WorldWideScience

Sample records for china energy databook

  1. China energy databook

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, J.E.; Fridley, D.G.; Levine, M.D. [eds.

    1996-06-01

    The response to the first edition of the China Energy Databook was overwhelmingly positive, and has encouraged us to issue this revised, updated, and expanded edition. It has been a natural counterpart to the Energy Analysis Program`s continuing program of collaborative research with the Energy Research Institute. No other current reference volume dedicated to China`s energy system contains a similar variety and quality of material. We have revised some of the categories and data that appeared in the old volume. The adjustment for energy consumption in the transportation sector, for instance, has been slightly changed to include some fuel use in the commercial sector, which was previously left out. As another example, natural gas consumption statistics in the first edition greatly overstated electric utility use; we have rectified that error. Some tables have changed as statistical collection and reporting practices change in China. Figures on gross output value by sector stop with 1992, and economic output in subsequent years is covered by various measures of value-added, such as national income and gross domestic product.

  2. China energy databook

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. (eds.) (Lawrence Berkeley Lab., CA (United States)); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi (eds.) (Energy Research Inst., Beijing, BJ (China))

    1992-11-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  3. China energy databook

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. [eds.] [Lawrence Berkeley Lab., CA (United States); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi [eds.] [Energy Research Inst., Beijing, BJ (China)

    1992-12-31

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises` investment funds is directed towards providing housing and social services for workers and their families.

  4. China energy databook

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. (eds.) (Lawrence Berkeley Lab., CA (United States)); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi (eds.) (Energy Research Inst., Beijing, BJ (China))

    1992-01-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises' investment funds is directed towards providing housing and social services for workers and their families.

  5. China Energy Databook. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, J. E.; Fridley, D. G.; Levine, M. D.; Yang, F.; Zhenping, J.; Xing, Z.; Kejun, J.; Xiaofeng, L.

    1996-09-01

    The Energy Analysis Program at LBL first became involved in Chinese energy issues through a joint China-US symposium on markets and energy demand held in Nanjing Nov. 1988. EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. It was decided to compile, assess, and organize Chinese energy data. Primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system; thus the primary criterion was to relate the data to the structure of energy supply and demand in the past and to indicate probable developments (eg, as indicated by patterns of investment). Caveats are included in forewords to both the 1992 and 1996 editions. A chapter on energy prices is included in the 1996 edition. 1993 energy consumption data are not included since there was a major disruption in energy statistical collection in China that year.

  6. China energy databook. 1992 Edition

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. [eds.] [Lawrence Berkeley Lab., CA (United States); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi [eds.] [Energy Research Inst., Beijing, BJ (China)

    1992-11-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  7. China energy databook. Revision 2, 1992 edition

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, J.E.; Levine, M.D.; Liu, Feng; Davis, W.B. [eds.] [Lawrence Berkeley Lab., CA (United States); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi [eds.] [State Planning Commission of China, Beijing, BJ (China). Energy Research Inst.

    1993-06-01

    The Energy Analysis Program at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues, we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US. In order to select appropriate data from what was available we established several criteria. Our primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system. A primary criterion was thus that the data relate to the structure of energy supply and demand in the past and indicate probable developments (e.g., as indicated by patterns of investment). Other standards were accuracy, consistency with other information, and completeness of coverage. This is not to say that all the data presented herein are accurate, consistent, and complete, but where discrepancies and omissions do occur we have tried to note them.

  8. China Energy Databook -- User Guide and Documentation, Version 7.0

    Energy Technology Data Exchange (ETDEWEB)

    Fridley, Ed., David; Aden, Ed., Nathaniel; Lu, Ed., Hongyou; Zheng, Ed., Nina

    2008-10-01

    Since 2001, China's energy consumption has grown more quickly than expected by Chinese or international observers. This edition of the China Energy Databook traces the growth of the energy system through 2006. As with version six, the Databook covers a wide range of energy-related information, including resources and reserves, production, consumption, investment, equipment, prices, trade, environment, economy, and demographic data. These data provide an extensive quantitative foundation for understanding China's growing energy system. In addition to providing updated data through 2006, version seven includes revised energy and GDP data back to the 1990s. In the 2005 China Energy Statistical Yearbook, China's National Bureau of Statistics (NBS) published revised energy production, consumption, and usage data covering the years 1998 to 2003. Most of these revisions related to coal production and consumption, though natural gas data were also adjusted. In order to accommodate underestimated service sector growth, the NBS also released revised GDP data in 2005. Beyond the inclusion of historical revisions in the seventh edition, no attempt has been made to rectify known or suspected issues in the official data. The purpose of this volume is to provide a common basis for understanding China's energy system. In order to broaden understanding of China's energy system, the Databook includes information from industry yearbooks, periodicals, and government websites in addition to data published by NBS. Rather than discarding discontinued data series, information that is no longer possible to update has been placed in C section tables and figures in each chapter. As with previous versions, the data are presented in digital database and tabular formats. The compilation of updated data is the result of tireless work by Lu Hongyou and Nina Zheng.

  9. China Energy Primer

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Chun Chun

    2009-11-16

    Based on extensive analysis of the 'China Energy Databook Version 7' (October 2008) this Primer for China's Energy Industry draws a broad picture of China's energy industry with the two goals of helping users read and interpret the data presented in the 'China Energy Databook' and understand the historical evolution of China's energy inustry. Primer provides comprehensive historical reviews of China's energy industry including its supply and demand, exports and imports, investments, environment, and most importantly, its complicated pricing system, a key element in the analysis of China's energy sector.

  10. Key China Energy Statistics 2012

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fino-Chen, Cecilia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). The Group has published seven editions to date of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  11. Key China Energy Statistics 2011

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fino-Chen, Cecilia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-15

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). In 2008 the Group published the Seventh Edition of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  12. Geothermal Energy Databook for the Western United States (Draft Copy)

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.L.; Tavana, M.; Leung, K.; Schwartz, S.R.

    1979-06-01

    The National Geothermal Information Resource (GRID) project of the Lawrence Berkley Laboratory was initiated in 1974 with the objective of compiling both basic and site-specific data on major aspects of geothermal energy utilization. During the past ten years much progress has been made in the United States to develop geothermal energy and to construct power plants. Current electrical power produced is 608 MWe at The Geysers in California which obtains steam to drive turbines from steam wells. However, the major new sources of geothermal energy in the next decade are expected to be hot brine systems located in the Western United States. Data on the power potential and progress toward utilization is needed for these new areas to identify impediments to utilization and to forecast power on-line in the next decades. However, the data is widely scattered and largely unevaluated, thereby impeding the analysis for predictions of power production in the decades 1980, 1990, and beyond the year 2000. The objective of this work is to provide a single, comprehensive database containing evaluated reference data useful in assessing geothermal sites for their potential to produce electrical power. The compilation and evaluation constitute a databook of current information for plant construction, modeling, research and development for conversion of geothermal energy to electric power production. The result of this work include identification of areas where data are lacking or are inadequate and where technology development is needed. The interest in site-specific data stems from two important concerns: (1) forecasts of power production related to local, state, and national goals, for example, the second report on geothermal energy by the Interagency Geothermal Coordinating Council which contains forecasts for power on-line to the year 2000 and beyond, and (2) the assessment of each site to produce power in an economic manner for a 20 to 30-year time period. The currently

  13. Spent Nuclear Fuel Project Technical Databook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, M.A.

    1998-10-23

    The Spent Nuclear Fuel (SNF) Project Technical Databook is developed for use as a common authoritative source of fuel behavior and material parameters in support of the Hanford SNF Project. The Technical Databook will be revised as necessary to add parameters as their Databook submittals become available.

  14. ANS materials databook

    Energy Technology Data Exchange (ETDEWEB)

    Marchbanks, M.F.

    1995-08-01

    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  15. Spent nuclear fuel project technical databook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, M.A.

    1998-07-22

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values.

  16. 1995 NPTS Databook

    Energy Technology Data Exchange (ETDEWEB)

    Hu, PS

    2001-12-05

    Policymakers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and accommodate future demands; to assess the feasibility and efficiency of alternative congestion-alleviating technologies (e.g., high-speed rail, magnetically levitated trains, intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the Department of Transportation (DOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, and 1995. The 1995 survey was cosponsored by four DOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), Federal Transit Administration (FTA), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel. Commercial and institutional travel were not part of the survey.

  17. DC KIDS COUNT e-Databook Indicators

    Science.gov (United States)

    DC Action for Children, 2012

    2012-01-01

    This report presents indicators that are included in DC Action for Children's 2012 KIDS COUNT e-databook, their definitions and sources and the rationale for their selection. The indicators for DC KIDS COUNT represent a mix of traditional KIDS COUNT indicators of child well-being, such as the number of children living in poverty, and indicators of…

  18. China's Energy Strategy and China-Russia Energy Cooperation

    Institute of Scientific and Technical Information of China (English)

    Xia Yishan

    2010-01-01

    @@ Energy strategy and China-Russia energy cooperation are based on the estimation of China's energy supply and demand.Therefore, before we get to the main point, we need to analyze the development of energy in China first,and then discuss the issue of China's energy strategy and China-Russia energy cooperation.

  19. Low-Carbon City Policy Databook: 72 Policy Recommendations for Chinese Cities from the Benchmarking and Energy Savings Tool for Low Carbon Cities

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Ohshita, Stephanie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Khanna, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Hong, Lixuan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; He, Gang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area. Energy Analysis and Environmental Impacts Division. China Energy Group; Min, Hu [Energy Foundation China, Beijing (China)

    2016-07-01

    This report is designed to help city authorities evaluate and prioritize more than 70 different policy strategies that can reduce their city’s energy use and carbon-based greenhouse gas emissions of carbon dioxide (CO2) and methane (CH4). Local government officials, researchers, and planners can utilize the report to identify policies most relevant to local circumstances and to develop a low carbon city action plan that can be implemented in phases, over a multi-year timeframe. The policies cover nine city sectors: industry, public and commercial buildings, residential buildings, transportation, power and heat, street lighting, water & wastewater, solid waste, and urban green space. See Table 1 for a listing of the policies. Recognizing the prominence of urban industry in the energy and carbon inventories of Chinese cities, this report includes low carbon city policies for the industrial sector. The policies gathered here have proven effective in multiple locations around the world and have the potential to achieve future energy and carbon savings in Chinese cities.

  20. China's Energy Mix

    Institute of Scientific and Technical Information of China (English)

    Liu Xinwen

    2007-01-01

    @@ The modern industrial world is underpinned by energy and also driven by energy.Today 80% of the world's energy comes from coal,oil and natural gas.China is known as a country and also one of the largest energy suppliers in the world.

  1. China's New Energy Strategy

    Institute of Scientific and Technical Information of China (English)

    Cui Shuhong

    2004-01-01

    @@ At one of the routine meetings recently held by the State Council, the Chinese Government discussed and approved in principle the draft "Platform of Energy Development Plan (2004-2020)". This platform document is regarded as important to China's energy industrial development,according to the industrial insiders. In an interview with news media, Director of Energy Research Institute of State Development and Reform Commission Zhou Dadi specified eight key points of the new energy strategy.

  2. CHINA SEEKS REGIONAL ENERGY COOPERATION

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    China is seeking to diversify channels for energy cooperation as it faces mounting challenges from surging energy demand, geopolitical risks and price volatility. The endowment and distribution of China's resources does not match the current situation of China's economic development. Those are the opinions aired by officials and experts at an international expo recently held in West China's Xinjiang Uygur Autonomous Region.

  3. Extreme Energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Nina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cai, Lixue [China Petrochemical Corporations (China)

    2013-06-01

    Over the last decade, China has focused its policies simultaneously on moderating the rapid energy demand growth that has been driven by three decades of rapid economic growth and industrialization and on increasing its energy supply. In spite of these concerted efforts, however, China continues to face growing energy supply challenges, particularly with accelerating demand for oil and natural gas, both of which are now heavily dependent on imports. On the supply side, the recent 11th and 12th Five-Year Plans have emphasized accelerating conventional and nonconventional oil and gas exploration and development through pricing reforms, pipeline infrastructure expansions and 2015 production targets for shale gas and coal seam methane. This study will analyze China’s new and nonconventional oil and gas resources base, possible development paths and outlook, and the potential role for these nonconventional resources in meeting oil and gas demand. The nonconventional resources currently being considered by China and included in this study include: shale gas, coal seam methane (coal mine methane and coal bed methane), tight gas, in-situ coal gasification, tight oil and oil shale, and gas hydrates.

  4. Renewable energy development in China

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li

    1996-12-31

    This paper presents the resources availability, technologies development and their costs of renewable energies in China and introduces the programs of renewable energies technologies development and their adaptation for rural economic development in China. As the conclusion of this paper, renewable energies technologies are suitable for some rural areas, especially in the remote areas for both household energy and business activities energy demand. The paper looks at issues involving hydropower, wind energy, biomass combustion, geothermal energy, and solar energy.

  5. China, Canada Strengthen Energy Cooperation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ China and Canada released a joint statement to work together to promote the bilateral cooperation in the oil and gas sector in lateJanuary when Canadian Prime Minister Paul Martin paid a state visit to China. Encouraging respective enterprises to expand commercial partnership, the two nations have agreed to take on the energy sector - oil and gas, nuclear energy,energy efficiency and cleaner energy - as "priority areas of long-term mutual cooperation".

  6. ISSUES ON CHINA'S ENERGY SECURITY

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; JIANG Wei

    2005-01-01

    For many years, China has made great strides in constructing a sizeable and stable energy supply system rooted mainly in domestic coal supply. That system, however, is subject to immense strain as a result of rapid economic growth, rising living standard, widespread environmental degradation, limited oil reserves and uneven resources distribution. Industrialization and urbanization since the early 1980s have imposed structural constraints on its traditional coal-based energy supply model. Eventually, China became a net oil-importer in 1993 when ten million tons of crude oil and petroleum products from abroad fed into the local economies of the coastal areas. Such a change meant that energy security has become an increasingly sensitive issue to the central government of China. This paper argues that China could benefit from a more open energy supply by striking to a balance of both domestic and international sources, rather than the traditional mode emphasized on a highly self-sufficiency rate.

  7. Energy for China

    Institute of Scientific and Technical Information of China (English)

    Michael J. Economides

    2002-01-01

    @@ Rarely has the world witnessed the breathtaking economic developments currently ongoing in China. Neither the explosive entry in the international scene by the fresh nation of the United States, following World War Ⅰ, nor the reconstruction frenzy of post-World War Ⅱ Europe and Japan can rival the growth of China in the last decade and the even more intense one expected in the future.

  8. Energy Price Reform in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Market-based reform of energy prices is the most effective approach to enhancing energy efficiency. The policies of energy conservation and enhancing energy efficiency in the 1 lth Five-year Plan period (2006-2010) work directly to set up a series of reform measures related to energy pricing by market mechanism. Energy price reform will deeply influence China's industrial interest pattern, and its development in the next five years and even 10 or 20 years.This paper analyzes the significance, timing, present status and problems related to energy price reform, and discusses the goal, principle and measures of coal, electricity, oil and gas price reform separately.

  9. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  10. Invigoration of China's Energy Industry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ The breath and depth of the impact of the ongoing global financial crisis far exceeds initial expectations.And for China's energy sectors,it brought challenges as well as opportunities for restructuring.However,it needs visions and careful plans to take the opportunities.

  11. New China's New Energy

    Institute of Scientific and Technical Information of China (English)

    Chun Yi

    2007-01-01

    @@ In the 20th century,the industrial civilization has grown by leap and bounds with fuels like coal,petroleum,and natural gas as its power.Human beings,however,are plagued with two big problems-energy exhaustion and environmental pollution-when enjoying the excellent material life thanks to the modern civilization.They are gradually developing and adopting new energy with the hopes of solving the two problems and achieve a sustainable economic growth.

  12. Sustainable automotive energy system in China

    CERN Document Server

    CAERC, Tsinghua University

    2014-01-01

    This book identifies and addresses key issues of automotive energy in China. It covers demography, economics, technology and policy, providing a broad perspective to aid in the planning of sustainable road transport in China.

  13. Spatial distribution of China׳s renewable energy industry

    DEFF Research Database (Denmark)

    Dong, Liang; Liang, Hanwei; Gao, Zhiqiu

    2016-01-01

    an empirical study on the distribution and cluster pattern of China׳s REEI based on the analysis on the industrial output value, the number and location of key companies/industrial bases, through on-site survey and updating statistical data. Results highlighted that in general, four REEI clusters were formed......China applies no efforts to promote the development of renewable energy (REE) so as to enhance China׳s energy security and address climate change. National top-down support scheme and the local renewable energy industry (REEI) development are the two important and intervened countermeasures...... in western China, while R&D and high-tech equipment manufacture were clustered in eastern coastal regions. Based on the empirical study and Analytic Network Process (ANP) of the roles of stakeholders involved REEI of China, we further proposed various strategic measures and policy implications to better...

  14. China's Innovations in Petrochemicals, Energy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ As far as the chemical industry is concerned, development is the petroleum sector was voted third among the achievements according to the country's official survey, the inorganic chemical industry was rated the 20th, and rare metal the 22nd. Petroleum is a major source of energy and a raw material for the clothing, food, housing and transportation industries,China has established its own petroleum industry almost from nothing. In 2001, a total of 160 million tons of crude oil was extracted from the mainland oil deposits.

  15. Government expenditure and energy intensity in China

    Energy Technology Data Exchange (ETDEWEB)

    Yuxiang, Karl [School of Economics and Business Administration, Room 230 of the 11th Dormitory at Campus B, Chongqing University, Chongqing 400044 (China); Chen, Zhongchang [Center for Population, Resources, and Environment Research, Chongqing University, Chongqing 400044 (China)

    2010-02-15

    The recent economic stimulus package of China has raised growing concern about its potential impact on energy demand and efficiency. To what extent does such expansion of government expenditure influence energy intensity? This question has not been well answered by the previous research. Using provincial panel data, this paper provides some evidence of a link between government expenditure and energy intensity in China. The empirical results demonstrate that the expansion of government expenditure since Asian financial crisis has exerted a significant influence on energy intensity. An increase in government expenditure in China leads to an increase in energy intensity. Further analysis compares such relationships in different economic situations. The comparison shows that such positive effect of government expenditure remains significant after the alteration in economic situation. Therefore, the results suggest introducing some measures to consolidate China's existing gains in energy efficiency. The analysis also explains why the downward trend in energy intensity is reversed in China since 2002. (author)

  16. Geothermal Energy in China: Status and Problems

    Institute of Scientific and Technical Information of China (English)

    Hu Ke; Yang Deming

    2000-01-01

    The application of geothermal energy in China has a long history. From the 70's last century, the research and development of geothermal in the world has been greatly advanced, and the Chinese geologists have finished the fundmental work for geothermal prospecting. The application technology is much behind in china. With the fast growing of national economy, the public, as well as the government recognizes the importance of clean and renewable energy, large scale development of geothermal energy is on the gate in China. This paper gives an outline of the geothermal potentials in china, and points out the problems and technical needs in the research and development in the near future.

  17. China Energy Expo Attracts Worldwide Attention

    Institute of Scientific and Technical Information of China (English)

    Tian Ping; Luo Shichao

    2010-01-01

    @@ Companies and government officials from China and abroad recently converged in Taiyuan,the capitial of coal-rich Shanxi Province,to share ideas and expand business in the country's new energy sector amid energy and environmental concerns.

  18. Wind energy in China: Estimating the potential

    Science.gov (United States)

    Yuan, Jiahai

    2016-07-01

    Persistent and significant curtailment has cast concern over the prospects of wind power in China. A comprehensive assessment of the production of energy from wind has identified grid-integrated wind generation potential at 11.9-14% of China's projected energy demand by 2030.

  19. China's energy, environment and policy perspective

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper discusses the specific features of the energy in China, and addresses those key challenges in China is that the coexist of (1) higher total energy production and lower per capita level; (2) lower per capita energy resources level with unrational energy consumption structure; (3) lower energy utilization efficiency and higher energy conservation potential; and (4) unequal distribution of energy resources. It reviews the key environmental problems related to the feature of energy production and consumption. Based on the analysis, the author furthers addresses the policy and actions needed.

  20. World Energy Trends, Security and China's Options

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With the heavy dependence of world's growing economy on energy supply, the energy issue again comes into the spotlight throughout the world. How to ensure energy security is a great concern to most countries in the world. In this paper, trends in energy supply, energy security mechanism and new challenges are analyzed. As well as, China's security strategies are also proposed.

  1. China Struggles to Meet Energy Shortage

    Institute of Scientific and Technical Information of China (English)

    李端奇

    2005-01-01

    China is making plans not only to bolster1 energy production to meet everincreasing domestic needs2 but also to cut down on overall energy use in coming years. Headed by Premier Wen Jiabao, China's cabinet3 unveiled its longer-term energy development plan, in which the heart of the program is to be as energy-efficient and environmentally friendly as possible while pursuing4 economic growth between now and 2020.

  2. China's energy-challenges and strategies

    Institute of Scientific and Technical Information of China (English)

    NI Weidou

    2007-01-01

    In this century,China started facing five major challenges in the energy field:energy supply,shortage of liquid fuel,environmental pollution,green house gas (GHG)emission,and energy supply in rural areas.In this paper,the Chinese energy development strategy and general technical scheme (including energy conservation,utilization of coal,alternative fuel and renewable energy) are discussed,and some key scientific problems in the fundamental research of energy are put forward.

  3. Potential of renewable energy systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO2 emitting country in the world. In this case...... system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy......, the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable solution. The perspective of a 100% renewable energy system has been analyzed and discussed in some countries previously...

  4. China's Energy Security Strategy for Sustainable Development

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In recent years, soaring energy consumption is posing a huge potential threat to China's energy security. China has rich coal resources, but most of the coal is mainly burned directly with low efficiency. Thus oil and gas plays a comparatively important role in national economic development. However domestic oil and gas cannot meet the need of economic development. To solve this problem, China would continue to import oil and gas from petroleum producing countries, especially from the Middle East. The dependence on oil import increases year after year and the sources of supply are concentrated in a few countries, which results in the insecurity of energy supply. Therefore, China should optimize its energy structure, improve energy efficiency, increase the geographic diversity of oil supply, build oil reserve bases, and develop new energies actively.

  5. Sustainable Energy Strategy Crucial to China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Currently, energy efficiency is a major challenge to China and the country should take serious consideration of this challenge. Reportedly, China is estimated to import 180 to 250 million tons oil by 2020, putting a huge burden on the world's most populous nation. Therefore, it is of great urgency for the country to improve energy efficiency - particularly with regard to coal and coal - to find alternatives to fossil fuels and formulate a sustainable energy strategy to control the growth of fossil fuel consumption.

  6. Subsidization in China's Renewable Energy Sector

    DEFF Research Database (Denmark)

    Høyrup Christensen, Nis

    2015-01-01

    research has added to our understanding of China's state capitalism by documenting the depth and breadth of subsidies to solar PV manufactures, very little attention has been paid to how subsidies are determined and how companies influence these processes. This article takes a neo-institutional perspective...... of subsidies as an institutionalized norm helps us understand both an important factor shaping China's renewable energy sector and the wider dynamics of state capitalism in China....

  7. Reflections on Energy Issues in China

    Institute of Scientific and Technical Information of China (English)

    JIANG Ze-min

    2008-01-01

    Energy, which has a bearing on both economic and national security, is of importance and a major constraining factor to the economic and social development of China. The article analyses the current worldenergy status and development trend from the perspectives of resources, production and consumption and in thecontext of its implications on the environment and economic and social development, and explores opportunitiesand challenges for China's energy development. With a focus on the strategy of energy development in China,the author proposes a new energy development approach with Chinese characteristics whose main elementsare: energy-saving, high-efficiency, diversified development, environment protection, technology guidance andinternational cooperation. In other words, China is striving to build a reliable energy production, circulationand consumption system that is efficient, technologically advanced, low polluting and ecologically friendly. Along-term development strategy with priority on energy conservation, efficient utilization of primary energyand advanced electricity system is expounded in the paper. The author also describes the prospect of energytechnology development and stresses the implementation of energy strategy by further improving energy policyand related mechanisms, strengthening macro-management and the essential role of the market in resourceallocation so as to ensure the economic and social development of China through reliable energy supply.

  8. Subsidization in China's Renewable Energy Sector

    DEFF Research Database (Denmark)

    Høyrup Christensen, Nis

    2015-01-01

    The Chinese government's decision to push for large-scale build up of renewable energy capacity was followed by a range of industrial policies to support this change of track. Most importantly, various forms of subsidies were launched to support both industries and markets. While important new...... of subsidies as an institutionalized norm helps us understand both an important factor shaping China's renewable energy sector and the wider dynamics of state capitalism in China....

  9. Assessment of wind energy potential in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Rong; Zhang De; Wang Yuedong; Xing Xuhuang; Li Zechun

    2009-01-01

    China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several ac-tivities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment (SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future.

  10. Energy Industry Expo opens in NW China

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The Fourth China (Taiyuan) International Energy Industry Expo was recently held in Taiyuan, capital of coal-rich Shanxi Province, to discuss the latest trends in China's energy industries. Some 30,000 people, including representatives from 137 companies fi'om 18 countries and regions, attended the Expo, which featured demonstrations of industry breakthroughs in the fields of coal and coalbed gas, water, electricity, natural gas and new energies. Running under a theme of "green energy and transformation", the three-day event also allowed Shanxi,

  11. China's Energy Situation and Relative Policy Options

    Institute of Scientific and Technical Information of China (English)

    Qiu Baoxing

    2005-01-01

    @@ Energy isa burning issue of the day in China. This paper analyses the crucial reasons of energy shortage and traditional consumption models in China. Drawing from the experiences of some developed countries, the paper suggests that China should recognize the energy crisis by learning from America's"smart growth project" with the aim of transforming the city planning model,improving the public transportation and launching a "green building" movement in the country. All the policy options in this paper focus on the construction area, just because urbanization is now running at a peak capacity in China. The objective of the paper is to identify the relative policy options and actions in the nearest future.

  12. China's Energy Situation and Relative Policy Options

    Institute of Scientific and Technical Information of China (English)

    Qiu; Baoxing

    2005-01-01

      Energy isa burning issue of the day in China. This paper analyses the crucial reasons of energy shortage and traditional consumption models in China. Drawing from the experiences of some developed countries, the paper suggests that China should recognize the energy crisis by learning from America's"smart growth project" with the aim of transforming the city planning model,improving the public transportation and launching a "green building" movement in the country. All the policy options in this paper focus on the construction area, just because urbanization is now running at a peak capacity in China. The objective of the paper is to identify the relative policy options and actions in the nearest future.……

  13. China's Energy Law Drafted to Cope with Severe Energy Situation

    Institute of Scientific and Technical Information of China (English)

    Wang Tong

    2006-01-01

    @@ To implement the decision of the State Council, State Energy Office, National Development and Reform Commission and Legislative Affairs Office of the State Council held a joint conference in Beijing early this year to establish a drafting team of the Energy Law. As a result, the program of drafting China's Energy Law was unveiled.

  14. Sustainable Energy Development Strategy in China

    Institute of Scientific and Technical Information of China (English)

    LU Guang-yao; WANG Jing; LI Zhan

    2005-01-01

    Energy and electrical power is very important in economy and society. China has faced an increasingly serious energy shortage in the past decade. On the other hand, energy consumption and power generation, releasing carbon dioxide and other gaseous emissions from fossil fuels, may pollute the environment. Nuclear power, as an alternative energy source, would reduce these gaseous emissions. Both global warming and sustainable energy supply can be solved to some extent by the application of nuclear power. In the aspects of regaining economic advantages, environmental protection, the security and reliability of energy, nuclear power has an obvious superiority. In this paper, we present the energy status in quo of China, and discuss ways to realize the sustainable development of energy and power.

  15. China's Energy Strategy in the Twenty-first Century

    Institute of Scientific and Technical Information of China (English)

    Fan He; Donghai Qin

    2006-01-01

    China's energy demand and energy imports have increased substantially in recent 5 years andwill continue to grow in future. Increasing dependency on the world market and the tension between energy supply and demand clearly show that energy is becoming a major constraint for China's future economic development. We introduce the background of China's energy demand and supply in this paper and discuss China's energy strategy in the twentyfirst century, focusing on growth, energy security and environmental sustainability.

  16. China Leading in Clean Energy Spending

    Institute of Scientific and Technical Information of China (English)

    Wu Zhenjun

    2010-01-01

    @@ China has taken the lead in investments in clean energy,spending nearly double what the US did in 2009,as it ramps up projects in both renewable and traditional energy.China's investment and financing for clean energy rose to US$34.6 billion in 2009,out of US$162 billion invested globally,according to the report by the nonprofit Pew Charitable Trusts.US spending ranked second,at US$18.6 billion,with European nations also recording strong growth.

  17. Energy Fuels Booming China-Russia Relations

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In the latest visit to Russia in mid-June this year, Chinese President Hu Jintao expressed that China is willing to strengthen cooperation with Russia and other energy-producing and energy-consuming countries to jointly safeguard the stability of world en

  18. Industrial energy efficiency policy in China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-05-01

    Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

  19. Dilemmas for China: Energy, Economy and Environment

    Directory of Open Access Journals (Sweden)

    Xu Tang

    2015-05-01

    Full Text Available China’s current national policies promote high levels of economic growth, transforming China into a “world factory”, but at a high cost in terms of energy and the environment. At the same time, this growth and transformation also forms the backbone of China’s economy, underpinning social stability. China faces a dilemma to reconcile its economy, energy system and environmental security. Each aspect of this triad is discussed in this study to illuminate the challenges faced by China, and China’s dilemma in energy, economy and environment is analyzed from the perspective of its participation in current global supply chains. While China must import a significant proportion of its energy and a large proportion of primary materials, a large share of these imports are returned to the global market as industrial exports. China is bound by its own course of action and unable to radically change its position for the foreseeable future as the road to economic development and employment stability is through policies built on exports and shifting development models, presenting a tough socio-economic trade-off. China’s growth challenges are discussed as an example of challenges more broadly faced in the developing world. China’s success or failure in achieving a sustainable developmental pattern will inevitably have a significant influence on the global environment.

  20. Elasticity of Energy Demand and Challenges for China's Energy Industry

    Institute of Scientific and Technical Information of China (English)

    Jason Zunsheng Yin; David Forrest Gates

    2006-01-01

    The rapid growth of energy demand, the lagging growth of energy production and rising pollution problems have raised concerns in several policy areas, including the availability and cost of energy supply and the possibility of further adverse impacts on the environment. This paper begins with an overview of recent developments in energy demand and supply in China.Using a traditional demand elasticity approach, it analyzes the elasticity of each of four major energy end uses and the potential for adjustments in their relationships. The paper concludes with suggestions for public policy to meet the challenge of growing energy demand and implications for the private sector, including both private and foreign investments.

  1. Revising China's energy consumption and carbon emissions

    Science.gov (United States)

    Liu, Z.

    2015-12-01

    China is the world's largest carbon emitter and takes the lion's share of new increased emission since 2000, China's carbon emissions and mitigation efforts have received global attentions (Liu et al., Nature 500, 143-145)1. Yet China's emission estimates have been approved to be greatly uncertain (Guan et al., Nature Climate Change 2, 672-675)2. Accurate estimation becomes even crucial as China has recently pledged to reach a carbon emission peak by 2030, but no quantitative target has been given, nor is it even possible to assess without a reasonable baseline. Here we produced new estimates of Chinese carbon emissions for 1950-2012 based on a new investigation in energy consumption activities and emission factors using extensively surveyed and experimental data from 4243 mines and 602 coal samples. We reported that the total energy consumption is 10% higher than the nationally published value. The investigated emission factors used in China are significantly (40%) different from the IPCC default values which were used in drawing up several previous emission inventories. The final calculated total carbon emissions from China are 10% different than the amount reported by international data sets. The new estimate provides a revision of 4% of global emissions, which could have important implications for global carbon budgets and burden-sharing of climate change mitigation. 1 Liu, Z. et al. A low-carbon road map for China. Nature 500, 143-145 (2013). 2 Guan, D., Liu, Z., Geng, Y., Lindner, S. & Hubacek, K. The gigatonne gap in China's carbon dioxide inventories. Nature Climate Change, 672-675 (2012).

  2. China and EU Engaged in Energy and Environment Cooperation

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ China National Development and Reform Commission (NDRC) and the delegation from the European Commission of European Union to China jointly unveil the 42.9-million-euro China-EU Energy and Environment Program in Beijing on November 3 to improve China's energy efficiency.

  3. Energy efficiency in China: measurement and policy

    NARCIS (Netherlands)

    Jiang, Lei

    2015-01-01

    China loopt tegen twee belangrijke problemen aan in haar recente economische ontwikkeling, namelijk: energie schaarste en milieuvervuiling. De voornaamste oorzaak hiervan is de ongeëvenaarde energieconsumptie die nodig is voor het behoud van de economische groei, industrialisatie en urbanisatie. Ver

  4. China, Indonesia Beef up Energy Cooperation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ President of PetroChina Huang Yan and Presdent of Pertamina Hakim, the Indonesian state-owned oil company, signed a memorandum of understanding on energy cooperation on March 24 on behaf of their respective companies. The two sides intended to cooperate in onshore and offshore oil and gas exploration with the investment for the joint venture projects expected to exceed US$100 billion.

  5. Nigeria Seeks Energy Investment from China

    Institute of Scientific and Technical Information of China (English)

    Shan Wenge

    2006-01-01

    @@ Nigeria sent a delegation to China in mid-July to seek investment in the oil-enriched nation. Currently, Nigeria has granted the Chinese oil companies the permits of four oil fields while the Chinese side offered technical support in the energy cooperation field. In addition to the energy sector, Nigeria's invitation of investment this time also covers transportation, finance, telecommunications and manufacturing sector.

  6. Hydrogen energy system & economic development of China%Hydrogen energy system & economic develop ment of China

    Institute of Scientific and Technical Information of China (English)

    T.Nejat Veziroglu

    2009-01-01

    @@ Today fossil fuels(coal,petroleum and natural gas)meet about 80 percent of oar worldwide energy requirements.The demand for energy is growing with time for two reasons:(1)the growing population,and(2)the increasing demand for energy by the developing countries(especially China and India with very large populations).

  7. Renewable energy development in China: policies, practices and performance

    NARCIS (Netherlands)

    Han, Jingyi

    2009-01-01

    Energy demand in China has risen rapidly, driven by its massive economic growth. Meanwhile, the energy system in China heavily depends on fossil fuels, which causes serious problems of climate change and air pollution. China started to develop renewable energy about 30 years ago, aiming to alleviate

  8. Development of renewable energy in China:significance & strategic objectives

    Institute of Scientific and Technical Information of China (English)

    Du Xiangwan; Huang Qili; Li Junfeng

    2009-01-01

    Based on CAE's research report, this paper illustrates the background and purposes of the development strat-egy research of renewable energy in China, emphasizes the significance of developing renewable energy in China, gives the strategic positions and development objectives of renewable energy in China in the first half of 21st century and con-tributes to green house gas emissions reduction and environmental protection in China.

  9. JPRS Report, Science & Technology, China: Energy.

    Science.gov (United States)

    2007-11-02

    1991, all cadres and employees on the energy resource battlefront tried to overcome difficulties like weak markets , impeded transportation... markets and an inability to sell coal, as well as reduced output in local and township and town coal mines, projected raw coal output in China in 1991...permitted to request banquets for any reason. In addition, every effort should be made to arrange for them to stay in hostels . Violations must certainly

  10. China Strengthens Energy Cooperation with Venezuela

    Institute of Scientific and Technical Information of China (English)

    Zhou Deliang

    2005-01-01

    @@ Venezuela is the 5th biggest oil export country in the world, and a member of OPEC. With rich reserves of crude oil, its average daily oil output reached 3.1 million barrels in 2004. Venezuela's state oil company Petroleos de Venezuela SA (PDVSA), the biggest oil company in South America, launched its China representative office in Beijing on 22 Aug. Ma Fucai, Vice Director of the State Energy Leading Group Office, and Rafael Ramrez,Minister of the Energy and Oil Ministry of Republic of Venezuela, attended the opening ceremony.

  11. Study on the Determinants of Energy Demand in China

    Institute of Scientific and Technical Information of China (English)

    魏巍贤

    2002-01-01

    Based on the modern economic theory and the characteristics of China's energy consumption, this paper analyzes the determinants of energy demand in China, builds up a China's energy demand model, and examines the long-run relationship between China's aggregate energy consumption and the main economic variables such as GDP by using the Johansen multivariate approach. It is found that there exists unique long-run relationship among the variables in the model over the sampling period. An error-correction model provides an appropriate framework for forecasting the short-run fluctuations in the aggregate demand of China.

  12. Diversification of Energy-Decisive Option for China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Diversification of energy will become an important objective for China's energy development strategy in the next 15 years as the world enters into a period of energy shortage.Based on the statistical data released by International Energy Agency, China became the second largest crude consumer in the world in 2003 only after the United States.

  13. China Energy and Emissions Paths to 2030

    Energy Technology Data Exchange (ETDEWEB)

    Fridley, David; Zheng, Nina; Zhou, Nan; Ke, Jing; Hasanbeigi, Ali; Morrow, Bill; Price, Lynn

    2011-01-14

    After over two decades of staggering economic growth and soaring energy demand, China has started taking serious actions to reduce its economic energy and carbon intensity by setting short and medium-term intensity reduction targets, renewable generation targets and various supporting policies and programs. In better understanding how further policies and actions can be taken to shape China's future energy and emissions trajectory, it is important to first identify where the largest opportunities for efficiency gains and emission reduction lie from sectoral and end-use perspectives. Besides contextualizing China's progress towards reaching the highest possible efficiency levels through the adoption of the most advanced technologies from a bottom-up perspective, the actual economic costs and benefits of adopting efficiency measures are also assessed in this study. This study presents two modeling methodologies that evaluate both the technical and economic potential of raising China's efficiency levels to the technical maximum across sectors and the subsequent carbon and energy emission implications through 2030. The technical savings potential by efficiency measure and remaining gap for improvements are identified by comparing a reference scenario in which China continues the current pace of with a Max Tech scenario in which the highest technically feasible efficiencies and advanced technologies are adopted irrespective of costs. In addition, from an economic perspective, a cost analysis of selected measures in the key industries of cement and iron and steel help quantify the actual costs and benefits of achieving the highest efficiency levels through the development of cost of conserved energy curves for the sectors. The results of this study show that total annual energy savings potential of over one billion tonne of coal equivalent exists beyond the expected reference pathway under Max Tech pathway in 2030. CO2 emissions will also peak earlier

  14. 77 FR 5865 - American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda...

    Science.gov (United States)

    2012-02-06

    ... From the Federal Register Online via the Government Publishing Office ] SECURITIES AND EXCHANGE COMMISSION American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda... current and accurate information concerning the securities of China Wind Energy, Inc. because it has...

  15. China's Energy Sector Rises to Global Economic Challenge

    Institute of Scientific and Technical Information of China (English)

    Ma Qiang; Sun Chengchen

    2009-01-01

    @@ The deepening financial crisis has put China's energy industry in a tougher situation: energy demand is dwinding, production is sagging, stockpiles are rising, and energy companies are competing to cut prices.

  16. Country Report on Building Energy Codes in China

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

    2009-04-15

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

  17. Energy efficiency and economic growth of China: 1953-2006

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian

    2009-01-01

    Energy plays an important role in the economic life.With the rapid development of economy,the constrain of energy on the sustainable development of economy is becoming more and more obvious.This paper just studies the factors influencing energy effciency of China and the relationship between energy efficiency and China's eco,nomic growth.By using time series multivariable linear regression methods with China's relevant data from 1953to 2006,this paper constructs the regression model to analyze the factors that would impact energy efficiency.After that,a regression model of China's real output to capital,labor and energy efficiency is conducted to estimate the marginal contribution of every factor to the real output to prove the.fundamental influence of energy efficiency to the economic growth.In the end,some policies and recommendations are also put forward in order to improve the energu efficiency of China.

  18. China's New Energy Vehicle Industry:Problems and Challenges

    Institute of Scientific and Technical Information of China (English)

    Chen Liuqin; Xi Bing

    2012-01-01

    Evolution of policies for new energy vehicle industry in China For any new energy vehicle industry around the world,the puissant direction of national energy resource strategies and the powerful support from governmental policies are critical impetus for its development.There is no exception for China."Regulation Rules on Access to New Energy Vehicle Production" was enacted formally as of November 1,2007,which indicates the standardization of the new energy vehicle industry and the commencement of its marketization officially encouraged by the government.This is regarded as a milestone in the development of new energy vehicles in China.

  19. Status and prospects of building energy efficiency in China

    Institute of Scientific and Technical Information of China (English)

    LONGWeiding; ZHOUHui

    2003-01-01

    The paper briefly describes situation of building energy consumption in China. The authors indicate some relations in building energy efficiency should be dealt with properly: energy saving and energy efficiency, envelopes and building services systems, energy use and indoor environment, electric power saving and energy saving, devices and system, energy efficiency at stable state and at dynamic state. The authors suggest to use Coefficient of Energy Consumption as a Indicator of building energy efficiency.

  20. Solar and Wind Power in Hybird Energy Systems in China

    OpenAIRE

    Ge, Qing

    2014-01-01

    In order to solve problems created by traditional energy, reducing the amount of usage of traditional energy and enlarging the range of usage of new energy, particularly some renewable energy should be developed immediately. In the recent years, China has been paying more attention to the utilization of renewable energy resources. Wind energy and solar energy are particularly popular due to lower cost and high economic effectiveness. As the development of wind energy and solar energy, scienti...

  1. China energy, environment, and climate study: Background issues paper

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, Jonathan E.; Fridley, David G.; Logan, Jeffrey; Guo, Yuan; Wang, Bangcheng; Xu, Qing

    2000-10-10

    The total costs and impacts of expanding energy use in China will depend, in part, on a number of important factors, an understanding of which is vital for China's policy-makers. These issues include the additional environmental and public health impacts associated with energy use, the economic costs of infrastructure expansion to meet growing energy needs, and the potential role that renewable energy technologies could play if pushed hard in China's energy future. This short report summarizes major trends and issues in each of these three areas.

  2. Wave Energy Study in China: Advancements and Perspectives

    Institute of Scientific and Technical Information of China (English)

    游亚戈; 郑永红; 沈永明; 吴必军; 刘荣

    2003-01-01

    The history and current status of research and development of wave energy in the world is briefly introduced. The main problems existing in these studies are pointed out. The description is focused on the current status and the advancements achieved in China. After analysis of the wave energy resources and practical situations in China, it is pointed out that the studies on wave energy should be not only concentrated on the conversion efficiency and costs of wave energy devices, but also focused on the technology of independent operation and stable output of electricity. Finally, the perspectives of application of wave energy in China are discussed.

  3. Study on Energy Issues Regarding Sustainable Economic Development of China

    Institute of Scientific and Technical Information of China (English)

    Yang Xunying

    2006-01-01

    @@ 1 Overview on China's Energy Development Over the past twenty years China has made astonishing achievements in the energy domain and the total output of coal, electricity and petroleum ranked respectively the first,second and fifth place in the world.

  4. China's Energy Demand Growth Expected to Slow Down in 2005

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ China's energy consumption rises 15.1 percent China's energy consumption rose 15.1 percent in the first 11 months of 2004, boosted by strong demand from manufacturing industries, according to the reports from the Chinese news media. In the period from January to November, the country consumed a total of 1.95 trillion kilowatt hours.

  5. Legal System Construction for Energy Industry in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In a very real sense,China did not have a legal system of energy until 1978 when the policy of reform and opening-up was carried out.Over the 30 years since then,China has achieved great accomplishments in energy development,which have attracted worldwide attention,

  6. Legal System Construction for Energy Industry in China

    Institute of Scientific and Technical Information of China (English)

    Ye Rongsi; Zhu Li

    2009-01-01

    @@ In a very real sense, China did not have a legal system of energy until 1978 when the policy of reform and opening-up was carried out. Over the 30 years since then, China has achieved great accomplishments in energy development, which have attracted worldwide attention, and has set up a relatively perfect energy supply system with coal as the mainstay, electricity as the center, and oil, gas and renewable energy etc.

  7. Current Status and Prospects of Biomass Energy Industry in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    At present biomass energy industry is in its infancy in China and it has a bright future. Biomass energy production used grain as raw materials has entered industrialization phase.Some key technologies of biomass energy industry are coming to mature.China has issued relevant industrial standards laws and regulations,and has provided support in finance,loan,tax,etc.But China's biomass energy industry is faced with many problems which need to be solved.For example,taking grain as raw materials is unsustain...

  8. Japan's Energy Policy on China:In the Perspective of Oil Dispute in East China Sea

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Over recent years, the oil dispute in the East China Sea has become a new contradictory focus in Sino-Japanese relations after the issues of the Yasukuni Shrine and history text book. This article tries to take the oil dispute in the East China Sea as a penetrating point to analyze the basic line of thinking in Japan's China energy policy adjustment so as to better recognize the current situation and future of Sino-Japanese energy relations.

  9. Raising the Profile of Energy Efficiency in China

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Reducing standby power use in China. How much does China stand to gain from greater energy efficiency? The example of improved standby power efficiency in household appliances provides a useful indicator. IEA analysis projects that eight or nine 1-GW power plants could be struck off Chinas list of immediate capacity needs for the period to 2020 if energy-efficient standby devices were vigorously promoted. This impressive finding emerges from this paper. The paper reviews experience with tackling standby power consumption in OECD countries and models implementation of similar action in China and Shanghai. Its scenarios quantify the significant potential gains from standby power conservation campaigns and mandatory regulations.

  10. WB to Lend $441m for Energy Efficiency in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The World Bank (WB) has approved loans of $441 million to improve energy efficiency and reduce emissions from power plants in China. The loans, which account for almost one third of planned loans for China in fiscal 2008, would go to three projects, according to the lender.The energy efficiency project, co-financed by the WB and the Global Environment Facility (GEF), would get a loan of $200 million. The project, which would also receive a grant of 13.5 million U.S. dollars from the GEF, aims to boost large-scale loans for energy efficiency programs in China. China's commercial banks are also reported to participate in the project, such as the Export-Import Bank of China and Huaxia Bank, to offer loans ranging from 5 million to 10 million U. S. dollars for energy conservation projects, especially in heavy industries.

  11. Regional Differences in China's Energy Efficiency and Conservation Potentials

    Institute of Scientific and Technical Information of China (English)

    Shi Dan

    2007-01-01

    This paper investigates the maximum energy efficiency level and the energy saving potentials in each region in China that can be practically attained at current economic and technological development levels. Most of the nation's energy efficient provinces are found along the coast of southeast China, while most of its least energy efficient provinces are in the hinterland that is rich in coal resources, and which depends heavily on coal consumption. China's low efficiency in energy resource allocation stems from its secondary industry, which is handicapped by the lowest energy efficiency and the most striking regional differentials. 4comparison of the factors affecting the energy efficiency shows that the provinces being compared in this study differ tremendously in energy consumption structure, technological level of the secondary industry, and abundance of energy resources, and that the other factors are only adequate, rather than necessary, conditions. It is imperative to rectify the behaviors of provinces in balancing local energy allocation, to channel energy resources to energy efficient provinces, and to improve the national energy efficiency as a whole. When taking energy-saving steps, provinces must take into full consideration both the national and local factors that affect energy efficiency. Furthermore, it is unrealistic for China to set a unified energy saving goal for different provinces.

  12. Strategic Position and Roadmap of China's Renewable Energy

    Institute of Scientific and Technical Information of China (English)

    Huang Qili; Zhu Li

    2009-01-01

    @@ Fast-growing economy imposing higher requirement for energy industry During the“Tenth Five-Year Plan” period,China's GDP grew at an average annual rate of 9.5%,and correspondingly the total volume of energy consumption grew at an average annual rate of 10.5%.In 2005,China produced raw coal of 2.19 billion tons,while the total energy consumption amounted to 2.22 billion tons of coal.

  13. An overview of energy supply and demand in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  14. Environmental consequences of rising energy use in China

    Energy Technology Data Exchange (ETDEWEB)

    Warwick J. McKibbin

    2006-06-15

    China is already the world's third largest energy producer and second largest energy consumer accounting for 10 percent of global energy use. This share is expected to rise to 15 percent by 2025. Energy use in China has important environmental consequences which are explored in this paper. A range of policy options are also discussed. It is argued that each major environmental issue requires a policy response that is a mix of direct government intervention as well as market based incentives. In coming decades, the choices made by China of how to tackle the environmental consequences of expanding energy use will have important implications for China, Asia and the world.48 refs., 6 figs., 2 tabs.

  15. China Expands Energy Cooperation with Arabian Countries

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ China-Saudi Arabia cooperation China's Vice Premier Zeng Peiyan met the visiting Minister of Petroleum and Mineral Resources of Saudi Arabia Ali Bin lbrahim Alnuaimi on April 2 in Beijing. Vice Premier Zeng said China and Saudi Arabia can reciprocate each other economically in many fields, adding that the Chinese government has attached great importance to development of friendly and cooperative relations with Saudi Arabia.

  16. The Energy Puzzle Between the United States and China

    Science.gov (United States)

    2013-03-01

    around mainland China. Figure 3. Source: U.S. Energy Information Administration The expansion of China in its crude oil production and exports...ranks fourth behind Iran in crude oil production , which accounts for more than 5.4% of the world’s crude oil consumption. However, China’s output of

  17. Impact of Iraq War on China's Energy Security

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ International energy issue has long influenced China's economic and social developmentand environmental protection. Therefore, it is related to the country's fundamental interests.As it is well known the world, the Middle East region is the main source of China'soil imports.In other words, this region is of vital importance to the Chinese interests in terms of enrrgy.

  18. The Severe Energy and Environment Situation in China

    Institute of Scientific and Technical Information of China (English)

    Fang Weizhong; Jin Wen

    2006-01-01

    @@ To trade off high energy consumption for high GDP growth making both energy consumption and environment pollution of the developing China top in the world is an undisputed fact. The 11th Five- Year Plan has stipulated 20% decrease of specific energy consumption in this period as a restrictive index, this has been gradually detailed and practiced into every link. To compile the thesis of "How to Realize the Target of Energy Consumption 20% Decreased in the 11th Five Year period," this Journal invited Mr. Fang Weizhong, the president of China Macro-Economic Association to contribute a paper entitled "The Severe Energy and Environment Situation in China," in which reasons of failed target of energy consumption in the 10th Five Year period and how to realize energy consumption index in the 11th Five Year period are precisely calculated and in-depth analyzed with detail and practical data.

  19. CHINA AND ENERGY SECURITY IN CENTRAL ASIA

    OpenAIRE

    Guang, Pan

    2007-01-01

    This paper is divided into three parts: China’s energy policy and energy development strategy; Central Asia’s significance for China’s overseas energy development strategy; and Central Asia’s energy security and energy development.

  20. Energy substitution to reduce carbon dioxide emission in China

    Energy Technology Data Exchange (ETDEWEB)

    Jinping Huang (Beijing Economic Research Inst. of Water Resources and Electric Power (BERI), BJ (China))

    1993-03-01

    Energy consumption per capita in China is very low, less than one-half of the average level of the world. But China has a large population and coal consumption dominates total energy consumption (the share of coal was 76% in 1989). Therefore, the amount of CO[sub 2] emitted is very large (11% of the total world emission in 1990). Many people are concerned about what measures can be taken to reduce CO[sub 2] emission in China. Proposed measures include energy-efficiency improvement and energy substitution. Energy substitution is one the most effective measures of reducing CO[sub 2] emission in China. We give a detailed analysis of the exploitable potential of hydropower, nuclear power and the new energy sources (including solar, wind, geothermal, and tidal energy) from 1990 to 2020. Estimated reductions in CO[sub 2] emission due to enhanced use of non-fossil energy are also given. About 330 x 10[sup 6] tce (we use for coal 7000 kcal/kgce) of non-fossil energy will be produced and about 239 x 10[sup 6] mt of C can be eliminated in 2020 (about 38% of China's total CO[sub 2] emission in 1990). (author)

  1. Energy-rich Plant Research in China: Overview and Prospect

    Institute of Scientific and Technical Information of China (English)

    WU Guojiang; LIU Jie; LOU Zhiping; KANG Le

    2006-01-01

    @@ The energy crisis is an enormous challenge to the human race.Consequently, the technology development and utilization of biomass energy have become a new "hot spot"in the international arena.This article gives an overview on the current status of the research on energy plants and puts forward several suggestions on how to reasonably develop them in China.

  2. Status in quo and future of geothermal energy in China

    Institute of Scientific and Technical Information of China (English)

    Zheng Xiuhua; Zhao Jun; Du Limeng

    2011-01-01

    Energy saving and CO2 emissions reduction are critical tasks currently, and great effort has been made by Chinese government. Renewable energy consumption and CO2 emissions and reduction plan in China are introduced in this paper. Analysis is also made on present status and prospect of geothermal power generation and direct use in China respectively. Now, there is a new understanding of geothermal resources, and hot dry rock, considered as the future of geothermal resources, is likely used to generate electricity.

  3. China and United States have Great Potential for Energy Cooperation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ China and the United States are the top two consumers of energy resources in the worldand are thus bound to cooperate in this area. Such cooperation includes mutual study andabsorption of each other's energy policies, cooperation in related technology, includingnuclear energy, and cooperation in energy strategy. If the two countries succeed in suchcooperation, it would not only enhance strategic mutual trust between them but alsocontribute positively to global energy assurance and security.

  4. Economic analysis of waste-to-energy industry in China.

    Science.gov (United States)

    Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling

    2016-02-01

    The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions.

  5. Analysis on the accommodation of renewable energy in northeast China

    Science.gov (United States)

    Liu, Jun; Zhang, Jinfang; Tian, Feng; Mi, Zhe

    2017-01-01

    The accommodation and curtailment of renewable energy in northeast China have attracted much attention with the rapid growth of wind and solar power generation. Large amount of wind power has been curtailed or abandoned in northeast China due to several reasons, such as, the redundancy of power supplies, inadequate power demands, imperfect power structure with less flexibility and limited cross-regional transmission capacity. In this paper, we use multi-area production simulation to analyse the accommodation of renewable energy in northeast China by 2020. Furthermore, we suggest the measures that could be adopted in generation, grid and load side to reduce curtailment of renewables.

  6. A study of zoning for energy security in China

    Institute of Scientific and Technical Information of China (English)

    Guo Yiqiang; Ge Quansheng; Zheng Jingyun

    2008-01-01

    As a result of more and more serious energy risks, the study of national energy security zoning is not only the basic requirement of energy risk management but also the new demand of economic development for the energy industry. Firstly, this paper analyzes the basic situation of energy resources and production and consumption of pri-mary energy from 1996 to 2005 in China. Secondly, this paper founds an Energy Security Index System formed by six indices including the percentage of energy reserves, intertocal dependent degree, energy elcsticity coefficient and so on. It subsequently calculates the weight of these indices with the factor analysis rating method. Lastly, the paper evaluates and zones the abilities of energy security of 30 provinces in China with the grey cluster method. According to their security, the 30 provinces are classified into three diferent levels: high, medium, and low levels. The regions at low energy security level include Beijing, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi and Hainan. They are mainly littoral and short of primary energy production while mostly dependent on other provinces. Those at medium energy security level include 15 provinces (cities or districts), such as Liaoning, Tianjin, Hebei, Shandong, Henan, Hunan and so on. These provinces are in the northeast, north, east of and central China. Those at high energy secu- rity level contain Shanxi, Inner Mongolia, Heilongiiang, Jilin, Chongqing, Sichuan, Shaanxi, Xinjiang. These prov-inces are the main primary energy production bases.

  7. Benchmarking Hong Kong and China energy codes for residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.L.; Chen, Hua [The Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom (China)

    2008-07-01

    Mandatory energy codes to curb energy use of residential buildings have been formally launched in China for more than two decades but little has been publicized in literature. Similar codes are not available for residential buildings in Hong Kong, but most residential buildings in Hong Kong, especially public housing estates, are HK-BEAM certified to demonstrate their compliance with regulatory and basic design requirements. Given HK-BEAM is internationally recognized and there are doubts about the effectiveness of the China codes, how the energy efficiency of the HK-BEAM certified buildings compare with buildings in compliance with the China codes is of interest to most building designers and policy makers. This paper describes how the energy efficiency of a case study building in compliance with the China codes compare with the one in compliance with HK-BEAM. The energy simulation by HTB2 and BECRES reveal that the case study building in compliance with the China codes is 51.1% better in energy use. In the study, the relative impact of each compliance criterion on energy use and cooling load has been quantified by sensitivity analysis. The sensitivity values indicate that energy use is most sensitive to air-conditioning operation hours, indoor design temperature, coefficient of performance (COP) of the room air-conditioners (RAC) units, and the envelop characteristics. The results of this study indicate that a HK-BEAM certified building cannot satisfy the China codes requirements. This provides good reference to the policy makers, the building owners, and to the China and Hong Kong Governments when considering reciprocal recognition of building energy codes. (author)

  8. An overview of energy supply and demand in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  9. Impact Factors of Energy Productivity in China: An Empirical Analysis

    Institute of Scientific and Technical Information of China (English)

    Wei Chu; Shen Manhong

    2007-01-01

    This article developed a decomposition model of energy productivity on the basis of the economic growth model. Four factors were considered which may influence China's energy productivity according to this model: technology improvement, resource allocation structure, industrial structure and institute arrangement. Then, an econometric model was employed to test the four factors empirically on the basis of China's statistical data from 1978 to 2004. Results indicated that capital deepening contributes the most (207%) to energy efficiency improvement, and impact from labor forces (13%) is the weakest one in resource factor; industrial structure (7%) and institute innovation (9.5%) positively improve the energy productivity.

  10. China's Auto Era Facing Energy Crisis

    Institute of Scientific and Technical Information of China (English)

    Gong Liming

    2007-01-01

    @@ In early 1980s when China's reform and opening up policy just began,a photo taken by a foreigner.on which a sea of bicycles moving on the street at the front of the Tian'anmen Tower,amazed the whole world.China got the title of "the Kingdom of Bicycle".Nowadays,with its rapid economic development,this bicycle kingdom has been developing into a huge market of automobiles at an amazing speed.

  11. Marginal land-based biomass energy production in China.

    Science.gov (United States)

    Tang, Ya; Xie, Jia-Sui; Geng, Shu

    2010-01-01

    Fast economic development in China has resulted in a significant increase in energy demand. Coal accounts for 70% of China's primary energy consumption and its combustion has caused many environmental and health problems. Energy security and environmental protection requirements are the main drivers for renewable energy development in China. Small farmland and food security make bioenergy derived from corn or sugarcane unacceptable to China: the focus should be on generating bioenergy from ligno-cellulosic feedstock sources. As China cannot afford biomass energy production from its croplands, marginal lands may play an important role in biomass energy production. Although on a small scale, marginal land has already been used for various purposes. It is estimated that some 45 million hm(2) of marginal land could be brought into high potential biomass energy production. For the success of such an initiative, it will likely be necessary to develop multipurpose plants. A case study, carried out on marginal land in Ningnan County, Sichuan Province with per capita cropland of 0.07 ha, indicated that some 380,000 tons of dry biomass could be produced each year from annual pruning of mulberry trees. This study supports the feasibility of producing large quantities of biomass from marginal land sources.

  12. Global Energy and Environmental Impacts of an Expanding China

    Institute of Scientific and Technical Information of China (English)

    Warwick J. McKibbin

    2006-01-01

    China accounts for 10 percent of global energy use and will continue to rely on coal for generating approximately 75 percent of its energy over coming decades. The environmental problems associated with coal burning are a concern for China as well as regionally and globally. The present paper summarizes China's energy structure and likely future energy requirements, while exploring the impact of energy use on air quality, black carbon emission,sulphur dioxide (SO2) emissions, and carbon dioxide emissions. Although China has begun to take action on local environmental problems from energy, there is still much to be done.In particular, the problem of black carbon and carbon dioxide emissions needs to be addressed. The present paper proposes addressing carbon dioxide emissions through a longer-term strategy that acknowledges the need for China to continue to grow without a short-term carbon constraint but with clear pricing of the short-term and long-term cost of carbon dioxide.

  13. Study of the development road map of China's renewable energy

    Institute of Scientific and Technical Information of China (English)

    Huang Qili; Li Junfeng; Gao Hu

    2009-01-01

    Renewable energy (RE) has been attached high attention around the world due to its carbon-free and indige-nous production in a sustainable way. China enjoys plenty of renewable energy resources, particularly the wind, solar, hydro- and biomass energy, which could be a sound basis for a large-scale exploitation. This report examines the current status of RE technology and industry, analyzes the challenges of promoting RE in China. In order to pave the way for a long-term development of RE, this paper outlines the basic principles and priorities for individual RE technology. In line with these, the paper puts forward the RE targets and further describes the RE road map by 2020, 2030 and extend to 2050, taking consideration of China's RE resources, industrial basis and energy demand etc. At last, this paper pro-vides some recommendations to ensure the achievements of the RE targets.

  14. China, Russia and Central Asia: The energy dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Bergsager, Henrik

    2012-07-01

    How China will satisfy its rising energy demand will have impact on the availability and market price of energy resources such as oil and gas, but also on foreign policy. Of special interest is the role of rising neighboring countries and region; Russia and Central Asia countries, who can supply China by way of pipelines. In this paper important factors influencing Chinese energy decision-making are discussed, with a particular focus on energy investments abroad. The state capitalism framework is used to explain the long-term policies of Chinese energy investments as well as discuss the importance of State-Owned Enterprises and National Oil Companies to the Chinese economy. On this background the energy relations between Russia, China and other Central Asia states is discussed. The main focus is on the influence Chinese Energy Based Loan (EBL) agreements have on the Chinese presence both economically and politically in the region. The objective is to present the current situation and outlook for Sino-Russian-Central Asian energy relations as well as the economic implications a closer Chinese presence could have for the region. China's EBLs with Central Asian countries illustrate the preferred Chinese approach in expanding trade relations and should be considered as important examples for future bilateral agreements.(Author)

  15. Strategies for development of clean energy in China

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen; Zhang Hongliang

    2008-01-01

    A development framework of clean energy in China is put forward based on core development strategy,technology support,and policy and laws support.In this framework,the priority development and strategic backup of clean energy are defined,and the technology support and policy and laws support are also presented.

  16. Strategic Position and Roadmap of China s Renewable Energy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Fast-growing economy imposing higher requirement for energy industry During the "Tenth Five-Year Plan" period,China's GDP grew at an average annual rate of 9.5%,and correspondingly the total volume of energy consumption grew at an average annual rate of 10.5%.

  17. China's energy statistics in a global context: A methodology to develop regional energy balances for East, Central and West China

    DEFF Research Database (Denmark)

    Mischke, Peggy

    2013-01-01

    for research and policy analysis. An improved understanding of the quality and reliability of Chinese economic and energy data is becoming more important to to understanding global energy markets and future greenhouse gas emissions. China’s national statistical system to track such changes is however still...... developing and, in some instances, energy data remain unavailable in the public domain. This working paper discusses China’s energy and economic statistics in view of identifying suitable indicators to develop a simplified regional energy systems for China from a variety of publicly available data. As China......’s national statistical system continuous to be debated and criticised in terms of data quality, comparability and reliability, an overview of the milestones, status and main issues of China’s energy statistics is given. In a next step, the energy balance format of the International Energy Agency is used...

  18. Energy consumption quota management of Wanda commercial buildings in China

    Science.gov (United States)

    Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.

    2016-08-01

    There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.

  19. JPRS Report, Science & Technology China: Energy

    Science.gov (United States)

    1992-06-24

    Fair were held in Beijing. We visited at the fair with petroleum expert and China Petroleum and Natural Gas Corporation chief engineer Li Yugeng ...Li Yugeng has been involved in leadership work at Daqing Oil Field and now has overall technical respon- sibility on the petroleum extraction

  20. Energy efficient design for residential buildings in China

    Institute of Scientific and Technical Information of China (English)

    R.YAO; K.STEEMERS; B.LI

    2003-01-01

    This paper illustrates an integrated energy design model based on the energy balance of a single zone. The results of energy efficient residential building design for the different climate zones of China by implementing an integrated energy model have been presented. Optimum measures of building design for typical Chinese residential buildings are introduced, with the objective of minimizingannual energy consumption for those buildings and improving thermal comfort. One overriding conclusion is that significant energy savings and thermal comfort can be achieved though optimum design.

  1. China. Top Sector Energy. Sustainable Building. Opportunities for Dutch companies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    For China, sustainable design is necessary for controlling energy usage in crowded and constantly expanding urban areas. It is well known that China is the world's biggest construction market. Nearly half of the new buildings annually constructed worldwide are located in China by 2015. However, only about 4% of these are built according to energy efficiency standards. China's construction market will by 2020 account for 40% of the country's total energy consumption. While it contributes 15% of the world's GDP, China consumes 30% of the earth's steel and half its concrete. On top of which, buildings in China consume a third of the country's increasingly endangered water supplies. Recent research showed that almost half of the national energy consumption has been used for construction related purposes. Of existing buildings, a huge amount needs sustainable redesign and retrofitting technologies.Chinese government has recognized the urgency of widely implementing sustainable buildings. As a result, a national 3-star China National Green Building rating system has been launched in 2006. Yet the Chinese green building revolution is still in its infancy. Main problems are, amongst others, low level of regulations and standards, problematic implementations at local level, lack of awareness and transparency in related public and private sector, lack of expertise of integrated sustainable building design and construction among engineers, designers and constructors. It is also to be expected that more aggressive energy saving and environmental protection targets will be set by the 12th Five Year Plan. Promote green buildings will be one of the top priorities in China's swift urbanization process with focus on saving land, energy, water and materials. Chinese government has recognized the urgency of widely implementing sustainable buildings. Yet the Chinese green building revolution is still in its infancy. Under this framework, the

  2. World energy outlook 2007 -- China and India insights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-07

    World leaders have pledged to act to change the energy future. Some new policies are in place. But the trends in energy demand, imports, coal use and greenhouse gas emissions to 2030 in this year's World Energy Outlook are even worse than projected in WEO 2006. China and India are the emerging giants of the world economy. Their unprecedented pace of economic development will require ever more energy, but it will transform living standards for billions. There can be no question of asking them selectively to curb growth so as to solve problems which are global. So how is the transition to be achieved to a more secure, lower-carbon energy system? WEO 2007 provides the answers. With extensive statistics, projections in three scenarios, analysis and advice, it shows China, India and the rest of the world why we need to co-operate to change the energy future and how to do it.

  3. Financing energy efficiency: lessons from experiences in India and China

    DEFF Research Database (Denmark)

    Painuly, J.P.

    2009-01-01

    . Design/methodology/approach – The paper follows the post-completion review approach of a project and presents the activities undertaken and results obtained from the project. Findings – The project seeks to remove the financial barrier through the development of a commercial banking window for energy...... in China and India. This paper aims to report the experience of a three-country United Nations Environment Programme/World Bank Energy Efficiency Project (involving China, India and Brazil) that is set up to address the financial barrier and identifies the lessons that can be learnt from the project...... efficiency, energy service company development and support, exploring the need for setting up guarantee facilities and need for facilitating equity financing to the sector. The project succeeds in creating awareness and better understanding among the financial institutions in both India and China...

  4. JPRS Report, Science & Technology China: Energy

    Science.gov (United States)

    1992-10-26

    Big Boost to Crude Production [Zhang Chaowen; JIEFANG RIBAO, 16Aug 92] 28 Huizhou Oil Fields Surpass Crude Oil Production Target for First Half of...Year [NANFANG RIBAO, 2 Jul 92] 29 Changqing Crude Oil Production Reaches Record Level [Yang Wenli; GANSU RIBAO, 13 Jul 92] 29 Erlian Field...during his tour of southern China, the area of exploration in these three big basins has continually grown and crude oil production has begun to leap

  5. JPRS Report, Science & Technology, China: Energy

    Science.gov (United States)

    2007-11-02

    introduce to China new manufacturing and design techniques for super-cntical generators. The two super-critical generators, he said, can save about 5...equipment locally. As a result, some of the foreign companies have con- tracted with domestic manufacturers to make the equip- ment Nearly $50 million...34golden guitar ," has made science and technology establish themselves in its enterprises, and by the end of 1988 it had produced a cumulative 37.406

  6. Analysis of building energy efficiency in China

    Institute of Scientific and Technical Information of China (English)

    LIDeying; FANYun; HAOBin

    2003-01-01

    This paper analyzes the matter of building energy efficiency and heating system, and puts forward the measure of heating innovation, aiming at the improvement of Chinese building energy efficiency and heating innovation, which exceeds some possible advice for future development.

  7. Coping with climate change and China's wind energy sustainable development

    Directory of Open Access Journals (Sweden)

    De-Xin He

    2016-03-01

    Full Text Available Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In this paper, according to the Chinese government's action plan for coping with climate change, the China's wind energy sustainable development goals and development route are discussed, and the countermeasures and suggestions are put forward. Wind energy is currently a kind of important renewable energy with matured technology which can be scale-up developed and put into commercial application, and in this transformation, wind energy will play a key role with other non-fossil energy sources. The development and utilization of wind energy is a systematic project, which needs to be solved from the aspects of policy, technology and management. At present, China is in the stage of transferring from “large wind power country” to “strong wind power country”, opportunities and challenges coexist, and the advantages of China's socialist system could be fully used, which can concentrate power to do big things and make contribution in the process of realizing global energy transformation.

  8. The Potential of Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2009-01-01

    This paper discusses the prospective of renewable energy in the process of sustainable development in China. Along with the high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand....... Such sustainable energy strategy typical involves three technologies issue: energy conservation, efficiency improvement and replacement fossil fuel by renewable energy sources. Denmark is an example of such strategy can be implemented and it shows the possibility of converting into a 100% renewable energy system...... as well as reduce environmental pollution. To ensure energy security and mitigate climate changes the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable possibility...

  9. Relationships between energy consumption and climate change in China

    Institute of Scientific and Technical Information of China (English)

    QIANHuaisui; YUANShunquan; SUNJiulin; LIZehui

    2004-01-01

    Energy consumption has an inevitable connection with economic level and climate. Based on selected data covering annual total energy consumption and its composition and that of all kinds of energy in 1953-1999, the annual residential energy consumption and the coal and electricity consumption in 1980-1999 in China, the acreage of crops under cultivation suffered from drought and flood annually and gross domestic product (GDP) in 1953-1999 in the whole country, and mean daily temperature data from 29 provincial meteorological stations in the whole country from 1970 to 1999, this paper divides energy consumption into socio-economic energy consumption and climatic energy consumption in the way of multinomial. Itchanges between the climate energy consumption andalso goes further into the relations and their changes between the climate energy consumptionenergy consumption and the economic level inand climate factor and between the socio-economic energy between the climate energy level in China with the method of statistical analysis. At present, there are obvious transitions in the changing relationships of the energy consumption to economy and climate, which comprises the transition of economic system from resource-intensive industry to technology-intensive industry and the transition of climatic driving factors of the energy consumption from driven by the disasters of drought and flood to driven by temperature.

  10. Enforcing Building Energy Codes in China: Progress and Comparative Lessons

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Shui, Bin; Halverson, Mark A.; Delgado, Alison

    2010-08-15

    From 1995 to 2005, building energy use in China increased more rapidly than the world average. China has been adding 0.4 to 1.6 billion square meters of floor space annually , making it the world’s largest market for new construction. In fact, by 2020, China is expected to comprise half of all new construction. In response to this, China has begun to make important steps towards achieving building energy efficiency, including the implementation of building energy standards that requires new buildings to be 65% more efficient than buildings from the early 1980s. Making progress on reducing building energy use requires both a comprehensive code and a robust enforcement system. The latter – the enforcement system – is a particularly critical component for assuring that a building code has an effect. China has dramatically enhanced its enforcement system in the past two years, with more detailed requirements for ensuring enforcement and new penalties for non-compliance. We believe that the U.S. and other developed countries could benefit from learning about the multiple checks and the documentation required in China. Similarly, some of the more user-friendly enforcement approaches developed in the U.S. and elsewhere may be useful for China as it strives to improve enforcement in rural and smaller communities. In this article, we provide context to China’s building codes enforcement system by comparing it to the U.S. Among some of the enforcement mechanisms we look at are testing and rating procedures, compliance software, and training and public information.

  11. China Facing Five Major Challenges for Energy Development

    Institute of Scientific and Technical Information of China (English)

    Ma Cuijie

    2004-01-01

    @@ China's energy development will be confronted with five major challenges in the coming decades, experts said at the International Partnership for the Hydrogen Economy (IPHE)Steering Committee in Beijing in late May. The five major challenges include high oil import dependency which threatens the nation's energy security, using coal as the main energy generator, which leads to severe pollution, gigantic energy demands due to growing economic development,global climate change resulting from greenhouse gas emissions, and energy supply and consumption problems in rural areas.

  12. The integration of transportation with the energy system in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Beella, Satish Kumar;

    were carried out in sequence. Firstly, a Chinese transport model has been created and approach reliability has been examined. Secondly, two scenarios, continued improvement (CI) scenario and accelerated improvement (AI) scenario, have been designed and evaluated. The results indicate that evident fuel......Energy security and climate change are forcing China to change its inappropriate energy structure. Today, transport is the second largest energy consumer in China. No single method can achieve a fossil fuel independent transport and it is necessary to propose a comprehensive strategy which can...... benefit both transport and the energy system. This paper aims to evaluate different transport development strategies in terms of their effects on fossil fuel demand reduction and to explore to what extent renewable energy can contribute to the transport sector. With this objective, three investigations...

  13. China's INDC and non-fossil energy development

    Institute of Scientific and Technical Information of China (English)

    HE Jian-Kun

    2015-01-01

    Global climate change promotes the energy system reform. Achieving a high proportion of renewable energy becomes the major countries' energy strategy. As proposed in its Intended Nationally Determined Contributions (INDC), China intends to raise the proportion of non-fossil energy in primary energy consumption to about 20%by 2030. That ambitious goal means the non-fossil energy supplies by 2030 will be 7e8 times that of 2005, and the annual increase rate is more than 8%within the 25 years. Besides, the capacity of wind power, solar power, hy-dropower and nuclear power reaches 400 GW, 350 GW, 450 GW, and 150 GW respectively, and China's non-fossil power capacity is even greater than the U.S.'s total power capacity. In addition, the scale of natural gas increases. Consequently, by 2030, the proportion of coal falls from the current 70% to below 50%, and the CO2 intensity of energy consumption decreases by 20% compared with the level of 2005, which play important roles in significantly reducing the CO2 intensity of GDP. Since China has confirmed to achieve the CO2 emissions peak around 2030, at that time, the newly added energy demand will be satisfied by non-fossil energy, and the consumption of fossil fuel will stop growing. By 2030, non-fossil energy accounts for 20%, and the large scale and sound momentum of new and renewable energy industry will support the growth of total energy demand, which plays a key role in CO2 emissions peaking and beginning to decline, and lays the foundation for establishing a new energy system dominated by new and renewable energy in the second half of the 21st century as well as finally achieving the CO2 zero-emission.

  14. China's INDC and non-fossil energy development

    Directory of Open Access Journals (Sweden)

    Jian-Kun He

    2015-09-01

    Full Text Available Global climate change promotes the energy system reform. Achieving a high proportion of renewable energy becomes the major countries' energy strategy. As proposed in its Intended Nationally Determined Contributions (INDC, China intends to raise the proportion of non-fossil energy in primary energy consumption to about 20% by 2030. That ambitious goal means the non-fossil energy supplies by 2030 will be 7–8 times that of 2005, and the annual increase rate is more than 8% within the 25 years. Besides, the capacity of wind power, solar power, hydropower and nuclear power reaches 400 GW, 350 GW, 450 GW, and 150 GW respectively, and China's non-fossil power capacity is even greater than the U.S.'s total power capacity. In addition, the scale of natural gas increases. Consequently, by 2030, the proportion of coal falls from the current 70% to below 50%, and the CO2 intensity of energy consumption decreases by 20% compared with the level of 2005, which play important roles in significantly reducing the CO2 intensity of GDP. Since China has confirmed to achieve the CO2 emissions peak around 2030, at that time, the newly added energy demand will be satisfied by non-fossil energy, and the consumption of fossil fuel will stop growing. By 2030, non-fossil energy accounts for 20%, and the large scale and sound momentum of new and renewable energy industry will support the growth of total energy demand, which plays a key role in CO2 emissions peaking and beginning to decline, and lays the foundation for establishing a new energy system dominated by new and renewable energy in the second half of the 21st century as well as finally achieving the CO2 zero-emission.

  15. Building-integrated renewable energy policy analysis in China

    Institute of Scientific and Technical Information of China (English)

    姚春妮; 郝斌

    2009-01-01

    With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.

  16. Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap

    Science.gov (United States)

    Hu, Zheng

    China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.

  17. The New Energy Buses in China

    DEFF Research Database (Denmark)

    Wang, Jingyu; Liu, Yingqi; Kokko, Ari

    2013-01-01

    With the advent of “low carbon” economy, new energy vehicles are increasingly favored by the Chinese government and manufacturers. New energy buses have become an important channel for the promotion of new energy utilizations. Based on the summary of policies, this paper conducts a thorough resea...... price. We draw the conclusions that clear direction and detailed plans will enhance the new energy bus promotion and rising oil prices will promote new energy buses as well.......With the advent of “low carbon” economy, new energy vehicles are increasingly favored by the Chinese government and manufacturers. New energy buses have become an important channel for the promotion of new energy utilizations. Based on the summary of policies, this paper conducts a thorough...... research on the technology and promotion achievements on new energy buses. We have found that the promotion achievements have difference with plans and gaps exist in different cities. In the paper we discuss the policy efficiency, the correlation between achievements, policies and the influence from oil...

  18. China renewable energy in Africa and Norway

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This study assesses the potential for Norwegian engagement in Sino-African renewable energy development. The study analyzes Norwegian competitiveness and complementarities towards Chinese energy actors in the African market, and identifies respective strengths and weaknesses against the backdrop of the African market. The report identifies barriers and opportunities for Norwegian commercial and developmental engagement towards upscaling renewable energy in Africa that may also apply to other OECD countries. Finally, the report points to possibilities for Norway to support sustainable Sino-African renewable energy development.(auth)

  19. Perspectives of China's wind energy development

    Institute of Scientific and Technical Information of China (English)

    He Dexin; Wang Zhongying

    2009-01-01

    Wind energy is a kind of clean renewable energy, which is also relatively mature in technology, with large-scale development conditions and prospect for the commercialization. The development of wind energy is a systematic project, involving policy, law, technology, economy, society, environment, education and other aspects. The relation-ship among all the aspects should be well treated and coordinated. This paper has discussed the following relationships which should be well coordinated: relationship between wind resources and wind energy development, relationship be-tween the wind turbine generator system and the components, relationship between wind energy technology and wind en-ergy industry, relationship between off-grid wind power and grid-connected wind power, relationship between wind farm and the power grid, relationship between onshore wind power and offshore wind power, relationship between wind energy and other energies, relationship between technology introduction and self-innovation, relationship among foreign-funded, joint ventured and domestic-funded enterprises and relationship between the government guidance and the market regula-tion, as well as giving out some suggestions.

  20. Wind energy input in coastal seas east of China

    Institute of Scientific and Technical Information of China (English)

    ZANG Nan; WU Dexing

    2013-01-01

    This study investigates the wind energy input,an important source of mechanical energy,in the coastal seas east of China.Using the wind field from the high-resolution sea surface meteorology dataset in the Bohai Sea,Yellow Sea,and East China Sea,we studied the wind energy input through surface ageostrophic currents and surface waves.Using a simple analytical formula for the Ekman Spiral with timedependent wind,the wind energy input through ageostrophic currents was estimated at ~22 GW averaged from 1960 to 2007,and through use of an empirical formula,the wind energy input through surface waves was estimated at ~169 GW.We also examined the seasonal variation and long-term tendency of mechanical energy from wind stress,and found that the wind energy input to the East China Sea decreased before the 1980s,and then subsequently increased,which is contrary to what has been found for the Bohai Sea and Yellow Sea.More complicated physical processes and varying diffusivity need to be taken into account in future studies.

  1. Energy Structure and Energy Security under Climate Mitigation Scenarios in China.

    Science.gov (United States)

    Matsumoto, Ken'ichi

    2015-01-01

    This study investigates how energy structure and energy security in China will change in the future under climate mitigation policy scenarios using Representative Concentration Pathways in a computable general equilibrium model. The findings suggest that to reduce greenhouse gas emissions, China needs to shift its energy structure from fossil fuel dominance to renewables and nuclear. The lower the allowable emissions, the larger the shifts required. Among fossil fuels, coal use particularly must significantly decrease. Such structural shifts will improve energy self-sufficiency, thus enhancing energy security. Under the policy scenarios, energy-source diversity as measured by the Herfindahl Index improves until 2050, after which diversity declines because of high dependence on a specific energy source (nuclear and biomass). Overall, however, it is revealed that energy security improves along with progress in climate mitigation. These improvements will also contribute to the economy by reducing energy procurement risks.

  2. Energy: China to Complete Key Oil Bases Soon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China will complete the construction of its first four strategic oil reserves by the end of 2008. "The progress has been smooth and all the four bases will be completed by the year end," Zhang Guobao, administrator of the National Energy Administration (NEA), said after a press conference in Beijing in mid-August.

  3. China Vows Tangible Steps to Save Energy and Cut Consumption

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China will take tangible measures to save energy and cut pollution in 2008. The country will continue eliminating outdated production facilities, including small thermal power generating units with a combined capacity of 13 million kilowatts, and facilities with 50 million tons of cement, 6 million tons of steel and 14 million tons ofiron.

  4. Technological Progress, Structural Change and China's Energy Efficiency

    Institute of Scientific and Technical Information of China (English)

    Wang Junsong; He Canfei

    2009-01-01

    China has witnessed rapid economic development since 1978, and during the time, energy production and consumptiondeveloped at a tremendous speed as well.Energy efficiency which can he measured by energy consumption per unit of GDP, how-ever, experienced continuous decrease.Theoretically, the change of energy efficiency can be attributed to industry structural change and technological change.In order to explain the transformation of Chinese energy efficiency, we adopt logarithmic mean Divisia index techniques to decompose changes in energy intensity in the period of 1994-2005.We find that technological change is the dominant contributor in the decline of energy intensity, but the contribution has declined since 2001.The change in industry structure has decreased the energy intensity before 1998, but raised the intensity after 1998.Decomposed technological effects for all sectors indicate that technological progresses in high energy consuming industries such as raw chemical materials and chemi-cal products, smelting and pressing of ferrous metals, manufacture of non-metallic mineral products and household contribute are the principal drivers of China's declining energy intensity.

  5. Energy balance closure at ChinaFLUX sites

    Institute of Scientific and Technical Information of China (English)

    LI Zhengquan; YU Guirui; WEN Xuefa; ZHANG Leiming; REN Chuanyou; FU Yuling

    2005-01-01

    Network of eddy covariance observation is measuring long-term carbon and water fluxes in contrasting ecosystems and climates. As one important reference of independently evaluating scalar flux estimates from eddy covariance, energy balance closure is used widely in study of carbon and water fluxes. Energy balance closure in ChinaFLUX was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat) against available energy (net radiation, soil heat flux, canopy heat storage) and the energy balance ratio (EBR) and the frequency distribution of relative errors of energy balance (δ). The trends of diurnal and seasonal variation of energy balance in ChinaFLUX were analyzed. The results indicated that the imbalance was prevalent in all observation sites, but there were little differences among sites because of the properties variation of sites. The imbalance was greater during nocturnal periods than daytime and closure was improved with friction velocity intensifying. Generally the results suggested that estimates of the scalar turbulent fluxes of sensible and latent heat were underestimated and/or that available energy was overestimated. Finally, we discussed certain factors that are contributed to the imbalance of energy, such as systematic errors associated with the sampling mismatch, systematic instrument bias, neglected energy sinks, low and high frequency loss of turbulent fluxes and advection of heat and water vapor.

  6. China Tries to Tap Cleaner Energy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ "The country is bent on reducing its reliance on dwindling fossil fuels and want to pursue sustainable energy development," said Shi Dinghuan, a director from the Ministry of Science and Technology.

  7. Offshore wind energy potential in China

    DEFF Research Database (Denmark)

    Hong, Lixuan; Möller, Bernd

    2011-01-01

    This paper investigates available offshore wind energy resources in China’s exclusive economic zone (EEZ) with the aid of a Geographical Information System (GIS), which allows the influence of technical, spatial and economic constraints on offshore wind resources being reflected in a continuous...... space. Geospatial supply curves and spatial distribution of levelised production cost (LPC) are developed, which provide information on the available potential of offshore wind energy at or below a given cost, and its corresponding geographical locations. The GIS-based models also reflect the impacts...... of each spatial constraint as well as various scenarios of spatial constraints on marginal production costs of offshore wind energy. Furthermore, the impacts of differing Feed-in-tariff (FIT) standards on the economic potential are calculated. It confirms that economic potential of offshore wind energy...

  8. JPRS Report, Science & Technology, China: Energy

    Science.gov (United States)

    2007-11-02

    to exchange goods for energy on the international market . For this reason, both ends of this region’s production process -- import of raw materials...object saying that in a situation in which all the countries of the world are striving to reduce their dependence on the world’s energy market ...nanyao, perfume , and so on, and the Simao forest product base area. According to the information, the Manwan Hydropower Station which now has 18

  9. Forest Biomass Energy Resources in China: Quantity and Distribution

    Directory of Open Access Journals (Sweden)

    Caixia Zhang

    2015-11-01

    Full Text Available As one of the most important renewable and sustainable energy sources, the forest biomass energy resource has always been the focus of attention of scholars and policy makers. However, its potential is still uncertain in China, especially with respect to its spatial distribution. In this paper, the quantity and distribution of Chinese forest biomass energy resources are explored based mainly on forestry statistics data rather than forest resource inventory data used by most previous studies. The results show that the forest biomass energy resource in China was 169 million tons in 2010, of which wood felling and bucking residue (WFBR,wood processing residue (WPR, bamboo processing residue, fuel wood and firewood used by farmers accounted for 38%, 37%, 6%, 4% and 15%, respectively. The highest resource was located in East China, accounting for nearly 39.0% of the national amount, followed by the Southwest and South China regions, which accounted for 17.4% and 16.3%, respectively. At the provincial scale, Shandong has the highest distribution, accounting for 11.9% of total resources, followed by Guangxi and Fujian accounting for 10.3% and 10.2%, respectively. The actual wood-processing residue (AWPR estimated from the actual production of different wood products (considering the wood transferred between regions showed apparent differences from the local wood processing residue (LWPR, which assumes that no wood has been transferredbetween regions. Due to the large contribution of WPR to total forestry bioenergy resources, the estimation of AWPR will provide a more accurate evaluation of the total amount and the spatial distribution of forest biomass energy resources in China.

  10. Estimating Energy Consumption of Transport Modes in China Using DEA

    Directory of Open Access Journals (Sweden)

    Weibin Lin

    2015-04-01

    Full Text Available The rapid growth of transport requirements in China will incur increasing transport energy demands and associated environmental pressures. In this paper, we employ a generalized data envelopment analysis (DEA to evaluate the relative energy efficiency of rail, road, aviation and water transport from 1971 to 2011 by considering the energy input and passenger-kilometers (PKM and freight ton-kilometers (TKM outputs. The results show that the optimal energy efficiencies observed in 2011 are for rail and water transport, with the opposite observed for the energy efficiencies of aviation and road transport. In addition, we extend the DEA model to estimate future transport energy consumption in China. If each transport mode in 2020 is optimized throughout the observed period, the national transport energy consumption in 2020 will reach 497,701 kilotons coal equivalent (ktce, whereas the annual growth rate from 2011 to 2020 will be 5.7%. Assuming that efficiency improvements occur in this period, the estimated national transport energy consumption in 2020 will be 443,126 ktce, whereas the annual growth rate from 2011 to 2020 will be 4.4%, which is still higher than that of the national total energy consumption (3.8%.

  11. Technology Roadmaps: China Wind Energy Development Roadmap 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The report shows how China, already the world's largest wind market, could reach 1 000 GW of wind power by the middle of the century, an achievement that would reduce carbon dioxide emissions by 1.5 gigatonnes per year, or roughly equivalent to the combined CO2 emissions of Germany, France and Italy in 2009. The China Wind Energy Roadmap is the first national roadmap that has been developed by a country with IEA support, drawing from its global roadmap series.

  12. JPRS Report, Science & Technology, China: Energy.

    Science.gov (United States)

    2007-11-02

    For example, the IIASA [International Institute of Applied Systems Analysis] energy model, which is based on economic development and population...Like the IIASA model, the model described here was based on scenarios, including human computations and decisions, computer calculations, and direct

  13. Mapping the Energy Flow from Supply to End Use in three Geographic Regions of China

    OpenAIRE

    Mischke, Peggy; Xiong, Weiming

    2014-01-01

    China's past economic development policies resulted in different energy infrastructure patterns across China. There is a long tradition in analysing and discussing regional disparities of China's economy. For more than 20 years, regional differences in GDP, industrial outputs, household income and consumption were analysed across China's provincial units. Regional disparities in China's current energy flow are rarely visualised and quantified from a comprehensive, system-wide perspective that...

  14. Perceiving China'sEnergy Development from the Worlk Key Energy Statistics

    Institute of Scientific and Technical Information of China (English)

    Zheng Jianchao

    2008-01-01

    @@ As the world's authoritative organization on energy information,the International Energy Agency (IEA),which was founded in 1974,releases Key World Energy Statistics every year from 1997 (hereinafter referred to as the "Key Data").The "Key Data" released in 2007 announced the 2005 statistics,and also provided the 1973 statistics for comparison.From the published data,we can clearly find the development path and trend of the world energy and power industry.Also,China's strong development momentum,highspeed growth of energy consumption and the enormous challenges in the sustainable energy supply are especially noticeable.

  15. Advances in energy conservation of China steel industry.

    Science.gov (United States)

    Sun, Wenqiang; Cai, Jiuju; Ye, Zhu

    2013-01-01

    The course, technical progresses, and achievements of energy conservation of China steel industry (CSI) during 1980-2010 were summarized. Then, the paper adopted e-p method to analyze the variation law and influencing factors of energy consumptions of large- and medium-scale steel plants within different stages. It is pointed out that energy consumption per ton of crude steel has been almost one half lower in these thirty years, with 60% as direct energy conservation owing to the change of process energy consumption and 40% as indirect energy conservation attributed to the adjustment of production structure. Next, the latest research progress of some key common technologies in CSI was introduced. Also, the downtrend of energy consumption per ton of crude steel and the potential energy conservation for CSI during 2011-2025 were forecasted. Finally, it is indicated that the key topic of the next 15 years' research on the energy conservation of CSI is the synergistic operation of material flow and energy flow. It could be achieved by the comprehensive study on energy flow network optimization, such as production, allocation, utilization, recovery, reuse, and resource, according to the energy quantity, quality, and user demand following the first and second laws of thermodynamics.

  16. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    2011 is the first year of the 12th Five-Year Plan and, as such, it is a crucial year to push forward the work of energy conservation and emissions reduction. Important large-scale energy conservation policies issued in 2011 include Outline of the 12th Five-year Plan for National Economic and Social Development of The People’s Republic of China (the “Plan”) and Notice of the State Council on Issuing the Comprehensive Work Proposal for Energy Conservation and Emission Reduction during the 12th Five-Year Plan Period (GF (2011) No. 26) (the “Proposal”). These two policies have established strategic objectives for energy conservation during the 12th Five-Year Plan in China, and they have also identified the key tasks and direction of energy efficiency programs for energy-using products.

  17. Possible Energy Network with polygeneration system and CCS for China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    On basis of adopting polygeneration systems for power and alternative fuels,capturing CO2 with near zero energy penalties,and storing CO2 on sites,a new kind of Energy Network can integrate energy utilization,CO2 capture,transportation and storage synthetically.Techno-economic analysis of this solution focusing on Inner Mongolia and the Yangtze River Delta districts had been carried with comparison to the chain method for energy utilization and CO2 sequestration.This solution can save 21.5% of energy,and reduce 35% of total costs.The adoption of advanced polygeneration systems contributes 52.2% of the total saved costs,and the integration of energy utilization and CO2 sequestration in the Energy Network contributes 47.8%.From the aspect of CCS,the CO2 sequestration cost in the Energy Network can be as low as 12 $/t due to the lower energy penalties of capture in polygeneration systems and the combination of CO2 source and sink.The Energy Network exhibits attractive performance on energy saving,costs reduction for CCS,which may be a promising solution for sustainable development of China.

  18. Economic Analysis of Energy-efficient Buildings in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Applying energy-saving measures in residential buildings is usually constrained by the increase of initial investment.However, if it is analyzed from the view of energy cost and life-cycle cost, the energy-saving benefit can offset the increase of initial investment. An analysis method based on life-cycle concept was developed to calculate the energy cost of residential building flats. Several uncertain factors were included into the model, making it more accurate to reflect practical situation. The model was solved using the software DeST and applied to one residential building project in Shanghai. The case study shows that the initial investment (cost) is paid back during the operational phase through less consumption of energy. It further indicates that the investment recovery period is between 10 and 19 years which are acceptable to households and developers in China.

  19. Market-oriented Energy Revolution in China and Impacts

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Xue Qing

    2015-01-01

    China has been undergoing a new round ofambitious reform in its energy sectors after presidentXi's call for“energy revolution”in June 2014. Thistop-down strategy paves a way to market-oriented transition for Chinese energy govern system on both industrial level and corporation level. This paper analyzes the newtrends of China's energy policy and its impacts on crude oil market as well as on Chinese state-owned petroleum enterprises. Thisrevolutionwill reshapethe managementsystemof Chinese energyindustryto cope with rising energy demand, supply restraints, huge environmental costs and backward technologies.With the deepening reform of oil and gas pricing mechanism and the opening-up of petroleum industry, Chinese domestic energy market will be upgraded towards a more rationalized and competitive system. Mixed ownerships will be introduced to stimulate the vitality, creativity and brandinfluence of state-owned petroleum corporations, pushing Chinese national oil majors to collaboratejointly withvarious foreign oil and gas companies and the emerging domestic private companies with great entrepreneurship.

  20. Summarization of Energy efficiency in buildings in West China

    Institute of Scientific and Technical Information of China (English)

    LINZhenguo; ZHANGSuyun; FUXiangzhao; XIAOYimin; BAIXuelian

    2003-01-01

    According to the different climatic characters of the different regions in West China, combining with energy efficiency in buildings (EEB) standards and local resources, this paper discussed the technologies of EEB applicable in the representative cities of freezing, cold, hot-summer and cold-winter, warm regions. The author exploredthe keystones of the EEB technologies'' development, but hasn''t recommended technology of EEB concretely.

  1. Industrial relocation and energy consumption: Evidence from China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiaoli, E-mail: email99zxl@vip.sina.co [School of Economics and Business, North China Electric Power University, Beijing 102206 (China); Erb Institute for Global Sustainable Enterprise, University of Michigan, Ann Arbor, MI 48109 (United States); Yin Haitao, E-mail: htyin@sjtu.edu.c [Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200052 (China); Erb Institute for Global Sustainable Enterprise, University of Michigan, Ann Arbor, MI 48109 (United States)

    2011-05-15

    With economic development and the change of industrial structure, industrial relocation is an inevitable trend. In the process of industrial relocation, environmental externality and social cost could occur due to market failure and government failure. Little attention has been paid to this issue. In this paper, we address it with a theoretical analysis and an empirical investigation on the relationship between China's industrial relocation in the early 1990s and energy consumption which is the primary source of CO{sub 2} emission, an environmental externality that causes increasing concerns. The macro-policy analysis suggests that there would be a positive link between China's industrial relocation in the early 1990s and energy saving (and environmental externalities reduction). Using fixed-effect regression model and simulation method, we provide an empirical support to this argument. In order to further reduce environmental externalities and social cost in the process of industrial relocation, we provide policy suggestions as follows: First, strengthen the evaluation of environmental benefits/costs; Second, pay more attention to the coordinated social-economic development; Third, avoid long-lived investment in high-carbon infrastructure in areas with industries moved in; Fourth, address employment issue in the areas with industries moved out. - Research highlights: {yields} Little attention has been paid to the linkage between industrial relocation and environmental externality. {yields} Our macro-policy analysis suggests that there would be a positive link between China's industrial relocation in the early 1990s and energy saving (and environmental externalities reduction). {yields} Using fixed-effect regression model and simulation method, we find a positive link between China's industrial relocation in the early 1990s and energy saving. {yields} Policy suggestions to further reduce environmental externalities and social cost in the process

  2. Strategic position and development prospects of nuclear energy in China

    Institute of Scientific and Technical Information of China (English)

    SHEN Wenquan

    2007-01-01

    By analyzing the challenges of China's energy supply, an excellent perspective of nuclear power development in the country has been described. Taking into account the near-, mid-, and long-term development requirements,a comprehensive, coordinated and sustainable nuclear power program is proposed. Thus, our national nuclear industry can not only catch up with the world's advanced level in proper time, but also possess enough stamina for sustainability.

  3. Asia energy outlook to 2030: Impacts of energy outlook in China and India on the world

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, R.

    2007-07-01

    This paper presents an international energy outlook, focusing on an analysis of energy impacts of Asia, particularly China and India, on the world energy markets to 2030. Based on vigorous economic growth, soaring electricity demand and progressive motorisation in China and India, Asia's primary energy demand is expected to double, eventually positioning Asia as the largest energy-consuming region with largest CO{sub 2} emissions in the world. This paper also discusses energy security challenges for Asia, in particular East Asian region, where steady oil demand growth will lead to increasing dependency on imported oil from Middle East and sea lane security in the Malacca Strait. Furthermore, this paper explores various future scenarios for Asia including 'Technological Advanced Scenario' to highlight the differences in possible energy futures in Asia and its implication to the global energy market. In Technological Advanced Scenario, which assumes the stepped-up implementation of energy and environmental policies in Asian countries, Asia's primary energy demand in 2030 is expected to be 15%, or 943 Mtoe, lower than the Reference Scenario. The paper concludes that successful implementation of such an energy strategy will decrease the energy demand and greatly mitigate the growth of CO{sub 2} emissions from the energy sector. (auth)

  4. Field survey analysis of the public's cognition on the new energy industry in China

    Science.gov (United States)

    Guo, Q. F.; Song, Y.

    2016-08-01

    The public enjoy an important role in the development of China's new energy industry. However, the role has not attracted sufficient attention. By the way of field investigation, the paper acquired the first hand data of the public cognition on the China's new energy industry. Survey data showed that the public enjoyed awareness of China's new energy industry to some extent. And the public had optimistic expectations on the future development of new energy industry. Moreover, there were obvious differences in the degree of public's familiarity with different new energy varieties. The education level and age of the individual public had a significant impact on his awareness of China's new energy industry. To raise public participation in China's new energy industry, it entailed highlighting the status of the public in China's new energy industry, increasing the publicity of the new energy industry with different measures for different types of public group.

  5. Structural Evolution of Household Energy Consumption: A China Study

    Directory of Open Access Journals (Sweden)

    Qingsong Wang

    2015-04-01

    Full Text Available Sustainable energy production and consumption is one of the issues for the sustainable development strategy in China. As China’s economic development paradigm shifts, household energy consumption (HEC has become a focus of achieving national goals of energy efficiency and greenhouse gas reduction. The information entropy model and LMDI model were employed in this study in order to analyse the structural evolution of HEC, as well as its associated critical factors. The results indicate that the information entropy of HEC increased gradually, and coal will be reduced by clean energies, such as natural gas and liquefied petroleum gas. The information entropy tends to stabilize and converge due to rapid urbanization. Therefore, from the perspective of environmental protection and natural resource conservation, the structure of household energy consumption will be optimized. This study revealed that residents’ income level is one of the most critical factors for the increase of energy consumption, while the energy intensity is the only driving force for the reduction of HEC. The accumulated contribution of these two factors to the HEC is 240.53% and −161.75%, respectively. It is imperative to improve the energy efficiency in the residential sector. Recommendations are provided to improve the energy efficiency-related technologies, as well as the standards for the sustainable energy strategy.

  6. Energy Performance of Hotel Buildings in Lijiang, China

    Directory of Open Access Journals (Sweden)

    Mingfang Tang

    2016-08-01

    Full Text Available The hotel industry in China has experienced rapid growth in the past ten years and made a considerable contribution to the global tourism economy. This paper focuses on the energy performance of hotel buildings in Lijiang, China. Hotel characteristics, daily operational data, and energy use data were collected by carrying out a survey of 24 hotels. The average annual energy use intensity (EUI of four-, three-, two-, and one-star rated hotels was 180.8 kWh/m2, 113.3 kWh/m2, 74.2 kWh/m2, and 70.2 kWh/m2, respectively. Electricity, as the dominant energy source, accounted for 81% of total energy consumption and was used in the operation of air conditioning, lighting, heating, etc. Pearson correlations between EUI showed that hotel star rating, number of guest rooms, room revenue, and number of workers gave a reasonably strong correlation. A regression-based benchmarking model was established to predict EUI, and a standardization process of EUI was illustrated by statistical analysis.

  7. Power Tariff Reform and Energy Constraint in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Power tariff reform and power restructuring should be coordinately advanced. In the period of the power tariff reform, attention should be fully given to possible demand growth, investment characteristics and environment pressure when taking transitional measures. In the stage, focal point of the reform is to establish a rational system of sales price to power network. Moreover, it is necessary to raise the electricity price for household consumption. The highly-centralized system of state-owned power enterprises is the root-cause of some basic problems in the power industry. The system would cause a great power overproduction, squeeze out private and foreign investment and constrain efficiency improvement. Effective energy strategy and planning are a crux of dealing with crises of energy security. China needs a state-class energy administration body and should make massive research on energy economics.

  8. Energy development and CO{sub 2} emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolin Xi [Carnegie-Mellon Univ., Pittsburgh, PA (United States)

    1993-03-01

    The objective of this research is to provide a better understanding of future Chinese energy development and CO{sub 2} emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO{sub 2} emissions from burning fossil fuels and projects future energy use and resulting CO{sub 2} emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO{sub 2} emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO{sub 2} emissions reduction in China during the 1985-2020 period are examined.

  9. Alternative energy development strategies for China towards 2030

    Institute of Scientific and Technical Information of China (English)

    Linwei MA; Zheng LI; Feng FU; Xiliang ZHANG; Weidou NI

    2009-01-01

    The purposes, objectives and technology path-ways for alternative energy development are discussed with the aim of reaching sustainable energy development in China. Special attention has been paid to alternative power and alternative vehicle fuels. Instead of limiting alternative energy to energy sources such as nuclear and renewable energy, the scope of discussion is extended to alternative technologies such as coal power with carbon capture and sequestration (CCS), electric and hydrogen vehicles. In order to take account of the fact that China's sustainable energy development involves many dimen-sions, a six-dimensional indicator set has been established and applied with the aim of comprehensively evaluating different technology pathways in a uniform way. The ana-lysis reaches the following conclusions: (a) in the power sector, wind power, nuclear power and hydro power should be developed as much as possible, while R&D of solar power and coal power with CCS should be strengthened continuously for future deployment. (b) in the transporta-tion sector, there is no foreseeable silver bullet to replace oil on a large scale within the time frame of 20 to 30 years. To ease the severe energy security situation, expedient choices like coal derived fuels could be developed. However, its scale should be optimized in accordance to the trade-off of energy security benefits, production costs and environmental costs. Desirable alternative fuels (or technologies) like 2nd generation biofuels and electrical vehicles should be the subject of intensive R&D with the objective to be cost effective as early as possible.

  10. Temporospatial changes of carbon footprint based on energy consumption in China

    Institute of Scientific and Technical Information of China (English)

    CHUAI Xiaowei; LAI Li; HUANG Xianjin; ZHAO Rongqin; WANG Wanjing; CHEN Zhigang

    2012-01-01

    Study on regional carbon emission is one of the hot topics under the background of global climate change and low-carbon economic development,and also help to establish different low-carbon strategies for different regions.On the basis of energy consumption and land use data of different regions in China from 1999 to 2008,this paper established carbon emission and carbon footprint models based on total energy consumption,and calculated the amount of carbon emissions and carbon footprint in different regions of China from 1999 to 2008.The author also analyzed carbon emission density and per unit area carbon footprint for each region.Finally,advices for decreasing carbon footprint were put forward.The main conclusions are as follows:(1) Carbon emissions from total energy consumption increased 129% from 1999 to 2008 in China,but its spatial distribution pattern among different regions just slightly changed,the sorting of carbon emission amount was:Eastern China > Northern China > Central and Southern China > Southwest China > Northwest China.(2) The sorting of carbon emission density was:Eastern China > Northeast China > Central and Southern China > Northern China > Southwest China > Northwest China from 1999 to 2003,but from 2004 Central and Southern China began to have higher carbon emission density than Northeast China,the order of other regions did not change.(3) Carbon footprint increased significantly since the rapid increasing of carbon emissions and less increasing area of productive land in different regions of China from 1999 to 2008.Northern China had the largest carbon footprint,and Northwest China,Eastern China,Northern China,Central and Southern China followed in turn,while Southwest China presented the lowest area of carbon footprint and the highest percentage of carbon absorption.(4) Mainly influenced by regional land area,Northern China presented the highest per unit area carbon footprint and followed by Eastern China,and Northeast

  11. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  12. Energy Audit Practices in China: National and Local Experiences and Issues

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo; Price, Lynn; Lu, Hongyou

    2010-12-21

    China has set an ambitious goal of reducing its energy use per unit of GDP by 20% between 2006 and 2010. Since the industrial sector consumes about two-thirds of China's primary energy, many of the country's efforts are focused on improving the energy efficiency of this sector. Industrial energy audits have become an important part of China's efforts to improve its energy intensity. In China, industrial energy audits have been employed to help enterprises indentify energy-efficiency improvement opportunities for achieving the energy-saving targets. These audits also serve as a mean to collect critical energy-consuming information necessary for governments at different levels to supervise enterprises energy use and evaluate their energy performance. To better understand how energy audits are carried out in China as well as their impacts on achieving China's energy-saving target, researchers at the Lawrence Berkeley National Laboratory (LBNL) conducted an in-depth study that combines a review of China's national policies and guidelines on energy auditing and a series of discussions with a variety of Chinese institutions involved in energy audits. This report consists of four parts. First, it provides a historical overview of energy auditing in China over the past decades, describing how and why energy audits have been conducted during various periods. Next, the report reviews current energy auditing practices at both the national and regional levels. It then discusses some of the key issues related to energy audits conducted in China, which underscore the need for improvement. The report concludes with policy recommendations for China that draw upon international best practices and aim to remove barriers to maximizing the potential of energy audits.

  13. Mapping the Energy Flow from Supply to End Use in three Geographic Regions of China

    DEFF Research Database (Denmark)

    Mischke, Peggy; Xiong, Weiming

    and consumption were analysed across China's provincial units. Regional disparities in China's current energy flow are rarely visualised and quantified from a comprehensive, system-wide perspective that is tracing all major fuels and energy carriers in supply, transformation and final end-use in different sectors....... A few national and provincial energy flow diagrams of China were developed since 2000, althoug with limited detail on major regional disparities and inter-regional fuel flows. No regional energy flow charts are yet available for East-, Central- and West-China. This study maps and quantifies energy...

  14. Managing carbon emissions in China through building energy efficiency.

    Science.gov (United States)

    Li, Jun; Colombier, Michel

    2009-06-01

    This paper attempts to analyse the role of building energy efficiency (BEE) in China in addressing climate change mitigation. It provides an analysis of the current situation and future prospects for the adoption of BEE technologies in Chinese cities. It outlines the economic and institutional barriers to large-scale deployment of the sustainable, low-carbon, and even carbon-free construction techniques. Based on a comprehensive overview of energy demand characteristics and development trends driven by economic and demographic growth, different policy tools for cost-effective CO(2) emission reduction in the Chinese construction sector are described. We propose a comprehensive approach combining building design and construction, and the urban planning and building material industries, in order to drastically improve BEE during this period of rapid urban development. A coherent institutional framework needs to be established to ensure the implementation of efficiency policies. Regulatory and incentive options should be integrated into the policy portfolios of BEE to minimise the efficiency gap and to realise sizeable carbon emissions cuts in the next decades. We analyse in detail several policies and instruments, and formulate relevant policy proposals fostering low-carbon construction technology in China. Specifically, Our analysis shows that improving building energy efficiency can generate considerable carbon emissions reduction credits with competitive price under the CDM framework.

  15. China’s Energy Security and Its Military Modernization Efforts: How China Plans to Dominate the World

    Science.gov (United States)

    2007-05-23

    Zweig and Bi Jianhai, "China’s Global Hunt for Energy," Foreign Affairs 84, no. 5 (2005): 30-31. 47 Ibid.: 30. This article goes on to state that...Source: David Zweig and Bi Jianhai, "China’s Global Hunt for Energy," Foreign Affairs 84, no. 5 (2005): 28 vulnerability has set Beijing scrambling...Jianhai, David Zweig and Bi. "China’s Global Hunt for Energy." Foreign Affairs 84, no. 5 (2005): 25. Jijun, Li. "Traditional Military Thinking and the

  16. Energy Use in China: Sectoral Trends and Future Outlook

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to

  17. China's Top-1000 Energy-Consuming Enterprises Program:Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Price, Lynn; Wang, Xuejun; Yun, Jiang

    2008-06-02

    In 2005, the Chinese government announced an ambitious goal of reducing energy consumption per unit of GDP by 20% between 2005 and 2010. One of the key initiatives for realizing this goal is the Top-1000 Energy-Consuming Enterprises program. The energy consumption of these 1000 enterprises accounted for 33% of national and 47% of industrial energy usage in 2004. Under the Top-1000 program, 2010 energy consumption targets were determined for each enterprise. The objective of this paper is to evaluate the program design and initial results, given limited information and data, in order to understand the possible implications of its success in terms of energy and carbon dioxide emissions reductions and to recommend future program modifications based on international experience with similar target-setting agreement programs. Even though the Top-1000 Program was designed and implemented rapidly, it appears that--depending upon the GDP growth rate--it could contribute to somewhere between approximately 10% and 25% of the savings required to support China's efforts to meet a 20% reduction in energy use per unit of GDP by 2010.

  18. Current Status, Challenges, and Future Sustainable Development Strategies for China Energy

    Institute of Scientific and Technical Information of China (English)

    陈文颖; 吴宗鑫

    2004-01-01

    China's rapid economic growth,high-energy-intensitive industrial and product structure,coal- dominated energy structure,and low-energy efficiency result in China being the second largest energy consumer as well as the second largest CO2 emission country in the world.The Markal model,an integrated energy,environment,and economic model,was used to analyze China's energy development scenarios from 1995 through 2050 for policy study of long-term energy strategies.The results show that diversified,reliable,and environmentally sound energy development strategies should be adopted for China to solve the challenges of the increasing energy demand,the enlarging gap between the oil demand and supply,and growing concerns over local as well as global environmental issues.Coal-derived synthetic transportation fuels through coal liquefaction,hydrogen making,and advanced coal-based poly-generation technologies should be developed to solve energy security issues.

  19. Synergies of scale - A vision of Mongolia and China's common energy future

    Energy Technology Data Exchange (ETDEWEB)

    Borgford-Parnell, Nathan

    2010-09-15

    Energy consumption in China is expected to double over the next 20 years. Addressing the enormous scale of China's energy need and attendant increases in greenhouse gas emissions requires dramatic and rapid rollout of renewable energy technologies. Mongolia has some of the world's best renewable energy resources but the scale of its market cannot tap them efficiently. Developing Mongolia into a significant exporter of renewable energy to China will create synergies of scale moving both countries towards their energy goals, creating jobs, and fostering growth while significantly reducing GHG emissions in the region.

  20. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  1. China's "energy revolution": measuring the status quo, modelling regional dynamics and assessing global impacts

    DEFF Research Database (Denmark)

    Mischke, Peggy

    As the world's largest economy in transition, China plays a growing role in global energy markets, clean technology deployment and climate change negotiations. The Chinese president Xi Jinping called in June 2014 for an “energy revolution” of the country’s “energy production and consumption habits...... energy balance; (ii) a review and benchmarking exercise of 18 Chinese energy modelling tools followed by a discussion of the Chinese perspective towards a low-carbon economy; (iii) an energy system wide mapping of regional energy flows in China to evaluate main disparities; (iv) a coupling of two complex...... top-down and bottom-up global energy planning tools to model future regional dynamics of China's energy sector; and (v) an assessment of electricity generation costs of the first operational concentrated solar power technologies in China. The results of this thesis are relevant for a broad scientific...

  2. China's energy in transition: regional and global implications

    Energy Technology Data Exchange (ETDEWEB)

    Tianshu Chu; Fereidun Fesharaki; Kang Wu [East-West Center, Honolulu, HI (United States)

    2006-06-15

    China is the largest energy user in Asia and the second largest in the world after the US. This paper documents substantial changes of the structure of China's energy use over the past decades. It explores the puzzling phenomena of China's low gross domestic product elasticity of energy consumption. Econometric analysis applying the AutoRegressive Integrated Moving Average model finds that factors such as institutional reforms and structural change can account for a substantial fraction of the downward impacts on the elasticity level. The paper also studies the future energy growth and energy security issues in China, and examines the regional and global impacts of China's rapidly growing energy consumption.

  3. Energy Efficiency, Food Consumption Influence on China's Economy based on Energy and Agricultural Food Price Fluctuations

    Directory of Open Access Journals (Sweden)

    Yantao Wang

    2015-08-01

    Full Text Available External shocks have significant effects on China's economy, as energy and agriculture food price. In recent years, the increasing of energy price will promote energy efficiency; also increasing prices of agricultural products will impact on production efficiency and economy. In this study, we make a statistical analysis on the impact of energy and agricultural food prices to domestic economy. The result shows that energy price will influence the energy efficiency in the short time, LnEP at lag 1 period increased one percentage can drive LnEE growth by 0.627 percentage, at the same time, agricultural food price will impact on the production efficiency, LnAFP at lag 1 period and the 2 period increased 1 percentage will drive the LnPE increased by 0.245 and 0.016 percentage respectively. Therefore, agricultural food prices have direct mutual promotion effect. Also, there exist at least one direct co-integration relationship between energy price and energy efficiency, which means that there exist a long-term equilibrium relationship between energy price and energy efficiency.

  4. The Mandatory Energy Efficiency Standard for Distribution Transformer soon Publicized in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Owning to the rapid economy development in China and sharp increase of energy consumption in recent years, energy shortage is increasingly apparent and becoming an important obstacle to the sustainable development of our economy.

  5. ADB-aided Projects to Expand Clean Energy Application in China

    Institute of Scientific and Technical Information of China (English)

    Wu Baoguo

    2002-01-01

    @@ On October 14, China's Ministry of Science and Technology and Asian Development Bank jointly launched a project called "Opportunity for Clean Development Mechanism of Energy Departments"across the country, which is an ABD-aided project aiming at providing China's energy departments with the technical guide to the projects suitable for the Chinese conditions.

  6. China's energy plans call for foreign assistance

    Energy Technology Data Exchange (ETDEWEB)

    Smil, V.

    1978-12-01

    In view of the concentrated drive to narrow, if not to close, the technological gap between China and the advanced, industrial nations, Mr. Smil reviews the current status of the PRC's energy technology (coal, petroleum, and electric industries) and compares it with the Western, Japanese, or Soviet achievements. The review makes clear the prodigious effort the Chinese will have to invest in modernizing their energetics - as well as the absolute necessity of substantial foreign technology transfers. Recurrent Chinese praises of self-sufficiency will have to be put to rest once and for all if the leadership is really serious about transforming the country into a truly modern economy in decades to come.

  7. Energy consumption-economic growth relationship and carbon dioxide emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Fei Li, E-mail: lfly2004@yahoo.com.c [Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Dong Suocheng; Xue Li [Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liang Quanxi [Jinan University, Guangzhou 510632 (China); Yang Wangzhou [Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China)

    2011-02-15

    This paper applies the panel unit root, heterogeneous panel cointegration and panel-based dynamic OLS to re-investigate the co-movement and relationship between energy consumption and economic growth for 30 provinces in mainland China from 1985 to 2007. The empirical results show that there is a positive long-run cointegrated relationship between real GDP per capita and energy consumption variables. Furthermore, we investigate two cross-regional groups, namely the east China and west China groups, and get more important results and implications. In the long-term, a 1% increase in real GDP per capita increases the consumption of energy by approximately 0.48-0.50% and accordingly increases the carbon dioxide emissions by about 0.41-0.43% in China. The economic growth in east China is energy-dependent to a great extent, and the income elasticity of energy consumption in east China is over 2 times that of the west China. At present, China is subject to tremendous pressures for mitigating climate change issues. It is possible that the GDP per capita elasticity of carbon dioxide emissions would be controlled in a range from 0.2 to 0.3 by the great effort. - Research Highlights: {yields} The long-run cointegrated relationship between real GDP per capita and energy consumption in China is examined. {yields} GDP per capita elasticity of carbon dioxide emissions is estimated. {yields} Economic growth in east China is energy-dependent to a great extent, and relies on the consumption of the energy more than the west China.

  8. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.; Renne, O.D. [National Renewable Energy Lab., Golden, CO (United States); Junfeng, Li [Energy Research Institute, Beijing (China)

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  9. Collaboration on Renewable Energy Standards, Testing, and Certification under the U.S. China Renewable Energy Partnership: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.; Kurtz, S.; Lin, W.

    2012-06-01

    During November 2009, the U.S. China Renewable Energy Partnership agreement was authorized in Beijing by Presidents Obama and Hu from the U.S. and China. One of the principle tasks under this new program is the collaboration of the U.S. and China on the topic of renewable energy standards, testing, and certification with an initial focus on solar PV and wind topics. This paper will describe and discuss the activities which have taken place under the bilateral collaboration to date.

  10. 75 FR 9181 - Secretarial China Clean Energy Business Development Mission; Application Deadline Extended

    Science.gov (United States)

    2010-03-01

    ... International Trade Administration Secretarial China Clean Energy Business Development Mission; Application... the Clean Energy Business Development Missions' Web site at http://www.trade.gov/CleanEnergyMission or... or CleanEnergyMission@doc.gov ). The application deadline has been extended to Friday, March 12,...

  11. Impacts of Renewable Energy Quota System on China's Future Power Sector

    OpenAIRE

    Xiong, Weiming; Zhang, Da; Mischke, Peggy; Zhang, Xiliang

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are ...

  12. Energy consumption-economic growth relationship and carbon dioxide emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Fei Li; Suocheng Dong; Xue Li; Quanxi Liang; Wangzhou Yang [Chinese Academy of Sciences, Beijing (China). Institute of Geographic Sciences and Natural Resources Research

    2011-02-15

    This paper applies the panel unit root, heterogeneous panel cointegration and panel-based dynamic OLS to re-investigate the co-movement and relationship between energy consumption and economic growth for 30 provinces in mainland China from 1985 to 2007. The empirical results show that there is a positive long-run cointegrated relationship between real GDP per capita and energy consumption variables. Furthermore, we investigate two cross-regional groups, namely the east China and west China groups, and get more important results and implications. In the long-term, a 1% increase in real GDP per capita increases the consumption of energy by approximately 0.48-0.50% and accordingly increases the carbon dioxide emissions by about 0.41-0.43% in China. The economic growth in east China is energy-dependent to a great extent, and the income elasticity of energy consumption in east China is over 2 times that of the west China. At present, China is subject to tremendous pressures for mitigating climate change issues. It is possible that the GDP per capita elasticity of carbon dioxide emissions would be controlled in a range from 0.2 to 0.3 by the great effort. 56 refs., 6 tabs.

  13. Energy consumption-economic growth relationship and carbon dioxide emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Li; Dong, Suocheng; Xue, Li; Yang, Quanxi [Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liang [Jinan University, Guangzhou 510632 (China); Wangzhou

    2011-02-15

    This paper applies the panel unit root, heterogeneous panel cointegration and panel-based dynamic OLS to re-investigate the co-movement and relationship between energy consumption and economic growth for 30 provinces in mainland China from 1985 to 2007. The empirical results show that there is a positive long-run cointegrated relationship between real GDP per capita and energy consumption variables. Furthermore, we investigate two cross-regional groups, namely the east China and west China groups, and get more important results and implications. In the long-term, a 1% increase in real GDP per capita increases the consumption of energy by approximately 0.48-0.50% and accordingly increases the carbon dioxide emissions by about 0.41-0.43% in China. The economic growth in east China is energy-dependent to a great extent, and the income elasticity of energy consumption in east China is over 2 times that of the west China. At present, China is subject to tremendous pressures for mitigating climate change issues. It is possible that the GDP per capita elasticity of carbon dioxide emissions would be controlled in a range from 0.2 to 0.3 by the great effort. (author)

  14. Variations of China's emission estimates: response to uncertainties in energy statistics

    Science.gov (United States)

    Hong, Chaopeng; Zhang, Qiang; He, Kebin; Guan, Dabo; Li, Meng; Liu, Fei; Zheng, Bo

    2017-01-01

    The accuracy of China's energy statistics is of great concern because it contributes greatly to the uncertainties in estimates of global emissions. This study attempts to improve the understanding of uncertainties in China's energy statistics and evaluate their impacts on China's emissions during the period of 1990-2013. We employed the Multi-resolution Emission Inventory for China (MEIC) model to calculate China's emissions based on different official data sets of energy statistics using the same emission factors. We found that the apparent uncertainties (maximum discrepancy) in China's energy consumption increased from 2004 to 2012, reaching a maximum of 646 Mtce (million tons of coal equivalent) in 2011 and that coal dominated these uncertainties. The discrepancies between the national and provincial energy statistics were reduced after the three economic censuses conducted during this period, and converging uncertainties were found in 2013. The emissions calculated from the provincial energy statistics are generally higher than those calculated from the national energy statistics, and the apparent uncertainty ratio (the ratio of the maximum discrepancy to the mean value) owing to energy uncertainties in 2012 took values of 30.0, 16.4, 7.7, 9.2 and 15.6 %, for SO2, NOx, VOC, PM2.5 and CO2 emissions, respectively. SO2 emissions are most sensitive to energy uncertainties because of the high contributions from industrial coal combustion. The calculated emission trends are also greatly affected by energy uncertainties - from 1996 to 2012, CO2 and NOx emissions, respectively, increased by 191 and 197 % according to the provincial energy statistics but by only 145 and 139 % as determined from the original national energy statistics. The energy-induced emission uncertainties for some species such as SO2 and NOx are comparable to total uncertainties of emissions as estimated by previous studies, indicating variations in energy consumption could be an important source of

  15. China's Energy and Carbon Emissions Outlook to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

    2011-02-15

    As a result of soaring energy demand from a staggering pace of economic expansion and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both a short-term energy intensity reduction goal for 2006 to 2010 as well as a long-term carbon intensity reduction goal for 2020. This study presents a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. Over the past few years, LBNL has established and significantly enhanced its China End-Use Energy Model which is based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. In addition, this analysis also evaluated China's long-term domestic energy supply in order to gauge the potential challenge China may face in meeting long-term demand for energy. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not necessarily be the case because saturation in ownership of appliances, construction of residential and commercial floor area, roadways

  16. Sustaining Economic Growth in China under Energy and Climate Security Constraints

    Institute of Scientific and Technical Information of China (English)

    Xuedu Lu; Jiahua Pan; Ying Chen

    2006-01-01

    After over a quarter of a century of high economic growth, there is no sign that China will slow its pace of economic development. In the meantime, domestic energy security and international climate security have become of increasing concern given China's growth patterns. In this paper, the authors look at the future prospects of growth of the economy,energy demand and greenhouse gas emissions. For China as a developing country, energy security constitutes a more immediate and challenging constraint for China in meeting its development target than the problem of emission reduction. Energy efficiency and diversification have been actively pursued for addressing energy security issue but with positive co-benefit of climate security. International cooperation can promote both securities for a health growth of the economy.

  17. The effects of energy efficiency improvement in China with global interaction

    Directory of Open Access Journals (Sweden)

    Solveig Glomsrød

    2016-01-01

    Full Text Available China has pledged to reduce its carbon intensity defined as carbon dioxide emissions per unit of GDP by 40–45% by 2020 and by 60–65% by 2030 compared to the 2005 level. To fulfill the pledges, China’s government has made energy efficiency its de facto climate policy. This article raises the question to what extent energy efficiency will be an efficient mitigation measure for reaching the targets as pledged by China to the UNFCCC. In this context, two issues blur the picture. One is the potential rebound effect, generally causing one percent improvement in energy efficiency to generate less than one percent reduction in energy-related emissions since users adapt to the direct and indirect productivity gains and cost reductions in energy use. Further, there is the impact on energy use in China from interaction with global markets, in which China has emerged as a dominant player. In the present paper, we study the net implications of energy efficiency improvement in China within alternative global climate policy regimes. Our results show that a one percent energy efficiency improvement in China reduces energy use by 0.38–0.59 percent per year depending on alternative international contexts. Hence, policy makers should consider climate policies adopted by the other regions such as carbon trading system when assessing the implications of energy efficiency for energy consumption and climate mitigation. Policy makers should also consider overlapping effects of alternative energy policies, as energy efficiency improvement might have no effect on energy and emission reduction if there is global carbon trade. However, policy makers can expect more reduction in energy use and emissions due to energy efficiency improvement in the new mechanism announced in the Paris Agreement at the COP21.

  18. China and the United States - A Comparison of Green Energy Programs and Policies

    Science.gov (United States)

    2010-06-14

    that it focused on hydropower, wind, solar, and biomass energy development and deployment, coordinating renewable energy development with economic...from agricultural or forestry residues.36 Biomass energy is also viewed as a part of the solution to arrest desertification in China, with programs...the Energy and Security Act of 1980 were the following: U.S. Synthetic Fuels Corporation Act, Biomass Energy and Alcohol Fuels Act, Renewable Energy

  19. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel

  20. 2005 China- Britain Standardization Conference -Environmental Protection ·Energy Saving & Standardization

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ 2005 China-Britain Standardization Conference was held at Beijing International Convention Center on June 29th 2005, jointly hosted by Standardization Administration of the People's Republic of China (SAC) and British Standards Institute (BSI), with "Environmental Protection . Energy Saving & Standardization" as its theme.

  1. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Zhou, Nan; Fridley, David

    2010-09-01

    The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing

  2. Can China use alternative energies instead of coal to provide more electricity by 2030?

    Science.gov (United States)

    Wu, Yan

    Following the rapid growth of China's economy, energy consumption, especially electricity consumption of China, has made a huge increase in the past 30 years. Since China has been using coal as the major energy source to produce electricity during these years, environmental problems have become more and more serious. The research question for this paper is: "Can China use alternative energies instead of coal to produce more electricity in 2030?" Hydro power, nuclear power, natural gas, wind power and solar power are considered as the possible and most popular alternative energies for the current situation of China. To answer the research question above, there are two things to know: How much is the total electricity consumption in China by 2030? And how much electricity can the alternative energies provide in China by 2030? For a more reliable forecast, an econometric model using the Ordinary Least Squares Method is established on this paper to predict the total electricity consumption by 2030. The predicted electricity coming from alternative energy sources by 2030 in China can be calculated from the existing literature. The research results of this paper are analyzed under a reference scenario and a max tech scenario. In the reference scenario, the combination of the alternative energies can provide 47.71% of the total electricity consumption by 2030. In the max tech scenario, it provides 57.96% of the total electricity consumption by 2030. These results are important not only because they indicate the government's long term goal is reachable, but also implies that the natural environment of China could have an inspiring future.

  3. Energy potential of municipal solid waste incineration in urban areas of China.

    NARCIS (Netherlands)

    Zheng, Ling

    2006-01-01

    This study aims to evaluate the energy potential of municipal solid waste (MSW) incineration in Chinese cities from 1996 to 2020. In China, with improving the standard of living recently, the extreme increase of the municipal solid waste generation (MSWG)

  4. S&T advisors call for development of petroleum supplements and alternative energy sources in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Under the auspices of the Academic Divisions of CAS (CASAD), a panel of experts recently completed a consultative project on the medium- and long-term development strategy for petroleum supplements and alternative energy sources in China.

  5. Bio-energy in China. Content analysis of news articles on Chinese professional internet platforms

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Mei [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Northwest Agriculture and Forestry University, College of Forestry (China); Tahvanainen, Liisa; Pelkonen, Paavo [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Ahponen, Pirkkoliisa [Faculty of Social Sciences and Regional Studies, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland)

    2009-06-15

    The aim of this study is to discuss how information about the development and use of bio-energy is forwarded and disseminated to general public via the Internet in China. Furthermore, this study also explores in what manner the information of renewable energy policies is presented. A research method used in this study is an application of content analysis. Altogether 19 energy-related web platforms were found by searching keywords, such as 'energy net' or 'renewable energy net' or 'bio-energy net' on www.Google.cn. A thorough analysis was conducted by focusing on one of them: www.china5e.com. The news articles on www.china5e.com were examined according to whether the use of bio-energy was articulated positively or negatively in the contents of articles. It was also considered whether the articles were imported from abroad. The results of this study indicated that in China there is a tendency on the Internet to disseminate primarily the positive information about bio-energy with a great emphasis on its benefits. In addition, the study shows that when analyzing the content of the news articles, biogas and liquid bio-fuels will be the main bio-energy development trends in China in the near future. (author)

  6. Bio-energy in China: Content analysis of news articles on Chinese professional internet platforms

    Energy Technology Data Exchange (ETDEWEB)

    Qu Mei [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Northwest Agriculture and Forestry University, College of Forestry (China)], E-mail: qu@cc.joensuu.fi; Tahvanainen, Liisa [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Ahponen, Pirkkoliisa [Faculty of Social Sciences and Regional Studies, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Pelkonen, Paavo [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland)

    2009-06-15

    The aim of this study is to discuss how information about the development and use of bio-energy is forwarded and disseminated to general public via the Internet in China. Furthermore, this study also explores in what manner the information of renewable energy policies is presented. A research method used in this study is an application of content analysis. Altogether 19 energy-related web platforms were found by searching keywords, such as 'energy net' or 'renewable energy net' or 'bio-energy net' on (www.Google.cn). A thorough analysis was conducted by focusing on one of them: (www.china5e.com). The news articles on (www.china5e.com) were examined according to whether the use of bio-energy was articulated positively or negatively in the contents of articles. It was also considered whether the articles were imported from abroad. The results of this study indicated that in China there is a tendency on the Internet to disseminate primarily the positive information about bio-energy with a great emphasis on its benefits. In addition, the study shows that when analyzing the content of the news articles, biogas and liquid bio-fuels will be the main bio-energy development trends in China in the near future.

  7. Rural public acceptance of renewable energy deployment: The case of Shandong in China

    NARCIS (Netherlands)

    Liu Wenling, Wenling; Wang Can,; Mol, A.P.J.

    2013-01-01

    China has set ambitious goals to increase the use of renewable energy. Developing renewables in rural areas is also one of the most important energy strategies. This paper examines rural social acceptance of renewable energy deployment taking Shandong as a case study via a field questionnaire survey

  8. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  9. Solar Energy Block-Based Residential Construction for Rural Areas in the West of China

    OpenAIRE

    Jizhong Shao; Huixian Chen; Ting Zhu

    2016-01-01

    Based on the Great Western Development Strategy and the requirement for sustainable development in the west of China, rural affordable housing, energy conservation, and environmental protection are becoming development standards in the construction field. This paper mainly explores an innovative, sustainable, residential construction method for rural areas in western China, particularly the integration of solar energy technology with modern prefabricated building techniques, formally named so...

  10. Examining Solar Energy Policy in China and India. : A Comparative Study on the Potential for Energy Security and Sustainable Development

    OpenAIRE

    Kok, Sarah

    2015-01-01

    As living standards improve and population numbers increase in China and India, the demand and consumption of electricity will continue to intensify.  Although both countries maintain a strong dependence on fossil fuels to meet energy demands, a recognition of the importance of a low carbon transition is apparent from the governments of both countries.  China and India have both made commitments to abate global climate change, reduce poverty rates and enhance efforts to reduce fossil fuel dep...

  11. China to Develop Rules for Composing a Standards System for Enterprise Energy Efficiency

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ April 11, 2007, SAC announced a survey on a standards system for enterprise energy efficiency. According to the announcement, "Rules for the Composing of a Standards System for Enterprise Energy Efficiency" shall be developed based on the results of the survey. The rules are designed to better manage energy efficiency through standards and to give advice to companies on energy efficiency. In this way, China will be able to assist companies in energy efficiency on a more professional, strict, and comprehensive basis.

  12. Success factors of energy performance contracting (EPC) for sustainable building energy efficiency retrofit (BEER) of hotel buildings in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu Pengpeng, E-mail: xupp.cn@gmail.com [Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong (Hong Kong); Chan, Edwin Hon-Wan; Queena Kun Qian [Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong (Hong Kong)

    2011-11-15

    Hotel building is a type of high-energy-consuming building and most existing hotel buildings need energy efficiency improvement in China. Energy performance contracting (EPC) is considered a win-win mechanism to organize building energy efficiency retrofit (BEER) project. However, EPC mechanism has been introduced into China relatively recently and many EPCs have not been successful in building energy efficiency retrofit projects. This research aims to develop a set of critical success factors (CSFs) of EPC for sustainable energy efficiency retrofit (BEER) of hotel buildings in China. Semi-structured interviews and a questionnaire survey with practitioners and other professionals were conducted. The findings reveal the relative importance of the 21 number of identified success factors. In order to explore the underlying relationship among the identified critical success factors (CSFs), factor analysis method was adopted for further investigation, which leads to grouping the 21 identified CSFs into six clusters. These are (1) project organization process, (2) EPC project financing for hotel retrofit, (3) knowledge and innovation of EPC, sustainable development (SD), and M and V, (4) implementation of sustainable development strategy, (5) contractual arrangement, and (6) external economic environment. Finally, several relevant policies were proposed to implement EPC successfully in sustainable BEER in hotel buildings. - Highlights: > EPC is a win-win mechanism to organize building energy efficiency retrofit project. > CSFs of EPC mechanism for sustainable BEER of hotel building in China are examined. > Six clusters are extracted from 21 identified CSFs based on factor analysis.

  13. Sustainability, Shale Gas, and Energy Transition in China: Assessing Barriers and Prioritizing Strategic Measures

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Sovacool, Benjamin

    2015-01-01

    demonstrated that the lack of governmental support and guidelines, lack of regulations and standards, and lack of core technologies are the most important barriers hindering the energy transition to shale gas in China. The refinement of subsidies, advanced research, and harmonized standards could in large......Shale gas, as an emerging unconventional resource in China, has been regarded as a promising option for diversifying away from traditional fossil fuels and enhancing national security of energy supply. This study analyzed the barriers affecting the sustainable shale gas revolution in China...

  14. China Plays Greater Role in International Energy Sector

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Globalization is a process in which the world's resources are rationally distributed and the world's industrial structure is realigned. China is the world's largest developing country and the economy is huge. The country's integration into the international system is bound to bring some impacts on the system. All developments and events so far, however, point to the fact that China's influences on the current international system have been positive. Or in other words,the relationship between China and the international system is one of benign interactions.

  15. China's energy security and its challenges towards 2035

    DEFF Research Database (Denmark)

    Odgaard, Ole; Delman, Jørgen

    2014-01-01

    Within the last twenty years, China has become dependent on import of coal, oil and natural gas. Especially oil is now an economic and a security concern by the Chinese regime and key international stakeholders. Until 2035, China will account for one fourth of the global net growth in global gas...... of oil is secured so far. Even if China attempts to address its insufficient supply of oil by increased investments in overseas oil fields, there is still a large gap. Furthermore, the oil import will largely come from politically unstable countries and regions, and the bulk of the supplies must...... and regional cooperation....

  16. Roadmap of retail electricity market reform in China: assisting in mitigating wind energy curtailment

    Science.gov (United States)

    Yu, Dezhao; Qiu, Huadong; Yuan, Xiang; Li, Yuan; Shao, Changzheng; Lin, You; Ding, Yi

    2017-01-01

    Among the renewable energies, wind energy has gained the rapidest development in China. Moreover wind power generation has been penetrated into power system in a large scale. However, the high level wind curtailment also indicates a low efficiency of wind energy utilization over the last decade in China. One of the primary constraints on the utilization of wind energy is the lack of an electricity market, in which renewable energies can compete equally with traditional fossil fuel generation. Thus the new round electric power industry reform is essential in China. The reform involves implementing new pricing mechanism, introducing retail-side competition, promoting the consumption of renewable energy. The new round reform can be a promising solution for promoting the development and consumption of wind energy generation in China. Based on proposed reform policies of electric power industry, this paper suggests a roadmap for retail electricity market reform of China, which consists of three stages. Barriers to the efficient utilization of wind energy are also analysed. Finally, this paper introduces several efficient measures for mitigating wind curtailment in each stage of reform.

  17. From energy efficiency to integrated sustainable urbanism in residential development in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhichang Cai

    2010-06-15

    China has adopted Sustainable Development as a national strategy for all industries. In civil construction sector, sustainability is regarded as the development of Green Building in China. Since 2000, China has introduced a series of policies and laws to promote Green Building. Green Building was defined as buildings that are 'energy-efficient, land-efficient, water-efficient, and material-efficient' and emit 'minimal pollution' in during its entire life cycle, and meets a specified standard for indoor environment at the same time. However, energy efficiency is the central issue of current Green Building development in China, while issues of resources and pollution are neglected, which is partly due to China's energy structure. Social and economic aspects are also always ignored. The main aim of this thesis is to map pathways towards more comprehensive frameworks for how residential areas in China could be constructed in a more sustainable way in hot summer and cold-winter area. Case study was the main method used to examine the specifications of Green Residential Building in China. This paper offers a general overview of the current green trend in China and presents a specific analysis on three cases to search for the proper approach for China's unique situation by three specific cases representing three types of Green Building: Modern Vernacular Architecture, Eco-office and Mass-housing, according to their features in scale, location and function. This paper then presents a specific integrated sustainability analysis of the Landsea Housing Project in Nanjing, a hot-summer/cold-winter zone. Hammarby Sjoestad, a cutting edge project in Stockholm, is also discussed as a reference area from which experiences can be drawn for China. The aim was to improve the framework for construction of residential buildings in China in a more sustainable way, from energy efficiency to integrated sustainability. The paper also discusses the relationship

  18. Rural electric energy services in China: Implementing the renewable energy challenge

    Energy Technology Data Exchange (ETDEWEB)

    Weingart, J.W.

    1996-12-31

    This paper discusses issues related to rural electrification in China, with emphasis on a pilot project in Mongolia to implement small scale renewable energy sources. These projects consist of photovoltaic systems, wind electric systems, photovoltaic/wind hybrid systems, and wind/gasoline generator sets. These systems are small enough to implement in rural environments, more cost effective than grid type systems, and have lower cost than standard generator sets alone because of the improved reliability. The author also discusses the use of such systems for village power sources. A number of factors are contributing to the increase in such systems. Individuals are able and willing to pay for such systems, lending institutions are willing to fund such small-scale projects, they provide reliable, high quality services which support social and economic development.

  19. Future energy consumption and emissions in East-, Central- and West-China: Insights from soft-linking two global models

    DEFF Research Database (Denmark)

    Dai, Hancheng; Mischke, Peggy

    2014-01-01

    China's role in the global economy and energy markets is expanding, however many uncertainties with regards to the country's future energy consumption and emissions remain. Large regional disparities between China's provinces exist. Scenario analysis for different sub-regions of China...... will be useful for an improved understanding of China's potential future development and associated global impacts. This study soft-links a global dynamic CGE model and a global technology-rich energy system model. Both models are expanded to include East-, Central-, and West-China. This study shows that soft......-linking affects the China-specific reference scenario results in the CGE model considerably. Energy consumption and emissions are decreasing in China until 2050 while regional differences within China remain high....

  20. Labeling of Energy Efficiency in China to Be Expanded to 20 Categories of Products

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Mr. Wang Ruohong,director of the Energy Efficiency Management Center of the China Institute for Standardization, expressed in the "High-efficiency and Energy-saving Electric Appliance Promotion Quarter"that compulsory labeling of energy efficiency will be continued in China on frequency-converting air-conditioners, gas heaters, electric heaters and electromagnetic ovens. By the end of the "11th Five Year", compulsory labeling of energy efficiency will be expanded to include 20 categories of products, including household appliances, automobiles, architecture, motors, and offices. Labeling in other industries will continue, but the number of levels will be reduced from the current five to three.

  1. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    Science.gov (United States)

    Kahrl, Fredrich James

    Global energy markets and climate change in the twenty first century depend, to an extraordinary extent, on China. China is now, or will soon be, the world's largest energy consumer. Since 2007, China has been the world's largest emitter of greenhouse gases (GHGs). Despite its large and rapidly expanding influence on global energy markets and the global atmosphere, on a per capita basis energy consumption and GHG emissions in China are low relative to developed countries. The Chinese economy, and with it energy use and GHG emissions, are expected to grow vigorously for at least the next two decades, raising a question of critical historical significance: How can China's economic growth imperative be meaningfully reconciled with its goals of greater energy security and a lower carbon economy? Most scholars, governments, and practitioners have looked to technology---energy efficiency, nuclear power, carbon capture and storage---for answers to this question. Alternatively, this study seeks to root China's future energy and emissions trajectory in the political economy of its multiple transitions, from a centrally planned to a market economy and from an agrarian to a post-industrial society. The study draws on five case studies, each a dedicated chapter, which are organized around three perspectives on energy and GHG emissions: the macroeconomy; electricity supply and demand; and nitrogen fertilizer production and use. Chapters 2 and 3 examine how growth and structural change in China's macroeconomy have shaped energy demand, finding that most of the dramatic growth in the country's energy use over the 2000s was driven by an acceleration of its investment-dominated, energy-intensive growth model, rather than from structural change. Chapters 4 and 5 examine efforts to improve energy efficiency and increase the share of renewable generation in the electric power sector, concluding that China's power system lacks the flexibility in generation, pricing, and demand to

  2. Energy Policies Cause Unexpected Diesel Shortage in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ An unprecedented diesel shortage is sweeping through Chinese cities, as numerous enterprises have to resort to diesel fuel to generate electricity to continue operation during periods of forced power outages.For example, the diesel shortage has recently paralyzed traffic on a pivotal expressway in Northwest China, with trucks waiting in long lines to fill their fuel tanks.China's Ministry of Commerce has recently required the local bureaus to ensure ample supply of fuel amid rising inflation.

  3. New Progress in China's Energy Cooperation with Russia and Kazakhstan

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ CNPC and YUKOS signes oil pipeline agreement CNPC and Russia's private oil producer YUKOS signed an agreement on May 28 in Moscow, setting out key aspects such as the quality of oil to be supplied, contractual terms and pricing formulas to pave the way for a US$2.5 billion oil pipeline stretching the vast expanse of Siberian and into China. This agreement was inked on the third day of China's President Hu Jintao's state visit to Russia.

  4. Energy consumption and economic growth: Evidence from China at both aggregated and disaggregated levels

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Jiahai [School of Business Administration, North China Electric Power University (China)], E-mail: yuanjh126@126.com; Kang Jiangang [School of Foreign Languages, North China Electric Power University (China); Zhao Changhong [School of Business Administration, North China Electric Power University (China); Hu Zhaoguang [State Power Economic Research Institute (China)

    2008-11-15

    Using a neo-classical aggregate production model where capital, labor and energy are treated as separate inputs, this paper tests for the existence and direction of causality between output growth and energy use in China at both aggregated total energy and disaggregated levels as coal, oil and electricity consumption. Using the Johansen cointegration technique, the empirical findings indicate that there exists long-run cointegration among output, labor, capital and energy use in China at both aggregated and all three disaggregated levels. Then using a VEC specification, the short-run dynamics of the interested variables are tested, indicating that there exists Granger causality running from electricity and oil consumption to GDP, but does not exist Granger causality running from coal and total energy consumption to GDP. On the other hand, short-run Granger causality exists from GDP to total energy, coal and oil consumption, but does not exist from GDP to electricity consumption. We thus propose policy suggestions to solve the energy and sustainable development dilemma in China as: enhancing energy supply security and guaranteeing energy supply, especially in the short run to provide adequate electric power supply and set up national strategic oil reserve; enhancing energy efficiency to save energy; diversifying energy sources, energetically exploiting renewable energy and drawing out corresponding policies and measures; and finally in the long run, transforming development pattern and cut reliance on resource- and energy-dependent industries.

  5. CO{sub 2} emissions, energy consumption and economic growth in China: A panel data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.S.; Zhou, D.Q. [College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Research Centre for Soft Energy Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhou, P., E-mail: cemzp@nuaa.edu.cn [College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Research Centre for Soft Energy Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Q.W. [Research Centre for Soft Energy Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); School of Business, Soochow University, 50 Donghuan Road, Suzhou 215021 (China)

    2011-09-15

    This paper examines the causal relationships between carbon dioxide emissions, energy consumption and real economic output using panel cointegration and panel vector error correction modeling techniques based on the panel data for 28 provinces in China over the period 1995-2007. Our empirical results show that CO{sub 2} emissions, energy consumption and economic growth have appeared to be cointegrated. Moreover, there exists bidirectional causality between CO{sub 2} emissions and energy consumption, and also between energy consumption and economic growth. It has also been found that energy consumption and economic growth are the long-run causes for CO{sub 2} emissions and CO{sub 2} emissions and economic growth are the long-run causes for energy consumption. The results indicate that China's CO{sub 2} emissions will not decrease in a long period of time and reducing CO{sub 2} emissions may handicap China's economic growth to some degree. Some policy implications of the empirical results have finally been proposed. - Highlights: > We conduct a panel data analysis of the energy-CO{sub 2}-economy nexus in China. > CO{sub 2} emissions, energy use and economic growth appear to be cointegrated. > There exists bidirectional causality between energy consumption and economic growth. > Energy consumption and economic growth are the long-run causes for CO{sub 2} emissions.

  6. Numerical Forecasting Experiment of the Wave Energy Resource in the China Sea

    Directory of Open Access Journals (Sweden)

    Chong Wei Zheng

    2016-01-01

    Full Text Available The short-term forecasting of wave energy is important to provide guidance for the electric power operation and power transmission system and to enhance the efficiency of energy capture and conversion. This study produced a numerical forecasting experiment of the China Sea wave energy using WAVEWATCH-III (WW3, the latest version 4.18 wave model driven by T213 (WW3-T213 and T639 (WW3-T639 wind data separately. Then the WW3-T213 and WW3-T639 were verified and compared to build a short-term wave energy forecasting structure suited for the China Sea. Considering the value of wave power density (WPD, “wave energy rose,” daily and weekly total storage and effective storage of wave energy, this study also designed a series of short-term wave energy forecasting productions. Results show that both the WW3-T213 and WW3-T639 exhibit a good skill on the numerical forecasting of the China Sea WPD, while the result of WW3-T639 is much better. Judging from WPD and daily and weekly total storage and effective storage of wave energy, great wave energy caused by cold airs was found. As there are relatively frequent cold airs in winter, early spring, and later autumn in the China Sea and the surrounding waters, abundant wave energy ensues.

  7. Biotechnology in China II. Chemicals, energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, G.T. [Purdue Univ., West Lafayette, IN (United States). Lab. Renewable Resources Engineering; Ouyang, Pingkai [Nanjing Univ. of Technology (China). College of Life Science and Pharmaceutical Engineering; Chen, Jian (eds.) [Jiangnan Univ., Wuxi (China). School of Biotechnology

    2010-07-01

    The biochemical engineering and biotechnology is now becoming the most important industry all over the world. China, as a country that has more than 1.3 billion people, has become one of the fastest growing countries in the world during the last several decades. Both the Chinese government and companies pay more and more attention on the research and the application of biotechnology. In the 11th five-year plan (2006-2010), Chinese government unprecedented enhanced the support on the biotechnology in both policy and finance. Currently, the biotechnology gains the most R and D funding in China. With the great support and the increasingly frequent exchanges from abroad, the biotechnology in China becomes more and more important in the world. In recognition of the enormous advances in biotechnology in China, we are pleased to present the second volume of Advances in Biochemical Engineering/ Biotechnology: Biotechnology in China II, edited by P. K. Ouyang, J. Chen and G. T. Tsao, relatively soon after the introduction of the first volume of this multivolume comprehensive books. Since the previous volume was extremely well accepted by the scientific community, we have maintained the overall goal of creating a number of chapters, each devoted to a certain topic by several Chinese research groups working in the field, which provide scientists in academia and public institutions with a well-balanced and comprehensive overview of this growing field in China. We have fully revised the volume and expanded it from bioreaction, bioseparation and bioremediation to more extensive issues in order to cover all recent developments in China into account as much as possible. The new volume of Advances in Biochemical Engineering/Biotechnology: Biotechnology in China II is a comprehensive description of the state-of-the-art in China, and a guide to the understanding the work of Chinese biochemical engineering and biotechnology researchers. It is specifically directed to microbiologists

  8. Co-integration-based analysis of energy assurance for steady economic growth in China

    Institute of Scientific and Technical Information of China (English)

    HE Ya-qun; LAO Guo-hong; OSUCH Chris E; ZUO Wei-ran; WEN Bao-feng

    2008-01-01

    By applying co-integration analysis, the Granger causality test and an error correction model, the dependency between the energy consumption and the gross domestic product of China was examined. In a further step an analysis was done to establish a correlation between the economic growth of different industries and China's energy consumption. An evidence-based study showed that a co-integration relationship exists between the gross energy consumption and the GDP of China and that the two variables possess bi-directional causality. The energy consumption for the secondary industry has a markedly stimulative effect to the economic growth. This paper also uses an error correction model (ECM) to explain the short-term behavior of energy demands.

  9. Spatial variation and distribution of urban energy consumptions from cities in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Yang, Z. [State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing (China); Liang, J. [Beijing Municipal Research Institute of Environmental Protection, Beijing 100037 (China); Cai, Y. [Faculty of Engineering, Dalhousie University, Halifax, Nova Scotia (Canada)

    2011-07-01

    With support of GIS tools and Theil index, the spatial variance of urban energy consumption in China was discussed in this paper through the parallel comparison and quantitative analysis of the 30 provincial capital cities of mainland China in 2005, in terms of scale, efficiency and structure. The indicators associated with urban energy consumption show large spatial variance across regions, possibly due to diversities of geographic features, economic development levels and local energy source availability in China. In absolute terms, cities with the highest total energy consumption are mostly distributed in economic-developed regions as Beijing-Tianjin-Tangshan Area, Yangtze River Delta and Pearl River Delta of China. However, the per capita urban energy use is significantly higher in the Mid-and-Western regions. With regard to the energy mix, coal still plays the dominant role and cities in Mid-and-Western regions rely more on coal. In contrast, high quality energy carrier as electricity and oils are more used in southeast coastal zone and northern developed areas. The energy intensive cities are mainly located in the northwest, while the cities with higher efficiency are in southeast areas. The large spatial variance of urban energy consumption was also verified by the Theil indices. Considering the Chinese economy-zones of East, Middle and West, the within-group inequalities are the main factor contributing to overall difference, e.g., the Theil index for per capita energy consumption of within-group is 0.18, much higher than that of between group (0.07), and the same applies to other indicators. In light of the spatial variance of urban energy consumptions in China, therefore, regionalized and type-based management of urban energy systems is badly needed to effectively address the ongoing energy strategies and targets. (authors)

  10. Spatial Variation and Distribution of Urban Energy Consumptions from Cities in China

    Directory of Open Access Journals (Sweden)

    Yanpeng Cai

    2010-12-01

    Full Text Available With support of GIS tools and Theil index, the spatial variance of urban energy consumption in China was discussed in this paper through the parallel comparison and quantitative analysis of the 30 provincial capital cities of mainland China in 2005, in terms of scale, efficiency and structure. The indicators associated with urban energy consumption show large spatial variance across regions, possibly due to diversities of geographic features, economic development levels and local energy source availability in China. In absolute terms, cities with the highest total energy consumption are mostly distributed in economic-developed regions as Beijing-Tianjin-Tangshan Area, Yangtze River Delta and Pearl River Delta of China, however, the per capita urban energy use is significantly higher in the Mid-and-Western regions. With regard to the energy mix, coal still plays the dominant role and cities in Mid-and-Western regions rely more on coal. In contrast, high quality energy carrier as electricity and oils are more used in southeast coastal zone and northern developed areas. The energy intensive cities are mainly located in the northwest, while the cities with higher efficiency are in southeast areas. The large spatial variance of urban energy consumption was also verified by the Theil indices. Considering the Chinese economy-zones of East, Middle and West, the within-group inequalities are the main factor contributing to overall difference, e.g., the Theil index for per capita energy consumption of within-group is 0.18, much higher than that of between group (0.07, and the same applies to other indicators. In light of the spatial variance of urban energy consumptions in China, therefore, regionalized and type-based management of urban energy systems is badly needed to effectively address the ongoing energy strategies and targets.

  11. Approaches for Sustainable Development of China's Energy Industry

    Institute of Scientific and Technical Information of China (English)

    Yang Zhongpei; Yan Qingxu

    2007-01-01

    @@ It is well-known that energy industry is a backbone in the development of economy in a country. Energy demand forecasts, adjustment of energy supply structure, energy security, policies concerning energy saving and environmental protection, climate factors, reform of energy pricing system, new energy technologies and renewable energy development, etc. have far-reaching impacts on energy industry and even on the development of national economy. Therefore, the sustainable development of energy industry is critical for the sustainable developments of economy and the society, and its strategic position requires great attention from the whole society.

  12. An Anatomy of China's Energy Insecurity and Its Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bo

    2005-12-06

    China’s energy insecurity largely originates from its constrained availability, questionable reliability, and uncertain affordability of its oil supplies. The country’s fast industrialization and urbanization, together with demand for infrastructure and increasing popularity of automobiles, requires a lot of energy, but it consumes energy both intensively and inefficiently, threatening the environmental well-being of China and its neighbors. China’s risk aversion and poor energy policy making system further magnifies its perceptions of the low availability, reliability and affordability of oil imports, which further compounds its sense of energy insecurity. Distrustful of the market, and suspicious of other major energy players in the international market, the Chinese leadership relies on the state-centered approach, or economic nationalism, rather than a market approach to enhance its energy security. However, the country lacks not only an energy policy making system that can make and implement sound energy policies but also an energy market that relies on market prices to allocate energy resources efficiently. As a result of this domestic failure, China has pushed its national flagship companies to undertake a global scavenger hunt for energy while muddling along a messy road of energy reform at home. Setbacks in acquiring new sources of oil have validated the Chinese leadership’s belief that the international oil market is not free and China’s access to international oil is not guaranteed through the market. China’s problems in the international energy market are also perceived as evidence of attempts to prevent China from exerting international influence. China’s leadership is convinced that China should focus on areas where western capital is not heavily concentrated or where western influences are weak. With the recent revaluation of Chinese currency and growing economy, China has both the wherewithal and appetite to acquire more oil assets

  13. Energy consumption and economic growth in China: A multivariate causality test

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuan, E-mail: ywang@nju.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Wang Yichen; Zhou Jing; Zhu Xiaodong; Lu Genfa [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2011-07-15

    This study takes a fresh look at the direction of causality between energy consumption and economic growth in China during the period from 1972 to 2006, using a multivariate cointegration approach. Given the weakness associated with the bivariate causality framework, the current study performs a multivariate causality framework by incorporating capital and labor variables into the model between energy consumption and economic growth based on neo-classical aggregate production theory. Using the recently developed autoregressive distributed lag (ARDL) bounds testing approach, a long-run equilibrium cointegration relationship has been found to exist between economic growth and the explanatory variables: energy consumption, capital and employment. Empirical results reveal that the long-run parameter of energy consumption on economic growth in China is approximately 0.15, through a long-run static solution of the estimated ARDL model, and that for the short-run is approximately 0.12 by the error correction model. The study also indicates the existence of short-run and long-run causality running from energy consumption, capital and employment to economic growth. The estimation results imply that energy serves as an important source of economic growth, thus more vigorous energy use and economic development strategies should be adopted for China. - Highlights: > Cointegration is only present when real GDP is the dependent variable. >The long-run causality running from energy consumption to economic growth. >China is an energy dependent economy.

  14. Study on Relationship of Energy Consumption and Economic Growth in China

    Science.gov (United States)

    Zhang-wei, Li; Xun-gang, Zheng

    Energy is one of the most basic materials of the national economy, which plays an important role in national productin and life. The relationship between energy consumption and economic growth has been a fascinating question since energy crisis in 70s of last century. This paper analyzes the relationship between energy consumption and economic development based on the VAR model using temporal series of China from 1990 to 2009, then uses impulse response function and variance decomposition to portray the correlations between economic growth and energy consumption. The result shows that there exists a unidirectional causality from energy consumption to gross domestic product and energy consumption can observably promote the development of economy.

  15. Impacts of Renewable Energy Quota System on China's Future Power Sector

    DEFF Research Database (Denmark)

    Xiong, Weiming; Zhang, Da; Mischke, Peggy

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument...... for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are still very limited. Based on a least-cost and technology-rich power generation and transmission expansion model...... for China, this study examines the impacts of renewable energy quota system and carbon cap policy instruments on the future Chinese power sector. Various scenarios are examined toward 2030 and their future power generation mix, capacity installations and carbon emission are discussed. This study concludes...

  16. Determining the life cycle energy efficiency of six biofuel systems in China: a Data Envelopment Analysis.

    Science.gov (United States)

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun; Mazzi, Anna; Scipioni, Antonio; Sovacool, Benjamin K

    2014-06-01

    This aim of this study was to use Data Envelopment Analysis (DEA) to assess the life cycle energy efficiency of six biofuels in China. DEA can differentiate efficient and non-efficient scenarios, and it can identify wasteful energy losses in biofuel production. More specifically, the study has examined the efficiency of six approaches for bioethanol production involving a sample of wheat, corn, cassava, and sweet potatoes as feedstocks and "old," "new," "wet," and "dry" processes. For each of these six bioethanol production pathways, the users can determine energy inputs such as the embodied energy for seed, machinery, fertilizer, diesel, chemicals and primary energy utilized for manufacturing, and outputs such as the energy content of the bioethanol and byproducts. The results indicate that DEA is a novel and feasible method for finding efficient bioethanol production scenarios and suggest that sweet potatoes may be the most energy-efficient form of ethanol production for China.

  17. Modeling energy efficiency to improve air quality and health effects of China's cement industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Krol, Maarten; de Bruine, Marco; Geng, Guangpo; Wagner, Fabian; Cofala, Janusz

    2016-01-01

    Actions to reduce the combustion of fossil fuels often decrease GHG emissions as well as air pollutants and bring multiple benefits for improvement of energy efficiency, climate change, and air quality associated with human health benefits. The China's cement industry is the second largest energy co

  18. Scenario analysis of energy-based low-carbon development in China.

    Science.gov (United States)

    Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng

    2014-08-01

    China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation.

  19. Estimate of China's energy carbon emissions peak and analysis on electric power carbon emissions

    Directory of Open Access Journals (Sweden)

    Zhi-Xuan Wang

    2014-12-01

    Full Text Available China's energy carbon emissions are projected to peak in 2030 with approximately 110% of its 2020 level under the following conditions: 1 China's gross primary energy consumption is 5 Gtce in 2020 and 6 Gtce in 2030; 2 coal's share of the energy consumption is 61% in 2020 and 55% in 2030; 3 non-fossil energy's share increases from 15% in 2020 to 20% in 2030; 4 through 2030, China's GDP grows at an average annual rate of 6%; 5 the annual energy consumption elasticity coefficient is 0.30 in average; and 6 the annual growth rate of energy consumption steadily reduces to within 1%. China's electricity generating capacity would be 1,990 GW, with 8,600 TW h of power generation output in 2020. Of that output 66% would be from coal, 5% from gas, and 29% from non-fossil energy. By 2030, electricity generating capacity would reach 3,170 GW with 11,900 TW h of power generation output. Of that output, 56% would be from coal, 6% from gas, and 37% from non-fossil energy. From 2020 to 2030, CO2 emissions from electric power would relatively fall by 0.2 Gt due to lower coal consumption, and relatively fall by nearly 0.3 Gt with the installation of more coal-fired cogeneration units. During 2020–2030, the portion of carbon emissions from electric power in China's energy consumption is projected to increase by 3.4 percentage points. Although the carbon emissions from electric power would keep increasing to 118% of the 2020 level in 2030, the electric power industry would continue to play a decisive role in achieving the goal of increase in non-fossil energy use. This study proposes countermeasures and recommendations to control carbon emissions peak, including energy system optimization, green-coal-fired electricity generation, and demand side management.

  20. An integrated assessment of the potential of agricultural and forestry residues for energy production in China

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ji [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081 China; Zhang, Aiping [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081 China; Lam, Shu Kee [Crop and Soil Sciences Section, Faculty of Veterinary and Agricultural Sciences, the University of Melbourne, Melbourne Vic. 3010 Australia; Zhang, Xuesong [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing MI 48824 USA; Thomson, Allison M. [Field to Market, The Alliance for Sustainable Agriculture, 777 N Capitol St. NE Suite 803 Washington DC 20002 USA; Lin, Erda [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081 China; Jiang, Kejun [Energy Research Institute (ERI), Beijing 100038 China; Clarke, Leon E. [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Edmonds, James A. [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Kyle, Page G. [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Yu, Sha [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Zhou, Yuyu [Department of Geological & Atmospheric Sciences, Iowa State University, Ames IA 50011 USA; Zhou, Sheng [Institutes of Energy, Environment and Economy, Tsinghua University, Beijing 100084 China

    2016-01-05

    Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003-2007, is around 15519PJ in China, consisting of 10818PJ from agriculture residues (70%) and 4701PJ forestry residues (30%). We estimate that 12693PJ of the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347PJ), east China (2862PJ) and south-west China (2229PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380PJ by 2050 and 4108PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450ppm scenario, availability of biomass increases to 9002PJ (2050) and 11524PJ (2095), respectively. For the 450ppm scenario without CCS, 9183 (2050) and 11150PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world.

  1. U.S.-China Competition for Energy Resources

    Science.gov (United States)

    2009-12-01

    as “travel and tourism , banking, insurance, entertainment, law, software, and telecommunications.”44 U.S. private service sector “accounts for more... Bangkok , and Bush hosted Premier Wen Jiabao. In 2005, the U.S. president met with his Chinese counterpart and the Premier. The same year the U.S.-China

  2. The impact of energy, transport, and trade on air pollution in China

    Energy Technology Data Exchange (ETDEWEB)

    Poon, J.P.H.; Casas, I.; He, C.F. [SUNY Buffalo, Buffalo, NY (United States). Dept. of Geology

    2006-09-15

    A team of U.S.- and China-based geographers examines the relationship between China's economic development and its environment by modeling the effects of energy, transport, and trade on local air pollution emissions (sulfur dioxide and soot particulates) using the Environmental Kuznets model. Specifically, the latter model is investigated using spatial econometrics that take into account potential regional spillover effects from high-polluting neighbors. The analysis finds an inverted-U relationship for sulfur dioxide but a U-shaped curve for soot particulates. This suggests that soot particulates such as black carbon may pose a more serious environmental problem in China than sulfur dioxide.

  3. China Committed to Environmental Protection with Increase of Clean Energy Consumption

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Construction of the West-East gas transmission pipeline is a significant decision that the Chinese government made at the turn of the century, aiming at bringing the long-term benefits to the Chinese people. The project, starting from Tarim basin in West China's Xinjiang Autonomous Region and ending in Shanghai on China's eastern coastline, will stimulate the western economic development,accelerate adjustment of the eastern energy consumption structure and improve the environmental protection in the areas along the giant pipeline.

  4. A comparative study of energy utilization efficiency between Taiwan and China

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Tsai-lien [Department of International Business, Ming-chuan University, No. 250, Sec. 5, Chung-shan North Road, Taipei 111 (Taiwan); Chen, Tser-yieth; Lai, Pei-ying [Institute of International Business, National Taipei University, No. 151, University Road, Sanhsia 23701, Taipei County (Taiwan)

    2010-05-15

    This paper employs data envelopment analysis to evaluate energy utilization efficiency between China and Taiwan from 2002 to 2007. The most important contributions of this paper are the clear description of the systematic process of energy utilization efficiency, the efficiency comparison between China and Taiwan, the remarkable demonstration of their outputs through two non-desirable outputs (CO{sub 2} emissions and SO{sub 2} emissions) in the data envelopment analysis framework, and the valuable results and insights gained from the application of economic development and environmental protection. Empirical results show that the Eastern region of China enjoy higher energy utilization efficiency than the Western region. Energy utilization efficiency in Taiwan is higher than that in the Eastern region of China. In China, CO{sub 2} emissions were 11.28% greater than they should be (from 2002 to 2007). By contrast, CO{sub 2} emissions in Taiwan were only 1.50% in excess of what they should be since Taiwan began conducting an uninterrupted energy-saving policy and a CO{sub 2} emission regulation policy (). Finally, this study employs the business strategy matrix constructed by the Boston Consulting Group (BCG Matrix) to illustrate individual evidence of the relationship between economic development efficiency and greenhouse gas efficiency. (author)

  5. A comparative study of energy utilization efficiency between Taiwan and China

    Energy Technology Data Exchange (ETDEWEB)

    Yeh Tsailien, E-mail: tlyeh@mcu.edu.t [Department of International Business, Ming-chuan University, No. 250, Sec. 5, Chung-shan North Road, Taipei 111, Taiwan (China); Institute of International Business, National Taipei University, No. 151, University Road, Sanhsia 23701, Taipei County, Taiwan (China); Chen Tseryieth, E-mail: chenty@mail.ntpu.edu.t [Department of International Business, Ming-chuan University, No. 250, Sec. 5, Chung-shan North Road, Taipei 111, Taiwan (China); Institute of International Business, National Taipei University, No. 151, University Road, Sanhsia 23701, Taipei County, Taiwan (China); Lai Peiying, E-mail: aka_jin0422@yahoo.com.t [Department of International Business, Ming-chuan University, No. 250, Sec. 5, Chung-shan North Road, Taipei 111, Taiwan (China); Institute of International Business, National Taipei University, No. 151, University Road, Sanhsia 23701, Taipei County, Taiwan (China)

    2010-05-15

    This paper employs data envelopment analysis to evaluate energy utilization efficiency between China and Taiwan from 2002 to 2007. The most important contributions of this paper are the clear description of the systematic process of energy utilization efficiency, the efficiency comparison between China and Taiwan, the remarkable demonstration of their outputs through two non-desirable outputs (CO{sub 2} emissions and SO{sub 2} emissions) in the data envelopment analysis framework, and the valuable results and insights gained from the application of economic development and environmental protection. Empirical results show that the Eastern region of China enjoy higher energy utilization efficiency than the Western region. Energy utilization efficiency in Taiwan is higher than that in the Eastern region of China. In China, CO{sub 2} emissions were 11.28% greater than they should be (from 2002 to 2007). By contrast, CO{sub 2} emissions in Taiwan were only 1.50% in excess of what they should be since Taiwan began conducting an uninterrupted energy-saving policy and a CO{sub 2} emission regulation policy. Finally, this study employs the business strategy matrix constructed by the Boston Consulting Group (BCG Matrix) to illustrate individual evidence of the relationship between economic development efficiency and greenhouse gas efficiency.

  6. Major Energy Plants and Their Potential for Bioenergy Development in China

    Science.gov (United States)

    Li, Xiaofeng; Hou, Shenglin; Su, Man; Yang, Mingfeng; Shen, Shihua; Jiang, Gaoming; Qi, Dongmei; Chen, Shuangyan; Liu, Gongshe

    2010-10-01

    China is rich in energy plant resources. In this article, 64 plant species are identified as potential energy plants in China. The energy plant species include 38 oilseed crops, 5 starch-producing crops, 3 sugar-producing crops and 18 species for lignocellulosic biomass. The species were evaluated on the basis of their production capacity and their resistance to salt, drought, and/or low temperature stress. Ten plant species have high production and/or stress resistance and can be potentially developed as the candidate energy plants. Of these, four species could be the primary energy plants in China: Barbados nut ( Jatropha curcas L.), Jerusalem artichoke ( Helianthus tuberosus L.), sweet sorghum ( Sorghum bicolor L.) and Chinese silvergrass ( Miscanthus sinensis Anderss.). We discuss the use of biotechnological techniques such as genome sequencing, molecular markers, and genetic transformation to improve energy plants. These techniques are being used to develop new cultivars and to analyze and manipulate genetic variation to improve attributes of energy plants in China.

  7. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    Energy Technology Data Exchange (ETDEWEB)

    G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel

    2010-07-01

    After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At the same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents the most likely path of growth based on continuation of current policies and meeting announced targets and goals, including meeting planned appliance efficiency standard revisions, fuel economy standards, and industrial targets and moderate phase-out of subcritical coal-fired generation with additional non-fossil generation. AIS represents a more aggressive trajectory of accelerated improvement in energy intensity and decarbonized power and transport sectors. A range of sensitivity analysis and power technology scenarios are tested to evaluate the impact of additional actions such as

  8. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

    2014-04-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

  9. The Geopolitical Energy Security Evaluation Method and a China Case Application Based on Politics of Scale

    Directory of Open Access Journals (Sweden)

    Zhiding Hu

    2014-08-01

    Full Text Available Combining the theories of politics of scale from political geography, security theory from international relations, and energy security theory, and putting the scale conversion of energy contention, geographical relationship and geo-structure in geo-setting, and the three properties of safety in consideration, this paper rebuilds a geo-energy security evaluation model and uses the model to quantitatively evaluate China’s geo-oil energy security in the Russian Pacific oil pipeline construction from 1995 to 2010. Five results could be drawn as follows: (1 from the aspect of time, an up-surging Geo-oil Safety Index of China in the Russian Pacific oil pipeline construction indicated an increasingly disadvantage of China in the geo-oil contention by politics of scale. If the United States and South Korea are involved, the competition would be further intensified; (2 from the aspect of geopolitical relationship, a general decrease occurred in the Sino-Japan Energy Competition Index, but a specific increase appeared in the competition of energy imports from Russia, by China and Japan individually; (3 from the aspect of regional strategy of energy export, an obvious downward tendency in Energy Export Strategy Index showed that Russia has changed its export destination off of Europe; (4 from the aspect of geo-security, a relatively steady proportion of China’s oil consumption, and a friendly comprehensive strategic partnership of cooperation between China and Russia, reduced the worries of China’s geo-oil energy security to some extent; (5 from the aspect of geopolitical structure, the increasing comprehensive national power in China, driven by rapid economic growth, will intensify the geo-oil competition in Northeast Asia.

  10. Viability of Hydrogen Pathways that Enhance Energy Security: A Comparison of China and Denmark

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Andreasen, Kristian Peter; Sovacool, Benjamin

    2014-01-01

    pathways create particular consequences on a nation's overall energy security. The objective of this study is to investigate the superiorities and inferiorities of hydrogen pathways from the perspective of China and Denmark, and to determine which pathways best contribute to national energy security...... objectives. The results are useful for stakeholders and energy analysts so that they can correctly plan and research the most socially optimal portfolio of hydrogen technologies....

  11. Urbanization impact on energy demand and CO2 emission in China

    Institute of Scientific and Technical Information of China (English)

    BaorenWEI; HiroshiYAGITA; AtsushiINABA; MasayukiSAGISAKA

    2003-01-01

    Urbanization has been believed a driving force of GDP growth in China. In the other hand, urbanization will atso impose some impact on energy demand and CO2 emissions. The calculation method of this impact is presented in this paper. It has been assumed that in 2003 the urbanization rate in China will have a unit (1 %) growth, GDP growth and its partition in agriculture, secondary industry and tertiary industry are calculated. The corresponding energy demand for GDP growth, household and transportation and CO2 emissions are further calculated. The calculation has been carried out by a computer program NICE Ⅲ developed in LCA Research Center AIST Japan. It has been found that 1 % increase of urbanization rate will cause 1 % of total energy demand and 1.2 % CO2 emissions in China in 2003.

  12. HUGE ADVANTAGES OF ENERGY COOPERATION AMONG CHINA, RUSSIA AND KAZAKHSTAN

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ In November 30 to December 2,2005, Beijing successfully hosted the "2nd Sino-Russo-KazakhOil Forum", on which the participants discussed the ways to find the crossing points of their common benefit. In addition to the participants from China,Russia and Kazakhstan, some representatives from the petroleum industries of other countries such as Ukraine,Turkmenistan, England and Netherlands also attended the meeting.

  13. Analysis of Spatial Disparities and Driving Factors of Energy Consumption Change in China Based on Spatial Statistics

    Directory of Open Access Journals (Sweden)

    Hualin Xie

    2014-04-01

    Full Text Available The changes of spatial pattern in energy consumption have an impact on global climate change. Based on the spatial autocorrelation analysis and the auto-regression model of spatial statistics, this study has explored the spatial disparities and driving forces in energy consumption changes in China. The results show that the global spatial autocorrelation of energy consumption change in China is significant during the period 1990–2010, and the trend of spatial clustering of energy consumption change is weakened. The regions with higher energy consumption change are significantly distributed in the developed coastal areas in China, while those with lower energy consumption change are significantly distributed in the less developed western regions in China. Energy consumption change in China is mainly caused by transportation industry and non-labor intensive industry. Rapid economic development and higher industrialization rate are the main causes for faster changes in energy consumption in China. The results also indicate that spatial autoregressive model can reveal more influencing factors of energy consumption changes in China, in contrast with standard linear model. At last, this study has put forward the corresponding measures or policies for dealing with the growing trend of energy consumption in China.

  14. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    In recent years China's energy consumption has increased rapidly. The problem of high energy consumption intensity and low energy utilization efficiency is serious, and the contradiction between economic development and energy and environmental resources has become increasingly acute, making energy conservation and consumption reduction an important society-wide concern. At the same time, global climate change has and will continue to have profound impacts on human survival and development, and is another major challenge to all countries. In order to accelerate China's energy conservation and emission reduction work, the National Leading Group to Address Climate Change, Energy Conservation and Emission Reduction was founded with Premier Wen Jiabao as the head, and the 'Comprehensive Work Program of Energy Conservation and Emission Reduction' and 'China's National Program of Addressing Climate Change' were issued, under which China's energy conservation and emission reduction work has been fully deployed. Efforts to promote energy efficiency have been further strengthened in all levels of government, and various policies and measures have progressively been issued and implemented. In addition, based on China's experience with implementing energy-saving priority strategies over the past 20+ years, our government established a goal of a 20% decrease in energy consumption per unit GDP in the 'Eleventh Five-year Development Plan'. Furthermore, in November 2009, in order to support global greenhouse gas emission reduction activities and promote China's low carbon economic development, the government established a further 40-50% reduction in energy consumption per unit GDP by 2020 compared to the year 2005. Improving energy utilization efficiency by scientific and technological progress will undoubtedly play an important role in achieving the above stated objectives. The improvement of energy efficiency of energy

  15. Analysis of China's Renewable Energy Development under the Current Economic and Technical Circumstances

    Institute of Scientific and Technical Information of China (English)

    Dan Shi

    2009-01-01

    At present, the development of renewable energy relies mainly on government support. The government invests in a considerable number of projects to improve public welfare and to assist in poverty relief. If China is to replace fossil fuels on a large scale with renewable energy sources, the production costs und prices of renewable energy must he brought down. All countries are facing the challenge of moving to a more secure and low-carbon energy system without weakening economic and social development. In this regard, China is facing an even greater challenge in terms of economic cost, as cheap coal remains the main energy form. Technical innovation and industrialization in the area of renewable energy is an important means of lowering cost. China is in for a period of high-speed development of its economy and the rising demand for energy is irreversible. If the technical progress and development speed of renewable energy lags behind the growth in demand, it will be difficult to realize the improvement of its energy structure.

  16. Scenario Formation of Energy Demand and CO2 Emissions for Sustainable China

    Institute of Scientific and Technical Information of China (English)

    Wei Baoren; Yagita Hiroshi

    2008-01-01

    Co-integration theory has been employed in this paper and Granger causes are found between urbanization rate and GDP, between capital stock and GDP. Scenario analysis of GDP is performed using the GDP model established in the paper. The energy consumptions in Germany, Japan and other developed countries are analyzed and compared with the energy consumption in China. Environmental friendly scenario of energy demand and CO2 emissions for sustainable China has been formed based on the results of comparison. Under environmental friendly scenario, the primary energy consumption will be 4.31 billion ton coal equivalence (tee) and CO2 emissions will be 1.854 billion t-c in 2050; energy per capital will be 3.06 tce that is 1.8 times of energy consumed in 2005 in China and 51% of consumed energy per capital in Japan in 2003. In 2050, the energy requirement of unit GDP will be 20% lower than that of Germany in 2003, but will be still 37% higher than that in Japan in 2003. It is certain that to fulfill the environmental friendly Scenario of energy demand and CO 2 emissions is a difficult task and it needs long term efforts of the whole society, not only in production sectors but also in service and household sectors.

  17. Life cycle water use of energy production and its environmental impacts in China.

    Science.gov (United States)

    Zhang, Chao; Anadon, Laura Diaz

    2013-12-17

    The energy sector is a major user of fresh water resources in China. We investigate the life cycle water withdrawals, consumptive water use, and wastewater discharge of China's energy sectors and their water-consumption-related environmental impacts, using a mixed-unit multiregional input-output (MRIO) model and life cycle impact assessment method (LCIA) based on the Eco-indicator 99 framework. Energy production is responsible for 61.4 billion m(3) water withdrawals, 10.8 billion m(3) water consumption, and 5.0 billion m(3) wastewater discharges in China, which are equivalent to 12.3%, 4.1% and 8.3% of the national totals, respectively. The most important feature of the energy-water nexus in China is the significantly uneven spatial distribution of consumptive water use and its corresponding environmental impacts caused by the geological discrepancy among fossil fuel resources, fresh water resources, and energy demand. More than half of energy-related water withdrawals occur in the east and south coastal regions. However, the arid north and northwest regions have much larger water consumption than the water abundant south region, and bear almost all environmental damages caused by consumptive water use.

  18. Solar Energy Block-Based Residential Construction for Rural Areas in the West of China

    Directory of Open Access Journals (Sweden)

    Jizhong Shao

    2016-04-01

    Full Text Available Based on the Great Western Development Strategy and the requirement for sustainable development in the west of China, rural affordable housing, energy conservation, and environmental protection are becoming development standards in the construction field. This paper mainly explores an innovative, sustainable, residential construction method for rural areas in western China, particularly the integration of solar energy technology with modern prefabricated building techniques, formally named solar energy block-based construction. The conscious approach of using volumetric blocks provides superior adaptability and expansibility in integration with a steel structure, thereby reducing the construction time and cost. Allowing a wide variety of configurations and styles in the building layout, this approach can be customized to the end-user’s precise location and climate, making rural residential buildings much more flexible and modern. To take advantage of adequate solar energy resource in western China, the blocks are associated with active and passive solar energy technologies, thereby reducing pollution, mitigating global warming, and enhancing sustainability. Therefore, we concluded that solar energy block-based construction could bring significant benefits to the environment, economy, and society. It could also promote sustainable development in the rural regions of western China.

  19. The changing structure of energy supply, demand, and CO{sub 2} emissions in China

    Energy Technology Data Exchange (ETDEWEB)

    Kuby, M.; He, C.F.; Trapido-Lurie, B.; Moore, N. [Arizona State University, Tempe, AZ (United States)

    2011-07-01

    Because of its enormous population, rapid economic growth, and heavy reliance on coal, China passed the United States as the world's largest source of CO{sub 2} emissions in 2006. China is also becoming a major factor in the global oil market. This article analyzes China's energy production and consumption, with a focus on the energy and CO{sub 2} emissions per capita and per unit of gross domestic product (GDP) and the mix of energy sources and end uses. Energy flow diagrams for 1987 and 2007 make it possible to visualize the allocation of energy from sources through energy transformation to final uses in units of metric tons of coal equivalent. Declining coal use by residences, agriculture, and transportation has been more than offset by a massive increase in electricity and industry usage. The article places these changes in political-economic context and helps illustrate and explain the difficulties China faces in trying to reduce its absolute CO{sub 2} emissions and why it instead proposes to reduce its CO{sub 2} per unit of GDP.

  20. China Expected to Use Energy Effectively and Economically

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhao

    2006-01-01

    @@ The national energy leading group chaired by Premier Wen Jiabao recently declared that "marketization is the most important element of energy policy." As it is wellknown in many countries, the market-oriented measures are more effective than administrative measures to carry out the government's commitment to reducing pollution and raising energy efficiency.

  1. Inventory of China's Energy-Related CO2 Emissions in 2008

    Energy Technology Data Exchange (ETDEWEB)

    Fridley, David; Zheng, Nina; Qin, Yining

    2011-03-31

    Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel

  2. Comparison of building energy use data between the United States and China

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jianjun; Hong, Tianzhen; Shen, Qi; Feng, Wei; Yang, Le; Im, Piljae; Lu, Alison; Bhandari, Mahabir

    2013-10-30

    Buildings in the United States and China consumed 41percent and 28percent of the total primary energy in 2011, respectively. Good energy data are the cornerstone to understanding building energy performance and supporting research, design, operation, and policy making for low energy buildings. This paper presents initial outcomes from a joint research project under the U.S.-China Clean Energy Research Center for Building Energy Efficiency. The goal is to decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders. This paper first reviews and compares several popular existing building energy monitoring systems in both countries. Next a standard energy data model is presented. A detailed, measured building energy data comparison was conducted for a few office buildings in both countries. Finally issues of data collection, quality, sharing, and analysis methods are discussed. It was found that buildings in both countries performed very differently, had potential for deep energy retrofit, but that different efficiency measures should apply.

  3. Energy production and consumption prediction and their response to environment based on coupling model in China

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; REN Zhiyuan

    2012-01-01

    The paper presents the prediction of total energy production and consumption in all provinces and autonomous regions as well as determination of the variation of gravity center of the energy production,consumption and total discharge of industrial waste water,gas and residue of China via the energy and environmental quality data from 1978 to 2009 in China by use of GM(1,1) model and gravity center model,based on which the paper also analyzes the dynamic variation in regional difference in energy production,consumption and environmental quality and their relationship.The results are shown as follows.1) The gravity center of energy production is gradually moving southwestward and the entire movement track approximates to linear variation,indicating that the difference of energy production between the east and west,south and north is narrowing to a certain extent,with the difference between the east and the west narrowing faster than that between the south and the north.2) The gravity center of energy consumption is moving southwestward with perceptible fluctuation,of which the gravity center position from 2000 to 2005 was relatively stable,with slight annual position variation,indicating that the growth rates of all provinces and autonomous regions are basically the same.3) The gravity center of the total discharge of industrial waste water,gas and residue is characterized by fluctuation in longitude and latitude to a certain degree.But,it shows a southwestward trend on the whole.4) There are common ground and discrepancy in the variation track of the gravity center of the energy production & consumption of China,and the comparative analysis of the gravity center of them and that of total discharge of industrial waste water,gas and residue shows that the environmental quality level is closely associated with the energy production and consumption (especially the energy consumption),indicating that the environment cost in economy of energy is higher in China.

  4. Shaping markets : A neoinstitutional analysis of the emerging organizational field of renewable energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Hoeyrup Christensen, N.

    2013-02-01

    Today, China is the world leading investor in renewable energy. At the heart of this effort lies China's ability to shape markets through industrial policies. Through a neoinstitutional theoretical perspective this dissertation views China's efforts within renewable energy as the emergence of a new organizational field. Despite the importance of organizational fields as a key concept in the neoinstitutional literature, there is a lack of studies on exactly how they emerge. Throughout four articles this dissertation scrutinizes therefore the emergence of the field of renewable energy in China and the mechanisms driving this emergence. Firstly, the relation between state and market is examined, and it is argued that Chinese state interventions in markets, for instance through subsidies, are based in deeply rooted historic grounds. Thus, the article explains the general context in which the Party-state handles subsidized markets, like renewable energy. Secondly, the specific development of the idea of sustainable development, and how it evolves into an institutional logic of its own, is analysed. It is around this institutional logic that renewable energy emerges as a field. The key mechanism in play is the idea work of the Party state by which sustainable development is positioned in the Partystate discourse. Thirdly, subsidization of renewable energy in China is examined as an important feature of the increasing institutionalization of the organizational field. It is shown how negotiation between companies and Party-state is the vital mechanism by which subsidies are determined. Fourthly, it is analysed how the institutional entrepreneurship of one single company resulted in an official recognition of biomass power production as a source of renewable energy, and thereby an expansion of the organizational field. Again, the main mechanism was the company's idea work, through which a crucial link between biomass and sustainable development was

  5. CHINA PARTNERS WITH KENYA TO HELP BRIDGE ENERGY GAP

    Institute of Scientific and Technical Information of China (English)

    Liu Weiqiang

    2010-01-01

    @@ Kenya's energy sector will be a key enabler for Vision 2030,with opportunities in petroleum,Liquefied Petroleum Gas(LPG),the electricity sub-sector,coal,and renewable energies,including geothermal and hydropower.Currently,the country depends on biomass(68 percent),hydrocarbons(22 percent),electricity(9 percent),solar,and other forms of energy(1 percent)for its energy needs,with petroleum and electricity dominating the commercial sector.Energy Minister Kiraitu Murungi and the Kibaki government are keen to reach out to Chinese investors to help bring the sector up to its full potential.

  6. Survey of rural household energy-consumption in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xh; Fend Zm [Nanjing Agricultural Univ., JS (China)

    1996-07-01

    Based on comprehensive energy surveys of 3240 households in six different regions, we present the level and structure of rural household energy consumption. There are large differences among regions which depend on locality and available fuels. Energy consumption per household accounts for 700-1200 kgce (we use 7000 kcal/kgce), 40-60% of which is used for cooking; 60-90% of total household energy consumption is in the form of biomass. The average energy-conversion efficiency using biomass fuels is in the range 10-20%. Where the strain of traditional patterns of biomass use on the resource base became too severe, the balance between local agricultural and hillside ecosystems has unraveled and caused accelerating destruction of limited land resources. Higher income households need more commercial energy, especially in the form of electricity. Rural household energy will continue to depend mainly on biomass. (UK)

  7. Speed Up Construction of Robust National Power Grid,Promote Sustainable Energy Development in China

    Institute of Scientific and Technical Information of China (English)

    Liu Zhenya; Jin Wen

    2006-01-01

    @@ Promotion of the power industry is an important part of the strategy of the national energy development. Power is an important link in the chain of energy industry. Considering the requirements of sustainable energy development in China, to accelerate the construction of a nationad power grid based on ultra-high voltage trunks and coordimtely devcloped power grids at all levels may solve the vital problems being faced in energy development. It is also significant for crcating a system of stable, cconomie, clean and safe energy supply.

  8. Big ambitions, small returns: Nuclear energy development in China and India

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yi-hong

    2010-09-15

    This paper examines nuclear energy development in China and India and the obstacles they face. It discusses the challenges for nuclear expansion: technology, economic, nuclear fuel, and public acceptance. It concludes that (1) on all three counts - energy demands, energy security and environmental pollution - the potential impact of nuclear energy will be minimal in both countries; and (2) despite the political, financial and technical obstacles for nuclear expansion and the minimal contribution of energy security, both countries will devote financial, human and political resources to their nuclear expansion. Its speed will depend on domestic and international political development.

  9. The impact of relative energy prices on industrial energy consumption in China: a consideration of inflation costs.

    Science.gov (United States)

    He, Lingyun; Ding, Zhihua; Yin, Fang; Wu, Meng

    2016-01-01

    Significant effort has been exerted on the study of economic variables such as absolute energy prices to understand energy consumption and economic growth. However, this approach ignores general inflation effects, whereby the prices of baskets of goods may rise or fall at different rates from those of energy prices. Thus, it may be the relative energy price, not the absolute energy price, that has most important effects on energy consumption. To test this hypothesis, we introduce a new explanatory variable, the domestic relative energy price, which we define as "the ratio of domestic energy prices to the general price level of an economy," and we test the explanatory power of this new variable. Thus, this paper explores the relationship between relative energy prices and energy consumption in China from the perspective of inflation costs over the period from 1988 to 2012. The direct, regulatory and time-varying effects are captured using methods such as ridge regression and the state-space model. The direct impacts of relative energy prices on total energy consumption and intensity are -0.337 and -0.250, respectively; the effects of comprehensive regulation on energy consumption through the economic structure and the energy structure are -0.144 and -0.148, respectively; and the depressing and upward effects of rising and falling energy prices on energy consumption are 0.3520 and 0.3564, respectively. When economic growth and the energy price level were stable, inflation persisted; thus, rising energy prices benefitted both the economy and the environment. Our analysis is important for policy makers to establish effective energy-pricing policies that ensure both energy conservation and the stability of the pricing system.

  10. The Power Purchase Optimization Model in China considering the Renewable Energy Risks under Different Risk Preferences

    Directory of Open Access Journals (Sweden)

    Yongxiu He

    2015-01-01

    Full Text Available To achieve the strategic target of energy conservation and emission reduction, China is vigorously developing its large-scale and distributed renewable energy power generation industry, dominated by wind power and photovoltaic power generation. In the new situation of renewable energy power interconnection, the grid company in China must fully consider the risks caused by renewable energy when making power purchase optimization decisions. This paper sets up a power purchasing model considering the risks of the renewable energy power interconnection and testifies to the effectiveness of the model through a case study. On this basis, this paper puts forward several reasonable suggestions to help the grid company make power purchase decisions under different risk preferences.

  11. A Discussion on the Policy of R&D Stock for China's Energy Technology

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The constraints of energy supply have been a long-term threat to the sustainable development of China.Technological progress and innovation are essential to helping solve this problem. Research and development (R&D)stock plays a key role in technological progress and innovation. Through comparisons with some other countries, it is found that China has fallen behind in the R&D stock for energy technology. The R&D stock can be improved by two means: one is putting capital and human resources in those strategically key fields; the other is taking advantage of the R&D resources from abroad. The strategically key fields include energy saving techniques, energy materials, the manufacture of key equipment and new energy resources.

  12. Assessment of Wave Energy in the South China Sea Based on GIS Technology

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2017-01-01

    Full Text Available China is now the world’s largest user of coal and also has the highest greenhouse gas emissions associated with the mining and use of coal. Under today’s enormous pressures of the growing shortage of conventional energy sources and the need for emission reductions, the search for clean energy is the most effective strategy to address the energy crisis and global warming. This study utilized satellite remote sensing technology, geographic information system (GIS technology, and simulated wave data for the South China Sea. The characteristic features of the wave energy were obtained by analysis through the wave resource assessment formula and the results were stored in a GIS database. Software for the evaluation of wave energy in the South China Sea was written. The results should provide accurate, efficient references for wave energy researchers and decision-makers. Based on a 24-year WW3 model simulation wave data and GIS technology, this study presented the characteristic of the wave energy in the SCS; results demonstrated that the SCS has the feasibility and viability for wave energy farming.

  13. Income Growth, Urbanization, Changing Life Style and Energy Requirements in China

    Institute of Scientific and Technical Information of China (English)

    Wang Yan; Shi Minjun

    2012-01-01

    This paper aims to estimate the effects of changing life style and consumption demands driven by income growth and urbanization on increase of energy requirements in China, and es- timate the impacts of improvement in household consumption on mitigating energy requirements towards 2020, based on input-out- put analysis and scenarios simulation approach. The result shows that energy requirement per capita has increased by 159% for urban residents and 147% for rural residents from 1995 to 2004. Growth in household consumption driven by income growth and urbanization may induce a successive increase in energy require- ments in future. Per capita energy requirements of urban residents will increase by 240% during 2002-2015 and 330% during 2002-2020. Urbanization might lead to 0.75 billion ton of increment of energy requirements in 2020. About 45%-48% of total energy requirements in China might be a consequence of residents' life styles and the economic activities to support consumption demands in 2020. Under low-carbon life style scenario, per capita energy requirements of urban residents may decline to 97% in 2015 and 92% in 2020 in contrast with baseline scenario. That implies that China needs to pay a great attention to developing green low- carbon life style in order to realize mitigation target towards 2020.

  14. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China.

    Science.gov (United States)

    Wang, Shaojian; Li, Qiuying; Fang, Chuanglin; Zhou, Chunshan

    2016-01-15

    Following several decades of rapid economic growth, China has become the largest energy consumer and the greatest emitter of CO2 in the world. Given the complex development situation faced by contemporary China, Chinese policymakers now confront the dual challenge of reducing energy use while continuing to foster economic growth. This study posits that a better understanding of the relationship between economic growth, energy consumption, and CO2 emissions is necessary, in order for the Chinese government to develop the energy saving and emission reduction strategies for addressing the impacts of climate change. This paper investigates the cointegrating, temporally dynamic, and casual relationships that exist between economic growth, energy consumption, and CO2 emissions in China, using data for the period 1990-2012. The study develops a comprehensive conceptual framework in order to perform this analysis. The results of cointegration tests suggest the existence of long-run cointegrating relationship among the variables, albeit with short dynamic adjustment mechanisms, indicating that the proportion of disequilibrium errors that can be adjusted in the next period will account for only a fraction of the changes. Further, impulse response analysis (which describes the reaction of any variable as a function of time in response to external shocks) found that the impact of a shock in CO2 emissions on economic growth or energy consumption was only marginally significant. Finally, Granger casual relationships were found to exist between economic growth, energy consumption, and CO2 emissions; specifically, a bi-directional causal relationship between economic growth and energy consumption was identified, and a unidirectional causal relationship was found to exist from energy consumption to CO2 emissions. The findings have significant implications for both academics and practitioners, warning of the need to develop and implement long-term energy and economic policies in

  15. China and renewable energy in Africa: Opportunities for Norway?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    This study assesses the potential for Norwegian engagement in Sino-African renewable energy development. The study analyzes Norwegian competitiveness and complementarities towards Chinese energy actors in the African market, and identifies respective strengths and weaknesses against the backdrop of the African market. The report identifies barriers and opportunities for Norwegian commercial and developmental engagement towards upscaling renewable energy in Africa that may also apply to other OECD countries. Finally, the report points to possibilities for Norway to support sustainable Sino-African renewable energy development. (au)

  16. Progress and Prospect of LNG Cold Energy Utilization in China

    Institute of Scientific and Technical Information of China (English)

    Hua Ben

    2009-01-01

    @@ Values and utilization significance of LNG cold energy LNG is a cryogenic liquid mixture made from gas through purification and liquefaction at the temperature of 162℃.850 kWh/t of power may be consumed for LNG production.230kWh/t of cold energy with the temperature ranging from-162℃ to 5℃ may be released when LNG is gasified under the pressure of latm.During actual gasification operation,pumps are required to be used to increase pressure for LNG gasification and delivery,so part of LNG cold energy will be converted into pressure energy(Fig.1).

  17. Assessment of Off-shore Wind Energy Resource in China using QuikSCAT Satellite data and SAR Satellite Images

    DEFF Research Database (Denmark)

    Xiuzhi, Zhang; Yanbo, Shen; Jingwei, Xu;

    2010-01-01

    From August 2008 to August 2009, the project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ was carried out by China Meteorological Administration (CMA), which was funded by the EU-China Energy and Environment Programme (EEP). As one ...

  18. CHINA'S INCREASING ECONOMY AND THE IMPACTS ON ITS ENERGY STRATEGY

    Directory of Open Access Journals (Sweden)

    JOSÉ ROBERTO CONCHA VELÁSQUEZ

    2010-01-01

    Full Text Available El presente artículo aborda el tema de una de las economías de mayor crecimiento, la economía de China. Se analiza el tema de cómo un país y, por consiguiente, un sistema político que anteriormente era tan cerrado y tenía un nivel económico y un índice de crecimiento tan bajos pudo lograr un crecimiento tan notable. Esta ealidad suscita ciertos interrogantes tales como los siguientes: ¿Cómo pudo un estado socialista cerrado mejorar su crecimiento económico y su comercio internacional de una manera tan extraordinaria? ¿Cómo se relaciona el incremento en el comercio y la producción con el consumo de energía?¿Cómo puede China garantizar las fuentes de energía necesarias para su producción y su consumo energético nacional? El trabajo empieza con la teoría de libre comercio antes de abordar estos temas.

  19. Energy Production and Regional Economic Growth in China: A More Comprehensive Analysis Using a Panel Model

    Directory of Open Access Journals (Sweden)

    Yaobin Liu

    2013-03-01

    Full Text Available China has witnessed a fast economic growth in the recent two decades. However, the heavy energy exploitation seems to show a negative relation to regional economic growth. Thus, the issue is whether the energy production is a curse or blessing for the regional economic growth in China. The present study deploys a comprehensive approach to rigorously prove the validity of a proposed panel data model that includes a second generation panel unit root test and panel cointegration and a spatial panel model. The results from the second generation panel unit root test and panel cointegration allowing for cross-sectional dependences show the differenced series are stationary and there exists a cointegration relationship among these variables for all sub-regions. The results from the spatial panel data model support the conjecture of the spatial dependent and show that there is a “resource curse” only for the Western region and Central region in China.

  20. Data from renewable energy assessments for resort islands in the South China Sea

    Directory of Open Access Journals (Sweden)

    M. Reyasudin Basir Khan

    2016-03-01

    Full Text Available Renewable energy assessments for resort islands in the South China Sea were conducted that involves the collection and analysis of meteorological and topographic data. The meteorological data was used to assess the PV, wind and hydropower system potentials on the islands. Furthermore, the reconnaissance study for hydro-potentials were conducted through topographic maps in order to determine the potential sites suitable for development of run-of-river hydropower generation. The stream data was collected for 14 islands in the South China Sea with a total of 51 investigated sites. The data from this study are related to the research article “Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea” published in Energy (Khan et al., 2015 [1].

  1. Data from renewable energy assessments for resort islands in the South China Sea.

    Science.gov (United States)

    Basir Khan, M Reyasudin; Jidin, Razali; Pasupuleti, Jagadeesh

    2016-03-01

    Renewable energy assessments for resort islands in the South China Sea were conducted that involves the collection and analysis of meteorological and topographic data. The meteorological data was used to assess the PV, wind and hydropower system potentials on the islands. Furthermore, the reconnaissance study for hydro-potentials were conducted through topographic maps in order to determine the potential sites suitable for development of run-of-river hydropower generation. The stream data was collected for 14 islands in the South China Sea with a total of 51 investigated sites. The data from this study are related to the research article "Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea" published in Energy (Khan et al., 2015) [1].

  2. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  3. Displacement efficiency of alternative energy and trans-provincial imported electricity in China.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-17

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  4. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of

  5. China goes on safari global energy hunting; China a la caza global de energeticos

    Energy Technology Data Exchange (ETDEWEB)

    Zweig, David; Jianhai, Bi [Universidad de Ciencia y Tecnologia (Hong Kong)

    2006-01-15

    The China's foreign policy is currently prompted by the major lack of sources. Either signing agreements with despicable countries or pouring out American grounds, Pekin has boosted its bilateral relations with a sense of richness of sources. Even thought it could be possible that such Chinese appetite can concern some people in Washington, it could likely create new ground cooperation. [Spanish] La politica exterior china esta impulsada hoy dia por la necesidad sin precedentes de recursos que tiene aquel pais. A cambio de acceso al petroleo y materias primas para alimentar su boyante economia, Beijing ha promovido sus relaciones bilaterales con un sentido de riqueza de recursos que la ha llevado a firmar acuerdos con estados villanos o a invadir terreno estadounidense. Puede que este apetito chino preocupe a algunos en Washington, pero tambien crea nuevos espacios de cooperacion.

  6. Analysis of Spatial Disparities and Driving Factors of Energy Consumption Change in China Based on Spatial Statistics

    OpenAIRE

    Hualin Xie; Guiying Liu; Qu Liu; Peng Wang

    2014-01-01

    The changes of spatial pattern in energy consumption have an impact on global climate change. Based on the spatial autocorrelation analysis and the auto-regression model of spatial statistics, this study has explored the spatial disparities and driving forces in energy consumption changes in China. The results show that the global spatial autocorrelation of energy consumption change in China is significant during the period 1990–2010, and the trend of spatial clustering of energy consumption ...

  7. Forecasting Optimal Solar Energy Supply in Jiangsu Province (China: A Systematic Approach Using Hybrid of Weather and Energy Forecast Models

    Directory of Open Access Journals (Sweden)

    Xiuli Zhao

    2014-01-01

    Full Text Available The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  8. Forecasting Optimal Solar Energy Supply in Jiangsu Province (China): A Systematic Approach Using Hybrid of Weather and Energy Forecast Models

    Science.gov (United States)

    Zhao, Xiuli; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor. PMID:24511292

  9. Forecasting optimal solar energy supply in Jiangsu Province (China): a systematic approach using hybrid of weather and energy forecast models.

    Science.gov (United States)

    Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  10. ''Social capitalism'' in renewable energy generation: China and California comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Woodrow W. II.; Li, Xing [Clark Strategic Partners, PO Box 17975, Beverly Hills, CA 90210 (United States)

    2010-03-15

    With a population of over 1.3 billion people, demand for renewable energy is expected to grow to a USD $12 billion market in the near term. Under Renewable Energy Law (REL) in February 2005 in the People's Republic of China (PRC) passed by the National Congress, renewable energy projects will be able to receive a range of financial incentives starting in 2006, which will more than double the PRC current renewable energy generation from 7% to 15% by 2020. Most of the increase will be in hydroelectric generated power. Nonetheless, the nation and especially the provinces are moving rapidly to develop a wide range of renewable energy generation including solar, wind, geothermal and run of the river. Because China practices ''social capitalism'' as expressed in it's recurrent Five Year National Plans since 1999, the national government and all the provinces have programs, unlike many western and industrialized nations, to ''plan'' and provide for infrastructures. This paper concerns only the energy infrastructure sector and renewable energy generation in particular. The planning process includes financial incentives and investments which are a major part of the Chinese law focused on ''encouraging foreign investment industries''. The key part of the law is to guarantee long-term power purchase agreements with state owned and controlled ''utilities''. In short, China may have gotten the economics of the energy sector correct in its concern for planning and finance. The paper develops these energy infrastructure ideas along with the legal and financial requirements as ''lessons'' learned from the USA and especially California. These lessons now apply to China and allow it to learn from the American mistakes. Empirical data will be drawn from work done in China that examine the renewable energy generation and infrastructures and hence allow the RPC and its

  11. PetroChina Joins World’s Top 5 Energy Ranks

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Chinese oil giant PetroChina came in the fourth place in a ranking of world’s top 250 energy companies unveiled in early November 2011,making it the first Asian firm to join the top five ranks.The 2011 Platts Top 250 Global Energy Company Rankings was compiled by energy information provider Platts based on the performance of the companies in 2010 in terms of asset worth,revenues,profits and return on invested capital.The assets of PetroChina has increased almost fivefold to US$255 billion in 2010 from 52 billion dollars ten years ago,when the company was ranked the 12th among world energy firms.Its revenues increased 7.5 times over the same period.

  12. Nonrenewable energy cost and greenhouse gas emissions of a "pig-biogas-fish" system in China.

    Science.gov (United States)

    Yang, Qing; Wu, Xiaofang; Yang, Haiping; Zhang, Shihong; Chen, Hanping

    2012-01-01

    The purpose of this study is to assess the energy savings and emission reductions of the present rural biogas system in China. The life cycle assessment (LCA) method is used to analyze a "pig-biogas-fish" system in Jingzhou, Hubei Province, China. The nonrenewable energy cost and the greenhouse gas (GHG) emissions of the system, including the pigsty, the biogas digester, and the fishpond, are taken into account. The border definition is standardized because of the utilization of the database in this paper. The results indicate that the nonrenewable energy consumption intensity of the "pig-biogas-fish" system is 0.60 MJ/MJ and the equivalent CO₂ emission intensity is 0.05 kg CO₂-eq/MJ. Compared with the conventional animal husbandry system, the "pig-biogas-fish" system shows high renewability and GHG reduction benefit, which indicates that the system is a scientific and environmentally friendly chain combining energy and ecology.

  13. Common challenge, collaborative response: a roadmap for US-China cooperation on energy and climate change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-01-15

    This Report which was produced in partnership between Asia Society's Center on U.S.-China Relations and Pew Center on Global Climate Change, in collaboration with The Brookings Institution, Council on Foreign Relations, National Committee on U.S.-China Relations, and Environmental Defense Fund presents both a vision and a concrete Roadmap for such Sino-U.S. collaboration. With input from scores of experts and other stakeholders from the worlds of science, business, civil society, policy, and politics in both China and the United States, the Report, or 'Roadmap', explores the climate and energy challenges facing both nations and recommends a concrete program for sustained, high-level, bilateral engagement and on-the-ground action. The Report recommends that, as a first step in forging this new partnership, the leaders of the two countries should convene a leaders summit as soon as practically possible following the inauguration of Barack Obama to launch a 'U.S.-China Partnership on Energy and Climate Change'. This presidential summit should outline a major plan of joint-action and empower relevant officials in each country to take the necessary actions to ensure its implementation. Priority areas of collaboration include: deploying low-emissions coal technologies; improving energy efficiency and conservation; developing an advanced electric grid; promoting renewable energy; and quantifying emissions and financing low-carbon technologies. 5 figs., 1 tab., 2 apps.

  14. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    2009-01-01

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to Chi

  15. Energy consumption in rural China: A household model for three villages in Jiangxi Province

    NARCIS (Netherlands)

    Chen, L.; Heerink, N.B.M.; Berg, van den M.M.

    2006-01-01

    In China, fuelwood and coal are the most important energy sources for rural households in poor areas. Along with population and economic growth, excessive fuelwood collection is a major cause of deforestation. Burning coal contributes to environmental problems such as air pollution, acid rain and gr

  16. Local Sustainable Energy Assessment Report of the Guandong Province in China

    DEFF Research Database (Denmark)

    Andersen, Jan; Lund, Søren

    The publication reports a sustainable energy assessment at the local project site of the HighARCS project in Shaoguan, Guangdong Province, China. The assessment has been made as a contribution to the elaboration of biodiversity conservation and livelihoods improvement action plans. It proposes...

  17. Energy Consumption of ADU/VDU in China and Measures for Improvement

    Institute of Scientific and Technical Information of China (English)

    LiZhiguo

    2003-01-01

    The present status of energy consumption ofADU (Atmospheric Distillation Unit)/VDU (VacuumDistillation Unit) in China is discussed, the major problems, such as low end temperature of heat exchange,low heater efficiency, high fuel consumption, and large consumption of water, electricity and steam areanalyzed, and measures for improvement are proposed.

  18. Who Does What in China's New Energy Vehicle?

    DEFF Research Database (Denmark)

    Liu, Yingqi; Kokko, Ari

    2013-01-01

    This paper provides an overview of the Chinese new energy vehicle industry and discusses the role of state in the industry’s development. Chinese policies have aimed to promote the development of new energy technologies and to reduce the consumer price of new energy vehicles. Chinese authorities...... have also been concerned about the balance between collaboration and competition in the sector, since most key actors are owned by the state. One solution has been the establishment of a number of industry alliances linking auto enterprises, universities and research institutes, to promote both...

  19. Challenges and Opportunities Faced by China's Energy Industry

    Institute of Scientific and Technical Information of China (English)

    Zhang Guobao

    2005-01-01

    @@ The sustainable and rapid development of Chinese economy entails fast growth of energy demand. In recent years, power is in short supply; supply and transportation of coal is tense, causing a price rise;crude oil import increases, and oil price lingers on high end. These phenomena reflecting energy shortage have become people's hot-debated issues in economic life, and public economic regulators and economists have shown unprecedented concerns about the energy-, environment-,and resources-related issues from the sustainable development point of view.

  20. Analysis On New Energy Electric Vehicle Development In China

    Institute of Scientific and Technical Information of China (English)

    Li XiQing

    2015-01-01

    With the improvement of the industrial technology,more and more new &high science and technology had apply to the industrial production.However,along with the time-lapse,non renewable resources utilization is began to decline gradually.the corresponding pollution problem is inevitably generated in industrial production.Given this backdrop,how to make good use of new energy and maintain the industrial production sustainable development has become one of the social concerned focus.So,this paper wil be combined with the new energy vehicle technology development, which is one of the important industrial production areas, to analyze and study new energy technology development trend.

  1. "Social Capitalism" in Renewable energy generation::China and California Comparisons

    OpenAIRE

    Clark, Woodrow W; Li, Xing

    2010-01-01

    With a population of over 1.3 billion people, demand for renewable energy is expected to grow to a USD $12 billion market in the near term. Under Renewable Energy Law (REL) in February 2005 in the People's Republic of China (PRC) passed by the National Congress, renewable energy projects will be able to receive a range of financial incentives starting in 2006, which will more than double the PRC current renewable energy generation from 7% to 15% by 2020. Most of the increase will be in hydroe...

  2. Reducing Energy Subsidies in China, India and Russia: Dilemmas for Decision Makers

    Directory of Open Access Journals (Sweden)

    Indra Overland

    2010-02-01

    Full Text Available This article examines and compares efforts to reduce energy subsidies in China, India and Russia. Despite dissimilarities in forms of governance, these three states have followed surprisingly similar patterns in reducing energy subsidies, characterised by two steps forward, one step back. Non-democratic governments and energy importers might be expected to be more likely to halt subsidies. In fact, the degree of democracy and status as net energy exporters or importers does not seem to significantly affect these countries’ capacity to reduce subsidies, as far as can be judged from the data in this article. Politicians in all three fear that taking unpopular decisions may provoke social unrest.

  3. Promotion of Sustainable Buildings in China- Integration of Bamboo and Renewable Energy Technologies

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    WWF China and the International Network for Bamboo and Rattan (INB AR) jointly launched the project "Promotion of Energy Efficient Buildings: Integration of Bamboo and Renewable Energy Technologies" together with the Urban & Rural Planning & Design Institute of Yunnan and BEAR Architecten Gouda (Holland) in March 2002. The objective of the project is to design model houses, hotels and school buildings for rural people in Yuanan Province to provide 'comfortable' living conditions with a minimum and meani...

  4. China Report, Economic Affairs, Energy: Status and Development -- XXVII

    Science.gov (United States)

    2007-11-02

    come about through electrification . Since economic results achieved through the use of electricity are greater than through the use of other forms of...measures for conserving energy resources come about through the use of electricity, e.g., electrical metallurgy, electrified railways , and all forms of...extend electrification , will promote industrial development in border minority areas, will help in providing energy to the countryside, protecting

  5. A policy study on energy supply and demand of several countries (China, Indonesia, Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ryeal [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    Korea is depending 97% of primary energy consumption on imports. To have a stable supply of energy required for a continuous growth, it is recommended to utilize international energy market actively for short-term while it is required to reinforce resources diplomacy with other countries with full of resources for mid- and long-term. This study reviewed energy supply and demand and major policies of China, Indonesia and Mexico, which give direct or indirect influence on energy supply and demand of Korea. With the geographical adjacency, Korea imports coal from China and exports petroleum products to China. Furthermore, it is very likely to have a trade related to nuclear power plant and natural gas. Indonesia exports coal, crude oil, and LNG to Korea. Especially LNG is occupied 60% of total amount of imports. It is expected to get help from Mexico because there are many similar aspects between Mexico and Korea such as GNP or a conservative idea on energy industry. (author). 49 refs., 6 figs., 42 tabs.

  6. The Cross-Sectional Association of Energy Intake and Dietary Energy Density with Body Composition of Children in Southwest China

    Directory of Open Access Journals (Sweden)

    Xue Zhou

    2015-07-01

    Full Text Available Objective: We examined whether dietary energy intake (EI and dietary energy density (ED were cross-sectionally associated with body composition of children living in Southwest China. Design and Methods: Multivariate regression analyses were performed on three day, 24 h dietary recall data and information on potential confounders from 1207 participants aged 8–14 years. EI was calculated from all foods and drinks and ED was classified into five categories. Body mass index (BMI z-scores, percentage of body fat (%BF, fat mass index (FMI, fat-free mass index (FFMI and ratio of waist to hip circumference (WHR were used to describe body composition. Results: Boys with higher total EI had higher BMI z-scores, %BF, and FMI than boys with lower total EI both before and after measurements were adjusted for confounders (age, fiber intake, physical activity, the timing of adding complementary foods, paternal education level and maternal BMI (p ≤ 0.04. However, EI was not associated with body composition in girls. Dietary ED, in any category, was not associated with body composition in either gender. Conclusions: Dietary ED was not associated with body composition of children in Southwest China, while dietary EI in boys, not girls, was positively associated with body composition. Reducing dietary energy intake may help to prevent obesity and related diseases in later life among boys living in Southwest China.

  7. An estimation of energy consumption and CO2 emissions in tourism sector of China

    Institute of Scientific and Technical Information of China (English)

    WU Pu; SHI Peihua

    2011-01-01

    In 2009,nearly 900 million international tourist arrivals were counted worldwide.A global activity of this scale can be assumed to have a substantial impact on the environment.In this contribution,five major aspects such as the change of LUCC and the use of energy and its associated impacts had been recognized.Recently,the impact of tourism on environment and climate attracts the attention of international organizations and societies in pace with rapid development of tourism industry.Energy consumption and CO2 emissions in tourism sector are becoming a hot spot of international tourism research in recent five years.The use of energy for tourism can be divided according to transport-related purposes (travel to,from and at the destination) and destination-related purposes excluding transports (accommodation,food,tourist activities,etc.).In addition,the transports,accommodation and foods are related to many other industries which are dependent on energy.Thus,the estimations of energy consumption and CO2 emissions in tourism sector have become a worldwide concern.Tourism in China grows rapidly,and the number of domestic tourists was 1902 million in 2009.Energy use and its impact on the environment increase synchronously with China's tourism.It is necessary to examine the relationship between energy use and CO2 emissions.In this article,a preliminary attempt was applied to estimate the energy consumption and CO2 emissions from China's tourism sector in 2008.Bottom-up approach,literature research and mathematical statistics technology were also adopted.According to the calculations,Chinese tourism-related may have consumed approximately 428.30 PJ of energy in 2008,or about 0.51% of the total energy consumptions in China.It is estimated that CO2 emissions from tourism sector amounted to 51.34 Mt,accounting for 0.86% of the total in China.The results show that tourism is a low-carbon industry and also a pillar industry coping with global climate change,energy-saving and CO

  8. On China's energy intensity statistics: Toward a comprehensive and transparent indicator

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xin, E-mail: xin.wang@iddri.org [Institut du Developpement Durable et des Relations Internationales (IDDRI), Sciences Po., 27 rue Saint-Guillaume, 75337 Paris Cedex 07 (France); Laboratory Economie Quantitative, Integration, Politique Publique et Econometrie (EQUIPPE), University of Lille 1, Universite des Sciences et Technologies de Lille, Cite Scientifique, Faculte d' Economie et de Sciences Sociales, Batiment SH2 - 59655 Villeneuve d Ascq Cedex (France)

    2011-11-15

    A transparent and comprehensive statistical system in China would provide an important basis for enabling a better understanding of the country. This paper focuses on energy intensity (EI), which is one of the most important indicators of China. It firstly reviews China's GDP and energy statistics, showing that China has made great improvements in recent years. The means by which EI data are released and adjusted are then explained. It shows that EI data releases do not provide complete data for calculating EI and constant GDP, which may reduce policy transparency and comprehensiveness. This paper then conducts an EI calculation method that is based on official sources and that respects the data availability of different data release times. It finds that, in general, China's EI statistics can be considered as reliable because most of the results generated by author's calculations match the figures in the official releases. However, two data biases were identified, which may necessitate supplementary information on related constant GDP values used in the official calculation of EI data. The paper concludes by proposing short- and long-term measures for improving EI statistics to provide a transparent and comprehensive EI indicator. - Highlights: > This paper examines data release and adjustment process of energy intensity (EI) target of China. > New insights on the comprehensiveness and transparency of EI data. > Potential data bias between author's calculation and official data due to lack of constant GDP data. > Proposition for improving short- and long-term EI statistical works.

  9. Energy for Water Utilization in China and Policy Implications for Integrated Planning

    Science.gov (United States)

    Li, X.; Liu, J.; Zheng, C.

    2015-12-01

    Water and energy are two vital resources for human and are intrinsically linked. China is a country with acute water problems caused by increasing demand, uneven spatial-temporal distribution of water resources, and water quality deterioration. These issues are exacerbating the country's water scarcity. Meanwhile, demands for both traditional and non-traditional water resources continue to rise, driven by the country's rapid economic expansion and industrialization. To meet growing water demands, more and more energy is used for water extraction, transportation and treatment. While projects such as deep groundwater pumping, long distance water transfer and seawater desalination are adding crucial supplies of fresh water, they are consuming an ever greater amount of energy. Thus, a better understanding of water-energy linkages is important for integrated water and energy policy analysis and planning. In this study, data from multiple sources are compiled and used to calculate energy consumption for different processes of water utilization in China, including water abstraction, treatment, and distribution, as well as wastewater treatment and re-use. Sankey diagrams are used to display the magnitude and direction of water and energy flows in China at the national level. Spatial distributions of energy use by different components of the water supply were further mapped at the provincial level to discern regional differences. The results of this study show that, for the main processes considered, water utilization consumes 193.5 TWh of electricity, or about 4% of the total national electricity usage. The highest percentage of energy consumption for water is attributed to water provision process. The outcome of this study has important implications for policy reforms involving water conservation strategies, water supply structure changes and technical solutions, which, in turn, will contribute to achieving the goal of low-energy water utilization in the future.

  10. Sustainable urbanization: energy and environment in the Chongqing Municipality, China

    Institute of Scientific and Technical Information of China (English)

    LI Bai-zhan; LIU Meng; YAO Run-ming; Koen Steermers

    2005-01-01

    Chongqing is the largest municipality under the Chinese Central Government (MCG) in terms of administrative area and population and is now the most important economic and cultural center of the upper Yangtze River and Three Gorges area. The Three Gorges Dam project, one of the largest world infrastructure projects, causes a great deal of immigration to Chongqing and results in the rapid urbanization of the city, and it has brought in a great deal of environmental impact, which is a global concerned issue. This paper introduces the city profile of Chongqing municipality and its urbanization impact on energy and environment. The demand and the trend of energy consumption in built environment (building and transport) have been analysed. The living environment of Chongqing residents and the local energy efficient policy have been introduced. Finally the authors discuss the key issues of the sustainable urban development of Chongqing.

  11. EU-China Cooperation In the Field of Energy, Environment and Climate Change

    Directory of Open Access Journals (Sweden)

    Pietro De Matteis

    2010-11-01

    Full Text Available The evolution of the energy market and the intrinsic worldwide scope of environmental threats, such as climate change, are two elements that have pushed the world towards shared approaches to global governance via bilateral institutions and international regimes. This article, with the aid of an institutionalist approach, presents the current status of the EU-China relationship, which is characterised by high institutionalisation, and it underlines how their bilateral cooperation has progressively focused on energy and climate change-related issues. In particular, the article sheds some light on the linkages between energy, environment and climate change and how these have created the basis for the upgrade of the EU-China bilateral relationship to its current level. To do so, it underlines some of the tools, the main frameworks and some of the key outcomes of their bilateral cooperation in these fields.

  12. China Report, Economic Affairs, Energy, Status and Development -- 35

    Science.gov (United States)

    2007-11-02

    Overview of Atomic Energy Power Stations" (effective to 31 Dec 1983) Over the past few years, U.S. nuclear power stations have been in a highly...than 2 km from the oil pool) at an early period, maintaining a high level of pressure maintained high and stable production of the oil well’s gushing

  13. Waste-to-Energy in China: Key Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Dongliang Zhang

    2015-12-01

    Full Text Available China—the largest developing country in the world—is experiencing both rapid economic maturation and large-scale urbanization. These situations have led to waste disposal problems, and the need to identify alternative energy sources. Waste-to-energy (WTE conversion processes, a source of renewable energy, are expected to play an increasingly important role in China’s sustainable management of municipal solid waste (MSW. The purpose of this research is to investigate the key problems and opportunities associated with WTE, to provide recommendations for the government. This paper begins by describing China’s current MSW management situation and analyzing its waste disposal problems. The major challenges associated with China’s WTE incineration are then discussed from economic, environmental and social points of view. These include the high costs associated with constructing necessary facilities, the susceptibility of facilities to corrosion, the lower heating value of China’s MSW, air pollutant emissions and especially public opposition to WTE incineration. Since discarded waste can be used to produce energy for electricity and heat—thus reducing its volume and the production of greenhouse gas (GHG emissions—with government policies and financial incentives, the use of WTE incineration as a renewable energy source and part of a sustainable waste management strategy will be of increasing importance in the future. The paper concludes by summarizing the management, economic and social benefits that could be derived from developing the country’s domestic capacity for producing the needed incineration equipment, improving source separation capabilities, standardizing regulatory and legal responsibilities and undertaking more effective public consultation processes.

  14. Prehibernation Energy Storage in Heilongjiang Brown Frogs (Rana amurensis) from Five Populations in North China

    Institute of Scientific and Technical Information of China (English)

    Wei CHEN; Tianpei GUAN; Lina REN; Dujuan HE; Ying WANG; Xin LU

    2015-01-01

    Energy storage is an important component in the life history of species that directly inlfuences survival and reproduction. The energetic demands of amphibian reproduction can differ between the sexes, with environmental conditions, reproductive pattern or process of the species, and depending upon the timing of breeding, and the reproductive season for a species. Surprisingly, comparative studies of pre-hibernation energy storage for anuran populations from different latitudes are relatively few in Asia, especially in China. Here we investigated the patterns of pre-hibernation energy storage of Heilongjiang brown frogsRana amurensis, based on ifve populations along a ifnely latitudinal gradient in north China (40.7–43.7°N). We found that pre-hibernation energy storage of the frogs did not show a clear latitudinal cline, but differed strongly between the sexes, with males depositing more energy reserves into the muscle and liver, whereas females accumulate more energy in the gonads. The sexual differences in energy storage may result from differential timing of energy allocation for reproduction.

  15. A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ching-Chih [Department of Transportation and Communication Management Science, National Cheng Kung University, No. 1, University Road, Tainan 70101 (China)

    2010-11-15

    This paper uses multivariate co-integration Granger causality tests to investigate the correlations between carbon dioxide emissions, energy consumption and economic growth in China. Some researchers have argued that the adoption of a reduction in carbon dioxide emissions and energy consumption as a long term policy goal will result in a closed-form relationship, to the detriment of the economy. Therefore, a perspective that can make allowances for the fact that the exclusive pursuit of economic growth will increase energy consumption and CO{sub 2} emissions is required; to the extent that such growth will have adverse effects with regard to global climate change. (author)

  16. Numerical Forecasting Experiment of the Wave Energy Resource in the China Sea

    OpenAIRE

    2016-01-01

    The short-term forecasting of wave energy is important to provide guidance for the electric power operation and power transmission system and to enhance the efficiency of energy capture and conversion. This study produced a numerical forecasting experiment of the China Sea wave energy using WAVEWATCH-III (WW3, the latest version 4.18) wave model driven by T213 (WW3-T213) and T639 (WW3-T639) wind data separately. Then the WW3-T213 and WW3-T639 were verified and compared to build a short-term w...

  17. Promotion Potentiality and Optimal Strategies Analysis of Provincial Energy Efficiency in China

    Directory of Open Access Journals (Sweden)

    Jinpeng Liu

    2016-08-01

    Full Text Available In order to meet the dual requirements of economic development and energy consumption, the Chinese government has adopted a series of measures and policies to improve energy efficiency. However, the developing characteristics are not the same in different regions. Thus, it is necessary to analyze the actual energy efficiency levels in a more targeted manner. In this paper, 30 provinces in China will be adopted to study energy efficiency based on the statistical data from National Energy Administration and National Bureau of Statistics. With the trends of Chinese energy consumption and economy development, the Lorenz curve between Chinese energy consumption and GDP is fitted firstly. The Lorenz coefficient (0.1562 shows that the energy allocation in China is neither reasonable nor balanced. Then, by cluster analysis, the regions of different provinces are newly divided into five divisions from the dimensions of economy and energy, i.e., (high development level and high consumption level, HH, (moderate development level and moderate consumption level, MM, (moderate development level and low consumption level, ML, (low development level and low consumption level, LL, and (low development level and moderate consumption level, LM. Based on the division results, the provincial promotion potentialities are estimated quantitatively according to the absolute convergence feature of energy efficiency promotion. The provinces that have more promotion potentialities of energy efficiency are located, such as Hebei (56.29% in division (HH, Liaoning (38.15% in division (MM, Anhui (44.17% in division (ML, Ningxia (71.63% in division (LL, and Xinjiang (35.26% in division (LM, According to the different provincial potentialities, energy efficiency in China needs to improve more, but the improvement approaches should be specific and differential. Driven by technology, policy and mechanism, and industrial restructuring, the Chinese economy and energy resources

  18. The analysis of energy consumption of a commercial building in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)], E-mail: zhaojing@tju.edu.cn; Zhu Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Wu Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    According to statistics and field investigation, the energy consumption situation and reality of commercial building is described in this paper. As the first step of large-scale public building energy efficiency supervision system encouraged by central government of China, the energy consumption of several typical commercial buildings and public buildings was analyzed in detail. The main contents of investigation are as follows: basic information of building, operational record of energy consumption equipment, energy consumption of indoor equipments, energy-efficiency assessment of energy consumption systems and equipments, investigation of behavior energy saving, etc. On this basis further analysis and diagnosis including indoor thermal and humid environment, operation state of air-conditioning water system, operation state of air-conditioning duct system and operation management of air-conditioning system were implemented. The results show that the most energy consumption of buildings in this city is commercial buildings, which can reach to about 240 W/m{sup 2} per year. Further analysis tells that air conditioning systems play the major role of building energy consumption, and building energy saving has great potential in this city. In this paper, the ways of diagnosis work for building energy consumption are also described and discussed. Reasonable test, diagnosis and analysis are meaningful for building energy efficiency retrofit and management.

  19. The analysis of energy consumption of a commercial building in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Zhu, Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Wu, Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    According to statistics and field investigation, the energy consumption situation and reality of commercial building is described in this paper. As the first step of large-scale public building energy efficiency supervision system encouraged by central government of China, the energy consumption of several typical commercial buildings and public buildings was analyzed in detail. The main contents of investigation are as follows: basic information of building, operational record of energy consumption equipment, energy consumption of indoor equipments, energy-efficiency assessment of energy consumption systems and equipments, investigation of behavior energy saving, etc. On this basis further analysis and diagnosis including indoor thermal and humid environment, operation state of air-conditioning water system, operation state of air-conditioning duct system and operation management of air-conditioning system were implemented. The results show that the most energy consumption of buildings in this city is commercial buildings, which can reach to about 240 W/m{sup 2} per year. Further analysis tells that air conditioning systems play the major role of building energy consumption, and building energy saving has great potential in this city. In this paper, the ways of diagnosis work for building energy consumption are also described and discussed. Reasonable test, diagnosis and analysis are meaningful for building energy efficiency retrofit and management. (author)

  20. The energy supply of China. Markets and policies; L'approvisionnement energetique de la Chine. Marches et politiques

    Energy Technology Data Exchange (ETDEWEB)

    Noel, P. [Institut Francais des Relations Internationales, 75 - Paris (France); Meidan, M. [Inalco, 75 - Paris (France)

    2005-07-15

    China is a great part of the energy world economy. In 2003 and 2004, the chinese economic growth had a direct impact on the world energy markets: it is a main factor of the great world economic demand growth and the energy prices increase. In the other hand this growth generates new investment of energy offer in the world. The author details the China energy policy and its efficiency quest, the insertion in the gas markets and the petroleum market facing the chinese energy security. (A.L.B.)

  1. Evaluation of regional energy security in eastern coastal China based on the DPSIR model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; SHEN Lei

    2012-01-01

    The DPSIR assessment method,which implies the relationships among driving force (D),pressure (P),status (S),impact (I),and response (R),is widely applied by scholars.This paper aims to establish a comprehensive assessment system for regional energy security in eastern coastal China based on the above model using different indicators.Factor analysis and the SPSS statistical analysis software were used to carry out scientific and quantitative assessments.The results indicated that contradictions of energy supply and demand as well as environmental pollution are the critical factors that present great challenges to regional energy security in this area.The authors argued that a sustainable,stable,and safe supply energy supply is crucial in solving the aforesaid dilemma,and improving the energy use efficiency is one of the best choices.Some countermeasures and suggestions regarding regional energy supply stability and utilization security were pointed out.

  2. Village energy survey reveals missing rural raw coal in northern China: Significance in science and policy.

    Science.gov (United States)

    Zhi, Guorui; Zhang, Yayun; Sun, Jianzhong; Cheng, Miaomiao; Dang, Hongyan; Liu, Shijie; Yang, Junchao; Zhang, Yuzhe; Xue, Zhigang; Li, Shuyuan; Meng, Fan

    2017-04-01

    Burning coal for winter heating has been considered a major contributor to northern China's winter haze, with the district heating boilers holding the balance. However a decade of intensive efforts on district heating boilers brought few improvements to northern China's winter air quality, arousing a speculation that the household heating stoves mainly in rural area rather than the district heating boilers mainly in urban area dominate coal emissions in winter. This implies an extreme underestimation of rural household coal consumption by the China Energy Statistical Yearbooks (CESYs), although direct evidence supporting this speculation is lacking. A village energy survey campaign was launched to gather the firsthand information on household coal consumption in the rural areas of two cities, Baoding (in Hebei province) and Beijing (the capital of China). The survey data show that the rural raw coal consumption in Baoding (5.04 × 10(3) kt) was approximately 6.5 times the value listed in the official CESY 2013 and exceeded the rural total of whole Hebei Province (4668 kt), revealing a huge amount of raw coal missing from the current statistical system. More importantly, rural emissions of particulate matter (PM) and SO2 from raw coal, which had never been included in widely distributing environmental statistical reports, were found higher than those from industrial and urban household sectors in the two cities in 2013, which highlights the importance of rural coal burning in creating northern China's heavy haze and helps to explain why a number of modeling predictions on ambient pollutant concentrations based on normal emission inventories were more bias-prone in winter season than in other seasons. We therefore recommend placing greater emphasis on the "missing" rural raw coal to help China in its long-term ambition to achieve clean air in the context of rapid economic development.

  3. Energy Efficiency and Emissions Reduction Potential of China's Industrial Sector%Energy Efficiency and Emissions Reduction Potential of China's Industrial Sector

    Institute of Scientific and Technical Information of China (English)

    Yu Xiaohong; Zhang Chao

    2012-01-01

    Based on the total-factor energy efficiency framework, this paper calculates China's industrial energy efficiency and CO2 emissions reduction potential from 2000 to 2009 by utilizing the directional distance function and data envelopment analysis. The empirical results show that: China's industrial overall energy effi- ciency is relatively lower while the emis-sions reduction potential is relatively greater, given the optimum production frontier. Sig- nificant indus-trial disparities of energy efficiency and emissions reduction potential exist. Energy efficiency and emis-sions reduc- tion potential significantly show different tendencies of industrial dynamic variation. This paper suggests the Chinese government impose differential carbon taxes, flexibly utilize carbon market me-cha-nism, strengthen energy-saving technological R&D, promote the utilization of renewable energy, and strengthen environmental supervision and regulation, so as to improve China's industrial en- ergy efficiency and reduce CO2 emissions.

  4. PWR-FBR with closed fuel cycle for a sustainable nuclear energy supply in China

    Institute of Scientific and Technical Information of China (English)

    XU Mi

    2007-01-01

    From the thermal reactor to the fast reactor and then to the fusion reactor; this is the three-step strategy that has been decided for a sustainable nuclear energy supply in China. As the main thermal reactor type, the commercialized development phase of the pressurized water reactor (PWR) has been stepped up. The development of the fast reactor (FBR) is still in the early stage, marked by China experimental fast reactor (CEFR), which is currently under construction. According to the strategy study on the fast reactor development in China, its engineering development will be divided into three steps: the CEFR with a power of 65 MWt 20 Mwe; the China prototype fast reactor (CPFR) with a power of 1 500 MWt/600 Mwe; and the China demonstration fast reactor (CDFR) with a power of 2 500-3 750 MWt 1 000-1 500 Mwe. With regards to the fuel cycle, a 100 ta PWR spent fuel reprocessing pilot plant and a 500 kg/a MOX fabrication plant are under construction. A project involving the construction of an industrial reprocessing plant and an MOX fabrication plant are also under application phase.

  5. Technologies for Efficient Use of Irrigation Water and Energy in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-tao; XIA Qing; Clark C K Liu; Shu Geng

    2013-01-01

    While the shortage of water and energy is a well-recognized worldwide natural resources issue, little attention has been given to irrigation energy efficiency. In this paper, we examine the potential energy savings that can be achieved by implementing improved irrigation technologies in China. The use of improved irrigation management measures such as a flow meter, irrigation scheduling, and/or regular maintenance and upgrades, typically reduces the amount of water pumped over the course of a growing season. The total energy saved by applying these improved measures could reach 20%, as compared with traditional irrigation methods. Two methods of irrigation water conveyance by traditional earth canal and low pressure pipeline irrigation (LPPI) were also evaluated. Our study indicated that LPPI could save 6.48×109 kWh yr-1 when applied to 11 Chinese provinces. Also, the CO2 emission was reduced by 6.72 metric tons per year. Among these 11 surveyed provinces, the energy saving potential for two provinces, Hebei and Shandong, could reach 1.45×109 kWh yr-1. Using LPPI, potential energy saved and CO2 emissions reduced in the other 20 Chinese provinces were estimated at about 2.97×109 kWh yr-1 and 2.69 metric tons per year, respectively. The energy saving potential for Heilongjiang, a major agriculture province, could reach 1.77×109 kWh yr-1, which is the largest in all provinces. If LPPI is applied to the entire country, average annual energy saving of more than 9 billion kWh and average annual CO2 emission reduction of more than 9.0 metric tons could be realized. Rice is one of the largest users of the world’s fresh water resources. Compared with continuous flooding irrigation, intermittent irrigation (ITI) can improve yield and water-use efficiency in paddy fields. The total increments of net output energy and yield by ITI in paddy fields across China could reach 2.5×1016 calories and 107 tons, respectively. So far only a small part of agricultural land in China

  6. Strategic research on CO{sub 2} emission reduction for China. Application of MARKAL to China energy system

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yongping [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-09-01

    MARKAL was applied to the energy system for analyzing the CO{sub 2} emission reduction in China over the time period from 1990 to 2050. First the Chinese Reference Energy System (CRES) was established based on the framework of MARKAL model. The following conclusions can be drawn from this study. When shifting from scenario LH (low useful energy demand and high import fuel prices) to HL (high demand and low prices), another 33 EJ of primary energy will be consumed and another 2.31 billion tons of CO{sub 2} will be emitted in 2050. Detailed analyses on the disaggregation of CO{sub 2} emissions by Kaya Formula show. The energy intensity (primary energy/GDP) decreases much faster in scenario HL, but the higher growth rate of GDP per capita is the overwhelming factor that results in higher CO{sub 2} emission per capita in the baseline case of scenario HL in comparison with LH. When the carbon taxes are imposed on CO{sub 2} emissions, the residential sector will make the biggest contribution to CO{sub 2} emission abatement from a long-term point of view. However, it`s difficult to stabilize CO{sub 2} emission per capita before 2030 in both scenarios even with heavy carbon taxes. When nuclear moratorium occurs, more 560 million tons of CO{sub 2} will be emitted to the atmosphere in 2050 under the same CO{sub 2} tax regime. From the analysis of value flow, CO{sub 2} emission reduction depends largely on new or advanced technologies particularly in the field of electricity generation. The competent technologies switch to those CO{sub 2} less-emitting technologies when surcharging CO{sub 2} emissions. Nuclear power shows significant potential in saving fossil energy resources and reducing CO{sub 2} emissions. (J.P.N.).

  7. China's Research on Non-conventional Energy Resources- Gas Hydrate

    Institute of Scientific and Technical Information of China (English)

    Pu Ming; Ma Jianguo

    2002-01-01

    @@ Methane exists in ice-like formations called gas hydrate. Hydrate traps methane molecules inside a cage of frozen water. The magnitude of this previously unknown global storehouse of methane is truly staggering and has raised serious inquiry into the possibility of using methane hydrate as a substitute source of energy for oil and conventional natural gas. According to the estimation by PGC, gas hydrate deposits amount to 7.6 × 1018m3 and contain more than twice as much organic carbon as all the world's coal, oil and non-hydrate natural gas combined.

  8. Interregional sharing of energy conservation targets in China: Efficiency and equity

    Science.gov (United States)

    Wei, Dan

    Energy conservation is a long-term strategic policy in China to support its economic and social development. This policy strategy is important for saving resources, protecting the environment, and ensuring the secure supply of energy to all economic activities. However, energy conservation often involves large amounts of investment and may also have dampening impacts on some local and regional economies. Moreover, energy conservation and efficiency improvement have many features of a public good. Therefore, government policy and intervention play a strong role to foster regional efforts and cooperative interregional actions on this issue. This dissertation introduces and analyzes a promising policy instrument---an interregional energy conservation-quota trading system---to help China fulfill its national energy conservation objective in an efficient and equitable way. To analyze the workings of the energy conservation-quota trading system, trading entities are first determined. In this study, statistical analyses (principal component analysis and cluster analysis) are applied to identify regional aggregations of provinces of China to act as the trading units. The marginal energy conservation cost curves of these regions are developed using engineering-economic methods and regression analysis. Simulations of interregional conservation-quota trading are undertaken after China's conservation goals in 2010 are allocated among regions according to several equity criteria. Various equity criteria are applied and analyzed in this study because of the philosophical differences in the appropriate definition of the concept. The trading simulations yield several important findings. First, the introduction of an interregional quota trading system can minimize both regional net compliance costs and national total conservation costs, irrespective of how the conservation tasks are initially allocated among regions according to different equity rules. Second, regional welfare

  9. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  10. The Impact of Energy Price Decline on China's Energy-Economy-Environment System Variables Using a CGE Model

    DEFF Research Database (Denmark)

    Guo, Zhengquan; Wang, Daojuan; Chen, Chong

    In recent years, prices of coal and crude oil have fallen significantly. These declines have had a large impact on China’s energy-economy-environment system variables. This paper establishes a computable general equilibrium model to systematically analyse the impact of coal price changes alone...... or the decline of both coal and oil prices on the variables of China's energy-economy-environment system. The results of the analysis show that the decline of the coal price alone or of coal and crude oil prices together will lead to a significant increase in demand for either coal and total energy or coal...... more severe. Most sectors’ outputs will rise by a certain degree, and the degree of increase due to the decline of coal and crude oil prices is larger than that from the decline of the coal price alone. Due to losses in the coal and crude oil sectors, the outputs will decline significantly. The decline...

  11. Study on impact of energy price comparison on energy saving benefits of heat pump in North China

    Science.gov (United States)

    Dong, X.; Tian, Q.; Zhang, Y. G.; Bai, H. F.

    2016-08-01

    As to the heat pump technology applying in the HVAC engineering, the relationship between energy saving rate (ESR) and electricity cost saving rate (ECSR) of heat pump should be a positive correlation in theory. But in the actual energy price system, due to the fluctuating energy price comparison, the relationship between them is of less coordination. Moreover, despite the high ESR, the economic benefit of ECSR is lost. In this paper, via the case analysis under the condition of average technical and economic parameters in North China, the critical point rate of economic benefit of ECSR in energy price comparison among prices of residential electricity, steam-coal, and residential natural gas is found, which is about 2:3:8. Also, a viewpoint as well as method is suggested to promote the wide usage of heat pump, balance energy supply structure, save energy consumption, and reduce emissions by optimizing the energy price comparison, which is feasible and desirable to raise the price comparison between residential electricity and natural gas, and reduce the price comparison between residential electricity and steam-coal in a certain extent.

  12. Exploitable wave energy assessment based on ERA-Interim reanalysis data-A case study in the East China Sea and the South China Sea

    Institute of Scientific and Technical Information of China (English)

    WAN Yong; ZHANG Jie; MENG Junmin; WANG Jing

    2015-01-01

    Wave energy resources assessment is a very important process before the exploitation and utilization of the wave energy. At present, the existing wave energy assessment is focused on theoretical wave energy conditions for interesting areas. While the evaluation for exploitable wave energy conditions is scarcely ever performed. Generally speaking, the wave energy are non-exploitable under a high sea state and a lower sea state which must be ignored when assessing wave energy. Aiming at this situation, a case study of the East China Sea and the South China Sea is performed. First, a division basis between the theoretical wave energy and the exploitable wave energy is studied. Next, based on recent 20 a ERA-Interim wave field data, some indexes including the spatial and temporal distribution of wave power density, a wave energy exploitable ratio, a wave energy level, a wave energy stability, a total wave energy density, the seasonal variation of the total wave energy and a high sea condition frequency are calculated. And then the theoretical wave energy and the exploitable wave energy are compared each other;the distributions of the exploitable wave energy are assessed and a regional division for exploitable wave energy resources is carried out;the influence of the high sea state is evaluated. The results show that considering collapsing force of the high sea state and the utilization efficiency for wave energy, it is determined that the energy by wave with a significant wave height being not less 1 m or not greater than 4 m is the exploitable wave energy. Compared with the theoretical wave energy, the average wave power density, energy level, total wave energy density and total wave energy of the exploitable wave energy decrease obviously and the stability enhances somewhat. Pronounced differences between the theoretical wave energy and the exploitable wave energy are present. In the East China Sea and the South China Sea, the areas of an abundant and stable

  13. Preventing Smog Crisis: New Thinking for Energy Policy-Making in China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Dong, Liang

    2015-01-01

    effective and efficient policy implementation. The critical questions include: is there the new thinking that can be used for policy-making in China for making it more effective? According to our investigations, there are two problems in China’s energy policy-making: (1) the policy-makers cannot fully...... or high-level administrators who have abundant knowledge and experience, and their technical judgements may be accurate and objective for addressing the energy security and climate change problems, but they cannot represent the real preferences and willingness of the stakeholders. The straw recycling case...... to the limitation of the diversity of the experts. For instance, some Chinese people doubt scientific judgements that the nuclear power industry is secure because most scientists in China work directly or indirectly for the government. They suspect that research outcomes are dominated by political priority. We...

  14. China’s Energy Insecurity and the South China Sea Dispute

    Science.gov (United States)

    2011-03-24

    action also served to bolster China’s claims over US protectionism , containment, and potential ambitions to control the energy sector by diverting...and coal reserves; however, this has proven insufficient. With globalization, the days of state-proclaimed “neo- isolationism ” or “self-sufficiency

  15. The Integration of Sustainable Transport into Future Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen

    use are largely lost in the current fossil fuel dominated energy systems. Sustainable transport development requires solutions from an overall renewable energy system in which integration of large-scale intermittent renewable energy needs assistance. Technologies of alternative vehicle fuels...... in transport may play a role in furthering such integration. The objective of this research is to make a contribution to the development of methodologies to identify and develop future sustainable transport systems as well as to apply such methodologies to the case of China. In particular, the methodological...... development focuses on 1) identifying suitable transport technologies and strategies based on renewable energy and 2) evaluating such technologies from the perspective of overall renewable energy system integration. For this purpose, a methodological framework involving the research fields of both...

  16. Relationships among energy price shocks, stock market, and the macroeconomy: evidence from China.

    Science.gov (United States)

    Cong, Rong-Gang; Shen, Shaochuan

    2013-01-01

    This paper investigates the interactive relationships among China energy price shocks, stock market, and the macroeconomy using multivariate vector autoregression. The results indicate that there is a long cointegration among them. A 1% rise in the energy price index can depress the stock market index by 0.54% and the industrial value-adding growth by 0.037%. Energy price shocks also cause inflation and have a 5-month lag effect on stock market, which may result in the stock market "underreacting." The energy price can explain stock market fluctuations better than the interest rate over a longer time period. Consequently, investors should pay greater attention to the long-term effect of energy on the stock market.

  17. Relationships among Energy Price Shocks, Stock Market, and the Macroeconomy: Evidence from China

    Directory of Open Access Journals (Sweden)

    Rong-Gang Cong

    2013-01-01

    Full Text Available This paper investigates the interactive relationships among China energy price shocks, stock market, and the macroeconomy using multivariate vector autoregression. The results indicate that there is a long cointegration among them. A 1% rise in the energy price index can depress the stock market index by 0.54% and the industrial value-adding growth by 0.037%. Energy price shocks also cause inflation and have a 5-month lag effect on stock market, which may result in the stock market “underreacting.” The energy price can explain stock market fluctuations better than the interest rate over a longer time period. Consequently, investors should pay greater attention to the long-term effect of energy on the stock market.

  18. Renewable Energy Legislation in China:Political and Institutional Strategy for Effective Implementation

    Institute of Scientific and Technical Information of China (English)

    Ren Dongming; Joanna Lewis

    2004-01-01

    Over the past decade, the Chinese government has developed several plans regulations and policy measures related to the development of renewable energy technologies and has implemented a series of pilot projects. Chinese policymakers have spent several years studying how renewable energy policy models that have been used internationally could be implemented in China. Programs are currently underway to implement pilot renewable portfolio standards, or mandatory market shares (MMS) for renewable energy, in several provinces.This paper examines the primary institutions that are involved in promoting renewable policies in China, the structure of the policies that currently are being drafted, and the status of the complementary,national-level renewable energy law being drafted to provide a legal basis for ongoing local and nationallevel policies. It then examines the legal requirements for promoting renewable energy legislation under the Chinese law-making system. Finally, it provides recommendations for strategies to ensure the smooth implementation of a multi-faceted national renewable energy policy and legal framework.

  19. Influencing Factors of Energy-Related CO2 Emissions in China: A Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Guokui Wang

    2015-10-01

    Full Text Available China is the largest CO2 emitter in the world and is still reliant on energy consumption for economic growth. Research has focused on effective approaches of reducing and mitigating CO2 emissions. This paper undertakes a decomposition study of energy-related CO2 emissions from the industrial and household sectors during the period 1996–2012, with the objectives of investigating trends of the changes in energy-related CO2 emissions, the driving forces of these changes, and approaches of mitigating CO2 emission. Results show the following: (1 the expansion of economic activity is the dominant stimulatory factor of the increase of CO2 emissions in China and that a sustained increase in CO2 emissions can be expected; (2 the decline in energy intensity and the adjustment of energy mix and industrial structure effectively mitigate CO2 emissions; and (3 the government should give more attention to enhancing the energy utility efficiency and reducing CO2 emissions in rural households.

  20. Performance analysis of CO(2) emissions and energy efficiency of metal industries in China.

    Science.gov (United States)

    Shao, Chaofeng; Guan, Yang; Wan, Zheng; Chu, Chunli; Ju, Meiting

    2014-02-15

    Nonferrous metal industries play an important role in China's national economy and are some of the country's largest energy consumers. To better understand the nature of CO(2) emissions from these industries and to further move towards low-carbon development in this industry sector, this study investigates the CO(2) emissions of 12 nonferrous metal industries from 2003 to 2010 based on their life-cycle assessments. It then classifies these industries into four "emission-efficiency" types through cluster analysis. The results show that (1) the industrial economy and energy consumption of China's nonferrous metal industries have grown rapidly, although their recent energy consumption rate shows a declining trend. (2) The copper, aluminum, zinc, lead, and magnesium industries, classified as high-emission industries, are the main contributors of CO(2) emissions. The results have implications for policy decisions that aim to enhance energy efficiency, particularly for promoting the transformation of low-efficiency industries to high-efficiency ones. The study also highlights the important role of policy development in technological innovations, optimization, and upgrades, the reduction of coal proportion in energy consumption, and the advancement of new energy sources.

  1. Development and Prospects for Energy Saving Technology in Oil & Gas Fields, China

    Institute of Scientific and Technical Information of China (English)

    Chen Youwang; Yu Jiqing; Lin Ran; Zhu Yingru; Liu Feijun

    2010-01-01

    @@ Current state of energy saving technology in China's oil and gas fields System optimization To optimize the oil-gas field surface engineering system is critical to improve the efficiency of oil and gas field system.To adapt to the changes in development of old oil and gas fields, all oilfields are adjusted and reconstructed;a set of optimized and simplified modes and technical measures are developed.

  2. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total

  3. Factors Influencing the Spatial Difference in Household Energy Consumption in China

    Directory of Open Access Journals (Sweden)

    Yongxia Ding

    2016-12-01

    Full Text Available What factors determine the spatial heterogeneity of household energy consumption (HEC in China? Can the impacts of these factors be quantified? What are the trends and characteristics of the spatial differences? To date, these issues are still unclear. Based on the STIRPAT model and panel dataset for 30 provinces in China over the period 1997–2013, this paper investigated influences of the income per capita, urbanization level and annual average temperature on HEC, and revealed the spatial effects of these influencing factors. The results show that the income level is the main influencing factor, followed by the annual average temperature. There exists a diminishing marginal contribution with increasing income. The influence of urbanization level varies according to income level. In addition, from the eastern region to western region of China, variances largely depend upon economic level at the provincial level. From the northern region to southern region, change is mainly caused by temperature. The urbanization level has more significant impact on the structure and efficiency of household energy consumption than on its quantity. These results could provide reference for policy making and energy planning.

  4. The Kra Isthmus Canal: A New Strategic Solution for China's Energy Consumption Scenario?

    Science.gov (United States)

    Lau, Cheng Yong; Lee, Jason Wai Chow

    2016-01-01

    This paper is a conceptual study that examines the viability of the construction of the Kra Isthmus within the context of the five dimensions of megaproject success of Sovacool and Cooper (The governance of energy megaprojects: politics, hubris, and energy security, 2013)—social (governance), technological (systems), democratic (politics), externalities (economics, ecology), and risks assessments (accountability), and its possible impact on China's strategic energy supply chain. One of the objectives of this study is also to discuss the current impacts, perceived benefits, and risks of China's dependence on its multinational and transnational pipelines. China could see the construction of Kra Canal as an alternative option for its strategic sourcing activities especially crude oil and gas at much lower costs. The megaproject would become a passageway that connects the Indian Ocean, Andaman Sea, and the Gulf of Siam at the choke point of Isthmus region in Thailand. However, this megaproject could also trigger the internal conflicts of Thailand, and affect the ASEAN countries' political and economic relationships.

  5. Characterizing China's energy consumption with selective economic factors and energy-resource endowment: a spatial econometric approach

    Science.gov (United States)

    Jiang, Lei; Ji, Minhe; Bai, Ling

    2015-06-01

    Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced

  6. Energy transition in Asia. China and India are making a turnaround; Energiewende in Asien. China und Indien steuern um

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Thomas

    2015-07-15

    The economic ascent of China and India demonstrates how the model of economic development based on fossil fuels has reached its limits. Between them these two Asian countries have a population of more than 2.6 inhabitants, whose per capita energy consumption is still far below that in industrial countries. Given the low standard of living still prevailing among most of their population it is understandable that these emerging countries object to being told how they should develop. At the same time, however, they are increasingly developing an own interest in limiting their emissions and participating in global responsibility. And they expect the countries of the industrial world to provide them with the latest in technology to enable them to achieve their goals.

  7. China to Strengthen the Effort for Industrial Energy-Saving,Consumption Reduction, Emission Reduction and Pollution Control in 2010

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Li Yizhong, Minister of the Ministry of Industry and Information Technology, said on February 1, 2010 that China would take four measures to enhance industrial energy-saving, consumption reduction, emission reduction, and pollution control in 2010.

  8. A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China

    OpenAIRE

    Wenyi Liu; Linzhi Liu; Gang Xu; Feifei Liang; Yongping Yang; Weide Zhang; Ying Wu

    2014-01-01

    Compressed air energy storage (CAES) is a large-scale technology that provides long-duration energy storage. It is promising for balancing the large-scale penetration of intermittent and dispersed sources of power, such as wind and solar power, into electric grids. The existing CAES plants utilize natural gas (NG) as fuel. However, China is rich in coal but is deficient in NG; therefore, a hybrid-fuel CAES is proposed and analyzed in this study. Based on the existing CAES plants, the hybrid-f...

  9. Implications of the international reduction pledges on long-term energy system changes and costs in China and India

    NARCIS (Netherlands)

    Lucas, P.L.; Shukla, P.R.; Chen, W.; van Ruijven, B.J.; Dhar, S.; den Elzen, M.G.J.; van Vuuren, D.P.

    2013-01-01

    This paper analyses the impact of postponing global mitigation action on abatement costs and energy systems changes in China and India. It compares energy-system changes and mitigation costs from a global and two national energy-system models under two global emission pathways with medium likelihood

  10. The Relationship between Urbanization, Economic Growth and Energy Consumption in China: An Econometric Perspective Analysis

    Directory of Open Access Journals (Sweden)

    Yabo Zhao

    2015-05-01

    Full Text Available As the largest developing country in the world, with rapid economic growth, China has witnessed fast-paced urbanization development over the past three decades. In fact, urbanization has been shown to promote economic growth and improve the livelihood of people, but it can also increase energy consumption and further generate energy crisis. Therefore, a better understanding of the relationship between urbanization, economic growth and energy consumption is important for China’s future sustainable development. This paper empirically investigates the long-term equilibrium relationships, temporal dynamic relationships and causal relationships between urbanization, economic growth and energy consumption in China. Econometric models are utilized taking the period 1980–2012 into consideration. Cointegration tests indicate that the variables are found to be of I(1 and cointegrated. Further, vector error-correction model (VECM indicates that when the short-term fluctuations deviate from the long-term equilibrium, the current changes of energy consumption could eliminate 9.74% non-equilibrium error of the last period, putting back the situation to the equilibrium state through a reverse adjustment. Impulse response analysis intuitively portrays the destabilized changes of the variables in response to some external shocks. However, the impact of energy consumption shock on urbanization and the impact of urbanization on economic growth seem to be rather marginal. Moreover, Granger causality results reveal that there is a bi-directional Granger causal relationship between energy consumption and economic growth, and unidirectional causality running from urbanization to energy consumption and economic growth to urbanization. The findings have important implications for Chinese policymakers that on the path towards a sustainable society, the effects of urbanization and economic growth on energy consumption must be taken into consideration.

  11. Development and implementation of energy efficiency standards and labeling programs in China: Progress and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Khanna, Nina Zheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-31

    Over the last twenty years, with growing policy emphasis on improving energy efficiency and reducing environmental pollution and carbon emissions, China has implemented a series of new minimum energy performance standards (MEPS) and mandatory and voluntary energy labels to improve appliance energy efficiency. As China begins planning for the next phase of standards and labeling (S&L) program development under the 12th Five Year Plan, an evaluation of recent program developments and future directions is needed to identify gaps that still exist when compared with international best practices. The review of China’s S&L program development and implementation in comparison with major findings from international experiences reveal that there are still areas of improvement, particularly when compared to success factors observed across leading international S&L program. China currently lacks a formalized regulatory process for standard-setting and do not have any legal or regulatory guidance on elements of S&L development such as stakeholder participation or the issue of legal precedence between conflicting national, industrial and local standards. Consequently, China’s laws regarding standard-setting and management of the mandatory energy label program could be updated, as they have not been amended or revised recently and no longer reflects the current situation. While China uses similar principles for choosing target products as the U.S., Australia, EU and Japan, including high energy-consumption, mature industry and testing procedure and stakeholder support, recent MEPS revisions have generally aimed at only eliminating the bottom 20% efficiency of the market. Setting a firm principle based on maximizing energy savings that are technically feasible and economically justified may help improve the stringency of China’s MEPS program and reduce the need for frequent revisions. China also lacks robust survey data and relies primarily on market research data in

  12. Nonrenewable Energy Cost and Greenhouse Gas Emissions of a “Pig-Biogas-Fish” System in China

    OpenAIRE

    2012-01-01

    The purpose of this study is to assess the energy savings and emission reductions of the present rural biogas system in China. The life cycle assessment (LCA) method is used to analyze a “pig-biogas-fish” system in Jingzhou, Hubei Province, China. The nonrenewable energy cost and the greenhouse gas (GHG) emissions of the system, including the pigsty, the biogas digester, and the fishpond, are taken into account. The border definition is standardized because of the utilization of the database ...

  13. A study of the development of bio-energy resources and the status of eco-society in China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xia; Huang, Yongmei; Gong, Jirui [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Zhang, Xinshi [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Institute of Botany, CAS, Beijing 100093 (China)

    2010-11-15

    Industrialization of bio-energy relies on the supply of resources on a large scale. The theoretical biomass resources could reach 2.61-3.51 billion tce (tons of coal equivalent)/a in China, while the available feedstock is about 440-640 million tce/a, however, among this only 1.5-2.5% has been transferred into energy at present. Marginal land utilization has great prospects of supplying bio-energy resources in China, with co-benefits, such as carbon sequestration, water/soil conservation, and wind erosion protection. There is a large area of marginal land in China, especially in northern China, including about 263 million ha of desertification land, 173 million ha of sand-land, and 17 million ha of salinizatin land. The plant species suitable to be grown in marginal lands, including some species in Salix, Hippophae, Tamarix, Caragana, and Prunus is also abundant Biomass feedstock in marginal lands would be 100 million tce/a in 2020, and 200 million tce/a in 2050. As a result, a win-win situation of eco-society and bio-energy development could be realized, with an expected 4-5% reduction of total CO{sub 2} emission in China in 2020-2050. Although much progress has been made in the field of bio-energy research in China, yet significant efforts should be taken in the future to fulfill large-scale industrialization of bio-energy. (author)

  14. Biomass and Energy of Casuarina equisetiofolia Plantations in Southeast Coast of China

    Institute of Scientific and Technical Information of China (English)

    YEGongfu; ZHANGQinghai; LINYiming

    2005-01-01

    The biomass and energy production of Casuarina equisetifolia plantations aged 14 were studied in Huian County, Fujian Province, Southeast of China. The standing crop biomass was 152.60 t/ha, in which the biomass of bole was 67.02 t/ha, accounting for 43.94 % of the total, while that of root was 36.83 t/ha and 24.14 %, respectively. Net primary productivity was 10.17t/(ha.a).The range of gross caloric of components was 19.29~20.23 kJ/g, with the average 19.70 kJ/g. The standing crop energy was 2 987×106 kJ/ha. Net energy production was 196.8×106 kJ/ha, while solar energy conversion efficiency was 0.90%.

  15. Innovative use of strategic energy design tools in building design in China

    Institute of Scientific and Technical Information of China (English)

    LIBaizhan; R.Yao; N.Baker; K.Steemers

    2003-01-01

    This paper expresses the importance of the use of strategic energy design tool in building design in China. The features of this kind of tool have been illustrated. The reliability, user friendliness, and usability are the most important characteristic of the early design software. This paper introduces an integrated energy design tool - LT Europe, which is widely used in the UK architectural practice and European. The climate data for Beijing has been produced from Meteonorm and integrated into LT Europe. A case study has been performed and the comparisons have been made by applying the Chinese old and new building energy regulations. It has been demonstrated that LT Europe software can be used for Chinese building energy design at the early stage by creating the local proper climate data.

  16. Strategies of Energy Efficiency Design in Traditional Kangbaiwan Mansion in China

    Directory of Open Access Journals (Sweden)

    Song Xiaoqing

    2016-01-01

    Full Text Available The building sector is one of the highest energy consuming sectors in the world as well as in China, it is urgent to seek an energy efficiency way of sustainable architecture development. From the perspective of tradition, this paper focus on strategies of energy efficiency design that contained in excellent vernacular dwellings. On the basis of analyzing an example of Kangbaiwan Mansion, it illustrates the advantage of environment ecosystem, and summarizes the physical and cultural characteristic of its buildings, especially the climate-adapting overall arrangement and sustainable strategies of natural ventilation and passive solar gain, which can be a fertile source of modern energy efficiency architecture design as well as a proper way of inheriting the outstanding traditional culture.

  17. Genetic Engineering of Energy Crops: A Strategy for Biofuel Production in China Free Access

    Institute of Scientific and Technical Information of China (English)

    Guosheng Xie; Liangcai Peng

    2011-01-01

    Biomass utilization is increasingly considered as a practical way for sustainable energy supply and long-term environment care around the world.In concerns with food security in China,starch or sugar-based bioethanol and edible-oil-derived biodiesel are harshly restricted for large scale production.However,conversion of lignocellulosic residues from food crops is a potential alternative.Because of its recalcitrance,current biomass process is unacceptably expensive,but genetic breeding of energy crops is a promising solution.To meet the need,energy crops are defined with a high yield for both food and biofuel purposes.In this review,main grasses(rice,wheat,maize,sorghum and miscanthus)are evaluated for high biomass production,the principles are discussed on modification of plant cell walls that lead to efficient biomass degradation and conversion,and the related biotechnologies are proposed in terms of energy crop selection.

  18. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of China’s total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  19. Analysis of energy-related CO2 emissions and driving factors in five major energy consumption sectors in China.

    Science.gov (United States)

    Cui, Erqian; Ren, Lijun; Sun, Haoyu

    2016-10-01

    Continual growth of energy-related CO2 emissions in China has received great attention, both domestically and internationally. In this paper, we evaluated the CO2 emissions in five major energy consumption sectors which were evaluated from 1991 to 2012. In order to analyze the driving factors of CO2 emission change in different sectors, the Kaya identity was extended by adding several variables based on specific industrial characteristics and a decomposition analysis model was established according to the LMDI method. The results demonstrated that economic factor was the leading force explaining emission increase in each sector while energy intensity and sector contribution were major contributors to emission mitigation. Meanwhile, CO2 emission intensity had no significant influence on CO2 emission in the short term, and energy consumption structure had a small but growing negative impact on the increase of CO2 emissions. In addition, the future CO2 emissions of industry from 2013 to 2020 under three scenarios were estimated, and the reduction potential of CO2 emissions in industry are 335 Mt in 2020 under lower-emission scenario while the CO2 emission difference between higher-emission scenario and lower-emission scenario is nearly 725 Mt. This paper can offer complementary perspectives on determinants of energy-related CO2 emission change in different sectors and help to formulate mitigation strategies for CO2 emissions.

  20. Analysis of Regional Differences of Energy Footprint in China Based on STIRPAT Model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    On the basis of the previous researches and the ecological footprint theory,we use the cross-sectional data of Chinese energy consumption in 2007 to calculate the regional differences of energy consumption footprint of 30 provinces in China;by using the method of EEF calculation method,we calculate the regional distribution of EFI and analyze its law;through the construction of STIRPAT model,we reveal the relationship between EEF and factors of population and economy.The results show that provinces with higher EEF mainly concentrate in the Middle Eastern China,which have a developed industry,such as Shandong,Hebei,Liaoning Province and so on.However,provinces with lower EEF mainly concentrate in the Western China,which have a relatively poor economy,such as Ningxia,Qinghai Province and so on.These results are in accordance with the area distribution of China’s economic development level.The EFI decreases gradually from west to east.As the level of regional economy is improved,the EFI has the downward trend.The quantity of population shows notable impact on EFI.The per capita GDP does not show the nagative relationship with EFI,which can not prove the existence of Environmental Kuznets Curve.

  1. A wave energy resource assessment in the China's seas based on multi-satellite merged radar altimeter data

    Institute of Scientific and Technical Information of China (English)

    WAN Yong; ZHANG Jie; MENG Junmin; WANG Jing

    2015-01-01

    Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth in offshore waters of China, a parameterized wave power density model that considers the effects of the water depth is introduced to improve the calculating accuracy of the wave power density. Second, wave heights and wind speeds on the surface of the China's seas are retrieved from an AVISO multi-satellite altim-eter data set for the period from 2009 to 2013. Three mean wave period inversion models are developed and used to calculate the wave energy period. Third, a practical application value for developing the wave energy is analyzed based on buoy data. Finally, the wave power density is then calculated using the wave field data. Using the distribution of wave power density, the energy level frequency, the time variability indexes, the to-tal wave energy and the distribution of total wave energy density according to a wave state, the offshore wave energy in the China's seas is assessed. The results show that the areas of abundant and stable wave energy are primarily located in the north-central part of the South China Sea, the Luzon Strait, southeast of Taiwan in the China's seas; the wave power density values in these areas are approximately 14.0–18.5 kW/m. The wave energy in the China’s seas presents obvious seasonal variations and optimal seasons for a wave energy utilization are in winter and autumn. Except for very coastal waters, in other sea areas in the China's seas, the energy is primarily from the wave state with 0.5 m≤Hs≤4 m, 4 s≤Te≤10 s whereHs is a significant wave height andTe is an energy period; within this wave state, the wave energy accounts for 80% above of the total wave energy. This characteristic is advantageous to designing wave energy convertors (WECs). The practical application value of the wave energy is higher

  2. Measuring the Productivity of Energy Consumption of Major Industries in China: A DEA-Based Method

    Directory of Open Access Journals (Sweden)

    Xishuang Han

    2014-01-01

    Full Text Available Data envelopment analysis can be applied to measure the productivity of multiple input and output decision-making units. In addition, the data envelopment analysis-based Malmquist productivity index can be used as a tool for measuring the productivity change during different time periods. In this paper, we use an input-oriented model to measure the energy consumption productivity change from 1999 to 2008 of fourteen industry sectors in China as decision-making units. The results show that there are only four sectors that experienced effective energy consumption throughout the whole reference period. It also shows that these sectors always lie on the efficiency frontier of energy consumption as benchmarks. The other ten sectors experienced inefficiency in some two-year time periods and the productivity changes were not steady. The data envelopment analysis-based Malmquist productivity index provides a good way to measure the energy consumption and can give China's policy makers the information to promote their strategy of sustainable development.

  3. Impact of International Oil Price on Energy Conservation and Emission Reduction in China

    Directory of Open Access Journals (Sweden)

    Jian Chai

    2016-05-01

    Full Text Available In the context of “new normal” economy and frequent “haze”, the strategy of energy conservation and emission reduction aiming to lower costs and reduce pollution is currently still a major strategic direction in China and the world, and will remain so for some time in the future. This paper uses the annual data of West Texas Intermediate (WTI crude oil price in 1987–2014 as samples. We firstly present the direction and mechanism of the influence of oil price change on total consumption of every kind of energy by path analysis, and then consider establishing a Structural Vector Autoregression model of energy conservation and emission reduction in three statuses. Research shows that if the international oil price increases by 1%, the energy consumption per GDP and carbon dioxide emission increase by 0.092% and 0.053% respectively in the corresponding period. In the status of high energy consumption and high emission, if the international oil price increases by 1%, the energy consumption per GDP and carbon dioxide emission increase by 0.043% and 0.065% respectively in the corresponding period. In the status of low energy consumption and low emission, if the international oil price increases by 1%, the energy consumption per GDP per unit increases by 0.067% and carbon dioxide emission decreases by 0.085% in the corresponding period.

  4. Vital Importance of Unconventional Oil-gas Resources in China's Energy Industry

    Institute of Scientific and Technical Information of China (English)

    Guo Lijie; Zeng Wang

    2006-01-01

    @@ The first World Heavy Oil Conference (WHOC)was held in Beijing on November 12, 2006. Present at the conference were more than 600 delegates from over 40 countries and regions worldwide. Themed as "Heavy Oil - The Future of Global Energy?", the 1st WHOC aims to discuss the strategies and measures to promote the development of global heavy oil industry..The WHOC is initiated and proposed by China National Petroleum Corporation (CNPC) and Alberta government of Canada. Approved by the state council of China, the 1st WHOC was jointly hosted by CNPC, Sinopec, CNOOC,Sinochem, three government departments of Canada and Indonesia, and several national petroleum corporations,such as PDVSA, Petrobras, Statoil, IOC, and Shell.

  5. Energy efficiency: Policies for technology transfer in Eastern Europe, the Former Soviet Union, and China

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, W.U.; Ledbetter, M.R.; Hamburger, J. [Pacific Northwest Lab., Richland, WA (United States); Bashmakov, I. [Pacific Northwest Lab., Richland, WA (United States)]|[Center for Energy Efficiencies (CENEf), Moscow (Russian Federation)

    1993-10-01

    This paper summarizes the energy-efficiency potential in three major regions of the world -- the Former Soviet Union, Eastern Europe, and China and discusses policy measures that might stimulate adoption of technologies that constitute that potential. The authors suggest that major gains in energy efficiency are indeed possible, and that capturing this potential would provide a major reduction in future levels of energy-related carbon dioxide emissions. The authors indicate, however, that the requisite technological improvement -- often referred to as technology transfer -- is unlikely without the stimulus of strong policy measures. These measures include the rapid introduction of market mechanisms as well as policy intervention to overcome significant market barriers. Moreover, we observe that strong policies -- heavy taxes and performance standards are becoming increasingly unpopular and problematic, but can be replaced to some extent by incentive, market-pull, and research and development programs.

  6. Implications of Carbon and Energy Taxes as Instrument for Environmental Emission Reduction in China's Power Sector

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ With the Integrated Resources Planning Assessment (IRPA) model, implications of carbon tax and energy tax on technological selection, power price and environmental pollution in power industry of China were studied. This model is a least-cost generation planning model, with which the technological composition, electricity price and pollutant emission can be calculated by comparing the cost changes for different power generation options due to carbon and energy taxes. The primary simulation result shows that the levy of US$ 25/tC carbon tax or US$ 0.5/Mbtu energy tax can improve the power generation structure and greatly reduce CO2, SO2 and NOx emissions in power industry. Several advanced power generation technologies such as IGCC and NGCC are of competitive cost, and should be given priority in future planning of power industry.

  7. Modelling tools to evaluate China's future energy system - a review of the Chinese perspective

    DEFF Research Database (Denmark)

    Mischke, Peggy; Karlsson, Kenneth Bernard

    2014-01-01

    Research efforts to analyse China’s future energy system increased tremendously over the past decade. One prominent research area is China’s first binding CO2 emission intensity target per unit of GDP (Gross Domestic Product) and its impact on the country’s economy and energy system. This paper...... finds that there are considerable ranges in the reference scenarios: (i) GDP is projected to grow by 630e840% from 2010 to 2050, (ii) energy demand could increase by 200e300% from 2010 to 2050, and (iii) CO2 emissions could rise by 160e250% from 2010 to 2050. Although the access to the modelling tools...... and the underlying data remains challenging, this study concludes that the Chinese perspective, independently from the modelling approach and institution, suggests a rather gradual and long-term transition towards a low carbon economy in China. Few reference scenarios include an emission peak or stabilisation period...

  8. Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System

    Directory of Open Access Journals (Sweden)

    Xiaoyang Sun

    2016-11-01

    Full Text Available Chinese energy consumption has been dominated by coal for decades, but this needs to change to protect the environment and mitigate anthropogenic climate change. Renewable energy development is needed to fulfil the Intended Nationally Determined Contribution (INDC for the post-2020 period, as stated on the 2015 United Nations Climate Change Conference in Paris. This paper reviews the potential of renewable energy in China and how it could be utilised to meet the INDC goals. A business-as-usual case and eight alternative scenarios with 40% renewable electricity are explored using the EnergyPLAN model to visualise out to the year 2030. Five criteria (total cost, total capacity, excess electricity, CO2 emissions, and direct job creation are used to assess the sustainability of the scenarios. The results indicate that renewables can meet the goal of a 20% share of non-fossil energy in primary energy and 40%–50% share of non-fossil energy in electricity power. The low nuclear-hydro power scenario is the most optimal scenario based on the used evaluation criteria. The Chinese government should implement new policies aimed at promoting integrated development of wind power and solar PV.

  9. Barriers to energy efficiency improvement. Empirical evidence from small-and-medium-sized enterprises in China

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Genia; Moslener, Ulf; Andreas, Jan G.

    2012-07-01

    This paper analyzes barriers for energy efficiency investments for small-and medium-sized enterprises (SMEs) in China. Based on a survey of 480 SMEs in Zhejiang Province, this study assesses financial, informational, and organizational barriers for energy efficiency investments in the SME sector. The conventional view has been that the lack of appropriate financing mechanisms particularly hinders SMEs to adopt cost-effective energy efficiency measures. As such, closing the financing gap for SMEs is seen as a prerequisite in order to promote energy efficiency in the sector. The econometric estimates of this study, however, suggest that access to information is an important determinant of investment outcomes, while this is less clear with respect to financial and organizational factors. More than 40 percent of enterprises in the sample declared that that they are not aware of energy saving equipments or practices in their respective business area, indicating that there are high transaction costs for SMEs to gather, assess, and apply information about energy saving potentials and relevant technologies. One implication is that the Chinese government may assume an active role in fostering the dissemination of energy-efficiency related information in the SME sector. (orig.)

  10. Energy and Environmental Implications of Hybrid and Electric Vehicles in China

    Directory of Open Access Journals (Sweden)

    Haiyan Wang

    2013-05-01

    Full Text Available The promotion of hybrid and electric vehicles (EVs has been proposed as one promising solution for reducing transport energy consumption and mitigating vehicular emissions in China. In this study, the energy and environmental impacts of hybrid and EVs during 2010–2020 were evaluated through an energy conversion analysis and a life cycle assessment (LCA, and the per-kilometer energy consumptions of gasoline, coal, natural gas (NG, oil, biomass, garbage and electricity for EVs and HEVs were estimated. Results show that the EVs and HEVs can reduce the energy consumption of vehicles by national average ratios of 17%–19% and 30%–33%, respectively. The study also calculated the detailed emission factors of SO2, NOX, VOC, CO, NH3, PM10, PM2.5, OC, EC, CO2, N2O, CH4, Pb and Hg. It is indicated that the HEVs can bring significant reductions of NOX, VOC and CO emissions and lesser decreases of SO2 and CO2 for a single vehicle. The EVs could decrease many of the VOC, NH3, CO and CO2 emissions, but increase the SO2, NOX and particles by 10.8–13.0, 2.7–2.9 and 3.6–11.5 times, respectively. In addition, the electricity sources had significant influence on energy consumption (EC and emissions. A high proportion of coal-fired energy resulted in large ECs and emission factors. The total energy consumption and pollutants emission changes in 2015 and 2020 were also calculated. Based on the energy use and emission analysis of HEVs and EVs, it is suggested that EVs should be promoted in the regions with higher proportions of hydropower, natural gas-fired power and clean energy power, while HEVs can be widely adopted in the regions with high coal-fired power ratios. This is to achieve a higher energy consumption reduction and pollutant emission mitigation. Moreover, the results can also provide scientific support for the total amount control of regional air pollutants in China.

  11. A hybrid method for provincial scale energy-related carbon emission allocation in China.

    Science.gov (United States)

    Bai, Hongtao; Zhang, Yingxuan; Wang, Huizhi; Huang, Yanying; Xu, He

    2014-01-01

    Achievement of carbon emission reduction targets proposed by national governments relies on provincial/state allocations. In this study, a hybrid method for provincial energy-related carbon emissions allocation in China was developed to provide a good balance between production- and consumption-based approaches. In this method, provincial energy-related carbon emissions are decomposed into direct emissions of local activities other than thermal power generation and indirect emissions as a result of electricity consumption. Based on the carbon reduction efficiency principle, the responsibility for embodied emissions of provincial product transactions is assigned entirely to the production area. The responsibility for carbon generation during the production of thermal power is borne by the electricity consumption area, which ensures that different regions with resource endowments have rational development space. Empirical studies were conducted to examine the hybrid method and three indices, per capita GDP, resource endowment index and the proportion of energy-intensive industries, were screened to preliminarily interpret the differences among China's regional carbon emissions. Uncertainty analysis and a discussion of this method are also provided herein.

  12. A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China

    Directory of Open Access Journals (Sweden)

    Wenyi Liu

    2014-08-01

    Full Text Available Compressed air energy storage (CAES is a large-scale technology that provides long-duration energy storage. It is promising for balancing the large-scale penetration of intermittent and dispersed sources of power, such as wind and solar power, into electric grids. The existing CAES plants utilize natural gas (NG as fuel. However, China is rich in coal but is deficient in NG; therefore, a hybrid-fuel CAES is proposed and analyzed in this study. Based on the existing CAES plants, the hybrid-fuel CAES incorporates an external combustion heater into the power generation subsystem to heat the air from the recuperator and the air from the high-pressure air turbine. Coal is the fuel for the external combustion heater. The overall efficiency and exergy efficiency of the hybrid-fuel CAES are 61.18% and 59.84%, respectively. Given the same parameters, the cost of electricity (COE of the hybrid-fuel CAES, which requires less NG, is $5.48/MW∙h less than that of the gas-fuel CAES. Although the proposed CAES requires a relatively high investment in the current electricity system in North China, the proposed CAES will be likely to become competitive in the market, provided that the energy supplies are improved and the large scale grid-connection of wind power is realized.

  13. Energy and air emissions embodied in China-U.S. trade: eastbound assessment using adjusted bilateral trade data.

    Science.gov (United States)

    Xu, Ming; Allenby, Braden; Chen, Weiqiang

    2009-05-01

    It is critical to understand environmental impacts embodied in the bilateral trade between China and the United States, given the political, economic, and geographical importance of the two countries and the fact that few studies have investigated this before. This article studies the environmental impacts, particularly energy consumption and air emissions, embodied in the eastbound (from China to the U.S.) trade from 2002 to 2007 using an environmental input-output analysis technique and the adjusted bilateral trade data. In general,trade volume increased until the panic of 2008, and shifting trade patterns cause fluctuating embodied energy and air emissions in trade in China. Results show that embodied energy ranges from 7 to 11 exajoule (EJ) and takes about 12-17% of China's energy consumption. Embodied CO2 ranges between 400 and 800 Mt and represents about 8-12% of China's CO2 emissions. SO2 and NOx embodied in the eastbound trade generally grow over this period, from 4.2 to 6.3 Mt and from 1.4 to 2.9 Mt and account for 10-15% and 8-12% of China's total emissions, respectively.

  14. Comparisons between oxy-fuel combustion and IGCC technologies in China coal- energy industry

    OpenAIRE

    Zhao, Xue; Clemente Jul, María del Carmen

    2010-01-01

    A comparison between oxy-fuel combustion plants and IGCC plants has been carried out. Oxy-fuel combustion performs better for the retrofit of exist pulverized coal plants after the evaluation of efficiency, retrofit cost and O&M cost. China is currently and will depending on coal for its energy for a long time. Plenty of PC plants are used in existing power plants due to its lower coal consumption. One way to reduce CO2 emission with CCS is to equip existing power plants with appliance...

  15. Multi-model comparison of the economic and energy implications for China and India in an international climate regime

    NARCIS (Netherlands)

    Johansson, D.J.A.; Lucas, P.L.; Weitzel, M.; Ahlgren, E.O.; Bazaz, A.B.; Chen, W.; den Elzen, M.G.J.; Ghosh, J.; Grahn, M.; Liang, Q.M.; Peterson, S.; Pradhan, B.K.; van Ruijven, B.J.; Shukla, P.R.; van Vuuren, D.P.; Wei, Y.M.

    2014-01-01

    This paper presents a modeling comparison on how stabilization of global climate change at about 2 °C above the pre-industrial level could affect economic and energy systems development in China and India. Seven General Equilibrium (CGE) and energy system models on either the global or national scal

  16. Does Non-Fossil Energy Usage Lower CO2 Emissions? Empirical Evidence from China

    Directory of Open Access Journals (Sweden)

    Deshan Li

    2016-08-01

    Full Text Available This paper uses an autoregressive distributed lag model (ARDL to examine the dynamic impact of non-fossil energy consumption on carbon dioxide (CO2 emissions in China for a given level of economic growth, trade openness, and energy usage between 1965 and 2014. The results suggest that the variables are in a long-run equilibrium. ARDL estimation indicates that consumption of non-fossil energy plays a crucial role in curbing CO2 emissions in the long run but not in the short term. The results also suggest that, in both the long and short term, energy consumption and trade openness have a negative impact on the reduction of CO2 emissions, while gross domestic product (GDP per capita increases CO2 emissions only in the short term. Finally, the Granger causality test indicates a bidirectional causality between CO2 emissions and energy consumption. In addition, this study suggests that non-fossil energy is an effective solution to mitigate CO2 emissions, providing useful information for policy-makers wishing to reduce atmospheric CO2.

  17. Renewable energy policy in remote rural areas of Western China. Implementation and socio-economic benefits

    Energy Technology Data Exchange (ETDEWEB)

    Shyu, Chian-Woei

    2010-05-19

    Electricity is essential for rural development. In 2005, 1.6 billion people, around a quarter of the world's population, living mostly in rural areas of developing countries, had no access to electricity. In general, remote rural areas in developing countries have little prospect of having access to grid-based electricity, which usually only extends to densely populated urban areas, where a large customer base justifies heavy expenditure for electricity infrastructure. One option for electrification in remote rural areas is to decentralize electricity systems based on renewable energy sources. However, such an option is not universally agreed upon. This dissertation examines a renewable energy-based rural electrification program, the 'Township Electrification Program', launched by the Chinese government in 2002. The Program was implemented in 1013 non-electrified townships in remote rural areas of 11 western provinces, providing electricity for 300,000 households and 1.3 million people. And at the time of research, the Program was known as the world's largest renewable energy-based rural electrification program in terms of investment volume ever carried out by a country. Two townships, Saierlong Township in Qinghai Province and Namcuo Township in Tibet Autonomous Region, were selected as cases for an in-depth examination of rural electrification practices in remote rural areas of western China. Both qualitative (interviews, observations, mapping, and transition walk) and quantitative (household survey) methods were applied in the field to collect data. The main findings of the study are summarized as follows: First, political leaders' concern over the unequal economic development of eastern and western China, as well as rural and urban areas, was the main factor triggering inclusion of the policy issue, electricity access in remote rural areas of western China, in the government's policy agenda. Second, like other energy policies, the

  18. China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-01-13

    We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  19. Characterization and energy potential of food waste from catering service in Hangzhou, China.

    Science.gov (United States)

    Guo, Xiao-Hui; Sun, Fa-Qian; Sun, Ying-Jun; Lu, Hao-Hao; Wu, Wei-Xiang

    2014-08-01

    Safe disposal of food waste is becoming an impending issue in China with the rapid increase of its production and the promotion of environmental awareness. Food waste from catering services in Hangzhou, China, was surveyed and characterized in this study. A questionnaire survey involving 632 units across the urban districts showed that 83.5% of the food waste was not properly treated. Daily food waste production from catering units was estimated to be 1184.5 tonnes. The ratio of volatile solid to total solid, easily biodegradable matter (including crude fat, crude protein and total starch) content in total solid and the ratio of total organic carbon to nitrogen varied in ranges of 90.1%-93.9%, 60.9%-72.1%, and 11.9-19.9, respectively. Based on the methane yield of 350 mL g VS(-1) in anaerobic batch tests, annual biogas energy of 1.0 × 10(9) MJ was estimated to be recovered from the food waste. Food waste from catering services was suggested to be an attractive clean energy source by anaerobic digestion.

  20. Integrating Building Energy Efficiency with Land Use and Transportation Planning in Jinan, China

    Directory of Open Access Journals (Sweden)

    Nicolae Duduta

    2013-02-01

    Full Text Available With the rapid growth occurring in the urban regions of China, it is critical to address issues of sustainability through practices that engender holistic energy efficient solutions. In this paper, we present results from a collaborative design project carried out with planning officials from the city of Jinan (population 3.4 million, for the Luokou district, a 3.1 km2 (1.2 mi2 area to the north of the CBD that is expected to house 100,000–130,000 people by 2020. By integrating sustainable building design, land use, urban design, and transportation, our proposal identified opportunities for improving energy efficiency that might have been overlooked by considering buildings and transportation separately. Mixed land uses and walkable neighborhoods were proposed along with highly differentiated street designs, intended to carry different traffic loads and prioritize diverse travel modes. Street widths and building heights were adjusted to maximize the potential for passive solar heating and daylight use within buildings. The district’s environmental performance, analyzed using building energy evaluation and traffic micro simulation models, showed that the design would reduce energy loads by over 25% compared to business as usual. While the proposal complied with national and local policies, and had far better energy performance than conventional designs, the proposal ultimately was not accepted by local officials because initial costs to the developers were higher than for conventional designs.

  1. Developing a Rating System for Building Energy Efficiency Based on In Situ Measurement in China

    Directory of Open Access Journals (Sweden)

    Li Zhao

    2017-02-01

    Full Text Available Building energy consumption in China recently surpassed the US building consumption, and it is expected to increase significantly in the next decade pushed by the continuous population and urbanization increase. In response to that situation, the Chinese government introduced a series of building energy codes and rating systems to assess and enhance the building energy performance. The purpose of this study is to develop a rating system for the building energy efficiency, based on in situ measurement. The system is intended for office buildings in China’s cold zone. An evaluation framework, graphic dominant point, and principle of data collection and processing are illustrated in this paper. Three existing buildings were rated under the new rating system. The authors believe that the new system will contribute to a more accurate and comprehensive understanding for asset holders and occupants, that report on the extent to which energy efficiency buildings have been reached. Rating results are expected to be a reference for the retrofitting of existing buildings and the design of new buildings. In addition, the outlook for the rating system was also discussed.

  2. Emission scenario of non-CO2 gases from energy activities and other sources in China

    Institute of Scientific and Technical Information of China (English)

    JIANG; Kejun; HU; Xiulian

    2005-01-01

    This paper gives a quantitative analysis on the non-CO2 emissions related to energy demand, energy activities and land use change of six scenarios with different development pattern in 2030 and 2050 based on IPAC emission model. The various mitigation technologies and policies are assessed to understand the corresponding non-CO2 emission reduction effect. The research shows that the future non-CO2 emissions of China will grow along with increasing energy demand, in which thermal power and transportation will be the major emission and mitigation sectors. During the cause of future social and economic development, the control and mitigation of non-CO2 emissions is a problem as challenging and pressing as that of CO2 emissions.This study indicates that the energy efficiency improvement, renewable energy, advanced nuclear power generation, fuel cell, coal-fired combined cycle, clean coal and motor vehicle emission control technologies will contribute to non-CO2 emissions control and mitigation.

  3. The energy budget under the influence of topography in the Zhujiang River Estuary in China

    Institute of Scientific and Technical Information of China (English)

    LIU Huan; WU Chaoyu; WU Yaju

    2015-01-01

    The Zhujiang River (Pearl River) Estuary (ZRE) is a very complicated and large-scale estuarine system in China. It consists of two parts: the river networks and the estuarine bays. Not only is the network system one of the most complicated in the world, but also each estuarine bay has a very special morphodynamic feature due to the geological settings. Morphological boundary conditions have direct effects on the energy dissipa-tion and balance. On the basis of a three-dimensional (3-D) barotropic model whose domain includes the river networks and the estuarine bays, the energy budget is discussed under the influence of topography in the ZRE. The elevation and discharge of this model are validated by the observations collected in July 1999 and February 2001. The results show that (1) the source of energy in the ZRE is mainly generated by tides and river runoffs, which have an obvious seasonal change, and (2) there are some typical hotspots where the energy dissipation is 1–2 orders higher than those in the immediate upstream and downstream sections in the ZRE. These hotspots are linked with the small-scale dynamic structures (SSDS) and morphological units. On the basis of the characteristics of the morphology and the energy dissipation, the hotspots can be catego-rized into three types: the outlet of the ZRE, the meandering river, the branch and junction.

  4. Water and Energy Conservation of Rainwater Harvesting System in the Loess Plateau of China

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-yun; LI Xiao-yan; MA Yu-jun

    2013-01-01

    Water is the source of all the creatures on the earth and energy is the main factor driving the world. With the increasing population and global change, water and energy conservation have become worldwide focal issues, particularly in the water-stressed and energy-limited regions. Rainwater harvesting, based on the collection and storage of rainfall runoff, has been widely used for domestic use and agricultural production in arid and semiarid regions. It has advantages of simple operation, high adaption, low cost and less energy consumption. This study reviewed rainwater harvesting systems adopted in the Loess Plateau of China and analyzed water use efficiency (WUE) for various rainwater harvesting techniques. Supplemental irrigation using harvested rainwater could increase crop yield by more than 30%, and WUE ranged from 0.7 to 5.7 kg m-3 for spring wheat, corn and flax, and 30-40 kg m-3 for vegetables. Moreover, energy consumption for rainwater harvesting based on single family was compared with traditional water supply in the city of the Loess Plateau using the life cycle assessment (LCA) method. Results showed that energy consumption yielded per unit harvested rainwater was 25.96 MJ m-3 yr-1 which was much less than 62.25 MJ m-3 yr-1 for main water supply in Baoji City, Shanxi Province, meaning that rainwater harvesting saved energy by 139.8%as compared to the main water supply system. This study highlights the importance and potential of rainwater harvesting for water and energy conservation in the near future.

  5. 中国能源安全形势和能源安全战略%China's energy security and energy security strategy

    Institute of Scientific and Technical Information of China (English)

    孙莹

    2015-01-01

    能源是人类文明和进步的物质基础,是现代社会发展不可缺少的必要基本条件。中国能源发展近些年取得了很多成绩,但面临着诸多挑战。能源资源禀赋不高,人均拥有各种能源的数量较低。本文从中国能源安全的发展历程为出发点,指出中国能源资源存在的主要特点,在全球能源格局面临调整中进一步分析具有特色的中国能源外交战略。%The energy is the material basis of human civilization and progress is the indispensable necessary basic conditions for the development of modern society. China's energy development in recent years, a lot of achievements, but is faced with many challenges. Energy resources endowment is not high, with a variety of energy per capita is low. This article from the development of China's energy security as a starting point, points out the main characteristic of energy resources in China, further analysis in the adjustment to the global energy landscape characteristic of Chinese energy diplomacy strategy.

  6. IMechE engineers' databook

    CERN Document Server

    Matthews, Clifford

    2011-01-01

    A completely revised and expanded fourth edition of this best-selling pocket guide. Engineers' Data Book provides a concise and useful source of up-to-date essential information for the student or practising engineer. Updated, expanded editionEasy to useHandy reference guideCore technical data

  7. The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India

    Directory of Open Access Journals (Sweden)

    Stefan Nabernegg

    2017-03-01

    Full Text Available Industrial processes currently contribute 40% to global CO2 emissions and therefore substantial increases in industrial energy efficiency are required for reaching the 2 °C target. We assess the macroeconomic effects of deploying low carbon technologies in six energy intensive industrial sectors (Petroleum, Iron and Steel, Non-metallic Minerals, Paper and Pulp, Chemicals, and Electricity in Europe, China and India in 2030. By combining the GAINS technology model with a macroeconomic computable general equilibrium model, we find that output in energy intensive industries declines in Europe by 6% in total, while output increases in China by 11% and in India by 13%. The opposite output effects emerge because low carbon technologies lead to cost savings in China and India but not in Europe. Consequently, the competitiveness of energy intensive industries is improved in China and India relative to Europe, leading to higher exports to Europe. In all regions, the decarbonization of electricity plays the dominant role for mitigation. We find a rebound effect in China and India, in the size of 42% and 34% CO2 reduction, respectively, but not in Europe. Our results indicate that the range of considered low-carbon technology options is not competitive in the European industrial sectors. To foster breakthrough low carbon technologies and maintain industrial competitiveness, targeted technology policy is therefore needed to supplement carbon pricing.

  8. Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel; Qin, Yining; Fridley, David

    2010-12-15

    Urbanization is reshaping China's economy, society, and energy system. Between 1990 and 2008 China added more than 300 million new urban residents, bringing the total urbanization rate to 46%. The ongoing population shift is spurring energy demand for new construction, as well as additional residential use with the replacement of rural biomass by urban commercial energy services. This project developed a modeling tool to quantify the full energy consequences of a particular form of urban residential development in order to identify energy- and carbon-efficient modes of neighborhood-level development and help mitigate resource and environmental implications of swelling cities. LBNL developed an integrated modeling tool that combines process-based lifecycle assessment with agent-based building operational energy use, personal transport, and consumption modeling. The lifecycle assessment approach was used to quantify energy and carbon emissions embodied in building materials production, construction, maintenance, and demolition. To provide more comprehensive analysis, LBNL developed an agent-based model as described below. The model was applied to LuJing, a residential development in Jinan, Shandong Province, to provide a case study and model proof of concept. This study produced results data that are unique by virtue of their scale, scope and type. Whereas most existing literature focuses on building-, city-, or national-level analysis, this study covers multi-building neighborhood-scale development. Likewise, while most existing studies focus exclusively on building operational energy use, this study also includes embodied energy related to personal consumption and buildings. Within the boundaries of this analysis, food is the single largest category of the building energy footprint, accounting for 23% of the total. On a policy level, the LCA approach can be useful for quantifying the energy and environmental benefits of longer average building lifespans. In

  9. Biomass Support for the China Renewable Energy Law: Final Report, December 2005

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    Final subcontractor report giving an overview of the biomass power generation technologies used in China. Report covers resources, technologies, foreign technologies and resources for comparison purposes, biomass potential in China, and finally government policies in China that support/hinder development of the using biomass in China for power generation.

  10. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    Science.gov (United States)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  11. Factor Decomposition Analysis of Energy-Related CO2 Emissions in Tianjin, China

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-07-01

    Full Text Available Tianjin is the largest coastal city in northern China with rapid economic development and urbanization. Energy-related CO2 emissions from Tianjin’s production and household sectors during 1995–2012 were calculated according to the default carbon-emission coefficients provided by the Intergovernmental Panel on Climate Change. We decomposed the changes in CO2 emissions resulting from 12 causal factors based on the method of Logarithmic Mean Divisia Index. The examined factors were divided into four types of effects: energy intensity effect, structure effect, activity intensity effect, scale effect and the various influencing factors imposed differential impacts on CO2 emissions. The decomposition outcomes indicate that per capita GDP and population scale are the dominant positive driving factors behind the growth in CO2 emissions for all sectors, while the energy intensity of the production sector is the main contributor to dampen the CO2 emissions increment, and the contributions from industry structure and energy structure need further enhancement. The analysis results reveal the reasons for CO2 emission changes in Tianjin and provide a solid basis upon which policy makers may propose emission reduction measures and approaches for the implementation of sustainable development strategies.

  12. Life-cycle Energy Consumption of Urban Water System in Shenzhen, China

    Science.gov (United States)

    Li, W.; Liu, H.

    2015-12-01

    Within rapid urbanization and industrialization, Shenzhen, the first special economic zone in China, has been facing serious water shortage. More than 80% of water demand in Shenzhen, i.e., about 1.6 billion m3/yr, is satisfied by water diversion projects. A lot of energy has been used to extract, clean, store and transmit these water. In this paper, energy consumption of urban water system in Shenzhen, China was investigated from a life cycle perspective, and the water system can be divided into five subsystems, i.e., water diversion, water production & supply, household water use, sewage treatment and water reuse. Industrial water use was not considered here, because industrial production processes were so varied. The results showed that water diversion subsystem in Shenzhen consumed electricity of about 0.839 billion kWh/yr (0.53 kWh/m3), water production & supply subsystem about 1.241 billion kWh/yr (0.64 kWh/m3), household water use subsystem about 6.57 billion kWh/yr (9.65 kWh/m3) sewage treatment subsystem about 0.449 billion kWh/yr (0.29 kWh/m3) and water reuse treatment subsystem about 0.013 billion kWh/yr (0.33kWh/m3). So the human-related water system in Shenzhen consumes electricity of about 9.113 billion kWh/yr in total, accounting for about 11.0% of all the electricity use in Shenzhen. Among this, household water use subsystem consumed up to 72.1% of all electricity used in urban water system, followed by water production & supply subsystem (13.6%), water diversion subsystem (9.2%) and sewage treatment and reuse subsystem (5.1%). Unit energy consumption of sewage treatment and reuse subsystem was much less than that of water diversion subsystem, indicating local sewage resource development was advantageous on saving energy to water diversion from a long distance. Further, it implied that the best way to save energy in urban water system is to save portable water, since both water production and household use require to consume much energy.

  13. Measurements of energy and water vapor fluxes over different surfaces in the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    S. Liu

    2010-11-01

    Full Text Available We analyzed the seasonal variations of energy and water vapor fluxes over three different surfaces: irrigated cropland (Yingke, YK, alpine meadow (A'rou, AR, and spruce forest (Guantan, GT. The energy and water vapor fluxes were measured using eddy covariance systems (EC and a large aperture scintillometer (LAS in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site, and discussed the differences between the sensible heat fluxes measured by EC and LAS. The results show that the main EC source areas were within a radius of 250 m at all sites. The main source area for the LAS (with a path length of 2390 m stretched along a path line approximately 2000 m long and 700 m wide. The surface characteristics in the source areas changed according to season and site, and there were characteristic seasonal variations in the energy and water vapor fluxes at all sites. The sensible heat flux was the main term of the energy budget during the dormant season. During the growing season, however, the latent heat flux dominated the energy budget, and an obvious "oasis effect" was observed at YK. The evapotranspiration (ET at YK was larger than those at the other two sites. The monthly ET reached its peak in July at YK and in June at GT in both 2008 and 2009, while it reached its peak in August at AR in 2008 and in June in 2009. The sensible heat fluxes measured by LAS at AR were larger than those measured by EC at the same site. This difference seems to be caused by the energy imbalance of EC, the heterogeneity of the underlying surfaces, and the difference between the source areas of the LAS and EC measurements.

  14. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Goncalo; Feng, Wei; Stadler, Michael; Steinbach, Jan; Lai, Judy; Zhou, Nan; Marnay, Chris; Ding, Yan; Zhao, Jing; Tian, Zhe; Zhu, Neng

    2014-04-09

    The following paper conducts a regional analysis of the U.S. and Chinese buildings? potential for adopting Distributed Energy Resources (DER). The expected economics of DER in 2020-2025 is modeled for a commercial and a multi-family residential building in different climate zones. The optimal building energy economic performance is calculated using the Distributed Energy Resources Customer Adoption Model (DER CAM) which minimizes building energy costs for a typical reference year of operation. Several DER such as combined heat and power (CHP) units, photovoltaics, and battery storage are considered. The results indicate DER have economic and environmental competitiveness potential, especially for commercial buildings in hot and cold climates of both countries. In the U.S., the average expected energy cost savings in commercial buildings from DER CAM?s suggested investments is 17percent, while in Chinese buildings is 12percent. The electricity tariffs structure and prices along with the cost of natural gas, represent important factors in determining adoption of DER, more so than climate. High energy pricing spark spreads lead to increased economic attractiveness of DER. The average emissions reduction in commercial buildings is 19percent in the U.S. as a result of significant investments in PV, whereas in China, it is 20percent and driven by investments in CHP. Keywords: Building Modeling and Simulation, Distributed Energy Resources (DER), Energy Efficiency, Combined Heat and Power (CHP), CO2 emissions 1. Introduction The transition from a centralized and fossil-based energy paradigm towards the decentralization of energy supply and distribution has been a major subject of research over the past two decades. Various concerns have brought the traditional model into question; namely its environmental footprint, its structural inflexibility and inefficiency, and more recently, its inability to maintain acceptable reliability of supply. Under such a troubled setting

  15. A Spatial-Dynamic Agent-based Model of Energy Crop Introduction in Jiangsu province, China

    Science.gov (United States)

    Shu, K.; Schneider, U. A.; Scheffran, J.

    2012-12-01

    Bioenergy, as one promising option to replace a fraction of conventional fossil fuels and lower net greenhouse gas emissions, has gained many countries', in particular developing ones' attention. Their focus is mainly on the design of efficient bioenergy utilization pathways which adapt to both local geographic features and economic conditions. The establishment of a biomass production sector would be the first and pivotal component in the whole industrial chain. Several existing studies have estimated the global biomass for energy potential but arrived at very different results. One reason for the large uncertainty of biomass potential may be ascribed to the diverse nature of biomass leading to different estimates in different circumstances. Therefore, specific research at the local level is essential. Following this thought, our research conducted in the Jiangsu province, a representative region in China, will explore the spatial distribution of biomass production. The employed methodology can also be applied to other locations both in China and similar developing countries if model parameters are adequately adjusted. In this study, we analyze the local situation in the Jiangsu province focusing on the selection of new energy crops, since the cultivation of dedicated crop for energy use is still in experimental phase. We also examine the land use conflict which is especially relevant to China with more than 1.3 billion people and a severe burden on food supply. We develop an agent-based model to find the optimal spatial distribution of biomass (SDA-SDB) in Jiangsu province. Compromising data accessibility and heterogeneity of environmental factors across the province, we resolve our model at county level and consider the aggregated farming community in one county as a single agent. The aim of SDA-SDB is to simulate farmers' decision process of allocating land to either food or energy crops facing limited resources and political targets for bioenergy development

  16. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ohshita, Stephanie; Price, Lynn

    2011-03-21

    Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for

  17. ENERGY FLOW OF BELLAMYA AERUGINOSA IN A SHALLOW ALGAL LAKE, HOUHU LAKE (WUHAN, CHINA)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The energy budget of Bellamya earuginosa in a shallow algal lake, Houhu Lake (Wuhan, China) was investigated by the measurement of flesh production (32.8kJ/(m2*a)), egestion (337.7 kJ/(m2*a)), metabolism (246.7 kJ/(m2*a)), and estimation of excretion (21.4kJ/(m2*a)). The net growth efficiency of the species is about 10.9%, which accords with the generally reported value for gastropods. In addition, the relationships between starvation respiration (R, mgO2/(Ind*d)), body weight (Wd, mg in dry wt) and temperature (T, ℃) were also determined. The regression equation R=0.044 Wd0.537 e0.061T was obtained by the least square method, The measured SDA of the species is 26.51% of its gross metabolism.

  18. Design of the low energy beam transport line for the China spallation neutron source

    Institute of Scientific and Technical Information of China (English)

    LI Jin-Hai; OUYANG Hua-Fu; FU Shi-Nian; ZHANG Sua-Shun; HE Wei

    2008-01-01

    The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper.The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.

  19. Norwegian actors in the fields of energy and climate change in China

    Energy Technology Data Exchange (ETDEWEB)

    Buan, Inga Fritzen

    2008-02-15

    Written for and funded by the Norwegian Ministry of Foreign Affairs and StatoilHydro, this report is a descriptive inventory of Norwegian involvement and Sino-Norwegian cooperation in the fields of energy and climate change-related issues in China. Part 1 is a brief, general introduction to the relevant topics, providing both typical and atypical examples of Norwegian involvement and cooperation and partnerships between actors from the two countries. Many valuable cooperative relationships in science and business have been established. The report also comments on areas in which Norwegian involvement is falling behind the other Nordic countries. Parts 2, 3 and 4 consist of lists of the relevant Norwegian governmental bodies, research institutions and private businesses including descriptions of their partnerships, projects and expertise. (author). 57 refs

  20. The Energy Budget of a Southwest Vortex With Heavy Rainfall over South China

    Institute of Scientific and Technical Information of China (English)

    FU Shenming; SUN Jianhua; ZHAO Sixiong; LI Wanli

    2011-01-01

    Energy budgets were analyzed to study the development of an eastward propagating southwest vortex (SWV) associated with heavy rainfall over southern China (11-13 June 2008). The results show that kinetic energy (KE) generation and a dvection were the most important KE sources, while friction and sub-grid processes were the main KE sinks. There was downward conversion from divergent to rotational wind KE consistent with the downward stretching of SWVs. The Coriolis force was important for the formation and maintenance of the SWV. Convergence was also an important factor for maintenance, as was vertical motion during the mature stage of the SWV and the formation stage of a newly formed vortex (vortex B). The conversion from available potential energy (APE) to KE of divergent wind can lead to strong convection. Vertical motion influenced APE by dynamical and thermal processes which had opposite effects.The variation of APE was related to the heavy rainfall and convection; in this case, vertical motion with direct thermal circulation was the most important way in which APE was released, while latent heat release and vertical temperature advection were important for APE generation.

  1. Solar Lighting Technologies for Highway Green Rest Areas in China: Energy Saving Economic and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Xiaochun Qin

    2015-01-01

    Full Text Available In this paper, taking Lushan West Sea highway green rest area in Jiangxi Province of China as the case study, the suitable types, applicability, advantages, and effective methods of solar lighting technologies for highway rest area were determined based on the analysis of characteristics of highway green rest area. It was proved that solar lighting technologies including the natural light guidance system, solar LED lighting, and maximizing natural light penetration were quite suitable for highway rest area in terms of lighting effects and energy and economic efficiency. The illuminance comparison of light guidance system with electrical lighting was made based on the on-site experiment. Also, the feasibility of natural light guidance system was well verified in terms of the lighting demand of the visitor centre in the rest area by the illuminance simulation analysis. The evaluation of the energy saving, economic benefits, and environmental effects of solar lighting technologies for highway rest area was, respectively, made in detail. It was proved that the application of solar technology for green lighting of highway rest facilities not only could have considerable energy saving capacity and achieve high economic benefits, but also make great contributions to the reduction of environment pollution.

  2. Cost of non-renewable energy in production of wood pellets in China

    Science.gov (United States)

    Wang, Changbo; Zhang, Lixiao; Liu, Jie

    2013-06-01

    Assessing the extent to which all bio-fuels that are claimed to be renewable are in fact renewable is essential because producing such renewable fuels itself requires some amount of non-renewable energy (NE) and materials. Using hybrid life cycle analysis (LCA)—from raw material collection to delivery of pellets to end users—the energy cost of wood pellet production in China was estimated at 1.35 J/J, of which only 0.09 J was derived from NE, indicating that only 0.09 J of NE is required to deliver 1 J of renewable energy into society and showing that the process is truly renewable. Most of the NE was consumed during the conversion process (46.21%) and delivery of pellets to end users (40.69%), during which electricity and diesel are the two major forms of NE used, respectively. Sensitivity analysis showed that the distance over which the pellets are transported affects the cost of NE significantly. Therefore the location of the terminal market and the site where wood resources are available are crucial to saving diesel.

  3. Cost of non-renewable energy in production of wood pellets in China

    Institute of Scientific and Technical Information of China (English)

    Changbo WANG; Lixiao ZHANG; Jie LIU

    2013-01-01

    Assessing the extent to which all bio-fuels that are claimed to be renewable are in fact renewable is essential because producing such renewable fuels itself requires some amount of non-renewable energy (NE) and materials.Using hybrid life cycle analysis (LCA)—from raw material collection to delivery of pellets to end users—the energy cost of wood pellet production in China was estimated at 1.35 J/J,of which only 0.09 J was derived from NE,indicating that only 0.09 J of NE is required to deliver 1 J of renewable energy into society and showing that the process is truly renewable.Most of the NE was consumed during the conversion process (46.21%) and delivery of pellets to end users (40.69%),during which electricity and diesel are the two major forms of NE used,respectively.Sensitivity analysis showed that the distance over which the pellets are transported affects the cost of NE significantly.Therefore the location of the terminal market and the site where wood resources are available are crucial to saving diesel.

  4. The High Energy cosmic-Radiation Detection (HERD) Facility onboard China's Future Space Station

    CERN Document Server

    Zhang, S N

    2014-01-01

    The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 10$^4$ cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the cha...

  5. Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingbo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Liu, Huanbin [South China Univ. of Technology, Guangzhou (China). State Key Lab. of Pulp and Paper Engineering

    2013-01-31

    This study assesses the impact of 23 energy-efficiency measures that could be applied in China's pulp and paper industry. We analyze the fuel- and electricity-efficiency improvement potential of these technologies for the year 2010 using a bottom-up conservation supply curve (CSC) model. The fuel CSC model shows that the cost-effective fuel efficiency improvement potential for China's pulp and paper industry is 179.6 PJ, and the total technical fuel-savings potential is 254.3 PJ. These figures represent 26.8 percent and 38.0 percent, respectively, of total fuel used in China’s pulp and paper industry in 2010. The CO2 emissions reduction potential associated with ii the cost-effective fuel savings is 16.9 Mt CO2, and the total technical potential for CO2 emissions reduction is 24.2 Mt CO2. The electricity CSC model shows that the total technical electricity-efficiency potential to 2,316 gigawatt-hours (GWh) or 4.3 percent of total electricity use in the pulp and paper industry in 2010. All of the electricity-efficiency potential is cost effective. The CO2 emissions reduction potential associated with the total electricity savings is 1.8 Mt CO2. Sensitivity analyses for adoption rate, discount rate, electricity and fuel prices, investment costs, and the energy savings from each measure show that these parameters have significant influence on the results. Therefore, the results presented in this report should be interpreted with caution.

  6. The barriers to energy efficiency in China. Assessing household electricity savings and consumer behavior in Liaoning Province

    Energy Technology Data Exchange (ETDEWEB)

    Dianshu, Feng; Sovacool, Benjamin K.; Minh Vu, Khuong [Lee Kuan Yew School of Public Policy, Centre on Asia and Globalisation, National University of Singapore, Oei Tiong Ham Building, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2010-02-15

    This article investigates the barriers to energy efficiency at the residential sector within one province in China and explores patterns of household electricity consumption. The article presents the results of a survey questionnaire distributed to more than 600 households in Liaoning Province, field research at various Liaoning government agencies, and research interviews of Liaoning government officials to determine the efficacy of their energy efficiency efforts in China. It then investigates the extent that electricity consumers have taken advantage of energy efficiency opportunities relating to more efficient lights, water heaters, appliances, air-conditioners and heaters, and better energy-efficiency labels. The article also assesses the degree that electricity users have become more aware about electricity prices and their levels of consumption, and touches on the connection between rising levels of income and electricity use. It concludes by providing recommendations for how to improve efforts to promote conservation and reduce electricity load growth in Liaoning Province and beyond. (author)

  7. The barriers to energy efficiency in China: Assessing household electricity savings and consumer behavior in Liaoning Province

    Energy Technology Data Exchange (ETDEWEB)

    Feng Dianshu, E-mail: dianshu@nus.edu.s [Lee Kuan Yew School of Public Policy, Centre on Asia and Globalisation, National University of Singapore, Oei Tiong Ham Building, 469C Bukit Timah Road, Singapore 259772 (Singapore); Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Lee Kuan Yew School of Public Policy, Centre on Asia and Globalisation, National University of Singapore, Oei Tiong Ham Building, 469C Bukit Timah Road, Singapore 259772 (Singapore); Khuong Minh Vu, E-mail: sppkmv@nus.edu.s [Lee Kuan Yew School of Public Policy, Centre on Asia and Globalisation, National University of Singapore, Oei Tiong Ham Building, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2010-02-15

    This article investigates the barriers to energy efficiency at the residential sector within one province in China and explores patterns of household electricity consumption. The article presents the results of a survey questionnaire distributed to more than 600 households in Liaoning Province, field research at various Liaoning government agencies, and research interviews of Liaoning government officials to determine the efficacy of their energy efficiency efforts in China. It then investigates the extent that electricity consumers have taken advantage of energy efficiency opportunities relating to more efficient lights, water heaters, appliances, air-conditioners and heaters, and better energy-efficiency labels. The article also assesses the degree that electricity users have become more aware about electricity prices and their levels of consumption, and touches on the connection between rising levels of income and electricity use. It concludes by providing recommendations for how to improve efforts to promote conservation and reduce electricity load growth in Liaoning Province and beyond.

  8. China’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with China

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Evans, Meredydd

    2010-04-01

    This report includes an evaluation of China’s current activities and future direction in building energy efficiency R&D and its relevance to DOE’s R&D activities under the Building Technologies Program in the Office of Energy Efficiency and Renewable Energy. The researchers reviewed the major R&D programs in China including the so-called 973 Program, the 863 Program, and the Key Technology R&D Program1 as well as the research activities of major research institutes. The report also reviewed several relevant documents of the Chinese government, websites (including the International Energy Agency and national and local governments in China), newsletters, and financial information listed in the program documents and websites.

  9. Driving forces in energy-related CO2 emissions in south and east coastal China: commonality and variations

    Science.gov (United States)

    Gao, C.; Liu, Y.; Jin, J.; Wei, T.

    2015-12-01

    East and south coastal China contributes to respectively about 30% and 8% of CO2 emissions in China and the world, and therefore play a critical role in achieving the national goal of emission reduction to mitigate the global warming. It also serves as a benchmark for the less developed regions of China, in terms of achieving the developed world's human development standard under lower per capita emissions. We analyze the driving forces of emissions in this region and their provincial characteristics by applying the Logarithmic Mean Divisia Index method. Our findings show that emissions have been doubled during the period from 2000 to 2012, along with three and two folds increase in economy and energy consumption, respectively. This suggests a persistent lock between economic growth and emissions, even in this socioeconomically advanced region in China. Provincial difference in annual emission growth reveals three distinguished low-carbon developmental stages, owning mainly to the effectiveness of energy efficiency in reducing emission growth. This may explain why previous climate policies have aimed to reduce carbon intensity. These results indicate that targeted measures on enhancing energy efficiency in the short term and de-carbonization of both the economic and energy structure in the long term can lower the emission growth more effectively and efficiently. They also suggest that factor-driven emission reduction strategies and policies are needed in the geographically and socioeconomically similar regions.

  10. Electric vehicle charging in China's power system : Energy, economic and environmental trade-offs and policy implications

    NARCIS (Netherlands)

    Li, Ying; Davis, Chris; Lukszo, Zofia; Weijnen, Margot

    2016-01-01

    This work investigates different scenarios for electric vehicle (EV) deployment in China and explores the implications thereof with regard to energy portfolio, economics and the environment. Specifically, we investigate how to better deliver the value of EVs by improving designs in the power system

  11. The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants

    OpenAIRE

    Zhao, Y.; J. Zhang; C. P. Nielsen

    2014-01-01

    To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the fu...

  12. Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lining; Patel, Pralit L.; Yu, Sha; Liu, Bo; Mcleod, Jeffrey D.; Clarke, Leon E.; Chen, Wenying

    2016-02-01

    The rapid growth of energy consumption in China has led to increased emissions of air pollutants. As a response, in its 12th Five Year Plan the Chinese government proposed mitigation targets for SO2 and NOx emissions. Herein we have investigated mitigation measures taken in different sectors and their corresponding impacts on the energy system. Additionally, as non-fossil energy development has gained traction in addressing energy and environmental challenges in China, we further investigated the impact of non-fossil energy development on air pollutant emissions, and then explored interactions and co-benefits between these two types of policies. An extended Global Change Assessment Model (GCAM) was used in this study, which includes an additional air pollutant emissions control module coupling multiple end-of-pipe (EOP) control technologies with energy technologies, as well as more detailed end-use sectors in China. We find that implementing EOP control technologies would reduce air pollution in the near future, but with little room left to implement these EOP technologies, other cleaner and more efficient technologies are also effective. These technologies would reduce final energy consumption, increase electricity’s share in final energy, and increase the share of non-fossil fuels in primary energy and electricity consumption. Increasing non-fossil energy usage at China’s proposed adoption rate would in turn also reduce SO2 and NOx emissions, however, the reductions from this policy alone still lag behind the targeted requirements of air pollutant reduction. Fortunately, a combination of air pollutant controls and non-fossil energy development could synergistically help realize the respective individual targets, and would result in lower costs than would addressing these issues separately.

  13. Regional developments in energy systems, economics and climate. 6.2. China, India and other rapidly developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.; Dhar, S.; Halsnaes, K.

    2008-12-15

    Despite fluctuations in global economic growth, some countries' economic growth consistently outperforms that of others. These rapidly growing economies are powerhouses for regional economic growth. Through market reforms, their productivity and competitiveness on the global market are increasing. The dynamics and influence of these countries cannot be neglected in an analysis of global economy, energy, and GHG emissions in the coming decades because of their large economic sizes and big populations. China, India, Brazil, Mexico, South Africa, and other large and rapidly-emerging economies are important forces, shaping global trends in development, energy, and climate change mitigation. The enormous investments in energy infrastructure in these countries in the years to come will provide a rare window of opportunity for low-carbon development and low-cost reductions in greenhouse gas emissions. At the same time, they face the challenge of supporting economic growth and eliminating poverty for billions of people in a world already facing many constraints on energy and carbon emissions. Of all the emerging economies, China and India deserve special attention due to their huge populations, large economies, and remarkable economic growth over the last three decades. This section will examine the recent trends in the economic, energy, and climate development in China and India and sets the stage for the analysis of the future energy system and climate implication analysis in the next chapter. (au)

  14. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  15. Health benefit evaluation of the energy use scenarios in Beijing, China.

    Science.gov (United States)

    Pan, Xiaochuan; Yue, Wei; He, Kebin; Tong, Shilu

    2007-03-15

    Air pollution is one of the important causal factors for excess cardiorespiratory deaths and diseases. However, little information is available on health gains from clean energy usage in developing countries. In this study the expected population exposed to air pollutants was estimated under the different energy use scenarios by the year 2010, 2020 and 2030, respectively, in the urban area of Beijing, China. The concentration-response functions between air pollutants and the health endpoints were established using meta-analysis and regression models. The decreased cardiorespiratory deaths and diseases of the exposed population were predicted as the health benefits from air pollution reduction. We used daily measurements of particulate matter less than 10 mum in aerodynamic diameter (PM(10)) and sulphate dioxide (SO(2)) as air pollution indicators. The percentage of population exposed to higher level of PM(10) will be decreased significantly under the clean energy use scenario than that under the Baseline Scenario (i.e., business-as-usual scenario). Compared with the Baseline Scenario there will be, by 2010, 2020, and 2030, respectively, a decrease of 29-152, 30-212 and 39-287 acute excess deaths; and 340-1811, 356-2529 and 462-3424 chronic excess deaths associated with the reduction of PM(10) level; also a decrease of 237-331, 285-371 and 400-554 short-term excess deaths associated with the decrease of SO(2) level. Meanwhile, the number of respiratory and cardiovascular hospital admissions, outpatient visits to internal and paediatrics departments, total emergency room visits and asthma attacks will be remarkably reduced with the reduction of air pollution. Energy structure improvement could reduce ambient air pollution and produce substantial health benefits to the population in Beijing. These findings may have significant implications for other metropolitan cities, particularly in developing countries.

  16. Seasonal and Interannual Variation in Energy Balance in the Semiarid Grassland Area of China

    Directory of Open Access Journals (Sweden)

    Qun’ou Jiang

    2015-01-01

    Full Text Available Near surface energy budget changes have been proved to be induced by the land cover conversion through changing the surface physical properties, which can further impact the regional climate change. This study applies the DLS model to simulate the land cover under the business as usual (BAU scenario and then analyses the seasonal and interannual variation of energy balance in the semiarid grassland area of China based on the simulated land cover with the Weather Research and Forecasting (WRF model. The results indicate that the grassland will show a growing trend under the BAU scenario. Downward long wave radiation and downward short wave radiation will all have small-scale increase with time going by, while the surface net radiation will decrease from 2030 to 2050. However, there is obvious seasonal variation. Summer has the highest downward long wave radiation and downward short wave radiation, followed by spring and autumn. The lowest are in winter. As for the net surface radiation, there is obvious decrease in southeast of study area due to returning cropland to grassland. Those research conclusions can offer valuable information for the land use planning and relieving the effects of land cover change on climate change at the semiarid grassland area.

  17. Features of eddy kinetic energy and variations of upper circulation in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    贺志刚; 王东晓; 胡建宇

    2002-01-01

    The features of eddy kinetic energy (EKE) and the variations of upper circulation in the South China Sea (SCS) are discussed in this paper using geostrophic currents estimated from Maps of Sea Level Anomalies of the TOPEX/Poseidon altimetry data. A high EKE center is identified in the southeast, of Viemam coast with the highest energy level 1400 cm2@s-2 in both summer and autumn.This high EKE center is caused by the instability of the current axis leaving the coast of Vietnam in summer and the transition of seasonal circulation patterns in autumn. There exists another high EKE region in the northeastern SCS, southwest to Taiwan Island in winter. This high EKE region is generated from the eddy activities caused by the Kuroshio intrusion and accumulates more'than one third of the annual EKE, which confirms that the eddies are most active in winter. The transition of upper circulation patterns is also evidenced by the directions of the major axises of velocity variance ellipses between 10°and 14.5°N, which supports the model results reported before.

  18. On the Wind Energy Resource and Its Trend in the East China Sea

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2017-01-01

    Full Text Available This study utilizes a 30-year (1980–2009 10 m wind field dataset obtained from the European Center for Medium Range Weather Forecast to investigate the wind energy potential in the East China Sea (ECS by using Weibull shape and scale parameters. The region generally showed good wind characteristics. The calculated annual mean of the wind power resource revealed the potential of the region for large-scale grid-connected wind turbine applications. Furthermore, the spatiotemporal variations showed strong trends in wind power in regions surrounding Taiwan Island. These regions were evaluated with high wind potential and were rated as excellent locations for installation of large wind turbines for electrical energy generation. Nonsignificant and negative trends dominated the ECS and the rest of the regions; therefore, these locations were found to be suitable for small wind applications. The wind power density exhibited an insignificant trend in the ECS throughout the study period. The trend was strongest during spring and weakest during autumn.

  19. Simulated Effects of Land Cover Conversion on the Surface Energy Budget in the Southwest of China

    Directory of Open Access Journals (Sweden)

    Jiangbo Gao

    2014-03-01

    Full Text Available In this paper, the coupled WRF/SSiB model, accompanied by a Karst Rocky Desertification (KRD map of the Guizhou Karst Plateau (GKP of China, was applied to detect how the changed vegetation and soil characteristics over the GKP modify the energy balance at the land surface. The results indicated that land degradation led to reduced net radiation by inducing more upward shortwave and longwave radiation, which were associated with increasing surface albedo and temperature, respectively. The KRD also resulted in changed surface energy partitioning into sensible and latent heat fluxes. The latent heat flux at land surface was reduced substantially due to the higher surface albedo and stomatal resistance, the lower Leaf Area Index (LAI and roughness length in the degradation experiment, while the sensible heat flux increased, mainly because of the higher surface temperature. Furthermore, the moisture flux convergence was reduced, owing to the lower atmospheric heating and the relative subsidence. However, compared with the reduced evaporation, the decrease in moisture flux convergence contributed much less to the reduced precipitation. Precipitation strongly affects soil moisture, vegetation growth and phenology, and thus evaporation and convective latent heating, so when precipitation was changed, a feedback loop was created.

  20. The socio-political economy of nuclear energy in China and India

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road Singapore 259772 (Singapore); Valentine, Scott Victor [Graduate School of Public Policy, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2010-09-15

    This article investigates forms of social, political, and economic organization conducive to nuclear power expansion. We begin by developing a theoretical framework of nuclear socio-political economy based primarily upon the evolution of nuclear energy in France. This framework posits that (1) strong state involvement in guiding economic development, (2) centralization of national energy planning, (3) campaigns to link technological progress to a national revitalization, (4) influence of technocratic ideology on policy decisions, (5) subordination of challenges to political authority, and (6) low levels of civic activism are influential factors in supporting development of nuclear power. Accordingly, we seek to verify the causal properties of these six catalysts for nuclear power expansion in two nations - India and China - that are on the brink of becoming major nuclear powers. We validate our framework by confirming the presence of the six catalysts during the initial nuclear power developmental periods in each country. We also apply our framework as a predictive tool by considering how present conditions in the two nations will impact nuclear power development trends. We conclude by highlighting the emergence of a potential seventh catalyst - the influence of greenhouse gas emission abatement policy on nuclear power development. (author)

  1. Analysis of energy-saving potential in residential buildings in Xiamen City and its policy implications for southern China

    Science.gov (United States)

    Guo, Fei

    The buildings sector is the largest energy-consuming sector in the world. Residential buildings consume about three-quarters of the final energy in the buildings sector. Promoting residential energy savings is in consequence critical for addressing many energy-use-related environmental challenges, such as climate change and air pollution. Given China's robust economic growth and fast urbanization, it is now a critical time to develop policy interventions on residential energy use in the nation. With this as a background, this dissertation explores effective policy intervention opportunities in southern China through analyzing the residential energy-saving potential, using the city of Xiamen as a case study. Four types of residential energy-saving potential are analyzed: technical potential, economic potential, maximum achievable potential (MAP), and possible achievable potential (PAP). Of these, the first two types are characterized as static theoretical evaluation, while the last two represent dynamic evaluation within a certain time horizon. The achievable potential analyses are rarely seen in existing literature. The analytical results reveal that there exists a significant technical potential for residential energy savings of about 20.9-24.9% in the city of Xiamen. Of the technical potential, about two-thirds to four-fifths are cost-effective from the government or society perspective. The cost-effectiveness is evaluated by comparing the "Levelized Cost of Conserved Energy (LCOCE)" of available advanced technical measures with the "Actual Cost" of conserved energy. The "Actual Cost" of energy is defined by adding the environmental externalities costs and hidden government subsidies over the retail prices of energy. The achievable potential analyses are particularly based on two key realistic factors: 1) the gradual ramping-up adoption process of advanced technical measures; and 2) individuals' adoption-decision making on them. For implementing the achievable

  2. Decomposition analysis of energy-related carbon dioxide emissions in the iron and steel industry in China

    Institute of Scientific and Technical Information of China (English)

    Wenqiang SUN; Jiuju CAI, Hai YU, Lei DAI

    2012-01-01

    This work aims to identify the main factors influencing the energy-related carbon dioxide (CO2) emissions from the iron and steel industry in China during the period of 1995-2007. The logarithmic mean divisia index (LMDI) technique was applied with period-wise analysis and time-series analysis. Changes in energy- related CO2 emissions were decomposed into four factors: emission factor effect, energy structure effect, energy consumption effect, and the steel production effect. The results show that steel production is the major factor responsible for the rise in CO2 emissions during the sampling period; on the other hand the energy consump- tion is the largest contributor to the decrease in C02 emissions. To a lesser extent, the emission factor and energy structure effects have both negative and positive contributions to C02 emissions, respectively. Policy implications are provided regarding the reduction of C02 emissions from the iron and steel industry in China, such as controlling the overgrowth of steel production, improving energy-saving technologies, and introducing low-carbon energy sources into the iron and steel industry.

  3. What China can learn from international policy experiences to improve industrial energy efficiency and reduce CO2 emissions?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-11-01

    China’s industrial sector dominates the country’s total energy consumption and energy efficiency in the industry sector is crucial to help China reach its energy and CO2 emissions reduction goals. There are many energy efficiency policies in China, but the motivation and willingness of enterprises to improve energy efficiency has weakened. This report first identifies barriers that enterprises face to be self-motivated to implement energy efficiency measures. Then, this report reviews international policies and programs to improve energy efficiency and evaluates how these policies helped to address the identified barriers. Lastly, this report draws conclusions and provides recommendations to China in developing policies and programs to motivate enterprises to improve energy efficiency.

  4. Study on Spillover Effect of Energy Price Volatility in China and Abroad%国内外能源价格波动溢出效应研究

    Institute of Scientific and Technical Information of China (English)

    王世进

    2013-01-01

    As China's energy consumption is increasingly depending on the international market, price fluctuations in international energy have a significant impact on China' s economic development and the security and sustainable development of China's energy industry. There has been little research on the mutual influence between international energy prices and Chinese domestic energy prices. Based on the Granger causality tests, VAR and DCC-GARCH models, we analyze the influence of international energy price vibration on Chinese energy prices using relevant data and fuels and power purchasing price index. We found a long-running equilibrium relationship and volatility spillover effect between international energy prices and Chinese energy prices, and one-way price leading relationship exists between both in the short term. With the rapid development of China's energy industry and innovation and market development of energy derivatives, demand for energy price hedging instruments in domestic energy industry will become more urgent. Borrowing from international models, China will be able to firmly grasp the energy pricing right to maintain the secure development of its energy industry and speed up the rapid integration of China's energy pricing mechanism with the international energy market. This approach will better reflect the demands of China's energy market and effectively guarantee the healthy and orderly development of China's energy industry and stable economic development. We conclude by suggesting energy legislation, energy cooperation with consumption countries, and the promotion of an energy derivatives futures market in order to maintain the healthy development of the energy industry.%本文利用相关数据及燃料、动力类购进价格指数,运用Granger因果检验,VAR和DCC-GARCH模型,分析了国际能源价格波动对我国能源价格平衡的影响.通过研究,表明国际能源价格与我国能源价格间存在长期的稳定协整关系和双

  5. Helping people build a better world? Barriers to more environmentally friendly energy production in China: the case of Shell

    Energy Technology Data Exchange (ETDEWEB)

    Buan, Inga Fritzen

    2008-03-15

    China's rapid industrialization and economic expansion are causing massive environmental damage, with consequences beyond the country's borders, especially due to the use of fossil fuels' effect on climate change. Shell China can contribute to making energy production, if not clean and sustainable, then cleaner and more sustainable by making existing energy production more environmentally friendly; by diversifying and developing alternative energy sources; and by creating precedence influencing others to follow in its footsteps. The first goal of this report is to identify and analyze changes that have happened in the Shell Group since the 1990s when energy companies started their 'greening' processes. These changed happened due to stricter environmental legislation, increased civil society pressure and media scrutiny. Changes on the global and headquarters level in a company do not, however, necessitate similar developments in its national and local level operations. The second goal is thus to analyze to which degree the changes in the Shell Group have had relevance for Shell China and whether barriers in the Chinese context influence its prospects to operate in a more environmentally friendly way. (author). 64 refs

  6. Indicator system of energy efficient technologies evaluation of residential buildings in hot summer and cold winter regions of China

    Institute of Scientific and Technical Information of China (English)

    夏煦

    2014-01-01

    The related existing energy saving index system of buildings is deficient in direction, index coverage, depth, and technological and economic considerations. Aiming at the deficient existing research and with the advancement of energy saving of buildings in China from northern heating regions to southern hot summer and cold winter regions, selecting residential buildings in hot summer and cold winter regions as the research object, and through much evaluation index reference and repeated demonstrations and the borrowing of literature research home and abroad and relevant energy saving standards, filters and eliminates energy efficient technologies evaluation indexes according to the design principle of index system, the factors influencing the energy saving of residential buildings are evaluated, index system weight is established by adopting analytic hierarchy process, and finally the evaluation index system of energy saving technologies of residential buildings in hot summer and cold winter area of China is established. Each target layer includes five standard layer indexes and sixteen index layer indexes. The standard layer of evaluation index, namely primary indexes, includes the technological, energy saving effect, economic, environmental, and social indexes. The secondary indexes are selected based on the principles of concision, comprehensiveness, representativeness and operability.

  7. Modeling an emissions peak in China around 2030: Synergies or trade-offs between economy, energy and climate security

    Directory of Open Access Journals (Sweden)

    Qi-Min Chai

    2014-12-01

    Full Text Available China has achieved a political consensus around the need to transform the path of economic growth toward one that lowers carbon intensity and ultimately leads to reductions in carbon emissions, but there remain different views on pathways that could achieve such a transformation. The essential question is whether radical or incremental reforms are required in the coming decades. This study explores relevant pathways in China beyond 2020, particularly modeling the major target choices of carbon emission peaking in China around 2030 as China-US Joint Announcement by an integrated assessment model for climate change IAMC based on carbon factor theory. Here scenarios DGS-2020, LGS2025, LBS-2030 and DBS-2040 derived from the historical pathways of developed countries are developed to access the comprehensive impacts on the economy, energy and climate security for the greener development in China. The findings suggest that the period of 2025–2030 is the window of opportunity to achieve a peak in carbon emissions at a level below 12 Gt CO2 and 8.5 t per capita by reasonable trade-offs from economy growth, annually −0.2% in average and cumulatively −3% deviation to BAU in 2030. The oil and natural gas import dependence will exceed 70% and 45% respectively while the non-fossil energy and electricity share will rise to above 20% and 45%. Meantime, the electrification level in end use sectors will increase substantially and the electricity energy ratio approaching 50%, the labor and capital productivity should be double in improvements and the carbon intensity drop by 65% by 2030 compared to the 2005 level, and the cumulative emission reductions are estimated to be more than 20 Gt CO2 in 2015–2030.

  8. China’s Energy Security: The Grand "Hedging" Strategy

    Science.gov (United States)

    2010-05-01

    People’s Liberation Army Navy PRC – People’s Republic of China PSC – Production Sharing Contracts Sinopec – China Petroleum and Chemical...CNOOC, and Sinopec . Case Study 1: China’s National Oil Companies Multiple, overlapping, and in some cases competing companies make up China’s...percent of total oil output, and primarily focuses on E&P abroad. The China Petroleum and Chemical Corporation ( Sinopec ) is primarily responsible for

  9. Decision on optimal building energy efficiency standard in China. The case for Tianjin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Giraud, Pierre-Noel [CERNA-Mines Paris Tech, 60 Boulevard Saint-Michel, 75006 Paris (France); Colombier, Michel [Institute du developpement durable et des relations internationales, 13 Rue de L' Universite, 75007 Paris (France)

    2009-07-15

    This paper investigates the optimal choice of building energy efficiency (BEE) standard in the context of centralised urban district heating system in northern China. By employing a techno-economic analysis approach, we demonstrate that the current BEE standard implemented in the Chinese cities should be tightened further in order to achieve a socially optimal level. Without considering the externality costs associated with carbon dioxide (CO{sub 2}) emissions, current BEE standards need to be upgraded to the equivalent level of French RT2005 standard coupled with a properly designed district coal-fired Combined Heat and Power (CHP). In contrast, the equivalent efficiency standard of Swedish building code is preferably to be implemented in the case of explicit carbon emission restriction as long as the marginal cost of carbon emission (carbon price) is sufficiently high. The fuel-switching policy (from coal to natural gas) in the urban district heating system would result in significant increase in overall costs if the BEE upgrade is not taken into account simultaneously. It is also found that BEE improvements in northern Chinese cities are more cost-effective than investing in low-carbon technologies such as wind power or Carbon Capture and storage in the EU and US with regard to CO{sub 2} emissions mitigation. (author)

  10. Decision on optimal building energy efficiency standard in China-The case for Tianjin

    Energy Technology Data Exchange (ETDEWEB)

    Li Jun [CERNA-Mines Paris Tech, 60 Boulevard Saint-Michel, 75006 Paris (France); Colombier, Michel [Institute du developpement durable et des relations internationales, 13 Rue de L' Universite, 75007 Paris (France)], E-mail: michel.colombier@iddri.org; Giraud, Pierre-Noel [CERNA-Mines Paris Tech, 60 Boulevard Saint-Michel, 75006 Paris (France)

    2009-07-15

    This paper investigates the optimal choice of building energy efficiency (BEE) standard in the context of centralised urban district heating system in northern China. By employing a techno-economic analysis approach, we demonstrate that the current BEE standard implemented in the Chinese cities should be tightened further in order to achieve a socially optimal level. Without considering the externality costs associated with carbon dioxide (CO{sub 2}) emissions, current BEE standards need to be upgraded to the equivalent level of French RT2005 standard coupled with a properly designed district coal-fired Combined Heat and Power (CHP). In contrast, the equivalent efficiency standard of Swedish building code is preferably to be implemented in the case of explicit carbon emission restriction as long as the marginal cost of carbon emission (carbon price) is sufficiently high. The fuel-switching policy (from coal to natural gas) in the urban district heating system would result in significant increase in overall costs if the BEE upgrade is not taken into account simultaneously. It is also found that BEE improvements in northern Chinese cities are more cost-effective than investing in low-carbon technologies such as wind power or Carbon Capture and storage in the EU and US with regard to CO{sub 2} emissions mitigation.

  11. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.

    Science.gov (United States)

    Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing

    2012-12-01

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  12. More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China

    Directory of Open Access Journals (Sweden)

    Jianjun He

    2012-08-01

    Full Text Available In Northern China, due to the high penetration of coal-fired cogeneration facilities, which are generally equipped with extraction-condensing steam turbines, lots of wind power resources may be wasted during the heating season. In contrast, considerable coal is consumed in the power generation sector. In this article, firstly it is revealed that there exists a serious divergence in the ratio of electrical to thermal energy between end users’ demand and the cogenerations’ production during off-peak load at night, which may negate active power-balancing of the electric power grid. Secondly, with respect to this divergence only occurring during off-peak load at night, a temporary proposal is given so as to enable the integration of more wind power. The authors suggest that if the energy carrier for part of the end users’ space heating is switched from heating water to electricity (e.g., electric heat pumps (EHPs can provide space heating in the domestic sector, the ratio of electricity to heating water load should be adjusted to optimize the power dispatch between cogeneration units and wind turbines, resulting in fuel conservation. With this proposal, existing infrastructures are made full use of, and no additional ones are required. Finally a numerical simulation is performed in order to illustrate both the technical and economic feasibility of the aforementioned proposal, under ongoing infrastructures as well as electricity and space heating tariff conditions without changing participants’ benefits. The authors aim to persuade Chinese policy makers to enable EHPs to provide space heating to enable the integration of more wind power.

  13. Fracture energies at the rupture nucleation points of large strike-slip earthquakes on the Xianshuihe fault, southwestern China

    Science.gov (United States)

    Xie, Yuqing; Kato, Naoyuki

    2017-02-01

    Earthquake cycles along a pure strike-slip fault were numerically simulated using a rate- and state-dependent friction law to obtain the fracture energies at the rupture nucleation points. In the model, deep aseismic slip is imposed on the fault, which generates recurrent earthquakes in the shallower velocity-weakening friction region. The fracture energy at the rupture nucleation point for each simulated earthquake was calculated using the relation between shear stress and slip, which indicates slip-weakening behavior. The simulation results show that the relation between the fracture energy at the nucleation point and other source parameters is consistent with a theoretical approach based on fracture mechanics, in that an earthquake occurs when the energy release rate at the tip of the aseismic slip zone first exceeds the fracture energy. Because the energy release rate is proportional to the square of the amount of deep aseismic slip during the interseismic period, which can be estimated from the recurrence interval of earthquakes and the deep aseismic slip rate, the fracture energies for strike-slip earthquakes can be calculated. Using this result, we estimated the fracture energies at the nucleation points of large earthquakes on selected segments of the Xianshuihe fault, southwestern China. We find that the estimated fracture energies at the rupture nucleation points are generally smaller than the values of average fracture energy for developed ruptures as estimated in previous studies, suggesting that the fracture energy tends to increase with the rupture propagation distance.

  14. Huge Pressure from Energy Supply and Overheated Investment——analysis of China's Petrochemical and Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    Feng Shiliang

    2007-01-01

    @@ The economic performance of China's petroleum and chemical industry is comprehensively decided by four major factors now: a. economy grows rapidly,boosting consumption demand; b. supply of energy and products consuming resources tends to be tighter; c. global crude oil price will continue to stay high,driving the production cost of its downstream products; d. the overly rapid increase of investment in fixed assets is difficult to control, so more and more products will face surplus production capacity.

  15. Implications of the international reduction pledges on long-term energy system changes and costs in China and India

    DEFF Research Database (Denmark)

    Lucas, Paul L.; Shukla, P.R.; Chen, Wenying

    2013-01-01

    India and China with respect to the timing of emission reductions and the choice of mitigation measures relate to differences in projections of rapid economic change, capital stock turnover and technological development. Furthermore, depending on the way it is implemented, climate policy could increase...... indoor air pollution, but it is likely to provide synergies for energy security. These relations should be taken into account when designing national climate policies. © 2013 Elsevier Ltd. All rights reserved....

  16. Energy Geopolitics in the Middle East and China's Energy Security Strategy%中东能源地缘政治与中国能源安全

    Institute of Scientific and Technical Information of China (English)

    孙霞; 潘光

    2009-01-01

    This study explores the geo-political, geo-economic and social development trends in the Middle East as well as their potential impacts on China's energy security. Recommendations are made regarding China's energy security strategy toward the Middle East. The basic conclusions of this study include three points: (a) China's economy will continue to rely on the Middle East's energy supply in the future, (b) political instability in the Middle East would lead to serious consequences, posing a big risk for the Middle East oil and gas supply; (c) China's energy security strategy in the Middle East should include changing its diplomatic ideology, maintaining a balance between the Middle East energy interests and adhering to the principle of non-interference in other's internal affairs, establishing interdependence with the Middle East energy suppliers, working towards a long-term Sino-US energy cooperation, and building a functional multilateral problem-solving system concerned.%本文研究了中东地缘政治发展趋势以及未来该地区对中国能源安全的潜在影响,并就制定具有针对性的中东能源安全战略提出了建议,并认为,中国经济将继续依赖中东能源;中东政治动荡的危险正在增大,中东油气供应存在极大风险.中国的中东能源安全战略应包括:转变外交理念,平衡在中东的能源利益与不干涉内政原则间的关系,建立与中东能源供应国的相互依存关系,制定中美能源合作的长期目标,建立一个以问题为核心的功能性多边制度.

  17. China’s Growing Energy Demand: Implications for the United States

    Science.gov (United States)

    2015-06-01

    http://tinyurl.com/pmfhjcx; and Citibank , The Unimaginable: Peak Coal in China (September 2013), http://tinyurl.com/qxffvcl (PDF, 837 KB). 14 Another...December 2009), pp. S144–S151, http://dx.doi.org/10.1016/j.eneco.2009.06.011. 63 Citibank , The Unimaginable: Peak Coal in China (September 4, 2013

  18. Closing the gap? Top-down versus bottom-up projections of China's regional energy use and CO2 emissions

    DEFF Research Database (Denmark)

    Dai, Hancheng; Mischke, Peggy; Xie, Xuxuan;

    2016-01-01

    As the world's largest CO2 emitter, China is a prominent case study for scenario analysis. This study uses two newly developed global top-down and bottom-up models with a regional China focus to compare China's future energy and CO2 emission pathways toward 2050. By harmonizing the economic...... and demographic trends as well as a carbon tax pathway, we explore how both models respond to these identical exogenous inputs. Then a soft-linking methodology is applied to "narrow the gap" between the results computed by these models. We find for example that without soft-linking, China's baseline CO2 emissions...

  19. Variations of Near Surface Energy Balance Caused by Land Cover Changes in the Semiarid Grassland Area of China

    Directory of Open Access Journals (Sweden)

    Qun’ou Jiang

    2014-01-01

    Full Text Available This study applies the Dynamics of Land System (DLS model to simulating the land cover under the designed scenarios and then analyzes the effects of land cover conversion on energy flux in the semiarid grassland area of China with the Weather Research and Forecasting (WRF model. The results indicate that the grassland will show a steadily upgrowing trend under the coordinated environmental sustainability (CES scenario. Compared to the CES scenario, the rate of increase in grassland cover is lower, while the rate of increase in urban land cover will be higher under the rapid economic growth (REG scenario. Although the conversion from cropland to grassland will reduce the energy flux, the expansion of urban area and decreasing of forestry area will bring about more energy flux. As a whole, the energy flux of near surface will obviously not change under the CES scenario, and the climate therefore will not be possible to be influenced greatly by land cover change. The energy flux under the REG scenario is higher than that under the CES scenario. Those research conclusions can offer valuable information for the land use planning and climate change adaptation in the semiarid grassland area of China.

  20. An Overview of the Cooperative Effort between the United States Department of Energy and the China Atomic Energy Authority to Enhance MPC&A Inspections for Civil Nuclear Facilities in China

    Energy Technology Data Exchange (ETDEWEB)

    Ahern, Keith [U.S. Enrichment Corporation Paducah Gaseous Diffusion Plant; Daming, Liu [China Institute of Atomic Energy (CIAE); Hanley, Tim [U.S. Department of Energy, NNSA; Livingston, Linwood [Pacific Northwest National Laboratory (PNNL); McAninch, Connie [U.S. Department of Energy, NNSA; McGinnis, Brent R [ORNL; Ning, Shen [China Institute of Atomic Energy (CIAE); Qun, Yang [China Institute of Atomic Energy (CIAE); Roback, Jason William [ORNL; Tuttle, Glenn [U.S. Nuclear Regulatory Commission; Xuemei, Gao [China Institute of Atomic Energy (CIAE); Galer, Regina [U.S. National Nuclear Security Administration; Peterson, Nancy [U.S. National Nuclear Security Administration; Jia, Jinlie [China Atomic Energy Authority (CAEA)

    2011-01-01

    The United States Department of Energy, National Nuclear Security Administration (DOE/NNSA) and the China Atomic Energy Authority (CAEA) are cooperating to enhance the domestic regulatory inspections capacity for special nuclear material protection, control and accounting (MPC&A) requirements for civil nuclear facilities in China. This cooperation is conducted under the auspices of the Agreement between the Department of Energy of the United States of America and the State Development and Planning Commission of the People s Republic of China on Cooperation Concerning Peaceful Uses of Nuclear Technology. This initial successful effort was conducted in three phases. Phase I focused on introducing CAEA personnel to DOE and U. S. Nuclear Regulatory Commission inspection methods for U. S. facilities. This phase was completed in January 2008 during meetings in Beijing. Phase II focused on developing physical protection and material control and accounting inspection exercises that enforced U. S. inspection methods identified during Phase 1. Hands on inspection activities were conducted in the United States over a two week period in July 2009. Simulated deficiencies were integrated into the inspection exercises. The U. S. and Chinese participants actively identified and discussed deficiencies noted during the two week training course. The material control and accounting inspection exercises were conducted at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, KY. The physical protection inspection exercises were conducted at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. Phase III leveraged information provided under Phase I and experience gained under Phase II to develop a formal inspection guide that incorporates a systematic approach to training for Chinese MPC&A field inspectors. Additional hands on exercises that are applicable to Chinese regulations were incorporated into the Phase III training material. Phase III was completed in May 2010 at the China

  1. Measurement of the Industrial Collaboration of the Diversified Coal Industry: China Coal Energy Company as an Example

    Directory of Open Access Journals (Sweden)

    Chong-Mao Li

    2017-01-01

    Full Text Available With the diversified development of coal enterprises in China, the industries related to coal, including coal chemical, electric power, transportation, and building materials, have witnessed rapid development. There is a collaboration relation between the coal industries and most of the aforementioned industries. Based on the synergy theory and the theory of industrial cooperation, the collaboration among coal industries is assessed in this research. Examining China Coal Energy Company as an example, this research divides the compound enterprise system into subsystems such as coal-electric, coal-chemical, and coal-equipment. Next, collaboration indices, including market, scale, and management, are created for each subsystem. Then, the overall collaboration degree of the China Coal Energy Company since it was listed was calculated by standardizing data and estimating the order degree of order parameters and subsystems. Thus, a model measuring the industrial collaboration degree of coal enterprises was established to quantitatively reflect the collaboration degree between various industries. At the same time, the factors influencing the collaboration effect between various industries were analyzed so as to improve this effect, which then can provide a decision basis for enterprises.

  2. Impacts of climate warming on heating energy consumption and southern boundaries of severe cold and cold regions in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Impacts of climate warming on heating energy consumption and southern boundaries of severe cold and cold regions of China in the past 20 years are analyzed by using daily and monthly average temperature data from 590 weather stations in China and based on regulations of Heating Ventilation and Air Conditioning Design Rules (GB50019-2003) and Thermal Design Rules for Civil Building (GB50175-93) (China National Standard). The contribution of climate warming to coal saving for heating during cold seasons in major cities is calculated according to indices of coal consumption for heating in major cities during cold seasons defined in Energy Conservation Design Standard for New Heating Residential Buildings (JCJ26-95). Comparing with the period before 1980, southern boundaries of severe cold and cold regions shift toward north up to 2 degrees in latitude since the mid-1980s. Theoretically, climate warming could contribute to 5%―10% coal savings for heating since the mid-1980s in major cities, and even more since the mid-1990s.

  3. Nonrenewable Energy Cost and Greenhouse Gas Emissions of a “Pig-Biogas-Fish” System in China

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2012-01-01

    Full Text Available The purpose of this study is to assess the energy savings and emission reductions of the present rural biogas system in China. The life cycle assessment (LCA method is used to analyze a “pig-biogas-fish” system in Jingzhou, Hubei Province, China. The nonrenewable energy cost and the greenhouse gas (GHG emissions of the system, including the pigsty, the biogas digester, and the fishpond, are taken into account. The border definition is standardized because of the utilization of the database in this paper. The results indicate that the nonrenewable energy consumption intensity of the “pig-biogas-fish” system is 0.60 MJ/MJ and the equivalent CO2 emission intensity is 0.05 kg CO2-eq/MJ. Compared with the conventional animal husbandry system, the “pig-biogas-fish” system shows high renewability and GHG reduction benefit, which indicates that the system is a scientific and environmentally friendly chain combining energy and ecology.

  4. Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2003-03-01

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  5. How well have China's recent five-year plans been implemented for energy conservation and air pollution control?

    Science.gov (United States)

    Mao, XianQiang; Zhou, Ji; Corsetti, Gabriel

    2014-09-02

    This study evaluates how well China's 11th and 12th Five-Year Plans have been implemented in terms of energy conservation and air pollution control and deconstructs the effects of the economic, energy, and environmental policies included in the Plans. A "counterfactual" comparative-scenario method is deployed, which assumes a business as usual scenario in which the changes in economic, energy, and environmental parameters are "frozen", and then reactivates them one by one, with the help of LEAP modeling. It is found that during the 11th Five-Year Plan period, the binding targets were basically achieved. Economic growth put a great strain upon the energy demand and the environment, but energy policy made a decisive contribution by promoting energy efficiency and structure. Environmental policy promoted the deployment of end-of-pipe treatment which led to the control of certain air pollutants but at the expense of an increase in energy use and in the emission of other pollutants. During the ongoing 12th Five-Year Plan period, energy policy's potential for efficiency improvement is shrinking, but economic policy is restraining economic growth thus making a positive contribution. Environmental policy attempts to enforce multipollutant reduction, but there is still insufficient focus on the cocontrol of different pollutants and CO2.

  6. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Fridley, David; McNeill, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing; Saheb, Yamina

    2010-06-07

    China is now the world's largest producer and consumer of household appliances and commercial equipment. To address the growth of electricity use of the appliances, China has implemented a series of minimum energy performance standards (MEPS) for 30 appliances, and voluntary energy efficiency label for 40 products. Further, in 2005, China started a mandatory energy information label that covers 19 products to date. However, the impact of these standard and labeling programs and their savings potential has not been evaluated on a consistent basis. This research involved modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, or under development and those proposed for development in 2010. Two scenarios that have been developed differ primarily in the pace and stringency of MEPS development. The 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step considering the technical limitation of the technology. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice MEPS in 2014. This paper concludes that under the 'CIS' of regularly scheduled MEPS revisions to 2030, cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction would be 35% lower than in the frozen scenario.

  7. 中国能源战略调整和能源政策优化研究%Research on China's Energy Strategies Adjustment and Energy Policy Optimization

    Institute of Scientific and Technical Information of China (English)

    林伯强

    2012-01-01

    针对中国现阶段城市化、工业化加速发展阶段能源需求刚性特征以及能源稀缺(能源价格走高)和环境问题(应对气候变化)日益凸显,提出中国需要通过调整能源战略(改变以前简单地从能源供给侧考虑满足能源需求,将节能作为满足能源需求的一个组成部分;改变仅受资源约束的能源供需增长和能源结构战略规划,将CO2排放作为满足能源需求的约束;改变仅从能源供给侧考虑能源安全;各能源行业的战略规划必须站到整体能源的高度,改变以往各行业单独进行战略规划.)和优化政策选择(依据实际制定节能减排目标;正确把握能源需求这一有效能源战略规划的起点;重视中国低碳经济发展成本问题;兼顾能源强度和碳强度目标),以实现现阶段经济发展可以接受的能源结构和能源成本目标.%In response to the indispensibility of energy demand on the current stage of accelerated urbanization and industrialization in China, the scarcity of energy (demonstrated by surging energy price), and the growing environment problem (how to address climate change), this paper proposes that China should adjust its energy strategies and optimize policy selection to realize the goals of energy structure and energy cost acceptable to the current economical development. The adjustment of energy strategies includes adopting the energy saving as a means to meet the energy demand, taking the CO2 emission as a binding factor, ensuring energy security from both supply and demand sides, comprehensive planning of the energy sector (rather than isolated planning of single energy sector), and optimization of policy selection (making the emission reduction goal based on the real conditions, properly handling the starting point of the effective planning of energy strategies; sufficient attention to the cost of the low carbon industry in China and balanced consideration of the energy intensity

  8. Energy policy in the Republic of China and Japan, 1970-1985: a comparative examination of energy politics and policies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.K.

    1987-01-01

    This study focuses on the politics of energy policies, using a policy analysis or systems framework for examining the policy processes in the two countries. A comparison is made of energy environments, the political actors, the institutions, and finally the substance of energy policy. An assessment is them made of the effects or consequences of energy policies on these two countries. In attempting to study energy politics and policies in these two Asian countries, the researcher began with a policy model or conceptual schema of energy politics from which a number of questions were raised. A comparison was first made of energy systems, and then the major actors in the energy-resources field were identified by comparing the political systems. Comparison of the political systems in energy politics helped to explain the differences in the political outcomes of energy policy. An assessment was made by using a series of multiple-regression models to assess and compare the consequences of energy policies in these two countries.

  9. Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark D.; Price, Lynn; Zhou, Nan; Fridley, David; Aden, Nathaniel; Lu, Hongyou; McNeil, Michael; Zheng, Nina; Yining, Qin; Yowargana, Ping

    2010-04-28

    During the period 1980 to 2002, China experienced a 5% average annual reduction in energy consumption per unit of gross domestic product (GDP). The period 2002-2005 saw a dramatic reversal of the historic relationship between energy use and GDP growth: energy use per unit of GDP increased an average of 3.8% per year during this period (NBS, various years). China's 11th Five Year Plan (FYP), which covers the period 2006-2010, required all government divisions at different levels to reduce energy intensity by 20% in five years in order to regain the relationship between energy and GDP growth experienced during the 1980s and 1990s. This report provides an assessment of selected policies and programs that China has instituted in its quest to fulfill the national goal of a 20% reduction in energy intensity by 2010. The report finds that China has made substantial progress toward its goal of achieving 20% energy intensity reduction from 2006 to 2010 and that many of the energy-efficiency programs implemented during the 11th FYP in support of China's 20% energy/GDP reduction goal appear to be on track to meet - or in some cases even exceed - their energy-saving targets. It appears that most of the Ten Key Projects, the Top-1000 Program, and the Small Plant Closure Program are on track to meet or surpass the 11th FYP savings goals. China's appliance standards and labeling program, which was established prior to the 11th FYP, has become very robust during the 11th FYP period. China has greatly enhanced its enforcement of new building energy standards but energy-efficiency programs for buildings retrofits, as well as the goal of adjusting China's economic structure to reduce the share of energy consumed by industry, do not appear to be on track to meet the stated goals. With the implementation of the 11th FYP now bearing fruit, it is important to maintain and strengthen the existing energy-saving policies and programs that are successful while revising

  10. Impacts of Air Pollution on Health in Eastern China: Implications for future air pollution and energy policies

    Science.gov (United States)

    Wang, X.; Mauzerall, D.

    2004-12-01

    Our objective is to establish the link between energy consumption and technologies, air pollution and resulting impacts on public health in eastern China. We quantify the impacts that air pollution in the Shandong region of eastern China has on public health in 2000 and quantify the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual, through the implementation of new energy technology. We first develop a highly-resolved emission inventory for the year 2000 for the Shandong region of China including emissions from large point, area, mobile and biogenic sources. We use the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) to process emissions from this inventory for use in the Community Multi-scale Air Quality modeling system (CMAQ) which we drive with the NCAR/PSU MM5 meso-scale meteorology model. We evaluate the inventory by comparing CMAQ results with available measurements of PM10 and SO2 from air pollution indices (APIs) reported in various Chinese municipalities during 2002-2004. We use epidemiological dose-response functions to quantify health impacts and values of a statistical life (VSL) and years-of-life-lost (YLL) to establish a range for the monetary value of these impacts. To examine health impacts and their monetary value, we focus explicitly on Zaozhuang, a coal-intensive city in the Shandong region of eastern China, and quantify the mortalities and morbidities resulting from air pollutants emitted from this city in 2000, and in 2020 using business-as-usual, best-available control technology, and advanced coal gasification technology scenarios. In all scenarios most health damages arise from exposure to particulate matter. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang accounted for 4-10% of its GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have doubled. With no new

  11. [Driving forces of carbon emission from energy consumption in China old industrial cities: a case study of Shenyang City, Northeast China].

    Science.gov (United States)

    Ren, Wan-Xia; Geng, Yong; Xue, Bing

    2012-10-01

    To quantitatively analyze the effects of anthropogenic factors on regional environmental quality is a hot topic in the field of sustainable development research. Taking the typical old industrial city Shenyang in Northeast China as a case, and by using the IPCC method for calculating carbon emission from energy consumption, this paper estimated the carbon emission from energy consumption in the city in 1978-2009, and a time series analysis on the anthropogenic factors driving this carbon emission was made by the STIRPAT model based upon Kaya equation and ridge regression. In 1978-2009, the carbon emission in the city had a slow increase first, slow decrease then, and a rapid increase thereafter. The total carbon emission in 2009 was 4.6 times of that in 1978. Population growth was the main factor driving the growth of the emission, and there existed an equal-proportional variation between the population growth and the carbon emission growth. Urbanization was another main driving factor followed by population growth, and the per capita GDP was positively correlated with the carbon emission. Kuznets curve did not exist for the relationship between economic development and carbon emission in Shenyang. Energy source intensity reduction (representing technology improvement) was the main factor driving the reduction of the total carbon emission.

  12. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun City.

    Science.gov (United States)

    Cheng, Hefa; Zhang, Yanguo; Meng, Aihong; Li, Qinghai

    2007-11-01

    With rapid economic growth and massive urbanization in China, many cities face the problem of municipal solid waste (MSW) disposal. With the lack of space for new landfills, waste-to-energy incineration is playing an increasingly important role in waste management. Incineration of MSW from Chinese cities presents some unique challenges because of its low calorific value (3000-6700 kJ/kg) and high water content (approximately 50%). This study reports a novel waste-to-energy incineration technology based on co-firing of MSW with coal in a grate-circulating fluidized bed (CFB) incinerator, which was implemented in the Changchun MSW power plant. In 2006, two 260 ton/day incinerators incinerated 137,325 tons, or approximately one/sixth of the MSW generated in Changchun, saving more than 0.2 million m3 landfill space. A total of 46.2 million kWh electricity was generated (38,473 tons lignite was also burned as supplementary fuel), with an overall fuel-to-electricity efficiency of 14.6%. Emission of air pollutants including particulate matters, acidic gases, heavy metals, and dioxins was low and met the emission standards for incinerators. As compared to imported incineration systems, this new technology has much lower capital and operating costs and is expected to play a role in meeting China's demands for MSW disposal and alternative energy.

  13. The climate influence of anthropogenic land-use changes on near-surface wind energy potential in China

    Institute of Scientific and Technical Information of China (English)

    LI Yan; WANG Yuan; CHU HuiYun; TANG JianPing

    2008-01-01

    There is considerable interest in the potential impact of climate change on wind energy in China. The climate change of near-surface wind energy potential in China under the background of global warming and its association with anthropogenic land-use changes are investigated by calculating the difference in surface wind speeds between the NCEP/NCAR reanalysis data and the observations since the re-analysis dataset contains the influence of large-scale climate changes due to greenhouse gases, it is less sensitive to regional surface processes associated with land types. The surface wind data in this study consist of long-tarm observations from 604 Chinese Roution Meteorological Stations and theNCEP/NCAR reanalysis data from 1960-1999. The results suggest that the observed mean wind speeds significantly weakened and the near-surface wind power trended downward due to urbanization and other land-use changes in the last 40 years. The mean wind energy weakened by -3.84 W·m-2 per decade due to the influence of anthropogenic land-use change, which is close to the observed climate change (-4.51 W·m-2/10 a).

  14. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.P.; Mauzerall, D.L. [Princeton University, Princeton, NJ (United States). Woodrow Wilson School of Public & Internal Affairs

    2006-03-15

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the 'willingness-to-pay' metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger.

  15. The role of off-farm employment in the rural energy consumption transition — A village-level analysis in Jiangxi Province, China

    NARCIS (Netherlands)

    Shi, X.; Heerink, N.; Qu, F.

    2009-01-01

    Energy consumption in rural areas in China is characterized by high consumption of fuelwood, straw and other biomass. Off-farm employment can play an important role in the transition towards more sustainable sources of energy by increasing rural household incomes and reducing the amount of labor ava

  16. China's Future Energy Investment Demand Projection and Its Features%我国未来能源投资需求预测及特点分析

    Institute of Scientific and Technical Information of China (English)

    张跃军; 王兆华

    2011-01-01

    Sustainable investment to energy industry proves the essential basis for sustainable economic development. This paper, using the system dynamics approach and cost prediction method, projects China's energy investment demand during 2006-2050, explores the energy investment features of every energy source, as well as the uncertainties for China's future energy investment. The results indicate that China's energy investment may see a continuous increase in the projecting period and the ratio of energy investment to GDP may gradually decline. Additionally, the investment of power industry always dominates the China's energy investment.%持续的能源投资是经济持续发展的必要保障.鉴于我国能源投资的复杂性,基于系统动力学和成本预测方法,预测了我国2006-2050年期间的能源投资需求,分析了各能源品种的投资需求特点及不确定性因素.结果发现,我国能源投资将保持持续增长态势,但能源投资占GDP的比重不断下挫.而且,电力投资将一直占据我国能源投资的主导地位.

  17. Energy, Environment, Economic Life Cycle Assessment of Cassava-based Ethanol Used as Automotive Fuel in Guangxi Province, China

    Institute of Scientific and Technical Information of China (English)

    HU Zhi-yuan; ZHANG Cheng; PU Geng-qiang; WANG Cheng-tao

    2005-01-01

    A life-cycle assessment (LCA) was carried out to compare the energy, environmental and economic impacts of converting cassava to fuel ethanol in Guangxi Province, China. The entire life cycle is a system that includes stages from cassava farming to ethanol fuel combustion. A computer-based model was developed to assess energy, environmental, and economic (EEE) life cycle implication of cassava-based ethanol fuel. The LCA results for fuel ethanol were compared to conventional gasoline (CG) as a base-line case. On the life-cycle bases, the use of cassava-based ethanol fuel in Guangxi may consume more energy but reduce greenhouse gas, VOC, and CO emissions. Life cycle cost results indicate that although fuel ethanol currently is not competitive compared to conventional gasoline, it has great potentials when there are subsidies and/or yields of cassava planting are improved. In terms of balancing the energy, environmental and economical, the introduction form of cassavabased ethanol fuel would be E10. The assessment results generated from this study provide an important reference for Guangxi policy makers to better understand the trade-offs among energy, environmental effects, and economics for the most effective using of regional energy resources.

  18. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing

    2011-04-01

    China has implemented a series of minimum energy performance standards (MEPS) for over 30 appliances, voluntary energy efficiency label for 40 products and a mandatory energy information label that covers 19 products to date. However, the impact of these programs and their savings potential has not been evaluated on a consistent basis. This paper uses modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, under development or those proposed for development in 2010 under three scenarios that differ in the pace and stringency of MEPS development. In addition to a baseline 'Frozen Efficiency' scenario at 2009 MEPS level, the 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice efficiency in broad commercial use today in 2014. This paper concludes that under 'CIS', cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions of energy used for all 37 products would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction of energy used for 11 appliances would be 35% lower.

  19. Vested interests as drivers of political dynamics and change in China: Cases from the energy sector

    DEFF Research Database (Denmark)

    Delman, Jørgen

    Shifting Chinese leaders and leaderships have seen vested interests as a disruptive driver of political dynamics in China ever since the establishment of the People’s Republic in 1949. Obviously, the nature and dynamics of vested interests are in the eyes of the beholder. But given the fact...

  20. Solar Energy in China: Development Trends for Solar Water Heaters and Photovoltaics in the Urban Environment

    Science.gov (United States)

    Wallace, William; Wang, Zhongying

    2006-01-01

    China is the world's largest market for solar water heating systems, installing 13 million square meters of new systems in 2004, mostly in large cities. Municipal authorities, however, are sensitive to quality and visual impact issues created by this technology deployment. Therefore, there is currently a trend toward developing building integrated…

  1. The CDM:How could China Utilize It to Finance Energy Efficiency?

    Institute of Scientific and Technical Information of China (English)

    Huo Da

    2009-01-01

    @@ Prelude of Copenhagen In the first round of China-US Strategic & Economic Dialogue,America's most senior climate-change of ficials were meeting their Chinese counterparts.The two countries are by far the world's biggest emitters of greenhouse gases.They will determine whether a worthwhile global treaty to limit emissions can be concluded as planned in Copenhagen in December.

  2. Evaluating impacts of air pollution in China on public health: implications for future air pollution and energy policies

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoping Wang; Mauzerall, D.L. [Princeton University, Princeton, NJ (United States). Science, Technology and Environmental Policy Program

    2006-03-15

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the ''willingness-to-pay'' metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution

  3. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies

    Science.gov (United States)

    Wang, Xiaoping; Mauzerall, Denise L.

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the "willingness-to-pay" metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution controls and particularly from the

  4. Wah Fung Knitters Is Accredited China's Model Textile Enterprise for Energy Saving and Emissions Reduction Technology%Wah Fung Knitters Is Accredited China's Model Textile Enterprise for Energy Saving and Emissions Reduction Technology

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Wah Fung Knitters, one of the leasers of utilizing new production technology and improving production facilities to promote energy saving and environment protection in the knitting, dyeing and finishing industry, has been accredited for China's Model Textile Enterprise for Energy Saving and Emissions Reduction Technology.

  5. 中国地热能发展路线图%A Roadmap to Geothermal Energy Development in China

    Institute of Scientific and Technical Information of China (English)

    庞忠和; 胡圣标; 汪集旸

    2012-01-01

    中国地热能潜力巨大,可以为应对气候变化作出显著贡献.本文提出中国地热能技术发展途径是“四化”,即多元化、规模化、精细化、绿色化;地热能产业发展道路是“三步走”,即近期——中低温利用与高温水热发电、中期——中低温水热发电、远期——干热发电与利用.政府的政策引导与产、学、研、用相结合是实现地热能技术与产业发展目标之关键.%China possesses a high potential of geothermal energy. A suitable roadmap for technology and industry development is required in order to realize the vision meeting demand on global climate change mitigation. It is proposed that the future geothermal technology development in China will be characterized by the diversification of resources and utilizations, the scale enlargement of development projects, the refinement of advanced technologies, and sustainability guarantee. The geothermal industry development will be focused on low-medium temperature direct use and high- temperature geothermal power generation in the near future, power generation from low-medium temperature in middle period, and Hot Dry Rock (HDR) energy combined heal and power in the long term. The leading role piayeel by government, supplemented by the coordination among researchers, educators, producers, and consumers will be the key to successful geothermal technology and industry development in China.

  6. Feasibility Analyses of Developing Low Carbon City with Hybrid Energy Systems in China: The Case of Shenzhen

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2016-05-01

    Full Text Available As the largest carbon emission source in China, the power sector grows rapidly owing to the country’s unprecedented urbanization and industrialization processes. In order to explore a low carbon urbanization pathway by reducing carbon emissions of the power sector, the Chinese government launched an international low carbon city (ILCC project in Shenzhen. This paper presents a feasibility analysis on the potential hybrid energy system based on local renewable energy resources and electricity demand estimation over the three planning stages of the ILCC project. Wind power, solar power, natural gas and the existing power grid are components considered in the hybrid energy system. The simulation results indicate that the costs of energy in the three planning stages are 0.122, 0.105 and 0.141 $/kWh, respectively, if external wind farms and pumped storage hydro stations (PSHSs exist. The optimization results reveal that the carbon reduction rates are 46.81%, 62.99% and 75.76% compared with the Business as Usual scenarios. The widely distributed water reservoirs in Shenzhen provide ideal conditions to construct PSHS, which is crucial in enhancing renewable energy utilization.

  7. Life-Cycle Analyses of Energy Consumption and GHG Emissions of Natural Gas-Based Alternative Vehicle Fuels in China

    Directory of Open Access Journals (Sweden)

    Xunmin Ou

    2013-01-01

    Full Text Available Tsinghua life-cycle analysis model (TLCAM has been used to examine the primary fossil energy consumption and greenhouse gas (GHG emissions for natural gas- (NG- based alternative vehicle fuels in China. The results show that (1 compress NG- and liquid NG-powered vehicles have similar well-to-wheels (WTW fossil energy uses to conventional gasoline- and diesel-fueled vehicles, but differences emerge with the distance of NG transportation. Additionally, thanks to NG having a lower carbon content than petroleum, CNG- and LNG-powered vehicles emit 10–20% and 5–10% less GHGs than gasoline- and diesel-fueled vehicles, respectively; (2 gas-to-liquid- (GTL- powered vehicles involve approximately 50% more WTW fossil energy uses than conventional gasoline- and diesel-fueled vehicles, primarily because of the low efficiency of GTL production. Nevertheless, since NG has a lower carbon content than petroleum, GTL-powered vehicles emit approximately 30% more GHGs than conventional-fuel vehicles; (3 The carbon emission intensity of the LNG energy chain is highly sensitive to the efficiency of NG liquefaction and the form of energy used in that process.

  8. 中国能源效率评析%Evaluation and Analysis of Energy Efficiency in China

    Institute of Scientific and Technical Information of China (English)

    王庆一

    2012-01-01

    2011年我国按购买力平价计算的单位GDP能耗为日本和欧盟的2.1倍,美国和世界平均值的1.5倍;9个行业19项产品能耗指标加权平均比国际先进水平高21%.2010年,我国物理能源效率为36.1%,比国际先进水平低8个百分点左右.本文对我国能源效率和节能作了评析,提出了政策建议.%By purchasing power evaluation calculation in the energy consumption per unit of GDP in China is 2.1 times than Japan and the European Union's and 1.5 times than the United States and the world average in 2011. Nine industries and 19 items energy consumption weighted index average value has 21% higher than the international advanced level. In 2010, our physical energy efficiency is 36.1%, which is about 8% lower than the international advanced level. This paper analyzes and evaluates our country's energy efficiency and energy saving, then puts forward relevant policy suggestions.

  9. Explaining technological change of wind power in China and the United States: Roles of energy policies, technological learning, and collaboration

    Science.gov (United States)

    Tang, Tian

    The following dissertation explains how technological change of wind power, in terms of cost reduction and performance improvement, is achieved in China and the US through energy policies, technological learning, and collaboration. The objective of this dissertation is to understand how energy policies affect key actors in the power sector to promote renewable energy and achieve cost reductions for climate change mitigation in different institutional arrangements. The dissertation consists of three essays. The first essay examines the learning processes and technological change of wind power in China. I integrate collaboration and technological learning theories to model how wind technologies are acquired and diffused among various wind project participants in China through the Clean Development Mechanism (CDM)--an international carbon trade program, and empirically test whether different learning channels lead to cost reduction of wind power. Using pooled cross-sectional data of Chinese CDM wind projects and spatial econometric models, I find that a wind project developer's previous experience (learning-by-doing) and industrywide wind project experience (spillover effect) significantly reduce the costs of wind power. The spillover effect provides justification for subsidizing users of wind technologies so as to offset wind farm investors' incentive to free-ride on knowledge spillovers from other wind energy investors. The CDM has played such a role in China. Most importantly, this essay provides the first empirical evidence of "learning-by-interacting": CDM also drives wind power cost reduction and performance improvement by facilitating technology transfer through collaboration between foreign turbine manufacturers and local wind farm developers. The second essay extends this learning framework to the US wind power sector, where I examine how state energy policies, restructuring of the electricity market, and learning among actors in wind industry lead to

  10. China's Actions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ China's National Development and Reform Commission publicized the country's policies and actions for addressing climate change in a report released on November 26,2009.The report highlighted China's efforts in cutting greenhouse gas emissions in 2009 by: (1)Rigorously checking the blind expansion of its energy-and pollution-intensive industries.

  11. Leveraging rural energy investment for parasitic disease control: schistosome ova inactivation and energy co-benefits of anaerobic digesters in rural China.

    Directory of Open Access Journals (Sweden)

    Justin Remais

    Full Text Available BACKGROUND: Cooking and heating remain the most energy intensive activities among the world's poor, and thus improved access to clean energies for these tasks has been highlighted as a key requirement of attaining the major objectives of the UN Millennium Development Goals. A move towards clean energy technologies such as biogas systems (which produce methane from human and animal waste has the potential to provide immediate benefits for the control of neglected tropical diseases. Here, an assessment of the parasitic disease and energy benefits of biogas systems in Sichuan Province, China, is presented, highlighting how the public health sector can leverage the proliferation of rural energy projects for infectious disease control. METHODOLOGY/FINDINGS: First, the effectiveness of biogas systems at inactivating and removing ova of the human parasite Schistosoma japonicum is experimentally evaluated. Second, the impact of biogas infrastructure on energy use and environmental quality as reported by surveyed village populations is assessed, as is the community acceptance of the technology. No viable eggs were recovered in the effluent collected weekly from biogas systems for two months following seeding with infected stool. Less than 1% of ova were recovered viable from a series of nylon bags seeded with ova, a 2-log removal attributable to biochemical inactivation. More than 90% of Ascaris lumbricoides ova (used as a proxy for S. japonicum ova counted at the influent of two biogas systems were removed in the systems when adjusted for system residence time, an approximate 1-log removal attributable to sedimentation. Combined, these inactivation/removal processes underscore the promise of biogas infrastructure for reducing parasite contamination resulting from nightsoil use. When interviewed an average of 4 years after construction, villagers attributed large changes in fuel usage to the installation of biogas systems. Household coal usage decreased

  12. Rapid industrialization and market for energy and minerals:China in the East Asian context

    Institute of Scientific and Technical Information of China (English)

    Ross GARNAUT; SONG Ligang

    2006-01-01

    The mainland of China's rapid pace of industrialization and trade expansion have led many to ask whether its ever-increasing demand for resources can be met without disruption to economic stability and growth in the country and the world as a whole.The article examines the experience of growth in resource demand and the associated pressure on global markets from Japan,Taiwan Province of China and Korea during their periods of sustained,rapid economic growth for periods in the second half of the twentieth century.It seeks to draw lessons for the twenty-first century.The article points out that because of its size the mainland of China may cause the resources boom,associated with the later decades of its period of sustained rapid growth,to raise the prices of resource-intensive products by a large amount,not for a few years,but for several decades.This will have important implications for economic development and the distribution of incomes within and between all countries,and on power relations between states in the Asia-Pacific and throughout the global community.

  13. 中国可再生能源发展分析%The Development Analysis of Renewable Energy in China

    Institute of Scientific and Technical Information of China (English)

    李士琦; 刘超; 侯明山

    2011-01-01

    全球正面临着化石资源枯竭和气候变化的双重危机,中国作为一个迅速崛起的发展中国家,节能减排的压力巨大,而大规模发展可再生能源是我国调整能源结构、发展低碳经济的有效途径.介绍了我国目前化石资源短缺、温室气体排放、可再生能源发展的概况,阐述了我国从自身国情出发开发可再生能源的必要性和紧迫性,并指出我国可再生能源产业在政府强有力的政策支持下得到了良好的发展,但与国际先进水平相比有一定差距,中国可再生能源产业发展任重而道远.%The world is facing the double crisis of resource depletion and climate change, China as a rapid development of developing countries, under the huge pressure of energy saving and pollutant reduction. And developing renewable energy sources on a large scale is an effective way for our country to restructure energy structure and develop the low-carbon economy. The article describes our country the general situation of the shortage of fossil fuel, greenhouse gas emissions and the development of renewable energy, and illustrates the necessity and urgency of our country to develop renewable energy from its own conditions, then points out that the renewable energy industry of our country has got a good development due to the government' s strong policy support, however, there' s been a certain gap when compared with international advanced level. As for the development of renewable energy industry of china, the task is heavy and the road is long.

  14. Wind energy development in China (WED) — The Danish-Chinese collaboration project

    DEFF Research Database (Denmark)

    Xu, Zhao; Rosenberg, H.; Sørensen, Poul Ejnar

    2009-01-01

    This paper reports the large scale bilateral development program- the Danish-Chinese wind energy development program (WED). The paper starts with overview of electric energy production and consumption in the two counties with special focus on wind energy status. Next, the detailed objectives...

  15. The drivers of energy intensity in China : A spatial panel data approach

    NARCIS (Netherlands)

    Jiang, Lei; Folmer, Henk; Ji, Minhe

    2014-01-01

    We use a panel of 29 Chinese provinces for the period 2003-2011 to estimate the drivers of energy intensity by means of a spatial Durbin error model. We find an inverted U-shaped relationship between energy intensity and income (energy intensity Kuznets curve). Ten provinces, notably the developed e

  16. Cutting air Pollution by Improving Energy Efficiency of China's Cement Industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst; Crijns-graus, Wina

    2015-01-01

    In this study, the energy conservation supply curves (ECSC) combined with the GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) was used to estimate the co-benefits of energy savings on CO2 and air pollutants emission for implementation co-control options of energy efficiency measu

  17. Relative importance of water, energy, and heterogeneity in determining regional pteridophyte and seed plant richness in China

    Institute of Scientific and Technical Information of China (English)

    Sheng-Bin CHEN; Gao-Ming JIANG; Zhi-Yun OUYANG; Wei-Hua XU; Yi XIAO

    2011-01-01

    Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology.

  18. Exploration on Hainan Becoming Major Province of Energy in China%海南成为我国能源大省初探

    Institute of Scientific and Technical Information of China (English)

    张梦影

    2011-01-01

    海南具有独特的地理和生态物质优势,对矿物能源、风能、核能,太阳能、生物质能源的开发,可适应海南经济发展的需要,使海南成为我国能源大省.%Hainan has a unique geographical and ecological material advantage, the development of fossil energy, wind energy, nuclear energy, solar energy, biomass can adapted to the needs of economic development in Hainan, making Hainan become a major province of energy in China.

  19. 能源外交与中国面临的全球形势%Energy Diplomacy and the Global Situation Facing with China

    Institute of Scientific and Technical Information of China (English)

    杨来; 曾少军; 曾凯超

    2013-01-01

    随着能源问题在国家发展与安全中的地位不断提升,能源外交已成为我国能源领域中的重要议题.本文对国际能源资源的基本特点进行了系统阐述,并对我国能源外交的目标和当前面临的新形势进行了深入的剖析.%With higher strategic position of energy problem for national economy and security, the issue of energy diplomacy in China becomes significant one in the field of energy. This paper summarizes the basic characteristics of international energy resources and analyzes deeply at last the targets and new challenges China faces regarding to energy diplomacy.

  20. Interprovincial transfer of embodied energy between the Jing-Jin-Ji area and other provinces in China: A quantification using interprovincial input-output model.

    Science.gov (United States)

    Chen, Weiming; Wu, Sanmang; Lei, Yalin; Li, Shantong

    2017-04-15

    Commodity trade between regions implies a large amount of energy transfer. As an important economic growth pole of China, the Jing-Jin-Ji area (Beijing-Tianjin-Hebei) is also one of the areas with the largest energy consumption in China. Moreover, the primary energy consumer goods in this area are fossil fuels, such as coal. This has led to serious air pollution in the area. Therefore, the reduction of energy consumption under the premise of maintaining sustained economic growth is an important task of the Jing-Jin-Ji area. In this study, an interprovincial input-output model was applied to quantitatively estimate the embodied energy transfer between Jing-Jin-Ji area and other provinces in China. The results indicated that the Metal and nonmetal mineral processing industry and the Electrical, gas and water industry in the Jing-Jin-Ji area exported a large amount of embodied energy to the Yangtze River Delta and the Pearl River Delta. However, the embodied energy export of the Jing-Jin-Ji area mainly exported by Hebei province. Beijing and Tianjin even have some net import of embodied energy. The embodied energy transfer between Tianjin, Hebei and other provinces was mainly driven by investment, while the main media of embodied energy transfer between Beijing and other provinces was consumption. Therefore, we suggest that the Jing-Jin-Ji area should further increase the degree of dependence on other provinces' energy-intensive products and reduce the export of energy-intensive products. In addition, there should be difference in the energy and industrial policies among Beijing, Tianjin and Hebei, and the problems of high energy consumption and high proportion of heavy industry in Hebei should be first resolved.

  1. Assessment of potential biomass energy production in China towards 2030 and 2050

    DEFF Research Database (Denmark)

    Zhao, Guangling

    2016-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste......, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate......, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass...

  2. Port of Tianjin - the second largest port for energy export in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y. [Port of Tianjin Authority (China)

    2002-07-01

    The Port of Tianjin, to the west of the Bohai Bay, is the largest port for international trade in China's northern mainland. The text of the talk, and 43 slides/overheads (file ZhaoYanHu.ppt) contains details of the harbor, the rail and road infrastructure, the handling equipment in use and plans for further developments at the port. In 2005 the total throughput will reach 140,000,000 tons, and by 2010, 200,000,000 tons of which coal and coke will take up 60,000,000 tons. 2 tabs.

  3. Multifractal characterization of energy stocks in China: A multifractal detrended fluctuation analysis

    Science.gov (United States)

    Yang, Liansheng; Zhu, Yingming; Wang, Yudong

    2016-06-01

    In this paper, we investigate the impacts of oil price changes on energy stocks in Chinese stock market from the multifractal perspective. The well-known multifractal detrended fluctuation analysis (MF-DFA) is applied to detect the multifractality. We find that both returns and volatilities of energy industry index display apparent multifractal behavior. Oil market activity is an important source of multifractality in energy stocks index in addition to long-range correlations and fat-tail distributions.

  4. Sustainable Development of Sewage Sludge-to-Energy in China: Barriers Identification and Technologies Prioritization

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang;

    2017-01-01

    proposed. After the grey DEMATEL analysis, a grey Multi-Criteria Decision Making (MCDM) framework which allows multiple decision-makers/stakeholders to use linguistic terms to participate in the decision-making for prioritizing the alternative technologies for sludge-to-energy was developed......In order to promote the sustainable development of sludge-to-energy industry and help the decision-makers/stakeholders to select the most sustainable technology for achieving the sludge-to-energy target, this study aims at using grey Decision Making Trial and Evaluation Laboratory (DEMATEL...... is feasible for group decision-making and sustainability assessment of the alternative technologies for sludge-to-energy....

  5. Energy Saving ,Environmental Protection :Top Priority in China's Development——Exclusive interview with Dr .Yongling Lü,Secretary-general ,Chinese Committee for SCOPE(Scientific Committee on Problems of the Environment/ICSU).

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Energy saving emission reduction and economic development are major issues China has to meet in building a harmonious society. On one hand, China should pursue a sustainable, fast andsound economic development,on the other hand, she should try to decrease the overuse of energy resources and the environmental problems caused by the rapid economic growth.

  6. 中国能源消费与气候变化的关系%Relationships between energy consumption and climate change in China

    Institute of Scientific and Technical Information of China (English)

    千怀遂; 袁顺全; 孙九林

    2004-01-01

    Energy consumption has an inevitable connection with economic level and climate. Based on selected data covering annual total energy consumption and its composition and that of all kinds of energy in 1953-1999, the annual residential energy consumption and the coal and electricity consumption in 1980-1999 in China, the acreage of crops under cultivation suffered from drought and flood annually and gross domestic product (GDP) in 1953-1999 in the whole country, and mean daily temperature data from 29 provincial meteorological stations in the whole country from 1970 to 1999, this paper divides energy consumption into socio-economic energy consumption and climatic energy consumption in the way of multinomial. It also goes further into the relations and their changes between the climate energy consumption and climate factor and between the socio-economic energy consumption and the economic level in China with the method of statistical analysis. At present, there are obvious transitions in the changing relationships of the energy consumption to economy and climate, which comprises the transition of economic system from resource-intensive industry to technology-intensive industry and the transition of climatic driving factors of the energy consumption from driven by the disasters of drought and flood to driven by temperature.

  7. Progress and Development Strategy of Biomass Energy Utilization Technologies in China

    Institute of Scientific and Technical Information of China (English)

    Wu Chuangzhi; Chen Yong

    2001-01-01

    @@ I. Preface Biomass includes the residues of agriculture, forest and stock breeding, as well as straw, algae and energy crops. In its broad meaning, biomass is a kind of organic matter produced by the photosynthesis of plants, which is not only renewable, but also contains plentiful energy.

  8. China's energy revolution - measuring the status quo, modelling regional dynamics & assessing global impacts

    DEFF Research Database (Denmark)

    2015-01-01

    overordnede mål for denne Ph.d. afhandling er at beskrive og diskutere hoved karakteristikaende af Kinas ”energi revolution” ved at, (i) måle og kvantificere status quo for Kinas energi systemer med fokus på regionale karakteristika, (ii) modellere udvalgte fremtidige scenarier for Kinas energisektor med...

  9. Resource Distribution, Interprovincial Trade, and Embodied Energy: A Case Study of China

    Directory of Open Access Journals (Sweden)

    Sanmang Wu

    2015-01-01

    Full Text Available Based on data from 2007 input-output tables for each province, we estimated the energy embodied in China’s interprovincial trade through input-output analysis. The results show that a sizable transfer of energy is embodied in China’s interprovincial trade, and the transfer goes from the central and western provinces, which have higher energy endowments, to the eastern and coastal provinces, which have more developed economies. The provinces with the greatest net inflow of embodied energy via interprovincial trade were Zhejiang, Guangdong, Beijing, Shandong, and Jiangsu. The provinces with the greatest net outflow of embodied energy were Inner Mongolia, Shanxi, Shaanxi, Xinjiang, and Heilongjiang. To effectively reduce China’s energy consumption, it is vital to adhere not only to the producer responsibility principle but also to the consumer responsibility principle. In particular, the economically developed provinces with substantial net inflows of embodied energy in interprovincial trade should provide support to the provinces from which the embodied energy outflows come.

  10. On China's Sustainable Development of Energy--Opportunity for the China's Nuclear Power Industry%中国能源可持续发展研究--核电产业的机遇

    Institute of Scientific and Technical Information of China (English)

    曾绍伦

    2005-01-01

    According to the policy of reforming the power industry and accelerating the power construction of our country, by 2020, the national power consumption will be up to 3.6-3.7 trillion kilowatt-hours, the installed power-generating capacity is more than 800 million kilowatts. Therefore, the development of the China's nuclear power industry faces good international and domestic environments and good historical opportunities. From the point of national energy security, economic development, and resource distribution, it is analyzed that China must develop the nuclear power in a more cost-effective style in this paper.

  11. Kinetic energy of Throughfall in subtropical forests of SE China - effects of tree canopy structure, functional traits, and biodiversity.

    Directory of Open Access Journals (Sweden)

    Christian Geißler

    Full Text Available Throughfall kinetic energy (TKE plays an important role in soil erosion in forests. We studied TKE as a function of biodiversity, functional diversity as well as structural stand variables in a secondary subtropical broad-leaved forest in the Gutianshan National Nature Reserve (GNNR in south-east China, a biodiversity hotspot in the northern hemisphere with more than 250 woody species present. Using a mixed model approach we could identify significant effects of all these variables on TKE: TKE increased with rarefied tree species richness and decreased with increasing proportion of needle-leaved species and increasing leaf area index (LAI. Furthermore, for average rainfall amounts TKE was decreasing with tree canopy height whereas for high rainfall amounts this was not the case. The spatial pattern of throughfall was stable across several rain events. The temporal variation of TKE decreased with rainfall intensity and increased with tree diversity. Our results show that more diverse forest stands over the season have to cope with higher cumulative raindrop energy than less diverse stands. However, the kinetic energy (KE of one single raindrop is less predictable in diverse stands since the variability in KE is higher. This paper is the first to contribute to the understanding of the ecosystem function of soil erosion prevention in diverse subtropical forests.

  12. Net energy yield and carbon footprint of summer corn under different N fertilizer rates in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    WANG Zhan-biao; WEN Xin-ya; ZHANG Hai-lin; LU Xiao-hong; CHEN Fu

    2015-01-01

    Excessive use of N fertilizer in intensive agriculture can increase crop yield and at the same time cause high carbon (C) emissions. This study was conducted to determine optimized N fertilizer application for high grain yield and lower C emissions in summer corn (Zea mays L.). A ifeld experiment, including 0 (N0), 75 (N75), 150 (N150), 225 (N225), and 300 (N300) kg N ha–1 treatments, was carried out during 2010–2012 in the North China Plain (NCP). The results showed that grain yield, input energy, greenhouse gas (GHG) emissions, and carbon footprint (CF) were al increased with the increase of N rate, except net energy yield (NEY). The treatment of N225 had the highest grain yield (10 364.7 kg ha–1) and NEY (6.8%), but the CF (0.25) was lower than that of N300, which indicates that a rate of 225 kg N ha–1 can be optimal for summer corn in NCP. Comparing GHG emision compontents, N fertilizer (0–51.1%) was the highest and fol owed by electricity for irrigation (19.73–49.35%). We conclude that optimazing N fertilizer application rate and reducing electricity for irrigation are the two key measures to increase crop yield, improve energy efifciency and decrease GHG emissions in corn production.

  13. National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Price, Lynn; Zheng, Nina; Ke, Jing; Hasanbeigi, Ali

    2011-10-15

    Since 2006, China has set goals of reducing energy intensity, emissions, and pollutants in multiple guidelines and in the Five Year Plans. Various strategies and measures have then been taken to improve the energy efficiency in all sectors and to reduce pollutants. Since controlling energy, CO{sub 2} emissions, and pollutants falls under the jurisdiction of different government agencies in China, many strategies are being implemented to fulfill only one of these objectives. Co-controls or integrated measures could simultaneously reduce greenhouse gas (GHG) emissions and criteria air pollutant emissions. The targets could be met in a more cost effective manner if the integrated measures can be identified and prioritized. This report provides analysis and insights regarding how these targets could be met via co-control measures focusing on both CO{sub 2} and SO{sub 2} emissions in the cement, iron &steel, and power sectors to 2030 in China. An integrated national energy and emission model was developed in order to establish a baseline scenario that was used to assess the impact of actions already taken by the Chinese government as well as planned and expected actions. In addition, CO{sub 2} mitigation scenarios and SO{sub 2} control scenarios were also established to evaluate the impact of each of the measures and the combined effects. In the power sector, although the end of pipe SO{sub 2} control technology such as flue gas desulfurization (FGD) has the largest reduction potential for SO{sub 2} emissions, other CO{sub 2} control options have important co-benefits in reducing SO{sub 2} emissions of 52.6 Mt of SO{sub 2} accumulatively. Coal efficiency improvements along with hydropower, renewable and nuclear capacity expansion will result in more than half of the SO{sub 2} emission reductions as the SO{sub 2} control technology through 2016. In comparison, the reduction from carbon capture and sequestration (CCS) is much less and has negative SO{sub 2} reductions

  14. External Benefit Evaluation of Renewable Energy Power in China for Sustainability

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-04-01

    Full Text Available China’s renewable energy power has developed rapidly in recent years. Evaluating the external benefits of renewable energy power can provide a reference for the Chinese government to set diverse development goals and to implement differentiated supporting policies for different renewable energy power types, which can promote their sustainable development. In this paper, a hybrid MCDM method was applied to evaluate the external benefits of China’s renewable energy power. Firstly, the impacts of renewable energy power accessing the power grid for multiple stakeholders in the electric power system were analyzed. Secondly, the external benefit evaluation index system for renewable energy power was built from the economic, social and environmental factors, based on the concept of sustainability. Then, the basic theory of the hybrid MCDM method employed in this paper was introduced in two parts: the superiority linguistic ratings and entropy weighting method for index weight determination and the fuzzy grey relation analysis for ranking alternatives. Finally, the external benefits of wind power, solar PV power and biomass power were evaluated. Taking a regional electric power system as an example, the results show that PV power has the greatest external benefit, followed by wind power and biomass power. Therefore, more policies supporting PV power should be put in place to promote the harmonious and sustainable development of the whole renewable energy power industry.

  15. Rural household energy consumption in Yangzhong county of Jiangsu province in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaohua; Feng Zhenming [Nanjing Agricultural University (China). Agricultural Engineering College

    1997-12-01

    A stratification sampling method has been applied to investigate 384 households in 12 villages of four towns in Yangzhong county. Responses to a questionnaire show that the average annual energy consumption per rural household is 298.7 kgce (we use 7000 kcal/kgce), with average energy of 0.59 kgce per day mainly in the form of straw. The average energy consumption depends on income, stalk yield, and number of persons and of pigs in a family. There is demand for high-quality supplies. (author)

  16. Case Study Analysis of U.S. Policy Solutions to Enable China New Energy Cities

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tian, T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Liu, C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Miller, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-05-28

    This report summarizes various policies for encouraging investment and installation of renewable energy across the country. In particular, we attempt to explain the benefits of, and considerations behind, each policy type and provide examples of implementation across the United States While recognized as important, this report does not address policies or examples of successful energy efficiency or alternative-fuel vehicle strategies. In addition, we summarize the renewable energy policy strategies undertaken by three areas of the United States: New Jersey, Hawaii, and San Francisco.

  17. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Bojda, Nicholas; Ke, Jing; Qin, Yining; de la Rue du Can, Stephane; Fridley, David; Letschert, Virginie E.; McMahon, James E.

    2011-08-18

    construction continues at a rapid pace. Growth in this sector means that commercial lighting and HVAC will play an increasingly important role in energy demand in China. The outlook for efficiency improvement in China is encouraging, since the Chinese national and local governments have implemented significant policies to contain energy intensity and announced their intention to continue and accelerate these. In particular, the Chinese appliance standards program, first established in 1989, was significantly strengthened and modernized after the passage of the Energy Conservation Law of 1997. Since then, the program has expanded to encompass over 30 equipment types (including motor vehicles). The current study suggests that, in spite of these efforts, there is significant savings to be captured through wide adoption of technologies already available on the Chinese market. The approach of the study is to assess the impact of short-term actions on long-term impacts. 'Short-term' market transformation is assumed to occur by 2015, while 'long-term' energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. Early in 2011, the Chinese government announced a plan to reduce carbon dioxide emissions intensity (per unit GDP) by 16% by 2015 as part of the 12th five year plan. These targets are consistent with longer term goals to reduce emissions intensity 40-45% relative to 2005 levels by 2020. The efforts of the 12th FYP focus on short-term gains to meet the four-year targets, and concentrate mainly in industry. Implementation of cost-effective technologies for all new equipment in the buildings sector thus is largely complementary to the 12th FYP goals, and would provide a mechanism to sustain intensity reductions in the medium and long term. The 15-year time frame is significant for many products, in the sense that delay of implementation postpones economic benefits and

  18. Investment Projects in Western CHINA Energy Sources and Chemical Industry Sector

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ 1.Project Name Heavy-duty Steel Structure Production Line Construction Project Ⅱ.Project Implementation Agency China 10th Metallurgical Construction Corp.Ltd.iS a large-scale comprehensive national construction enterprise,with Grade-Ⅰ qualification for general contracting of housing construction, smelting, mining, municipai administration and engineering construction;Grade-Ⅰ qualification for special contracting of steel structure;Grade-Ⅱ qualification for general contracting of electrical and mechanical installation,and roads construction;Grade-Ⅱ qualification for special contracting of highway roadbed,and building decoration and ornament.In addition,it has the certificates for installation of lifling equipment,boiler installation,installation of pressure pipes,and pressure vessel manufacture,etc.

  19. Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.H. [State Key Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); Li, Z.F. [State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 (China); Taishan Academy of Science and Technology, Tai' an, Shandong 271000 (China); Feng, S.F.; Wu, G.L.; Li, Y.; Li, C.H. [State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 (China); Lucas, M. [Rheinisch-Westfalisch Technische Hochschule, Aachen University, Aachen 52070 (Germany); Jiang, G.M. [State Key Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093 (China); State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 (China)

    2010-12-15

    A biomass energy exploration experiment was conducted in Jiangjiazhuang, a typical agro-village in Shandong, China from 2005 to 2009. The route of this study was designed as an agricultural circulation as: crops {yields} crop residues {yields} ''Bread'' forage {yields} cattle {yields} cattle dung {yields} biogas digester {yields} biogas/digester residues {yields} green fertilizers {yields} crops. About 738.8 tons of crop residues are produced in this village each year. In 2005, only two cattle were fed in this village and 1.1% of the crop residues were used as forage. About 38.5% crop residues were used for livelihood energy, 24.5% were discarded and 29.7% were directly burned in the field. Not more than three biogas digesters were built and merely 2250 m{sup 3} biogas was produced a year relative to saving 1.6 tons standard coal and equivalent to reducing 4.3 tons CO{sub 2} emission. A total of US$ 4491 profits were obtained from cattle benefit, reducing fossil energies/chemical fertilizer application and increasing crop yield. After 5 years experiment, cattle capita had raised gradually up to 146 and some 62.3% crop residues were used as forage. The percentages used as livelihood energy, discarded and burned in the field decreased to 16.3%, 9.2% and 9.8%, respectively. Biogas digesters increased to 123 and 92,250 m{sup 3} biogas was fermented equal to saving 65.9 tons standard coal and reducing 177.9 tons CO{sub 2} emission. In total US$ 60,710 profits were obtained in 2009. In addition, about 989.9 tons green fertilizers were produced from biogas digesters and applied in croplands. The results suggested that livestock and biogas projects were promising strategies to consume the redundant agricultural residues, offer livelihood energy and increase the villagers' incomes. Biogas production and utilization could effectively alleviate energy crisis and CO{sub 2} emission, which might be a great contribution to reach the affirmatory carbon

  20. The Diffusion of Information and Behavior in Social Networks: Renewable Energy Technology Adoption in Rural China

    OpenAIRE

    Pan He; Marcella Veronesi

    2015-01-01

    Adopting renewable energy technologies has been seen as a promising way to reduce CO2 emissions and deforestation. This paper investigates how social networks may affect renewable energy technology adoption. We distinguish two channels through which social networks may play a role: (i) the diffusion of information; and (ii) the diffusion of behavior. Most empirical studies fail to quantitatively separate the diffusion of information and behavior in social networks. We conduct a survey on biog...