input data, and a discussion of results. Numeric results can be found in the Appendix of the first part. The second part (that deals with the costs) is relatively short, compared to the LCI part. This is mainly because in many cases there was no need to analyse previous steps in a fuel chain or production chain in more detail: when the costs for natural gas for a European customer are known, it is clear that part of these costs is for exploration, part for extraction, part for processing

  12. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives.

    Science.gov (United States)

    Singh, Anoop; Pant, Deepak; Korres, Nicholas E; Nizami, Abdul-Sattar; Prasad, Shiv; Murphy, Jerry D

    2010-07-01

    Progressive depletion of conventional fossil fuels with increasing energy consumption and greenhouse gas (GHG) emissions have led to a move towards renewable and sustainable energy sources. Lignocellulosic biomass is available in massive quantities and provides enormous potential for bioethanol production. However, to ascertain optimal biofuel strategies, it is necessary to take into account environmental impacts from cradle to grave. Life cycle assessment (LCA) techniques allow detailed analysis of material and energy fluxes on regional and global scales. This includes indirect inputs to the production process and associated wastes and emissions, and the downstream fate of products in the future. At the same time if not used properly, LCA can lead to incorrect and inappropriate actions on the part of industry and/or policy makers. This paper aims to list key issues for quantifying the use of resources and releases to the environment associated with the entire life cycle of lignocellulosic bioethanol production. PMID:20015644

  13. MED-SUV Data Life Cycle

    Science.gov (United States)

    Sangianantoni, Agata; Puglisi, Giuseppe; Spampinato, Letizia; Tulino, Sabrina

    2015-04-01

    The MED-SUV project aims to implement a digital e-infrastructure for data access in order to promote the monitoring and study of key volcanic regions prone to volcanic hazards, and thus improve hazard assessment, according to the rationale of Supersite GEO initiative to Vesuvius- Campi Flegrei and Mt Etna, currently identified as Permanent Supersites. The present study focuses on the life cycle of MED-SUV data generated in the first period of the project and highlights the managing approach, as well as the crucial steps to be implemented for ensuring that data will be properly and ethically managed and can be used and accessed from both MED-SUV and the external community. The process is conceived outlining how research data being handled as the project progresses, describing what data are collected, processed or generated and how these data are going to be shared and made available through Open Access. Data cycle begins with their generation and ends with the deposit in the digital infrastructure, its key series of stages through which MED-SUV data passes are Collection, Data citation, Categorization of data, Approval procedure, Registration of datasets, Application of licensing models, and PID assignment. This involves a combination of procedures and practices taking into account the scientific core mission and the priorities of the project as well as the potential legal issues related to the management and protection of the Intellectual Property. We believe that the implementation of this process constitutes a significant encouragement in MED-SUV data sharing and as a consequence a better understanding on the volcanic processes, hazard assessment and a better integration with other Supersites projects.

  14. Life cycle assessment of biogas upgrading technologies.

    Science.gov (United States)

    Starr, Katherine; Gabarrell, Xavier; Villalba, Gara; Talens, Laura; Lombardi, Lidia

    2012-05-01

    This article evaluates the life cycle assessment (LCA) of three biogas upgrading technologies. An in-depth study and evaluation was conducted on high pressure water scrubbing (HPWS), as well as alkaline with regeneration (AwR) and bottom ash upgrading (BABIU), which additionally offer carbon storage. AwR and BABIU are two novel technologies that utilize waste from municipal solid waste incinerators - namely bottom ash (BA) and air pollution control residues (APC) - and are able to store CO(2) from biogas through accelerated carbonation processes. These are compared to high pressure water scrubbing (HPWS) which is a widely used technology in Europe. The AwR uses an alkaline solution to remove the CO(2) and then the solution - rich in carbonate and bicarbonate ions - is regenerated through carbonation of APC. The BABIU process directly exposes the gas to the BA to remove and immediately store the CO(2), again by carbonation. It was determined that the AwR process had an 84% higher impact in all LCA categories largely due to the energy intensive production of the alkaline reactants. The BABIU process had the lowest impact in most categories even when compared to five other CO(2) capture technologies on the market. AwR and BABIU have a particularly low impact in the global warming potential category as a result of the immediate storage of the CO(2). For AwR, it was determined that using NaOH instead of KOH improves its environmental performance by 34%. For the BABIU process the use of renewable energies would improve its impact since accounts for 55% of the impact. PMID:22230660

  15. Break free from the product life cycle.

    Science.gov (United States)

    Moon, Youngme

    2005-05-01

    Most firms build their marketing strategies around the concept of the product life cycle--the idea that after introduction, products inevitably follow a course of growth, maturity, and decline. It doesn't have to be that way, says HBS marketing professor Youngme Moon. By positioning their products in unexpected ways, companies can change how customers mentally categorize them. In doing so, they can shift products lodged in the maturity phase back--and catapult new products forward--into the growth phase. The author describes three positioning strategies that marketers use to shift consumers' thinking. Reverse positioning strips away"sacred" product attributes while adding new ones (JetBlue, for example, withheld the expected first-class seating and in-flight meals on its planes while offering surprising perks like leather seats and extra legroom). Breakaway positioning associates the product with a radically different category (Swatch chose not to associate itself with fine jewelry and instead entered the fashion accessory category). And stealth positioning acclimates leery consumers to a new offering by cloaking the product's true nature (Sony positioned its less-than-perfect household robot as a quirky pet). Clayton Christensen described how new, simple technologies can upend a market. In an analogous way, these positioning strategies can exploit the vulnerability of established categories to new positioning. A company can use these techniques to go on the offensive and transform a category by demolishing its traditional boundaries. Companies that disrupt a category through positioning create a lucrative place to ply their wares--and can leave category incumbents scrambling. PMID:15929406

  16. Life cycle assessment of regional brick manufacture

    Directory of Open Access Journals (Sweden)

    López-Aguilar, H. A.

    2016-06-01

    Full Text Available This document presents a Life Cycle Assessment (LCA study to quantify the environmental cradle-to-gate impact of the manufacture of brick for the construction industry, produced with material of igneous source. Its mineral composition and thermal isolation properties were characterized for use in real estate construction. The LCA results for brick manufacture using this material identified the greatest environmental impact to be associated with material extraction and its proportional cement content. Additionally, this document presents an evaluation of the environmental impact of the manufacturing process by comparing traditional fired clay brick and brick of the material under study. In conclusion, the studied material shows thermal insulation qualities and suitability for the manufacture of bricks with low incorporated energy.Este trabajo presenta un estudio de Análisis de Ciclo de Vida (ACV para cuantificar los impactos ambientales de la cuna a la puerta de la manufactura de ladrillos para la industria de la construcción, fabricados de un material de origen ígneo. Se caracterizó su composición mineralógica y propiedades de aislamiento térmico para ser usado en la construcción de inmuebles. Los resultados ACV de la fabricación de ladrillos de este material, identificaron la mayor contribución a los impactos ambientales asociados a la extracción del material y la cantidad proporcional de cemento. Adicionalmente, se presenta una evaluación comparativa del impacto ambiental entre la manufactura de un ladrillo tradicional de arcilla cocido y de un ladrillo del material en estudio. En conclusión el material estudiado muestra cualidades de aislamiento térmico y es adecuado para la fabricación de ladrillos con baja energía incorporada.

  17. 20th CIRP International Conference on Life Cycle Engineering

    CERN Document Server

    Song, Bin; Ong, Soh-Khim

    2013-01-01

    This edited volume presents the proceedings of the 20th CIRP LCE Conference, which cover various areas in life cycle engineering such as life cycle design, end-of-life management, manufacturing processes, manufacturing systems, methods and tools for sustainability, social sustainability, supply chain management, remanufacturing, etc.

  18. Comparison of Life Cycle Costs for LLRW Management in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Baird, R. D.; Rogers, B. C.; Chau, N.; Kerr, Thomas A

    1999-08-01

    This report documents a comparison of life-cycle costs of an assured isolation facility in Texas versus the life-cycle costs for a traditional belowground low-level radioactive waste disposal facility designed for the proposed site near Sierra Blanca, Texas.

  19. 10 CFR 435.8 - Life-cycle costing.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Life-cycle costing. 435.8 Section 435.8 Energy DEPARTMENT...-cycle costing. Each Federal agency shall determine life-cycle cost-effectiveness by using the procedures set out in subpart A of 10 CFR part 436. A Federal agency may choose to use any of four...

  20. Test of US Federal Life Cycle Inventory Data Interoperability

    Science.gov (United States)

    Life cycle assessment practitioners must gather data from a variety of sources. For modeling activities in the US, practitioners may wish to use life cycle inventory data from public databases and libraries provided by US government entities. An exercise was conducted to test if ...

  1. Life cycle greenhouse gas emissions from bioenergy crops

    Science.gov (United States)

    Life cycle greenhouse gas emissions from bioenergy crops Bioenergy cropping systems could help offset greenhouse gas emissions from energy use, but quantifying that offset is complex. We conducted a life cycle assessment of a range of bioenergy cropping systems to determine the impact on net greenho...

  2. Energy life-cycle assessment of soybean biodiesel revisited

    Science.gov (United States)

    A life-cycle assessment (LCA) was conducted to quantify the energy flows associated with biodiesel production. A similar study conducted previously (Sheehan et al., Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus, Publication NREL/SR-580-24089, National Renewable Ener...

  3. LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES

    Science.gov (United States)

    The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...

  4. The Family Life Cycle: Empirical or Conceptual Tool?

    Science.gov (United States)

    Nock, Steven L.

    1979-01-01

    Issues related to individual and family life are studied as they vary across stages of the family life cycle. Strong relationships are found between stages in family life cycle and a number of such issues. Further analysis indicates that the major dimensions of the cycle are children and length of marriage. (Author)

  5. Family Development and the Family Life Cycle: An Empirical Evaluation.

    Science.gov (United States)

    Spanier, Graham; And Others

    The concept of family life cycle has become increasingly prominent in the study of family development--the formation, maintenance, change, and dissolution of marriage and family relations. An evaluation of this concept is accomplished by examining the relationships between three possible stratification schemes: stage of the family life cycle,…

  6. Dealing with Emergy Algebra in the Life Cycle Assessment Framework

    Science.gov (United States)

    The Life Cycle Inventory (LCI) represents one of the four steps of the Life Cycle Assessment (LCA) methodology, which is a standardized procedure (ISO 14040:2006) to estimate the environmental impacts generated by the production, use and disposal of goods and services. In this co...

  7. A Game to Teach the Life Cycles of Fungi

    Science.gov (United States)

    Blum, Abraham

    1976-01-01

    Presented is a biological game utilized to teach fungi life cycles to secondary biology students. The game is designed to overcome difficulties of correlating schematic drawings with images seen through the microscope, correlating life cycles of fungi and host, and understanding cyclic development of fungi. (SL)

  8. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil

    International Nuclear Information System (INIS)

    Brazil has always been the pioneer in the application of bioethanol as a main fuel for automobiles, hence environmental and economic analyses of the Brazilian ethanol industries are of crucial importance. This study presents a comparative life cycle assessment (LCA) on gasoline and ethanol as fuels, and with two types of blends of gasoline with bioethanol, all used in a midsize car. The focus is on a main application in Brazil, sugarcane based ethanol. The results of two cases are presented: base case - bioethanol production from sugarcane and electricity generation from bagasse; future case - bioethanol production from both sugarcane and bagasse and electricity generation from wastes. In both cases sugar is co-produced. The life cycles of fuels include gasoline production, agricultural production of sugarcane, ethanol production, sugar and electricity co-production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85%), and finally the use of gasoline, E10, E85 and pure ethanol. Furthermore, a life cycle costing (LCC) was conducted to give an indication on fuel economy in both cases. The results show that in the base case less GHG is emitted; while the overall evaluation of these fuel options depends on the importance attached to different impacts. The future case is certainly more economically attractive, which has been the driving force for development in the ethanol industry in Brazil. Nevertheless, the outcomes depend very much on the assumed price for crude oil. In LCC a steady-state cost model was used and only the production cost was taken into account. In the real market the prices of fuels are very much dependent on the taxes and subsidies. Technological development can help in lowering both the environmental impact and the prices of the ethanol fuels. (author)

  9. Life cycle impact assessment of biodiesel using the ReCiPe method

    Directory of Open Access Journals (Sweden)

    Kiss Ferenc E.

    2013-01-01

    Full Text Available This paper presents the life cycle impact assessment (LCIA results of biodiesel produced from rapeseed oil. The functional unit (FU is defined as 3750 km of distance traveled by a truck fuelled with biodiesel. The reference flow is 1000 kg of biodiesel. The LCIA method used in the study is the ReCiPe method. At midpoint level the ReCiPe method addresses environmental issues within 18 impact categories. Most of these midpoint impact categories are further converted and aggregated into 3 endpoint categories (damage to human health, damage to ecosystem diversity, damage to mineral resource availability. The total impact of biodiesel’s life cycle was estimated at 540 Pt/FU. The damage to ecosystem diversity (1.48E-04 species•year/FU, the damage to human health (7.48E-03 DALY/FU and the damage to mineral resource availability (8.11E+03 US$/FU are responsible for 63%, 27% and 10% of the total negative impact in the life cycle of biodiesel, respectively. The results have revealed that only 4 impact categories are responsible for most of the impacts within the specific endpoint categories. These are impacts associated with global warming (3000 kg CO2 ekv./FU, particulate matter formation (12.4 kg PM ekv./FU, agricultural land occupation (6710 m2a./FU and fossil fuel depletion (21168 MJ/FU. Greenhouse gases emitted in the life cycle of biodiesel (mainly N2O, CO2 are responsibly for 56% of the damage caused to human health and for 16% of the damage caused to ecosystem diversity. Airborne emissions which contribute to particulate matter formation (NOx, NH3, PM, SO2 are responsible for 43% of the damage caused to human health. Agricultural land occupation is responsible for 82% of the damage caused to the ecosystem diversity. Damage to mineral resource availability is almost entirely related to the depletion of fossil energy sources. The production chain of biodiesel and the combustion of biodiesel are responsible for 69% and 31% of the total impact of

  10. Defining the baseline in social life cycle assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Finkbeiner, Matthias; Jørgensen, Michael Søgaard;

    2010-01-01

    A relatively broad consensus has formed that the purpose of developing and using the social life cycle assessment (SLCA) is to improve the social conditions for the stakeholders affected by the assessed product's life cycle. To create this effect, the SLCA, among other things, needs to provide...... valid assessments of the consequence of the decision that it is to support. The consequence of a decision to implement a life cycle of a product can be seen as the difference between the decision being implemented and 'non-implemented' product life cycle. This difference can to some extent be found...... using the consequential environmental life cycle assessment (ELCA) methodology to identify the processes that change as a consequence of the decision. However, if social impacts are understood as certain changes in the lives of the stakeholders, then social impacts are not only related to product life...

  11. Addressing the effect of social life cycle assessments

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Dreyer, Louise Camilla; Wangel, Arne

    2012-01-01

    Purpose: In the recently published ‘Guidelines for social life cycle assessment of products’, it is stated that the ultimate objective of developing the social life cycle assessment (SLCA) is to promote improvements of social conditions for the stakeholders in the life cycle. This article addresses...... is questioned whether the development of SLCA is a fruitful approach for improving social conditions in the product life cycle....... how the SLCA should be developed so that its use promotes these improvements. Methods: Hypotheses of how the use of SLCA can promote improvement of social conditions in the life cycle are formulated, after which theories and empirical findings from relevant fields of research are used to address the...

  12. A framework to study nuclear power plant life-cycle carbon release

    International Nuclear Information System (INIS)

    Expansion of nuclear power is a critical strategy for greenhouse gas emissions reduction in China. As a safe and economical and clean energy source, it is always regarded as practical technology for large-scale deployment and car bon-free. However, from the life cycle perspective, nuclear power production is not 100% greenhouse gas free. From uranium mining, concentrating, to the construction and operation of nuclear power plants and nuclear waste treatment until decommissioning of nuclear facilities, greenhouse gas emissions are involved. A life cycle framework is developed with related data to evaluate of generation of greenhouse gases per kilowatt as well as the influential uncertainties. An economic scenario analysis is also applied to calculate the incremental electricity generation cost caused by the carbon e- mission in the life cycles of the technologies. The results demonstrated that the nuclear energy will become more competitive particularly if there is a carbon trade system. Moreover, the greenhouse gas emission during the nuclear power plant life-cycle will be greatly reduced if more advanced technologies were applied in the nuclear sector. (authors)

  13. Life-cycle private costs of hybrid electric vehicles in the current Chinese market

    International Nuclear Information System (INIS)

    Understanding the life-cycle private cost (LCPC) of the hybrid electric vehicle (HEV) is important for market feasibility analysis. An HEV LCPC model was established to evaluate HEV market prospects in China compared with traditional internal combustion engine vehicles (ICEV). The Kluger HV, a full-hybrid HEV sports utility vehicle (SUV), aimed at the Chinese market, was simulated as the 2010 model's technology details were well publicized. The LCPC of the Kluger HV was roughly the same (about 1.06 times) as that of its comparable ICEV (Highlander SUV). This aligns with other compact and midsize HEV cars (e.g., Toyota Prius, Honda Civic and Toyota Camry HEV) in China. With oil prices predicted to rise in the long-term, the advantage of HEVs energy saving will partly compensate the high manufacturing costs associated with their additional motor/battery components. Besides supporting technology development, enabling policy should be implemented to introduce HEV technology into taxi fleets and business cars. This technology's cost-competitiveness, compared with traditional ICEVs, is advantageous for these higher mileage vehicles. - Highlights: ► A model is set up to evaluate the life-cycle private cost of HEVs. ► Life-cycle private costs of HEVs are higher than conventional cars in China. ► HEVs become competitive when the oil price rises

  14. Win-Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lining; Patel, Pralit L.; Yu, Sha; Liu, Bo; Mcleod, Jeffrey D.; Clarke, Leon E.; Chen, Wenying

    2016-02-01

    The rapid growth of energy consumption in China has led to increased emissions of air pollutants. As a response, in its 12th Five Year Plan the Chinese government proposed mitigation targets for SO2 and NOx emissions. Herein we have investigated mitigation measures taken in different sectors and their corresponding impacts on the energy system. Additionally, as non-fossil energy development has gained traction in addressing energy and environmental challenges in China, we further investigated the impact of non-fossil energy development on air pollutant emissions, and then explored interactions and co-benefits between these two types of policies. An extended Global Change Assessment Model (GCAM) was used in this study, which includes an additional air pollutant emissions control module coupling multiple end-of-pipe (EOP) control technologies with energy technologies, as well as more detailed end-use sectors in China. We find that implementing EOP control technologies would reduce air pollution in the near future, but with little room left to implement these EOP technologies, other cleaner and more efficient technologies are also effective. These technologies would reduce final energy consumption, increase electricity’s share in final energy, and increase the share of non-fossil fuels in primary energy and electricity consumption. Increasing non-fossil energy usage at China’s proposed adoption rate would in turn also reduce SO2 and NOx emissions, however, the reductions from this policy alone still lag behind the targeted requirements of air pollutant reduction. Fortunately, a combination of air pollutant controls and non-fossil energy development could synergistically help realize the respective individual targets, and would result in lower costs than would addressing these issues separately.

  15. Status of life cycle inventories for batteries

    International Nuclear Information System (INIS)

    Highlights: ► Cradle-to-gate (ctg) energy and emissions compared among five battery systems. ► Calculate material production values fall well within observed ranges. ► Values based on recycled materials in poor agreement with observed ranges. ► Material production data needed for recycled and some virgin battery materials. ► Battery manufacturing data range widely and hence also need updating. - Abstract: This study reviews existing life-cycle inventory (LCI) results for cradle-to-gate (ctg) environmental assessments of lead-acid (PbA), nickel–cadmium (NiCd), nickel-metal hydride (NiMH), sodium-sulfur (Na/S), and lithium-ion (Li-ion) batteries. LCI data are evaluated for the two stages of cradle-to-gate performance: battery material production and component fabrication and assembly into purchase ready batteries. Using existing production data on battery constituent materials, overall battery material production values were calculated and contrasted with published values for the five battery technologies. The comparison reveals a more prevalent absence of material production data for lithium ion batteries, though such data are also missing or dated for a few important constituent materials in nickel metal hydride, nickel cadmium, and sodium sulfur batteries (mischmetal hydrides, cadmium, β-alumina). Despite the overall availability of material production data for lead acid batteries, updated results for lead and lead peroxide are also needed. On the other hand, LCI data for the commodity materials common to most batteries (steel, aluminum, plastics) are up to date and of high quality, though there is a need for comparable quality data for copper. Further, there is an almost total absence of published LCI data on recycled battery materials, an unfortunate state of affairs given the potential benefit of battery recycling. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and

  16. Life cycle analysis of transportation fuel pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-24

    The purpose of this work is to improve the understanding of the concept of life cycle analysis (LCA) of transportation fuels and some of its pertinent issues among non-technical people, senior managers, and policy makers. This work should provide some guidance to nations considering LCA-based policies and to people who are affected by existing policies or those being developed. While the concept of employing LCA to evaluate fuel options is simple and straightforward, the act of putting the concept into practice is complex and fraught with issues. Policy makers need to understand the limitations inherent in carrying out LCA work for transportation fuel systems. For many systems, even those that have been employed for a 100 years, there is a lack of sound data on the performance of those systems. Comparisons between systems should ideally be made using the same tool, so that differences caused by system boundaries, allocation processes, and temporal issues can be minimized (although probably not eliminated). Comparing the results for fuel pathway 1 from tool A to those of fuel system 2 from tool B introduces significant uncertainty into the results. There is also the question of the scale of system changes. LCA will give more reliable estimates when it is used to examine small changes in transportation fuel pathways than when used to estimate large scale changes that replace current pathways with completely new pathways. Some LCA tools have been developed recently primarily for regulatory purposes. These tools may deviate from ISO principles in order to facilitate simplicity and ease of use. In a regulatory environment, simplicity and ease of use are worthy objectives and in most cases there is nothing inherently wrong with this approach, particularly for assessing relative performance. However, the results of these tools should not be confused with, or compared to, the results that are obtained from a more complex and rigorous ISO compliant LCA. It should be

  17. Preliminary results of combined ESR/U-series dating of fossil teeth from Longgupo cave, China

    International Nuclear Information System (INIS)

    Longgupo Cave site, located in Wushan County, Chongqing, China has attracted continuous attention since its discovery of hominid remains in association with late Pliocene-early Pleistocene fauna and numerous lithic artefacts. In 2003-2006, new excavation was carried out on this site, allowing the description of a detailed stratigraphy of the highly complex cave in-fillings and the sampling of teeth for combined ESR/U-series analyses. Here we report preliminary dating results of seven herbivorous fossil teeth from different archaeological layers of the lowest geological unit (C III). Uranium-series analyses indicate that no obvious uranium leaching has occurred and all the teeth (except one) underwent a very recent uranium uptake history. The obtained US-ESR results show that the age of six teeth are basically consistent, between similar to 1.4 and 1.8 Ma. At the same time, we observed an inverse correlation of two samples with the stratigraphic sequence. This could be caused by the distinct uranium uptake history of one sample, high uranium content in the enamel for another or bad estimation of external dose rate. Due to the complexity of the stratigraphic sequence, supplementary in situ gamma dose rate measurement should be performed for all the samples during the following excavations in order to confirm this preliminary ESR/U-series chronology. (authors)

  18. Various Perspectives of Mitigating Fossil Fuel Use and Air Pollutant Emissions in China's Megacity

    Science.gov (United States)

    Wang, H.

    2014-12-01

    It is critical to reduce energy use and air pollutions in metropolitan areas because these areas usually serve as economic engines and have large, dense populations. Fossil fuel use and air-polluting emissions were analyzed in Beijing between 1997 and 2010 from both a bottom-up and a top-down perspective. From a bottom-up perspective, the key energy-intensive industrial sectors directly caused changes in Beijing's air pollution by means of a series of energy and economic policies. From a top-down perspective, variation in industrial production caused increases in most emissions between 2000 and 2010, however, there were decreases in PM10 and PM2.5 emissions during 2005-2010. Population growth was found to be the largest driver of energy consumption and emissions between1997 and 2010. Energy use and air pollutant emissions were also found to outsource from Beijing to other regions in China. Policies for reducing urban energy consumption and emissions should consider not only the key industrial sectors but also socioeconomic drivers.

  19. Life Cycle Assessment and Life Cycle Cost Analysis of Magnesia Spinel Brick Production

    Directory of Open Access Journals (Sweden)

    Aysun Özkan

    2016-07-01

    Full Text Available Sustainable use of natural resources in the production of construction materials has become a necessity both in Europe and Turkey. Construction products in Europe should have European Conformity (CE and Environmental Product Declaration (EPD, an independently verified and registered document in line with the European standard EN 15804. An EPD certificate can be created by performing a Life Cycle Assessment (LCA study. In this particular work, an LCA study was carried out for a refractory brick production for environmental assessment. In addition to the LCA, the Life Cycle Cost (LCC analysis was also applied for economic assessment. Firstly, a cradle-to-gate LCA was performed for one ton of magnesia spinel refractory brick. The CML IA method included in the licensed SimaPro 8.0.1 software was chosen to calculate impact categories (namely, abiotic depletion, global warming potential, acidification potential, eutrophication potential, human toxicity, ecotoxicity, ozone depletion potential, and photochemical oxidation potential. The LCC analysis was performed by developing a cost model for internal and external cost categories within the software. The results were supported by a sensitivity analysis. According to the results, the production of raw materials and the firing process in the magnesia spinel brick production were found to have several negative effects on the environment and were costly.

  20. Chinese life cycle impact assessment factors

    DEFF Research Database (Denmark)

    Yang, Jianxin; Nielsen, Per Henning

    2001-01-01

    The methodological basis and procedures for determination of Chinese normalization references and weighting factors according to the EDIP-method is described. According to Chinese industrial development intensity and population density, China was divided into three regions and the normalization r......, stratospheric ozone depletion, acidification, nutrient enrichment, photochemical ozone formation and generation of bulk waste, hazardous waste and slag and ashes....

  1. Integrated NPP life cycle management - Agency's approach

    International Nuclear Information System (INIS)

    Full text: The number of nuclear power plants (NPPs) operating in the world has been roughly constant for the past seven years. There are 438 reactors of 353,489 MW(e) capacity in the world and they generated 2448.9 TWh in 2001 giving a total world operating experience with nuclear power of 10,363 years. About 230 units have reached already over 15 years of operation and significant number of these plants are fully depreciated. Share of nuclear power in electricity production sector in Member States utilising nuclear power plants represents a meaningful amount and in 14 countries it exceeds 30%. Therefore, a loss of this share should be covered by new installed capacities either from conventional or alternative sources of electricity generation. Recent forecasts, for nuclear power use over the next two decades range from ∼350 to ∼500 GW(e) worldwide. While assessing the need for any nuclear power related programmes there are several important factors that must be considered since even 350 GW(e) is a very large programme requiring several hundred thousand highly qualified personnel and a substantial infrastructure to assure its continued safe, reliable and cost-effective operation. It is important to assure reliable, safe and economic beneficial performance of the plant, which requires in turn an appropriated management of any activity connected with any taken period of a plant life starting from design and ending by the decided mode of decommissioning. The period between the first and the last payment for the activities connected with the existence of a plant could be defined as a life cycle of the plant. Such integrated approach requires considering the life cycle of the plant in a much broader sense than just operational life and is characterized by the variety of activities and their management represents in a whole a plant life management programme (PLIM). Therefore PLIM could be defined as an aggregate (totality) of technical, financial, economical and

  2. Adaptation to the sky: Defining the feather with integument fossils from Mesozoic China and experimental evidence from molecular laboratories

    OpenAIRE

    Chuong, Cheng-Ming; Wu, Ping; Zhang, Fu-Cheng; Xu, Xing; Yu, Minke; Widelitz, Randall B; Jiang, Ting-Xin; Hou, Lianhai

    2003-01-01

    In this special issue of Evo-Devo of the amniote integument, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss results from the molecular and developmental biological experiments using chicken integument as the model. Feather forms...

  3. How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China

    International Nuclear Information System (INIS)

    This study documents the return and volatility spillover effect between the stock prices of Chinese new energy and fossil fuel companies using the asymmetric BEKK model. Based on daily samples taken from August 30, 2006 to September 11, 2012, the dynamics of new energy/fossil fuel stock spillover are found to be significant and asymmetric. Compared with positive news, negative news about new energy and fossil fuel stock returns leads to larger return changes in their counter assets. News about both new energy and fossil fuel stock returns spills over into variances of their counter assets, and the volatility spillovers depend complexly on the respective signs of the return shocks of each asset. The empirical results demonstrate that new energy and fossil fuel stocks are generally viewed as competing assets, that positive news about new energy stocks could affect the attractiveness of fossil fuel stocks and that new energy stock investment is more speculative and riskier than fossil fuel stock investment. These results have potential implications for asset allocation, financial risk management and energy policymaking. - Highlights: • The dynamics of Chinese new energy/fossil fuel stock spillover are significant and asymmetric. • New energy and fossil fuel stocks are generally viewed as competing assets. • Positive news about new energy stocks affects the attractiveness of fossil fuel stocks. • New energy stock investment is more speculative and riskier than fossil fuel stock investment

  4. Life Cycle Assessment modelling of stormwater treatment systems.

    Science.gov (United States)

    O'Sullivan, Aisling D; Wicke, Daniel; Hengen, Tyler J; Sieverding, Heidi L; Stone, James J

    2015-02-01

    Stormwater treatment technologies to manage runoff during rain events are primarily designed to reduce flood risks, settle suspended solids and concurrently immobilise metals and nutrients. Life Cycle Assessment (LCA) is scarcely documented for stormwater systems despite their ubiquitous implementation. LCA modelling quantified the environmental impacts associated with the materials, construction, transport, operation and maintenance of different stormwater treatment systems. A pre-fabricated concrete vortex unit, a sub-surface sandfilter and a raingarden, all sized to treat a functional unit of 35 m(3) of stormwater runoff per event, were evaluated. Eighteen environmental mid-point metrics and three end-point 'damage assessment' metrics were quantified for each system's lifecycle. Climate change (kg CO2 eq.) dominated net environmental impacts, with smaller contributions from human toxicity (kg 1,4-DB eq.), particulate matter formation (kg PM10 eq.) and fossil depletion (kg oil eq.). The concrete unit had the highest environmental impact of which 45% was attributed to its maintenance while impacts from the sandfilters and raingardens were dominated by their bulky materials (57%) and transport (57%), respectively. On-site infiltrative raingardens, a component of green infrastructure (GI), had the lowest environmental impacts because they incurred lower maintenance and did not have any concrete which is high in embodied CO2. Smaller sized raingardens affording the same level of stormwater treatment had the lowest overall impacts reinforcing the principle that using fewer resources reduces environmental impacts. LCA modelling can serve as a guiding tool for practitioners making environmentally sustainable solutions for stormwater treatment. PMID:25463586

  5. Life cycle assessment of electricity generation using fast pyrolysis bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jiqing; Alward, Matthew; Klinger, Jordan; Sadehvandi, Adam; Shonnard, David R. [Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kalnes, Tom N. [UOP LLC, a Honeywell Company, 25 East Algonquin Road, Des Plaines 60016, IL (United States)

    2011-02-15

    Biomass is expected to become an important energy source in U.S. electricity generation under state-lead renewable portfolio standards. This paper investigated the greenhouse gas (GHG) emissions for energy generated from forest resources through pyrolysis-based processing. The GHG emissions of producing pyrolysis bio-oil (pyrolysis oil) from different forest resources were first investigated; logging residues collected from natural regeneration mixed hardwood stands, hybrid poplar cultivated and harvested from abandoned agricultural lands, short rotation forestry (SRF) willow plantations and waste wood available at the site of the pyrolysis plant. Effects of biomass transportation were investigated through a range of distances to a central pyrolysis facility through road transport by semi-truck. Pyrolysis oil is assumed to be converted to electrical power through co-combustion in conventional fossil fuels power plants, gas turbine combined cycle (GTCC) and diesel generators. Life cycle GHG emissions were compared with power generated using fossil fuels and power generated using biomass direct combustion in a conventional Rankine power plant. Life cycle GHG savings of 77%-99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion, depending on the biomass feedstock and combustion technologies used. Several scenario analyses were conducted to determine effects of pyrolysis oil transportation distance, N-fertilizer inputs to energy crop plantations, and assumed electricity mixes for pyrolysis oil production. (author)

  6. Sustainable Urban Development Calls for Responsibility through Life Cycle Management

    Directory of Open Access Journals (Sweden)

    Miro Ristimäki

    2015-09-01

    Full Text Available Urban development bestows a great opportunity to increase sustainability in the built environment as cities are responsible for the majority of environmental impacts. However, the urban development process is fragmented and sub-optimization leads to unsustainable life cycle outcomes. The purpose of this study is to examine the urban development process from a life cycle perspective and identify how different actors understand life cycle management. By utilizing an inductive qualitative research design, 38 in-depth thematic interviews were conducted within the Finnish urban development industry including a case study and independent interviews from different phases of the urban development life cycle. The theoretical perspective is a combination of the ecosystem construct and life cycle management. Results show that there is no clear responsible actor for life cycle management in urban development. All actors claim that there is value to be added, mostly in economic, but also environmental and social terms. This study reveals that investors should be the responsible actor in the urban development process. By claiming responsibility and focusing on life cycle leadership we can improve sustainability in urban development, and respond to the urban sustainability challenge, thus improving the quality of life and welfare in our urban society.

  7. Life cycle assessment of biomass-to-liquid fuels - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Buesser, S.; Frischknecht, R.; Tuchschmid, M.

    2008-02-15

    This study elaborates a life cycle assessment of using of BTL-fuels (biomass-to-liquid). This type of fuel is produced in synthesis process from e.g. wood, straw or other biomass. The life cycle inventory data of the fuel provision with different types of conversion concepts are based on the detailed life cycle assessment compiled and published within a European research project. The inventory of the fuel use emissions is based on information published by automobile manufacturers on reductions due to the use of BTL-fuels. Passenger cars fulfilling the EURO3 emission standards are the basis for the comparison. The life cycle inventories of the use of BTL-fuels for driving in passenger cars are investigated from cradle to grave. The full life cycle is investigated with the transportation of one person over one kilometre (pkm) as a functional unit. This includes all stages of the life cycle of a fuel (biomass and fuel production, distribution, combustion) and the necessary infrastructure (e.g. tractors, conversion plant, cars and streets). The use of biofuels is mainly promoted for the reason of reducing the climate change impact and the use of scarce non-renewable resources e.g. crude oil. The possible implementation of BTL-fuel production processes would potentially help to achieve this goal. The emissions of greenhouse gases due to transport services could be reduced by 28% to 69% with the BTL-processes using straw, forest wood or short-rotation wood as a biomass input. The reduction potential concerning non-renewable energy resources varies between 37% und 61%. A previous study showed that many biofuels cause higher environmental impacts than fossil fuels if several types of ecological problems are considered. The study uses two single score impact assessment methods for the evaluation of the overall environmental impacts, namely the Eco-indicator 99 (H,A) and the Swiss ecological scarcity 2006 method. The transportation with the best BTL-fuel from short

  8. A life cycle assessment of pennycress (Thlaspi arvense L.) -derived jet fuel and diesel

    International Nuclear Information System (INIS)

    Field Pennycress (Thlaspi arvense L.) is a member of the mustard family and may be grown as a winter crop between traditional summer crops to produce renewable biomass for renewable diesel and jet fuel. This paper estimated total annual biofuel production potential of 15 million cubic metres from rotation between corn and soybeans on 16.2 million hectares in the Midwest without impact on food production. This study also investigated the life cycle greenhouse gas (GHG) emissions and energy balance of pennycress-derived Hydroprocessed Renewable Jet (HRJ) fuel and Renewable Diesel (RD). Both system expansion and allocation approaches were applied to distribute environmental impacts among products and co-products along the life cycle of each biofuel. The life cycle GHG emissions (excluding land use change) for RD and HRJ range from 13 to 41 g MJ−1 (CO2 eq.) and −18 to 45 g MJ−1 (CO2 eq.), respectively, depending on how the co-products are credited. The majority of the energy required for each biofuel product is derived from renewable biomass as opposed to non renewable fossil. The fossil energy consumptions are considerably lower than the petroleum fuels. Scenario analyses were also conducted to determine response to model assumptions, including nitrogen fertilizer application rate, nitrogen content in crop residues, and sources of H2. The results show that pennycress derived biofuels could qualify as advanced biofuels and as biomass-based diesel as defined by the Renewable Fuels Standard (RFS2). -- Highlights: ► Estimated total pennycress derived biofuel production potential of 15 GL y−1 ► Rotation between corn and soybeans without impact on food production. ► The GHG of RD and HRJ show over 50% of reductions compared to petroleum baseline. ► The majority of the energy required is from renewable biomass. ► The fossil energy consumptions are considerably lower than the petroleum fuels

  9. 民营上市公司创业团队冲突及其对企业绩效影响的实证分析%Life Cycle of Entrepreneur, Team Conflict of Entrepreneurial Firm and Firm Performance:Evidence from China Listed Private Firms

    Institute of Scientific and Technical Information of China (English)

    邹今友

    2014-01-01

    从企业家生命周期的视角出发,研究了民营创业企业上市后管理团队冲突的存在性及其对企业经营绩效的影响。以我国中小企业板和创业板上市公司为研究对象,通过实证分析发现,民营企业上市后依然存在较为严重的管理团队冲突,并且这种冲突对企业经营绩效有显著的负面影响,需要引起即将上市和已经上市的民营企业的重视。%Based on the life cycle of entrepreneur, this paper studies the conflict of management team and its impact on firm performance after Initial Public Offerings (IPO). Taking private companies from China small and mid enterprise board and growth enterprises board as our research sample, the authors find that there is significant management team conflict in private firms after IPO, and the management team conflict has significant impact on firm performance, which should be paid attention to by firms that will go public or those already in the listed companies.

  10. Chinese life cycle impact assessment factors

    DEFF Research Database (Denmark)

    Yang, Jianxin; Nielsen, Per Henning

    2001-01-01

    The methodological basis and procedures for determination of Chinese normalization references and weighting factors according to the EDIP-method is described. According to Chinese industrial development intensity and population density, China was divided into three regions and the normalization...... references for each region were calculated on the basis of an inventory of all of the region's environmental emissions in 1990. The normalization reference was determined as the total environmental impact potential for the area in question in 1990(EP(j)(90)) divided by the population. The weighting factor...... was determined as the normalization reference (ER ( j)90) divided by society's target contribution in the year 2000 abased on Chinese political reduction plans, ER ( j)(T2000). This paper presents and discuss results obtained for eight different environmental impact categories relevant for China...

  11. Review of Life Cycle Assessment in Agro-Chemical Processes

    OpenAIRE

    Gillani, Sayed Tamizuddin; Belaud, Jean-Pierre; Sablayrolles, Caroline; Vignoles, Mireille; Le Lann, Jean-Marc

    2010-01-01

    Life Cycle Assessment (LCA) is a method used to evaluate the potential impacts on the environment of a product, process, or activity throughout its life cycle. Today’s LCA users are a mixture of individuals with skills in different disciplines who want to evaluate their products, processes, or activities in a life cycle context. This study attempts to present some of the LCA studies on agro-chemical processes, recent advances in LCA and their application on food products and non-food products...

  12. Life Cycle Influence on the Policy of Product Development

    Directory of Open Access Journals (Sweden)

    Sava Ianici

    2012-09-01

    Full Text Available It is well known that „product life on the market” is the main reason for developing and improving of product. Therefore all producers tend to provide as long as possible life cycle of their products. The author of this paper wanted to indicate the basic principles of defining of life cycle of products. The paper analyses technical lifetime, but also economical, ecological and even, fashion lifetime, because they are also, important, and in certain cases even crucial, for bringing final decision about treating the product. Besides, a review of usual possibilities of increasing life cycle of products in machine industry is presented.

  13. From life-cycle assessment towards life-cycle design of carbon dioxide capture and utilization

    OpenAIRE

    von der Assen, Niklas

    2016-01-01

    The increasing use of fossil resources will inevitably lead to CO2 emissions and an increasing atmospheric CO2 concentration. The increased CO2 concentration is one of the main reasons for the earth's global warming. To mitigate global warming and the depletion of fossil resources, CO2 can be captured and subsequently utilized as alternative carbon source for fuels, chemicals and materials. However, both CO2 capture and utilization (CCU) typically require energy whose provision is again asso...

  14. Life cycle costs for the optimized production of hydrogen and biogas from microalgae

    International Nuclear Information System (INIS)

    Despite the known advantages of microalgae compared with other biomass providers or fossil fuels, microalgae are predominately produced for high-value products. Economic constraints might limit the commercial energetic use of microalgae. Therefore, we identify the LCCs (life cycle costs) and economic hot spots for photoautotrophic hydrogen generation from photoautotrophically grown Chlamydomonas reinhardtii in a novel staggered PBR (photobioreactor) and the anaerobic digestion of the residual biomass to obtain biogas. The novel PBR aims at minimizing energy consumption for mixing and aeration and at optimizing the light conditions for algal growth. The LCCs per MJ amounted to 12.17 Euro for hydrogen and 0.99 Euro for biogas in 2011 for Germany. Market prices per MJ of 0.02 Euro for biogas and 0.04 Euro for hydrogen are considerably exceeded. Major contributors to operating costs, about 70% of total LCCs, are personnel and overhead costs. The investment costs consist to about 92% of those for the PBR with a share of 61% membrane costs. The choice of Madrid as another production location with higher incident solar irradiation and lower personnel costs reduces LCCs by about 40%. Projecting LCCs to 2030 with experience curves, the LCCs still exceed future market prices. - Highlights: • Life cycle cost assessment of hydrogen and biogas from microalgae in a novel photobioreactor. • Current and future (2030) economically viable production unlikely in Germany. • Personnel and photobioreactor costs are major cost drivers. • Changing the production location may significantly reduce the life cycle costs

  15. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  16. Development status and life cycle inventory analysis of biofuels in Taiwan

    International Nuclear Information System (INIS)

    This research conducted the life cycle inventory analyses of biofuels in Taiwan. The biofuels considered include bioethanol production from sugarcane as well as biodiesel production from soybean and rapeseed. Energy inputs and pollutant emission (including carbon dioxide) are the input/output items analyzed. Results obtained from the inventory analyses can be summarized as follows. Bioethanol production from per hectare sugarcane cropland is 5160 L (liters), meanwhile, 476 and 1012 L biodiesel can be produced from 1 ha of soybean and rapeseed, respectively. The energy input to produce a liter ethanol, a liter biodiesel produced from soybean and rapeseed are 1256, 9602 and 5191 kcal, respectively. Those energy inputs are still less than the energy content of ethanol or biodiesel. It can be concluded that there is a positive energy benefit in producing biofuels based on a comparison with the previous work. In addition, through their life cycle, 1478.4 kg CO2 emission is generated from one hectare of soybean land and 2954.1 kg is generated from rapeseed land. Life cycle carbon dioxide emissions released from burning ethanol is 0.08 kg/LOE in contrast to 2.6 kg/LOE released from burning fossil gasoline

  17. Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste

    International Nuclear Information System (INIS)

    Highlights: ► Emissions from plant manufacture contributed little towards the lifecycle impacts. ► The use phase of the AD plant could have significant impacts. ► Production of biogas and fertiliser created significant impacts. ► The consequential displacement of kerosene showed a net-benefit. ► The study concluded that it is essential to cover the digestate storage tank. -- Abstract: This paper outlines the results of a comprehensive life cycle study of the production of energy, in the form of biogas, using a small scale farm based cattle waste fed anaerobic digestion (AD) plant. The life cycle assessment (LCA) shows that in terms of environmental and energy impact the plant manufacture contributes very little to the whole life cycle impacts. The results show that compared with alternative energy supply the production and use of biogas is beneficial in terms of greenhouse gases and fossil fuel use. This is mainly due to the replacement of the alternative, kerosene, and from fertiliser production from the AD process. However, these benefits come at a cost to ecosystem health and the production of respiratory inorganics. These were found to be a result of ammonia emissions during the production phase of the biogas. These damages can be significantly reduced if further emission control measures are undertaken.

  18. Vermicular fossils in the Early Cambrian Xidashan Formation in the Quruqtagh region of Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    YANG Ruidong; ZHANG Chuanlin; SONG Guoqi; LUO Xinrong

    2006-01-01

    Large amounts of vermicular fossils and a minor amount of sponge animal fossils have been found in the Early Cambrian Xidashan Formation in the region of Quruqtagh, Xinjiang. Vermicular fossils are generally more than 50 mm long and 0.3-1.4 mm wide; their wrinkled lamellae are microfine with 3-10 pieces within the length of every each millimeter. The fossils are considered to be Sabellidites cambriensis Sokolov (1965). The Xidashan Formation is the highest stratum in which Sabellidites occur, as has been so far reported.

  19. Life Cycle Engineering – from methodology to enterprise culture

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Alting, Leo; Poll, Christian

    As part of a sustainable development, the environmental efficiency of industry must increase by a factor four to ten. This engenders attention to the environmental impact of products and technical systems over their entire life cycle. The last decade has seen the development of a number of...... methodologies and tools for life cycle assessment and development of more eco-efficient products, from complex to simplified, catering to the needs of especially small and medium-sized enterprizes. The tools and data are in place, but dissemination lacks behind. Propagation of life cycle thinking and life cycle...... engineering to larger parts of industry is attempted by strengthening the market pull through integrated product policy measures, and at the same time pushing through information activities, training and dissemination of tools. Experience hitherto shows that these forces are insufficient and that stronger...

  20. Life cycle assessment of a wind farm and related externalities

    DEFF Research Database (Denmark)

    Schleisner, Liselotte

    2000-01-01

    This paper concentrates on the assessment of energy and emissions related to the production and manufacture of materials for an offshore wind farm as well as a wind farm on land based on a life cycle analysis (LCA) model. In Denmark a model has been developed for life cycle assessments of different...... materials. The model is able to assess the energy use related to the production, transportation and manufacture of 1 kg of material. The energy use is divided into fuels used in order to estimate the emissions through the life cycle. In the paper the model and the attached assumptions are described, and the...... model is demonstrated for two wind farms. The externalities for the wind farms are reported, showing the importance of life cycle assessment for renewable energy technologies. (C) 2000 Elsevier Science Ltd. All rights reserved....

  1. A framework for social life cycle impact assessment

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla; Hauschild, Michael Zwicky; Schierbeck, Jens

    2006-01-01

    providing information about the potential social impacts on people caused by the activities in the life cycle of their product. The development of the methodology has been guided by a business perspective accepting that companies, on the one hand, have responsibility for the people affected by their...... the companies along the life cycle to the product. This need is not present in Environmental LCA, where we base the connection on the physical link which exists between process and product. (2) Boundaries of the product system are determined with respect to the influence that the product manufacturer......Goal, Scope and Background. To enhance the use of life cycle assessment (LCA) as a tool in business decision-making, a methodology for Social life cycle impact assessment (LCIA) is being developed. Social LCA aims at facilitating companies to conduct business in a socially responsible manner by...

  2. Life Cycle Engineering – from methodology to enterprise culture

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Alting, Leo; Poll, Christian

    2003-01-01

    As part of a sustainable development, the environmental efficiency of industry must increase by a factor four to ten. This engenders attention to the environmental impact of products and technical systems over their entire life cycle. The last decade has seen the development of a number of...... methodologies and tools for life cycle assessment and development of more eco-efficient products, from complex to simplified, catering to the needs of especially small and medium-sized enterprizes. The tools and data are in place, but dissemination lacks behind. Propagation of life cycle thinking and life cycle...... engineering to larger parts of industry is attempted by strengthening the market pull through integrated product policy measures, and at the same time pushing through information activities, training and dissemination of tools. Experience hitherto shows that these forces are insufficient and that stronger...

  3. Assessing environmental impacts in a life cycle perspective

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2005-01-01

    material flows in the life cycle of a product are translated into environmental impacts and consumption of resources, and questions like these are given an answer. The environmental impacts may range from very local (e.g. land use) to global (like climate change). As an environmental analysis tool, LCA is...... product system sets the frame for life cycle impact assessment (LCIA), and the bearings it has on current LCIA methodology are described in this paper together with the newest developments within this discipline.......What are the environmental impacts from an armchairor a cellular phone or a steak, if you take into account all the activities needed to produce, maintain, use or consume and eventually dispose of it? Life cycle impact assessment is the part of life cycle assessment (LCA) where the inventory of...

  4. Information system life-cycle and documentation standards, volume 1

    Science.gov (United States)

    Callender, E. David; Steinbacher, Jody

    1989-01-01

    The Software Management and Assurance Program (SMAP) Information System Life-Cycle and Documentation Standards Document describes the Version 4 standard information system life-cycle in terms of processes, products, and reviews. The description of the products includes detailed documentation standards. The standards in this document set can be applied to the life-cycle, i.e., to each phase in the system's development, and to the documentation of all NASA information systems. This provides consistency across the agency as well as visibility into the completeness of the information recorded. An information system is software-intensive, but consists of any combination of software, hardware, and operational procedures required to process, store, or transmit data. This document defines a standard life-cycle model and content for associated documentation.

  5. Estimating pesticide emissions for life cycle assessment of agricultural products

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Røpke, Inge

    2004-01-01

    As the first country in Europe Denmark almost 2 years ago established an official center for Life Cycle Assessments and life cycle approaches as an element of the national IPP (Integrated Product Policy). The Danish EPA lends financial support to this important initiative, the aim of which is to: 1....... promote the use of Life Cycle Assessment and other product-oriented environmental tools in companies, 2. support companies and other in using environmental assessment of products and services, 3. ensure that the effort in the LCA area is based on a solid and scientific basis, and 4. maintain the well...... evaluation finished in September 2004. Important learnings for all who are engaged in dissemination of life cycle thinking in industry will be presented....

  6. LIFE CYCLE DESIGN OF MILK AND JUICE PACKAGING

    Science.gov (United States)

    A life cycle design demonstration project was initiated between the U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Dow Chemical Company, and the University of Michigan to investigate milk and juice packagie design. The primary objective of ...

  7. An Overview of Biodiesel and Petroleum Diesel Life Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J. (NREL); Camobreco, V. (Ecobalance); Duffield, J. (USDA); Shapouri, H. (USDA); Graboski, M. (CIFER); Tyson, K. S. (NREL Project Manager)

    2000-04-27

    This report presents the findings from a study of the life cycle inventories for petroleum diesel and biodiesel. It presents information on raw materials extracted from the environment, energy resources consumed, and air, water, and solid waste emissions generated.

  8. A new data architecture for advancing life cycle assessment

    Science.gov (United States)

    IntroductionLife cycle assessment (LCA) has a technical architecture that limits data interoperability, transparency, and automated integration of external data. More advanced information technologies offer promise for increasing the ease with which information can be synthesized...

  9. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    waste management systems applying a life-cycle perspective requires readily understandable tools for modelling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities and LCA modelling capabilities of the PC-based life cycle oriented...... waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems. Materials...... and methods The EASEWASTE model supports a full life cycle assessment of any user defined residential, bulky waste or garden waste management system. The model focuses on the major components of the waste and reviews each component in terms of the available waste management options, including bio...

  10. Assessment of environmental sustainability of life cycle of production systems

    OpenAIRE

    Комариста, Богдана Миколаївна

    2012-01-01

    Product sustainable resource consumption coefficient is modified on the basis of assessment of life-cycle impacts on natural systems and human well-being using natural capital theory and monetarization

  11. Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation

    International Nuclear Information System (INIS)

    This paper summarizes the research of Monte Carlo simulation-based Economic, Energy and Environmental (3E) Life Cycle Assessment (LCA) of the three Biomass-based Fuel Ethanol (BFE) projects in China. Our research includes both theoretical study and case study. In the theoretical study part, 3E LCA models are structured, 3E Index Functions are defined and the Monte Carlo simulation is introduced to address uncertainties in BFE life cycle analysis. In the case study part, projects of Wheat-based Fuel Ethanol (WFE) in Central China, Corn-based Fuel Ethanol (CFE) in Northeast China, and Cassava-based Fuel Ethanol (CFE) in Southwest China are evaluated from the aspects of economic viability and investment risks, energy efficiency and airborne emissions. The life cycle economy assessment shows that KFE project in Guangxi is viable, while CFE and WFE projects are not without government's subsidies. Energy efficiency assessment results show that WFE, CFE and KFE projects all have positive Net Energy Values. Emissions results show that the corn-based E10 (a blend of 10% gasoline and 90% ethanol by volume), wheat-based E10 and cassava-base E10 have less CO2 and VOC life cycle emissions than conventional gasoline, but wheat-based E10 and cassava-based E10 can generate more emissions of CO, CH4, N2O, NOx, SO2, PM10 and corn-based E10 can has more emissions of CH4, N2O, NOx, SO, PM10.

  12. Life-Cycle and Intergenerational Effects of Child Care Reforms

    OpenAIRE

    Marc K Chan; Liu, Kai

    2015-01-01

    We investigate the importance of various mechanisms by which child care policies can affect life-cycle patterns of employment and fertility among women, as well as long-run cognitive outcomes among children. A structural life-cycle model of employment, fertility, and child care use is estimated using Norwegian administrative data. The estimation exploits a large-scale child care reform, which provided generous cash transfers to mothers who did not use formal child care facilities. Combining w...

  13. A Life-Cycle Analysis of Social Security with Housing

    OpenAIRE

    Chen, Kaiji

    2009-01-01

    This paper incorporates two features of housing in a life-cycle analysis of social security: housing as a durable good and housing market frictions. We find that with housing as a durable good unfunded social security substantially crowds out housing consumption throughout the life cycle. By contrast, aggregate non-durable consumption is higher when social security is present, although it is postponed until late in life. Moreover, in the presence of housing market frictions, social security l...

  14. Gender, time use and public policy over the life cycle

    OpenAIRE

    Apps, Patricia; Rees, Ray

    2005-01-01

    In this paper we compare gender differences in the allocation of time to market work, domestic work, child care, and leisure over the life cycle. Time use profiles for these activity categories are constructed on survey data for three countries: Australia, the UK and Germany. We discuss the extent to which gender differences and life cycle variation in time use can be explained by public policy, focusing on the tax treatment of the female partner and on access to high quality, affordable chil...

  15. Precautionary portfolio behavior from a life-cycle perspective

    OpenAIRE

    Carol C. Bertaut; Michael Haliassos

    1996-01-01

    The literature on asset accumulation by households draws a sharp distinction between "short-run" precautionary motives to buffer annual consumption from annual labor income shocks, and "long-run" life cycle considerations under labor income certainty. However, empirical estimates of the persistence of shocks to annual incomes imply that households are subject to considerable career uncertainty. We study long-run precautionary motives for life-cycle wealth accumulation and portfolio choice. We...

  16. Effects of Life Cycle Analysis on Environment and Economy

    OpenAIRE

    Klára Szita Tóthné

    2004-01-01

    This paper summarises the main elements, the methodological developments of LCA, and the steps of the assessment (defining the goal and scope of study, life cycle inventory, life cycle impact assessment and interpretation of the study). It describes the weighting process as the base of assessment, and the different applications of LCA. It also presents a case study for polystyrene and biopolymer packaging, in which investigates the environmental and economic results of comparative LCA - betwe...

  17. Life Cycle Inventory Analysis of Recycling: Mathematical and Graphical Frameworks

    OpenAIRE

    Jun Nakatani

    2014-01-01

    A mathematical framework of the life cycle inventory (LCI) analysis in life cycle assessment (LCA) of recycling is systematically reviewed with the aid of graphical interpretation. First, the zero burden approach, which has been applied to LCI analyses of waste management systems, is theoretically justified in terms of relative comparison of waste management options. As recycling is a multi-functional system including the dual functions of waste management and secondary material production, t...

  18. Asphalt Concrete Mixtures: Requirements with regard to Life Cycle Assessment

    OpenAIRE

    Jan Mikolaj; Frantisek Schlosser; Lubos Remek; Aurelia Chytcakova

    2015-01-01

    Design of asphalt concrete, required properties of constituent materials and their mixing ratios, is of tremendous significance and should be implemented with consideration given to the whole life cycle of those materials and the final construction. Conformity with requirements for long term performance of embedded materials is the general objective of the Life Cycle Assessment (LCA). Therefore, within the assessment, material properties need to be evaluated with consideration given to the wh...

  19. Life-cycle analysis of renewable energy systems

    DEFF Research Database (Denmark)

    Sørensen, Bent

    1994-01-01

    An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants......An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants...

  20. Life Cycle Development of Obesity and Its Determinants

    OpenAIRE

    Cavaco, Sandra; Eriksson, Tor; Skalli, Ali

    2011-01-01

    This paper is concerned with how obesity and some of its determinants develop over individuals’ life cycles. In particular we examine empirically the role and relative importance of early life conditions (parents’ education and socioeconomic status) and individuals’ own education as adults and how their impacts on the probability of overweight and obesity evolves over the life cycle. As the data set includes information about the individuals’ health behaviours (smoking and physical exercise) ...

  1. The genetic covariance between life cycle stages separated by metamorphosis

    OpenAIRE

    Aguirre, J. David; Blows, Mark W.; Dustin J Marshall

    2014-01-01

    Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis cou...

  2. Reducing Life Cycle Impacts of the Existing Irish Housing Stock.

    OpenAIRE

    Famuyibo, Albert A., [Thesis

    2012-01-01

    Abstract Despite the importance of addressing the challenges of the 2020 emissions reduction targets of both the European Union (EU) and Ireland, current residential emissions policies have focused mainly on the few existing studies that are primarily used to predict end-use energy and CO2 emissions savings. To allow all energy and emissions across life cycle phases to be evaluated, a process-based life cycle analysis (LCA) hybrid model was developed with the aim of determining the extent ...

  3. Application of product life cycle concept to private label management

    OpenAIRE

    Sandra Horvat

    2013-01-01

    Private labels have recorded significant growth rates worldwide, becoming a serious threat to manufacturer brands. Development of private labels in many different product categories increased the complexity of their management. Therefore, this paper examines the possibility of using the product life cycle concept in private label management. Given that private labels are a specific brand type, it is necessary to adjust certain elements of the product life cycle concept, as it was developed on...

  4. The Force of Selection on the Human Life Cycle

    OpenAIRE

    Jones, James Holland

    2009-01-01

    In this paper, I present evidence for a robust and quite general force of selection on the human life cycle. The force of selection acts in remarkably invariant ways on human life histories, despite a great abundance of demographic diversity. Human life histories are highly structured, with mortality and fertility changing substantially through the life cycle. This structure necessitates the use of structured population models to understand human life history evolution. Using such structured ...

  5. Risks in whole life-cycle costs of a building

    OpenAIRE

    Finc, Uroš

    2006-01-01

    The thesis presents the procedure for the whole life-cycle costs assessment of a building. Special emphasis is placed on risks associated with decisions in sequential stages of the construction project: concept, design, construction, operation and end of life. Risk management, i.e. types of costs and associated risks generated during construction project, risk identification, allocation and responsibility, is discussed. The whole life cycle cost analysis (WLCC analysis) is desc...

  6. Towards product health monitoring throughout its life-cycle

    OpenAIRE

    Krommenacker, Nicolas; Charpentier, Patrick; Pena, Rodolfo

    2013-01-01

    Product Health Monitoring (PHM) is the process of monitoring usage conditions of the product. Like Structural Health Monitoring systems, they are traditionally deployed during the Middle-Of-Life (MOL) phase of the product's life-cycle. The aim of this paper is to describe the concept of PHM throughout its life-cycle. Advances in Nanotechnology and wireless nano sensors networks allow envisaging their integration into many products and systems. From this observation, we propose to describe a s...

  7. Life Cycle Influence on the Policy of Product Development

    OpenAIRE

    Sava Ianici

    2012-01-01

    It is well known that „product life on the market” is the main reason for developing and improving of product. Therefore all producers tend to provide as long as possible life cycle of their products. The author of this paper wanted to indicate the basic principles of defining of life cycle of products. The paper analyses technical lifetime, but also economical, ecological and even, fashion lifetime, because they are also, important, and in certain cases even crucial, for br...

  8. The life cycle of social and economic systems

    OpenAIRE

    S.E. Sardak

    2016-01-01

    The aim of the article. The aim of the article is to identify the components of social and economic systems life cycle. To achieve this aim, the article describes the traits and characteristics of the system, determines the features of social and economic systems functioning and is applied a systematic approach in the study of their life cycle. The results of the analysis. It is determined that the development of social and economic systems has signs of cyclicity and is explained methodolo...

  9. Life cycle analysis for the assessment of environmental impacts

    International Nuclear Information System (INIS)

    The paper presents the structure of a model and a database devoted to the life-cycle analysis of industrial products for the assessment of environmental impacts. The data cover a large variety of industrial sectors; the whole life-cycle of the products has to be considered when the environmental impacts are calculated. The author considers that the data format could be standardized in view of exchanging data between different studies and to enlarge the quality of the studies. (author)

  10. Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model

    International Nuclear Information System (INIS)

    China made a commitment in Copenhagen to reduce its carbon dioxide emissions per unit of GDP from 40% to 45% compared with the 2005 level by 2020, and is determined to vigorously develop non-fossil fuels. This study analyzes the effects and impacts of policies that could help to achieve China's Copenhagen commitments with a hybrid static CGE model in which the electricity sector is disaggregated into 12 generation technologies. Four scenarios are developed, including the reference scenario A, the reference scenario B and two carbon constraint scenarios. The results show that carbon intensity in terms of GDP will fall by 30.97% between 2005 and 2020 in the reference scenario A, and will be reduced further by 7.97% if China's targeted non-fossil energy development plans can be achieved in the reference scenario B. However, the rest of the 40-45% target must be realized by other measures such as carbon constraint. It is also observed that due to carbon intensity constraints, GDP loss would be from 0.032% to 0.24% compared to the reference scenario B, and CO2 emission reductions are due mainly to decreases in coal consumption in the electricity sector and manufacturing sector. - Research highlights: → The effects of policies that could help to achieve China's Copenhagen commitments are analyzed. → Twelve generation technologies are included in electricity sector. → China's energy demand and CO2 emissions in 2020 are presented. → Impacts of CO2 emission reduction on China's economy are studied.

  11. How can a life cycle inventory parametric model streamline life cycle assessment in the wooden pallet sector?

    DEFF Research Database (Denmark)

    Niero, Monia; Di Felice, Francesco; Ren, Jingzheng;

    2014-01-01

    This study discusses the use of parameterization within the life cycle inventory (LCI) in the wooden pallet sector, in order to test the effectiveness of LCI parametric models to calculate the environmental impacts of similar products. Starting from a single case study, the objectives of this paper...... correlations can be used to improve the design of new wooden pallets.The conceptual scheme for defining the model is based on ISO14040-44 standards. First of all, the product system was defined identifying the life cycle of a generic wood pallet, as well as its life cycle stages. A list of independent and...... information required for fulfilling the LCI are standard information about the features of the wooden pallet and its manufacturing process. The contribution analysis on the reference product revealed that the most contributing life cycle stages are wood and nails extraction and manufacturing (positive value...

  12. How can a life cycle inventory parametric model streamline life cycle assessment in the wooden pallet sector?

    DEFF Research Database (Denmark)

    Niero, Monia; Felice, Francesco, Di; Ren, Jingzheng;

    2014-01-01

    Purpose This study discusses the use of parameterization within the life cycle inventory (LCI) in the wooden pallet sector, in order to test the effectiveness of LCI parametric models to calculate the environmental impacts of similar products. Starting from a single case study, the objectives of......; these correlations can be used to improve the design of new wooden pallets. Methods The conceptual scheme for defining the model is based on ISO14040-44 standards. First of all, the product system was defined identifying the life cycle of a generic wood pallet, as well as its life cycle stages. A list...... streamlined the data collection process, as the information required for fulfilling the LCI are standard information about the features of the wooden pallet and its manufacturing process. The contribution analysis on the reference product revealed that the most contributing life cycle stages are wood and...

  13. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co-combustion in......Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material...... production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery for the...

  14. Life cycle environmental and economic sustainability assessment of micro-generation technologies in the UK domestic sector

    OpenAIRE

    Greening, Benjamin Paul

    2014-01-01

    This research has assessed the environmental and economic sustainability of domestic micro-generation technologies under UK conditions as both individual technologies and as part of a range of future energy supply scenarios for the domestic sector extending to 2050. A life cycle approach has been used for both environmental and economic assessment considering the relevant sustainability impacts, which include global warming potential, the depletion of fossil fuels, human toxicity and life cyc...

  15. Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India

    International Nuclear Information System (INIS)

    Since 2003 India has been actively promoting the cultivation of Jatropha on unproductive and degraded lands (wastelands) for the production of biodiesel suitable as transportation fuel. In this paper the life cycle energy balance, global warming potential, acidification potential, eutrophication potential and land use impact on ecosystem quality is evaluated for a small scale, low-input Jatropha biodiesel system established on wasteland in rural India. In addition to the life cycle assessment of the case at hand, the environmental performance of the same system expanded with a biogas installation digesting seed cake was quantified. The environmental impacts were compared to the life cycle impacts of a fossil fuel reference system delivering the same amount of products and functions as the Jatropha biodiesel system under research. The results show that the production and use of Jatropha biodiesel triggers an 82% decrease in non-renewable energy requirement (Net Energy Ratio, NER = 1.85) and a 55% reduction in global warming potential (GWP) compared to the reference fossil-fuel based system. However, there is an increase in acidification (49%) and eutrophication (430%) from the Jatropha system relative to the reference case. Although adding biogas production to the system boosts the energy efficiency of the system (NER = 3.40), the GWP reduction would not increase (51%) due to additional CH4 emissions. For the land use impact, Jatropha improved the structural ecosystem quality when planted on wasteland, but reduced the functional ecosystem quality. Fertilizer application (mainly N) is an important contributor to most negative impact categories. Optimizing fertilization, agronomic practices and genetics are the major system improvement options.

  16. Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India

    Energy Technology Data Exchange (ETDEWEB)

    Achten, Wouter M.J. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India); Almeida, Joana [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); Grupo de Disciplinas da Ecologia da Hidrosfera, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Fobelets, Vincent; Bolle, Evelien; Muys, Bart [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); Mathijs, Erik [Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Celestijnenlaan 200 E-2411, BE-3001 Leuven (Belgium); Singh, Virendra P. [World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India); Tewari, Dina N. [Utthan NGO, Centre for Sustainable Development and Poverty Alleviation, 18-A, Auckland Road, Civil Lines, Allahabad 211 001 (India); Verchot, Louis V. [Centre for International Forestry Research, P.O. Box 0113 BOCBD, Bogor 16000 (Indonesia)

    2010-12-15

    Since 2003 India has been actively promoting the cultivation of Jatropha on unproductive and degraded lands (wastelands) for the production of biodiesel suitable as transportation fuel. In this paper the life cycle energy balance, global warming potential, acidification potential, eutrophication potential and land use impact on ecosystem quality is evaluated for a small scale, low-input Jatropha biodiesel system established on wasteland in rural India. In addition to the life cycle assessment of the case at hand, the environmental performance of the same system expanded with a biogas installation digesting seed cake was quantified. The environmental impacts were compared to the life cycle impacts of a fossil fuel reference system delivering the same amount of products and functions as the Jatropha biodiesel system under research. The results show that the production and use of Jatropha biodiesel triggers an 82% decrease in non-renewable energy requirement (Net Energy Ratio, NER = 1.85) and a 55% reduction in global warming potential (GWP) compared to the reference fossil-fuel based system. However, there is an increase in acidification (49%) and eutrophication (430%) from the Jatropha system relative to the reference case. Although adding biogas production to the system boosts the energy efficiency of the system (NER = 3.40), the GWP reduction would not increase (51%) due to additional CH{sub 4} emissions. For the land use impact, Jatropha improved the structural ecosystem quality when planted on wasteland, but reduced the functional ecosystem quality. Fertilizer application (mainly N) is an important contributor to most negative impact categories. Optimizing fertilization, agronomic practices and genetics are the major system improvement options. (author)

  17. Discovery of sponge body fossils from the late Meishucunian (Cambrian) at Jinsha, Guizhou, south China

    Institute of Scientific and Technical Information of China (English)

    YANG Xinglian; ZHAO Yuanlong; WANG Yue; WANG Pingli

    2005-01-01

    Here we report discovery of a sponge body fossil Triticispongia sp. from the base of lower Cambrian Niutitang Formation at Jinsha, Guizhou. Stratigraphically, the fossil horizon is located below Ni-Mo ore layer with the Niutitang Biota above, and is equivalent to the late Meishucunian. The species is global in shape with skeletons composed of stauractins and monaxons. Triticispongia sp. reported here may be the earliest sponge body fossils of Cambrian, which provides new informationfor understanding early evolution and radiation of sponge animals.

  18. A systematic review of bioenergy life cycle assessments

    International Nuclear Information System (INIS)

    Highlights: • We conducted a systematic literature review of bioenergy LCAs. • We provide a detailed overview of GWP, AP, and EP for biomass electricity and heat. • We discuss methodological choices that can lead to variations in results. • Relevant choices are functional unit, allocation method, system boundary, and carbon modelling. - Abstract: On a global scale, bioenergy is highly relevant to renewable energy options. Unlike fossil fuels, bioenergy can be carbon neutral and plays an important role in the reduction of greenhouse gas emissions. Biomass electricity and heat contribute 90% of total final biomass energy consumption, and many reviews of biofuel Life Cycle Assessments (LCAs) have been published. However, only a small number of these reviews are concerned with electricity and heat generation from biomass, and these reviews focus on only a few impact categories. No review of biomass electricity and heat LCAs included a detailed quantitative assessment. The failure to consider heat generation, the insufficient consideration of impact categories, and the missing quantitative overview in bioenergy LCA reviews constitute research gaps. The primary goal of the present review was to give an overview of the environmental impact of biomass electricity and heat. A systematic review was chosen as the research method to achieve a comprehensive and minimally biased overview of biomass electricity and heat LCAs. We conducted a quantitative analysis of the environmental impact of biomass electricity and heat. There is a significant variability in results of biomass electricity and heat LCAs. Assumptions regarding the bioenergy system and methodological choices are likely reasons for extreme values. The secondary goal of this review is to discuss influencing methodological choices. No general consensus has been reached regarding the optimal functional unit, the ideal allocation of environmental impact between co-products, the definition of the system boundary

  19. A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea

    International Nuclear Information System (INIS)

    This paper aims to conduct a comparative study of the changes in CO2 emission performance of state-owned fossil fuel power plants between China and Korea. For this purpose, we combine the concept of the metafrontier Malmquist productivity index and the non-radial directional distance function to develop a new index called the non-radial metafrontier Malmquist CO2 emission performance index (NMMCPI). This new methodology allows for the incorporation of technological heterogeneities and slack variables into the previously introduced Malmquist CO2 emission performance index (MCPI). The NMMCPI can be derived by solving several non-radial data envelopment analysis (DEA) models. The NMMCPI can be decomposed into an efficiency change (EC) index, a best-practice gap change (BPC) index, and a technology gap change (TGC) index. By fixing the non-energy inputs, we measure the pure CO2 emission performance change. Based on the proposed indices, the comparative study between Chinese and Korean fossil fuel power industries is conducted for the 2005–2010 period. Empirical results indicate significant differences in terms of various decomposed CO2 emission performance changes between China and Korea. Korean power plants demonstrate improvements in innovation, while Chinese power plants demonstrate a higher ability for technological leadership. Some related policy implications are also proposed based on the empirical results. -- Highlights: •The non-radial metafrontier Malmquist CO2 emission performance index (NMMCPI) is proposed. •It allows for the incorporation of group heterogeneity and non-radial slack. •The changes in CO2 emission performance and its decomposition of fossil fuel power plants in China and Korea are compared

  20. Isotopic compositions of small shelly fossil Anabarites from Lower Cambrian in Yangtze Platform of South China: Implications for palaeocean temperature

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Anabarites belong to small shelly fossils (SSF), which occur widely in the Lower Cambrian strata of Yangtze Platform in South China. They are phosphate shell in composition and represent the earliest stage of the Cambrian bioradiation of Bilateria, the socalled "Cambrian Explosion". In this study, we attempted to separate Anabarites fossils from Lower Cambrian dolostones, and we obtained samples of both the fossils (SSF) and the granular phosphates (GP). Isotopic analyses were performed on samples of SSF, GP, and matrix dolostone (DH-23). The results showed that the δ30 Si values of the quartz filling in fossils celoms, and the siliceous materials in granular phosphates are -0.6‰ and -0.7‰, which is different from normal sedimentary siliceous rocks from the Lower Cambrian strata (0-0.7‰) as reported by Li et al., but is consistent with the data for siliceous rocks and cherts of submarine hydrothermal origin. It is likely that a later hydrothermal replacement could have taken place in the SSF-bearing sedimentary rocks. The oxygen isotope values of the phosphate of SSF and GP are 16.8‰ and 17.0‰, respectively. These are significantly higher than the Neoproterozoic phosphate ores (10.9‰-13.9‰) as reported by Ling et al., hence, late diagenesis and hydrothermal replacement may not have caused a significant change in the oxygen isotope compositions of the small shelly fossils, and the calculated temperatures (25.4-26.3 ℃ ) for palaeo-seawater using a SSF phosphate oxygen isotope thermometer are therefore considered here as the upper limit of seawater temperature in the Early Cambrian ocean of the Yangtze Platform.

  1. Discovery of phosphatized gastrula fossils from the Doushantuo Formation, Weng'an,Guizhou Province, China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Globular fossils from Doushantuo phosphorites at the Weng'an area are for the first time identified as a gastrulation stage of phosphatized embryos. They are got from the fossiliferous remains after acetic acid maceration. The fossils are found together with formerly reported animal resting eggs and embryos of the earlier cleavage stage. The oblate-shaped fossils with the same size as those reported embryos and invaginate at the middle part into the embryos, show the characteristics of the late blastula to the early gastrula stage of the embryo development. This discovery convinces the existence of animal embryos at Doushantuo age and offers new facts for the studying of the affinity of related fossils, which are still controversial at present.

  2. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Camobreco, V.; Sheehan, J.; Duffield, J.

    1995-12-31

    The US Department of Energy`s Office of Transportation Technologies, DOE`s National Renewable Energy Laboratory, the US Department of Agriculture`s Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties.

  3. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    International Nuclear Information System (INIS)

    The US Department of Energy's Office of Transportation Technologies, DOE's National Renewable Energy Laboratory, the US Department of Agriculture's Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties

  4. Life cycle assessment part 2: current impact assessment practice.

    Science.gov (United States)

    Pennington, D W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T; Rebitzer, G

    2004-07-01

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse, recycling, through to ultimate disposal. These all contribute to impacts such as climate change, stratospheric ozone depletion, photooxidant formation (smog), eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources and noise-among others. The need exists to address these product-related contributions more holistically and in an integrated manner, providing complimentary insights to those of regulatory/process-oriented methodologies. A previous article (Part 1, Rebitzer et al., 2004) outlined how to define and model a product's life cycle in current practice, as well as the methods and tools that are available for compiling the associated waste, emissions and resource consumption data into a life cycle inventory. This article highlights how practitioners and researchers from many domains have come together to provide indicators for the different impacts attributable to products in the life cycle impact assessment (LCIA) phase of life cycle assessment (LCA). PMID:15051247

  5. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  6. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the

  7. Quantifying Cost Risk Early in the Life Cycle

    International Nuclear Information System (INIS)

    A new method for analyzing life cycle cost risk on large programs is presented that responds to an increased emphasis on improving sustainability for long-term programs. This method provides better long-term risk assessment and risk management techniques. It combines standard Monte Carlo analysis of risk drivers and a new data-driven method developed by the BMDO. The approach permits quantification of risks throughout the entire life cycle without resorting to difficult to support subjective methods. The BMDO methodology is shown to be relatively straightforward to apply to a specific component or process within a project using standard technical risk assessment methods. The total impact on system is obtained using the program WBS, which allows for the capture of correlated risks shared by multiple WBS items. Once the correlations and individual component risks are captured, a Monte Carlo simulation can be run using a modeling tool such as ANALYTICA to produce the overall life cycle cost risk

  8. 19th CIRP Conference on Life Cycle Engineering

    CERN Document Server

    Linke, Barbara

    2012-01-01

    The 19th CIRP Conference on Life Cycle Engineering continues a strong tradition of scientific meetings in the areas of sustainability and engineering within the community of the International Academy for Production Engineering (CIRP). The focus of the conference is to review and discuss the current developments, technology improvements, and future research directions that will allow engineers to help create green businesses and industries that are both socially responsible and economically successful.  The symposium covers a variety of relevant topics within life cycle engineering including Businesses and Organizations, Case Studies, End of Life Management, Life Cycle Design, Machine Tool Technologies for Sustainability, Manufacturing Processes, Manufacturing Systems, Methods and Tools for Sustainability, Social Sustainability, and Supply Chain Management.

  9. Industrial open source solutions for product life cycle management

    Directory of Open Access Journals (Sweden)

    Jaime Campos

    2014-12-01

    Full Text Available The authors go through the open source for product life cycle management (PLM and the efforts done from communities such as the open source initiative. The characteristics of the open source solutions are highlighted as well. Next, the authors go through the requirements for PLM. This is an area where more attention has been given as the manufacturers are competing with the quality and life cycle costs of their products. Especially, the need of companies to try to get a strong position in providing services for their products and thus to make themselves less vulnerable to changes in the market has led to high interest in product life cycle simulation. The potential of applying semantic data management to solve these problems discussed in the light of recent developments. In addition, a basic roadmap is presented as to how the above-described problems could be tackled with open software solutions.

  10. Oil Points - Life Cycle Evaluations without the Data Problem

    DEFF Research Database (Denmark)

    Bey, Niki; Lenau, Torben Anker; Larsen, Michael Holm

    1999-01-01

    Environmental aspects of products in their whole life cycle are of increasing importance in industry [1]. Therefore, several methods and tools for environmental life cycle evaluation have been developed during the last years. Formal Life Cycle Assessment (LCA), the state-of-the-art in environmental...... evaluation, usually involves the handling of a considerable amount of data in order to obtain an assessment with sufficient coverage of all potential environmental impacts of the product. Obtaining these data is very often a major obstacle in conducting an LCA. Furthermore, this data intensity results in an...... equally high time consumption.Simplified, indicator-based methods have been developed to facilitate rough evaluations in relatively short periods of time [2, 3]. Unlike complex LCA methods, which are to be used by specialists, these simplified methods can be used by product developers. However, any...

  11. Implementation of Life Cycle Assessment in Product Development

    DEFF Research Database (Denmark)

    McAloone, Timothy Charles; Hauschild, M.

    2003-01-01

    The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating the...... opportunities for introducing environmental criteria in the design process through meeting the information requirements of the designer on the different life cycle stages, producing an in-depth understanding of the attitudes of practitioners among product developers to the subject area, and an understanding of...... possible future directions for product development. An Environmentally Conscious Design method is introduced and trade-offs are presented between design degrees of freedom and environmental solutions. Life cycle design frameworks and strategies are addressed. The paper collects experiences and ideas around...

  12. From life cycle assessment to sustainable production: Status and perspectives

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Jeswiet, Jack; Alting, Leo

    2005-01-01

    The paper reviews the current state of Life Cycle Assessment (LCA) introducing the central elements of the methodology and the latest developments in assessment of the environmental, economic and social impacts along the product chain. The central role of LCA in Integrated Product Policy (IPP) is...... meeting the sustainability challenge to our societies is discussed, and it is concluded that industry must include not only the eco-efficiency but also the product's environmental justification and the company ethics in a life cycle perspective in order to become sustainable. In the outlook it is...... to the tools for design for disassembly. Life Cycle Engineering is defined, and a systematic hierarchy is presented for the different levels at which environmental impacts from industry can be addressed by the engineer in order to improve the eco-efficiency of the industry. The role of industry in...

  13. ECONOMIC EVALUATION: LIFE CYCLE OF THE NATIONAL GAMES ROAD

    Directory of Open Access Journals (Sweden)

    MRS. VIDYA NITIN PATIL

    2012-03-01

    Full Text Available In response to the growing importance of sustainable undertaking, purchasing and building, designers, consultants and pavement managers now tend to make more rational decisions than before when comparing the pros and cons of the construction, maintenance and management of various types of road pavements. Asphalt and concrete pavements offer specific advantages that need to be compared when selecting the most favorable option for long-life pavements. Financial decisions can be based on life cycle cost. Life Cycle Cost analysis is to arrive at such an economic equitable assessment of competing design alternatives and it further useful for budget planning. The paper describes life cycle cost analysis of the assets of road pavement byusing present worth method. The information regarding the user cost and vehicle operating cost as per IRC recommendation is also discussed in detail.

  14. Role of nondestructive evaluation in life cycle management

    Energy Technology Data Exchange (ETDEWEB)

    Martz, H.

    1997-12-18

    This paper provides an overview of some common NDE methods and several examples for the use of different NDE techniques throughout the life cycle of a product. NDE techniques are being used to help determine material properties, design new implants, extend the service life of aircraft, and help dispose of radioactive waste in a safe manner. It is the opinion of this author and others that the NDE community needs to work more closely with end users in the life cycle of a product to better incorporate NDE techniques. The NDE community needs to highlight the importance of NDE in the entire life-cycle process of a product by showing real costs savings to the manufacturing community.

  15. Transport of Passive Tracers in Baroclinic Wave Life Cycles

    Science.gov (United States)

    Stone, Elizabeth M.; Randel, William J.; Stanford, John L.

    1999-01-01

    The transport of passive tracers in idealized baroclinic wave life cycles is studied using output from the National Center for Atmospheric Research Community Climate Model (CCM2). Two life cycles, LCn and LCs, are simulated, starting with baroclinically unstable initial conditions similar to those used by Thorncroft et al. in their study of two life cycle paradigms. The two life cycles LCn and LCs have different initial horizontal wind shear structures that result in distinctive nonlinear development. In terms of potential vorticity-potential temperature (PV-theta) diagnostics, the LCn case is characterized by thinning troughs that are advected anti-cyclonically and equatorward, while the LCs case has broadening troughs that wrap up cyclonically and poleward. Four idealized passive tracers are included in the model to be advected by the semi-Lagrangian transport scheme of the CCM2, and their evolutions are investigated throughout the life cycles. Tracer budgets are analyzed in terms of the transformed Eulerian mean constituent transport formalism in pressure coordinates and also in isentropic coordinates. Results for both LCn and LCs show transport that is downgradient with respect to the background structure of the tracer field, but with a characteristic spatial structure that maximizes in the middle to high latitudes. For the idealized tropospheric tracers in this study, this represents a net upward and poleward transport that enhances concentrations at high latitudes. These results vary little with the initial distribution of the constituent field. The time tendency of the tracer is influenced most strongly by the eddy flux term. with the largest transport occurring during the nonlinear growth stage of the life cycle. The authors also study the transport of a lower-stratospheric tracer, to examine stratosphere-troposphere exchange for baroclinic waves.

  16. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 4, Activity Analysis-The Methods describes the techniques and concepts for carrying out activity analysis within the systems development life-cycle. Reference is made to the deliverables of data analysis and more than one method of analysis, each a viable alternative to the other, are discussed. The """"bottom-up"""" and """"top-down"""" methods are highlighted. Comprised of seven chapters, this book illustrates how dependent data and activities are on each other. This point is especially brought home when the task of inventing new busin

  17. Structural considerations for a software life cycle dynamic simulation model

    Science.gov (United States)

    Tausworthe, R. C.; Mckenzie, M.; Lin, C. Y.

    1983-01-01

    This paper presents the results of a preliminary study into the prospects for simulating the software implementation and maintenance life cycle process, with the aim of producing a computerized tool for use by management and software engineering personnel in project planning, tradeoff studies involving product, environmental, situational, and technological factors, and training. The approach taken is the modular application of a 'flow of resource' concept to the systems dynamics simulation modeling technique. The software life cycle process is represented as a number of stochastic, time-varying, interacting work tasks that each achieves one of the project milestones. Each task is characterized by the item produced, the personnel applied, and the budgetary profile.

  18. Industrial open source solutions for product life cycle management

    OpenAIRE

    Jaime Campos; Juha Kortelainen; Erkki Jantunen

    2014-01-01

    The authors go through the open source for product life cycle management (PLM) and the efforts done from communities such as the open source initiative. The characteristics of the open source solutions are highlighted as well. Next, the authors go through the requirements for PLM. This is an area where more attention has been given as the manufacturers are competing with the quality and life cycle costs of their products. Especially, the need of companies to try to get a strong position in pr...

  19. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    International Nuclear Information System (INIS)

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance

  20. The TMIS life-cycle process document, revision A

    Science.gov (United States)

    1991-01-01

    The Technical and Management Information System (TMIS) Life-Cycle Process Document describes the processes that shall be followed in the definition, design, development, test, deployment, and operation of all TMIS products and data base applications. This document is a roll out of TMIS Standards Document (SSP 30546). The purpose of this document is to define the life cycle methodology that the developers of all products and data base applications and any subsequent modifications shall follow. Included in this methodology are descriptions of the tasks, deliverables, reviews, and approvals that are required before a product or data base application is accepted in the TMIS environment.

  1. An Overview of Biodiesel and Petroleum Diesel Life Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Camobreco, Vince [National Renewable Energy Lab. (NREL), Golden, CO (United States); Duffield, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Graboski, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapouri, Housein [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1998-05-01

    This overview is extracted from a detailed, comprehensive report entitled Life Cycle Inventories of Biodiesel and Petroleum Diesel for Use in an Urban Bus. This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI comprehensively quantifies all the energy and environmental flows associated with a product from “cradle to grave.” It provides information on raw materials extracted from the environment; energy resources consumed; and air, water, and solid waste emissions generated.

  2. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    International Nuclear Information System (INIS)

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance

  3. The study of the life cycle of technology assessment model

    Institute of Scientific and Technical Information of China (English)

    SHEN Yu-Zhi; HUANG Xun-jiang

    2001-01-01

    The life cycle of technology is one of the most important indexes to weigh up the risk of the investment to neo-tech. There are so many uncertainties because it is conditioned by a lot of factors, we can not make a rational forecasting by traditional assessment method. So this paper gives a conprehensive consideration to the factors that influence production and makes some modification to production function, and establishes the life cycle of technology assessmet model by the method of fuzzy mathematics. So it quantifies the risk of investment. We can take it as one foundational index for the decision making of the investment.

  4. Life cycle assessments of energy from solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Finnveden, Goeran; Johansson, Jessica; Lind, Per; Moberg, Aasa [Stockholm Univ. (Sweden). Dept. of Systems Ecology/Natural Resoruces Management Inst.]|[Defence Research Establishment, Stockholm (Sweden). Div. of Defence Analysis

    2000-09-01

    The overall aim of the present study is to evaluate different strategies for treatment of solid waste based on a life-cycle perspective. Important goals are to identify advantages and disadvantages of different methods for treatment of solid waste, and to identify critical factors in the systems, including the background systems, which may significantly influence the results. Included in the study are landfilling, incineration, recycling, digestion and composting. The waste fractions considered are the combustible and recyclable or compostable fractions of municipal solid waste. The methodology used is Life Cycle Assessment. The results can be used for policy decisions as well as strategic decisions on waste management systems.

  5. Life cycle assessment of capital goods related to waste incineration

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    The environmental impacts from the life cycle of products and systems were evaluated using Life Cycle Assessment (LCA) as a tool. Today most LCAs of waste management systems only considers the impacts from the operation of the system but neglects the environmental impacts from construction......, maintenance and demolition of capital goods. Capital goods are defined as buildings, machinery, trucks and infrastructure at the facility. A LCA was performed using two modelling programmes: Simapro and EASEWASTE. This paper assesses the importance of including capital goods when performing LCAs of waste...

  6. Inclusion of Social Aspects in Life Cycle Assessment of Products

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla

    This Industrial PhD thesis presents the development of a social life cycle assessment (LCA) method for application in life cycle management in companies. The method aims to facilitate companies to conduct business in a socially responsible manner by enabling decisions on the basis of knowledge...... underlying modelling of social impacts. Concrete models for inclusion of four impact categories representing fundamental labour rights violations are developed and tested in six case studies. The results of the case studies are used to evaluate the Social LCA method and the specific models for labour rights...

  7. PRODUCT DATA PREDICTION WITH UNCERTAINTY IN PRODUCT LIFE CYCLE DESIGN

    Institute of Scientific and Technical Information of China (English)

    Yu Suiran; Wang Chengtao; Kimura Fumihiko

    2003-01-01

    Various kinds of data are used in new product design and more accurate data make the design results more reliable. Even though part of product data can be available directly from the existing similar products, there still leaves a great deal of data unavailable. This makes data prediction a valuable work. A method that can predict data of product under development based on the existing similar products is proposed. Fuzzy theory is used to deal with the uncertainties in data prediction process. The proposed method can be used in life cycle design, life cycle assessment (LCA) etc. Case study on current refrigerator is used as a demonstration example.

  8. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Sweeney

    2001-02-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  9. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    Energy Technology Data Exchange (ETDEWEB)

    R. Sweeney

    2000-03-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  10. Life Cycle Assessment of the wind farm alpha ventus

    Directory of Open Access Journals (Sweden)

    Wagner H.-J.

    2013-06-01

    Full Text Available Life Cycle Assessments (LCA is an important tool for industry and policy makers, used to determine the actual emissions of a product or technology throughout its whole life cycle. In case of energy production systems or power plants, analysis of energy required to produce the materials and processes; emissions resulting from various processes for materials production and processes resulting into their Cumulated Energy Demand (CED and Global Warming Potential (GWP become important parameters when making decisions on further research, development and deployment of any technology. The method of carrying out such analysis is explained through a case study.

  11. Life Cycle Development of Obesity and Its Determinants

    DEFF Research Database (Denmark)

    Cavaco, Sandra; Eriksson, Tor; Skalli, Ali

    This paper is concerned with how obesity and some of its determinants develop over individuals’ life cycles. In particular we examine empirically the role and relative importance of early life conditions (parents’ education and socioeconomic status) and individuals’ own education as adults and how......) parents’ socioeconomic status predicts obesity in early adulthood whereas individuals’ own socioeconomic status as adults is more important in explaining obesity at later stages of the life cycle, and (iii) changes in obesity status are associated with changes in health behaviours....

  12. Life cycle assessment of sewage sludge management: A review

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Christensen, Thomas Højlund; Scheutz, Charlotte

    2013-01-01

    In this article, 35 published studies on life cycle assessment (LCA) of sewage sludge were reviewed for their methodological and technological assumptions. Overall, LCA has been providing a flexible framework to quantify environmental impacts of wastewater and sewage sludge treatment and disposal...... methodological development of the life cycle impact assessment (LCIA) and the advancement of research in quantifying environmental emissions associated with wastewater and sewage sludge treatment processes. Thus, large discrepancies were found in the selection of the environmental emissions to be included and...

  13. From life cycle assessment to sustainable production: Status and perspectives

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Jeswiet, Jack; Alting, Leo

    2005-01-01

    to the tools for design for disassembly. Life Cycle Engineering is defined, and a systematic hierarchy is presented for the different levels at which environmental impacts from industry can be addressed by the engineer in order to improve the eco-efficiency of the industry. The role of industry in...... meeting the sustainability challenge to our societies is discussed, and it is concluded that industry must include not only the eco-efficiency but also the product's environmental justification and the company ethics in a life cycle perspective in order to become sustainable. In the outlook it is...

  14. Quantitative Analysis of Paleoatmospheric CO2 Level Based on Stomatal Characters of Fossil Ginkgo from Jurassic to Cretaceous in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A better theoretical and practical understanding of the linkage between paleo-CO2 and climate during geological history is important to enhance the sustainable development of modern human society. Development in plant physiology since the 1980s has led to the realization that fossil plants can serve as a proxy for paleoatmosphere and paleobiosphere. As a relict gymnosperm with evolutionary stasis, Ginkgo is well suited for paleoenvironmental reconstruction. This paper analyzes fossil Ginkgo species from integrated strata in the north of China using anatomic data of plant physiology. Using stomatal parameters, a trend for the paleo-CO2 level during the Early-Middle Jurassic and the Early Cretaceous was obtained, which is consistent with the estimates by GEOCARB.The trend is also similar to that of Mean Global Surface Temperature in geological time. Compared with three other atmospheric CO2 concentration parameters, the trend of paleo-CO2 level based on the stomatal parameter of the fossil Ginkgo specimens from three contiguous strata is more exact.

  15. Life cycle analysis of energy supply infrastructure for conventional and electric vehicles

    International Nuclear Information System (INIS)

    Electric drive vehicle technologies are being considered as possible solutions to mitigate environmental problems and fossil fuels dependence. Several studies have used life cycle analysis technique, to assess energy use and CO2 emissions, addressing fuels Well-to-Wheel life cycle or vehicle's materials Cradle-to-Grave. However, none has considered the required infrastructures for fuel supply. This study presents a methodology to evaluate energy use and CO2 emissions from construction, maintenance and decommissioning of support infrastructures for electricity and fossil fuel supply of vehicles applied to Portugal case study. Using Global Warming Potential and Cumulative Energy Demand, three light-duty vehicle technologies were considered: Gasoline, Diesel and Electric. For fossil fuels, the extraction well, platform, refinery and refuelling stations were considered. For the Electric Vehicle, the Portuguese 2010 electric mix, grid and the foreseen charging point's network were studied. Obtained values were 0.6–1.5 gCO2eq/km and 0.03–0.07 MJeq/km for gasoline, 0.6–1.6 gCO2eq/km and 0.02–0.06 MJeq/km for diesel, 3.7–8.5 gCO2eq/km and 0.06–0.17 MJeq/km for EV. Monte Carlo technique was used for uncertainty analysis. We concluded that EV supply infrastructures are more carbon and energetic intensive. Contribution in overall vehicle LCA does not exceed 8%. - Highlights: ► ISO 14040 was applied to evaluate fuel supply infrastructures of ICE and EV. ► CED and GWP are used to assess the impact on WTW and CTG stages. ► EV chargers rate and ICE stations' lifetime influence uncertainty the most. ► EV facilities are more carbon and energetic intense than conventional fuels. ► Contribution of infrastructures in overall vehicle LCA does not exceed 8%.

  16. Perceived Marital Quality and Family Life-Cycle Categories: A Further Analysis.

    Science.gov (United States)

    Anderson, Stephen A.; And Others

    1983-01-01

    Explored questions about the power of family life-cycle categories to predict marital quality, the trend of marital quality over the family life-cycle, and relationships between perceived marital quality and family life-cycle categories. Results indicated family life-cycle and total number of children were significant predictors of marital…

  17. Life cycle greenhouse gas emissions of Marcellus shale gas

    International Nuclear Information System (INIS)

    This study estimates the life cycle greenhouse gas (GHG) emissions from the production of Marcellus shale natural gas and compares its emissions with national average US natural gas emissions produced in the year 2008, prior to any significant Marcellus shale development. We estimate that the development and completion of a typical Marcellus shale well results in roughly 5500 t of carbon dioxide equivalent emissions or about 1.8 g CO2e/MJ of gas produced, assuming conservative estimates of the production lifetime of a typical well. This represents an 11% increase in GHG emissions relative to average domestic gas (excluding combustion) and a 3% increase relative to the life cycle emissions when combustion is included. The life cycle GHG emissions of Marcellus shale natural gas are estimated to be 63-75 g CO2e/MJ of gas produced with an average of 68 g CO2e/MJ of gas produced. Marcellus shale natural gas GHG emissions are comparable to those of imported liquefied natural gas. Natural gas from the Marcellus shale has generally lower life cycle GHG emissions than coal for production of electricity in the absence of any effective carbon capture and storage processes, by 20-50% depending upon plant efficiencies and natural gas emissions variability. There is significant uncertainty in our Marcellus shale GHG emission estimates due to eventual production volumes and variability in flaring, construction and transportation.

  18. The models of the life cycle of a computer system

    OpenAIRE

    Sorina-Carmen Luca; Lucian Luca

    2006-01-01

    The paper presents a comparative study on the patterns of the life cycle of a computer system. There are analyzed the advantages of each pattern and presented the graphic schemes that point out each stage and step in the evolution of a computer system. In the end the classifications of the methods of projecting the computer systems are discussed.

  19. Evaluating the life cycle environmental impact of short span bridges

    DEFF Research Database (Denmark)

    Du, Guangli; Pettersson, Lars; Karoumi, Raid

    2016-01-01

    impact of the construction sector. Life cycle assessment (LCA) is a systematic method for assessing the environmental impact of products and systems, but its application in bridges is scarce. In Swede, most of the bridges are short spans and the type of concrete slab-frame bridge (CFB) accounts...

  20. LIFE CYCLE DESIGN OF IN-MOLD SURFACING FILM

    Science.gov (United States)

    Since 1990, the NRMRL has been at the forefront in the development of Life Cycle Assessment as a methodology for environmental assessment. In 1994, NRMRL established an LCA Team to organize individual efforts into a comprehensive research program. The LCA Team coordinates work in...

  1. Application of product life cycle concept to private label management

    Directory of Open Access Journals (Sweden)

    Sandra Horvat

    2013-06-01

    Full Text Available Private labels have recorded significant growth rates worldwide, becoming a serious threat to manufacturer brands. Development of private labels in many different product categories increased the complexity of their management. Therefore, this paper examines the possibility of using the product life cycle concept in private label management. Given that private labels are a specific brand type, it is necessary to adjust certain elements of the product life cycle concept, as it was developed on the basis of manufacturer brands. For instance, in the growth stage of the product life cycle, retailers expand private labels to a number of product categories and use the push strategy while manufacturers tend to expand their distribution network in the expansion of their brands and predominantly use the pull strategy in doing so. Furthermore, there is a focus shift from low-price strategy, predominantly used in the introduction phase, to increasing the quality and private label value in the later stages of the product life cycle.

  2. An introduction to Life-cycle Thinking and Management

    DEFF Research Database (Denmark)

    Remmen, Arne

    This booklet descibes how enterprises can begin developing cleaner products based on a life-cycle perspective. It focuses on a simple approach to preventive environmental initiatives, where enterprises can begin at a level that matches their ambitions and their preconditions. The report is aimed at...... enterprises that, irregardless of size or sector, are interested in reducing environmental impacts from their products....

  3. Life cycle assessment Part 2 : Current impact assessment practice

    NARCIS (Netherlands)

    Pennington, DW; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T; Rebitzer, G

    2004-01-01

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse,

  4. Confronting Uncertainty in Life Cycle Assessment Used for Decision Support

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Zwicky; Sohn, Michael D.;

    2014-01-01

    The aim of this article is to help confront uncertainty in life cycle assessments (LCAs) used for decision support. LCAs offer a quantitative approach to assess environmental effects of products, technologies, and services and are conducted by an LCA practitioner or analyst (AN) to support the...

  5. A Systems Development Life Cycle Project for the AIS Class

    Science.gov (United States)

    Wang, Ting J.; Saemann, Georgia; Du, Hui

    2007-01-01

    The Systems Development Life Cycle (SDLC) project was designed for use by an accounting information systems (AIS) class. Along the tasks in the SDLC, this project integrates students' knowledge of transaction and business processes, systems documentation techniques, relational database concepts, and hands-on skills in relational database use.…

  6. Aircraft bi-level life cycle cost estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curan, R.

    2015-01-01

    n an integrated aircraft design and analysis practice, Life Cycle Cost (LCC) is essential for decision making. The LCC of an aircraft is ordinarily partially estimated by emphasizing a specific cost type. However, an overview of the LCC including design and development cost, production cost, operati

  7. Advancing life cycle economics in the Nordic countries

    DEFF Research Database (Denmark)

    Haugbølle, Kim; Hansen, Ernst Jan de Place

    2005-01-01

    Advancing construction and facilities management requires the ability to estimate and evaluate the economic consequences of decisions in a lifetime perspective. A survey of state-of-the-art on life cycle economics in the Nordic countries showed that, despite a number of similarities, no strong co...

  8. Life cycle cost and risk estimation of environmental management options

    International Nuclear Information System (INIS)

    The evaluation process is demonstrated in this paper through comparative analysis of two alternative scenarios identified for the management of the alpha-contaminated fixed low-level waste currently stored at INEL. These two scenarios, the Base Case and the Delay Case, are realistic and based on actual data, but are not intended to exactly match actual plans currently being developed at INEL. Life cycle cost estimates were developed for both scenarios using the System Cost Model; resulting costs are presented and compared. Life cycle costs are shown as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Although there are some short-term cost savings for the Delay Case, cumulative life cycle costs eventually become much higher than costs for the Base Case over the same period of time, due mainly to the storage and repackaging necessary to accommodate the longer Delay Case schedule. Life cycle risk estimates were prepared using a new risk analysis method adapted to the System Cost Model architecture for automated, systematic cost/risk applications. Relative risk summaries are presented for both scenarios as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Relative risk of the Delay Case is shown to be higher than that of the Base Case. Finally, risk and cost results are combined to show how the collective information can be used to help identify opportunities for risk or cost reduction and highlight areas where risk reduction can be achieved most economically

  9. Life-cycle air emissions from PV power systems

    International Nuclear Information System (INIS)

    This paper addresses the air emission of grid supply versus grid-connected and off-grid photovoltaic power generation, using the framework of life-cycle assessment, in the contents of rural household energy supply in Australia. Emissions of carbon dioxide, sulphur dioxde and nitrous oxides are calculated for the three life-cycle stages of manufacture, use and disposal. Sensitivities to materials and data inputs, as well as to component efficiencies, lifetimes and sizing are discussed. For each supply option, demand management options, including insulation and appliance choice, and the substitution of solar heating or bottled gas for electricity are considered. The best option in all cases, in terms of life-cycle air emissions, is a grid-connected photovoltaic system used to supply an energy-efficient household with a mix of solar, gas and electric appliances. However, in financial terms, with current Australian energy prices, this option represents a high capital and life-cycle costs. Additionally, for the grid options, electricity costs do not significantly disadvantage the high demand scenarios. Both results provide a clear illustration of current Australian energy-pricing policies being in conflict with long-term environmental sustainability. (Author)

  10. A Review of "Life Cycle: How We Grow and Change"

    Science.gov (United States)

    Digioia, Melissa Keyes

    2010-01-01

    Sexuality education curricula designed for youths with special needs are sparse. "Life Cycle: How We Grow and Change" (Vavricheck & Tolle, 2008) is a new curriculum by clinical social workers Sherrie Mansfield Vavricheck and R. Kay Tolle. Each chapter addresses a particular developmental stage between birth and death. Lessons within each chapter…

  11. Life Cycle Assessment Framework for Indoor Emissions of Synthetic Nanoparticles

    Science.gov (United States)

    Life-Cycle Assessment (LCA) is a well-established method to evaluate impacts of chemicals on the environment and human health along the lifespan of products. However, the increasingly produced and applied nanomaterials (defined as one dimension <100 nm) show particular characteri...

  12. Incorporating exposure science into life-cycle assessment

    Science.gov (United States)

    Life-cycle assessment (LCA) is used to estimate the potential for environmental damage that may be caused by a product or process, ideally before the product or process begins. LCA includes all of the steps from extracting natural resources through manufacturing through product u...

  13. Infrastructures and Life-Cycle Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2012-01-01

    Design and maintenance of infrastructures using Life-Cycle Cost-Benefit analysis is discussed in this paper with special emphasis on users costs. This is for several infrastructures such as bridges, highways etc. of great importance. Repair or/and failure of infrastructures will usually result in...

  14. Progress in Multi-Disciplinary Data Life Cycle Management

    Science.gov (United States)

    Jung, C.; Gasthuber, M.; Giesler, A.; Hardt, M.; Meyer, J.; Prabhune, A.; Rigoll, F.; Schwarz, K.; Streit, A.

    2015-12-01

    Modern science is most often driven by data. Improvements in state-of-the-art technologies and methods in many scientific disciplines lead not only to increasing data rates, but also to the need to improve or even completely overhaul their data life cycle management. Communities usually face two kinds of challenges: generic ones like federated authorization and authentication infrastructures and data preservation, and ones that are specific to their community and their respective data life cycle. In practice, the specific requirements often hinder the use of generic tools and methods. The German Helmholtz Association project ’’Large-Scale Data Management and Analysis” (LSDMA) addresses both challenges: its five Data Life Cycle Labs (DLCLs) closely collaborate with communities in joint research and development to optimize the communities data life cycle management, while its Data Services Integration Team (DSIT) provides generic data tools and services. We present most recent developments and results from the DLCLs covering communities ranging from heavy ion physics and photon science to high-throughput microscopy, and from DSIT.

  15. Development of a Clerkship Curriculum in the Family Life Cycle.

    Science.gov (United States)

    Armstrong, Elizabeth G.; And Others

    1982-01-01

    A course is described that focuses on concepts and dynamics of family life cycle relating to medical practice, including the relationship of cycle stages to onset, development, and treatment of illness, transition points in the cycle, the role of stress, and the risk for illness among family members. (Author/MSE)

  16. The Role of Companion Animals throughout the Family Life Cycle

    Science.gov (United States)

    Turner, Wendy G.

    2005-01-01

    This paper examines the roles that companion animals play in the lives of American families, and discusses how those roles change as families progress through the stages of the family life cycle. It highlights the importance of pets in the lives of children and the benefits they receive from such relationships. It also presents information…

  17. Life Cycle Assessment Software for Product and Process Sustainability Analysis

    Science.gov (United States)

    Vervaeke, Marina

    2012-01-01

    In recent years, life cycle assessment (LCA), a methodology for assessment of environmental impacts of products and services, has become increasingly important. This methodology is applied by decision makers in industry and policy, product developers, environmental managers, and other non-LCA specialists working on environmental issues in a wide…

  18. Guidance on Data Quality Assessment for Life Cycle Inventory Data

    Science.gov (United States)

    Data quality within Life Cycle Assessment (LCA) is a significant issue for the future support and development of LCA as a decision support tool and its wider adoption within industry. In response to current data quality standards such as the ISO 14000 series, various entities wit...

  19. Applying life cycle management of colombian cocoa production

    Directory of Open Access Journals (Sweden)

    Oscar Orlando Ortiz-R

    2014-03-01

    Full Text Available The present research aims to evaluate the usefulness of the application of Life Cycle Management in the agricultural sector focusing on the environmental and socio-economic aspects of decision making in the Colombian cocoa production. Such appraisal is based on the application of two methodological tools: Life Cycle Assessment, which considers environmental impacts throughout the life cycle of the cocoa production system, and Taguchi Loss Function, which measures the economic impact of a process' deviation from production targets. Results show that appropriate improvements in farming practices and supply consumption can enhance decision-making in the agricultural cocoa sector towards sustainability. In terms of agri-business purposes, such qualitative shift allows not only meeting consumer demands for environmentally friendly products, but also increasing the productivity and competitiveness of cocoa production, all of which has helped Life Cycle Management gain global acceptance. Since farmers have an important role in improving social and economic indicators at the national level, more attention should be paid to the upgrading of their cropping practices. Finally, one fundamental aspect of national cocoa production is the institutional and governmental support available for farmers in face of socio-economic or technological needs.

  20. Improvements to Emergy evaluations by using Life Cycle Assessment.

    Science.gov (United States)

    Rugani, Benedetto; Benetto, Enrico

    2012-05-01

    Life Cycle Assessment (LCA) is a widely recognized, multicriteria and standardized tool for environmental assessment of products and processes. As an independent evaluation method, emergy assessment has shown to be a promising and relatively novel tool. The technique has gained wide recognition in the past decade but still faces methodological difficulties which prevent it from being accepted by a broader stakeholder community. This review aims to elucidate the fundamental requirements to possibly improve the Emergy evaluation by using LCA. Despite its capability to compare the amount of resources embodied in production systems, Emergy suffers from its vague accounting procedures and lacks accuracy, reproducibility, and completeness. An improvement of Emergy evaluations can be achieved via (1) technical implementation of Emergy algebra in the Life Cycle Inventory (LCI); (2) selection of consistent Unit Emergy Values (UEVs) as characterization factors for Life Cycle Impact Assessment (LCIA); and (3) expansion of the LCI system boundaries to include supporting systems usually considered by Emergy but excluded in LCA (e.g., ecosystem services and human labor). Whereas Emergy rules must be adapted to life-cycle structures, LCA should enlarge its inventory to give Emergy a broader computational framework. The matrix inversion principle used for LCAs is also proposed as an alternative to consistently account for a large number of resource UEVs. PMID:22489863

  1. Life cycle assessment of polysaccharide materials: a review

    NARCIS (Netherlands)

    Shen, L.; Patel, M.K.

    2008-01-01

    Apart from conventional uses of polysaccharide materials, such as food, clothing, paper packaging and construction, new polysaccharide products and materials have been developed. This paper reviews life cycle assessment (LCA) studies in order to gain insight of the environmental profiles of polysacc

  2. New Sarcocystis species with a snake-gecko life cycle

    Czech Academy of Sciences Publication Activity Database

    Šlapeta, J.; Modrý, D.; Koudela, Břetislav

    1998-01-01

    Roč. 45, č. 1 (1998), s. 7. ISSN 1066-5234. [New Sarcocystis species with a snake- gecko life cycle. 01.01.1998-02.01.1998, Praha] R&D Projects: GA ČR GA508/95/0273 Subject RIV: fp - Other Medical Disciplines

  3. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.; Espinosa Martinez, Nieves; Garcia-Valverde, R.; Krebs, Frederik C; Ossenbrink, H.; Jager-Waldau, A.; Helm, P.

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...

  4. Substance Flow Analysis of Aluminium in China for 1991-2007 (Ⅰ):Trade of Aluminium from a Perspective of Life Cycle and Its Policy implications%1991年~2007年中国铝物质流分析(Ⅰ):全生命周期进出口核算及其政策启示

    Institute of Scientific and Technical Information of China (English)

    陈伟强; 石磊; 常皛宇; 钱易

    2009-01-01

    Based on a framework of stocks and flows which can be used to perform substance flow analyses of metals in the anthroposphere, a series of papers present a quantitative study on trade, loss, production, consumption, and recycling of aluminium in China from 1991 to 2007. In addition, the authors provided a series of policies which would be greatly helpful to make production and utilization of aluminium more sustainable in China. As the first one of the series paper, we investigated import and export of aluminium and changes in structure of aluminium trade of China during 1991-2007 from a perspective of life cycle. Moreover, we provided some policy suggestions on adjustment and optimization of the trade structure of aluminium. Results indicated that China was a net importer of aluminium during 1992-2007, with showing increases in the amount of total net import year by year, i.e., 502×10~3 tons, 987×10~3 tons, 2502×10~3 tons and 6813×10~3 tons for 1992, 1997, 2002, and 2007, respectively. Regarding the import/export structure, China was increasingly becoming a net importer of bauxite, alumina, and aluminium scrap which could be used as raw materials to produce unwrought aluminium, but a net exporter of unwrought aluminium, aluminium semi-products, and final products. It was suggested that: 1) China should continuously encourage the import of bauxite, alumina, and aluminium scrap in the next several decades for both meeting current demands and serving as long-term strategic storage; 2) China should properly restrict the export and encourage the import of unwrought primary and recycled aluminium, as well as some semi-products, which bear characteristics of high energy consumption, great environmental burdens but low monetary added value; 3) it is currently not necessary to encourage or restrict the import or export of aluminium embodied in final products, as well as some semi-products such as sheet and foil which are of high monetary added value; 4) the central

  5. Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining.

    Science.gov (United States)

    Xue, Mianqiang; Kendall, Alissa; Xu, Zhenming; Schoenung, Julie M

    2015-01-20

    Due to economic and societal reasons, informal activities including open burning, backyard recycling, and landfill are still the prevailing methods used for electronic waste treatment in developing countries. Great efforts have been made, especially in China, to promote formal approaches for electronic waste management by enacting laws, developing green recycling technologies, initiating pilot programs, etc. The formal recycling process can, however, engender environmental impact and resource consumption, although information on the environmental loads and resource consumption is currently limited. To quantitatively assess the environmental impact of the processes in a formal printed wiring board (PWB) recycling chain, life cycle assessment (LCA) was applied to a formal recycling chain that includes the steps from waste liberation through materials refining. The metal leaching in the refining stage was identified as a critical process, posing most of the environmental impact in the recycling chain. Global warming potential was the most significant environmental impact category after normalization and weighting, followed by fossil abiotic depletion potential, and marine aquatic eco-toxicity potential. Scenario modeling results showed that variations in the power source and chemical reagents consumption had the greatest influence on the environmental performance. The environmental impact from transportation used for PWB collection was also evaluated. The results were further compared to conventional primary metals production processes, highlighting the environmental benefit of metal recycling from waste PWBs. Optimizing the collection mode, increasing the precious metals recovery efficiency in the beneficiation stage and decreasing the chemical reagents consumption in the refining stage by effective materials liberation and separation are proposed as potential improvement strategies to make the recycling chain more environmentally friendly. The LCA results provide

  6. Technological and life cycle assessment of organics processing odour control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bindra, Navin [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Dubey, Brajesh, E-mail: bkdubey@civil.iitkgp.ernet.in [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Dutta, Animesh [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada)

    2015-09-15

    As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. - Highlights: • Assessment of odour control technologies for organics processing facilities. • Comparative life cycle assessment of three odour control technologies was conducted

  7. Technological and life cycle assessment of organics processing odour control technologies

    International Nuclear Information System (INIS)

    As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. - Highlights: • Assessment of odour control technologies for organics processing facilities. • Comparative life cycle assessment of three odour control technologies was conducted

  8. Green tourism supply chain management based on life cycle impact assessment

    Directory of Open Access Journals (Sweden)

    Alexandra V. Michailidou

    2016-06-01

    Full Text Available Tourism is one of the most dynamic and far-reaching economic sectors in the world. Numerous different and complex activities are involved in the efficient development of tourism. These activities interrelate economic, environmental, social, cultural and political dimensions in the overall supply chain. However, apart from its key role as a driver of socio-economic progress, tourism is responsible for environmental deterioration, not only in areas popular with tourists, but also by enhancing climate change globally. This paper presents a robust method based on the Green Tourism Supply Chain Management (GTSCM concept, which can be used to estimate the effect on the environment that can be attributed to each link of the supply chain. The overall approach is based on Life Cycle Impact Assessment (LCIA theory and corresponding models. A case study to demonstrate the applicability of this approach is presented for two large seaside hotels located in Chalkidiki, Greece. Chalkidiki is the most popular tourist destination in Northern Greece. A LCIA questionnaire was developed and input data for the Life Cycle Assessment (LCA obtained from the hotel managers. For this LCA SimaPro 8 software was used. The LCIA methods chosen were Eco-indicator 99 and CML 2001. The effect on fossil fuel consumption of both hotels due to their use of local transport and electricity was considerable but less than that needed for transporting the tourists by air to Chalkidiki. This paper clearly indicates that LCA and Life Cycle Thinking (LCT can form the basis for promoting GTSCM in the tourism industry.

  9. Life cycle assessment of corn-based ethanol production in Argentina.

    Science.gov (United States)

    Pieragostini, Carla; Aguirre, Pío; Mussati, Miguel C

    2014-02-15

    The promotion of biofuels as energy for transportation in the world is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. In Argentina, the legislation has imposed the use of biofuels in blend with fossil fuels (5 to 10%) in the transport sector. The aim of this paper is to assess the environmental impact of corn-based ethanol production in the province of Santa Fe in Argentina based on the life cycle assessment methodology. The studied system includes from raw materials production to anhydrous ethanol production using dry milling technology. The system is divided into two subsystems: agricultural system and refinery system. The treatment of stillage is considered as well as the use of co-products (distiller's dried grains with solubles), but the use and/or application of the produced biofuel is not analyzed: a cradle-to-gate analysis is presented. As functional unit, 1MJ of anhydrous ethanol at biorefinery is chosen. Two life cycle impact assessment methods are selected to perform the study: Eco-indicator 99 and ReCiPe. SimaPro is the life cycle assessment software used. The influence of the perspectives on the model is analyzed by sensitivity analysis for both methods. The two selected methods identify the same relevant processes. The use of fertilizers and resources, seeds production, harvesting process, corn drying, and phosphorus fertilizers and acetamide-anillide-compounds production are the most relevant processes in agricultural system. For refinery system, corn production, supplied heat and burned natural gas result in the higher contributions. The use of distiller's dried grains with solubles has an important positive environmental impact. PMID:24295743

  10. Life cycle assessment of hydrogen and power production by supercritical water reforming of glycerol

    International Nuclear Information System (INIS)

    Highlights: • The environmental performance of the supercritical water reforming (SCWR) of glycerol was assessed. • Biogenic CO2 emissions allowed quantifying a realistic GHG inventory of 3.8 kg CO2-eq/kg H2. • The environmental profile of SCWR process was compared to those of other technologies. • A good environmental performance of H2 and power production by SCWR of glycerol was obtained. - Abstract: The environmental performance of hydrogen and electricity production by supercritical water reforming (SCWR) of glycerol was evaluated following a Life Cycle Assessment (LCA) approach. The heat-integrated process was designed to be energy self-sufficient. Mass and energy balances needed for the study were performed using Aspen Plus 8.4, and the environmental assessment was carried out through SimaPro 8.0. CML 2000 was selected as the life cycle impact assessment method, considering as impact categories the global warming, ozone layer depletion, abiotic depletion, photochemical oxidant formation, eutrophication, acidification, and cumulative energy demand. A distinction between biogenic and fossil CO2 emissions was done to quantify a more realistic GHG inventory of 3.77 kg CO2-eq per kg H2 produced. Additionally, the environmental profile of SCWR process was compared to other H2 production technologies such as steam methane reforming, carbon gasification, water electrolysis and dark fermentation among others. This way, it is shown that SCWR of glycerol allows reducing greenhouse gas emissions and obtaining a favorable positive life cycle energy balance, achieving a good environmental performance of H2 and power production by SCWR of glycerol

  11. Waste management through life cycle assessment of products

    Science.gov (United States)

    Borodin, Yu V.; Aliferova, T. E.; Ncube, A.

    2015-04-01

    The rapid growth of a population in a country can contribute to high production of waste. Municipal waste and industrial waste can bring unhealthy and unpleasant environment or even diseases to human beings if the wastes are not managed properly.With increasing concerns over waste and the need for ‘greener’ products, it is necessary to carry out Life Cycle Assessments of products and this will help manufacturers take the first steps towards greener designs by assessing their product's carbon output. Life Cycle Assessment (LCA) is a process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and to assess the impact of those energy and material used and released to the environment. The aim of the study was to use a life cycle assessment approach to determine which waste disposal options that will substantially reduce the environmental burdens posed by the Polyethylene Terephthalate (PET) bottle. Several important observations can be made. 1) Recycling of the PET bottle waste can significantly reduce the energy required across the life cycle because the high energy inputs needed to process the requisite virgin materials greatly exceeds the energy needs of the recycling process steps. 2) Greenhouse gases can be reduced by opting for recycling instead of landfilling and incineration. 3) Quantity of waste emissions released from different disposal options was identified. 4) Recycling is the environmentally preferable disposal method for the PET bottle. Industry can use the tools and data in this study to evaluate the health, environmental, and energy implications of the PET bottle. LCA intends to aid decision-makers in this respect, provided that the scientific underpinning is available. Strategic incentives for product development and life cycle management can then be developed.

  12. Nuclear plant life cycle management implementation guide. Final report

    International Nuclear Information System (INIS)

    Nuclear power plants, as baseload suppliers of electricity, are major corporate assets. As the nuclear industry enters its fourth decade as a major producer of clean electricity, the structure of the utility industry is undergoing a historical landmark transition from economic deregulation to a competitive, market-driven industry. An integral part of competition is to manage the operation of the key asset, the plant, in the long term, thereby enhancing its long-term profitability. Life cycle management (LCM) is a well-known technical-economic decision-making process for any large industrial facility. LCM optimizes the service life of a facility and maximizes its life-cycle asset value. LCM integrates aging management (maintaining the availability of costly-to-replace components and structures) with asset management (plant valuation and investment strategies that account for economic, performance, regulatory, and environmental uncertainties). LCM involves predicting maintenance, repair, and other capital costs for a nuclear unit far into the future, as well as planning and managing strategic issues such as waste disposal, fuel storage, decommissioning, and public acceptance. This Life Cycle Management Implementation Guide introduces the reader to the LCM concept and its benefits, describes the elements and activities associated with an LCM program (most of which already exist in all plants), gives an overview of asset and aging management, and provides key references related to life cycle management for nuclear power plants. It also summarizes the major elements of life cycle management required for license renewal or, for newer plants, keeping open the option of license renewal

  13. Development of a methodology for life cycle building energy ratings

    International Nuclear Information System (INIS)

    Traditionally the majority of building energy use has been linked to its operation (heating, cooling, lighting, etc.), and much attention has been directed to reduce this energy use through technical innovation, regulatory control and assessed through a wide range of rating methods. However buildings generally employ an increasing amount of materials and systems to reduce the energy use in operation, and energy embodied in these can constitute an important part of the building's life cycle energy use. For buildings with 'zero-energy' use in operation the embodied energy is indeed the only life cycle energy use. This is not addressed by current building energy assessment and rating methods. This paper proposes a methodology to extend building energy assessment and rating methods accounting for embodied energy of building components and systems. The methodology is applied to the EU Building Energy Rating method and, as an illustration, as implemented in Irish domestic buildings. A case study dwelling is used to illustrate the importance of embodied energy on life cycle energy performance, particularly relevant when energy use in operation tends to zero. The use of the Net Energy Ratio as an indicator to select appropriate building improvement measures is also presented and discussed. - Highlights: → The definitions for 'zero energy buildings' and current building energy ratings are examined. → There is a need to integrate a life cycle perspective within building energy ratings. → A life cycle building energy rating method (LC-BER), including embodied energy is presented. → Net Energy Ratio is proposed as an indicator to select building energy improvement options.

  14. Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families.

    Science.gov (United States)

    Posen, I Daniel; Jaramillo, Paulina; Griffin, W Michael

    2016-03-15

    Interest in biobased products has been motivated, in part, by the claim that these products have lower life cycle greenhouse gas (GHG) emissions than their fossil counterparts. This study investigates GHG emissions from U.S. production of three important biobased polymer families: polylactic acid (PLA), polyhydroxybutyrate (PHB) and bioethylene-based plastics. The model incorporates uncertainty into the life cycle emission estimates using Monte Carlo simulation. Results present a range of scenarios for feedstock choice (corn or switchgrass), treatment of coproducts, data sources, end of life assumptions, and displaced fossil polymer. Switchgrass pathways generally have lower emissions than corn pathways, and can even generate negative cradle-to-gate emissions if unfermented residues are used to coproduce energy. PHB (from either feedstock) is unlikely to have lower emissions than fossil polymers once end of life emissions are included. PLA generally has the lowest emissions when compared to high emission fossil polymers, such as polystyrene (mean GHG savings up to 1.4 kg CO2e/kg corn PLA and 2.9 kg CO2e/kg switchgrass PLA). In contrast, bioethylene is likely to achieve the greater emission reduction for ethylene intensive polymers, like polyethylene (mean GHG savings up to 0.60 kg CO2e/kg corn polyethylene and 3.4 kg CO2e/kg switchgrass polyethylene). PMID:26895173

  15. 3{sup rd} International Conference on Life Cycle Management. From analysis to implementation

    Energy Technology Data Exchange (ETDEWEB)

    Hellweg, S. (ed.) [ETH Zurich, Zurich (Switzerland); Rebitzer, G. (ed.) [Alcan Packaging Food Europe, Neuhausen am Rheinfall (Switzerland)

    2007-07-01

    The very broad subject of the conference was partitioned into 23 different chapters with a total of 187 oral and 119 poster presentations. The present report gives a description of the conference and the abstracts of the presentations. Life cycle assessment (LCA) bas become a powerful instrument during the last twenty years and its importance is still increasing. This development was possible because the field of application became broader and because clear rules for establishing LCA were developed. Authorities in many countries use LCA as one important basis for decision making. In the past, LCA was used to improve packaging and to decide whether used materials should be recycled or disposed off, by incineration with energy recovery. Recently, the LCA tool was very helpful in Switzerland for screening the environmental impact of different non fossil fuels, in view of new legislation which provides tax exemptions for certain biologically produced fuels. Another important and broadly utilized application of LCA is the evaluation of the environmental impact of different cars. For this purpose LCA integrates the environmental burden caused by different pollutants emitted by cars as carbon dioxide, nitrogen oxides or particulate matter (PM 10). In the future, LCA will likely be applied to additional fields, such as investments, where LCA are increasingly used as a tool to rate the sustainability of companies. Fundamental conditions for the use of LCA in all fields are a reliable scientific base of the inventories and a transparent elaboration of the LCA. As LCA will become increasingly important, an internationally harmonized system will have to guarantee that the results of LCA are objective and that the process is traceable. The concept of life cycle management (LCM) is gaining more and more acceptance from all stakeholder groups. Firms begin to see that environmental aspects are rather an opportunity for value creation than a cost driver. Additional benefits are

  16. 3rd International Conference on Life Cycle Management. From analysis to implementation

    International Nuclear Information System (INIS)

    The very broad subject of the conference was partitioned into 23 different chapters with a total of 187 oral and 119 poster presentations. The present report gives a description of the conference and the abstracts of the presentations. Life cycle assessment (LCA) bas become a powerful instrument during the last twenty years and its importance is still increasing. This development was possible because the field of application became broader and because clear rules for establishing LCA were developed. Authorities in many countries use LCA as one important basis for decision making. In the past, LCA was used to improve packaging and to decide whether used materials should be recycled or disposed off, by incineration with energy recovery. Recently, the LCA tool was very helpful in Switzerland for screening the environmental impact of different non fossil fuels, in view of new legislation which provides tax exemptions for certain biologically produced fuels. Another important and broadly utilized application of LCA is the evaluation of the environmental impact of different cars. For this purpose LCA integrates the environmental burden caused by different pollutants emitted by cars as carbon dioxide, nitrogen oxides or particulate matter (PM 10). In the future, LCA will likely be applied to additional fields, such as investments, where LCA are increasingly used as a tool to rate the sustainability of companies. Fundamental conditions for the use of LCA in all fields are a reliable scientific base of the inventories and a transparent elaboration of the LCA. As LCA will become increasingly important, an internationally harmonized system will have to guarantee that the results of LCA are objective and that the process is traceable. The concept of life cycle management (LCM) is gaining more and more acceptance from all stakeholder groups. Firms begin to see that environmental aspects are rather an opportunity for value creation than a cost driver. Additional benefits are

  17. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)

    International Nuclear Information System (INIS)

    The paper assesses the life cycle of biodiesel from used cooking oil (UCO). Such life cycle involves 4 stages: 1) collection, 2) pre-treatment, 3) delivery and 4) transesterification of UCO. Generally, UCO is collected from restaurants, food industries and recycling centres by authorised companies. Then, UCO is pre-treated to remove solid particles and water to increase its quality. After that, it is charged in cistern trucks and delivered to the biodiesel facility to be then transesterified with methanol to biodiesel. The production of 1 ton of biodiesel is evaluated by a Life Cycle Assessment (LCA) to assess the environmental impact and by an Exergetic Life Cycle Assessment (ELCA) to account for the exergy input to the system. A detailed list of material and energy inputs is done using data from local companies and completed using Ecoinvent 1.2 database. The results show that the transesterification stage causes 68% of the total environmental impact. The major exergy inputs are uranium and natural gas. If targets set by the Spanish Renewable Energy Plan are achieved, the exergy input for producing biodiesel would be reduced by 8% in the present system and consequently environmental impacts and exergy input reduced up to 36% in 2010.

  18. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)

    Energy Technology Data Exchange (ETDEWEB)

    Talens Peiro, L. [SosteniPrA (UAB-IRTA), Institute of Environmental Science and Technology (ICTA), Edifici Q, Room QC 3101, Universitat Autonoma de Barcelona (UAB), E-08193 Bellaterra (Cerdanyola del Valles), Barcelona (Spain); Lombardi, L. [Dipartamento di Energetica ' ' Sergio Stecco' ' , Universita degli studi di Firenze, Via di Santa Marta 3, I-50139 Firenze (Italy); Villalba Mendez, G.; Gabarrell i Durany, X. [SosteniPrA (UAB-IRTA), Institute of Environmental Science and Technology (ICTA), Edifici Q, Room QC 3101, Universitat Autonoma de Barcelona (UAB), E-08193 Bellaterra (Cerdanyola del Valles), Barcelona (Spain); Department of Chemical Engineering, Edifici Q, Universitat Autonoma de Barcelona (UAB), E-08193, Bellaterra (Cerdanyola del Valles), Barcelona (Spain)

    2010-02-15

    The paper assesses the life cycle of biodiesel from used cooking oil (UCO). Such life cycle involves 4 stages: 1) collection, 2) pre-treatment, 3) delivery and 4) transesterification of UCO. Generally, UCO is collected from restaurants, food industries and recycling centres by authorised companies. Then, UCO is pre-treated to remove solid particles and water to increase its quality. After that, it is charged in cistern trucks and delivered to the biodiesel facility to be then transesterified with methanol to biodiesel. The production of 1 ton of biodiesel is evaluated by a Life Cycle Assessment (LCA) to assess the environmental impact and by an Exergetic Life Cycle Assessment (ELCA) to account for the exergy input to the system. A detailed list of material and energy inputs is done using data from local companies and completed using Ecoinvent 1.2 database. The results show that the transesterification stage causes 68% of the total environmental impact. The major exergy inputs are uranium and natural gas. If targets set by the Spanish Renewable Energy Plan are achieved, the exergy input for producing biodiesel would be reduced by 8% in the present system and consequently environmental impacts and exergy input reduced up to 36% in 2010. (author)

  19. Incorporating uncertainty analysis into life cycle estimates of greenhouse gas emissions from biomass production

    International Nuclear Information System (INIS)

    Before further investments are made in utilizing biomass as a source of renewable energy, both policy makers and the energy industry need estimates of the net greenhouse gas (GHG) reductions expected from substituting biobased fuels for fossil fuels. Such GHG reductions depend greatly on how the biomass is cultivated, transported, processed, and converted into fuel or electricity. Any policy aiming to reduce GHGs with biomass-based energy must account for uncertainties in emissions at each stage of production, or else it risks yielding marginal reductions, if any, while potentially imposing great costs. This paper provides a framework for incorporating uncertainty analysis specifically into estimates of the life cycle GHG emissions from the production of biomass. We outline the sources of uncertainty, discuss the implications of uncertainty and variability on the limits of life cycle assessment (LCA) models, and provide a guide for practitioners to best practices in modeling these uncertainties. The suite of techniques described herein can be used to improve the understanding and the representation of the uncertainties associated with emissions estimates, thus enabling improved decision making with respect to the use of biomass for energy and fuel production. -- Highlights: → We describe key model, scenario and data uncertainties in LCAs of biobased fuels. → System boundaries and allocation choices should be consistent with study goals. → Scenarios should be designed around policy levers that can be controlled. → We describe a new way to analyze the importance of covariance between inputs.

  20. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  1. Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies.

    Science.gov (United States)

    Florent, Querini; Enrico, Benetto

    2015-02-01

    This article presents agent-based modeling (ABM) as a novel approach for consequential life cycle assessment (C-LCA) of large scale policies, more specifically mobility-related policies. The approach is validated at the Luxembourgish level (as a first case study). The agent-based model simulates the car market (sales, use, and dismantling) of the population of users in the period 2013-2020, following the implementation of different mobility policies and available electric vehicles. The resulting changes in the car fleet composition as well as the hourly uses of the vehicles are then used to derive consistent LCA results, representing the consequences of the policies. Policies will have significant environmental consequences: when using ReCiPe2008, we observe a decrease of global warming, fossil depletion, acidification, ozone depletion, and photochemical ozone formation and an increase of metal depletion, ionizing radiations, marine eutrophication, and particulate matter formation. The study clearly shows that the extrapolation of LCA results for the circulating fleet at national scale following the introduction of the policies from the LCAs of single vehicles by simple up-scaling (using hypothetical deployment scenarios) would be flawed. The inventory has to be directly conducted at full scale and to this aim, ABM is indeed a promising approach, as it allows identifying and quantifying emerging effects while modeling the Life Cycle Inventory of vehicles at microscale through the concept of agents. PMID:25587896

  2. Life-Cycle Assessment of Biodiesel Produced from Grease Trap Waste.

    Science.gov (United States)

    Hums, Megan E; Cairncross, Richard A; Spatari, Sabrina

    2016-03-01

    Grease trap waste (GTW) is a low-quality waste material with variable lipid content that is an untapped resource for producing biodiesel. Compared to conventional biodiesel feedstocks, GTW requires different and additional processing steps for biodiesel production due to its heterogeneous composition, high acidity, and high sulfur content. Life-cycle assessment (LCA) is used to quantify greenhouse gas emissions, fossil energy demand, and criteria air pollutant emissions for the GTW-biodiesel process, in which the sensitivity to lipid concentration in GTW is analyzed using Monte Carlo simulation. The life-cycle environmental performance of GTW-biodiesel is compared to that of current GTW disposal, the soybean-biodiesel process, and low-sulfur diesel (LSD). The disposal of the water and solid wastes produced from separating lipids from GTW has a high contribution to the environmental impacts; however, the impacts of these processed wastes are part of the current disposal practice for GTW and could be excluded with consequential LCA system boundaries. At lipid concentrations greater than 10%, most of the environmental metrics studied are lower than those of LSD and comparable to soybean biodiesel. PMID:26811919

  3. Life Cycle Assessment of mechanical biological pre-treatment of Municipal Solid Waste: a case study.

    Science.gov (United States)

    Beylot, Antoine; Vaxelaire, Stéphane; Zdanevitch, Isabelle; Auvinet, Nicolas; Villeneuve, Jacques

    2015-05-01

    The environmental performance of mechanical biological pre-treatment (MBT) of Municipal Solid Waste is quantified using Life Cycle Assessment (LCA), considering one of the 57 French plants currently in operation as a case study. The inventory is mostly based on plant-specific data, extrapolated from on-site measurements regarding mechanical and biological operations (including anaerobic digestion and composting of digestate). The combined treatment of 46,929 tonnes of residual Municipal Solid Waste and 12,158 tonnes of source-sorted biowaste (as treated in 2010 at the plant) generates 24,550 tonnes CO2-eq as an impact on climate change, 69,943kg SO2-eq on terrestrial acidification and 19,929kg NMVOC-eq on photochemical oxidant formation, in a life-cycle perspective. On the contrary MBT induces environmental benefits in terms of fossil resource depletion, human toxicity (carcinogenic) and ecotoxicity. The results firstly highlight the relatively large contribution of some pollutants, such as CH4, emitted at the plant and yet sometimes neglected in the LCA of waste MBT. Moreover this study identifies 4 plant-specific operation conditions which drive the environmental impact potentials induced by MBT: the conditions of degradation of the fermentable fraction, the collection of gaseous flows emitted from biological operations, the abatement of collected pollutants and NOx emissions from biogas combustion. Finally the results underline the relatively large influence of the operations downstream the plant (in particular residuals incineration) on the environmental performance of waste MBT. PMID:25708404

  4. Towards real energy economics: Energy policy driven by life-cycle carbon emission

    International Nuclear Information System (INIS)

    Alternative energy technologies (AETs) have emerged as a solution to the challenge of simultaneously meeting rising electricity demand while reducing carbon emissions. However, as all AETs are responsible for some greenhouse gas (GHG) emissions during their construction, carbon emission 'Ponzi Schemes' are currently possible, wherein an AET industry expands so quickly that the GHG emissions prevented by a given technology are negated to fabricate the next wave of AET deployment. In an era where there are physical constraints to the GHG emissions the climate can sustain in the short term this may be unacceptable. To provide quantitative solutions to this problem, this paper introduces the concept of dynamic carbon life-cycle analyses, which generate carbon-neutral growth rates. These conceptual tools become increasingly important as the world transitions to a low-carbon economy by reducing fossil fuel combustion. In choosing this method of evaluation it was possible to focus uniquely on reducing carbon emissions to the recommended levels by outlining the most carbon-effective approach to climate change mitigation. The results of using dynamic life-cycle analysis provide policy makers with standardized information that will drive the optimization of electricity generation for effective climate change mitigation.

  5. Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants

    International Nuclear Information System (INIS)

    A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm3 y-1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO2 gas from the ethanol plant's fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.

  6. Life cycle assessment in green chemistry: overview of key parameters and methodological concerns

    DEFF Research Database (Denmark)

    Tufvesson, Linda M.; Tufvesson, Pär; Woodley, John;

    2013-01-01

    Several articles within the area of green chemistry often promote new techniques or products as ‘green’ or ‘more environmentally benign’ than their conventional counterpart although these articles often do not quantitatively assess the environmental performance. In order to do this, life cycle...... with the purpose to reduce the time-consuming steps in LCA.In this review, several LCAs of so-called ‘green chemicals’ are analysed and key parameters and methodological concerns are identified. Further, some conclusions on the environmental performance of chemicals were drawn.For fossil-based platform...... environmental concern, for example eutrophication and the use of land.To assess the environmental performance of green chemicals, quantitative methods are needed. For this purpose, both simple metrics and more comprehensive methods have been developed, one recognised method being LCA. However, this method is...

  7. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke; Hutchings, Nicholas John; Peters, Gregory;

    2014-01-01

    Animal slurry management is associated with a range of impacts on fossil resource use and the environment. The impacts are greatest when large amounts of nutrient-rich slurry from livestock production cannot be adequately utilised on adjacent land. To facilitate nutrient redistribution, a range of...... different technologies are available. This study comprised a life cycle assessment of the environmental impacts from handling 1000. kg of pig slurry ex-animal. Application of untreated pig slurry onto adjacent land was compared with using four different treatment technologies to enable nutrient...... combination of values derived from the literature and simulations with the Farm-N model for Danish agricultural and climatic conditions. The environmental impact categories assessed were climate change, freshwater eutrophication, marine eutrophication, terrestrial acidification, natural resource use, and soil...

  8. Life Cycle Assessment of high ligno-cellulosic biomass pyrolysis coupled with anaerobic digestion.

    Science.gov (United States)

    Righi, Serena; Bandini, Vittoria; Marazza, Diego; Baioli, Filippo; Torri, Cristian; Contin, Andrea

    2016-07-01

    A Life Cycle Assessment is conducted on pyrolysis coupled to anaerobic digestion to treat corn stovers and to obtain bioenergy and biochar. The analysis takes into account the feedstock treatment process, the fate of products and the indirect effects due to crop residue removal. The biochar is considered to be used as solid fuel for coal power plants or as soil conditioner. All results are compared with a corresponding fossil-fuel-based scenario. It is shown that the proposed system always enables relevant primary energy savings of non-renewable sources and a strong reduction of greenhouse gases emissions without worsening the abiotic resources depletion. Conversely, the study points out that the use of corn stovers for mulch is critical when considering acidification and eutrophication impacts. Therefore, removal of corn stovers from the fields must be planned carefully. PMID:27107341

  9. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2012-01-01

    production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery for the...... enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co-combustion in...... refinery was mainly associated with the opportunity to decrease energy and enzyme consumption....

  10. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

    2012-02-08

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  11. Assessing CSR and Applying Social Life Cycle Assessment: A case study on Biochemical Oxygen Demand Online Monitor

    OpenAIRE

    Wan, He

    2012-01-01

    Wuhan China and Borlänge Sweden collaborate to promote sustainable business growths. This thesis, being part of sustainable business project, aims to understand how business can contribute to sustainable development and explore mechanisms of social life cycle assessment. In an effort to answer research questions and further to achieve the general purpose, a BOD online monitor case study is described and analyzed by applying both qualitative and quantitative approaches. Data collection is base...

  12. Decision-making of biomass ethanol fuel policy based on life cycle 3E assessment

    Institute of Scientific and Technical Information of China (English)

    LENG Ru-bo; DAI Du; CHEN Xiao-jun; WANG Cheng-tao

    2005-01-01

    To evaluate the environmental, economic, energy performance of biomass ethanol fuel in China and tosupport the decision-making of biomass ethanol energy policy, an assessment method of life cycle 3E (economy, en vironment, energy) was applied to the three biomass ethanol fuel cycle alternatives, which includes cassava-based, corn-based and wheat-based ethanol fuel. The assessments provide a comparison of the economical performance, energy efficiency and environmental impacts of the three alternatives. And the development potential of the three alternatives in China was examined. The results are very useful for the Chinese government to make decisions on the biomass ethanol energy policy, and some advises for the decision-making of Chinese government were given.

  13. Land-Energy Nexus: Life Cycle Land Use of Natural Gas-Fired Electricity

    Science.gov (United States)

    Heath, G.; Jordaan, S.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.

    2014-12-01

    Comparisons of the land required for different types of energy are challenging due to the fact that upstream land use of fossil fuel technologies is not well characterized. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity through the novel combination of inventories of the location of natural gas-related infrastructure, satellite imagery analysis and gas production data. Land area per unit generation is calculated as the sum of natural gas life cycle stages divided by the throughput of natural gas, combined with the land use of the power plant divided by the generation of the power plant. Five natural gas life cycle stages are evaluated for their area: production, gathering, processing, transmission and disposal. The power plant stage is characterized by a thermal efficiency ηth, which converts MegaJoules (MJ) to kilowatt hours (kWh). We focus on seven counties in the Barnett shale region in Texas that represent over 90% of total Barnett Shale gas production. In addition to assessing the gathering and transmission pipeline network, approximately 500 sites are evaluated from the five life cycle stages plus power plants. For instance, assuming a 50 foot right-of-way for transmission pipelines, this part of the Barnett pipeline network occupies nearly 26,000 acres. Site, road and water components to total area are categorized. Methods are developed to scale up sampled results for each component type to the full population of sites within the Barnett. Uncertainty and variability are charaterized. Well-level production data are examined by integrating commercial datasets with advanced methods for quantifying estimated ultimate recovery (EUR) for wells, then summed to estimate natural gas produced in an entire play. Wells that are spatially coincident are merged using ArcGIS. All other sites are normalized by an estimate of gas throughput. Prior land use estimates are used to validate the satellite imagery analysis

  14. Life cycle analysis of small scale pellet boilers characterized by high efficiency and low emissions

    International Nuclear Information System (INIS)

    Highlights: • LCA was performed on innovative small scale pellet boilers. • Pellet boilers impacts were compared to oil and natural gas boilers impacts. • Both literature and experimental data were used for life cycle analysis. • The environmental impact due to all life cycle phases was envisaged. • Sensitivity tests evidenced realistic ways for pellet boilers impact reduction. - Abstract: This study focuses on the environmental impact assessment through Life Cycle Analysis (LCA) of two innovative 10 kW pellet boilers. In particular, the second boiler represents a technological evolution of the first one developed to improve its performance in terms of efficiency and environmental impact. For both boilers, emission factors measured during laboratory tests (full load tests and specific load cycle tests representative of real life boiler operation) have been used as input data in the life cycle analysis. The SimaPro software (v.8.0.4.30) was used for the LCA and the ReCiPe Midpoint method (European version H) was chosen to assess the environmental impact of all boilers (according to LCA ISO standards). In addition, the ReCiPe Endpoint method was used to compare the final results of all 5 boilers with literature data. The pelletisation process represented the most relevant share of the overall environmental impact followed by the operational phase, the manufacturing phase and the disposal phase. A sensitivity analysis performed on the most efficient pellet boiler evidenced the variation of the boiler’s environmental impact as a function of PM10 and NOX emission factors with respect to emission factors monitored during boiler full load operation. Moreover, the reduction of the boiler’s weight and the adoption of new electronic components led to a consistent reduction (−18%) of its environmental impact with respect to the previous technology. A second LCA has been carried on for a 15 kW oil boiler, a 15 kW natural gas boiler and a 15 kW pellet boiler

  15. Molecular fossils and sources of Cambrian heavy oil of Well Tadong-2 in theTarim Basin, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    TANG Youjun; ZAN Ling

    2009-01-01

    Research on the molecular fossil characteristics of heavy oil from Well Tadong-2 is of great importance to constrain the source of marine crude oils in the Tarim Basin, Xinjiang, China. The authors synthetically applied the isotope mass spectrograph, chromatography and chromatography-mass spectrography to the studies of molecular fossil characteristics of heavy oil from Well Tadong-2 in the Tarim Basin, and the results obtained revealed that heavy oil from Well Tadong-2 is characterized by high gammacerane, high C28 sterane, low rearranged sterane and high C27-triaromatic steroid, these characteristics are similar to those of Cambrian-Lower Ordovician source rocks, demonstrating that Cambrian crude oils came from Cambrian-Lower Ordovician source rocks; condensed compounds (fluoranthene, pyrene, benzo[a]anthracene, bow, benzo fluoranthene, benzopyrene) of high abundance were detected in heavy oil from Well Tadong-2, and the carbon isotopic values of whole oil are evidently heavy, all the above characteristics revealed that hydrocarbons in the crude oils became densified in response to thermal alteration.

  16. The Pleistocene vermicular red earth in South China signaling the global climatic change: The molecular fossil record

    Institute of Scientific and Technical Information of China (English)

    XIE; Shucheng; (谢树成); YI; Yi; (易; 轶); LIU; Yuyan; (刘育燕); GU; Yansheng; (顾延生); MA; Zhenxing; (马振兴); LIN; Wenjiao; (林文姣); WANG; Xianyan; (王先彦); LIU; Gang; (刘; 刚); LIANG; Bin; (梁; 斌); ZHU; Zongmin; (朱宗敏)

    2003-01-01

    The trace molecular fossils identified in the Pleistocene vermicular red earth by using the gas chromatography-mass spectrometry (GC/MS) analysis include n-alkanes, n-alkanoic acids, n-alkanols and n-alkan-2-ones. The variations of the n-alkane parameters appear to bear significant climate information, in striking contrast to the oxygen-bearing molecules (n-alkanoic acids and n-alkanols) believed to be more easily reworked by post-depositional processes. Of importance in paleoclimate reconstruction are the ratios of C27/C31 n-alkane indicative of the replacement of woody plants by grassy vegetation, and C15-21/C22-33 n-alkane representative of the relative abundance between microorganisms and higher plants. The profile trends of the two n-alkane ratios are comparable to the marine oxygen isotope record among stages 4-20. These molecular fossil records implicate that the Pleistocene vermicular red earth widespread in South China was formed in coupling to the global climatic change and could be an important climate carrier.

  17. Externalities and energy policy: the life cycle analysis approach

    International Nuclear Information System (INIS)

    Getting the prices right is a prerequisite for energy market mechanisms to work effectively towards the development of sustainable energy mixes. External costs of energy have been recognised and assessed in many studies, and the life cycle analysis (LCA) approach provides a conceptual framework for a detailed and comprehensive, comparative evaluation of alternative technology options. Despite this, results from analytical work on externalities and LCA studies are seldom used in policy making. The International Energy Agency (IEA) and the OECD Nuclear Energy Agency (NEA) organised a workshop on 'Externalities and Energy Policy: The Life Cycle Analysis Approach' to bring together policy makers and experts from governmental agencies and the industry to discuss key issues regarding the role and limitations of external cost evaluations and LCA results. The presentations and discussions reported in these proceedings will be of interest to senior analysts, policy makers and other stakeholders concerned with the sustainable development of the energy sector. (author)

  18. A system boundary identification method for life cycle assessment

    DEFF Research Database (Denmark)

    Li, Tao; Zhang, Hongchao; Liu, Zhichao;

    2014-01-01

    Life cycle assessment (LCA) is a useful tool for quantifying the overall environmental impacts of a product, process, or service. The scientific scope and boundary definition are important to ensure the accuracy of LCA results. Defining the boundary in LCA is difficult and there are no commonly...... of processes considered, and the gradient of the fitting curve trends to zero gradually. According to the threshold rules, a relatively accurate system boundary could be obtained.It is found from this research that the system boundary curve describes the growth of life cycle impact assessment (LCIA...... accepted scientific methods yet. The objective of this research is to present a comprehensive discussion of system boundaries in LCA and to develop an appropriate boundary delimitation method.A product system is partitioned into the primary system and interrelated subsystems. The hierarchical relationship...

  19. Life cycle assessment and additives: state of knowledge

    DEFF Research Database (Denmark)

    identify research needs within this area focusing on both risk assessment (RA) and life cycle assessment (LCA). Besides the sectors on paper and plastics also lubricants, textiles, electronics and leather are included in RiskCycle. On plastics a literature review regarding the state of knowledge on......, solvents, metals, AOX and biocides may play a very significant role in the impact profile of printed matter. Regarding the life cycle impact assessment (LCIA) part an investigation of the availability of characterisation factors (aquatic ecotox) for the about 17 additives/impurities to be included in Risk...... additives/impurities in LCA has been performed within RiskCycle. Several inventory databases (LCI data) have been investigated and the result shows that most LCI databases use PlasticsEurope data for plastics production. Most of these data are aggregated and do not include additives. Regarding the...

  20. Confronting product life thinking with product life cycle analysis

    DEFF Research Database (Denmark)

    McAloone, Tim C.

    2001-01-01

    Industry is increasingly being confronted with the need to consider the whole life cycle effects of its products, in order to make environmental improvements of any significance. There is a danger that naive environmental decisions are made, due to apparent lack of data or actual lack of insight....... This paper describes a case study, where a class of students was presented with a product from the Danish company, Danfoss A/S, and given the task of carrying out an initial environmental evaluation of the product. This evaluation consisted of both a "life cycle check" and an exercise where the...... students were to "read" the environment out of the product, in order to systematically, quickly and efficiently come to some design recommendations for the company. The phrases "LCA" and "product life thinking" will be described and differentiated and a pattern identified for their cooperative effect in...

  1. Life cycle assessment of offset printed matter with EDIP97

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Morten Søes; Hauschild, Michael Zwicky

    2009-01-01

    Existing product life cycle assessment (LCA) studies on offset printed matter all point at paper as the overall dominating cause of environmental impacts. All studies focus on energy consumption and the dominating role of paper is primarily based on the energy-related impact categories global...... warming, acidification and nutrient enrichment. Ecotoxicity and human toxicity, which are related to emissions of chemicals etc., are only included to a limited degree or not at all. In this paper we include the impacts from chemicals emitted during the life cycle of sheet fed offset printed matter. This...... is done by making use of some of the newest knowledge about emissions from the production at the printing industry combined with knowledge about the composition of the printing materials used. In cases with available data also upstream emissions from the production of printing materials are included...

  2. When Product Life Cycle Meets Customer Activity Cycle

    DEFF Research Database (Denmark)

    Tan, Adrian Ronald

    2007-01-01

    Manufacturing companies have traditionally focused their efforts on designing, developing and producing products to offer on the market. Today global competition and demands for greater company responsibility of products throughout their entire life cycle are driving manufacturing companies to...... products throughout their life cycle by designing integrated solutions of products and services. This approach has been dubbed ‘product/service-systems (PSS)’ (Mont, 2004). Although relationship marketing and product/service-system design have their roots in each their own research fields - marketing and...... engineering design - it seems that the two approaches are complimentary. The principle behind PSS is a shift from a perception that value is mainly embedded in a physical artefact to a perception where the activities associated with the product are considered to be a better definition of value. In this new...

  3. "ATLAS" Advanced Technology Life-cycle Analysis System

    Science.gov (United States)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  4. LIFE CYCLE ASSESSMENT (LCA AS A TOOL FOR BUSINESS STRATEGY

    Directory of Open Access Journals (Sweden)

    Rodrigo Salvador

    2014-09-01

    Full Text Available The growing concern about the development of sustainable production systems leads organizations to seek the support of management tools for decision-making. Considering the whole life cycle of the product, the Life Cycle Assessment (LCA has an important role in this scenario. The objective of this paper is to present, through the theoretical discussion, the role of LCA in strategic planning of the organization. It showed the enormous potential for decision making on the environmental aspect, but also the critical factor in the development shares in the competitive context. The use of LCA can reduce the environmental impacts of the system under study (primary purpose and guide the range of advantages in the fields of marketing, legislation and environmental labeling, competitive strategies, efficiency use of resources and others.

  5. A study into life cycle environmental impacts of photovoltaic technologies

    International Nuclear Information System (INIS)

    This study presents a Life Cycle Assessment of Photovoltaic Cells (LCA). It was undertaken by Environmental Resources Management (ERM) on behalf of ETSU for the United Kingdom Department of Trade and Industry (DTI). This study uses the technique of LCA to examine all aspects of the production, use and disposal of PVs and the consequent environmental effects. This allows an appraisal of the environmental effects of increasing UK production of PVs to supply more demand for electricity in the EU and the developing world. Impacts result from obtaining raw materials, manufacturing solar power generating equipment, and any final disposal or recycling requirements. The environmental impacts resulting from these phases are known as the PV LIfe Cycle impacts. (author)

  6. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    , switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study......A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode...

  7. Life cycle assessment of construction and demolition waste management

    DEFF Research Database (Denmark)

    Butera, Stefania; Christensen, Thomas Højlund; Astrup, Thomas Fruergaard

    2015-01-01

    Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed...... environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because...... of the impact assessment was critical for modelling the leaching impacts. Compared with the overall life cycle of building and construction materials, leaching emissions were shown to be potentially significant for toxicity impacts, compared with contributions from production of the same materials, showing...

  8. Indonesian residential high rise buildings: A life cycle energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Utama, Agya; Gheewala, Shabbir H. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2009-11-15

    This study evaluates the effect of building envelopes on the life cycle energy consumption of high rise residential buildings in Jakarta, Indonesia. For high rise residential buildings, the enclosures contribute 10-50% of the total building cost, 14-17% of the total material mass and 20-30% of the total heat gain. The direct as well as indirect influence of the envelope materials plays an important role in the life cycle energy consumption of buildings. The initial embodied energy of typical double wall and single wall envelopes for high residential buildings is 79.5 GJ and 76.3 GJ, respectively. Over an assumed life span of 40 years, double walls have better energy performance than single walls, 283 GJ versus 480 GJ, respectively. Material selection, which depends not only on embodied energy but also thermal properties, should, therefore, play a crucial role during the design of buildings. (author)

  9. Site-dependent life-cycle impact assessment of acidification

    DEFF Research Database (Denmark)

    Potting, Josepha Maria Barbara; Schöpp, W.; Blok, Kornelis; Hauschild, Michael Zwicky

    1998-01-01

    The lack of spatial differentiation in current life-cycle impact assessment (LCIA) affects the relevance of the assessed impact. This article first describes a framework for constructing factors relating the region of emission to the acidifying impact on its deposition areas. Next, these factors...... and thresholds for acidification, eutrophication via air; and tropospheric ozone formation. The application of the acidification factors in LCIA is very straightforward. The only additional data required, the geographical site of the emission, is generally provided by current life-cycle inventory...... analysis. The acidification factors add resolving power of a factor of 1,000 difference between the highest and lowest ratings, while the combined uncertainties in the RAINS model are canceled out to a large extent in the acidification factors as a result of the large number of ecosystems they cover The...

  10. Life cycle assessment applied to nanomaterials in solid waste management

    DEFF Research Database (Denmark)

    Laurent, Alexis

    for assessing engineered nanoparticles. To support the impact assessment of engineered nanoparticles in the life cycle of nanoproducts and in solid waste management systems, a comprehensive review of toxicological data for nanosilver and titanium dioxide (TiO2) particles was conducted and it enabled......, thus potentially posing problems on human health, e.g. through occupational exposure to engineered nanoparticles. In that setting, through its holistic quantification of environmental impacts, life cycle assessment (LCA) can be a useful decisionsupport tool for managing environmental sustainability...... of solid waste management systems as well as that of nanoproducts. But how has LCA generally been applied to both fields of solid waste management and nanotechnology until now? In particular, what are the current shortcomings for assessing impacts of released engineered nanoparticles? Is it possible...

  11. Life cycle assessment and the agri-food chain

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Nguyen, T Lan T

    2012-01-01

    Our food consumption is responsible for a major part of the environmental impact related to our total consumption. Life cycle assessment (LCA) is a product-oriented tool that can be used efficiently to identify improvement options within the food chain covering a product’s life cycle from cradle...... to grave, which is very complex for many foods, and to support choices of consumption. The LCA methodology is supported by public standards and public policy measures and has proved its value in business development for more environmentally friendly products. It is an essential feature that the effects...... framework for aggregation facilitates the coherent use of the LCA results in different purposes and by different stakeholders. There is a need, nonetheless, to further develop the methodology, including land use impacts resulting from increased demand for food. It has been demonstrated that this inclusion...

  12. Household Life-Cycle Stages, Transitions, and Product Expenditures.

    OpenAIRE

    Wilkes, Robert E

    1995-01-01

    Data from the U.S. Bureau of Labor Statistics' Consumer Expenditure Survey provide empirical verification of changes in household spending across a wide variety of products as households pass from one stage of the household life cycle to another. Three spending patterns emerged: (1) a generalized inverted U pattern, with spending rising sharply as households shift from young single to young married, then remaining relatively high, and falling sharply at the older married and/or older single s...

  13. Life Cycle Assessment (LCA) in Forestry – State and Perspectives

    OpenAIRE

    Heinimann, Hans Rudolf

    2012-01-01

    Environmentally sound technologies are a key to reduce resource use and environmental impact. The paper reviews the state of knowledge of an analysis tool, life cycle assessment (LCA), by addressing three issues: 1) methodological foundations of LCA, 2) lifecycle inven­tory modeling, and 3) environmental performance indicators for wood supply systems. The study results in the following findings: 1) LCA is still not widely used and accepted in the forest operations engineering. 2) Only a few s...

  14. Evaluation of life cycle inventory data for recycling systems

    OpenAIRE

    Brogaard, Line Kai-Sørensen; Damgaard, Anders; Jensen, Morten Bang; Barlaz, Morton; Christensen, Thomas Højlund

    2014-01-01

    This paper reviews databases on material recycling (primary as well as secondary production) used in life cycle assessments (LCA) of waste management systems. A total of 366 datasets, from 1980 to 2010 and covering 14 materials, were collected from databases and reports. Totals for CO2-equivalent emissions were compared to illustrate variations in the data. It was hypothesised that emissions from material production and the recycling industry had decreased over time due to increasing regulati...

  15. Life cycle inventory analysis of hard coal based electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Sokka, L.; Koskela, S.; Seppaelae, J.

    2005-07-01

    In this document, the Life Cycle Inventory (LCI) of hard coal electricity is described. The LCI presents the product system of hard coal electricity covering all the life cycle stages from the extraction of resources to the delivery of electric power to the grid. The Finnish Meri-Pori power plant, which represents best available power plant technology, was used as a case study power plant. Inventory data on coal mining was collected using the average interventions of underground coal mining in Poland. Main emissions to air from the system mostly originate from conversing hard coal to electricity at the power plant. Electricity generation is the main source for CO{sub 2}, NO{sub x}, SO{sub 2} and most heavy metal emissions to air. The waste recycling rate of the investigated system is very high; almost 100% of the wastes produced at the power plant and over 85% of those produced during mining are recycled. In addition, approximately 20% of the methane released in the Polish mines is recovered and used as a fuel. LCI results were used in the life cycle impact assessment (LCIA) of hard coal electricity, and to identify the differences between the environmental impacts caused by oil shale electricity and coal electricity through their whole life cycle stages in the EU Life- Environment project (OSELCA). Inventory data produced in this study is applicable to systems using modern power plant technology and Eastern European hard coal. Two main blocks of the investigated system - mining and power generation - can also be used separately in different LCA studies. (orig.)

  16. Recommendations for Life Cycle Assessment of algal fuels

    International Nuclear Information System (INIS)

    Highlights: • A review of 41 publications about LCA of algal biofuels has been carried out. • We define methodological guidelines to standardize microalgae LCA. • We rank the issues by their effect on the results. • The proposed framework has to regularly be updated by studies of new impacts. - Abstract: Many studies have used the Life Cycle Assessment (LCA) methodology to assess the environmental impacts and energetic suitability of microalgal biofuels. This paper presents a critical review focused on goal and scope, system boundaries, functional unit, Life Cycle Inventories (LCI) and environmental impacts of 41 LCA of algal biofuels. The comparison between these LCA has been made difficult by the heterogeneity of their underlying hypotheses and perimeters. Hence we propose to define methodological guidelines to harmonize results presentation in order to improve the validity of each new contribution and to ease its comparison to other studies. LCA allows detecting pollution transfers between production stages as well as between distinct environmental impacts. At the Life Cycle Inventory (LCI) level, a special attention should be paid to the perimeter of the study (e.g. inclusion of infrastructures) and to the handling of the co-products (allocation or substitution). Moreover the inventory data have to be treated in a consistent way in order to guarantee the comparability of LCI between different studies. Hence we recommend that data of all the production steps should be given at a unit process level, i.e. the smallest element for which input and output data can be quantified. At the Life Cycle Impact Assessment level, other impacts than the greenhouse gases balance have to be taken into account, like impacts related to the use of fertilizers (acidification and eutrophication) and phytosanitary products (human toxicity and ecotoxicity), impacts of direct and indirect land use change, and water consumptions. Finally, as biofuel is aiming at replacing

  17. International Symposium on Pavement Life Cycle Assessment 2014

    OpenAIRE

    JULLIEN, Agnès; Harvey, John

    2014-01-01

    Life Cycle Assessment (LCA) is a systems approach developed to provide decision support for questions regarding the environmental impact of industrial processes and products. The application of LCA to pavement management, design and construction helps to avoid the paradox of decisions that improve one aspect of sustainability of a pavement system, while unintentionally causing greater harm elsewhere. LCA is a field with ongoing developments and improvements. As applied to pavement, interest i...

  18. Supply Chain Cost Management: A Life Cycle Perspective

    OpenAIRE

    皆川, 芳輝

    2014-01-01

    Recently, nearly all goods have been experiencing shrinking life cycles, and drastic changes in consumer demand have occurred. The challenges presented by this changing market can be successfully coped with through the appropriate use of supply chains. Supply chains naturally excel at sharing market- and management-related information among participants, thereby enabling the swift provision of goods needed by consumers. The development of individual firms depends largely on whether they can b...

  19. Reputation Life Cycle of The SM Foundation and Customers’ Support

    OpenAIRE

    Muhammad Alishahdani Ibrahim

    2012-01-01

    Reputation is a key construct in organizational sciences since reputation signals its past behavior and its prospect in the future. The purpose of this paper is to explore the development and influence of both personal and organizational reputation and its impact to customer support. The organiza-tion life cycle theory is applied to the “SM” foundation, one of Indonesian largest Islamic social enterprise which experienced fast growth and decline due to the decline of its leader reputation. Th...

  20. The product life cycle application for production planning

    Directory of Open Access Journals (Sweden)

    Shuvalova Anastasiia Olegovna

    2014-04-01

    Full Text Available On the basis of the home and foreign methods of planning and engineering the operating process, planning of the operating process are worked out in this article. This method gives the opportunity to forecast the business capacity rely on the demand and in terms of the life cycle of the product. The necessary quantity of the workers and equipment could be calculated based on the prescribed production rate.