WorldWideScience

Sample records for chimeric anti cd-20

  1. Rituximab chimeric anti-CD20 monoclonal antibody treatment for adult refractory idiopathic thrombocytopenic purpura

    DEFF Research Database (Denmark)

    Braendstrup, Peter; Bjerrum, Ole W; Nielsen, Ove J;

    2005-01-01

    . Recent studies have shown that rituximab, a chimeric anti-CD20 monoclonal antibody, is useful in the treatment of these patients, with overall response rates of about 50%. Most published reports have included a small number patients including case reports. The present study reports the results...... of a retrospective Danish multicenter study of rituximab in the treatment of adult patients with refractory ITP. Thirty-five patients (median age 52 years, range 17-82 years, 17 males) were included. One patient had immune thrombocytopenia and neutropenia. All patients had received prednisolone (Pred). Next to Pred...... of rituximab. The large majority of patients also received Pred and, in some cases, other concomitant immunosuppressive treatment during part of their rituximab treatment. A complete response (CR) was defined as a rise in the platelet count > 100 x 10(9)/L, a partial response (PR) as a rise in the platelet...

  2. Radioimmunotherapy in refractory b-cell nonhodgkins lymphoma with I-131-labeled chimeric anti cd-20 c2b8 (I-131 rituximab): preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye Jin; Park, Yeon Hee; Kim, Sung Eun and others [Korea University Medical School, Seoul (Korea, Republic of)

    2005-07-01

    Recently, the native chimeric human-mouse anti CD-20 antibody IDEC-C2B8 (Rituximab) has been widely applied in NHL. This ongoing phase study was to evaluate whether radioimmunotherapy (RIT) with I-131 rituximab is effective in refractory B-cell NHL. Inclusion criteria were as follows: B-cell NHL with relapsed or refractory to primary standard therapy, measurable disease, adequate hematologic, renal, and hepatic function, informed consent. The rituximab (Mabthera, Roach) was radiolabeled with iodine-131(I-131) using a modified chloramine T method with high radiochemical purity (95%) and preservation of immuno-reactivity. All patients received loading doses of unlabeled rituximab (median, 40 mg: range, 20{approx}70 mg) immediately prior to administration of therapeutic dose (51.4{approx}152.2 MBq/kg), and then underwent gamma camera scan. 11 patients were enrolled (4 low-grade B-cell NHL, 7 DLBCL, median age 63 years). Patients had received a median of three prior chemotherapy regimens. The objective response rate was 36.4% (1 CR, 3 PRs). These all responses were observed in low-grade B-cell NHL, except one with DLBCL. Adverse events were primarily hematologic toxicities; the incidence of grade 3/4 neutropenia, thrombocytopenia, and anemia was 27.3%, 45.5%, and 18.2%, respectively. The treatment-related mortality was observed in one patient, who had been previously treated with high-dose chemotherapy plus TBI with autologous stem cell transplantation. RIT with I-131 rituximab seems to be effective tolerable in refractory low-grade B-cell NHL, although modest activity in refractory DLBCL. Further studies to define the efficacy of I-131 rituximab in DLBCL are warranted.

  3. Induction of Apoptosis of Raji Cell by Chimeric Anti-CD20 Fab′ Fragment CTAM Based Dynamic Analysis of Large Astronautical Structure%嵌合抗CD20 Fab′诱导Raji细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    范冬梅; 赖增祖; 熊冬生; 许元富; 彭晖; 杨纯正

    2001-01-01

    为了研究嵌合抗CD20基因工程抗体Fab′的抗肿瘤活性及其抗肿瘤机制,利用3H掺入法测定嵌合抗CD20 Fab′对Raji细胞生长的影响,结果显示嵌合抗CD20 Fab′对Raji细胞的生长具有抑制作用,利用流式细胞仪测定嵌合抗CD20 Fab′诱导Raji细胞凋亡作用,结果显示嵌合抗CD20 Fab′可诱导Raji细胞凋亡作用.这些实验结果证明嵌合抗CD20 Fab′通过诱导Raji细胞凋亡的机制抑制Raji细胞生长.

  4. Inhibition of Proliferation of Raji Cell by Chimeric Anti-CD20 Antibody Fab′ Fragment%嵌合抗CD20 Fab′对B淋巴瘤细胞Raji细胞生长的影响

    Institute of Scientific and Technical Information of China (English)

    范冬梅; 赖增祖; 熊冬生; 许元富; 彭晖; 杨纯正

    2001-01-01

    目的:研究嵌合抗CD20基因工程抗体Fab′的抗肿瘤活性.方法:利用MTT法以及3H掺入法测定嵌合抗CD20 Fab′对Raji细胞生长的影响.结果:MTT法测定结果显示嵌合抗CD20 Fab′对Raji细胞的生长具有抑制作用,抑制作用成剂量依赖性,其IC50为24μg/ml;嵌合抗CD20 Fab′对3H-TdR掺入Raji细胞无抑制作用,表明抗CD20 Fab′不影响Raji细胞DNA的合成;但嵌合抗CD20 Fab′抑制3H-UdR掺入Raji细胞,表明嵌合抗CD20 Fab′对Raji细胞RNA合成具有抑制作用,其抑制作用成剂量相关性.结论:嵌合抗CD20 Fab′抑制Raji细胞生长,嵌合抗CD20 Fab′具有较好的抗肿瘤活性.

  5. In vitro characterization of {sup 177}Lu-radiolabelled chimeric anti-CD20 monoclonal antibody and a preliminary dosimetry study

    Energy Technology Data Exchange (ETDEWEB)

    Forrer, Flavio; Mueller-Brand, Jan [University Hospital Basel, Institute of Nuclear Medicine, Basel (Switzerland); Chen, Jianhua; Fani, Melpomeni; Powell, Pia; Maecke, Helmut R. [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); Lohri, Andreas [Basel University Medical Clinic, Liestal (Switzerland); Moldenhauer, Gerhard [German Cancer Research Center, Division of Molecular Immunology, Heidelberg (Germany)

    2009-09-15

    {sup 131}I- and {sup 90}Y-labelled anti-CD20 antibodies have been shown to be effective in the treatment of low-grade, B-cell non-Hodgkin's lymphoma (NHL). However, the most appropriate radionuclide in terms of high efficiency and low toxicity has not yet been established. In this study we evaluated an immunoconjugate formed by the anti-CD20 antibody rituximab and the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). DOTA-rituximab was prepared as a kit formulation and can be labelled in a short time (<20 min) with either {sup 177}Lu or {sup 90}Y. Immunoconjugates with different numbers of DOTA molecules per rituximab were prepared using p-SCN-Bz-DOTA. In vitro immunoreactivity and stability were tested and preliminary dosimetric results were acquired in two patients. The immunological binding properties of DOTA-rituximab to the CD20 antigen were found to be retained after conjugation with up to four chelators. The labelled product was stable against a 10{sup 5} times excess of diethylenetriaminepentaacetic acid (DTPA, 37 C, 7 days). Two patients with relapsed NHL were treated with 740 MBq/m{sup 2} body surface {sup 177}Lu-DOTA-rituximab. Scintigraphic images showed specific uptake at tumour sites and acceptable dosimetric results. The mean whole-body dose was found to be 314 mGy. The administration of {sup 177}Lu-DOTA-rituximab was tolerated well. Our results show that DOTA-rituximab (4:1) can be labelled with {sup 177}Lu with sufficient stability while the immunoconjugate retains its immunoreactivity. {sup 177}Lu-DOTA-rituximab is an interesting, well-tolerated radiolabelled antibody with clinical activity in a low dose range, and provides an approach to the efficient treatment with few side effects for patients with relapsed NHL. (orig.)

  6. [{sup 177}Lu]DOTA-anti-CD20: Labeling and pre-clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Audicio, Paola F., E-mail: paudicio@cin.edu.u [Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Mataojo 2055, 11400 Montevideo (Uruguay); Castellano, Gustavo, E-mail: gcas@famaf.unc.edu.a [FaMAF, Universidad Nacional de Cordoba, Ciudad Universitaria, 5016 Cordoba (Argentina); Tassano, Marcos R.; Rezzano, Maria E.; Fernandez, Marcelo [Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Mataojo 2055, 11400 Montevideo (Uruguay); Riva, Eloisa [Clinica Hematologica ' Prof. Dra. L. Diaz' , Hospital de Clinicas. Av. Italia. sn, Montevideo (Uruguay); Robles, Ana; Cabral, Pablo; Balter, Henia; Oliver, Patricia [Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Mataojo 2055, 11400 Montevideo (Uruguay)

    2011-07-15

    Anti-CD20 (Rituximab), a specific chimeric monoclonal antibody used in CD20-positive Non-Hodgkin's Lymphoma, was conjugated to a bifunctional quelate (DOTA) and radiolabeled with {sup 177}Lu through a simple method. [{sup 177}Lu]-DOTA-anti-CD20 was obtained with a radiochemical purity higher than 97%, and showed good chemical and biological stability, maintaining its biospecificity to CD20 antigens. Monte Carlo simulation showed high doses deposited on a spheroid tumor mass model. This method seems to be an appropriate alternative for the production of [{sup 177}Lu]-DOTA-anti-CD20 as therapeutic radiopharmaceutical.

  7. In vitro characterization of a chimeric anti-CD20 antibody%抗CD20嵌和抗体的体外生物学活性研究

    Institute of Scientific and Technical Information of China (English)

    杨扬; 张大鹏; 郭怀祖; 吴兰; 聂丽; 钱卫珠; 李博华

    2010-01-01

    c8F6是我们实验室制备的一株抗CD20的鼠/人嵌合抗体.本研究对c8F6的体外生物学活性进行了测定并与临床上使用的CD20抗体Rituximab进行了比较.实验结果表明,c8F6具有与Rituximab相似的抗原结合活性,抗体依赖性细胞介导的细胞毒作用(ADCC),肿瘤细胞凋亡诱导活性及肿瘤细胞生长抑制作用.但c8F6的补体依赖性细胞毒作用(CDC)明显强于Rituximab,在10 μg/ml浓度时c8F6对Daudi细胞和Raji细胞的杀伤率分别为91%和86%,而Rituximab的杀伤率分别为65%(Daudi细胞)和32%(Raji细胞).研究结果提示,c8F6可能发展成为一个比Rituximab更为有效的用于治疗B细胞非霍奇金淋巴瘤的抗体制剂.

  8. High-dose radioimmunotherapy in refractory b-celI non-Hodgikin's lymphoma with I-131-labeled chimeric anti CD-20 C2B8 (I-131 rituximab): pilot trial

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Eun; Park, Yeon Hee; Cheon, Gi Jeong; Ryoo, Baek Yeol; Lee, Seung Sook; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Science, Seoul (Korea, Republic of)

    2004-07-01

    The native chimeric human-mouse anti CD-20 antibody IDEC-C2B8 (rituximab) is therapeutically applied in relapsed or refractory NHL. This ongoing pilot study was to evaluate whether high-dose radioimmunotherapy (RIT) with I-131 rituximab is therapeutically effective in refractory B-cell NHL. 5 patients (5 male, aged 50.89{+-}16.89) with chemorefractory NHL of B-cell origin (2 diffuse large B cell, 1 burkitt's lymphoma, and 2 mantle cell Iymphoma) oe, with a life expectancy of at least 3 months, and with a Kamofsky performance score of 60 and above were studied. The chimeric IgG1 anti CD 20 monoclonal antibody rituximab (mabthera, Roche) was radiolabelled with iodine-131 (I-131) using a modified chloaramine T method with high radiochemical purity (95%{+-}0.9) and preservation of immunoreactivity. All patients received therapeutic loading doses of unlabelled rituximab (18.5 MBq/kg) immediately prior to administration of therapeutic dose (3.7 GBq-8.5 GBq), and then underwent gamma camera scan and pre-and post-RIT FDG PET (within 7 day and day 30). Blood cell nadirs were reached at 2-3 weeks after therapy infusion, but all patients recovered at 6 weeks after treatment. Non hematologic toxicity was restricted to mild-to moderate nausea, fever, transient bilirubin, or liver enzyme elevation. Two (8.5 GBq) with mantle cell lymphoma and one with burkitt's lymphoma experienced good partial remissions, and one (5.5 GBq, DLBL) with bulky disease had a partial remission, and one patient (3.7 GBq, DLBL) with bulky disease had a mixed response. High-dose RIT with I-131 labelled rituximab seems to be effective and moderate toxicity. Further follow-up to monitor the long-term outcome are indicated.

  9. Structure verification of a recombinant chimeric anti-CD20 IgG1 monoclonal antibody%重组嵌合抗CD20 IgG1型单克隆抗体的结构验证

    Institute of Scientific and Technical Information of China (English)

    陶磊; 饶春明; 高凯; 史新昌; 赵阳; 王军志

    2010-01-01

    本文选择一种重组嵌合抗CD20 IgG1型单抗.应用液质联用仪及N-末端测序仪对其进行结构验证.对该单抗进行还原、烷基化、酶解等处理后,对其氨基酸序列、二硫键配对方式、糖链类型及糖基化位点进行分析测定.结果显示,该单抗轻、重链氨基酸序列与理论一致.通过液质肽图的解析,对单抗10条二硫键的配对方式进行了验证;通过比较单抗重链切糖前、后的相对分子质量,预测单抗所含糖链类型为岩藻糖化的双触角复杂型N-糖,糖基化位点位于重链的Asn301上.本方法可为该类重组单抗制品的质量控制及其参考品的结构确证提供参考.

  10. Anti-CD20 monoclonal antibodies as novel treatments for non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    White, C.A.; Larocca, A.; Grillo-Lopez, A.J. [IDEC Pharmaceuticals, 3030 Callan Road, San Diego, CA (United States)

    1999-03-01

    Anti-CD20 monoclonal antibodies (MAbs) offer new options for patients with non-Hodgkin's lymphoma, needed because existing therapies have many limitations. The unconjugated, chimeric anti-CD20 antibody, Rituximab (MabThera, Rituxan), has recently been approved in the USA for patients with relapsed or refractory, low-grade or follicular, B-cell non-Hodgkin's lymphoma, and in Europe for therapy of relapsed stage III/IV follicular lymphoma. In the pivotal study of Rituximab, an overall response rate of 50% was achieved with median time to progressionin responders of 13.2 months. Studies are ongoing with the {sup 90}Y-labelled murine anti-CD20 antibody, IDEC-Y2B8. The response rate in a Phase I/II study in low-grade and intermediate-grade patients was 67%. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Expression and biological characterization of an anti-CD20 biosimilar candidate antibody: a case study.

    Science.gov (United States)

    Dorvignit, Denise; Palacios, Julio L; Merino, Maylin; Hernández, Tays; Sosa, Katya; Casaco, Angel; López-Requena, Alejandro; Mateo de Acosta, Cristina

    2012-01-01

    The CD20 molecule is a non-glycosylated protein expressed mainly on the surface of B lymphocytes. In some pathogenic B cells, it shows an increased expression, thus becoming an attractive target for diagnosis and therapy. Rituximab is a chimeric antibody that specifically recognizes the human CD20 molecule. This antibody is indicated for the treatment of non-Hodgkin lymphomas and autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. In this work, we describe the stable expression and biological evaluation of an anti-CD20 biosimilar antibody. While rituximab is produced in fed-batch culture of recombinant Chinese hamster ovary (CHO) cells, our biosimilar antibody expression process consists of continuous culture of recombinant murine NS0 myeloma cells. The ability of the purified biosimilar antibody to recognize the CD20 molecule on human tumor cell lines, as well as on peripheral blood mononuclear cells from humans and primates, was demonstrated by flow cytometry. The biosimilar antibody induced complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity and apoptosis on human cell lines with high expression of CD20. In addition, this antibody depleted CD20-positive B lymphocytes from peripheral blood in monkeys. These results indicate that the biological properties of the biosimilar antibody compare favorably with those of the innovator product, and that it should be evaluated in future clinical trials. PMID:22647435

  12. Expression and biological characterization of an anti-CD20 biosimilar candidate antibody

    Science.gov (United States)

    Dorvignit, Denise; Palacios, Julio L.; Merino, Maylin; Hernández, Tays; Sosa, Katya; Casacó, Angel; López-Requena, Alejandro; Mateo de Acosta, Cristina

    2012-01-01

    The CD20 molecule is a non-glycosylated protein expressed mainly on the surface of B lymphocytes. In some pathogenic B cells, it shows an increased expression, thus becoming an attractive target for diagnosis and therapy. Rituximab is a chimeric antibody that specifically recognizes the human CD20 molecule. This antibody is indicated for the treatment of non-Hodgkin lymphomas and autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. In this work, we describe the stable expression and biological evaluation of an anti-CD20 biosimilar antibody. While rituximab is produced in fed-batch culture of recombinant Chinese hamster ovary (CHO) cells, our biosimilar antibody expression process consists of continuous culture of recombinant murine NS0 myeloma cells. The ability of the purified biosimilar antibody to recognize the CD20 molecule on human tumor cell lines, as well as on peripheral blood mononuclear cells from humans and primates, was demonstrated by flow cytometry. The biosimilar antibody induced complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity and apoptosis on human cell lines with high expression of CD20. In addition, this antibody depleted CD20-positive B lymphocytes from peripheral blood in monkeys. These results indicate that the biological properties of the biosimilar antibody compare favorably with those of the innovator product, and that it should be evaluated in future clinical trials. PMID:22647435

  13. Dosimetric studies of anti-CD20 labeled with therapeutic radionuclides at IPEN/CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, G.; Dias, C.R.B.R.; Osso Junior, J.A., E-mail: gracielabarrio@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-07-01

    Radioimmunotherapy (RIT) makes use of monoclonal antibodies (MAb) labeled with alpha/beta radionuclides for therapeutical purposes, leading to tumor irradiation and destruction, preserving the normal organs on the radiation excess. The therapeutic activity to be injected in a specific patient is based on information obtained in dosimetric studies. Beta emitting radionuclides such as {sup 131}I, {sup 188}Re, {sup 90}Y, {sup 177}Lu and {sup 166}Ho are useful for the development of therapeutic radiopharmaceuticals. Anti-CD20 (Rituximab) is a chimeric MAb directed against antigen surface CD20 on B-lymphocytes, used in non-Hodgkin lymphoma treatment (NHL). The association with beta radionuclides have shown greater therapeutic efficacy. Currently, two radiopharmaceuticals with Anti-CD20 for radioimmunotherapy have FDA approval for NHL treatment: {sup 131}I-AntiCD20 (Bexar) and {sup 90}Y-AntiCD20 (Zevalin). Techniques for the radiolabeling of {sup 188}Re-antiCD20 have been recently developed by IPEN-CNEN/SP in order to evaluate the clinical use of this radionuclide in particular. The use of {sup 188}Re (T{sub 1/2} 17h) produced by the decay of {sup 188}W (T{sub 1/2} 69d), from an {sup 188}W/{sup 188}Re generator system, has represented an alternative to RIT. Beyond high energy beta emission for therapy, {sup 188}Re also emits gamma rays (155keV) suitable for image. The aim of this new project is to compare the labeling of anti-CD20 with {sup 188}Re with the same MAb labeled with {sup 131}I, {sup 177}Lu, {sup 90}Y and even {sup 99m}Tc. The first step in this project is the review of the published data available concerning the labeling of this MAb with different radionuclides, along with data obtained at IPEN, taking into account labeling procedures, labeling yields, reaction time, level and kind of impurities and biodistribution studies. The pharmacokinetic code will be developed in Visual Studio.NET platform through VB.NET and C{sup ++} for biodistribution and dosimetric

  14. Labelling and biological valuation of anti-CD-20 for treatment of non-Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Full text: Anti-CD20 monoclonal chimeric humanized murine antibodies (Rituximab), have been successfully applied for the treatment of Non Hodgkin's Lymphoma. However, upon labelling of the mab-CD20 with β-emitters as 90Y, the therapeutic efficacy has significantly increased due to radiological effects of ionizing radiation. Our objective was to develop reliable and efficient methods for labelling anti-CD20 with β-emitters of therapeutic interest and simple and rugged quality control methods to evaluate radiochemical purity, biological performance and immunoreactivity assessment. 131I and 188Re have been used for the labelling of anti-CD20 as two attractive alternatives due to decay properties and availability (188Re: Eβmax: 2.2MeV, Eγ 0,155MeV, T=17h, generator produced; 131I: Eβmax: 0,63MeV, Eγ 0,364MeV, T=8d). Labelling of anti-CD20 was optimized following the oxidation procedure of chloramine-T in the case of 131I and the synthesis of 188Re(IV) complex with the previously reduced monoclonal antibody. Quality control of the species obtained were done by physicochemical methods, including ITLC-SG and HPLC, non specific protein precipitation, biological distribution in normal mice and immunoreactivity studies with membrane antigens extracted from isolated leucocytes. 131I- (more than 3.7 GBq/mL) was introduced on tyrosyl residues of the protein chain by adding 28 MBq to 20μg of anti CD20 (Mab Thera, 10mg/mL) at pH 7.4 and 1.3μg of Choramine-T. Purification was done by gel-permeation with sephadex G-25 (PD-10, Pharmacia). For labelling with 188Re, anti CD20 was first reduced by incubation with 2- mercaptoethanol and purified over a PD10 column. Fractions of reduced antibody were pooled and formulated as kit for instant labelling. Each kit contained 1mg anti-CD20; 82.8mg of sodium tartrate; 1.67 mg of stannous fluoride and 0.25 mg gentisic acid. For the labelling, sodium perrhenate (1.5-1.9 GBq) was acidified, added to the kit and then incubated for 1 hour at

  15. Unexpected and persistent depletion of B lymphocytes CD20 following a minimum dose of anti-CD20 antibody (Rituximab

    Directory of Open Access Journals (Sweden)

    V. Bruzzese

    2011-06-01

    Full Text Available Rituximab is a chemeric murine/human anti-B lymphocyte antigen CD20 monoclonal antibody used in the treatment of rheumatoid arthritis resistant to treatment by one or more anti TNF-alpha therapies (1. The recommended dose for an efficient depletion of the B CD 20 lymphocytes in rheumatoid arthritis is two infusions of 1000 mg, with the second infusion being administered two weeks after the first. At this dose, one obtains a rapid and persistent depletion of CD 20 cells, with repopulation occurring, on the average, in about eight months (2. Here, we present a case of a woman treated with only 50 mg of rituximab, who underwent both a rapid and pronounced reduction of B CD 20 lymphocytes...

  16. Labeling an anti-CD20 monoclonal antibody with 90Y

    International Nuclear Information System (INIS)

    Lymphomas are among the 10 leading causes of death, both in Cuba and in the world, with an increasing incidence in recent years. Follicular lymphoma low-grade (indolent) is one of the most common in the Western world, representing 1/3 of all non-Hodgkin lymphomas (NHL). More than 90% of patients present with disseminated disease at diagnosis and generally have a slow evolution and good response to conventional treatment; but radically changed its forecast to relapse, resistance to therapeutic and histologic transformation can occur. The monoclonal antibody therapy has been a promising therapeutic. In this respect CD20 antigen it has been considered one of the most attractive targets in the therapy of follicular B cell lymphoma This is expressed in more than 90% of cases, while not present in stem cells and lines progenitors. Despite the success of immunotherapy, the relapse rate is still considerable. In order to increase the cytotoxic potential of immunotherapy, marked with beta emitting radionuclides alpha particles or monoclonal antibodies are used today. Despite encouraging results in patients with non-Hodgkin lymphomas refractory to other treatments, the extremely high costs of these commercial radiopharmaceuticals have greatly limited its application, even in the first world. A sustainable alternative is the marking of other anti-CD20 monoclonal antibodies, so researchers from several countries have concentrated their efforts on rituximaby other similar antibodies labeled with therapeutic radionuclides, as a possible cost-effectively to more problem. Today in Cuba it has an electrolytic generator 90Sr-90Y Isotope Center, which ensures the availability of the radionuclide. In addition, the chimeric MAb rituximab is applied as part of the therapy of NHL in its health system and, recently, the Center for Molecular Immunology has obtained a chimeric monoclonal anti-CD20 antibody biosimilar rituximab, which is in phase clinical trial; which opens prospects for the

  17. Highly potent anti-CD20-RLI immunocytokine targeting established human B lymphoma in SCID mouse.

    Science.gov (United States)

    Vincent, Marie; Teppaz, Géraldine; Lajoie, Laurie; Solé, Véronique; Bessard, Anne; Maillasson, Mike; Loisel, Séverine; Béchard, David; Clémenceau, Béatrice; Thibault, Gilles; Garrigue-Antar, Laure; Jacques, Yannick; Quéméner, Agnès

    2014-01-01

    Rituximab (RTX), a chimeric IgG1 monoclonal antibody directed against the CD20 antigen, has revolutionized the treatment of B-cell malignancies. Nevertheless, the relapsed/refractory rates are still high. One strategy to increase the clinical effectiveness of RTX is based on antibody-cytokine fusion protein (immunocytokine; ICK) vectorizing together at the tumor site the antibody effector activities and the cytokine co-signal required for the generation of cytotoxic cellular immunity. Such ICKs linking various antibody formats to interleukin (IL)-2 are currently being investigated in clinical trials and have shown promising results in cancer therapies. IL-15, a structurally-related cytokine, is now considered as having a better potential than IL-2 in antitumor immunotherapeutic strategies. We have previously engineered the fusion protein RLI, linking a soluble form of human IL-15Rα-sushi+ domain to human IL-15. Compared with IL-15, RLI displayed better biological activities in vitro and higher antitumor effects in vivo in murine and human cancer models. In this study, we investigated the advantages of fusing RLI to RTX. Anti-CD20-RLI kept its binding capacity to CD20, CD16 and IL-15 receptor and therefore fully retained both antibody effector functions (ADCC and CDC), and the cytokine potential of RLI. In a severe combined immunodeficiency (SCID) mouse model of disseminated residual lymphoma, anti-CD20-RLI was found to induce long-term survival of 90% of mice up to at least 120 days whereas RLI and RTX, alone or in combination, just delayed the disease onset (100% of death at 28, 40 and 51 days respectively). These findings suggest that such ICK could improve the clinical efficacy of RTX, particularly in patients with refractory B-cell lymphoma. PMID:25072059

  18. Dosimetry and microdosimetry of 188 Re-anti-CD20 and 131 I-anti-CD20 for the treatment of No Hodgkin lymphomas

    International Nuclear Information System (INIS)

    The purpose of this investigation was to prepare 131I-anti-CD20 and 188Re-anti-CD20 and to estimate the radiation absorbed dose at macro- and micro- level during a NHL treatment. The work was divided in 4 general objectives: 1) preparation of 131I-anti-CD20 and 188Re-anti-CD20, 2) application in patients to obtain biokinetic parameters and estimate the organ absorbed doses 3) estimation of the cellular dosimetry using the MIRD methodology and the MCNP4C2 code and 4) estimation of the cellular microdosimetry using the NOREC code. 188Re-anti-CD20 was prepared by a direct labelling method using sodium tartrate as a weak ligand. To evaluate the biological recognition a comparative study of the in vitro binding of 188Re-anti-CD20, 125I-anti-CD20 (positive control) and 188Re-anti-CEA (negative control) to normal B Iymphocytes was performed. Biodistribution studies in normal mice were accomplished to assess the in vivo Re-anti-CD20 complex stability. The binding of ' Re-anti-CD20 to cells was in the same range as '251-anti-CD20 (>80%) considered as the positive control. 188Re-anti-CD20 and '3'1-anti-CD20 prepared were administered in patients diagnosed with B cell NHL at the Centro Medico Siglo XXI (IMSS). The protocol was approved by the hospital's Medical Ethics Committee. AJI patients signed a consent form after receiving detailed information on the aims of the study. N data were the input for the OLINDA/EXM software to calculate the radiation absorbed dose to organs and whole body. Dosimetric studies indicate that after administration of 6.4 GBq and 4.87 to 8.75 GBq of '3'1-anti-CD20 and 188Re-anti-CD20 respectively, the absorbed dose to total body would be 0.75 Gy which corresponds to the recommended dose for NHL therapies. The calculated organ absorbed doses indicate that 188Re-anti-CD20 may be used in radioimmunotherapy without the risk of toxicity to red marrow or healthy organs. The absorbed dose (D) into cellular nucleus was calculated by two different

  19. Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori)

    Science.gov (United States)

    Tada, Minoru; Tatematsu, Ken-Ichiro; Ishii-Watabe, Akiko; Harazono, Akira; Takakura, Daisuke; Hashii, Noritaka; Sezutsu, Hideki; Kawasaki, Nana

    2015-01-01

    In response to the successful use of monoclonal antibodies (mAbs) in the treatment of various diseases, systems for expressing recombinant mAbs using transgenic animals or plants have been widely developed. The silkworm (Bombyx mori) is a highly domesticated insect that has recently been used for the production of recombinant proteins. Because of their cost-effective breeding and relatively easy production scale-up, transgenic silkworms show great promise as a novel production system for mAbs. In this study, we established a transgenic silkworm stably expressing a human-mouse chimeric anti-CD20 mAb having the same amino acid sequence as rituximab, and compared its characteristics with rituximab produced by Chinese hamster ovary (CHO) cells (MabThera®). The anti-CD20 mAb produced in the transgenic silkworm showed a similar antigen-binding property, but stronger antibody-dependent cell-mediated cytotoxicity (ADCC) and weaker complement-dependent cytotoxicity (CDC) compared to MabThera. Post-translational modification analysis was performed by peptide mapping using liquid chromatography/mass spectrometry. There was a significant difference in the N-glycosylation profile between the CHO− and the silkworm-derived mAbs, but not in other post-translational modifications including oxidation and deamidation. The mass spectra of the N-glycosylated peptide revealed that the observed biological properties were attributable to the characteristic N-glycan structures of the anti-CD20 mAbs produced in the transgenic silkworms, i.e., the lack of the core-fucose and galactose at the non-reducing terminal. These results suggest that the transgenic silkworm may be a promising expression system for the tumor-targeting mAbs with higher ADCC activity. PMID:26261057

  20. Expression and biological characterization of an anti-CD20 biosimilar candidate antibody: A case study

    OpenAIRE

    Dorvignit, Denise; Palacios, Julio L.; Merino, Maylin; Hernández, Tays; Sosa, Katya; Casacó, Angel; López-Requena, Alejandro; Mateo de Acosta, Cristina

    2012-01-01

    The CD20 molecule is a non-glycosylated protein expressed mainly on the surface of B lymphocytes. In some pathogenic B cells, it shows an increased expression, thus becoming an attractive target for diagnosis and therapy. Rituximab is a chimeric antibody that specifically recognizes the human CD20 molecule. This antibody is indicated for the treatment of non-Hodgkin lymphomas and autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. In this work, we describe the ...

  1. Dosimetry and microdosimetry of {sup 188} Re-anti-CD20 and {sup 131} I-anti-CD20 for the treatment of No Hodgkin lymphomas; Dosimetria y microdosimetria del {sup 188} Re-anti-CD20 y {sup 131} I-anti-CD20 para el tratamiento de linfomas No Hodgkin

    Energy Technology Data Exchange (ETDEWEB)

    Torres G, E

    2007-07-01

    The purpose of this investigation was to prepare {sup 131}I-anti-CD20 and {sup 188}Re-anti-CD20 and to estimate the radiation absorbed dose at macro- and micro- level during a NHL treatment. The work was divided in 4 general objectives: 1) preparation of {sup 131}I-anti-CD20 and {sup 188}Re-anti-CD20, 2) application in patients to obtain biokinetic parameters and estimate the organ absorbed doses 3) estimation of the cellular dosimetry using the MIRD methodology and the MCNP4C2 code and 4) estimation of the cellular microdosimetry using the NOREC code. {sup 188}Re-anti-CD20 was prepared by a direct labelling method using sodium tartrate as a weak ligand. To evaluate the biological recognition a comparative study of the in vitro binding of {sup 188}Re-anti-CD20, {sup 125}I-anti-CD20 (positive control) and {sup 188}Re-anti-CEA (negative control) to normal B Iymphocytes was performed. Biodistribution studies in normal mice were accomplished to assess the in vivo Re-anti-CD20 complex stability. The binding of ' Re-anti-CD20 to cells was in the same range as '251-anti-CD20 (>80%) considered as the positive control. {sup 188}Re-anti-CD20 and '3'1-anti-CD20 prepared were administered in patients diagnosed with B cell NHL at the Centro Medico Siglo XXI (IMSS). The protocol was approved by the hospital's Medical Ethics Committee. AJI patients signed a consent form after receiving detailed information on the aims of the study. N data were the input for the OLINDA/EXM software to calculate the radiation absorbed dose to organs and whole body. Dosimetric studies indicate that after administration of 6.4 GBq and 4.87 to 8.75 GBq of '3'1-anti-CD20 and {sup 188}Re-anti-CD20 respectively, the absorbed dose to total body would be 0.75 Gy which corresponds to the recommended dose for NHL therapies. The calculated organ absorbed doses indicate that {sup 188}Re-anti-CD20 may be used in radioimmunotherapy without the risk of toxicity to red marrow or

  2. Potential therapeutic strategy for non-Hodgkin lymphoma by anti-CD20scFvFc/CD28/CD3zeta gene tranfected T cells

    Directory of Open Access Journals (Sweden)

    Zheng Yihu

    2010-09-01

    Full Text Available Abstract Background Anti-CD20 monoclonal antibody treatment has not only increased survival and cure rates in many non-Hodgkin lymphomas, but also has prompted an explosion in the development of novel antibodies and biologically active substances with specific cellular targets in the field of malignancies treatment. Since the robust immune responses are elicited by the gene-modified T cells, gene based T cell therapy may also provide a powerful tool for cancer immunotherapy. Methods In this study, we developed a vector construction encoding a chimeric T cell receptor that recognizes the CD20 antigen and delivers co-stimulatory signals to achieve T cell activation. One non-Hodgkin lymphoma cell line Raji cells co-cultured with peripheral blood-derived T cells were stably transfected with anti-CD20scFvFc/CD28/CD3zeta gene or anti-CD20scFvFc gene. T cells expressing anti-CD20scFvFc/CD28/CD3zeta or anti-CD20scFvFc gene co-cultured with CD20 positive Raji cells for different times. Cell lysis assay was carried by [3H]TdR release assay. The expressions of Fas, Bcl-2 and Caspase-3 of Raji cells were detected by flow cytometric. The secretion of IFN-gamma and IL-2 in co-culture medium was tested by ELISA assay. Activity of AP-1 was analyzed by EMSA. Results Following efficient transduction of peripheral blood-derived T cells with anti-CD20scFvFc/CD28/CD3zeta gene, an obvious cell lysis of Raji cells was observed in co-culture. T cells transduced anti-CD20scFvFc/CD28/CD3zeta gene had superior secretion of IFN-gamma and IL-2 compared to T cells transduced anti-CD20scFvFc gene. Also it led to a much stronger Fas-induced apoptosis signaling transduction in target cancer cells. Conclusion So adoptively T cells transduced anti-CD20scFvFc/CD28/CD3zeta gene mediates enhanced anti-tumor activities against CD20 positive tumor cells, suggesting a potential of gene-based immunotherapy for non-Hodgkin lymphoma.

  3. Anti-CD20 multivalent HPMA copolymer-Fab′ conjugates for the direct induction of apoptosis

    OpenAIRE

    Chu, Te-Wei; Yang, Jiyuan; Kopeček, Jindřich

    2012-01-01

    A hybrid biomimetic system comprising high-molecular-weight, linear copolymer of N-(2-hydroxypropyl)methacrylamide (HPMA) grafted with multiple Fab′ fragments of anti-CD20 monoclonal antibody (mAb) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization followed by attachment of Fab′ fragments via thioether bonds. Exposure of human non-Hodgkin’s lymphoma (NHL) Raji B cells to the multivalent conjugates resulted in crosslinking of CD20 receptors and commenceme...

  4. Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L.

    Science.gov (United States)

    Bodogai, Monica; Lee Chang, Catalina; Wejksza, Katarzyna; Lai, Jinping; Merino, Maria; Wersto, Robert P; Gress, Ronald E; Chan, Andrew C; Hesdorffer, Charles; Biragyn, Arya

    2013-04-01

    The possible therapeutic benefits of B-cell depletion in combating tumoral immune escape have been debated. In support of this concept, metastasis of highly aggressive 4T1 breast cancer cells in mice can be abrogated by inactivation of tumor-evoked regulatory B cells (tBreg). Here, we report the unexpected finding that B-cell depletion by CD20 antibody will greatly enhance cancer progression and metastasis. Both murine and human tBregs express low levels of CD20 and, as such, anti-CD20 mostly enriches for these cells. In the 4T1 model of murine breast cancer, this effect of enriching for tBregs suggests that B-cell depletion by anti-CD20 may not be beneficial at all in some cancers. In contrast, we show that in vivo-targeted stimulation of B cells with CXCL13-coupled CpG oligonucleotides (CpG-ODN) can block cancer metastasis by inhibiting CD20(Low) tBregs. Mechanistic investigations suggested that CpG-ODN upregulates low surface levels of 4-1BBL on tBregs to elicit granzyme B-expressing cytolytic CD8(+) T cells, offering some explanative power for the effect. These findings underscore the immunotherapeutic importance of tBreg inactivation as a strategy to enhance cancer therapy by targeting both the regulatory and activating arms of the immune system in vivo. PMID:23365136

  5. Rituximab and Other New Anti-CD20 MAbs for Non-Hodgkin’s Lymphoma Treatment

    Directory of Open Access Journals (Sweden)

    Letizia Polito

    2013-10-01

    Full Text Available Non-Hodgkin’s lymphomas (NHLs are a heterogeneous group of different haematological cancers with a wide range of aggressiveness. NHLs represent >80% of lymphomas and the majority of NHLs involve B cells. CD20 represents a good target for NHL immunotherapy because it is largely expressed on B cell NHL and not on B cell precursors and plasma cells. The anti-CD20 monoclonal antibody (mAb rituximab (RTX was the first antibody approved by the FDA for lymphoma therapy and has revolutionised B cell lymphoma treatment. Several clinical trials have demonstrated the high efficacy of RTX, resulting in a significant improvement in overall response rates and in NHL patient survival. However, RTX, both as a single agent and in combination with chemotherapy, induces several side-effects and resistance mechanisms. Remarkable efforts have been made to improve RTX efficacy, including conjugation to an active moiety (radionuclide, toxin, enzyme, or drug and the development of new anti-CD20 mAbs. This review summarises the characteristics of RTX and other anti-CD20 mAbs for NHL treatment; the results of the main clinical trials are reported.

  6. Preparation of the radiopharmaceutical 131I-Anti-CD20 for the treatment of lymphomas

    International Nuclear Information System (INIS)

    At the present time they are considered to the lymphomas like a problem of first magnitude since has happened it is necessary to be the fifth cancer cause in the world. Different treatments focused to the lymphoma like the chemotherapy and the radiotherapy, have been employees to counteract the No-Hodgkin lymphoma, without these they don't exclude the healthy tissue of the toxicity. It is for it that is taking a new direction with the employment of the directed radioimmunotherapy since this it allows to kill wicked cells selectively with radiation dose joined to the apoptosis and cytotoxicity induced by the own one bio molecule. The radioimmunotherapy with radiolabelled antibodies directed to the surface antigen CD20 represents a new modality for the treatment of No-Hodgkin lymphoma and potentially other illnesses. In this work the parameters of optimization are presented for the preparation, control of quality and evaluation of the stability in vitro and in vivo of the monoclonal antibody anti-CD20 labelled with 131 I for the treatment of No-Hodgkin lymphoma. The anti-CD20 labelled by the chloramine-T method with high radiochemical purity (>98%), it is stable in solution for but of a half life of the radionuclide (8.04 days) The 131 I-anti-CD20 doesn't present dehalogenation in vitro (human serum) during 24 h of incubation at 37 C. According to the tests carried out to establish the immunoreactivity, a percentage of union to cells was obtained (B lymphocytes) bigger to 30%. The biodistribution in mice balb/c one hour after their administration, it shows that there is not high reception in mucous neither kidneys, what indicates that the complex is stable in vivo. In conclusion, the radiopharmaceutical 131 I-anti-CD20 was obtained in sterile injectable solution and free of pyrogens with a radiochemical purity bigger to 98% and a specific activity of 296 MBq. The radiolabelled molecule maintains its biological recognition for the receiving CD20 highly expressed in

  7. Two courses of rituximab (anti-CD20 monoclonal antibody) for recalcitrant pemphigus vulgaris

    DEFF Research Database (Denmark)

    Faurschou, A.; Gniadecki, R.

    2008-01-01

    Background Pemphigus vulgaris (PV) is a severe autoimmune blistering disease involving the skin and mucous membranes. The response to therapy varies greatly amongst patients and treatment may be challenging. Rituximab is a chimeric monoclonal antibody that selectively targets cell surface antigen...... CD20, thus depleting mature B cells in vivo. Methods We report the results of rituximab treatment in two patients with severe PV. In both patients, high-dose oral prednisolone and adjuvant therapy with intravenous immunoglobulins and mycophenolate mofetil failed to control disease activity....... Consequently, the patients were treated with two courses of four weekly intravenous infusions of rituximab (375 mg/m(2)) with a 6-month interval. Results Clinical improvement was already noticeable 3-6 weeks after the first infusion. After the second course, complete remission was achieved. Oral prednisolone...

  8. Anti-CD20 B-cell depletion enhances monocyte reactivity in neuroimmunological disorders

    Directory of Open Access Journals (Sweden)

    Hohlfeld Reinhard

    2011-10-01

    Full Text Available Abstract Background Clinical trials evaluating anti-CD20-mediated B-cell depletion in multiple sclerosis (MS and neuromyelitis optica (NMO generated encouraging results. Our recent studies in the MS model experimental autoimmune encephalomyelitis (EAE attributed clinical benefit to extinction of activated B-cells, but cautioned that depletion of naïve B-cells may be undesirable. We elucidated the regulatory role of un-activated B-cells in EAE and investigated whether anti-CD20 may collaterally diminish regulatory B-cell properties in treatment of neuroimmunological disorders. Methods Myelin oligodendrocyte glycoprotein (MOG peptide-immunized C57Bl/6 mice were depleted of B-cells. Functional consequences for regulatory T-cells (Treg and cytokine production of CD11b+ antigen presenting cells (APC were assessed. Peripheral blood mononuclear cells from 22 patients receiving anti-CD20 and 23 untreated neuroimmunological patients were evaluated for frequencies of B-cells, T-cells and monocytes; monocytic reactivity was determined by TNF-production and expression of signalling lymphocytic activation molecule (SLAM. Results We observed that EAE-exacerbation upon depletion of un-activated B-cells closely correlated with an enhanced production of pro-inflammatory TNF by CD11b+ APC. Paralleling this pre-clinical finding, anti-CD20 treatment of human neuroimmunological disorders increased the relative frequency of monocytes and accentuated pro-inflammatory monocyte function; when reactivated ex vivo, a higher frequency of monocytes from B-cell depleted patients produced TNF and expressed the activation marker SLAM. Conclusions These data suggest that in neuroimmunological disorders, pro-inflammatory APC activity is controlled by a subset of B-cells which is eliminated concomitantly upon anti-CD20 treatment. While this observation does not conflict with the general concept of B-cell depletion in human autoimmunity, it implies that its safety and

  9. Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy

    DEFF Research Database (Denmark)

    Da Roit, F.; Engelberts, P. J.; Taylor, R. P.;

    2015-01-01

    the possible positive or negative impact of these drugs on all known mechanisms of action of both type I and type II anti-CD20 antibodies. Pretreatment with ibrutinib for 1 hour did not increase direct cell death of cell lines or chronic lymphocytic leukemia samples mediated by anti-CD20 antibodies. Pre......-treatment with ibrutinib did not inhibit complement activation or complement-mediated lysis. In contrast, ibrutinib strongly inhibited all cell-mediated mechanisms induced by anti-CD20 antibodies rituximab, ofatumumab or obinutuzumab, either in purified systems or whole blood assays. Activation of natural killer cells...

  10. Comparative studies of antibody anti-CD20 labeled with {sup 188}Re; Estudo comparativo da marcacao do anticorpo anti-CD20 com {sup 188}Re

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Carla Roberta de Barros Rodrigues

    2010-07-01

    Nuclear Medicine is an unique and important modality in oncology and the development of new tumor-targeted radiopharmaceuticals for both diagnosis and therapy is an area of interest for researchers. Rituximab (RTX) is a quimeric monoclonal antibody (mAb) (IgG 1) that specifically binds to CD20 antigen with high affinity and has been successfully used for the treatment of Non-Hodgkin Lymphoma (NHL) of cell B. The CD20 antigen is expressed over more than 90% of cell B NHL. Technetium-99m ({sup 99m}Tc) and rhenium-188 ({sup 188}Re) are an attractive radionuclide pair for clinical use due to their favorable decay properties for diagnosis ({sup 99m}Tc: T{sub 1/2} = 6 h, {gamma} radiation = 140 keV) and therapy ({sup 188}Re: T{sub 1/2} = 17 h, maximum {beta} energy = 2.12 MeV) and to their availability in the form of {sup 99}Mo/{sup 99}mTc and {sup 188}W/{sup 188}Re generators. The radionuclides can be conjugated to mAb using similar chemical procedures. The aim of this work was to study the labeling of anti-CD20 mAb (RTX) with {sup 188}Re using two techniques: the direct labeling method [{sup 188}Re(V)] and the labeling method via the carbonyl nucleus [{sup 188}Re(I)]. Besides the quality control, the radiolabeled mAb was submitted to in vivo, in vitro and ex vivo biological studies. For the direct labeling, RTX was reducing by incubation with 2-mercaptoethanol for generating sulphydryl groups (-SH) and further labeled with {sup 188}Re(V), in a study of several parameters in order to reach an optimized formulation. The labeling via the carbonyl nucleus both {sup 99}mTc and {sup 188}Re were employed through 2 different procedures: (1) labeling of intact RTX with {sup 99}mTc(I) and (2) reduced RTX (RTX{sub red}) labeled with {sup 99}mTc(I)/{sup 188}Re(I). Also a parameter study was performed to obtain an optimized formulation. The quality control method for evaluating the radiochemical purity showed a good labeling yield (93%) for the direct method. The labeling method

  11. Preparation and quality control of {sup 166}Ho-DTPA-antiCD20 for radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zolghadri, S.; Jalilian, A.R.; Yousefnia, H.; Bahrami-Sumani, A.; Shirvani-Arani, S.; Ghannadi-Maragheh, M. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (IR). Radiopharmaceutical Research and Development Lab. (RRDL)

    2011-07-01

    In this work, anti-CD20 was successively labeled with beta-particle emitting radionuclide, Ho-166, for ultimate radioimmunotherapy applications. Ho-166 chloride was obtained by thermal neutron flux (1 x 10{sup 13} n cm{sup -2} s{sup -1}) of natural Ho{sub 2}(NO{sub 3}){sub 3} sample, dissolved in acidic media. {sup 166}Ho-holmium chloride (185 MBq) was added to the conjugated antibody after ccDTPA residulation at room temperature. Radiochemical purity of 95% (ITLC) and 98% (HPLC) were obtained for final radioimmunoconjugate (specific activity = 3-3.5 GBq/mg). The final isotonic {sup 166}Ho-rituximab complex was checked by gel electrophoresis for protein integrity retention. Biodistribution studies of Ho-166 chloride and radioimmunoconjugate were performed in wild-type rats to determine the biodistribution. The accumulation of the radiolabeled antibody in lungs, liver and spleen demonstrates a similar pattern to the other radiolabeled anti-CD20 immunoconjugates. (orig.)

  12. Dosimetric evaluation of anti-CD20 labelled with 188Re

    International Nuclear Information System (INIS)

    Radioimmunotherapy has the potential to deliver lethal radiation energy directly to malignant cells via targeting of radioisotope-conjugated monoclonal antibodies (MAbs) to specific antigens. B-cell lymphoma is a particularly good candidate for radioimmunotherapy because the disease is inherently radiosensitive, malignant cells in the blood, bone marrow, spleen and lymphonodes are accessible, and MAbs have been developed to B-cell surface antigens that do not shed or modulate. Rituximab (RTX), the human IgG1-type chimeric form of the parent murine antibody ibritumomab, is specifically targeted against CD20, a surface antigen expressed by pre-B and mature human B lymphocytes. The use of rhenium-188 from a 188W/188Re generator system represents an attractive alternative radionuclide for therapy. 188Re is produced from beta decay of the 188W parent. In addition to the emission of high-energy electrons (Eβ= 2118 keV), 188Re also decays with emission of a gamma photon with an energy of 155 keV in 15% abundance. Besides the therapeutic usefulness of 188Re, the emission of gamma photon is an added advantage since the biodistribution of 188Re-labeled antibodies can be evaluated in vivo with a gamma camera. Also, rhenium has chemical properties similar to technetium. Thus, both can be conjugated to antibodies using similar chemistry methods. The objective of this work is to prove the usefulness of this radiopharmaceutical based on dosimetric studies, that are also required by the Brazilian Regulatory Agency (ANVISA). (author)

  13. Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma.

    Directory of Open Access Journals (Sweden)

    Lihua E Budde

    Full Text Available Modification of T cells with chimeric antigen receptors (CAR has emerged as a promising treatment modality for human malignancies. Integration of co-stimulatory domains into CARs can augment the activation and function of genetically targeted T cells against tumors. However, the potential for insertional mutagenesis and toxicities due to the infused cells have made development of safe methods for removing transferred cells an important consideration. We have genetically modified human T cells with a lentiviral vector to express a CD20-CAR containing both CD28 and CD137 co-stimulatory domains, a "suicide gene" relying on inducible activation of caspase 9 (iC9, and a truncated CD19 selectable marker. Rapid expansion (2000 fold of the transduced T cells was achieved in 28 days after stimulation with artificial antigen presenting cells. Transduced T cells exhibited effective CD20-specific cytotoxic activity in vitro and in a mouse xenograft tumor model. Activation of the iC9 suicide switch resulted in efficient removal of transduced T cells both in vitro and in vivo. Our work demonstrates the feasibility and promise of this approach for treating CD20(+ malignancies in a safe and more efficient manner. A phase I clinical trial using this approach in patients with relapsed indolent B-NHL is planned.

  14. Dosimetric evaluation of anti-CD20 labelled with {sup 188}Re

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, Graciela; Osso Junior, Joao A., E-mail: gracielabarrio@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Radioimmunotherapy has the potential to deliver lethal radiation energy directly to malignant cells via targeting of radioisotope-conjugated monoclonal antibodies (MAbs) to specific antigens. B-cell lymphoma is a particularly good candidate for radioimmunotherapy because the disease is inherently radiosensitive, malignant cells in the blood, bone marrow, spleen and lymphonodes are accessible, and MAbs have been developed to B-cell surface antigens that do not shed or modulate. Rituximab (RTX), the human IgG1-type chimeric form of the parent murine antibody ibritumomab, is specifically targeted against CD20, a surface antigen expressed by pre-B and mature human B lymphocytes. The use of rhenium-188 from a {sup 188}W/{sup 188}Re generator system represents an attractive alternative radionuclide for therapy. {sup 188}Re is produced from beta decay of the {sup 188}W parent. In addition to the emission of high-energy electrons (E{beta}= 2118 keV), {sup 188}Re also decays with emission of a gamma photon with an energy of 155 keV in 15% abundance. Besides the therapeutic usefulness of {sup 188}Re, the emission of gamma photon is an added advantage since the biodistribution of {sup 188}Re-labeled antibodies can be evaluated in vivo with a gamma camera. Also, rhenium has chemical properties similar to technetium. Thus, both can be conjugated to antibodies using similar chemistry methods. The objective of this work is to prove the usefulness of this radiopharmaceutical based on dosimetric studies, that are also required by the Brazilian Regulatory Agency (ANVISA). (author)

  15. Veltuzumab, an anti-CD20 mAb for the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and immune thrombocytopenic purpura.

    Science.gov (United States)

    Milani, Cannon; Castillo, Jorge

    2009-04-01

    Veltuzumab is a humanized, second-generation anti-CD20 mAb currently under development by Immunomedics Inc for the potential treatment of B-cell non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL). Licensee Nycomed is developing veltuzumab for the potential treatment of rheumatoid arthritis and immune thrombocytopenic purpura (ITP). Veltuzumab contains 90 to 95% human antibody sequences with identical antigen framework regions to epratuzumab (a humanized anti-CD22 mAb) and similar antigen-binding determinants to rituximab (chimeric, anti-CD20 mAb and the first-line treatment of aggressive and indolent NHL). In vitro studies have demonstrated that veltuzumab has enhanced binding avidities and a stronger effect on complement-dependent cytotoxicity compared with rituximab in selected cell lines. In dose-finding phase I/II clinical trials in patients with low-grade NHL, intravenous veltuzumab demonstrated a substantial rate of complete responses in concurrence with shorter and more tolerable infusions compared with rituximab. Currently there has been no evidence of an immune response to repeated administrations, and no serious adverse events related to veltuzumab treatment in patients with NHL. Veltuzumab is undergoing clinical trials using a low-dose subcutaneous formulation in patients with NHL, CLL and ITP. Prospective, randomized clinical trials are needed to clarify the role veltuzumab will play in a market where the therapy of B-cell lymphoproliferative disorders is dominated by rituximab. PMID:19330725

  16. Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy

    OpenAIRE

    Roit, Fabio Da; Patrick J Engelberts; Taylor, Ronald P.; Breij, Esther C.W.; Gritti, Giuseppe; Rambaldi, Alessandro; Introna, Martino; Parren, Paul W H I; Beurskens, Frank J; Golay, Josée

    2015-01-01

    The novel Bruton tyrosine kinase inhibitor ibrutinib and phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib are promising drugs for the treatment of chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma, either alone or in combination with anti-CD20 antibodies. We investigated the possible positive or negative impact of these drugs on all known mechanisms of action of both type I and type II anti-CD20 antibodies. Pretreatment with ibrutinib for 1 hour did not increase direct ...

  17. Anti-CD20 single chain variable antibody fragment–apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas

    Science.gov (United States)

    Crosby, Natasha M.; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A.; Kamei, Ayako; Simonsen, Jens B.; Luo, Bing; Gordon, Leo I.; Forte, Trudy M.; Ryan, Robert O.

    2015-01-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents. PMID:25994015

  18. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas.

    Science.gov (United States)

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O

    2015-08-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents. PMID:25994015

  19. Comparative studies of antibody anti-CD20 labeled with 188Re

    International Nuclear Information System (INIS)

    Nuclear Medicine is an unique and important modality in oncology and the development of new tumor-targeted radiopharmaceuticals for both diagnosis and therapy is an area of interest for researchers. Rituximab (RTX) is a quimeric monoclonal antibody (mAb) (IgG 1) that specifically binds to CD20 antigen with high affinity and has been successfully used for the treatment of Non-Hodgkin Lymphoma (NHL) of cell B. The CD20 antigen is expressed over more than 90% of cell B NHL. Technetium-99m (99mTc) and rhenium-188 (188Re) are an attractive radionuclide pair for clinical use due to their favorable decay properties for diagnosis (99mTc: T1/2 = 6 h, γ radiation = 140 keV) and therapy (188Re: T1/2 = 17 h, maximum β energy = 2.12 MeV) and to their availability in the form of 99Mo/99mTc and 188W/188Re generators. The radionuclides can be conjugated to mAb using similar chemical procedures. The aim of this work was to study the labeling of anti-CD20 mAb (RTX) with 188Re using two techniques: the direct labeling method [188Re(V)] and the labeling method via the carbonyl nucleus [188Re(I)]. Besides the quality control, the radiolabeled mAb was submitted to in vivo, in vitro and ex vivo biological studies. For the direct labeling, RTX was reducing by incubation with 2-mercaptoethanol for generating sulphydryl groups (-SH) and further labeled with 188Re(V), in a study of several parameters in order to reach an optimized formulation. The labeling via the carbonyl nucleus both 99mTc and 188Re were employed through 2 different procedures: (1) labeling of intact RTX with 99mTc(I) and (2) reduced RTX (RTXred) labeled with 99mTc(I)/188Re(I). Also a parameter study was performed to obtain an optimized formulation. The quality control method for evaluating the radiochemical purity showed a good labeling yield (93%) for the direct method. The labeling method via carbonyl group, the results showed that the - SH groups of RTXred are a possible way of labeling. The formulation of 99m

  20. Multivalent system for therapy of non-Hod king lymphomas based on Anti-CD20 conjugated to gold nanoparticles; Sistema multivalente para terapia de linfomas no-Hodking basado en Anti-CD20 conjugado a nanoparticulas de oro

    Energy Technology Data Exchange (ETDEWEB)

    Miranda O, R. M.

    2014-07-01

    In recent publications has been reported that gold nanoparticles have an effect in reducing the expression of the oncogene Bcl -2 and have a high biocompatibility , this is the importance for using gold nanoparticles for this work. The antibody CD20 is an antibody that specifically binds to that over expressed CD20 antigen on the cell membrane of B lymphoma cell non- Hodgkin (cell line Raji) behold the importance of combining this bio molecule to gold nanoparticles since they have a high specificity with CD20 positive cells , also to carry out the antigen- antibody immunological reactions triggered mediating cell lysis, possibly by cytotoxicity and apoptosis. Therefore, this system must have characteristics of both components to eliminate B cell non- Hodgkin lymphoma.In this work it was studied a multivalent system composed of gold nanoparticles and anti-CD20 antibody, the term multi valency refers to the number of biomolecules attached to the surface of the gold nanoparticle. The synthesis and characterization of the gold nanoparticles and the multivalent system was performed and the effect of the multivalent system on the expression of oncogene Bcl-2 (group of proteins associated with the apoptotic pathway) was evaluated. Characterization of raw materials and the multivalent system was performed using spectroscopic and microscopic techniques, this to verify structural changes in raw materials and thus confirm the formation of CD20 binding to the surface of the nanoparticle gold by the bond between gold and sulfur in the cysteines of CD20. Taking advantage that the metal nanoparticles have the optical property of surface plasmon resonance, the absorption of gold nanoparticles was measured on the UV-Vis as it is affected by the surface molecules bind to it, showing a bathochromic displacement effected. The hydrodynamic diameter of the gold nanoparticles was measured to verify that the antibody is bound to the surface; this evidence was complemented by micrographs

  1. Development of 177Lu-DOTA-anti-CD20 for radioimmunotherapy

    International Nuclear Information System (INIS)

    Rituximab was successively labeled with 177Lu-lutetium chloride. 177Lu chloride was obtained by thermal neutron flux (4 x 1013 n cm-2 s-1) of natural Lu2O3 sample with a specific activity of 2.6-3 GBq/mg. The macrocyclic bifunctional chelating agent, N-succinimidyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NHS) was prepared at 25 deg C using DOTA, N-hydroxy succinimide (NHS) in CH2Cl2. DOTA-rituximab was obtained by the addition of 1 mL of a rituximab pharmaceutical solution (5 mg/mL, in phosphate buffer, pH 7.8) to a glass tube pre-coated with DOTA-NHS (0.01-0.1 mg) at 25 deg C with continuous mild stirring for 15 h. Radiolabeling was performed at 37 deg C in 24 h. Radio-thin layer chromatography showed an overall radiochemical purity of >98% at optimized conditions (specific activity = 444 MBq/mg, labeling efficacy; 82%). The final isotonic 177Lu-DOTA-rituximab complex was checked by gel electrophoresis for structure integrity control. Radio-TLC was performed to ensure that only one species was present after filtration through a 0.22 μm filter. Preliminary biodistribution studies in normal rats were carried out to determine complex distribution of the radioimmunoconjugate up to 168 h. The biodistribution data were in accordance with other antiCD20 radioimmunoconjugates already reported. (author)

  2. Multivalent system for therapy of non-Hod king lymphomas based on Anti-CD20 conjugated to gold nanoparticles

    International Nuclear Information System (INIS)

    In recent publications has been reported that gold nanoparticles have an effect in reducing the expression of the oncogene Bcl -2 and have a high biocompatibility , this is the importance for using gold nanoparticles for this work. The antibody CD20 is an antibody that specifically binds to that over expressed CD20 antigen on the cell membrane of B lymphoma cell non- Hodgkin (cell line Raji) behold the importance of combining this bio molecule to gold nanoparticles since they have a high specificity with CD20 positive cells , also to carry out the antigen- antibody immunological reactions triggered mediating cell lysis, possibly by cytotoxicity and apoptosis. Therefore, this system must have characteristics of both components to eliminate B cell non- Hodgkin lymphoma.In this work it was studied a multivalent system composed of gold nanoparticles and anti-CD20 antibody, the term multi valency refers to the number of biomolecules attached to the surface of the gold nanoparticle. The synthesis and characterization of the gold nanoparticles and the multivalent system was performed and the effect of the multivalent system on the expression of oncogene Bcl-2 (group of proteins associated with the apoptotic pathway) was evaluated. Characterization of raw materials and the multivalent system was performed using spectroscopic and microscopic techniques, this to verify structural changes in raw materials and thus confirm the formation of CD20 binding to the surface of the nanoparticle gold by the bond between gold and sulfur in the cysteines of CD20. Taking advantage that the metal nanoparticles have the optical property of surface plasmon resonance, the absorption of gold nanoparticles was measured on the UV-Vis as it is affected by the surface molecules bind to it, showing a bathochromic displacement effected. The hydrodynamic diameter of the gold nanoparticles was measured to verify that the antibody is bound to the surface; this evidence was complemented by micrographs

  3. Preparation of the radiopharmaceutical {sup 131}I-Anti-CD20 for the treatment of lymphomas; Preparacion del radiofarmaco {sup 131}I-Anti-CD20 para el tratamiento de linfomas

    Energy Technology Data Exchange (ETDEWEB)

    Pantoja H, I.E

    2004-07-01

    At the present time they are considered to the lymphomas like a problem of first magnitude since has happened it is necessary to be the fifth cancer cause in the world. Different treatments focused to the lymphoma like the chemotherapy and the radiotherapy, have been employees to counteract the No-Hodgkin lymphoma, without these they don't exclude the healthy tissue of the toxicity. It is for it that is taking a new direction with the employment of the directed radioimmunotherapy since this it allows to kill wicked cells selectively with radiation dose joined to the apoptosis and cytotoxicity induced by the own one bio molecule. The radioimmunotherapy with radiolabelled antibodies directed to the surface antigen CD20 represents a new modality for the treatment of No-Hodgkin lymphoma and potentially other illnesses. In this work the parameters of optimization are presented for the preparation, control of quality and evaluation of the stability in vitro and in vivo of the monoclonal antibody anti-CD20 labelled with {sup 131} I for the treatment of No-Hodgkin lymphoma. The anti-CD20 labelled by the chloramine-T method with high radiochemical purity (>98%), it is stable in solution for but of a half life of the radionuclide (8.04 days) The {sup 131} I-anti-CD20 doesn't present dehalogenation in vitro (human serum) during 24 h of incubation at 37 C. According to the tests carried out to establish the immunoreactivity, a percentage of union to cells was obtained (B lymphocytes) bigger to 30%. The biodistribution in mice balb/c one hour after their administration, it shows that there is not high reception in mucous neither kidneys, what indicates that the complex is stable in vivo. In conclusion, the radiopharmaceutical {sup 131} I-anti-CD20 was obtained in sterile injectable solution and free of pyrogens with a radiochemical purity bigger to 98% and a specific activity of 296 MBq. The radiolabelled molecule maintains its biological recognition for the receiving

  4. Binding Activity Difference of Anti-CD20 scFv-Fc Fusion Protein Derived from Variable Domain Exchange

    Institute of Scientific and Technical Information of China (English)

    Shusheng Geng; Beifen Shen; Jiannan Feng; Yan Li; Yingxun Sun; Xin Gu; Ying Huang; Yugang Wang; Xianjiang Kang; Hong Chang

    2006-01-01

    Two novel engineered antibody fragments binding to antigen CD20 were generated by fusing a murine IgM-type anti-CD20 single-chain Fv fragment (scFv) to the human IgG1 CH2 (I.e., Cγ2) and CH3 (I.e., Cγ3) domains with the human IgG1 hinge (I.e. Hγ). Given the relationship between structure and function of protein, the 3-D structures of the two engineered antibody fragments were modeled using computer-aided homology modeling method.Furthermore, the relationship between 3-D conformation and their binding activity was evaluated theoretically.Due to the change of active pocket formed by CDRs, the HL23 (VH-Linker-VL-Hγ-Cγ2-Cγ3) remained its activity because of its preserved conformation, while the binding activity of the LH23 (VL-Linker-VH-Hγ-Cγ2-Cγ3) was impaired severely. Experimental studies by flow cytometry and fluorescence microscopy showed that HL23 possessed significantly superior binding activity to CD20-expressing target cells than LH23. That is to say, the order of variable regions could influence the binding activity of the fusion protein to CD20+ cell lines, which was in accordance with the theoretical results. The study highlights the potential relationship between the antibody binding activity and their 3-D conformation, which appears to be worthwhile in providing direction for future antibody design of recombinant antibody.

  5. Specific energy from Auger and conversion electrons of 131I, 188Re-anti-CD20 to a lymphocyte's nucleus

    Science.gov (United States)

    Torres-García, E.; Carrillo-Cazares, T. A.

    2011-01-01

    The typical radionuclides used to label anti-CD20 in the treatment of non-Hodgkin's lymphoma are 90Y, 131I, and 188Re, with the emission of beta particles, Auger electrons, and conversion electrons for the latter two. The aim of the present work was to calculate the contribution of high linear energy transfer radiation as Auger electrons (AE) and conversion electrons (CE) of 131I and 188Re-anti-CD20 to mean specific energy into the cell nucleus by Monte Carlo simulation (MCS), so as to infer therapeutic effectiveness on a dosimetric basis. MCS was used to quantify the frequency-mean specific energy into the cell nucleus, where the cell was modeled by two concentric spheres, considering two cell models. The results showed that 10% and 33% of the mean-specific energies (z¯) per disintegration imparted to the cell nucleus for both geometries are due to AE and CE; on the other hand, if the hit of AE and CE occurs, the contribution to (z¯) is about 64% and 86% for 131I and 188Re, respectively. According to the amount of specific energy from AE and CE into the cell nucleus by positive event, they can cause catastrophic effects in the nuclear DNA in the treatment of non-Hodgkin's lymphoma with 131I, 188Re-anti-CD20.

  6. Anti-CD20 as the B cells targeting agent in the combined therapy to modulate anti-factor VIII immune responses in hemophilia A inhibitor mice

    Directory of Open Access Journals (Sweden)

    Chao Lien eLiu

    2014-01-01

    Full Text Available Neutralizing antibody formation against transgene products can represent a major complication following gene therapy with treatment of genetic diseases, such as hemophilia A. Although successful approaches have been developed to prevent the formation of anti-factor VIII (FVIII antibodies, innovative strategies to overcome pre-existing anti-FVIII immune responses in FVIII-primed subjects are still lacking. Anti-FVIII neutralizing antibodies circulate for long periods in part due to persistence of memory B cells. Anti-CD20 targets a variety of B cells (pre-B cells to mature/memory cells; therefore, we investigated the impact of B cell depletion on anti-FVIII immune responses in hemophilia A mice using anti-CD20 combined with regulatory T (Treg cell expansion using IL-2/IL-2mAb complexes plus rapamycin. We found that anti-CD20 alone can partially modulate anti-FVIII immune responses in both unprimed and FVIII-primed hemophilia A mice. Moreover, in mice treated with anti-CD20 + IL-2/IL-2mAb complexes + rapamycin + FVIII, anti-FVIII antibody titers were significantly reduced in comparison to mice treated with regimens targeting only B or T cells. In addition, titers remained low after a second challenge with FVIII plasmid . Treg cells and activation markers were transiently and significantly increased in the groups treated with IL-2/IL-2mAb complexes ; however,significant B cell depletion was obtained in anti-CD20-treated groups. Importantly, both FVIII-specific antibody-secreting cells and memory B cells were significantly reduced in mice treated with combination therapy. This study demonstrates that a combination regimen is highly promising as a treatment option for modulating anti-FVIII antibodies and facilitating induction of long-term tolerance to FVIII in hemophilia A mice.

  7. Targeted alpha-therapy using [Bi-213]anti-CD20 as novel treatment option for radio- and chemoresistant non-Hodgkin lymphoma cells

    Science.gov (United States)

    Roscher, Mareike; Hormann, Inis; Leib, Oliver; Marx, Sebastian; Moreno, Josue; Miltner, Erich; Friesen, Claudia

    2013-01-01

    Radioimmunotherapy (RIT) is an emerging treatment option for non-Hodgkin lymphoma (NHL) producing higher overall response and complete remission rates compared with unlabelled antibodies. However, the majority of patients treated with conventional or myeloablative doses of radiolabelled antibodies relapse. The development of RIT with alpha-emitters is attractive for a variety of cancers because of the high linear energy transfer (LET) and short path length of alpha-radiation in human tissue, allowing higher tumour cell kill and lower toxicity to healthy tissues. In this study, we investigated the molecular effects of the alpha-emitter Bi-213 labelled to anti-CD20 antibodies ([Bi-213]anti-CD20) on cell cycle and cell death in sensitive and radio-/chemoresistant NHL cells. [Bi-213]anti-CD20 induced apoptosis, activated caspase-3, caspase-2 and caspase-9 and cleaved PARP specifically in CD20-expressing sensitive as well as in chemoresistant, beta-radiation resistant and gamma-radiation resistant NHL cells. CD20 negative cells were not affected by [Bi-213]anti-CD20 and unspecific antibodies labelled with Bi-213 could not kill NHL cells. Breaking radio-/chemoresistance in NHL cells using [Bi-213]anti-CD20 depends on caspase activation as demonstrated by complete inhibition of [Bi-213]anti-CD20-induced apoptosis with zVAD.fmk, a specific inhibitor of caspases activation. This suggests that deficient activation of caspases was reversed in radioresistant NHL cells using [Bi-213]anti-CD20. Activation of mitochondria, resulting in caspase-9 activation was restored and downregulation of Bcl-xL and XIAP, death-inhibiting proteins, was found after [Bi-213]anti-CD20 treatment in radio-/chemosensitive and radio-/chemoresistant NHL cells. [Bi-213]anti-CD20 seems to be a promising radioimmunoconjugate to improve therapeutic success by breaking radio- and chemoresistance selectively in CD20-expressing NHL cells via re-activating apoptotic pathways through reversing deficient

  8. Circulating (CD3−CD19+CD20−IgD−CD27highCD38high) Plasmablasts: A Promising Cellular Biomarker for Immune Activity for Anti-PLA2R1 Related Membranous Nephropathy?

    Science.gov (United States)

    Beukinga, Ingrid; Willard-Gallo, Karen; Nortier, Joëlle; Pradier, Olivier

    2016-01-01

    Membranous nephropathy (MN) is a kidney specific autoimmune disease mainly mediated by anti-phospholipase A2 receptor 1 autoantibody (PLA2R1 Ab). The adequate assessment of chimeric anti-CD20 monoclonal antibody, rituximab (RTX), efficacy is still needed to improve clinical outcome of patient with MN. We evaluated the modification of plasmablasts (CD3−CD19+CD20−IgD−CD27highCD38high), a useful biomarker of RTX response in other autoimmune diseases, and memory (CD3−CD19+CD20+IgD−CD27+CD38−) and naive (CD3−CD19+CD20+IgD+CD27−CD38low) B cells by fluorescence-activated cell sorter analysis in PLA2R1 related MN in one patient during the 4 years of follow-up after RTX. RTX induced complete disappearance of CD19+ B cells, plasmablasts, and memory B cells as soon as day 15. Despite severe CD19+ lymphopenia, plasmablasts and memory B cells reemerged early before naive B cells (days 45, 90, and 120, resp.). During the follow-up, plasmablasts decreased more rapidly than memory B cells but still remained elevated as compared to day 0 of RTX. Concomitantly, anti-PLA2R1 Ab increased progressively. Our single case report suggests that, besides monitoring of serum anti-PLA2R1 Ab level, enumeration of circulating plasmablasts and memory B cells represents an attractive and complementary tool to assess immunological activity and efficacy of RTX induced B cells depletion in anti-PLA2R1 Ab related MN. PMID:27493452

  9. Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies

    Directory of Open Access Journals (Sweden)

    Capolla S

    2015-06-01

    Full Text Available Sara Capolla,1 Chiara Garrovo,2 Sonia Zorzet,1 Andrea Lorenzon,3 Enrico Rampazzo,4 Ruben Spretz,5 Gabriele Pozzato,6 Luis Núñez,7 Claudio Tripodo,8 Paolo Macor,1,9 Stefania Biffi2 1Department of Life Sciences, University of Trieste, 2Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, 3Animal Care Unit, Cluster in Biomedicine (CBM scrl, Trieste, Italy; 4Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy; 5LNK Chemsolutions LLC, Lincoln, NE, USA; 6Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy; 7Bio-Target, Inc., University of Chicago, Chicago, IL, USA; 8Department of Human Pathology, University of Palermo, Palermo, Italy; 9Callerio Foundation Onlus, Institutes of Biological Researches, Trieste, Italy Abstract: The expectations of nanoparticle (NP-based targeted drug delivery systems in cancer, when compared with convectional therapeutic methods, are greater efficacy and reduced drug side effects due to specific cellular-level interactions. However, there are conflicting literature reports on enhanced tumor accumulation of targeted NPs, which is essential for translating their applications as improved drug-delivery systems and contrast agents in cancer imaging. In this study, we characterized biodegradable NPs conjugated with an anti-CD20 antibody for in vivo imaging and drug delivery onto tumor cells. NPs’ binding specificity mediated by anti-CD20 antibody was evaluated on MEC1 cells and chronic lymphocytic leukemia patients’ cells. The whole-body distribution of untargeted NPs and anti-CD20 NPs were compared by time-domain optical imaging in a localized human/mouse model of B-cell malignancy. These studies provided evidence that NPs’ functionalization by an anti-CD20 antibody improves tumor pharmacokinetic profiles in vivo after systemic administration and increases in vivo imaging of tumor mass compared to non-targeted NPs. Together

  10. Transient B-cell depletion with anti-CD20 in combination with proinsulin DNA vaccine or oral insulin: immunologic effects and efficacy in NOD mice.

    Directory of Open Access Journals (Sweden)

    Ghanashyam Sarikonda

    Full Text Available A recent type 1 diabetes (T1D clinical trial of rituximab (a B cell-depleting anti-CD20 antibody achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin with anti-CD3 antibody (a T cell-directed immunomodulator offers better protection than either entity alone, indicating that novel combination therapies that include a T1D-related autoantigen are possible. To accelerate the identification and development of novel combination therapies that can be advanced into the clinic, we have evaluated the combination of a mouse anti-CD20 antibody with either oral insulin or a proinsulin-expressing DNA vaccine. Anti-CD20 alone, given once or on 4 consecutive days, produced transient B cell depletion but did not prevent or reverse T1D in the NOD mouse. Oral insulin alone (twice weekly for 6 weeks was also ineffective, while proinsulin DNA (weekly for up to 12 weeks showed a trend toward modest efficacy. Combination of anti-CD20 with oral insulin was ineffective in reversing diabetes in NOD mice whose glycemia was controlled with SC insulin pellets; these experiments were performed in three independent labs. Combination of anti-CD20 with proinsulin DNA was also ineffective in diabetes reversal, but did show modest efficacy in diabetes prevention (p = 0.04. In the prevention studies, anti-CD20 plus proinsulin resulted in modest increases in Tregs in pancreatic lymph nodes and elevated levels of proinsulin-specific CD4+ T-cells that produced IL-4. Thus, combination therapy with anti-CD20 and either oral insulin or proinsulin does not protect hyperglycemic NOD mice, but the combination with proinsulin offers limited efficacy in T1D prevention, potentially by augmentation of proinsulin-specific IL-4 production.

  11. Progress in anti-CD20 monoclonal antibodies and their clinical application%抗CD20单抗的研究进展及其临床应用

    Institute of Scientific and Technical Information of China (English)

    梁碧华; 樊翌明; 朱慧兰

    2011-01-01

    Anti-CD20 monoclonal antibodies have been applied to the treatment of many autoimmune diseases and severe urticaria with favourable outcomes. Current researches about anti-CD20 monoclonal antibodies are focused on their application in refractory urticaria such as autoimmune urticaria and urticarial vasculitis. Their mechanism of action has not been defined. B cell depletion mechanism is considered to be associated with complement-dependent cytotoxicity, antibody dependent cellular cytotoxicity, direct induction of apoptosis, etc. This paper outlines the progress in researches on anti-CD20 monoclonal antibodies and their application in autoimmune diseases and urticaria, in order to provide evidence for their use in urticaria, and to predict their perspectives in the treatment of refractory urticaria.%抗CD20单克隆抗体目前已用于治疗较多的自身免疫性疾病,并有研究将其用于严重荨麻疹的治疗,且取得良好疗效.但相关的研究主要局限在自身免疫性荨麻疹或荨麻疹性血管炎等难治性荨麻疹中的应用,其作用机制尚未明确.B细胞清除机制认为与补体依赖性细胞毒性反应、抗体依赖细胞介导的细胞毒作用及直接诱导B淋巴细胞凋亡等有关.概述抗CD20单克隆抗体目前的研究进展及其在自身免疫性疾病和荨麻疹中的临床应用,旨在进一步揭示其可用于荨麻疹治疗的证据,从而更好地了解其在难治性荨麻疹中应用的前景.

  12. Efficient inhibition of B-cell lymphoma xenografts with a novel recombinant fusion protein: anti-CD20Fab-LDM.

    Science.gov (United States)

    Xin, C; Ye, S; Ming, Y; Shenghua, Z; Qingfang, M; Hongxing, G; Xu, S; Yuanfu, X; Yuan, Z; Dongmei, F; Juanni, L; Yingdai, G; Lianfang, J; Rongguang, S; Zhenping, Z; Jianxiang, W; Tao, C; Chunzheng, Y; Dongsheng, X; Yongsu, Z

    2010-10-01

    Lidamycin (LDM) is a new member of enediyne antitumor antibiotics family that can be separated and reconstituted. It consists of a labile active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). LDM is now in phase II clinical trials. In this study, we described the antitumor features of a fusion protein of LDM, anti-CD20Fab-LDM, targeted to CD20 expressed by B-lymphoid malignancies. Especially, LDM was prepared by a novel two-step method including DNA recombination and molecular reconstitution. Anti-CD20Fab-LDM exerted potent cytotoxicity against CD20+ B-cell lymphoma cell lines in vitro (IC50: 10-30 pM) and in the Raji xenograft model. Two Raji xenografts were allowed to grow to an initial mass of 80 and 500 mm³, respectively, and then anti-CD20Fab-LDM was administered intravenously with the highest dose of 4 nmol kg⁻¹ . The inhibition rates of tumor growth were 90.1 and 85%, which were saliently superior to those of nontargeted LDM. It is noteworthy that anti-CD20Fab-LDM can inhibit the growth of patient-derived cells, including rituximab-resistant patient-derived cells. Thus, CD20-targeted delivery of LDM is a specific and potent therapeutic strategy for B-lymphoid malignancies. In addition, the two-step approach could serve as a new technology platform for making a series of highly potent engineered antibody-based drugs. PMID:20463754

  13. Immunotherapy with the trifunctional anti-CD20 x anti-CD3 antibody FBTA05 (Lymphomun) in paediatric high-risk patients with recurrent CD20-positive B cell malignancies.

    Science.gov (United States)

    Schuster, Friedhelm R; Stanglmaier, Michael; Woessmann, Wilhelm; Winkler, Beate; Siepermann, Meinolf; Meisel, Roland; Schlegel, Paul G; Hess, Jürgen; Lindhofer, Horst; Borkhardt, Arndt; Buhmann, Raymund

    2015-04-01

    Children with B cell malignancies refractory to standard therapy are known to have a poor prognosis and very limited treatment options. Here, we report on the treatment and follow-up of ten patients diagnosed with relapsed or refractory mature B-cell Non Hodgkin Lymphoma (B-NHL), Burkitt leukaemia (B-AL) or pre B-acute lymphoblastic leukaemia (pre B-ALL). All children were treated with FBTA05 (now designated Lymphomun), an anti-CD3 x anti-CD20 trifunctional bispecific antibody (trAb) in compassionate use. Within individual treatment schedules, Lymphomun was applied (a) after allogeneic stem cell transplantation (allo-SCT, n = 6) to induce sustained long-term remission, or (b) stand alone prior to subsequent chemotherapy to eradicate residual disease before allo-SCT (n = 4). Nine of ten children displayed a clinical response: three stable diseases (SD), one partial remission (PR) and five induced or sustained complete remissions (CR). Five of these nine responders died during follow-up. The other patients still maintain CR with a current overall survival of 874-1424 days (median: 1150 days). In conclusion, despite the dismal clinical prognosis of children refractory to standard therapy, immunotherapy with Lymphomun resulted in a favourable clinical outcome in this cohort of refractory paediatric patients. PMID:25495919

  14. Radiolabeling of anti-CD20 with Re-188 for treatment of non-Hodgkin's lymphoma: radiochemical control

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Carla R.; Osso Junior, Joao A., E-mail: carladias@usp.b, E-mail: jaosso@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The development of tumor-selective radiopharmaceuticals is clinically desirable as a means of detecting or confirming the presence and location of primary and metastatic lesions and monitoring tumor response to (chemo)therapy. In addition, the application of targeted radiotherapeutics provides a unique and effective modality for direct tumor treatment. In this manner the radioimmunotherapy (RIT) uses the targeting features of monoclonal antibody to deliver radiation from an attached radionuclide. Antibody therapy directed against the CD20 antigen on the surface of B-cells is considered one of the first successful target-specific therapies in oncology. The radionuclide rhenium-188 ({sup 188}Re) is currently produced from the father nuclide tungsten-188 ({sup 188}W) through a transportable generator system. Because of its easy availability and suitable nuclear properties (EbetaMAX = 2.1 MeV, t{sub 1/2} = 16.9 h, Egamma = 155 keV), this radionuclide is considered an attractive candidate for application as therapeutic agent and could be conveniently utilized for imaging and dosimetric purposes. The purpose of this work is to show the radiochemical control of the optimized formulation (solution) and lyophilized formulation (kit) of labeled rituximab (anti-CD20) with {sup 188}Re. Rituximab was reduced by incubation with 2-mercaptoethanol at room temperature. The number of resulting free sulfhydryl groups was assayed with Ellman's reagent. Radiochemical purity of {sup 188}Re-rituximab was evaluated using instant thin layer chromatography-silica gel (ITLC-SG). Quality control methods for evaluation of radiochemical purity showed good labeling yield of the antibody. (author)

  15. Internal radiotherapy. 2. Treatment of non-hodgkin's lymphoma with 90Y-labeled anti-CD20 monoclonal antibody

    International Nuclear Information System (INIS)

    This paper describes recent trends of radioimmunotherapy using specific monoclonal antibodies against tumors, its principle and outcomes, with major emphasis on the title. When the antibodies like rituximab (rit), anti-CD20 antibody against B-cell malignant lymphoma, are labeled by a certain radioisotope, they become more active in specifically killing malignant cells by their immune cytotoxicity following binding plus lethal effect of radiation (beta ray). In Western areas, 90Y-labeled (ibritumomab, ibrit) or 131I-labeled rit is now available for the purpose. The efficacy of the former ibrit in the phase III trial has been reported to be 83%, in contrast to that of rit alone, 56%, with the similar safety to rit, in out-patients with the tumor. The protocol for the therapy is consisted from the first therapy with intravenous rit and imaging by 111In-labeled rit on day 1 and the second with the rit and ibrit (0.4 mCi/kg) on day 8. Patients are excluded from the latter therapy when the image by 111In shows the abnormal distribution in the liver and bone marrow. In Japan, phase I/II clinical trials of ibrit have been conducted to confirm its efficacy and safety and the agent is to be approved within this year. The radioimmunotherapy is thought to become more popular. (T.I.)

  16. Standardization of methodology to derivatization and radiolabeling of the anti-CD20 monoclonal antibody from bifunctional chelator DOTA-NHS-Ester

    International Nuclear Information System (INIS)

    Lymphomas are cancers of the lymphatic system, being the most common the non-Hodgkin lymphoma (NHL). The Radioimmunotherapy (RIT), that increase the cytotoxic effect of monoclonal antibodies (mAb), therefore labeling these Mab with different radioisotopes. RIT combines the specificity of the antibody and the toxicity of the radionuclides. The mAb anti-CD20 is used for treatment of relapse or refractory NHL. The labeling of anti- CD20 with 177Lu, requires a bifunctional chelating agent that is designed to make a 'connect bridge' between the mAb and the radionuclide. The incorporation of the chelating group in mAb structure is called derivatization. The aim of this work is to study the derivatization of anti-CD20 antibody with DOTA-NHS-ester chelating group and labeling parameters to produce 177Lu-DOTA-Anti CD20. Five milligrams of anti-CD20 were purified by dialysis against phosphate buffer pH 8.0 and derivatized with DOTA-NHS-ester in 1:250, 1:500 and 1:1000 molar ratios. The reaction was conducted for 1 hour in gently mixing at room temperature and remained under refrigeration for 48 hours. The reaction mixture was purified in gel column Sephadex G-50 ; the aliquots that presented greater protein concentration, were mixed and concentrated. The purified antibody conjugated was added to 111-185MBq (3-5mCi) of 177LuCl3 diluted in 0.4 M acetate buffer pH 5.5. Radiochemical purity was less than 95% in all the molar ratios, indicating necessity of the purification after the labeling. The mAb derivatized showed stable when stored for to 1 month to 4 deg C and 4 days at -20 deg C. (author)

  17. Mass-Production and Characterization of Anti-CD20 Monoclonal Antibody in Peritoneum of Balb/c Mice

    OpenAIRE

    Leili Aghebati; Jalal Abdolalizadeh; Jafar Majidi; Behzad Baradaran; Koushan Sineh Sepehr; Fatemeh Zare Shahneh

    2013-01-01

    Purpose: Monoclonal antibodies are important tools are used in basic research as well as, in diagnosis, imaging and treatment of immunodeficiency diseases, infections and cancers. The purpose of this study was to produce large scale of monoclonal antibody against CD20 in order to diagnostic application in leukemia and lymphomas disorders. Methods: Hybridoma cells that produce monoclonal antibody against human CD20 were administered into the peritoneum of the Balb/c mice which have previously ...

  18. Human IgG1 Cγ1 Domain Is Crucial for the Bioactivity of the Engineered Anti-CD20 Antibodies

    Institute of Scientific and Technical Information of China (English)

    Shusheng Geng; Jiannan Feng; Yan Li; Xianjiang Kang; Yingxun Sun; Xin Gu; Ying Huang; Hong Chang; Beifen Shen

    2007-01-01

    In this study, we discussed the necessity of human IgG1 Cγ1 domain for recombinant antibody using computeraided homology modeling method and experimental studies. The heavy (VH) and light (VL) chain variable regions of 1-28, a murine IgM-type anti-CD20 mAb, were ligated by linker peptide (Gly4Ser)3 to form the single-chain Fv fragment (scFv). Then, the engineered antibody (LH1-3) was generated by fusing scFv with the entire IgG1 heavy constant regions. The 3-D structure of LH1-3 was modeled using computer-aided homology modeling method and the binding activity of LH1-3 was evaluated theoretically. Compared to the 3-D structure of the Fv fragment of the parent antibody, the conformation of the active pocket of LH1-3 was remained because of the rigid support of Cγ1.Further experimental results of flow cytometry showed that the engineered anti-CD20 antibody possessed specifically binding activity to CD20-expressing target cells. The anti-CD20 antibody fragments could also mediate complement-dependent cytotoxicity (CDC) of human B-lymphoid cell lines. Our study highlights some interests and advantages of a methodology based on the homology modeling and analysis of molecular structural properties.

  19. Comparative efficacy of 177Lu and 90Y for anti-CD20 pretargeted radioimmunotherapy in murine lymphoma xenograft models.

    Directory of Open Access Journals (Sweden)

    Sofia H L Frost

    Full Text Available Pretargeted radioimmunotherapy (PRIT is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y and lutetium-177 (177Lu are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice.Parallel experiments evaluating the biodistribution, imaging, dosimetry, therapeutic efficacy, and toxicity were performed in female athymic nude mice bearing either Ramos (Burkitt lymphoma or Granta (mantle cell lymphoma xenografts, utilizing an anti-CD20 antibody-streptavidin conjugate (1F5-SA and an 90Y- or 177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-biotin second step reagent.The two radionuclides displayed comparable biodistributions in tumors and normal organs; however, the absorbed radiation dose delivered to tumor was more than twice as high for 90Y (1.3 Gy/MBq as for 177Lu (0.6 Gy/MBq. More importantly, therapy with 90Y-DOTA-biotin was dramatically more effective than with 177Lu-DOTA-biotin, with 100% of Ramos xenograft-bearing mice cured with 37 MBq 90Y, whereas 0% were cured using identical amounts of 177Lu-DOTA-biotin. Similar results were observed in mice bearing Granta xenografts, with 80% of the mice cured with 90Y-PRIT and 0% cured with 177Lu-PRIT. Toxicities were comparable with both isotopes.90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in these human lymphoma

  20. Comparative efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    International Nuclear Information System (INIS)

    Purpose Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice. Methods Parallel experiments evaluating the biodistribution, imaging, dosimetry, therapeutic efficacy, and toxicity were performed in female athymic nude mice bearing either Ramos (Burkitt lymphoma) or Granta (mantle cell lymphoma) xenografts, utilizing an anti-CD20 antibodystreptavidin conjugate (1F5-SA) and an 90Y- or 177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-biotin second step reagent. Results The two radionuclides displayed comparable biodistributions in tumors and normal organs; however, the absorbed radiation dose delivered to tumor was more than twice as high for 90Y (1.3 Gy/MBq) as for 177Lu (0.6 Gy/MBq). More importantly, therapy with 90Y-DOTAbiotin was dramatically more effective than with 177Lu-DOTA-biotin, with 100% of Ramos xenograft-bearing mice cured with 37 MBq 90Y, whereas 0% were cured using identical amounts of 177Lu-DOTA-biotin. Similar results were observed in mice bearing Granta xenografts, with 80% of the mice cured with 90Y-PRIT and 0% cured with 177Lu-PRIT. Toxicities were comparable with both isotopes. Conclusion 90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in

  1. Antitumor effects of an engineered and energized fusion protein consisting of an anti-CD20 scFv fragment and lidamycin.

    Science.gov (United States)

    Fang, Hong; Miao, Qingfang; Zhang, Shenghua; Cheng, Xin; Xiong, Dongsheng; Zhen, Yongsu

    2011-03-01

    Antibody-based fusion proteins are the next generation of antibody therapies for cancer and other diseases. CD20 antigen, which is overexpressed on cell membranes in nearly 95% of cases of B-cell Non-Hodgkin's Lymphoma, is an attractive target for the therapy of B-lymphoid malignancies. Lidamycin (LDM) is a potent enediyne-containing antitumor antibiotic that now has entered phase II clinical trials. In this study, we prepared an engineered fusion protein, scFv-LDP, consisting of an anti-CD20 scFv fragment and the apoprotein LDP of LDM using DNA recombination. After purification and refolding, scFv-LDP was found to bind specifically to CD20-positive lymphoma cells using ELISA and indirect immunofluorescent cytochemical staining assays. The energized fusion protein scFv-LDP-AE was obtained using molecular reconstitution of the active chromophore AE of LDM and scFv-LDP. MTT assay revealed potent cytotoxicity of scFv-LDP-AE to CD20-positive Raji and Daudi cells, with IC(50) values of 1.21×10(-11) and 6.24×10(-11) mol L(-1), respectively. An in vivo subcutaneous xenograft model of CD20-positive B cell lymphoma in BALB/c (nu/nu) mice was also utilized. Drugs were given intravenously on day 14 and 21 after tumor transplantation. In terms of maximal tolerated doses, scFv-LDP-AE at 0.3 mg kg(-1) suppressed tumor growth by 79.3%, and LDM at 0.05 mg kg(-1) by 68.6% (P<0.05). Results suggested scFv-LDP-AE could be a potential candidate for tumor-targeting therapy. PMID:21416325

  2. Mass-Production and Characterization of Anti-CD20 Monoclonal Antibody in Peritoneum of Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Leili Aghebati

    2013-02-01

    Full Text Available Purpose: Monoclonal antibodies are important tools are used in basic research as well as, in diagnosis, imaging and treatment of immunodeficiency diseases, infections and cancers. The purpose of this study was to produce large scale of monoclonal antibody against CD20 in order to diagnostic application in leukemia and lymphomas disorders. Methods: Hybridoma cells that produce monoclonal antibody against human CD20 were administered into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. After twelve days, approximately 7 ml ascetic fluid was harvested from the peritoneum of each mouse. Evaluation of mAb titration was assessed by ELISA method. In the present study, we describe a protocol for large scale production of MAbs. Results: We prepared monoclonal antibodies (mAbs with high specificity and sensitivity against human CD20 by hybridoma method and characterized them by ELISA. The subclass of antibody was IgG2a and its light chain was kappa. Ascetic fluid was purified by Protein-A Sepharose affinity chromatography and the purified monoclonal antibody was conjugated with FITC and Immunofluorescence was done for confirming the specific binding. Conclusion: The conjugated monoclonal antibody could have application in diagnosis B-cell lymphomas, hairy cell leukemia, B-cell chronic lymphocytic leukemia, and melanoma cancer stem cells.

  3. Transient B-Cell Depletion with Anti-CD20 in Combination with Proinsulin DNA Vaccine or Oral Insulin: Immunologic Effects and Efficacy in NOD Mice

    OpenAIRE

    Ghanashyam Sarikonda; Sowbarnika Sachithanantham; Yulia Manenkova; Tinalyn Kupfer; Amanda Posgai; Clive Wasserfall; Philip Bernstein; Laura Straub; Pagni, Philippe P.; Darius Schneider; Teresa Rodriguez Calvo; Marilyne Coulombe; Kevan Herold; Gill, Ronald G.; Mark Atkinson

    2013-01-01

    A recent type 1 diabetes (T1D) clinical trial of rituximab (a B cell-depleting anti-CD20 antibody) achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin) with anti-CD3 antibody (a T cell-directed immunomodulator) offers better protection than either entity alone, indicating that novel combination therapies that i...

  4. Biodistribution and kinetics of {sup 131}I-labelled anti-CD20 MAB IDEC-C2B8 (rituximab) in relapsed non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Scheidhauer, Klemens; Wolf, Ingo; Baumgartl, Hans-Joachim; Reidel, Guenther; Schwaiger, Markus [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Muenchen (Germany); Schilling, Christoph von; Schmidt, Burkhard; Peschel, Christian [III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitaet Muenchen (Germany)

    2002-10-01

    The native chimeric human-mouse anti-CD20 antibody IDEC-C2B8 (rituximab) is therapeutically applied in relapsed non-Hodgkin's lymphoma (NHL). The purpose of this study was to evaluate the distribution and pharmacokinetics of iodine-131 labelled rituximab in humans for radioimmunotherapy of relapsed CD20-positive NHL. Thirty-five patients with relapsed NHL were administered 20-40 mg rituximab labelled with 250 MBq {sup 131}I. Biodistribution was determined by the gamma camera whole-body scans, whole-body probe measurements and the analysis of serial blood and urine samples. Dosimetry was performed using the MIRDOSE 3 program. Antibody administration was well tolerated. The whole-body activity showed a mono-exponential decrease with a wide range of effective half-lives, the mean value (88 h) being significantly longer than the half-life of its murine counterpart, tositumomab. This led to appropriately higher dose factors for the whole body and organs. Activity was excreted mainly through the kidneys. Normal organs showed decreasing ratios of organ to whole-body activity over time, whereas the tumour tissue presented different kinetics, with increasing ratios of tumour to whole-body activity as evidence for specific antibody binding. It is concluded that {sup 131}I-labelled rituximab is suitable for pretherapeutic dosimetry. Due to the wide range of whole-body and organ dose factors, individual dosimetry is necessary for radioimmunotherapy with {sup 131}I-labelled rituximab. The therapeutic activities of {sup 131}I-labelled rituximab required to deliver similar doses should be lower than those of its murine counterpart. (orig.)

  5. Influence of anti-CD20 monoclonal antibody combined with IL-10 on immune function of spleen in NOD mice%Anti-CD20与 IL-10联合应用对非肥胖型糖尿病小鼠脾脏免疫功能的影响

    Institute of Scientific and Technical Information of China (English)

    任安霞; 于淑凤; 张丽娟; 陈志红; 李堂

    2015-01-01

    Objective To observe the influence of anti-CD20 monoclonal antibody ( Anti-CD20 ) combined with inter-leukin 10 ( IL-10) on the immune function of spleen in non-obese diabetic ( NOD) mouse.Methods Twenty-four NOD mice were randomly divided into four groups , 6 mice in each group:groups A, B, C and D, which were caudal venously injected with 250μg Anti-CD20 , 250μg Anti-CD20 +0.1 mL IL-10, 0.1 mL IL-10 and 0.1 mL normal saline at day 1, 8, 15 and 21, respectively.All mice were sacrificed 12 weeks after first injection and the spleens were immediately taken out . The number of CD4+T cells, CD3+T cells and the levels of IL-10 and IL-27 were detected by immunohistochemistry . Results Compared with group D, the number of CD+4 T cells, CD+3 T cells and the levels of IL-10 and IL-27 in the spleen tissues were increased in the groups A , B and C (all P<0.01).Compared with groups A and C , the number of CD4+T cells, CD+3 T cells and the levels of IL-10 and IL-27 in the spleen tissues were increased in the group B (all P<0.01). Conclusion The combined administration of Anti-CD20 and IL-10 increases the number of CD+4 T cells, CD+3 T cells and the levels of IL-10 and IL-27 in the spleen tissues , and thus it regulates the immune microenvironment and prevents the oc-currence of diabetes .%目的:观察抗CD20单克隆抗体(Anti-CD20)与白细胞介素10(IL-10)联合应用对非肥胖型糖尿病(NOD)小鼠脾脏免疫功能的影响。方法将24只NOD小鼠随机分为A、B、C、D组各6只,分别于第1、8、15、21天尾静脉注射Anti-CD20250μg、Anti-CD20250μg +IL-100.1 mL、IL-100.1 mL和生理盐水0.1 mL。首次用药后第12周断颈处死小鼠,立即取出脾脏,采用免疫组化法检测脾脏组织中的CD4+、CD3+T细胞及IL-27、IL-10。结果与D组比较,A、B、C组脾脏组织中CD4+、CD3+T细胞数量及IL-27、IL-10表达增加( P均<0.01);与A、C组比较,B组脾脏组织中CD+4、CD+3 T

  6. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab' Synthesis.

    Science.gov (United States)

    Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo

    2016-01-20

    Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects.

  7. The study of labeling with Iodine-131 of monoclonal antibody anti-CD20 used for the treatment of non-Hodgkin lymphoma

    International Nuclear Information System (INIS)

    Lymphomas are malignancies of the lymphatic system, described by Thomas Hodgkin in 1932. Traditionally, lymphomas are classified in two basic groups: Hodgkin disease and non-Hodgkin lymphoma (NHL). Patients with NHL were earlier treated with radiotherapy alone or in combination with immunotherapy using monoclonal antibody anti-CD20 (ex., Rituximab-Mabthera, Roche). However, Radioimmunotherapy is a new modality of treatment for patients with NHL, in which cytotoxic radiation from therapeutic radioisotopes is delivered to tumors through monoclonal antibodies. This study focused on labeling conditions of monoclonal antibody anti-CD20 (Rituximab-Mabthera, Roche) with iodine-131, by direct radioiodination method using Chloramine-T as oxidizing agent. Labeling parameters investigated were: Radiochemical purity (RP), method of purification, incubation time, antibody mass, oxidative agent mass, stability in vitro, stability in vivo, immunoreactivity and biological distribution performed in normal Swiss mouse. Product of high radiochemical purity was obtained with no notable difference between the methods applied. No clear evidence of direct influence of incubation time on radiochemical purity of the labeled antibody was observed. Whereas, a clear evidence of direct influence of activity on radiochemical purity of the labeled antibody was observed when antibody mass was varied. After purification, the labeled product presented radiochemical purity of approximately 100 %. Product of superior radiochemical yield was observed when standard condition of labeling was used. The labeled product presented variation in radiochemical purity using five different stabilizer conditions. The condition in which gentisic acid was combined with freeze appears more suitable and capable of minimizing autoradiolysis of the antibody labeled with high therapeutic activity of iodine-131. The labeled product presented low immunoreactivity when compared to the literature. Biological distribution in

  8. The study of labeling with iodine-131 of monoclonal antibody anti-CD20 used for the treatment of non-Hodgkin lymphoma

    International Nuclear Information System (INIS)

    Lymphomas are malignancies of the lymphatic system, described by Thomas Hodgkin in 1932. Traditionally, lymphomas are classified in two basic groups: Hodgkin disease and non-Hodgkin lymphoma (NHL). Patients with NHL were earlier treated with radiotherapy alone or in combination with immunotherapy using monoclonal antibody anti-CD20 (ex., Rituximab-Mabthera, Roche). However, Radioimmunotherapy is a new modality of treatment for patients with NHL, in which cytotoxic radiation from therapeutic radioisotopes is delivered to tumors through monoclonal antibodies. This study focused on labeling conditions of monoclonal anti-CD20 (ex., Rituximab-Mabthera, Roche) with iodine-131, by direct radioiodination method using Chloramine-T as oxidizing agent. Labeling parameters investigated were: Radiochemical purity (RP), method of purification, incubation time, antibody mass, oxidative agent mass, stability in vitro, immunoreactivity and biological distribution performed in normal Swiss mouse. Product of high radiochemical purity was obtained with no notable difference between the methods applied. No clear evidence of direct influence of incubation time on radiochemical purity of the labeled antibody was observed. Whereas, a clear evidence of direct influence of activity on radiochemical purity of the labeled antibody was varied. After purification the labeled product presented radiochemical purity of approximately 100 %. Product of superior radiochemical yield was observed when standard condition of labeling was used. The labeled product presented variation in radiochemical purity using five different stabilizer conditions. The condition in which gentisic acid combined with freeze appears more suitable and capable of minimizing autoradiolysis of the antibody labeled with freeze appears more suitable and capable of minimizing autoradiolysis of the antibody labeled with high therapeutic activity of iodine-131. The labeled product presented low immunoreactivity when compared to the

  9. Quantitative Analysis of High Dose Radioimmunotherapy with I-131 Anti-CD20 Monoclonal Antibody (Rituximab) in Patients with Non-Hodgkin's Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Min; Kang, Hye Jin; Choi, Tae Hyun; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    Radioimmunotherapy (RIT) is therapeutic method for treatment of patient with incurable disease. I-131 is an radioisotope widely used for both diagnostic imaging and therapy, because of simultaneous emitting both gamma- and beta-ray. Recently, RIT using I-131 anti- CD20 rituximab has been introduced as one of the promising therapeutic model to treat patient with non- Hodgkin's Lymphoma (NHL). Although dosimetric approaches of low-dose I-131 rituximab imaging have been reported, there is no study of dosimetry with high dose imaging in patient with NHL yet. In this study, we evaluated strategy of high-dose RIT and investigated the kinetic behavior and absorbed dose to bone marrow and whole body in RIT study with high-dose strategy using I-131 rituximab for NHL.

  10. Autosomal Recessive Chronic Granulomatous Disease, IgA Deficiency and Refractory Autoimmune Thrombocytopenia Responding to Anti-CD20 Monoclonal Antibody

    Directory of Open Access Journals (Sweden)

    Shahin Shamsian Bibi

    2008-09-01

    Full Text Available Immunodeficiency and autoimmune disease may occur concomitantly in the same individual. Some of the immunodeficiency syndromes, especially humoral defects are associated with autoimmune disorders. Hematological manifestations such as thrombocytopenia and hemolytic anemia are the most common presentations. Persistent antigen stimulation due to an inherent defect in the ability of the immune system to eradicate pathogens is the primary cause leading to autoimmunity in patients with primary immunodeficiency states.We describe a 10 year old Iranian girl with chronic granulomatous disease -the autosomal recessive type with mutation of NCF1 gene P47- associated with selective IgA deficiency, refractory immune thrombocytopenia that showed an excellent response to Rituximab (Anti-CD20 monoclonal antibody.Patients with primary immunodeficiencies may have variable autoimmune manifestations. So for early detection and appropriate treatment, autoimmune diseases should always be suspected in such patients.

  11. Follow-up of relapsed B-cell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem-cell rescue

    International Nuclear Information System (INIS)

    Radioimmunotherapy (RIT) is a promising treatment approach for B-cell lymphomas. This is our first opportunity to report long-term follow-up data and late toxicities in 29 patients treated with myeloablative doses of iodine-131-anti-CD20 antibody (anti-B1) and autologous stem-cell rescue. PATIENTS AND METHODS: Trace-labeled biodistribution studies first determined the ability to deliver higher absorbed radiation doses to tumor sites than to lung, liver, or kidney at varying amounts of anti-B1 protein (0.35, 1.7, or 7 mg/kg). Twenty- nine patients received therapeutic infusions of single-agent (131)I- anti-B1, given at the protein dose found optimal in the biodistribution study, labeled with amounts of (131)I (280 to 785 mCi[10.4 to 29.0 GBq]) calculated to deliver specific absorbed radiation doses to the normal organs, followed by autologous stem-cell support. RESULTS: Major responses occurred in 25 patients (86%), with 23 complete responses (CRs; 79%). The nonhematopoietic do se-limiting toxicity was reversible cardiopulmonary insufficiency, which occurred in two patients at RIT doses that delivered > or = 27 Gy to the lungs. With a median follow-up time of 42 months, the estimated overall and progression-free survival rates are 68% and 42%, respectively. Currently, 14 of 29 patients remain in unmaintained remissions that range from 27+ to 87+ months after RIT. Late toxicities have been uncommon except for elevated thyroid-stimulating hormone (TSH) levels found in approximately 60% of the subjects. Two patients developed second malignancies, but none have developed myelodysplasia (MDS). CONCLUSION: Myeloablative (131)I-anti- B1 RIT is relatively well tolerated when given with autologous stem- cell support and often results in prolonged remission durations with few late toxicities

  12. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1-2 study

    DEFF Research Database (Denmark)

    Coiffier, B.; Lepretre, S.; Pedersen, L.M.;

    2008-01-01

    Safety and efficacy of the fully human anti-CD20 monoclonal antibody, ofatumumab, was analyzed in a multicenter dose-escalating study including 33 patients with relapsed or refractory chronic lymphocytic leukemia. Three cohorts of 3 (A), 3 (B), and 27 (C) patients received 4, once weekly, infusio...

  13. Chimaeric anti-CD20 monoclonal antibody (rituximab) in post-transplant B-lymphoproliferative disorder following stem cell transplantation in children.

    Science.gov (United States)

    Faye, A; Quartier, P; Reguerre, Y; Lutz, P; Carret, A S; Dehée, A; Rohrlich, P; Peuchmaur, M; Matthieu-Boué, A; Fischer, A; Vilmer, E

    2001-10-01

    Post-transplant lymphoproliferative disorder (PTLD) after haemopoietic stem cell transplantation is a serious complication that occurs in 8-22% of patients with high-risk factors. We retrospectively investigated tolerance and efficacy of humanized anti-CD20 monoclonal antibody (rituximab) as first-line treatment in 12 children with B-cell PTLD. At diagnosis, eight patients had tumoral involvement. The other four patients had fever, associated with raised Epstein-Barr virus (EBV) viral load and monoclonal gammopathy. Rituximab was given at the dose of 375 mg/m2 once a week by intravenous infusion (1-9 infusions). Only 1/48 infusions was associated with a grade 2 clinical adverse event. Eight out of 12 (66%) patients responded to the treatment and were in complete remission. All patients without tumoral involvement responded to the treatment. A rapid decrease in fever within 1 week was observed in all responders. Non-responders did not show any clinical response during the first week. Tumoral involvement and immunodepression seemed to be more marked in non-responders. Rituximab was an effective and well-tolerated treatment of B-cell PTLD. Early treatment before tumoral involvement seemed to be the most effective approach. Lack of rapid response should lead to intensification of PTLD treatment. Pre-emptive treatment should be considered and evaluated in further longitudinal multicentre studies.

  14. CD20单克隆抗体治疗老年弥漫性B细胞淋巴瘤的研究%Study on the anti CD20 monoclonal antibody treatment of senile diffuse course B cel lymphoma

    Institute of Scientific and Technical Information of China (English)

    李玉巧; 梁志伟; 罗国桢

    2014-01-01

    目的:观察抗CD20单克隆抗体治疗老年弥漫性B细胞淋巴瘤的临床疗效。方法:将我院收治的老年B细胞淋巴瘤28例分为两组,一组为R-CHOP组15例,另一组为对照组CHOP组,4-6个疗程进行疗效评价。结果:RCHOP方案组总缓解率为73.3.%,对照组CHOP方案治疗总缓解率为46.2%,不良反应与对照组无明显增加。结论:抗CD20单克隆抗体联合化疗治疗老年B细胞淋巴瘤疗效好,不良反应少。%Objective:To observe the anti CD20 monoclonal antibody the clinical curative effect of the treatment of senile diffuse B cel lymphoma,Method:The aged B cel lymphoma in our hospital 28 cases were divided into two groups,A group of 15 patients in the R-CHOP group,Another group was control group CHOP group,To evaluate the curative effect of 4-6 Results: the RCHOP regimen group total remission rate was 73.3.%,The control group of CHOP regimen in the treatment of the total response rate was 46.2%,Adverse reactions and control group had no obvious increase.Conclusion: Anti CD20 monoclonal antibody combined with chemotherapy efficacy in the treatment of aged B cel lymphoma, less adverse reaction.

  15. The study of labeling with Iodine-131 of monoclonal antibody anti-CD20 used for the treatment of non-Hodgkin lymphoma; Estudo de marcacao com Iodo-131 de anticorpo monoclonal anti-CD20 na terapia de linfoma nao-Hodgkin

    Energy Technology Data Exchange (ETDEWEB)

    Akanji, Akinkunmi Ganiyu

    2006-07-01

    Lymphomas are malignancies of the lymphatic system, described by Thomas Hodgkin in 1932. Traditionally, lymphomas are classified in two basic groups: Hodgkin disease and non-Hodgkin lymphoma (NHL). Patients with NHL were earlier treated with radiotherapy alone or in combination with immunotherapy using monoclonal antibody anti-CD20 (ex., Rituximab-Mabthera, Roche). However, Radioimmunotherapy is a new modality of treatment for patients with NHL, in which cytotoxic radiation from therapeutic radioisotopes is delivered to tumors through monoclonal antibodies. This study focused on labeling conditions of monoclonal antibody anti-CD20 (Rituximab-Mabthera, Roche) with iodine-131, by direct radioiodination method using Chloramine-T as oxidizing agent. Labeling parameters investigated were: Radiochemical purity (RP), method of purification, incubation time, antibody mass, oxidative agent mass, stability in vitro, stability in vivo, immunoreactivity and biological distribution performed in normal Swiss mouse. Product of high radiochemical purity was obtained with no notable difference between the methods applied. No clear evidence of direct influence of incubation time on radiochemical purity of the labeled antibody was observed. Whereas, a clear evidence of direct influence of activity on radiochemical purity of the labeled antibody was observed when antibody mass was varied. After purification, the labeled product presented radiochemical purity of approximately 100 %. Product of superior radiochemical yield was observed when standard condition of labeling was used. The labeled product presented variation in radiochemical purity using five different stabilizer conditions. The condition in which gentisic acid was combined with freeze appears more suitable and capable of minimizing autoradiolysis of the antibody labeled with high therapeutic activity of iodine-131. The labeled product presented low immunoreactivity when compared to the literature. Biological distribution in

  16. Anti-CD20 Radioimmunotherapy Before Chemotherapy and Stem Cell Transplant in Treating Patients With High-Risk B-Cell Malignancies

    Science.gov (United States)

    2016-06-13

    Adult Burkitt Lymphoma; Adult Diffuse Large B-Cell Lymphoma; CD20-Positive Neoplastic Cells Present; Indolent Adult Non-Hodgkin Lymphoma; Mantle Cell Lymphoma; Recurrent B-Cell Non-Hodgkin Lymphoma; Refractory Mature B-Cell Non-Hodgkin Lymphoma

  17. Efficacy and safety of an anti-CD20 monoclonal antibody (Reditux™) for the treatment of patients with moderate to severe rheumatoid arthritis following the failure of conventional synthetic disease-modifying anti-rheumatic drugs.

    Science.gov (United States)

    Bhati, Manjeet; Bandyopadhyay, Syamasis

    2016-08-01

    Rituximab (anti-CD20 monoclonal antibody) has shown to improve symptoms in rheumatoid arthritis (RA) patients with inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs). An anti-CD20 monoclonal antibody (Reditux™) developed by Dr. Reddy's Laboratories, India, is currently approved for use both in rheumatology and oncology patients. This retrospective report evaluates the efficacy and safety data from the real-world use of Reditux™ over a 6-month period in Indian patients with RA. All consecutive moderate to severe RA patients who failed therapy with at least two DMARDs including methotrexate (MTX) for 6 months, TNFα inhibitor naive, and willing to take Reditux™ were included. They were prescribed two doses of 1 g Reditux™, at least 15 days apart, with continued stable doses of methotrexate. Efficacy and safety after 24 weeks relative to baseline was assessed using various health assessment variables. A total of 39 patients (mean age of 46 years; 67.5 % females) treated with Reditux™ were evaluated. Statistically significant differences were observed in mean changes of DAS28-CRP, DAS28-ESR, SDAI, HAQ and Patient Global Assessment scores from baseline to 24 weeks (p serious adverse events over 24 weeks. Though limited by number of patients and retrospective in nature, this analysis serves as a real-world evidence of efficacy and safety of Dr. Reddy's rituximab (Reditux™) in the treatment of csDMARD-failed patients with RA over a 6-month period. PMID:27334114

  18. Establishment of a novel model suitable to evaluate the antitumor activity of anti-CD20 antibodies%一种适用于评价CD20抗体体内外抗肿瘤效应模型的建立

    Institute of Scientific and Technical Information of China (English)

    刘广洛; 钱卫珠; 李博华; 杨扬; 许静; 王皓

    2010-01-01

    研究通过基因转染的方法建立了稳定表达不同水平人CD20分子的小鼠骨髓瘤细胞克隆:CD20高表达(NS1CD20H)、中表达(NS1-CD20M)和低表达(NS1-CD20L)的NS-1细胞株.利用建立的CD20分子高、中、低表达的NS-1细胞系,我们初步研究了CD20分子表达水平与CD20抗体杀伤活性的关系.实验结果表明,随着CD20分子表达水平的提高,CD20抗体(Rituximab和2F2)的CDC和ADCC作用均相应增强.2F2抗体具有与Rituximab相似的ADCC作用.对于CD20高表达细胞,2F2抗体显示出和Rituximab相似的CDC活性.但对于CD20低表达的NS-1细胞,2F2的CDC活性远强于Rituximab.体内实验结果表明对于荷有NS1-CD20L的小鼠,Rituximab不能显示出抗肿瘤活性,而2F2则具有显著的抗肿瘤作用.由于这两个抗体有相似的ADCC活性,实验结果提示CDC可能是CD20抗体的重要作用机制之一.我们建立的不同程度表达CD20的NS-1细胞克隆可以成为一种新型的CD20抗体活性评价模型,并有助于进一步阐明CD20抗体的作用机制.

  19. High-Dose [131I]Tositumomab (anti-CD20) Radioimmunotherapy and Autologous Hematopoietic Stem Cell Transplantation for Adults ≥ 60 Years Old with Relapsed or Refractory B-Cell Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Ajay K.; Rajendran, Joseph G.; Gooley, Ted; Pagel, John M.; Fisher, Darrell R.; Petersdorf, Stephen; Maloney, David G.; Eary, Janet F.; Appelbaum, Frederick R.; Press, Oliver W.

    2007-04-10

    Purpose: The majority of patients with relapsed or refractory B-cell, non-Hodgkin’s lymphoma (NHL) are over 60 years of age, yet they are often denied potentially curative high-dose therapy and autologous stem cell transplants (ASCT) due to the risk of excessive treatment-related morbidity and mortality. Myeloablative anti-CD20 radioimmunotherapy (RIT) can deliver curative radiation doses to tumor sites while limiting exposure to normal organs and may be particularly suited for older adults requiring high-dose therapy. Methods: Patients over age 60 with relapsed B-NHL received infusions of tositumomab anti-CD20 antibody labeled with 5-10mCi I-131 tracer for dosimetry purposes followed 10 days later by individualized therapeutic infusions of I-131-tositumomab (median 525 mCi, range 328-1154 mCi) to deliver 25-27Gy to the critical normal organ receiving the highest radiation dose. ASCT was performed approximately 2 weeks after therapy. Results: Twenty-four patients with a median age of 64 (range 60-76) who had received a median of four prior regimens (range 2-14) were treated. Thirteen (54%) had chemotherapy-resistant disease. The estimated 3-year overall and progression-free survivals were 59% and 51%, respectively with a median follow-up of 2.9 years (range 1-6 years). All patients experienced expected myeloablation with engraftment of platelets (≥20K/µL) and neutrophils (≥500/µL) occurring a median of 9 and 15 days, respectively following ASCT. There were no treatment-related deaths, and only two patients experienced grade 4 non-hematologic toxicity. Conclusions: Myeloablative RIT and ASCT is a safe and effective therapeutic option for older adults with relapsed B-NHL.

  20. CD20单克隆抗体联合自体外周血干细胞移植治疗非霍奇金淋巴瘤的临床研究%Clinical study of autologous peripheral blood stem cell transplantation combined with anti-CD20 monoclonal antibody in non-Hodgkin lymphoma

    Institute of Scientific and Technical Information of China (English)

    蔡宇; 王椿; 姜杰玲; 杨隽; 颜式可; 万理萍

    2010-01-01

    目的 探讨抗CD20单克隆抗体(利妥昔单抗,商品名:美罗华)联合自体外周血干细胞移植(APBSCT)治疗B细胞非霍奇金淋巴瘤(NHL)的疗效.方法 21例CD20阳性的NHL患者,经过前期治疗,5例达完全缓解(CR),难治性病例为16例,包括11例部分缓解(PR)和5例疾病进展(PD).在自体造血干细胞动员的第1、8天及预处理的-1、+7天每天应用利妥昔单抗375 mg/m2.结果 移植前疾病达到CR的5例患者,无一例复发;移植前处于PR的11例患者,仅1例在移植后6个月疾病复发,其余均无病生存;移植前处于PD的5例患者,2例无病生存.21例患者中位随访24(1~68)个月,复发、死亡4例(19%),其余17例均无病生存,2年无病生存(EFS)和总生存(OS)率均为81.0%.未观察到利妥昔单抗对采集所得干细胞的质量和数量以及移植后造血恢复有不良影响.结论 APBSCT联合利妥昔单抗做体内净化治疗B细胞NHL疗效与移植前状态有关,作为巩固治疗,能使移植前达CR的患者获得长期生存,提高治愈率;作为强化治疗,可提高缓解率,延长PR患者的EFS及OS.利妥昔单抗的加入不影响造血干细胞采集和移植后造血重建.%Objective To evaluate the efficacy of anti-CD20 monoclonal antibody (Rituximab) combined with autologous hematopoietic stem cell transplant (ASCT) in treatment of the patients with B cell non-Hodgkin lymphoma (NHL). Methods Twenty-one patients with B-cell NHL(CD20 positive) received ASCT with Rituximab at the dose of 385 mg·m-2·d-1 on day 1 and day 8 of mobilization,and day -1 and day +7 of conditioning regimen. Among the 21 patients receiving chemotherapy before the transplant, five cases achieved complete response (CR), eleven cases achieved partial remission (PR), and 5 cases had the progression of disease (PD) after many cycles of chemotherapy. Results The median follow-up was 24 months (1-68 months) in the present study. No relapse occurred among the 5 patients in CR before the

  1. Validation of prospective whole-body bone marrow dosimetry by SPECT/CT multimodality imaging in {sup 131}I-anti-CD20 rituximab radioimmunotherapy of non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Boucek, Jan A. [Fremantle Hospital, Department of Nuclear Medicine, Fremantle (Australia); Turner, J. Harvey [Fremantle Hospital, Department of Nuclear Medicine, Fremantle (Australia); University of Western Australia, School of Medicine and Pharmacology (Australia)

    2005-04-01

    Radioimmunotherapy (RIT) for relapsed non-Hodgkin's lymphoma is emerging as a promising treatment strategy. Myelosuppression is the dose-limiting toxicity and may be particularly problematic in patients heavily pretreated with chemotherapy. Reliable dosimetry is likely to minimise toxicity and improve treatment efficacy, and the aim of this study was to elucidate the complex problems of dosimetry of RIT by using an integrated SPECT/CT system. As a part of a clinical trial of {sup 131}I-anti-CD20 rituximab RIT of non-Hodgkin's lymphoma, we employed a patient-specific prospective dosimetry method utilising the whole-body effective half-life of antibody and the patient's ideal weight to calculate the administered activity for RIT corresponding to a prescribed radiation absorbed dose of 0.75 Gy to the whole body. A novel technique of quantitation of bone marrow uptake with hybrid SPECT/CT imaging was developed to validate this methodology by using post-RIT extended imaging and data collection. A strong, statistically significant correlation (p=0.001) between whole-body effective half-life of antibody and effective marrow half-life was demonstrated. Furthermore, it was found that bone marrow activity concentration was proportional to administered activity per unit weight, height or body surface area (p<0.001). The results of this study show the proposed whole-body dosimetry method to be valid and clinically applicable for safe, effective RIT. (orig.)

  2. Cloning of variable region and signal peptide genes of anti-CD20 monoclonal antibody by RLM-RACE%用RLM-RACE法克隆抗CD20单克隆抗体可变区基因及其信号肽基因

    Institute of Scientific and Technical Information of China (English)

    王玉刚; 冯健男; 沈倍奋

    2005-01-01

    目的:寻找一种可同时钓取抗CD20 mAb VL、 VH基因及其信号肽基因的方法.方法: 使用Trizol提取杂交瘤细胞1-28的总RNA, 分别采用传统的快速扩增5' cDNA末端 (traditional rapid amplification of 5' cDNA end, T-5' RACE)和RNA连接酶介导的快速扩增5' cDNA末端 (RNA ligase-mediated rapid amplification of 5' cDNA end, RLM-RACE) 的方法钓取目的基因.将其克隆到pGEM-T Easy载体上, 测序后, 与Kabat数据库和GenBank中相应的序列进行比对.结果: 采用RLM-RACE法可同时钓取到抗CD20 mAb VL、 VH基因及其信号肽基因, 而用T-5' RACE法仅能获得VL基因及其信号肽基因.结论: RLM-RACE法是钓取抗体V区基因和信号肽基因的好方法.

  3. Detecting CD20-Rituximab specific interactions on lymphoma cells using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Elucidating the underlying mechanisms of cell physiology is currently an important research topic in life sciences. Atomic force microscopy methods can be used to investigate these molecular mechanisms. In this study, single-molecule force spectroscopy was used to explore the specific recognition between the CD20 antigen and anti-CD20 antibody Rituximab on B lymphoma cells under near-physiological conditions. The CD20-Rituximab specific binding force was measured through tip functionalization. Distribution of CD20 on the B lymphoma cells was visualized three-dimensionally. In addition, the relationship between the intramolecular force and the molecular extension of the CD20-Rituximab complex was analyzed under an external force. These results facilitate further investigation of the mechanism of Rituximab’s anti-cancer effect.

  4. HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen.

    Science.gov (United States)

    Li, Nainong; Zhao, Dongchang; Kirschbaum, Mark; Zhang, Chunyan; Lin, Chia-Lei; Todorov, Ivan; Kandeel, Fouad; Forman, Stephen; Zeng, Defu

    2008-03-25

    In allogeneic hematopoietic cell transplantation (HCT), donor T cell-mediated graft versus host leukemia (GVL) and graft versus autoimmune (GVA) activity play critical roles in treatment of hematological malignancies and refractory autoimmune diseases. However, graft versus host disease (GVHD), which sometimes can be fatal, remains a major obstacle in classical HCT, where recipients are conditioned with total body irradiation or high-dose chemotherapy. We previously reported that anti-CD3 conditioning allows donor CD8(+) T cells to facilitate engraftment and mediate GVL without causing GVHD. However, the clinical application of this radiation-free and GVHD preventative conditioning regimen is hindered by the cytokine storm syndrome triggered by anti-CD3 and the high-dose donor bone marrow (BM) cells required for induction of chimerism. Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are known to induce apoptosis of cancer cells and reduce production of proinflammatory cytokines by nonmalignant cells. Here, we report that SAHA inhibits the proliferative and cytotoxic activity of anti-CD3-activated T cells. Administration of low-dose SAHA reduces cytokine production and ameliorates the cytokine storm syndrome triggered by anti-CD3. Conditioning with anti-CD3 and SAHA allows induction of chimerism with lower doses of donor BM cells in old nonautoimmune and autoimmune lupus mice. In addition, conditioning with anti-CD3 and SAHA allows donor CD8(+) T cell-mediated GVA activity to reverse lupus glomerulonephritis without causing GVHD. These results indicate that conditioning with anti-CD3 and HDAC inhibitors represent a radiation-free and GVHD-preventative regimen with clinical application potential.

  5. Perspectives of ofatumumab as CD20 targeted therapy in rheumatoid arthritis and other autoimmune diseases.

    Science.gov (United States)

    Pers, Yves Marie; Jorgensen, Christian

    2016-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune condition viewed as a severe destructive disease. The treatment strategies include anti-CD20 monoclonal antibody (mAb)-targeting B cells. Ofatumumab specifically targets a membrane-proximal epitope on the CD20 molecule distinct from other anti-CD20 antibodies including rituximab and ocrelizumab, and bind the epitope located on the large loop of CD20. This explains a more durable B-cell depletion and a different pharmacodynamic. We review the pharmacodynamic of B-cell depletion and analyze the results in RA and other B-cell-mediated autoimmune diseases. The randomized trial in RA showed clinical efficacy comparable to rituximab at week 24. However, structural impact has not been demonstrated. Studies including RA patients refractory to rituximab would be useful to define the optimal strategy of ofatumumab therapy. PMID:27485081

  6. In vivo anti-tumor activity of marine hematopoietic stem cells expressing a p185HER2-specific chimeric T-cell receptor gene

    Institute of Scientific and Technical Information of China (English)

    JIAN MIN YANG; MICHAEL S FRIEDMAN; MARIANNE T HUBEN; JENNIFER FULLER; QIAO LI; ALFRED E CHANG; JAMES J MULE; KEVIN T MCDONAGH

    2006-01-01

    We have confirmed efficient anti-tumor activities of the peripheral lymphocytes transduced with a p185HER2-specific chimeric T-cell receptor gene both in murine and in human in our previous studies. To further test the feasibility of chimeric T-cell receptor in a bone marrow transplantation model, we first, made two murine tumor cell lines: MT901 and MCA-205, to express human p185HER2by retroviral gene transduction. Murine bone marrow cells were retrovirally transduced to express the chimeric T-cell receptor and gene-modified bone marrow cells were transplanted into lethally irradiated mouse. Six months post transplantation, p185HER2-positive tumor cells: MT-901/HER2 or MCA-205/HER2 was subcutaneously or intravenously injected to make mouse models simulating primary breast cancer or pulmonary metastasis. The in vivo anti-tumor effects were monitored by the size of the subcutaneous tumor or counting the tumor nodules in the lungs after India ink staining. The size of the subcutaneous tumor was significantly inhibited and the number of pulmonary nodules were significantly decreased in mouse recipients transplanted with chimeric T-cell receptor modified bone marrow cells compared with the control group. Our results suggest the efficient in vivo anti-tumor activities of chimeric T-cell receptor gene modified bone marrow cells.

  7. Bioactivity assays and application of 125I labeled human mouse chimeric anti-CD22 monoclonal antibody SM03

    International Nuclear Information System (INIS)

    To investigate the bioactivity and application of 125I labeled human mouse chimeric monoclonal SM03, SM03 was labeled with 125I using Indogen method. The labeled mixture was purified by Sephacryl S-300 HR separation chromospectry. The purity and concentration of separated fractions were determined by HPLC and Protein Assay Kit, respectively. Competitive binding method and ELISA method were used for bioactivity assays. 125I-SM03 was applied to screen cell lines which express the most abundant CD22 antigen. The purity and recovery of 125I-SM03 were >99% and >47%, respectively. The bioactivity of 125I- SM03 and SM03 hasn't significant difference in statistics. Ramos cell line had the strongest special radioactivity when 125I-SM03 bound with in Raji, Daudi and Ramos cell lines. Indogen method is a good way to label Human mouse chimeric anti-CD22 monoclonal antibody SM03 and the label will not affect the activity of SM03. The 125I-SM03 not only can be used for detect agent, but also may be put into market for NHL therapy. (authors)

  8. Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice.

    Science.gov (United States)

    Lin, Su-I; Huang, Ming-Hsi; Chang, Yu-Wen; Chen, I-Hua; Roffler, Steve; Chen, Bing-Mae; Sher, Yuh-Pyng; Liu, Shih-Jen

    2016-07-28

    Synthetic peptides are attractive for cancer immunotherapy because of their safety and flexibility. In this report, we identified a new B cell epitope of tumor-associated antigen L6 (TAL6) that could induce antibody-dependent cellular cytotoxicity (ADCC) in vivo. We incorporated the B cell epitope with a cytotoxic T lymphocyte (CTL) and a helper T (Th) epitope to form a chimeric long peptide. We formulated the chimeric peptide with different adjuvants to immunize HLA-A2 transgenic mice and evaluate their immunogenicity. The chimeric peptide formulated with an emulsion type nanoparticle (PELC) adjuvant and a toll-like receptor 9 agonist (CpG ODN) (PELC/CpG) induced the greatest ADCC and CTL responses. The induced anti-tumor immunity inhibited the growth of TAL6-positive cancer cells. Moreover, we observed that immunization with the chimeric peptide inhibited cancer cell migration in vitro and metastasis in vivo. These data suggest that a chimeric peptide containing both B and T cell epitopes of TAL6 formulated with PELC/CpG adjuvant is feasible for cancer immunotherapy. PMID:27130449

  9. Statins impair antitumor effects of rituximab by inducing conformational changes of CD20.

    Directory of Open Access Journals (Sweden)

    Magdalena Winiarska

    2008-03-01

    Full Text Available BACKGROUND: Rituximab is used in the treatment of CD20+ B cell lymphomas and other B cell lymphoproliferative disorders. Its clinical efficacy might be further improved by combinations with other drugs such as statins that inhibit cholesterol synthesis and show promising antilymphoma effects. The objective of this study was to evaluate the influence of statins on rituximab-induced killing of B cell lymphomas. METHODS AND FINDINGS: Complement-dependent cytotoxicity (CDC was assessed by MTT and Alamar blue assays as well as trypan blue staining, and antibody-dependent cellular cytotoxicity (ADCC was assessed by a 51Cr release assay. Statins were found to significantly decrease rituximab-mediated CDC and ADCC of B cell lymphoma cells. Incubation of B cell lymphoma cells with statins decreased CD20 immunostaining in flow cytometry studies but did not affect total cellular levels of CD20 as measured with RT-PCR and Western blotting. Similar effects are exerted by other cholesterol-depleting agents (methyl-beta-cyclodextrin and berberine, but not filipin III, indicating that the presence of plasma membrane cholesterol and not lipid rafts is required for rituximab-mediated CDC. Immunofluorescence microscopy using double staining with monoclonal antibodies (mAbs directed against a conformational epitope and a linear cytoplasmic epitope revealed that CD20 is present in the plasma membrane in comparable amounts in control and statin-treated cells. Atomic force microscopy and limited proteolysis indicated that statins, through cholesterol depletion, induce conformational changes in CD20 that result in impaired binding of anti-CD20 mAb. An in vivo reduction of cholesterol induced by short-term treatment of five patients with hypercholesterolemia with atorvastatin resulted in reduced anti-CD20 binding to freshly isolated B cells. CONCLUSIONS: Statins were shown to interfere with both detection of CD20 and antilymphoma activity of rituximab. These studies

  10. Chimeric anti-staphylococcal enterotoxin B antibodies and lovastatin act synergistically to provide in vivo protection against lethal doses of SEB.

    Directory of Open Access Journals (Sweden)

    Mulualem E Tilahun

    Full Text Available Staphylococcal enterotoxin B (SEB is one of a family of toxins secreted by Staphylococcus aureus that act as superantigens, activating a large fraction of the T-cell population and inducing production of high levels of inflammatory cytokines that can cause toxic shock syndrome (TSS and death. Extracellular engagement of the TCR of T-cells and class II MHC of antigen presenting cells by SEB triggers the activation of many intracellular signaling processes. We engineered chimeric antibodies to block the extracellular engagement of cellular receptors by SEB and used a statin to inhibit intracellular signaling. Chimeric human-mouse antibodies directed against different neutralizing epitopes of SEB synergistically inhibited its activation of human T-cells in vitro. In the in vivo model of lethal toxic shock syndrome (TSS in HLA-DR3 transgenic mice, two of these antibodies conferred significant partial protection when administered individually, but offered complete protection in a synergistic manner when given together. Similarly, in vivo, lovastatin alone conferred only partial protection from TSS similar to single anti-SEB antibodies. However, used in combination with one chimeric neutralizing anti-SEB antibody, lovastatin provided complete protection against lethal TSS in HLA-DR3 transgenic mice. These experiments demonstrate that in vivo protection against lethal doses of SEB can be achieved by a statin of proven clinical safety and chimeric human-mouse antibodies, agents now widely used and known to be of low immunogenicity in human hosts.

  11. Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis.

    Science.gov (United States)

    Pavlasova, Gabriela; Borsky, Marek; Seda, Vaclav; Cerna, Katerina; Osickova, Jitka; Doubek, Michael; Mayer, Jiri; Calogero, Raffaele; Trbusek, Martin; Pospisilova, Sarka; Davids, Matthew S; Kipps, Thomas J; Brown, Jennifer R; Mraz, Marek

    2016-09-22

    Agents targeting B-cell receptor (BCR) signaling-associated kinases such as Bruton tyrosine kinase (BTK) or phosphatidylinositol 3-kinase can induce mobilization of neoplastic B cells from the lymphoid tissues into the blood, which makes them potentially ideal to combine with anti-CD20 monoclonal antibodies (such as rituximab, obinutuzumab, or ofatumumab) for treatment of B-cell lymphomas and chronic lymphocytic leukemia (CLL). Here we show that interactions between leukemia cells and stromal cells (HS-5) upregulate CD20 on CLL cells and that administering ibrutinib downmodulates CD20 (MS4A1) expression in vivo. We observed that CLL cells that have recently exited the lymph node microenvironment and moved into the peripheral blood (CXCR4(dim)CD5(bright) subpopulation) have higher cell surface levels of CD20 than the cells circulating in the bloodstream for a longer time (CXCR4(bright)CD5(dim) cells). We found that CD20 is directly upregulated by CXCR4 ligand stromal cell-derived factor 1 (SDF-1α, CXCL12) produced by stromal cells, and BTK-inhibitor ibrutinib and CXCR4-inhibitor plerixafor block SDF-1α-mediated CD20 upregulation. Ibrutinib also downmodulated Mcl1 levels in CLL cells in vivo and in coculture with stromal cells. Overall, our study provides a first detailed mechanistic explanation of CD20 expression regulation in the context of chemokine signaling and microenvironmental interactions, which may have important implications for microenvironment-targeting therapies.

  12. Functional characterization of a chimeric soluble Fas ligand polymer with in vivo anti-tumor activity.

    Science.gov (United States)

    Daburon, Sophie; Devaud, Christel; Costet, Pierre; Morello, Aurore; Garrigue-Antar, Laure; Maillasson, Mike; Hargous, Nathalie; Lapaillerie, Delphine; Bonneu, Marc; Dechanet-Merville, Julie; Legembre, Patrick; Capone, Myriam; Moreau, Jean-François; Taupin, Jean-Luc

    2013-01-01

    Binding of ligand FasL to its receptor Fas triggers apoptosis via the caspase cascade. FasL itself is homotrimeric, and a productive apoptotic signal requires that FasL be oligomerized beyond the homotrimeric state. We generated a series of FasL chimeras by fusing FasL to domains of the Leukemia Inhibitory Factor receptor gp190 which confer homotypic oligomerization, and analyzed the capacity of these soluble chimeras to trigger cell death. We observed that the most efficient FasL chimera, called pFasL, was also the most polymeric, as it reached the size of a dodecamer. Using a cellular model, we investigated the structure-function relationships of the FasL/Fas interactions for our chimeras, and we demonstrated that the Fas-mediated apoptotic signal did not solely rely on ligand-mediated receptor aggregation, but also required a conformational adaptation of the Fas receptor. When injected into mice, pFasL did not trigger liver injury at a dose which displayed anti-tumor activity in a model of human tumor transplanted to immunodeficient animals, suggesting a potential therapeutic use. Therefore, the optimization of the FasL conformation has to be considered for the development of efficient FasL-derived anti-cancer drugs targeting Fas. PMID:23326557

  13. Functional characterization of a chimeric soluble Fas ligand polymer with in vivo anti-tumor activity.

    Directory of Open Access Journals (Sweden)

    Sophie Daburon

    Full Text Available Binding of ligand FasL to its receptor Fas triggers apoptosis via the caspase cascade. FasL itself is homotrimeric, and a productive apoptotic signal requires that FasL be oligomerized beyond the homotrimeric state. We generated a series of FasL chimeras by fusing FasL to domains of the Leukemia Inhibitory Factor receptor gp190 which confer homotypic oligomerization, and analyzed the capacity of these soluble chimeras to trigger cell death. We observed that the most efficient FasL chimera, called pFasL, was also the most polymeric, as it reached the size of a dodecamer. Using a cellular model, we investigated the structure-function relationships of the FasL/Fas interactions for our chimeras, and we demonstrated that the Fas-mediated apoptotic signal did not solely rely on ligand-mediated receptor aggregation, but also required a conformational adaptation of the Fas receptor. When injected into mice, pFasL did not trigger liver injury at a dose which displayed anti-tumor activity in a model of human tumor transplanted to immunodeficient animals, suggesting a potential therapeutic use. Therefore, the optimization of the FasL conformation has to be considered for the development of efficient FasL-derived anti-cancer drugs targeting Fas.

  14. Enhanced antibody-dependent cellular phagocytosis by chimeric monoclonal antibodies with tandemly repeated Fc domains.

    Science.gov (United States)

    Nagashima, Hiroaki; Ootsubo, Michiko; Fukazawa, Mizuki; Motoi, Sotaro; Konakahara, Shu; Masuho, Yasuhiko

    2011-04-01

    We previously reported that chimeric monoclonal antibodies (mAbs) with tandemly repeated Fc domains, which were developed by introducing tandem repeats of Fc domains downstream of 2 Fab domains, augmented binding avidities for all Fcγ receptors, resulting in enhanced antibody (Ab)-dependent cellular cytotoxicity. Here we investigated regarding Ab-dependent cellular phagocytosis (ADCP) mediated by these chimeric mAbs, which is considered one of the most important mechanisms that kills tumor cells, using two-color flow cytometric methods. ADCP mediated by T3-Ab, a chimeric mAb with 3 tandemly repeated Fc domains, was 5 times more potent than that by native anti-CD20 M-Ab (M-Ab hereafter). Furthermore, T3-Ab-mediated ADCP was resistant to competitive inhibition by intravenous Ig (IVIG), although M-Ab-mediated ADCP decreased in the presence of IVIG. An Fcγ receptor-blocking study demonstrated that T3-Ab mediated ADCP via both FcγRIA and FcγRIIA, whereas M-Ab mediated ADCP exclusively via FcγRIA. These results suggest that chimeric mAbs with tandemly repeated Fc domains enhance ADCP as well as ADCC, and that Fc multimerization may significantly enhance the efficacy of therapeutic Abs. PMID:21215693

  15. Generation and Characterization of a Human/Mouse Chimeric GD2-Mimicking Anti-Idiotype Antibody Ganglidiximab for Active Immunotherapy against Neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Christin Eger

    Full Text Available Vaccination with proteins mimicking GD2 that is highly expressed on neuroblastoma (NB cells is a promising strategy in treatment of NB, a pediatric malignancy with poor prognosis. We previously showed efficacy of ganglidiomab in vivo, a murine anti-idiotype (anti-Id IgG1. In order to tailor immune responses to variable regions, we generated a new human/mouse chimeric anti-Id antibody (Ab ganglidiximab by replacing murine constant fragments with corresponding human IgG1 regions. DNA sequences encoding for variable regions of heavy (VH and light chains (VL were synthesized by RT-PCR from total RNA of ganglidiomab-producing hybridoma cells and further ligated into mammalian expression plasmids with coding sequences for constant regions of human IgG1 heavy and light chains, respectively. We established a stable production cell line using Chinese hamster ovarian (CHO cells co-transfected with two expression plasmids driving the expression of either ganglidiximab heavy or light chain. After purification from supernatants, anti-idiotypic characteristics of ganglidiximab were demonstrated. Binding of ganglidiximab to anti-GD2 Abs of the 14.18 family as well as to NK-92tr cells expressing a GD2-specific chimeric antigen receptor (scFv(ch14.18-zeta was shown using standard ELISA and flow cytometry analysis, respectively. Ganglidiximab binding affinities to anti-GD2 Abs were further determined by surface plasmon resonance technique. Moreover, binding of anti-GD2 Abs to the nominal antigen GD2 as well as GD2-specific Ab-mediated cytotoxicity (ADCC, CDC was competitively inhibited by ganglidiximab. Finally, ganglidiximab was successfully used as a protein vaccine in vivo to induce a GD2-specific humoral immune response. In summary, we report generation and characterization of a new human/mouse chimeric anti-Id Ab ganglidiximab for active immunotherapy against NB. This Ab may be useful to tailor immune responses to the paratope regions mimicking GD2

  16. Functional Recombinant Extra Membrane Loop of Human CD20, an Alternative of the Full Length CD20 Antigen

    OpenAIRE

    Anbouhi, Mahdi Habibi; Baraz, Aida Feiz; Bouzari, Saeid; Abolhassani, Mohsen; Khanahmad, Hossein; Golkar, Majid; Aghasadeghi, Mohammad Reza; Behdani, Mahdi; Najafabadi, Ali Jahanian; Shokrgozar, Mohammad Ali

    2012-01-01

    Background: Targeting of CD20 antigen with monoclonal antibodies has become the mainstay in the treatment of non-Hodgkin's lymphomas and immunotherapeutic depletion of malignant B cells. Accessibility of antigen is one of the crucial factors in development of monoclonal antibodies against this antigen. One major problem in expression of full length CD20 is aggregation and misfolding. Therefore, production of an alternative polypeptide is easer and favorable comparing to that of a full length ...

  17. New heavy-fermion antiferromagnet UPd2Cd20

    Science.gov (United States)

    Hirose, Yusuke; Doto, Hiroshi; Honda, Fuminori; Li, Dexin; Aoki, Dai; Haga, Yoshinori; Settai, Rikio

    2016-10-01

    We succeeded in growing a new high quality single crystal of a ternary uranium compound UPd2Cd20. From the electrical resistivity, magnetization, magnetic susceptibility, and specific heat experiments, UPd2Cd20 is found to be an antiferromagnetic heavy-fermion compound with the Néel temperature {{T}\\text{N}}   =  5 K and exhibits the large electronic specific heat coefficient γ exceeding 500 mJ (K2· mol)-1. This compound is the first one that exhibits the magnetic ordering with the magnetic moments of the U atom in a series of UT2X20 (T: transition metal, X  =  Al, Zn, Cd). UPd2Cd20 shows typical characteristic features in heavy-fermion systems such as a broad maximum in the magnetic susceptibility at {{T}{{χ\\text{max}}}} and a large coefficient A of T 2 term in the resistivity.

  18. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model

    Science.gov (United States)

    Suarez, Eloah Rabello; Chang, De-Kuan; Sun, Jiusong; Sui, Jianhua; Freeman, Gordon J.; Signoretti, Sabina; Zhu, Quan; Marasco, Wayne A.

    2016-01-01

    Advances in the treatment of metastatic clear cell renal cell carcinoma (ccRCC) have led to improved progression-free survival of many patients; however the therapies are toxic, rarely achieve durable long-term complete responses and are not curative. Herein we used a single bicistronic lentiviral vector to develop a new combination immunotherapy that consists of human anti-carbonic anhydrase IX (CAIX)-targeted chimeric antigen receptor (CAR) T cells engineered to secrete human anti-programmed death ligand 1 (PD-L1) antibodies at the tumor site. The local antibody delivery led to marked immune checkpoint blockade. Tumor growth diminished 5 times and tumor weight reduced 50–80% when compared with the anti-CAIX CAR T cells alone in a humanized mice model of ccRCC. The expression of PD-L1 and Ki67 in the tumors decreased and an increase in granzyme B levels was found in CAR T cells. The anti-PD-L1 IgG1 isotype, which is capable of mediating ADCC, was also able to recruit human NK cells to the tumor site in vivo. These armed second-generation CAR T cells empowered to secrete human anti-PD-L1 antibodies in the ccRCC milieu to combat T cell exhaustion is an innovation in this field that should provide renewed potential for CAR T cell immunotherapy of solid tumors where limited efficacy is currently seen. PMID:27145284

  19. Comparison of a chimeric anti-carcinoembryonic antigen antibody conjugated with visible or near-infrared fluorescent dyes for imaging pancreatic cancer in orthotopic nude mouse models

    Science.gov (United States)

    Maawy, Ali A.; Hiroshima, Yukihiko; Kaushal, Sharmeela; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2013-12-01

    The aim of this study was to evaluate a set of visible and near-infrared dyes conjugated to a tumor-specific chimeric antibody for high-resolution tumor imaging in orthotopic models of pancreatic cancer. BxPC-3 human pancreatic cancer was orthotopically implanted into pancreata of nude mice. Mice received a single intravenous injection of a chimeric anti-carcinoembryonic antigen antibody conjugated to one of the following fluorophores: 488-nm group (Alexa Fluor 488 or DyLight 488); 550-nm group (Alexa Fluor 555 or DyLight 550); 650-nm group (Alexa Fluor 660 or DyLight 650), or the 750-nm group (Alexa Fluor 750 or DyLight 755). After 24 h, the Olympus OV100 small-animal imaging system was used for noninvasive and intravital fluorescence imaging of mice. Dyes were compared with respect to depth of imaging, resolution, tumor-to-background ratio (TBR), photobleaching, and hemoglobin quenching. The longer wavelength dyes had increased depth of penetration and ability to detect the smallest tumor deposits and provided the highest TBRs, resistance to hemoglobin quenching, and specificity. The shorter wavelength dyes were more photostable. This study showed unique advantages of each dye for specific cancer imaging in a clinically relevant orthotopic model.

  20. Young T Cells Age During a Redirected Anti-Tumor Attack: Chimeric Antigen Receptor-Provided Dual Costimulation is Half the Battle.

    Science.gov (United States)

    Hombach, Andreas A; Abken, Hinrich

    2013-01-01

    Adoptive therapy with chimeric antigen receptor (CAR)-redirected T cells showed spectacular efficacy in the treatment of leukemia in recent early phase trials. Patient's T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG1(+) CD57(+) CD7(-) CCR7(-) phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134) stimulation. We discuss the strategy with respect to prolong the anti-tumor response and to improve the over-all efficacy of adoptive cell therapy. PMID:23761793

  1. Young T cells age during a redirected anti-tumour attack: chimeric antigen receptor (CAR-provided dual costimulation is half the battle.

    Directory of Open Access Journals (Sweden)

    Andreas A Hombach

    2013-06-01

    Full Text Available Adoptive therapy with chimeric antigen receptor (CAR-redirected T cells showed spectacular efficacy in the treatment of leukaemia in recent early phase trials. Patient's T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG-1+ CD57+ CD7- CCR7- phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134 stimulation. We discuss the strategy with respect to prolong the anti-tumour response and to improve the over-all efficacy of adoptive cell therapy.

  2. Novel CD20 monoclonal antibodies for lymphoma therapy

    Directory of Open Access Journals (Sweden)

    Cang Shundong

    2012-10-01

    Full Text Available Abstract Rituximab (RTX, a monoclonal antibody (mAb against CD20, has been widely used for lymphoma therapy. RTX in combination with cyclophosphamide /doxorubicin /vincristine /prednisone (R-CHOP remains the standard frontline regimen for diffuse large B-cell lymphoma. However, suboptimal response and /or resistance to rituximab have remained a challenge in the therapy of B-cell non-Hodgkin’s lymphoma (NHL. Novel agents are under active clinical trials. This review will summarize the latest development in new mAbs against CD20, which include second-generation mAbs, ofatumumab, veltuzumab (IMMU-106, ocrelizumab (PRO70769, and third-generation mAbs, AME-133v (ocaratuzumab, PRO131921 and GA101 (obinutumumab.

  3. Synergistic and persistent effect of T-cell immunotherapy with anti-CD19 or anti-CD38 chimeric receptor in conjunction with rituximab on B-cell non-Hodgkin lymphoma.

    Science.gov (United States)

    Mihara, Keichiro; Yanagihara, Kazuyoshi; Takigahira, Misato; Kitanaka, Akira; Imai, Chihaya; Bhattacharyya, Joyeeta; Kubo, Takanori; Takei, Yoshifumi; Yasunaga, Shin'ichiro; Takihara, Yoshihiro; Kimura, Akiro

    2010-10-01

    Using artificial receptors, it is possible to redirect the specificity of immune cells to tumour-associated antigens, which is expected to provide a useful strategy for cancer immunotherapy. Given that B-cell non-Hodgkin lymphoma (B-NHL) cells invariably express CD19 and CD38, these antigens may be suitable molecular candidates for such immunotherapy. We transduced human peripheral T cells or a T-cell line with either anti-CD19-chimeric receptor (CAR) or anti-CD38-CAR, which contained an anti-CD19 or anti-CD38 antibody-derived single-chain variable domain respectively. Retroviral transduction led to anti-CD19-CAR or anti-CD38-CAR expression in T cells with high efficiency (>60%). The T cell line, Hut78, when transduced with anti-CD19-CAR or anti-CD38-CAR, exerted strong cytotoxicity against the B-NHL cell lines, HT and RL, and lymphoma cells isolated from patients. Interestingly, use of both CARs had an additive cytotoxic effect on HT cells in vitro. In conjunction with rituximab, human peripheral T cells expressing either anti-CD19-CAR or anti-CD38-CAR enhanced cytotoxicity against HT-luciferase cells in xenografted mice. Moreover, the synergistic tumour-suppressing activity was persistent in vivo for over 2 months. These results provide a powerful rationale for clinical testing of the combination of rituximab with autologous T cells carrying either CAR on aggressive or relapsed B-NHLs. PMID:20678160

  4. In Vitro and In Vivo Antitumor Effect of Anti-CD33 Chimeric Receptor-Expressing EBV-CTL against CD33+ Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    A. Dutour

    2012-01-01

    Full Text Available Genetic engineering of T cells with chimeric T-cell receptors (CARs is an attractive strategy to treat malignancies. It extends the range of antigens for adoptive T-cell immunotherapy, and major mechanisms of tumor escape are bypassed. With this strategy we redirected immune responses towards the CD33 antigen to target acute myeloid leukemia. To improve in vivo T-cell persistence, we modified human Epstein Barr Virus-(EBV- specific cytotoxic T cells with an anti-CD33.CAR. Genetically modified T cells displayed EBV and HLA-unrestricted CD33 bispecificity in vitro. In addition, though showing a myeloablative activity, they did not irreversibly impair the clonogenic potential of normal CD34+ hematopoietic progenitors. Moreover, after intravenous administration into CD33+ human acute myeloid leukemia-bearing NOD-SCID mice, anti-CD33-EBV-specific T cells reached the tumor sites exerting antitumor activity in vivo. In conclusion, targeting CD33 by CAR-modified EBV-specific T cells may provide additional therapeutic benefit to AML patients as compared to conventional chemotherapy or transplantation regimens alone.

  5. In vitro and in vivo behavior of radiolabeled chimeric anti-EGFRvIII monoclonal antibody: Comparison with its murine parent

    International Nuclear Information System (INIS)

    The mutant version of the epidermal growth factor receptor EGFRvIII has been found on gliomas and other tumors, but not on normal tissues. Radioiodinated murine (mu) L8A4 monoclonal antibody (MAb) specifically targets EGFRvIII xenografts in vivo when labeled using N-succinimidyl 5-iodo-3-pyridinecarboxylate (SIPC). A chimeric (ch) MAb consisting of the variable region of muL8A4 and the constant domains of human IgG2 has been developed that has an affinity and radioiodinated immunoreactive fraction comparable to muL8A4. In vitro, both MAbs were internalized and processed by EGFRvIII expressing cell lines (U87MGΔEGFR or NR6M) at similar rates (maximum intracellular retention, 35-40%). In paired-label tissue distribution studies in athymic mice bearing U87MGΔEGFR tumor xenografts, the ch:mu L8A4 uptake ratio in normal tissues rose to greater than 2:1, whereas in tumor, the ratio remained 1:1 throughout the experiment. These results indicate that chL8A4 exhibits similar binding and internalization properties as its murine parent, but suggest different intracellular processing and/or deposition of catabolites in normal tissues for chL8A4

  6. Clinical significance of chimerism.

    Science.gov (United States)

    Abuelo, Dianne

    2009-05-15

    Twins have been previously classified as either monozygotic or dizygotic. In recent years, fascinating, non-traditional mechanisms of twinning have been uncovered. We define chimerism versus mosaicism, touch on chimerism in the animal world, and explain timing of chimerism in humans. In addition, we discuss when to suspect chimerism in patients, and how to proceed with diagnostic evaluation and confirmation.

  7. Immunogenicity screening assay development for a novel human-mouse chimeric anti-CD147 monoclonal antibody (Metuzumab).

    Science.gov (United States)

    Mi, Li; Li, Wei; Li, Maohua; Chen, Tao; Wang, Muyang; Sun, Le; Chen, Zhinan

    2016-06-01

    The clinical effect of patient immune responses to therapeutic antibodies affect product safety and efficacy, which makes the development of valid, sensitive immune assays a key aspect of antibody drug development. In this paper, we reported the generations of mouse monoclonal and Cynomolgus monkey polyclonal antibodies against the anti-CD147 antibody (Metuzumab) as the internal standards and the positive controls. Seven mouse monoclonal antibodies were shown to recognize both (Fab)2 and full length of Metuzumab, but not the control normal human IgGs, and monoclonal anti-Metuzumab, Clone 2D9 was chosen to be used as the internal standard for anti-Metuzumab study. A Bridging ELISA assay was developed by coating the wells with the antibody drug, and the anti-drug antibody (ADA) in the animal sera were detected by enzyme-labeled antibody. Its limit of detection (LOD) was determined to be 0.39ng/ml of anti-Metuzumab antibody (ADA) with linear range between 0.39-50ng/ml and R(2)=0.994. For normal monkey sera, a minimal dilution was determined to be 1:80. However, very different from peptide or other protein drugs, strong interferences from the residual antibody drugs were observed from most of the testing monkey sera in the preclinical study. It was experimentally determined that the concentration of the residual antibody drug in the assay have to be lower than 1μg/ml, so the assays were carried out at 1:100 dilution of the monkey sera. In the pre-clinical study, 32 monkeys were treated with escalating doses of Metuzumab between 0, 10, 50, 200mg/kg for 13 times over 13weeks of time period. 16 of them were terminated right after the last injection, while the other 16 were rested for additional 4weeks before termination. Afraid to miss any positive response to antibody drug, sera samples were collected at six time points, including 2-, 6- and 10-weeks post 1st dose, prior to last dose, and 2-, 4-weeks into recovery. The highest positive rates were seen with the Medium

  8. Screen of CD20 mimotope using monoclonal antibody Rituximab%CD20抗原模拟表位的筛选

    Institute of Scientific and Technical Information of China (English)

    吴守振; 张阔; 李萌; 贺丽清; 秦鑫; 张英起

    2009-01-01

    目的:筛选CD20分子的模拟表位肽,构建针对CD20分子的治疗性疫苗,以期为淋巴瘤以及其它B细胞相关性疾病的治疗提供新的方向.方法:利用噬菌体随机呈现肽库筛选技术,以人淋巴细胞分化抗原CD20 mAb Rituximab为靶点,筛选CD20分子的模拟表位肽.通过ELISA方法检测筛选出的阳性噬菌体与Rituximab的特异性结合,并以竞争性结合实验检测筛选出的阳性噬菌体与Raji细胞表面的CD20分子竞争结合Rituximab的能力.最后以Sanger双脱氧链终止法测定DNA序列,推断其氨基酸序列.结果:成功筛选出针对CD20 mAb Rituximab的阳性噬菌体,获得了CD20分子的模拟表位肽QDKLTQWPKWLE.获得的阳性噬菌体能够与Rituximab特异性结合,并且表达该表位的噬菌体可以竞争性抑制Rituximab与天然CD20分子的结合.结论:CD20分子的抗原表位肽QDKLTQWPKWLE能够与mAb Rituximab特异性结合,与天然CD20分子竞争性结合mAb Rituximab,并具有潜在的应用价值.

  9. Randomized Phase II Trial Comparing Obinutuzumab (GA101) With Rituximab in Patients With Relapsed CD20(+) Indolent B-Cell Non-Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Sehn, L. H.; Goy, A.; Offner, F. C.;

    2015-01-01

    Purpose Obinutuzumab (GA101), a novel glycoengineered type II anti-CD20 monoclonal antibody, demonstrated responses in single-arm studies of patients with relapsed/refractory non-Hodgkin lymphoma. This is the first prospective, randomized study comparing safety and efficacy of obinutuzumab with r...

  10. Quantitative PET of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Weibo; Chen, Kai; He, Lina; Cao, Qizhen; Chen, Xiaoyuan [Stanford University School of Medicine, The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford, CA (United States); Koong, Albert [Stanford University School of Medicine, Department of Radiation Oncology, Stanford, CA (United States)

    2007-06-15

    Cetuximab, a chimeric monoclonal antibody targeting epidermal growth factor receptor (EGFR) on the surface of cancer cells, was approved by the FDA to treat patients with metastatic colorectal cancer. It is currently also in advanced-stage development for the treatment of several other solid tumors. Here we report for the first time the quantitative positron emission tomography (PET) imaging of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab. We conjugated cetuximab with macrocyclic chelating agent 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA), labeled with {sup 64}Cu, and tested the resulting {sup 64}Cu-DOTA-cetuximab in seven xenograft tumor models. The tracer uptake measured by PET was correlated with the EGFR expression quantified by western blotting. The estimated human dosimetry based on the PET data in Sprague-Dawley rats was also calculated. MicroPET imaging showed that {sup 64}Cu-DOTA-cetuximab had increasing tumor activity accumulation over time in EGFR-positive tumors but relatively low uptake in EGFR-negative tumors at all times examined (<5%ID/g). There was a good correlation (R {sup 2} = 0.80) between the tracer uptake (measured by PET) and the EGFR expression level (measured by western blotting). Human dosimetry estimation indicated that the tracer may be safely administered to human patients for tumor diagnosis, with the dose-limiting organ being the liver. The success of EGFR-positive tumor imaging using {sup 64}Cu-DOTA-cetuximab can be translated into the clinic to characterize the pharmacokinetics, to select the right population of patients for EGFR-targeted therapy, to monitor the therapeutic efficacy of anti-EGFR treatment, and to optimize the dosage of either cetuximab alone or cetuximab in combination with other therapeutic agents. (orig.)

  11. Targeting of T Lymphocytes to Melanoma Cells Through Chimeric Anti-GD3 Immunoglobulin T-Cell Receptors

    Directory of Open Access Journals (Sweden)

    C.O. Yun

    2000-09-01

    Full Text Available Immunoglobulin T-cell receptors (IgTCRs combine the specificity of antibodies with the potency of cellular killing by grafting antibody recognition domains onto TCR signaling chains. IgTCR-modified T cells are thus redirected to kill tumor cells based on their expression of intact antigen on cell surfaces, bypassing the normal mechanism of activation through TCR—peptide—major histocompatibility complex (MHC recognition. Melanoma is one of the most immunoresponsive of human cancers and has served as a prototype for the development of a number of immunotherapies. The target antigen for this study is the ganglioside GD3, which is highly expressed on metastatic melanoma with only minor immunologic cross-reaction with normal tissues. To determine an optimal configuration for therapy, four combinations of IgTCRs were prepared and studied: sFv-ɛ, sFv-ζ, Fab-ɛ, Fab-ζ. These were expressed on the surface of human T cells by retroviral transduction. IgTCR successfully redirected T-cell effectors in an MHC-unrestricted manner, in this case against a non—T-dependent antigen, with specific binding, activation, and cytotoxicity against GD3+ melanoma cells. Soluble GD3 in concentrations up to 100 μg/ml did not interfere with recognition and binding of membrane-bound antigen. Based on the outcomes of these structural and functional tests, the sFv-ζ construct was selected for clinical development. These results demonstrate key features that emphasize the potential of anti-GD3 IgTCR-modified autologous T cells for melanoma therapies.

  12. Human umbilical cord-drived mesenchymal stem cells as vehicles of CD20 specific-TRAIL fusion protein against non-Hodgkin’ s lymphoma%脐带间充质干细胞运载scFvCD20:sTRAIL融合蛋白对B-淋巴瘤细胞的生长抑制作用

    Institute of Scientific and Technical Information of China (English)

    范冬梅; 张晓龙; 张晴; 卢杨; 杨圆圆; 袁向飞; 张砚君; 熊冬生

    2016-01-01

    migrated to tumor site, secreted a novel fusion protein scFvCD20:sTRAIL,and thus locally concentrated scFvCD20:sTRAIL extended antigen-restricted anti-tumor activity. The engineered HUMSCs secreting scFvCD20:sTRAIL showed potent effect on inhibiting tumor growth in BJAB lymphoma malignancy,which may play an essential role in the clinical research .%目的::探讨脐带间充质干细胞运载scFvCD20:sTRAIL融合蛋白的新型双重靶向系统对CD20+ BJAB细胞的生长抑制作用。方法:采用传统分子生物学技术构建 pLenR. scFvCD20:sTRAIL、pLenR. ISZ-sTRAIL、pLenR. scFvCD20及pLenR. copGFP四种慢病毒表达载体,利用四质粒慢病毒包装系统于293T细胞中包装慢病毒颗粒,并感染人脐带组织来源的MSCs( HUMSCs),使其稳定表达融合蛋白。于体外采用CCK8细胞增殖抑制实验检测scFvCD20:sTRAIL融合蛋白对CD20阳性BJAB细胞和Raji细胞、CD20阴性Jurkat细胞以及正常人外周血单个核细胞( PBMCs)的生长抑制作用。建立NOD/SCID鼠BJAB细胞皮下移植瘤模型,将MSC. scFvCD20:sTRAIL经尾静脉注射入小鼠体内,每3 d测量瘤体积,根据肿瘤体积计算抑瘤率。结果:成功构建了慢病毒表达载体pLenR. scFvCD20:sTRAIL、 pLenR. ISZ-sTRAIL、pLenR. scFvCD20及pLenR. copGFP,且经慢病毒感染可在HUMSCs中稳定表达。体外实验显示,scFvCD20:sTRAIL融合蛋白可不同程度地提高对CD20阳性BJAB和Raji细胞的生长抑制作用,而对CD20阴性Jurkat细胞的生长抑制作用降低;而且不影响PBMCs的生长。体内实验表明, MSC. scFvCD20:sTRAIL可显著抑制BJAB淋巴瘤的生长,初始治疗后第24天,抑瘤率达65.2%,与MSC. ISZ:sTRAIL治疗组比较(抑瘤率为52.7%),具统计学差异(P<0.05)。结论:建立了HUMSCs运载scFvCD20:sTRAIL融合蛋白的双重靶向治疗系统,HUMSCs可向BJAB淋巴瘤部位归巢并表达分泌scFvCD20:sTRAIL融合蛋白,后者在局部经scFvCD20的二次导向发挥CD20特异

  13. Chimeric hepatitis B virus (HBV)/hepatitis C virus (HCV) subviral envelope particles induce efficient anti-HCV antibody production in animals pre-immunized with HBV vaccine.

    Science.gov (United States)

    Beaumont, Elodie; Roingeard, Philippe

    2015-02-18

    The development of an effective, affordable prophylactic vaccine against hepatitis C virus (HCV) remains a medical priority. The recently described chimeric HBV-HCV subviral envelope particles could potentially be used for this purpose, as they could be produced by industrial procedures adapted from those established for the hepatitis B virus (HBV) vaccine. We show here, in an animal model, that pre-existing immunity acquired through HBV vaccination does not influence the immunogenicity of the HCV E2 protein presented by these chimeric particles. Thus, these chimeric HBV-HCV subviral envelope particles could potentially be used as a booster in individuals previously vaccinated against HBV, to induce protective immunity to HCV. PMID:25596457

  14. Polyethylene glycol (PEG) linked to near infrared (NIR) dyes conjugated to chimeric anti-carcinoembryonic antigen (CEA) antibody enhances imaging of liver metastases in a nude-mouse model of human colon cancer.

    Science.gov (United States)

    Maawy, Ali A; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A; Hoffman, Robert M; Bouvet, Michael

    2014-01-01

    We report here that polyethylene glycol (PEG) linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA) antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes) compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases.

  15. Polyethylene glycol (PEG linked to near infrared (NIR dyes conjugated to chimeric anti-carcinoembryonic antigen (CEA antibody enhances imaging of liver metastases in a nude-mouse model of human colon cancer.

    Directory of Open Access Journals (Sweden)

    Ali A Maawy

    Full Text Available We report here that polyethylene glycol (PEG linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases.

  16. Bioprocess development for the production of mouse-human chimeric anti-epidermal growth factor receptor vIII antibody C12 by suspension culture of recombinant Chinese hamster ovary cells

    OpenAIRE

    Hu, Suwen; Deng, Lei; Wang, Huamao; Zhuang, Yingping; Chu, Ju; Zhang, Siliang; Li, Zhonghai; Guo, Meijin

    2011-01-01

    The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 105 cells/mL. Then, the basic metabolic ...

  17. Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities.

    Directory of Open Access Journals (Sweden)

    Radu O Minea

    Full Text Available Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., alphavbeta3, alphavbeta5, and alpha5beta1, VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis. Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN.

  18. CD20 antibody primes B lymphocytes for type I interferon production.

    Directory of Open Access Journals (Sweden)

    Dongsheng Xu

    Full Text Available CD20 is a B cell surface marker that is expressed in various stages in B lymphocytes and certain lymphomas. Clinical administration of CD20 antibody, such as rituximab, is used widely to treat human B-cell lymphomas and other diseases. However, CD20 antibody failed to treat systemic lupus erythematosus (SLE or lupus. The reason for the failure is currently unknown. Type I interferons (IFN are a major component for the host innate immunity, and a key pathogenic factor in lupus. We found that CD20 antibody potentiated human B cells for its production of IFNs in vitro. This function was specific to CD20-expressing cells and the potentiation function seems to be instant. In addition, ectopic expression of CD20 in non-B-lymphocytes increased the IFN promoter reporter activities. Because IFNs are a key pathogenic factor in lupus, our data suggest that, in the presence of virus infection, the CD20-antibody-mediated enhancement of IFN production might be related to its failure in lupus treatments. This work may provide new insights for CD20-Ab therapeutic applications.

  19. Electroejaculation of chimeric rats

    OpenAIRE

    McCoy, Marina R.; Montonye, Daniel; Bryda, Elizabeth C.

    2013-01-01

    With the advent of genetic engineering of rodents came the need to assess fertility and germline competency, especially in chimeric rodents generated using embryonic stem cells. Traditional methods rely on natural mating and progeny testing, which is time- and cost-intensive. Electroejaculation is a faster method of collecting sperm for genetic analysis and offers the additional benefit of using fewer animals. This column describes a refined electroejaculation technique for chimeric rats usin...

  20. Preparation, quality control and biodistribution studies of [{sup 67}Ga]-DOTA-anti-CD20

    Energy Technology Data Exchange (ETDEWEB)

    Jalilian, A.R.; Khorrami, A. [Nuclear Science and Technology Research Inst., Karaj (IR). Nuclear Medicine Research Group, Agriculture, Medicine and Industrial Research School (AMIRS); Mirsadeghi, L.; Haji-Hosseini, R. [Payam-e-Noor Univ., Tehran (Iran). Biochemistry Dept.

    2008-07-01

    Rituximab was successively labeled with [{sup 67}Ga]-gallium chloride. The macrocyclic bifunctional chelating agent, N-succinimidyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NHS) was prepared at 25 C using DOTA, N-hydroxy succinimide (NHS) in CH{sub 2}Cl{sub 2}. DOTA-Rituximab was obtained by the addition of 1 mL of a Rituximab pharmaceutical solution (5 mg/mL, in phosphate buffer, pH=7.8) to a glass tube pre-coated with DOTA-NHS (0.01-0.1 mg) at 25 C with continuous mild stirring for 15 h. Radiolabeling was performed at 37 C in 3 h. Radio-thin layer chromatography showed an overall radiochemical purity of 90%-95% at optimized conditions (specific activity = 30 GBq/mg, labeling efficacy; 82%). The final isotonic {sup 67}Ga-DOTA-rituximab complex was checked by gel electrophoresis for radiolysis. Radio-TLC was performed to ensure that only one species was present after filtration through a 0.22 {mu}m filter. Preliminary biodistribution studies in normal rat model performed to determine complex distribution of the radioimmunoconjugate up to 28 h. (orig.)

  1. Preparation, quality control and biodistribution studies of [67Ga]-DOTA-anti-CD20

    International Nuclear Information System (INIS)

    Rituximab was successively labeled with [67Ga]-gallium chloride. The macrocyclic bifunctional chelating agent, N-succinimidyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NHS) was prepared at 25 C using DOTA, N-hydroxy succinimide (NHS) in CH2Cl2. DOTA-Rituximab was obtained by the addition of 1 mL of a Rituximab pharmaceutical solution (5 mg/mL, in phosphate buffer, pH=7.8) to a glass tube pre-coated with DOTA-NHS (0.01-0.1 mg) at 25 C with continuous mild stirring for 15 h. Radiolabeling was performed at 37 C in 3 h. Radio-thin layer chromatography showed an overall radiochemical purity of 90%-95% at optimized conditions (specific activity = 30 GBq/mg, labeling efficacy; 82%). The final isotonic 67Ga-DOTA-rituximab complex was checked by gel electrophoresis for radiolysis. Radio-TLC was performed to ensure that only one species was present after filtration through a 0.22 μm filter. Preliminary biodistribution studies in normal rat model performed to determine complex distribution of the radioimmunoconjugate up to 28 h. (orig.)

  2. Development of [64Cu]-DOTA-anti-CD20 for targeted therapy

    International Nuclear Information System (INIS)

    Copper-64 was produced as a by-product of 55Co via 64Ni(p,n)64Cu by 15 MeV proton bombardment of natNi resulting in a thick target yield of 5.31 MBq/μAh (143.5 μCi/μAh) and a radiochemical separation yield of 95% (radionuclide purity >97% after 25 hours of bombardment). Rituximab was successively labeled with [64Cu]-CuCl2. N-succinimidyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NHS) was prepared at 25 deg C using DOTA and N-hydroxy succinimide (NHS) in CH2Cl2 followed by the addition of 1 ml of a Rituximab pharmaceutical solution. Radiolabeling was performed at 37 deg C in 3 hours. Radio thin-layer chromatography showed an overall radiochemical purity of 90-95% at optimized conditions (specific activity=30 GBq/mg, labeling efficacy; 82%) using various chromatography systems. The final isotonic 64Cu- DOTA-Rituximab complex was passed through a 0.22 μm filter and checked by gel electrophoresis for radiolysis control. Stability of the final product was checked in the formulation and in presence of human serum at 37 deg C. (author)

  3. CD20 expression characteristic and prognosis in childhood acute lymphoblastic leukemia

    Institute of Scientific and Technical Information of China (English)

    夏敏

    2014-01-01

    Objective To analyzed the expression and clinical characteristics of CD20 marker in children with B-lineage acute lymphoblastic leukemia(B-ALL)and evaluated its medical significance in assessing the prognosis of disease.Methods From November 2008 to July 2012,125cases of children with B-lineage acute lymphoblastic leukemia were collected from Shanghai Children’s Hospital,

  4. CONSTRUCTION AND EXPRESSION OF A HUMAN-MOUSE CHIMERIC ANTIBODY AGAINST HUMAN BLADDER CANCER

    Institute of Scientific and Technical Information of China (English)

    白银; 王琰; 周丽君; 俞莉章

    2001-01-01

    To construct and express a human-mouse chimeric antibody against human bladder cancer. Method: The variable region genes of anti-human bladder cancer monoclonal antibody BDI-1 were cloned by RT-PCR. A human-mouse chimeric antibody expression vector was constructed and transfected into CHO cells. The chimeric antibody against bladder cancer was expressed and characterized. Result: Eukaryotic expression vector of the chimeric antibody against human bladder carcinoma was successfully constructed, and was expressed in eukaryotic cells; the expressed chimeric antibody ch-BDI showed same specificity as its parent McAb against human bladder cancer cells. Conclusion: The constructed chimeric antibody was expressed successfully in eukaryotic cells, and the chimeric antibody had desired affinity against human bladder cancer cells.

  5. The Role of CD16+, CD56+, NK (CD16+/CD56+ and B CD20+ Cells in the Outcome of Pregnancy in Women with Recurrent Spontaneous Abortion

    Directory of Open Access Journals (Sweden)

    Mehri Ghafourian

    2015-01-01

    Full Text Available Objectives: Recurrent Spontaneous Abortion (RSA is the most common complication of pregnancy. It is considered as one of the most important issues of reproduction in the world. RSA is defined as having three or more miscarriages in the first trimester of pregnancy. Increase in peripheral blood lymphocytes may be associated with abortion; therefore,the study was aimed to investigate and compare the peripheral blood CD16+, CD56+, NK(CD16+/CD56+ and B CD20+ cells populations in diagnosis and on pregnancy outcome in women with abortion. Materials and Methods: In this case-control study, 25 non-pregnant women with at least 3 abortions without obvious reason and 25 non-pregnant women with a living child without history of previous abortion participated. Using monoclonal antibodies anti (CD16, CD56 and CD20 and flow cytometry method, the percentage of cells with these markers was determined. Data analysis was performed by with SPSS 15 software and T-test. Results: CD16+, CD56+ and NK (CD16+/CD56+ cells significantly increased in women with RSA compared with control group (P≤0.05 but there were no significant differences in the percentage of B CD20+ cells between the experimental and control groups (P>0.05. Conclusion: According to the results of the present study, increased percentage of NK cells may be considered as a risk factor for RSA but involvement and the role of B CD20+ lymphocytes in RSA cannot be confirmed; however, in regard to important role of B and NK cell in the management of the immune responses, more studies are required to understand the behavior of these cells in the different stages of pregnancy more efficiently

  6. Electroejaculation of chimeric rats.

    Science.gov (United States)

    McCoy, Marina R; Montonye, Daniel; Bryda, Elizabeth C

    2013-06-01

    With the advent of genetic engineering of rodents came the need to assess fertility and germline competency, especially in chimeric rodents generated using embryonic stem cells. Traditional methods rely on natural mating and progeny testing, which is time- and cost-intensive. Electroejaculation is a faster method of collecting sperm for genetic analysis and offers the additional benefit of using fewer animals. This column describes a refined electroejaculation technique for chimeric rats using light gas anesthesia and a custom-made platform for sperm collection. PMID:23689457

  7. Chimeric Pestivirus Experimental Vaccines.

    Science.gov (United States)

    Reimann, Ilona; Blome, Sandra; Beer, Martin

    2016-01-01

    Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics. PMID:26458840

  8. Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer

    Science.gov (United States)

    Maawy, Ali A.; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2014-10-01

    Labeling of metastatic tumors can aid in their staging and resection of cancer. Near infrared (NIR) dyes have been used in the clinic for tumor labeling. However, there can be a nonspecific uptake of dye by the liver, lungs, and lymph nodes, which hinders detection of metastasis. In order to overcome these problems, we have used two NIR dyes (DyLight 650 and 750) conjugated to a chimeric anti-carcinoembryonic antigen antibody to evaluate how polyethylene glycol linkage (PEGylation) can improve specific tumor labeling in a nude mouse model of human pancreatic cancer. The conjugated PEGylated and non-PEGylated DyLight 650 and 750 dyes were injected intravenously into non-tumor-bearing nude mice. Serum samples were collected at various time points in order to determine serum concentrations and elimination kinetics. Conjugated PEGylated dyes had significantly higher serum dye concentrations than non-PEGylated dyes (p=0.005 for the 650 dyes and pdyes). Human pancreatic tumors subcutaneously implanted into nude mice were labeled with antibody-dye conjugates and serially imaged. Labeling with conjugated PEGylated dyes resulted in significantly brighter tumors compared to the non-PEGylated dyes (pdyes; p=0.01 for 750 dyes). PEGylation of the NIR dyes also decreased their accumulation in lymph nodes, liver, and lung. These results demonstrate enhanced selective tumor labeling by PEGylation of dyes conjugated to a tumor-specific antibody, suggesting their future clinical use in fluorescence-guided surgery.

  9. CD19(+) CD20(-) CD27(hi) IL-s10-producing B cells are overrepresented in R-CHOP-treated DLBCL patients in complete remission.

    Science.gov (United States)

    Qiu, Huiying; Li, Junguo; Feng, Zhenjun; Yuan, Joanna; Lu, Jie; Hu, Xiaoxia; Gao, Lei; Lv, Shuqing; Yang, Jianmin; Chen, Lei

    2016-09-01

    Treatment of diffuse large B cell lymphoma (DLBCL) with rituximab, an anti-CD20 monoclonal antibody, has resulted in significantly improved patient responses with longer event-free intervals and higher overall survival rates. However, since rituximab depletes all CD20-expressing cells, including noncancerous B cells, the effects of rituximab on the normal immunity of DLBCL patients under remission need to be examined. Here, we observed that DLBCL patients under remission contained significantly lower frequencies of total B cells, with a significantly overrepresented interleukin (IL)-10-producing B cell (B10) population in the peripheral blood. Further examination confirmed that a large fraction of B10 cells was CD20(-) CD27(hi) plasmablasts, possibly explaining the persistence of B10 cells after R-CHOP treatment. We also observed that the percentage of B10 cells in DLBCL patients in remission gradually reduced during the first year of achieving complete remission, primarily due to the replenishment of non-B10 B cells. Despite this, the percentage of B10 cells in DLBCL patients after 1 year of achieving complete remission was still higher than that in controls. CD4(+) and CD8(+) T cells cocultured with B10-enriched B cells secreted significantly lower levels of proinflammatory cytokines IFN-g and TNF-a, compared to those incubated with B10-depleted B cells. Together, our data observed a long-lasting overrepresentation of B10 cells in DLBCL patients under remission. Whether this change could impact on the overall anti-tumor immunity during remission requires further studies.

  10. High affinity mouse-human chimeric Fab against Hepatitis B surface antigen

    Institute of Scientific and Technical Information of China (English)

    Biplab Bose; Navin Khanna; Subrat K Acharya; Subrata Sinha

    2005-01-01

    AIM: Passive immunotherapy using antibody against hepatitis B surface antigen (HBsAg) has been advocated in certain cases of Hepatitis B infection. We had earlier reported on the cloning and expression of a high affinity scFv derived from a mouse monoclonal (5S) against HBsAg. However this mouse antibody cannot be used for therapeutic purposes as it may elicit anti-mouse immune responses. Chimerization by replacing mouse constant domains with human ones can reduce the immunogenicity of this antibody.METHODS: We cloned the VH and VL genes of this mouse antibody; and fused them with CH1 domain of human IgG1 and CL domain of human kappa chain respectively. These chimeric genes were cloned into a phagemid vector. After initial screening using the phage display system, the chimeric Fab was expressed in soluble form in E. Coli.RESULTS: The chimeric Fab was purified from the bacterial periplasmic extract. We characterized the chimeric Fab using several in vitro techniques and it was observed that the chimeric molecule retained the high affinity and specificity of the original mouse monoclonal.This chimeric antibody fragment was further expressed in different strains of E> coli to increase the yield.CONCLUSION: We have generated a mouse-human chimeric Fab against HBsAg without any significant loss in binding and epitope specificity. This chimeric Fab fragment can be further modified to generate a fulllength chimeric antibody for therapeutic uses.

  11. Rotavirus VP7 epitope chimeric proteins elicit cross-immunoreactivity in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Bingxin; Zhao; Xiaoxia; Pan; Yumei; Teng; Wenyue; Xia; Jing; Wang; Yuling; Wen; Yuanding; Chen

    2015-01-01

    VP7 of group A rotavirus(RVA) contains major neutralizing epitopes. Using the antigenic protein VP6 as the vector, chimeric proteins carrying foreign epitopes have been shown to possess good immunoreactivity and immunogenicity. In the present study, using modified VP6 as the vector,three chimeric proteins carrying epitopes derived from VP7 of RVA were constructed. The results showed that the chimeric proteins reacted with anti-VP6 and with SA11 and Wa virus strains.Antibodies from guinea pigs inoculated with the chimeric proteins recognized VP6 and VP7 of RVA and protected mammalian cells from SA11 and Wa infection in vitro. The neutralizing activities of the antibodies against the chimeric proteins were significantly higher than those against the vector protein VP6 F. Thus, development of chimeric vaccines carrying VP7 epitopes using VP6 as a vector could be a promising alternative to enhance immunization against RVAs.

  12. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas

    Science.gov (United States)

    Onea, Alexandra S; Jazirehi, Ali R

    2016-01-01

    Recovery rates for B-cell Non-Hodgkin’s Lymphoma (NHL) are up to 70% with current standard-of-care treatments including rituximab (chimeric anti-CD20 monoclonal antibody) in combination with chemotherapy (R-CHOP). However, patients who do not respond to first-line treatment or develop resistance have a very poor prognosis. This signifies the need for the development of an optimal treatment approach for relapsed/refractory B-NHL. Novel CD19- chimeric antigen receptor (CAR) T-cell redirected immunotherapy is an attractive option for this subset of patients. Anti-CD19 CAR T-cell therapy has already had remarkable efficacy in various leukemias as well as encouraging outcomes in phase I clinical trials of relapsed/refractory NHL. In going forward with additional clinical trials, complementary treatments that may circumvent potential resistance mechanisms should be used alongside anti-CD19 T-cells in order to prevent relapse with resistant strains of disease. Some such supplementary tactics include conditioning with lymphodepletion agents, sensitizing with kinase inhibitors and Bcl-2 inhibitors, enhancing function with multispecific CAR T-cells and CD40 ligand-expressing CAR T-cells, and safeguarding with lymphoma stem cell-targeted treatments. A therapy regimen involving anti-CD19 CAR T-cells and one or more auxiliary treatments could dramatically improve prognoses for patients with relapsed/refractory B-cell NHL. This approach has the potential to revolutionize B-NHL salvage therapy in much the same way rituximab did for first-line treatments. PMID:27186412

  13. Studies of tolerance induction through mixed chimerism in cynomolgus monkeys. Method for detection of chimeric cells and effect of thymic irradiation on induction of tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tomoaki; Kawai, Tatsuo; Ota, Kazuo [Tokyo Women`s Medical Coll. (Japan)

    1996-12-01

    To establish the method for the detection of chimerism in cynomologus monkeys, we tested cross reactivity of various anti-HLA monoclonal antibodies (mAb) to cynomolgus monkeys. In 29 mAb we tested, only three monoclonal anti-HLA antibodies crossreacted with lymphocytes of monkeys. With these mAb, chimeric cell can be detected up to 1% by flow cytometric analysis (study 1). Utilizing the method we developed in study 1, we applied the regimen that induces mixed chimerism and skin graft tolerance in mice to renal allotransplantation of cynomolgus monkey. Regimen A includes non-lethal dose of total body irradiation (TBI), administration of anti-thymocyte globulin (ATG) for 3 days, donor bone marrow infusion and 45 days course of cyclosporine (CYA) administration. We added 7 Gy of thymic irradiation on day-6 in regimen B and on day-1 in regimen C. Although all monkeys in regimen A and B consistently developed chimerism, they rejected kidney allografts soon after stopping CYA. In contrast, 4 monkeys out of 5 failed to develop chimerism in regimen C, but renal allograft tolerance was induced in one monkey who developed chimerism in regimen C. In conclusion, the induction of chimerism is considered necessary but not sufficient for tolerance induction. (author)

  14. CD20阳性淋巴细胞在慢性移植肾肾病组织中浸润的意义%Significance of CD20-positive lymphocytes infiltrating in renal allograft biopsies with chronic allograft nephropathy

    Institute of Scientific and Technical Information of China (English)

    胡建敏; 赵明; 郭颖; 陈桦; 李民

    2012-01-01

    目的 探讨肾移植术后慢性移植物肾病(CAN)组织CD20阳性淋巴细胞浸润的临床意义及其机制.方法 选择肾移植术后2年内活检证实为CAN病例为研究对象,应用免疫组织化学方法检测补体C4d的沉积和CD20阳性淋巴细胞在移植肾组织的浸润,同时分析临床随访资料.结果 人选CAN病例44例,其中CD20阳性淋巴细胞浸润13例(29.5%),CD20阴性为31例(70.5%),移植肾组织不同病理分级者中CD20阳性者所占比例的差异无统计学意义(P>0.05).44例中,12例(27.3%)出现管周毛细血管内皮细胞(PTC)补体C4d的线性沉积,CD20阳性和阴性者中补体C4d表达阳性率的差异无统计学意义(P>0.05).确诊为CAN时移植肾组织CD20为阴性和阳性者的肾功能分别为( 140.8±22.0)μmol/L和(183.5±25.5) μmol/L(P<0.01),1年后分别为(165.6±37.6)μmol/L和(242.2±59.1 )μmol/L(P<0.01).结论 CD20阳性淋巴细胞在移植肾组织的浸润与移植物的预后相关,其机制可能不是通过慢性体液免疫反应.%Objective To investigate the action mechanism of CD20 lymphocyte infiltration in the renal allograft biopsy with chronic allograft nephropathy (CAN).Methods CAN cases confirmed by renal biopsy within 2 years after renal transplantation served as study subjects. By using immunohistochemistry,the deposition of C4d and the CD20-positive lymphocytes infiltration in the renal grafts were examined.The clinical follow-up data were analyzed.Results Forty-four cases of CAN were enrolled in the study, including 13 cases (29.5% ) of CD20-positive lymphocytes infiltration,and 31 cases (70.5% ) of CD20-negative lymphocytes infiltration. CD20-positive lymphocytes in biopsy showed nodular and scattered lymphocytes infiltration.There were 5 (26.3%)cases of CAN Ⅰ,4 cases (25.0%) of CAN Ⅱ,and 4 (44.4%) of CAN Ⅲ in CD20-positive group.There was no statistically significant difference between the only CAN group and CAN with AR group in

  15. 抗p185erbB2人鼠嵌合抗体慢病毒表达载体的构建%Construction of the Lentiviral Expression Vector for Anti-p185erbB2 Mouse/Human Chimeric Antibody

    Institute of Scientific and Technical Information of China (English)

    刘芳; 李力; 张玮; 王琪

    2013-01-01

    本研究构建抗p185erbB2人鼠嵌合抗体慢病毒表达载体,并将其转染293T细胞,明确转染后嵌合抗体基因的表达情况.采用PCR法扩增抗p185erbB2鼠单抗轻、重链可变区基因(vL和vH)和人IgG1的轻、重链恒定区基因(κ和γ1),再利用三引物PCR法将vL和κ,vH和γ1进行拼接,得到嵌合轻链基因(L)和嵌合重链基因(H),分别插入质粒pVAX1/IRES的IRES元件的下、上游.用内切酶将H-IRES-L从pVAX1/H-IRES-L上切下,插入慢病毒载体pWPI中,经相应酶切和测序鉴定,正确构建了慢病毒表达载体pWPI/H-IRES-L.将其转染293T细胞,48 h后通过荧光显微镜检测绿色荧光蛋白(GFP)的表达,RT-PCR和直接ELISA法检测嵌合抗体的表达.结果显示,转染pWPI/H-IRES-L的293T细胞中有嵌合轻链和嵌合重链基因的共同表达,而且表达的嵌合抗体能够与p185erbB2分子特异性结合,为今后抗p185erbB2工程抗体的研究奠定了基础.%This research was to construct the lentiviral expression vector for anti- pl85erbB2 mouse/human chimeric antibody and to determine the expression of the chimeric antibody gene in 293T cells transfected with this vector. The genes (vL and vH) coding light and heavy chain of variable regions of anti-pl85erbB2 mAb and the constant regions of human IgG1 (Κ and γ1) were cloned with PCR method. The target genes were assembled by three-primers PCR method to obtain the chimeric light chain (L) and the chimeric heavy chain (H). Both chains inserted into the down stream and upper stream of IRES gene of the plasmid pVAX1/IRES respectively. We digested the plasmid pVAX1/ H-IRES-L with endoenzyme and subcloned H-IRES-L into the lentiviral vector pWPI. The enzyme digestion and sequence analysis showed that the lentiviral expression vector pWPI/H-IRES-L was constructed correctly. Then, it was transfected into 293T cells and after 48h, GFP protein expression in 293T cells were detected by fluorescent microscope and the chimeric antibody

  16. High-Level Expression of Anti-Vascular Endothelial Growth Factor Chimeric Antibody in Eukaryotic Cells%抗人血管内皮生长因子嵌合抗体在真核细胞中的高效表达

    Institute of Scientific and Technical Information of China (English)

    冉宇靓; 杨治华; 孙立新; 遇珑; 刘军; 董志伟

    2001-01-01

    Objective:This study was designed to express chimeric anti-VEGF (vascular endothelial growth factor) antibody in dihydrofolate reductase-deficient Chinese hamster ovary (CHO-dhfr-)cells at high-level, and explore an optimum method to obtain high-level expression cells clone. Methods:The light chain and heavy chain genes of chimeric anti-VEGF antibody were induced into CHO-dhfr-cells using a novel eukaryotic high-level expression vectors system for genetic engineering antibodies. High-level expression was achieved after subcloning and several rounds of co-amplification of methotrexate (MTX). Biological features and productive amount of chimeric antibody was charactered by ELISA. Result:The cells strain that secret anti-VEGF chimeric antibody at the highest level of 28 μ g/ml was established. The cells were subcloned following each round of co-amplification of MTX, while greatly different results were obtained using three methods. The chimeric antibody contained constant regions of human immunoglobin and had the specificity against VEGF by ELISA. Conclusion:The anti-VEGF mouse-human chimeric antibody was expressed at high-level successfully in CHO cells. This may be an optimum method to obtain high-level expression cells clone for the eukaryotic high-level expression vectors system.%目的:在中国仓鼠卵巢(Chinese hamsterovary,CHO)细胞中高效表达有活性的抗人血管内皮生长因子(vascular endothelial growth factor,VEGF)嵌合抗体,并探索获得最佳表达的途径。方法:采用一种新型的基因工程抗体真核高效表达载体系统,将抗VEGF嵌合抗体轻、重链基因导入二氢叶酸还原酶缺陷型CHO细胞,筛选表达抗VEGF嵌合抗体的克隆,再进行递增浓度的氨甲喋呤(methotrexate,MTX)加压扩增表达。采用ELISA检测所表达的嵌合抗体的生物学特性和产量。结果:采用三种不同的筛选加压扩增表达方法获得的结果有差异,其中采用每轮

  17. CD20单抗临床应用局限与免疫效应器耗竭的研究进展%Limitations of CD20mAb in clinical applications and effectors exhausting

    Institute of Scientific and Technical Information of China (English)

    温良鹤; 徐玉清

    2011-01-01

    CD20单克隆抗体(Rituximab),已被批准应用于非霍奇金B淋巴瘤的治疗,并取得了显著的免疫疗效.但在大负荷循环B细胞存在的情况下,由于机体效应器如效应细胞,效应因子的耗竭,继发表面抗原抗体结合物的削片反应,导致了肿瘤的耐药与复发,降低了Rituximab的疗效.此综述通过对近20年来CD20单抗研究现状的阐述,讨论其作用机制及在效应器耗竭方面的局限,探索适宜的改进方法,以拓展其应用前景.%Rituximab, an approved CD20 monoclonal antibody (CD20mAb), has prominent effects in B-cell non-Hodgkin's lymphoma (NHL). However, the presence of resistance and relapse under high circulatory target B cells burden makes it inefficacious, which may result from antigen antibody complex shaving action based on effectors exhausting, such as effect cells and cytokine. In this review, we expound the research of Rituximab's immunotherapy mechanisms and effectors exhausting in the last two decades, trying to explore eligible strategies to expand its application in the future.

  18. Immunogenicity and antigenicity of a recombinant chimeric protein containing epitopes of poliovirus type 1.

    Science.gov (United States)

    Pan, X-X; Wang, J; Xia, W-Y; Li, X-F; Yang, L-J; Huang, C; Chen, Y-D

    2016-01-01

    To design a vaccine that simultaneously prevents both rotavirus (RV) and poliovirus (PV), a PV type 1 (PV1) chimeric protein using RV VP6 as a vector (VP6F) was constructed, expressed in Escherichia coli expression system and characterized by SDS-PAGE, Western blot, immunofluorescence assay and neutralization test. The results showed that the chimeric protein reacted with anti-VP6F and anti-PV1 antibodies and elicited production of serum antibodies against the chimeric protein in guinea pigs. Antibodies against the chimeric protein neutralized RV Wa and PV1 infection in vitro. The results provided a relevant possibility of developing novel approaches in the rational design of vaccines effective against both RV and PV. PMID:27640433

  19. 抗阿尔茨海默病Aβ人-鼠嵌合抗体基因的真核载体构建和表达%Vector construction and expression of anti-Aβ human-mouse chimeric antibody against Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    常德; 张建华; 赵雪梅; 梁平

    2010-01-01

    Objectives To construct and to express a human-mouse chimeric antibody against Aβpeptide involved in Alzheimer disease by genetic antibody engineering with reducing of its human anti-mouse antibody response. Methods Total RNA was extracted from a murine hybridoma cell line that secreted antiAβ monoclonal antibody. The entire gene coding heavy and light chains were amplified using RT-PCR and analyzed by Genebank Blast. The chimeric antibody gene was acquired by variable region gene of the monoclonal antibody with constant region gene of human IgG, in which point mutations were induced by recombinant PCR technology, respectively. The eukaryotic expression vectors established by cloning chimeric antibody genes of the heavy and light chains into 3.1 were co-transfected into COS-7 cells. The expressed products were analyzed using ELISA and immunohistochemistry subsequently. Results Genebank Blast analysis showed that the entire cloned antibody genes were in accordance with the murine antibody genes. DNA sequencing confirmed that the expression vectors of chimeric antibody were constructed successfully after splicing the variable region and constant region sequences. By co-transfecting COS-7 cells,a chimeric antibody was produced and collected in the culture medium. The antibody was humanized and bound Aβ specifically by ELISA and immunohistochemistry evaluations. Conclusions Expression vector of chimeric antibody against Aβ was constructed successfully and expressed in the eukaryotic cells. It provides a solid base for developing diagnostic and therapeutic methods for Alzheimer's disease in clinic and paves a way for a further humanization in the future.beta-protein%目的 通过基因工程抗体技术构建和表达抗β-淀粉样多肽(Aβ)人-鼠嵌合抗体,减低鼠源单克隆抗体在临床应用中引起的人体免疫排斥反应.方法从分泌抗Aβ1-42鼠单克隆抗体杂交瘤细胞株中提取总RNA,用逆转录-聚合酶链反应(RT-PCR)扩增鼠

  20. Analyses of CD20 Monoclonal Antibody–Mediated Tumor Cell Killing Mechanisms: Rational Design of Dosing Strategies

    Science.gov (United States)

    Lindorfer, Margaret A.

    2014-01-01

    Since approval of rituximab for treatment of B cell non-Hodgkin lymphoma, development of monoclonal antibodies (mAbs) for cancer treatment and elucidation of their cytotoxic mechanisms have been subject to intense investigations. Compelling evidence indicates that rituximab and another CD20 mAb, ofatumumab, must use the body’s cellular and humoral immune effector functions to kill malignant cells. Other U.S. Food and Drug Administration–approved mAbs, including obinutuzumab, cetuximab, and trastuzumab, require, in part, these effector mechanisms to eliminate tumor cells. Although gram quantities of mAbs can be administered to patients, our investigations of CD20 mAb-based therapies for chronic lymphocytic leukemia (CLL), including correlative measurements in clinical trials and studies with primary cells and cell lines, indicate that effector mechanisms necessary for mAb activity can be saturated or exhausted if tumor burdens are high, thus substantially compromising the efficacy of high-dose mAb therapy. Under these conditions, another reaction (trogocytosis) predominates in which bound CD20 mAb and CD20 are removed from targeted cells by effector cells that express Fcγ receptors, thereby allowing malignant cells to escape unharmed and continue to promote disease pathology. To address this problem, we propose that a low-dose strategy, based on administering 30–50 mg of CD20 mAb three times per week, may be far more effective for CLL than standard dosing because it will minimize effector function saturation and reduce trogocytosis. This approach may have general applicability to other mAbs that use immune effector functions, and could be formulated into a subcutaneous treatment strategy that would be more accessible and possibly more efficacious for patients. PMID:24944188

  1. Chimeric enzymes with improved cellulase activities

    Science.gov (United States)

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  2. The study of conjugation of anti-CD20 monoclonal antibody for labeling with metallic or lanthanides radionuclides; Estudo de conjugacao do anticorpo anti-CD20 para marcacao com radionuclideos metalicos ou lantanideos

    Energy Technology Data Exchange (ETDEWEB)

    Akanji, Akinkunmi Ganiyu

    2012-07-01

    Lymphomas are malignancies or cancers that start from the malign transformation of a lymphocyte in the lymphatic system. Generally, lymphomas start from the lymph nodes or from the agglomeration of the lymphatic tissues, organs like stomach, intestines, in some cases it can involve the bone marrow and the blood, it can also disseminate to other organs. Lymphomas are divided in two major categories: Hodgkin lymphoma and non-Hodgkin lymphoma (NHL). Patient with NHL are generally treated with radiotherapy alone or combined with immunotherapy using monoclonal antibody rituximab (MabThera Registered-Sign ). Currently, monoclonal antibodies (Acm) conjugated with bifunctional chelate agents and radiolabeled with metallic or lanthanides radionuclides are a treatment reality for patients with NHL by the principle of radioimmunotherapy (RIT). This study focused on the conditions of conjugation of Acm rituximab (MabThera Registered-Sign ) with bifunctional chelating agents DOTA and DTPA. Various parameters were studied: method of Acm purification, conditions of Acm conjugation, the method for determination of number of chelate agent coupled to the Acm, method for purification of the conjugated antibody Acm, conditions of labeling of the conjugated antibody with lutetium-177, method of purification of the radiolabeled immuno conjugate, method of radiochemical purity (RP), specific binding in vitro Raji cells (Human Burkitt) and biological distribution performed in normal Balb-c mouse. The three methodologies employed in pre-purification of Acm (dialysis, size exclusion chromatograph and dial filtration) demonstrated to be efficient; they provided sample recovery exceeding 90%. However, the methodology of dial filtration presents minimal sample loss, and gave the final recovery of the sample in micro liters; thereby facilitating sample use in subsequent experiments. Numbers of chelators attached to the Acm molecule was proportional to the molar ratio studied. When we evaluated the influence of different conditions of conjugation in the number of chelators bounded to the Acm, no notable differences were observed. The RP < 80% was observed in all the methods applied. Purification of the conjugated antibody by dialysis and size exclusion chromatography demonstrated to be efficient, but deficient in terms of high sample volume recovered. The dial filtration was efficient and practical besides it provided sample recovery in micro liters. The optimized conditions for purification of the conjugated antibody preserved the protein integrity. When the conjugated Acm was labeled with lutetium-177 a product with low RP was observed in all molar ratios studied. The methodology used in the control of RP of the radiolabeled antibody was efficient in the discrimination of radiochemical species presented in the reaction mixture. The method of purification of the conjugated antibody applied, proved to be efficient in separating the labeled antibody from free lutetium. The results of specific cell binding studies performed with the conjugated Acm showed high percentage of nonspecific binding. Biological distribution in normal Balb-c mice demonstrated higher uptake of the labeled antibody by kidney and liver. The relatively high uptake observed by bone tissue may indicate some in vivo instability. However, results obtained in this study showed to be close related in literature. Thus, these data confirm the potential of antibody conjugated to DOTA and DTPA labeled with lutetium-177 for radioimmunotherapy of non-Hodgkin lymphoma. (author)

  3. Conventional and Pretargeted Radioimmunotherapy Using Bismuth-213 to Target and Treat Non-Hodgkin Lymphomas Expressing CD20: A Preclinical Model toward Optimal Consolidation Therapy to Eradicate Minimal Residual Disease.

    Energy Technology Data Exchange (ETDEWEB)

    Park, Steven I.; Shenoi, Jaideep; Pagel, John M.; Hamlin, Donald K.; Wilbur, D. Scott; Orgun, Nural; Kenoyer, Aimee L.; Frayo, Shani; Axtman, Amanda; Back, Tom; Lin, Yukang; Fisher, Darrell R.; Gopal, Ajay K.; Green, Damian J.; Press, Oliver W.

    2010-11-18

    Radioimmunotherapy (RIT) with α-emitting radionuclides is an attractive approach for the treatment of minimal residual disease (MRD) because the short path lengths and high energies of α-particles produce optimal cytotoxicity at small target sites while minimizing damage to surrounding normal tissues. Pretargeted RIT (PRIT) using antibody-streptavidin (Ab-SA) constructs and radiolabeled biotin allows rapid, specific localization of radioactivity at tumor sites, making it an optimal method to target α-emitters with short half-lives, such as bismuth-213 (213Bi). Athymic mice bearing Ramos lymphoma xenografts received anti-CD20 1F5(scFv)4SA fusion protein (FP), followed by a dendrimeric clearing agent and [213Bi]DOTA-biotin. After 90 min, tumor uptake for 1F5(scFv)4SA was 16.5 ± 7.0 % injected dose per gram (ID/g) compared with 2.3 ± 0.9 % ID/g for the control FP. Mice treated with anti-CD20 PRIT and 600 µCi [213Bi]DOTA-biotin exhibited marked tumor growth delays compared to controls (mean tumor volume 0.01 ± 0.02 vs. 203.38 ± 83.03 mm3 after 19 days, respectively). The median survival for the 1F5(scFv)4SA group was 90 days compared to 23 days for the control FP (p<0.0001). Treatment was well tolerated, with no treatment-related mortalities. This study demonstrates the favorable biodistribution profile and excellent therapeutic efficacy attainable with 213Bi-labeled anti-CD20 PRIT.

  4. 含F/2A序列的抗 P185erbB2人鼠嵌合抗体慢病毒表达载体的构建%Construction of the Lentiviral Expression Vector Containing F/2AFragment for Anti-P185erbB2 Mouse/Human Chimeric Antibody

    Institute of Scientific and Technical Information of China (English)

    刘芳; 李力; 张玮; 王琪

    2012-01-01

    目的 构建含 F/2A 序列的抗 P185erbB2 人鼠嵌合抗体慢病毒表达载体,观察其在 293T 细胞中的表达.方法 用具有自我剪切能力的弗林蛋白酶(Furin)/口蹄疫病毒2A多肽(F/2A)连接人鼠嵌合抗体的重链和轻链,形成一个开放阅读框 (ORF),插入慢病毒表达载体pWPI,构建重组抗P185erbB2全长人鼠嵌合抗体表达载体pWPI/H-F2A-L.以已构建的慢病毒表达载体pWPI/H-IRES-L为对照质粒.应用磷酸钙沉淀法将慢病毒载体 3 质粒系统共转染入 293T 细胞进行包装,测定病毒滴度.再感染 293T 细胞,荧光显微镜下观察 GFP 的表达和转染效率,RT-PCR、ELISA 方法分别检测嵌合抗体 mRNA和蛋白的表达.结果 经测序鉴定,pWPI/H-F2A-L与预期设计一致;pWPI/H-F2A-L组的病毒滴度为4.3×105 TU/ml,而pW-PI/H-IRES-L 组的病毒滴度为3.5×105 TU/ml;两组重组慢病毒的转染效率分别为 87.68%和 79.08%:两组重组慢病毒感染 293T 细胞后,都有嵌合重链和嵌合轻链的表达,由F/2A介导的嵌合抗体的表达水平要高于由 IRES 介导的嵌合抗体.结论 成功构建了含F/2A序列的抗P185erbB2人鼠嵌合抗体慢病毒表达载体,为今后抗P185erbB2工程抗体的研究奠定了基础.%Objective To construct the lentiviral expression vector containing F/2A fragment for anti-P185erbB2 mouse/human chimeric antibody , and detect its expression in 293T cells. Methods The heavy and light chains of chimeric antibody were joined by Furin and 2A ( F/ 2A) self-cleavage peptide and cloned into a lentiviral vector of pWPI , to generate the lentiviral ex-pression vector, pWPI/H-F2A-L Another lentiviral expression vector , pWPI/H4RES-L that had been generated already , was used as control plasmid. 293 T cells were co-transfected with the 3 helper plasmid system by using calcium phosphate precipitation , and then the virus titer was exam-ined. The 293 T cells were infected by the obtained lentiviral particles. The expression of

  5. The study of conjugation of anti-CD20 monoclonal antibody for labeling with metallic or lanthanides radionuclides

    International Nuclear Information System (INIS)

    Lymphomas are malignancies or cancers that start from the malign transformation of a lymphocyte in the lymphatic system. Generally, lymphomas start from the lymph nodes or from the agglomeration of the lymphatic tissues, organs like stomach, intestines, in some cases it can involve the bone marrow and the blood, it can also disseminate to other organs. Lymphomas are divided in two major categories: Hodgkin lymphoma and non-Hodgkin lymphoma (NHL). Patient with NHL are generally treated with radiotherapy alone or combined with immunotherapy using monoclonal antibody rituximab (MabThera®). Currently, monoclonal antibodies (Acm) conjugated with bifunctional chelate agents and radiolabeled with metallic or lanthanides radionuclides are a treatment reality for patients with NHL by the principle of radioimmunotherapy (RIT). This study focused on the conditions of conjugation of Acm rituximab (MabThera®) with bifunctional chelating agents DOTA and DTPA. Various parameters were studied: method of Acm purification, conditions of Acm conjugation, the method for determination of number of chelate agent coupled to the Acm, method for purification of the conjugated antibody Acm, conditions of labeling of the conjugated antibody with lutetium-177, method of purification of the radiolabeled immuno conjugate, method of radiochemical purity (RP), specific binding in vitro Raji cells (Human Burkitt) and biological distribution performed in normal Balb-c mouse. The three methodologies employed in pre-purification of Acm (dialysis, size exclusion chromatograph and dial filtration) demonstrated to be efficient; they provided sample recovery exceeding 90%. However, the methodology of dial filtration presents minimal sample loss, and gave the final recovery of the sample in micro liters; thereby facilitating sample use in subsequent experiments. Numbers of chelators attached to the Acm molecule was proportional to the molar ratio studied. When we evaluated the influence of different conditions of conjugation in the number of chelators bounded to the Acm, no notable differences were observed. The RP < 80% was observed in all the methods applied. Purification of the conjugated antibody by dialysis and size exclusion chromatography demonstrated to be efficient, but deficient in terms of high sample volume recovered. The dial filtration was efficient and practical besides it provided sample recovery in micro liters. The optimized conditions for purification of the conjugated antibody preserved the protein integrity. When the conjugated Acm was labeled with lutetium-177 a product with low RP was observed in all molar ratios studied. The methodology used in the control of RP of the radiolabeled antibody was efficient in the discrimination of radiochemical species presented in the reaction mixture. The method of purification of the conjugated antibody applied, proved to be efficient in separating the labeled antibody from free lutetium. The results of specific cell binding studies performed with the conjugated Acm showed high percentage of nonspecific binding. Biological distribution in normal Balb-c mice demonstrated higher uptake of the labeled antibody by kidney and liver. The relatively high uptake observed by bone tissue may indicate some in vivo instability. However, results obtained in this study showed to be close related in literature. Thus, these data confirm the potential of antibody conjugated to DOTA and DTPA labeled with lutetium-177 for radioimmunotherapy of non-Hodgkin lymphoma. (author)

  6. 基于AFM单分子力谱技术的CD20-Rituximab间相互作用力测量

    Institute of Scientific and Technical Information of China (English)

    李密; 刘连庆; 席宁; 王越超; 董再励; 李广勇; 肖秀斌; 张伟京

    2011-01-01

    原子力显微镜(AFM)的发明为测量分子间特异性相互作用力提供了新的技术手段.利用AFM单分子力谱(SMFS)技术分别测量了提纯的CD20,淋巴瘤Raji细胞表面的CD20和淋巴瘤病人B细胞表面的CD20与Rituximab(抗CD20单克隆抗体)之间的相互作用力.通过探针功能化技术,将Rituximab连接到AFM针尖;通过基底功能化技术,将提纯的CD20分子吸附到云母表面,对CD20分子进行了AFM成像,并测量了CD20与Rituximab之间的相互作用力;通过静电吸附和化学固定,将淋巴瘤Raji细胞和淋巴瘤病人细胞固定到载玻片表面,对Raji细胞和病人细胞进行了AFM成像,并分别测量了Raji细胞表面的CD20和病人B细胞表面的CD20与Rituximab之间的相互作用力.比较并分析了在提纯的CD20分子表面、Raji细胞表面和病人B细胞表面测量CD20-Rituximab相互作用力的差异,实验结果表明Raji细胞表面的CD20与Rituximab之间的相互作用力明显小于提纯的CD20以及淋巴瘤病人B细胞表面的CD20与Rituximab之间的相互作用力,为深入研究造成Rituximab耐药性差异的分子机理提供了技术思路和实验方法.

  7. CD20 antigen expression by lymphoma cells in lung allograft recipients is associated with higher remission rate and superior survival: A study on heart and lung transplant recipients

    Directory of Open Access Journals (Sweden)

    Aghil Gholipour-Shoiili

    2014-01-01

    Full Text Available Post-transplant lymphoproliferative disorders (PTLD are one of the fatal complications of transplantation, and there is scarcity of data on the relevance of antigen expression by tumor cells in PTLD. In the current study, we aimed to investigate the potential effects of CD20 antigen expression by PTLD lesions developing in heart/lung transplant recipients. A comprehensive search was performed for reports indicating CD20 antigen tests in PTLD lesions developing in heart and/or lung transplant recipients. For data accumulation, we developed a standard questionnaire and data of patients presented in different published reports were entered into it. Finally, data from 26 previously published reports from different centers around the world were included in the analysis. CD20-positive PTLD lesions are significantly more likely to be of the B cell type (P = 0.006. PTLD in patients with a CD20-positive test represented relevantly shorter time from transplantation to PTLD, although it did not reach a significance level (P = 0.08. At the last follow-up, 53% patients were dead. Survival analysis showed no prognosis difference regarding CD20 test. When data were reanalyzed separately for heart and lung transplant recipients, lung recipients developing PTLD with a CD20-positive test were significantly more likely to represent remission episodes (P = 0.03, and also represented a significantly better outcome than CD20-negative PTLD patients (P = 0.04. CD20-positive PTLD lesions in heart/lung recipients are more likely of the B cell type and develop PTLD lesions earlier than their CD20-negative counterparts. Lung recipients developing CD20-positive PTLD lesions represented higher remission rates and better outcome. Further studies with prospective follow-up of patients are needed for confirming our findings.

  8. Use of CTLA4Ig for induction of mixed chimerism and renal allograft tolerance in nonhuman primates.

    Science.gov (United States)

    Yamada, Y; Ochiai, T; Boskovic, S; Nadazdin, O; Oura, T; Schoenfeld, D; Cappetta, K; Smith, R-N; Colvin, R B; Madsen, J C; Sachs, D H; Benichou, G; Cosimi, A B; Kawai, T

    2014-12-01

    We have previously reported successful induction of renal allograft tolerance via a mixed chimerism approach in nonhuman primates. In those studies, we found that costimulatory blockade with anti-CD154 mAb was an effective adjunctive therapy for induction of renal allograft tolerance. However, since anti-CD154 mAb is not clinically available, we have evaluated CTLA4Ig as an alternative agent for effecting costimulation blockade in this treatment protocol. Two CTLA4Igs, abatacept and belatacept, were substituted for anti-CD154 mAb in the conditioning regimen (low dose total body irradiation, thymic irradiation, anti-thymocyte globulin and a 1-month posttransplant course of cyclosporine [CyA]). Three recipients treated with the abatacept regimen failed to develop comparable lymphoid chimerism to that achieved with anti-CD154 mAb treatment and these recipients rejected their kidney allografts early. With the belatacept regimen, four of five recipients developed chimerism and three of these achieved long-term renal allograft survival (>861, >796 and >378 days) without maintenance immunosuppression. Neither chimerism nor long-term allograft survival were achieved in two recipients treated with the belatacept regimen but with a lower, subtherapeutic dose of CyA. This study indicates that CD28/B7 blockade with belatacept can provide a clinically applicable alternative to anti-CD154 mAb for promoting chimerism and renal allograft tolerance.

  9. Anti-tumor effect of adenovirus-mediated suicide gene therapy under control of tumor-specific and radio-inducible chimeric promoter in combination with γ-ray irradiation in vivo

    International Nuclear Information System (INIS)

    Objective: To detect the selective inhibitory effects of irradiation plus adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic acid (IAA) suicide gene system using tumor-specific and radio-inducible chimeric promoter on human hepatocellular carcinoma subcutaneously xenografted in nude mouse. Methods: Recombinant replicated-deficient adenovirus vector containing HRP gene and chimeric human telomerase reverse transcriptase (hTERT) promoter carrying 6 radio-inducible CArG elements was constructed. A human subcutaneous transplanting hepatocellular carcinoma (MHCC97 cell line) model was treated with γ-ray irradiation plus intra-tumor injections of adenoviral vector and intra-peritoneal injections of prodrug IAA. The change of tumor volume and tumor growth inhibiting rate, the survival time of nude mice, as well as histopathology of xenograft tumor and normal tissues were evaluated. Results: Thirty one days after the treatment, the relative tumor volumes in the negative, adenovirus therapy, irradiation, and combination groups were 49.23±4.55, 27.71±7.74, 28.53±10.48 and 11.58±3.23, respectively.There was a significantly statistical difference among them (F=16.288, P<0.01).The inhibition effect in the combination group was strongest as compared with that in other groups, and its inhibition ratio was 76.5%. The survival period extended to 43 d in the combination group, which showed a significantly difference with that in the control group (χ2=18.307, P<0.01). The area of tumors necrosis in the combination group was larger than that in the other groups, and the normal tissues showed no treatment-related toxic effect in all groups. However, multiple hepatocellular carcinoma metastases were observed in the liver in the control group, there were a few metastases in the monotherapy groups and no metastasis in the combination group. Conclusions: Adenovirus-mediated suicide gene therapy plus radiotherapy dramatically could inhibit tumor growth and prolong median

  10. Targeting duplex DNA with chimeric α,β-triplex-forming oligonucleotides.

    Science.gov (United States)

    Kolganova, N A; Shchyolkina, A K; Chudinov, A V; Zasedatelev, A S; Florentiev, V L; Timofeev, E N

    2012-09-01

    Triplex-directed DNA recognition is strictly limited by polypurine sequences. In an attempt to address this problem with synthetic biology tools, we designed a panel of short chimeric α,β-triplex-forming oligonucleotides (TFOs) and studied their interaction with fluorescently labelled duplex hairpins using various techniques. The hybridization of hairpin with an array of chimeric probes suggests that recognition of double-stranded DNA follows complicated rules combining reversed Hoogsteen and non-canonical homologous hydrogen bonding. In the presence of magnesium ions, chimeric TFOs are able to form highly stable α,β-triplexes, as indicated by native gel-electrophoresis, on-array thermal denaturation and fluorescence-quenching experiments. CD spectra of chimeric triplexes exhibited features typically observed for anti-parallel purine triplexes with a GA or GT third strand. The high potential of chimeric α,β-TFOs in targeting double-stranded DNA was demonstrated in the EcoRI endonuclease protection assay. In this paper, we report, for the first time, the recognition of base pair inversions in a duplex by chimeric TFOs containing α-thymidine and α-deoxyguanosine. PMID:22641847

  11. CD20 mutations involving the rituximab epitope are rare in diffuse large B-cell lymphomas and are not a significant cause of R-CHOP failure

    OpenAIRE

    Johnson, Nathalie A.; Leach, Stephen; Woolcock, Bruce; deLeeuw, Ronald J; Bashashati, Ali; Sehn, Laurie H.; Connors, Joseph M; Chhanabhai, Mukesh; Brooks-Wilson, Angela; Gascoyne, Randy D.

    2009-01-01

    The findings of this study indicate that CD20 mutations nvolving the rituximab epitope are rare in both de novo and relapsed diffuse large B-cell lymphoma, and do not represent a significant cause of R-CHOP resistance.

  12. Loss of CD20 expression in relapsed diffuse large B cell lymphoma after rituximab therapy: a case report and review of the literature

    Institute of Scientific and Technical Information of China (English)

    Yao Jiang; Yingchao Zhao; Xiaorong Dong; Sheng Zhang; Yan Li; Gang Wu

    2013-01-01

    Nowadays, resistance to rituximab has become a major issue in clinical practice. And loss of CD20 may contribute to it. Here we presented a case of loss of CD20 expression in relapsed diffuse large B cell lymphoma treated with rituximab and discuss the incidence, mechanism, influence factors, specific markers, prognosis and treatment of this disease. These results suggested that a post-relapse biopsy after rituximab treatment should be performed. CD79a and Pax-5 should be used as the first-line B lineage-specific markers for these patients. Though mechanisms of CD20 decrement are not fully elucidated, the down-regulation of CD20 mRNA is the most probable hypothesis. Recently various new agents are developed, but the prognosis is still poor. Further studies for new treatments are needed.

  13. Safety and efficacy of intrathecal rituximab in children with B cell lymphoid CD20+ malignancies: An international retrospective study.

    Science.gov (United States)

    Ceppi, Francesco; Weitzman, Sheila; Woessmann, Wilhelm; Davies, Kimberly; Lassaletta, Alvaro; Reismüller, Bettina; Mellgren, Karin; Uyttebroeck, Anne; Maia, Iris; Abdullah, Shaker; Miakova, Natasha; Glaser, Darryl; Cohn, Richard; Abla, Oussama; Attarbaschi, Andishe; Alexander, Sarah

    2016-05-01

    Central nervous system (CNS) involvement in patients with mature B non-Hodgkin lymphoma, post-transplantation proliferative disorder and acute lymphoblastic leukemia confers a significantly inferior prognosis as compared to patients without CNS disease. Intrathecal (IT) or intraventricular administration of rituximab is an option for this group of patients. We report 25 children with CNS involvement of CD20+ B lymphoid malignancies who received in total 163 IT/intraventricular rituximab doses. The median number of doses received by each patient was 6, with a median dose of 25 mg. The most common adverse events were Grades 1 and 2 peripheral neuropathies in five patients (20%), allergy in two patients, and headache in two patients. These events were self-limited, occurring in the 48 hours after treatment and resolving within 24 hr. Three patients presented with more severe though transient side effects, one with a Grade III neuropathy and two with seizure. Eighteen patients (72%) of those treated with IT/intraventricular rituximab, with or without other CNS directed treatment, achieved a CNS remission. This case series suggests that IT/intraventricular rituximab has therapeutic efficacy and relatively limited toxicity. Prospective trials of IT/intraventricular rituximab for patients with CNS involvement of CD20 + B lymphoid malignancies are warranted. Am. J. Hematol. 91:486-491, 2016. © 2016 Wiley Periodicals, Inc. PMID:26872652

  14. CD20-negative de novo diffuse large B-cell lymphoma in HIV-negative patients: A matched case-control analysis in a single institution

    Directory of Open Access Journals (Sweden)

    Li Ya-Jun

    2012-05-01

    Full Text Available Abstract Background HIV-negative, CD20-negative de novo diffuse large B-cell lymphoma (DLBCL patients has rarely been reported. To elucidate the nature of this entity, we retrospectively reviewed the data of 1,456 consecutive de novo DLBCL patients who were treated at Sun Yat-Sen University Cancer Center between January 1999 and March 2011. Methods The pathologic characteristics of CD20-negative patients, clinical features, response to initial treatment, and outcomes of 28 patients with available clinical data (n = 21 were reviewed. Then, a matched case-control (1:3 analysis was performed to compare patients with CD20-negative and -positive DLBCL. Results The median age of the 28 CD20-negative DLBCL patients was 48 years, with a male-female ratio of 20:8. Seventeen of 22 (77.3% CD20-negative DLBCL cases were of the non-germinal centre B-cell (non-GCB subtype. High Ki67 expression (≥80%, an index of cell proliferation, was demonstrated in 17 of 24 (70.8% cases. Extranodal involvement (≥ 1 site was observed in 76.2% of the patients. Following initial therapy, 9 of 21 (42.9% cases achieved complete remission, 4 (19% achieved partial remission, 1 (4.8% had stable disease, and 7 (33.3% had disease progression. The median overall survival was 23 months. The 3-year progression-free survival (PFS and overall survival (OS rates were 30.5% and 35%, respectively. A matched case-control analysis showed that patients with CD20-negative and -positive DLBCL did not exhibit a statistically significant difference with respect to the main clinical characteristics (except extranodal involvement, whereas the patients with CD20-positive DLBCL had a better survival outcome with 3-year PFS (P = 0.008 and OS (P = 0.008 rates of 52% and 74.1%, respectively. Conclusions This study suggests that HIV-negative, CD20-negative de novo DLBCL patients have a higher proportion of non-GCB subtype, a higher proliferation index, more frequent extranodal involvement, a poorer

  15. Progress in Chimeric Vector and Chimeric Gene Based Cardiovascular Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    HU Chun-Song; YOON Young-sup; ISNER Jeffrey M.; LOSORDO Douglas W.

    2003-01-01

    Gene therapy for cardiovascular diseases has developed from preliminary animal experiments to clinical trials. However, vectors and target genes used currently in gene therapy are mainly focused on viral, nonviral vector and single target gene or monogene. Each vector system has a series of advantages and limitations. Chimeric vectors which combine the advantages of viral and nonviral vector,chimeric target genes which combine two or more target genes and novel gene delivery modes are being developed. In this article, we summarized the progress in chimeric vectors and chimeric genes based cardiovascular gene therapy, which including proliferative or occlusive vascular diseases such as atheroslerosis and restenosis, hypertonic vascular disease such as hypertension and cardiac diseases such as myocardium ischemia, dilated cardiomyopathy and heart failure, even heart transplantation. The development of chimeric vector, chimeric gene and their cardiovascular gene therapy is promising.

  16. Impact of CD68/(CD3+CD20 ratio at the invasive front of primary tumors on distant metastasis development in breast cancer.

    Directory of Open Access Journals (Sweden)

    Noemí Eiró

    Full Text Available Tumors are infiltrated by macrophages, T and B-lymphocytes, which may favor tumor development by promoting angiogenesis, growth and invasion. The aim of this study was to investigate the clinical relevance of the relative amount of macrophages (CD68⁺, T-cells (CD3⁺ and B-cells (CD20⁺ at the invasive front of breast carcinomas, and the expression of matrix metalloproteases (MMPs and their inhibitors (TIMPs either at the invasive front or at the tumor center. We performed an immunohistochemical study counting CD3, CD20 and CD68 positive cells at the invasive front, in 102 breast carcinomas. Also, tissue sections were stained with MMP-2, -9, -11, -14 and TIMP-2 antibodies, and immunoreactivity location, percentage of reactive area and intensity were determined at the invasive front and at the tumor center. The results showed that an increased CD68 count and CD68/(CD3+CD20 ratio were directly associated with both MMP-11 and TIMP-2 expression by mononuclear inflammatory cells at the tumor center (p = 0.041 and p = 0.025 for CD68 count and p = 0.001 and p = 0.045 for ratio, respectively for MMP-11 and TIMP-2. In addition, a high CD68/(CD3+CD20 ratio (>0.05 was directly associated with a higher probability of shortened relapse-free survival. Multivariate analysis revealed that CD68/(CD3+CD20 ratio was an independent factor associated with distant relapse-free survival (RR: 2.54, CI: (1.23-5.24, p<0.01. Therefore, CD68/(CD3+CD20 ratio at the invasive front could be used as an important prognostic marker.

  17. Humax-CD20治疗非何杰金氏淋巴瘤的Ⅲ期试验开始

    Institute of Scientific and Technical Information of China (English)

    贾永蕊(摘)

    2007-01-01

    Genmab公司已经开始其全人抗CD20单克隆抗体Humax-CD20(ofatumumab)(Ⅰ)治疗滤泡型非何杰金氏淋巴瘤的Ⅲ期试验。该试验选录了162例病人,他们用Roche/Genentech/Biogen Idec公司的Mabthera/Rituxan(rituximab)联合化疗或者将rituximab作为维持治疗的效果不佳。

  18. Inflammation in disseminated lesions: an analysis of CD4+, CD20+, CD68+, CD31+ and vW+ cells in non-ulcerated lesions of disseminated leishmaniasis

    Directory of Open Access Journals (Sweden)

    Dayana Santos Mendes

    2013-02-01

    Full Text Available Disseminated leishmaniasis (DL differs from other clinical forms of the disease due to the presence of many non-ulcerated lesions (papules and nodules in non-contiguous areas of the body. We describe the histopathology of DL non-ulcerated lesions and the presence of CD4-, CD20-, CD68-, CD31- and von Willebrand factor (vW-positive cells in the inflamed area. We analysed eighteen biopsies from non-ulcerated lesions and quantified the inflamed areas and the expression of CD4, CD20, CD68, CD31 and vW using Image-Pro software (Media Cybernetics. Diffuse lymphoplasmacytic perivascular infiltrates were found in dermal skin. Inflammation was observed in 3-73% of the total biopsy area and showed a significant linear correlation with the number of vW+ vessels. The most common cells were CD68+ macrophages, CD20+ B-cells and CD4+ T-cells. A significant linear correlation between CD4+ and CD20+ cells and the size of the inflamed area was also found. Our findings show chronic inflammation in all DL non-ulcerated lesions predominantly formed by macrophages, plasmacytes and T and B-cells. As the inflamed area expanded, the number of granulomas and extent of the vascular framework increased. Thus, we demonstrate that vessels may have an important role in the clinical evolution of DL lesions.

  19. 利用AFM探测淋巴瘤细胞表面CD20抗原与其抗体的相互作用

    Institute of Scientific and Technical Information of China (English)

    李密; 刘连庆; 席宁; 王越超; 董再励; 李广勇; 肖秀斌; 张伟京

    2010-01-01

    在分子水平阐明细胞生理活动深层次的机制是当前生命科学的重要研究课题.AFM的发明为揭示细胞生理活动的分子本质提供了新的技术手段.利用AFM单分子力谱技术在近生理环境下对B淋巴瘤细胞表面的CD20抗原与其抗体Rituximab之间的特异性结合反应进行了探索性的研究,通过对探针进行功能化,测量了CD20抗原与Rituximab之间的特异性结合力,同时观察了CD20抗原在B淋巴瘤细胞表面的分布,并分析了在外部拉力作用下,CD20-Rituximab复合物的分子内力与伸长量的关系.实验结果为深入研究Rituximab的作用机制奠定了基础.

  20. Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20+ NHL: A prospective randomized HOVON trial

    NARCIS (Netherlands)

    E. Vellenga (Edo); W.L.J. van Putten (Wim); M.B. van 't Veer (Mars); J.M. Zijlstra (Josée); W.E. Fibbe (Willem); M.H.J. van Oers (Marinus); L.F. Verdonck (Leo); P.W. Wijermans (Pierre); G. van Imhoff (Gustaaf); P.J. Lugtenburg (Pieternella); P.C. Huijgens (Peter)

    2008-01-01

    textabstractWe evaluated the role of rituximab during remission induction chemotherapy in relapsed aggressive CD20+non-Hodgkin lymphoma. Of 239 patients, 225 were evaluable for analysis. Randomized to DHAP (cisplatin-cytarabine- dexamethasone)-VIM (etoposide-ifosfamide-methotrexate)-DHAP (cisplatin-

  1. Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20(+) NHL : a prospective randomized HOVON trial

    NARCIS (Netherlands)

    Vellenga, Edo; van Putten, Wim L. J.; van't Veer, Mars B.; Zijlstra, Josee M.; Fibbe, Willem E.; van Oers, Marinus H. J.; Verdonck, Leo F.; Wijermans, Pierre W.; van Imhoff, Gustaaf W.; Lugtenburg, Pieternella J.; Huijgens, Peter C.

    2008-01-01

    We evaluated the role of rituximab during remission induction chemotherapy in relapsed aggressive CD20(+) non-Hodgkin lymphoma. Of 239 patients, 225 were evaluable for analysis. Randomized to DHAP (cisplatin-cytarabine-dexamethasone)-VIM (etoposide-ifosfamide-methotrexate)-DHAP (cisplatin-cytarabine

  2. Chimerism and xenotransplantation. New concepts.

    Science.gov (United States)

    Starzl, T E; Rao, A S; Murase, N; Demetris, A J; Thomson, A; Fung, J J

    1999-02-01

    In both transplant and infectious circumstances, the immune response is governed by migration and localization of the antigen. If the antigenic epitopes of transgenic xenografts are sufficiently altered to avoid evoking the destructive force of innate immunity, the mechanisms of engraftment should be the same as those that permit the chimerism-dependent immunologic confrontation and resolution that is the basis of allograft acceptance. In addition to "humanizing" the epitopes, one of the unanswered questions is whether the species restriction of complement described in 1994 by Valdivia and colleagues also necessitates the introduction of human complement regulatory genes in animal donors. Because the liver is the principal or sole source of most complement components, the complement quickly is transformed to that of the donor after hepatic transplantation. Thus, the need for complementary regulatory transgenes may vary according to the kind of xenograft used. Much evidence shows that physiologically important peptides produced by xenografts (e.g., insulin, clotting factors, and enzymes) are incorporated into the metabolic machinery of the recipient body. To the extent that this is not true, xenotransplantation could result in the production of diseases that are analogous to inborn errors of metabolism. In the climate of pessimism that followed the failures of baboon to human liver xenotransplantation in 1992-1993, it seemed inconceivable that the use of even more discordant donors, such as the pig, could ever be seriously entertained; however, this preceded insight into the xenogeneic and allogeneic barriers that has brought transplantation infectious immunity to common ground. With this new insight and the increasing ease of producing transgenic donors, the goal of clinical xenotransplantation may not be so distant.

  3. CD20单克隆抗体在重症系统性红斑狼疮患儿治疗中的应用%Rituximab therapy for severe pediatric systemic lupus erythematosus

    Institute of Scientific and Technical Information of China (English)

    苏改秀; 吴凤岐; 王芳; 周志轩; 黄小兰; 鲁杰

    2012-01-01

    目的 探讨CD20单克隆抗体(利妥昔单抗)治疗重症儿童系统性红斑狼疮(SLE)的有效性和安全性.方法 诊断依据1997年美国风湿病学会SLE的分类标准.纳入标准:年龄≤16岁,至少1个以上重要器官受累,SLEDA1评分>10分,常规治疗反应欠佳.治疗方法:抗CD20单抗剂量375 mg/(m2·次),于第0、14天分次静脉输注.于CD20单抗治疗前及治疗后2周、1、3、6、12个月评估疗效,并监测不良反应.结果 共20例SLE患儿,男女比1∶3,年龄5~16岁,病程(3.0±2.5)年,平均随访(27.0±7.8)个月.10例狼疮脑病患儿谵妄、认知障碍等在1个月内明显改善;15例狼疮肾炎患儿中14例用药2~3个月后改善,1例无明显缓解;4例狼疮肺炎患儿用药1个月内症状减轻;18例血细胞减少患儿中16例在1个月内恢复.95%患儿(19/20)2周内B细胞清除,90%患儿(18/20)B淋巴细胞计数于1年内恢复.SLEDAI评分用药后明显降低,用药1年泼尼松剂量从( 45.0±4.7)mg/m2降至(12.0 ±2.7) mg/m2(P<0.001).用药半年内5例患儿出现肺炎,其中2例重症肺炎分别为曲霉菌肺炎及卡氏肺囊虫肺炎,均治疗后好转,无死亡病例.随B细胞恢复,2例患儿分别于治疗15、18个月后病情反复,给予第2疗程抗CD20单抗后,1例病情再次缓解,另外1例病情缓解不明显.结论 抗CD20单抗治疗重症儿童SLE疗效肯定,耐受性较好,部分病例可能发生严重感染.%Objective To analyze the safety and efficacy of anti-CD20 monoclonal antibody in treatment of severe pediatric systemic lupus erythematosus (PSLE). Method The diagnosis of PSLE was made according to the criteria for the classification of systemic lupus erythematosus revised by the American College of Rheumatology in 1997. Severe cases with PSLE was selected by the following criteria:age ≤ 16 years,number of important organs involved > 1,SLEDAI score > 10 points and poor response to conventional immunosuppressive treatment

  4. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    Science.gov (United States)

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  5. Optimized total body irradiation for induction of renal allograft tolerance through mixed chimerism in cynomolgus monkeys

    Energy Technology Data Exchange (ETDEWEB)

    Kimikawa, Masaaki; Kawai, Tatsuo; Ota, Kazuo [Tokyo Women`s Medical Coll. (Japan)

    1996-12-01

    We previously demonstrated that a nonmyeloablative preparative regimen can induce mixed chimerism and renal allograft tolerance between MHC-disparate non-human primates. The basic regimen includes anti-thymocyte globulin (ATG), total body irradiation (TBI, 300 cGy), thymic irradiation (TI, 700 cGy), splenectomy, donor bone marrow (DBM) infusion, and posttransplant cyclosporine therapy (CYA, discontinued after 4 weeks). To evaluate the importance and to minimize the toxicity of irradiation, kidney allografts were transplanted with various manipulations of the irradiation protocol. Monkeys treated with the basic protocol without TBI and TI did not develop chimerism or long-term allograft survival. In monkeys treated with the full protocol, all six monkeys treated with two fractionated dose of 150 cGy developed chimerism and five monkeys appeared tolerant. In contrast, only two of the four monkeys treated with fractionated doses of 125 cGy developed chimerism and only one monkey survived long term. The degree of lymphocyte depletion in all recipients was proportional to the TBI dose. The fractionated TBI regimen of 150 cGy appears to be the most consistently effective regimen for establishing donor bone marrow cell engraftment and allograft tolerance. (author)

  6. Chimerism in health, transplantation and autoimmunity

    NARCIS (Netherlands)

    Koopmans, Marije; Kremer Hovinga, Idske Cornelia Lydia

    2009-01-01

    The term “chimerism” originates from Greek mythology and refers to the creature Chimaera, whose body was in front a lion, the back a serpent and the midsection a goat. In medicine, the term chimerism refers to an individual, organ or part consisting of tissues of diverse genetic constitution. Pregna

  7. CD20单克隆抗体rituximab在B淋巴细胞疾病靶向治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    钱军; 林江

    2002-01-01

    CD20是前B淋巴细胞向成熟淋巴细胞分化过程中表达的表面抗原.除了在正常B淋巴细胞分化过程中表达外,CD20也在许多B细胞性恶性肿瘤如淋巴瘤、慢性淋巴细胞白血病、多发性骨髓瘤以及Waldenstrom巨球蛋白血症中表达,为B细胞恶性肿瘤的特异性靶向治疗提供了较为理想的靶点.本文介绍近年来rituximab在B淋巴细胞性疾病中的临床应用概况.

  8. Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20+ NHL: A prospective randomized HOVON trial

    OpenAIRE

    Vellenga, Edo; van Putten, Wim; Veer, Mars; Zijlstra, Josée; Fibbe, Willem; Oers, Marinus; Verdonck, Leo; Wijermans, Pierre; van Imhoff, Gustaaf; Lugtenburg, Pieternella; Huijgens, Peter

    2008-01-01

    textabstractWe evaluated the role of rituximab during remission induction chemotherapy in relapsed aggressive CD20+non-Hodgkin lymphoma. Of 239 patients, 225 were evaluable for analysis. Randomized to DHAP (cisplatin-cytarabine- dexamethasone)-VIM (etoposide-ifosfamide-methotrexate)-DHAP (cisplatin- cytarabine-dexamethasone) chemotherapy with rituximab (R; R-DHAP arm) were 119 patients (113 evaluable) and to chemotherapy without rituximab (DHAP arm) 120 patients (112 evaluable). Patients in c...

  9. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors.

    Directory of Open Access Journals (Sweden)

    Katy Milne

    Full Text Available BACKGROUND: Tumor-infiltrating T cells are associated with survival in epithelial ovarian cancer (EOC, but their functional status is poorly understood, especially relative to the different risk categories and histological subtypes of EOC. METHODOLOGY/PRINCIPAL FINDINGS: Tissue microarrays containing high-grade serous, endometrioid, mucinous and clear cell tumors were analyzed immunohistochemically for the presence of lymphocytes, dendritic cells, neutrophils, macrophages, MHC class I and II, and various markers of activation and inflammation. In high-grade serous tumors from optimally debulked patients, positive associations were seen between intraepithelial cells expressing CD3, CD4, CD8, CD45RO, CD25, TIA-1, Granzyme B, FoxP3, CD20, and CD68, as well as expression of MHC class I and II by tumor cells. Disease-specific survival was positively associated with the markers CD8, CD3, FoxP3, TIA-1, CD20, MHC class I and class II. In other histological subtypes, immune infiltrates were less prevalent, and the only markers associated with survival were MHC class II (positive association in endometrioid cases and myeloperoxidase (negative association in clear cell cases. CONCLUSIONS/SIGNIFICANCE: Host immune responses to EOC vary widely according to histological subtype and the extent of residual disease. TIA-1, FoxP3 and CD20 emerge as new positive prognostic factors in high-grade serous EOC from optimally debulked patients.

  10. Preparation and Evaluation of Human-Murine Chimeric Antibody against Protective Antigen of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Lina Hao

    2014-10-01

    Full Text Available The aim of this research is to develop a human/murine chimeric Fab antibody which neutralizes the anthrax toxin, protective antigen (PA. The chimeric Fab was constructed using variable regions of murine anti-PA monoclonal antibody in combination with constant regions of human IgG. The chimeric PA6-Fab was expressed in E. coli. BL21 and evaluated by ELISA and co-immunoprecipitation- mass spectra. The potency of PA6-Fab to neutralize LeTx was examined in J774A.1 cell viability in vitro and in Fisher 344 rats in vivo. The PA6-Fab did not have domain similarity corresponding to the current anti PA mAbs, but specifically bound to anthrax PA at an affinity of 1.76 nM, and was able to neutralize LeTx in vitro and protected 56.9% cells at 20 μg/mL against anthrax LeTx. One hundred μg PA6-Fab could neutralize 300 μg LeTx in vivo. The PA6-Fab has potential as a therapeutic mAb for treatment of anthrax.

  11. CD20单克隆抗体联合CHOP化疗方案治疗人B细胞淋巴瘤的实验观察%Experimental therapy of human B-cell lymphomas with CD20 monoclonal antibody and CHOP protocol

    Institute of Scientific and Technical Information of China (English)

    高磊; 周倩; 钱卫珠; 范晓强; 郭亚军

    2008-01-01

    目的:以人B细胞淋巴瘤裸鼠皮下移植模型为基础,研究抗CD20单克隆抗体体内、体外活性,评价该抗体联合CHOP化疗方案治疗人B细胞淋巴瘤的有效性.方法:体内实验:建立人B细胞淋巴瘤裸鼠皮下移植模型.52只荷瘤鼠随机分为5组进行实验.用TUNEL法检测肿瘤凋亡,并绘制肿瘤体积曲线和裸鼠体质量曲线.体外实验:用CellTiter 96 AQueous非同位素细胞增殖试验试荆盒检测抗CD20单克隆抗体、化疗和联舍化疗对Raji细胞体外杀伤作用,并绘制荆量反应曲线.结果:体内实验:鼠抗人CD20单抗组及嵌合CD20抗体组均出现大量肿瘤细胞凋亡.联合治疗组疗效最佳,与其他组相比差异有统计学意义,P<0.05.化疗组及联合治疗组体质量下降明显,与其他组相比差异有统计学意义,P<0.05.体外实验:发现鼠抗人CD20单克隆抗体及嵌舍型CD20抗体均可增加Raji细胞对化疗药物的细胞毒敏感性.结论:CD20单克隆抗体对B细胞淋巴瘤具有明显的抑制作用,可以诱发大面积肿瘤细胞凋亡,能提高肿瘤对化疗药物的细胞毒敏感性,且较常规化疗毒副反应小.

  12. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease.

    Science.gov (United States)

    Ellebrecht, Christoph T; Bhoj, Vijay G; Nace, Arben; Choi, Eun Jung; Mao, Xuming; Cho, Michael Jeffrey; Di Zenzo, Giovanni; Lanzavecchia, Antonio; Seykora, John T; Cotsarelis, George; Milone, Michael C; Payne, Aimee S

    2016-07-01

    Ideally, therapy for autoimmune diseases should eliminate pathogenic autoimmune cells while sparing protective immunity, but feasible strategies for such an approach have been elusive. Here, we show that in the antibody-mediated autoimmune disease pemphigus vulgaris (PV), autoantigen-based chimeric immunoreceptors can direct T cells to kill autoreactive B lymphocytes through the specificity of the B cell receptor (BCR). We engineered human T cells to express a chimeric autoantibody receptor (CAAR), consisting of the PV autoantigen, desmoglein (Dsg) 3, fused to CD137-CD3ζ signaling domains. Dsg3 CAAR-T cells exhibit specific cytotoxicity against cells expressing anti-Dsg3 BCRs in vitro and expand, persist, and specifically eliminate Dsg3-specific B cells in vivo. CAAR-T cells may provide an effective and universal strategy for specific targeting of autoreactive B cells in antibody-mediated autoimmune disease. PMID:27365313

  13. The impact of glucocorticoids and anti-cd20 therapy on cervical human papillomavirus infection risk in women with systemic lupus erythematosus

    Science.gov (United States)

    Mendoza-Pinto, Claudia; Garcia-Carrasco, Mario; Vallejo-Ruiz, Veronica; Taboada-Cole, Alejandro; Muñoz-Guarneros, Margarita; Solis-Poblano, Juan Carlos; Pezzat-Said, Elias; Aguilar-Lemarroy, Adriana; Jave-Suarez, Luis Felipe; de Lara, Luis Vazquez; Ramos-Alvarez, Gloria; Reyes-Leyva, Julio; Lopez-Colombo, Aurelio

    2013-01-01

    OBJECTIVE: To identify the prevalence and factors associated with cervical human papillomavirus infection in women with systemic lupus erythematosus METHODS: This cross-sectional study collected traditional and systemic lupus erythematosus-related disease risk factors, including conventional and biologic therapies. A gynecological evaluation and cervical cytology screen were performed. Human papillomavirus detection and genotyping were undertaken by PCR and linear array assay. RESULTS: A total of 148 patients were included, with a mean age and disease duration of 42.5±11.8 years and 9.7±5.3 years, respectively. The prevalence of squamous intraepithelial lesions was 6.8%. The prevalence of human papillomavirus infection was 29%, with human papillomavirus subtype 59 being the most frequent. Patients with human papillomavirus were younger than those without the infection (38.2±11.2 vs. 44.2±11.5 years, respectively; p = 0.05), and patients with the virus had higher daily prednisone doses (12.8±6.8 vs. 9.7±6.7 mg, respectively; p = 0.01) and cumulative glucocorticoid doses (14.2±9.8 vs. 9.7±7.3 g, respectively; p = 0.005) compared with patients without. Patients with human papillomavirus infection more frequently received rituximab than those without (20.9% vs. 8.5%, respectively; p = 0.03). In the multivariate analysis, only the cumulative glucocorticoid dose was associated with human papillomavirus infection. CONCLUSIONS: The cumulative glucocorticoid dose may increase the risk of human papillomavirus infection. Although rituximab administration was more frequent in patients with human papillomavirus infection, no association was found. Screening for human papillomavirus infection is recommended in women with systemic lupus erythematosus. PMID:24473503

  14. The impact of glucocorticoids and anti-cd20 therapy on cervical human papillomavirus infection risk in women with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Claudia Mendoza-Pinto

    2013-12-01

    Full Text Available OBJECTIVE: To identify the prevalence and factors associated with cervical human papillomavirus infection in women with systemic lupus erythematosus METHODS: This cross-sectional study collected traditional and systemic lupus erythematosus-related disease risk factors, including conventional and biologic therapies. A gynecological evaluation and cervical cytology screen were performed. Human papillomavirus detection and genotyping were undertaken by PCR and linear array assay. RESULTS: A total of 148 patients were included, with a mean age and disease duration of 42.5±11.8 years and 9.7±5.3 years, respectively. The prevalence of squamous intraepithelial lesions was 6.8%. The prevalence of human papillomavirus infection was 29%, with human papillomavirus subtype 59 being the most frequent. Patients with human papillomavirus were younger than those without the infection (38.2±11.2 vs. 44.2±11.5 years, respectively; p = 0.05, and patients with the virus had higher daily prednisone doses (12.8±6.8 vs. 9.7±6.7 mg, respectively; p = 0.01 and cumulative glucocorticoid doses (14.2±9.8 vs. 9.7±7.3 g, respectively; p = 0.005 compared with patients without. Patients with human papillomavirus infection more frequently received rituximab than those without (20.9% vs. 8.5%, respectively; p = 0.03. In the multivariate analysis, only the cumulative glucocorticoid dose was associated with human papillomavirus infection. CONCLUSIONS: The cumulative glucocorticoid dose may increase the risk of human papillomavirus infection. Although rituximab administration was more frequent in patients with human papillomavirus infection, no association was found. Screening for human papillomavirus infection is recommended in women with systemic lupus erythematosus.

  15. Targeted alpha-therapy using [Bi-213]anti-CD20 as novel treatment option for radio- and chemoresistant non-Hodgkin lymphoma cells

    OpenAIRE

    Roscher, Mareike; Hormann, Inis; Leib, Oliver; Marx, Sebastian; Moreno, Josue; Miltner, Erich; Friesen, Claudia

    2013-01-01

    Radioimmunotherapy (RIT) is an emerging treatment option for non-Hodgkin lymphoma (NHL) producing higher overall response and complete remission rates compared with unlabelled antibodies. However, the majority of patients treated with conventional or myeloablative doses of radiolabelled antibodies relapse. The development of RIT with alpha-emitters is attractive for a variety of cancers because of the high linear energy transfer (LET) and short path length of alpha-radiation in human tissue, ...

  16. Development of [{sup 62}Zn/{sup 62}Cu]-DOTA-rituximab as a possible novel in vivo PET generator for anti-CD20 antigen imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Nazila [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Dept. of Radiopharmacy; Jalilian, Amir R.; Fazaeli, Yousef; Moradkhani, Sedigheh; Bolourinovin, Fateme [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Sabzevari, Omid [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Dept. of Toxicology and Pharmacology; Khalaj, Ali [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Dept. of Medical Chemistry

    2014-07-01

    In this study, zinc-62 was prepared at radiopharmaceutical grade (for {sup 62}Zn/{sup 62}Cu generator production) using {sup nat}Cu(p, xn) reaction with the production yield of 5.9 mCi/μAh at 30 MeV proton energy (radiochemical separation yield >95%, radionuclidic purity >99% and radiochemical purity >99%). In the next step, rituximab was successively labeled with [{sup 62}Zn]-ZnCl{sub 2} after conjugation with p-SCN-Bz-DOTA followed by molecular filtration and determination of the average number of DOTA conjugated per mAb (6:1) by spectrophotometric method. Radiochemical purity (>97%, measured by ITLC and HPLC), integrity of protein after radiolabeling (gel electrophoresis) and stability of [{sup 62}Zn]-DOTA-rituximab (in final formulation, and human serum) were determined 1-8 h as well as biodistribution studies in wild-type rats followed by coincidence imaging for 6 h. However, the accumulation of the radiolabeled antibody was not consistent with the former reported rituximab conjugates. [{sup 62}Zn]-labeled monoclonal antibodies and fragments can be prepared as potential in vivo PET generators for molecular imaging however, the search for application of stable zinc complexes must be continued.

  17. High-Dose 131I-Tositumomab (Anti-CD20) Radioimmunotherapy for Non-Hodgkin's Lymphoma: Adjusting Radiation Absorbed Dose to Actual Organ Volumes

    International Nuclear Information System (INIS)

    Radioimmunotherapy (RIT) using 131I-tositumomab has been used successfully to treat relapsed or refractory B-cell non-Hodgin's lymphoma (NHL). Our approach to treatment planning has been to determine limits on radiation absorbed close to critical nonhematopoietic organs. This study demonstrates the feasibility of using CT to adjust for actual organ volumes in calculating organ-specific absorbed dose estimates. Methods: Records of 84 patients who underwent biodistribution studies after a trace-labeled infusion of 131I-tositumomab for RIT (January 1990 and April 2003) were reviewed. Serial planar -camera images and whole-body Nal probe counts were obtained to estimate 131I-antibody source-organ residence times as recommended by the MIRD Committee. The source-organ residence times for standard man or woman were adjusted by the ratio of the MIRD phantom organ mass to the CT-derived organ mass. Results: The mean radiation absorbed doses (in mGy/MBq) for our data using the MIRD model were lungs= 1.67; liver= 1.03; kidneys= 1.08; spleen= 2.67; and whole body= 0.3; and for CT volume-adjusted organ volumes (in mGy/MBq) were lungs= 1.30; liver= 0.92; kidneys= 0.76; spleen= 1.40; and whole body= 0.22. We determined the following correlation coefficients between the 2 methods for the various organs; lungs, 0.49; (P= 0.0001); liver, 0.64 (P= 0.004); kidneys, 0.45 (P= 0.0001), for the residence times. For therapy, patients received mean 131I administered activities of 19.2 GBq (520 mCi) after adjustment for CT-derived organ mass compared with 16.0 GBq (433 mCi) that would otherwise have been given had therapy been based only using standard MIRD organ volumes--a statistically significant difference (P= 0.0001). Conclusion: We observed large variations in organ masses among our patients. Our treatments were planned to deliver the maximally tolerated radiation dose to the dose-limiting normal organ. This work provides a simplified method for calculating patient-specific radiation doses by adjusting for the actual organ mass and shows the value of this approach in treatment planning for RIT

  18. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma

    DEFF Research Database (Denmark)

    Hagenbeek, Anton; Gadeberg, Ole Vestergaard; Johnson, Peter;

    2008-01-01

    lactate dehydrogenase. No safety concerns or maximum tolerated dose was identified. A total of 274 adverse events were reported; 190 were judged related to ofatumumab, most occurring on the first infusion day with Common Terminology Criteria grade 1 or 2. Eight related events were grade 3. Treatment...

  19. Bone marrow dosimetry using blood-based models for {sup 131}i-anti-cd20 rituximab radioimmunotherapy of non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J. H.; Kim, H. G.; Choi, T. H. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)] (and others)

    2005-07-01

    Accurate estimations of radiation absorbed dose are essential part of evaluating the risks and benefits associated with radiotherapy. Determination of red marrow dose is important because myelotoxicity is often dose limiting in radioimmunotherapy. The aim of this study is to set up the procedures of dosimetry with activities in the blood and whole-body and to estimate the dose of patients according to MIRD schema. Therapy activities of 131I (136, 185, 200 mCi) were administrated to patients (n=3). Blood activity concentrations and whole-body images by gamma camera were collected from patients with non-Hodgkin's lymphoma (5min, 6h, 24h, 48h, 72h, 2week). Two kinds of patient specific approaches based on Sgouros bone marrow dosimetry methodology were considered to estimate bone marrow dose. The mean effective half-life in blood and whole-body were 25.2h and 27.1h respectively and the mean absorbed dose to bone marrow was 0.48Gy (0.22{approx}0.93Gy). The dominant contribution of dose was found to be from bone marrow self-dose (over 60%). The procedures of dosimetry with blood and gamma camera image were established. These enable to estimate the radioimmunotherapy patient's dose retrospectively. Some parts of the procedures need to be elaborated to obtain more accurate dose in the near future.

  20. Distribution of immune cells in head and neck cancer: CD8+ T-cells and CD20+ B-cells in metastatic lymph nodes are associated with favourable outcome in patients with oro- and hypopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Tumour infiltrating lymphocytes (TIL) are generally considered to represent a host immune response directed against tumour antigens. TIL are also increasingly recognised as possible prognostic parameters. However, the effects observed are variable indicating that results cannot be extrapolated from type of tumour to another. Moreover, it has been suggested that primary solid tumours may be ignored by the immune system and that a meaningful immune response is only mounted in regional lymph nodes. We have examined the local distribution of immune cells in tumour-related compartments in head and neck squamous cell carcinomas (HNSCC). In a second step, the prognostic impact of these cells on disease-free survival (DFS) was analysed. A total of 198 tissue cores from 33 patients were evaluated using tissue mircroarray technique and immunohistochemistry. Tumour-infiltrating immune cells were identified using antibodies specific for CD3, CD8, GranzymeB, FoxP3, CD20 and CD68 and quantified using an image analysis system. We demonstrate a relative expansion of FoxP3+ regulatory T-cells (Treg) and of cytotoxic T-cells among tumour infitrating T-cells. We also show that intratumoural CD20+ B-cells are significantly more frequent in metastatic deposits than in primary tumours. Furthermore, we observed a reduced number of peritumoural CD8+ T-cells in metastatic lymph nodes as compared to univolved regional nodes suggesting a local down-modulation of cellular immunity. All other immune cells did not show significant alterations in distribution. We did not observe an association of tumour infiltrating immune cells at the primary site with outcome. However, increased numbers of intraepithelial CD8+ TIL in metastatic tumours as well as large numbers of peritumoural B-cells in lymph node metastases were associated with favourable outcome. Unexpectedly, no effect on patient outcome was observed for Treg in any compartment. Our results suggest that alterations in lymphocyte

  1. Performance Assessment of Four Chimeric Trypanosoma cruzi Antigens Based on Antigen-Antibody Detection for Diagnosis of Chronic Chagas Disease.

    Science.gov (United States)

    Santos, Fred Luciano Neves; Celedon, Paola Alejandra Fiorani; Zanchin, Nilson Ivo Tonin; Brasil, Tatiana de Arruda Campos; Foti, Leonardo; Souza, Wayner Vieira de; Silva, Edmilson Domingos; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2016-01-01

    The performance of serologic tests in chronic Chagas disease diagnosis largely depends on the type and quality of the antigen preparations that are used for detection of anti-Trypanosoma cruzi antibodies. Whole-cell T. cruzi extracts or recombinant proteins have shown variation in the performance and cross-reactivity. Synthetic chimeric proteins comprising fragments of repetitive amino acids of several different proteins have been shown to improve assay performances to detect Chagasic infections. Here, we describe the production of four chimeric T. cruzi proteins and the assessment of their performance for diagnostic purposes. Circular Dichroism spectra indicated the absence of well-defined secondary structures, while polydispersity evaluated by Dynamic Light Scattering revealed only minor aggregates in 50 mM carbonate-bicarbonate (pH 9.6), demonstrating that it is an appropriate buffering system for sensitizing microplates. Serum samples from T. cruzi-infected and non-infected individuals were used to assess the performance of these antigens for detecting antibodies against T. cruzi, using both enzyme-linked immunosorbent assay and a liquid bead array platform. Performance parameters (AUC, sensitivity, specificity, accuracy and J index) showed high diagnostic accuracy for all chimeric proteins for detection of specific anti-T. cruzi antibodies and differentiated seropositive individuals from those who were seronegative. Our data suggest that these four chimeric proteins are eligible for phase II studies. PMID:27517281

  2. Cloning, expression, and purification of a highly immunogenic recombinant gonadotropin-releasing hormone (GnRH) chimeric peptide.

    Science.gov (United States)

    Xu, Jinshu; Zhu, Zheng; Duan, Peng; Li, Wenjia; Zhang, Yin; Wu, Jie; Hu, Zhuoyi; Roque, Rouel S; Liu, Jingjing

    2006-12-01

    To design an anti-gonadotropin-releasing hormone (GnRH) vaccine capable of eliciting strong immunogenicity, a gene fragment encoding a chimeric peptide was constructed using polymerase chain reaction and ligated into a novel expression vector for recombinant expression in a T7 RNA polymerase-based expression system. The chimeric peptide called GnRH3-hinge-MVP contained three linear repeats of GnRH (GnRH3), a fragment of the human IgG1 hinge region, and a T-cell epitope of measles virus protein (MVP). The expression plasmid contained the GnRH3-hinge-MVP construct ligated to its fusion partner (AnsB-C) via an unique acid labile Asp-Pro linker. The recombinant fusion protein was expressed in an inclusion body in Escherichia coli under IPTG or lactose induction and the target peptide was easily purified using washing of urea and ethanol precipitation. The target chimeric peptide was isolated from the fusion partner following acid hydrolysis and purified using DEAE-Sephacel chromatography. The purified GnRH3-hinge-MVP was determined to be highly homogeneous by IEF analysis and the N-terminal sequencing. Further, immunization of female mice with the recombinant chimeric peptide resulted in generation of high-titer antibodies specific for GnRH. The results showed that GnRH3-hinge-MVP could be considered as a candidate anti-GnRH vaccine. PMID:17064933

  3. Expression and immunoactivity of chimeric particulate antigens of receptor binding site-core antigen of hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Hai-Jie Yang; Ning-Shao Xia; Min Chen; Tong Cheng; Shui-Zhen He; Shao-Wei Li; Bao-Quan Guan; Zi-Heng Zhu; Ying Gu; Jun Zhang

    2005-01-01

    AIM: To improve the immunogenicity of receptor binding site of hepatitis B virus (HBV) on preS1 antigen using HBV core antigen as an immuno-carrier.METHODS: One to 6 tandem copies of HBV preS1 (21-47)fragment were inserted into HBcAg at the sites of aa 78 and 82, and expressed in E. coli. ELISA, Western blot and animal immunization were used to analyze the antigenicity and immmunogenicity of purified particulate antigens. The ability to capture HBV by antibodies elicited by chimeric partides was detected with immuno-capture PCR.RESULTS: Recombinant antigens CⅠ, CⅡ, CⅢ carrying 1-3 copies of HBV preS1 (21-47) individually could form viruslike particles (VLPs), similar to HBcAg in morphology. But recombinant antigens carrying 4-6 copies of HBV preS1 (21-47) were poorly expressed in E.coli. Chimeric antigens were lacking of immunoreactivity with anti-HBc monoclonal antibodies (McAbs), but still reserved good immunoreactivity with anti-HBe McAbs. CⅠ, CⅡ, CⅢ could strongly react with anti-preS1 McAb, suggesting that preS1 (21-47) fragment was well exposed on the surface of chimeric VLPs. Three chimeric VLP antigens (CⅠ, CⅡ and CⅢ) could stimulate mice to produce high-level antibody responses, and their immunogenicity was stronger than non-particulate antigen 21-47*6, containing 6 copies of preS1 (21-47). Mouse antibodies to CⅠ, CⅡ and CⅢ were able to capture HBV virions in immuno-capture PCR assay in vitro.CONCLUSION: Chimeric particulate antigens of receptor binding site-core antigen of HBV can elicit strong antibody responses to preS1. They have a potential to be developed into prophylactic or therapeutic vaccines against HBV infection.

  4. FACIAL EXPRESSION RECOGNITION WITH THE USE OF CHIMERIC FACE TECHNIQUE

    OpenAIRE

    Menshikova, Galina

    2010-01-01

    The aim of this study was to investigate holistic / feature processing for encoding face expressions employing the chimeric face technique. In the course of our experiment we tested the recognition accuracy of universal and chimeric countenance. As the study has revealed there was a considerable difference between distributions of subject responses depending on the localization of expression features (top / bottom parts of the face). For chimeric face identification accuracy substantially dec...

  5. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    Directory of Open Access Journals (Sweden)

    Hui Xu

    Full Text Available MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  6. CD20+ B Cell Depletion in Systemic Autoimmune Diseases: Common Mechanism of Inhibition or Disease-Specific Effect on Humoral Immunity?

    Directory of Open Access Journals (Sweden)

    Panagiotis Pateinakis

    2014-01-01

    Full Text Available Autoimmunity remains a complex physiologic deviation, enabled and perpetuated by a variety of interplayers and pathways. Simplistic approaches, targeting either isolated end-effectors of more centrally placed interactors of these mechanisms, are continuously tried in an effort to comprehend and halt cascades with potential disabling and deleterious effects in the affected individuals. This review focuses on theoretical and clinically proved effects of rituximab-induced CD20+ B cell depletion on different systemic autoimmune diseases and extrapolates on pathogenetic mechanisms that may account for different interindividual or interdisease responses.

  7. CD20单克隆抗体在儿童B细胞恶性淋巴瘤中的应用

    Institute of Scientific and Technical Information of China (English)

    宋华; 石淑文; 徐卫群; 汤永民; 杨世隆; 沈红强

    2002-01-01

    @@ Rituximab(美罗华)为抗CD20的单克隆抗体.以Rituximab为单一制剂治疗低度/滤泡型非霍奇金淋巴瘤(NHL)取得了良好效果.但国内外均未见Rituximab在儿童中应用的报道.我们对4例儿童B细胞NHL应用Rituximab进行治疗,以了解儿童对Rituximab治疗的耐受性及治疗的副作用,现报告如下.

  8. A new Toxoplasma gondii chimeric antigen containing fragments of SAG2, GRA1, and ROP1 proteins-impact of immunodominant sequences size on its diagnostic usefulness.

    Science.gov (United States)

    Ferra, Bartłomiej; Holec-Gąsior, Lucyna; Kur, Józef

    2015-09-01

    This study presents the first evaluation of new Toxoplasma gondii recombinant chimeric antigens containing three immunodominant regions of SAG2, GRA1, and one of two ROP1 fragments differing in length for the serodiagnosis of human toxoplasmosis. The recombinant chimeric antigens SAG2-GRA1-ROP1L (with large fragment of ROP1, 85-396 amino acid residues) and SAG2-GRA1-ROP1S (with a small fragment of ROP1, 85-250 amino acid residues) were obtained as fusion proteins containing His6-tags at both ends using an Escherichia coli expression system. The diagnostic utility of these chimeric antigens was determined using the enzyme-linked immunosorbent assay (ELISA) for the detection of specific anti-T. gondii immunoglobulin G (IgG). The IgG ELISA results obtained for the chimeric antigens were compared to those obtained for the use of Toxoplasma lysate antigen (TLA) and for a mixture of recombinant antigens containing rSAG2, rGRA1, and rROP1. The sensitivity of the IgG ELISA was similar for the SAG2-GRA1-ROP1L chimeric antigen (100 %), the mixture of three proteins (99.4 %) and the TLA (97.1 %), whereas the sensitivity of IgG ELISA with the SAG2-GRA1-ROP1S chimeric antigen was definitely lower, reaching 88.4 %. In conclusion, this study shows that SAG2-GRA1-ROP1L chimeric antigen can be useful for serodiagnosis of human toxoplasmosis with the use of the IgG ELISA assay. Therefore, the importance of proper selection of protein fragments for the construction of chimeric antigen with the highest reactivity in ELISA test is demonstrated.

  9. Regional atmospheric composition modeling with CHIMERE

    Science.gov (United States)

    Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; Mailler, S.; Meleux, F.; Monge, J.-L.; Pison, I.; Turquety, S.; Valari, M.; Vautard, R.; Vivanco, M. G.

    2013-01-01

    Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources), stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM). The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  10. Regional atmospheric composition modeling with CHIMERE

    Directory of Open Access Journals (Sweden)

    L. Menut

    2013-01-01

    Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM. The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  11. A human/mouse chimeric monoclonal antibody against intercellular adhesion molecule-1 for tumor radioimmunoimaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Miyuki; Hinoda, Yuji; Sasaki, Shigeru; Tsujisaki, Masayuki; Imai, Kohzoh [Sapporo Medical Univ. (Japan); Oriuchi, Noboru; Endo, Keigo

    1996-04-01

    A mouse-human chimeric antibody for intercellular adhesion molecule-1 (ICAM-1) was established by using heavy chain loss mouse mutant hybridoma and human immunoglobulin expression vector. The HA58 hybridoma secreted anti-ICAM-1 monoclonal antibody (MoAb) (IgG1,{kappa}). The gene of the mouse variable region of heavy chain was amplified and cloned by the polymerase chain reaction technique directly from the HA58 hybridoma RNA. The variable region of heavy chain was joined with an expression vector which contains human {gamma}1 constant gene. The expression vector was transfected into heavy chain loss mutant cells HA58-7, which produced only murine immunoglobulin light chains. The resultant chimeric MoAb HA58, chHA58, retained full-binding reactivity to ICAM-1 compared with murine HA58 parental antibody. The chimeric MoAb chHA58 showed little antibody dependent cell-mediated cytotoxic activity against cultured tumor cells. Biodistribution studies with {sup 99m}Tc-labeled chHA58 in nude mice bearing human gastric carcinoma JRST cells, demonstrated that the tumor-blood ratio was 1.55 at 18 h after injection, when the tumors were clearly visible in gamma scintigraphy. These data suggest that chHA58 may be of practical use for radioimmunoimaging of a wide variety of tumors. (author).

  12. Influência do CD 20 na refratariedade do linfoma de Hodgkin clássico ao tratamento inicial com o esquema ABVD, no Ceará, Brasil Influence of CD 20 antigen expression in the refractoriness of classical Hodgkin lymphoma in the first line treatment with ABVD protocol in Ceará state, Brazil

    Directory of Open Access Journals (Sweden)

    Rogério Pinto Giesta

    2009-06-01

    Full Text Available INTRODUÇÃO: A significância prognóstica do marcador imunológico CD 20 no linfoma de Hodgkin clássico (LHc ainda é incerta, particularmente no que se refere à refratariedade ao tratamento inicial. OBJETIVOS: Avaliar a influência da positividade do marcador CD 20 na refratariedade do LHc ao tratamento poliquimioterápico inicial, com o esquema doxorubicina 25 mg/m², bleomicina 10 mg/m², vinblastina 6 mg/m² e dacarbazina 375 mg/m² (ABVD, no Ceará, Brasil. MATERIAL E MÉTODOS: Estudo analítico incluindo 97 pacientes com diagnóstico de LHc firmado entre janeiro de 2000 e dezembro de 2004. A análise foi realizada avaliando variáveis demográficas, clínicas e laboratoriais. RESULTADOS: Foi evidenciada uma positividade do CD 20 em 38,1% dos pacientes. Na análise bivariada, CD 20 positivo (razão de chance [RC] = 4,02; intervalo de confiança [IC] = 1,09 - 8,54; p = 0,02, a presença de sintomas B (RC = 4,02; IC = 1,18-17,51; p = 0,01 e a elevação da desidrogenase lática (mediana não-refratários 248,5 [200,5 - 389,5]; mediana refratários 356 [208,5 - 545]; p = 0,03 apresentaram relação de pior prognóstico quanto à refratariedade. Na regressão logística, o CD 20 positivo (RC ajustada = 3,6; IC = 0,99 - 13,09; p = 0,05 e a presença de sintomas B (RC ajustada = 5,41; IC = 1,16 - 25,34; p = 0,03 continuaram apresentando pior prognóstico. DISCUSSÃO: Esses dados coincidem com a literatura, em que a positividade do marcador CD 20 está relacionada com pior resposta ao tratamento com ABVD. CONCLUSÃO: Os nossos dados indicam que o tratamento com ABVD não é completamente adequado para a abordagem terapêutica inicial deste subgrupo de pacientes e novas pesquisas precisam ser realizadas no sentido de aperfeiçoar o tratamento destes pacientes.INTRODUCTION: The prognostic value of CD20 antigen expression in classical Hodgkin lymphoma (cHL is uncertain, particularly regarding the refractoriness to first-line treatment. OBJECTIVES

  13. Pregnancy, chimerism and lupus nephritis : a multi-centre study

    NARCIS (Netherlands)

    Hovinga, I. C. L. Kremer; Koopmans, M.; Grootscholten, C.; van der Wal, A. M.; Bijl, M.; Derksen, R. H. W. M.; Voslcuyl, A. E.; de Heer, E.; Bruijn, J. A.; Berden, J. H. M.; Rajema, I. M.

    2008-01-01

    Chimerism occurs twice as often in the kidneys of women with lupus nephritis as in normal kidneys and may he involved in the pathogenesis of systemic lupus erythematosus. Pregnancy is considered the most important source of chimerism, but the exact relationship between pregnancy, the persistence of

  14. Pregnancy, chimerism and lupus nephritis: a multi-centre study.

    NARCIS (Netherlands)

    Hovinga, I.C. Kremer; Koopmans, M.; Grootscholten, C.; Wal, A.M. van der; Bijl, M. van der; Derksen, R.H.; Voskuyl, A.E.; Heer, E. de; Bruijn, J.A.; Berden, J.H.M.; Bajema, I.M.

    2008-01-01

    Chimerism occurs twice as often in the kidneys of women with lupus nephritis as in normal kidneys and may be involved in the pathogenesis of systemic lupus erythematosus. Pregnancy is considered the most important source of chimerism, but the exact relationship between pregnancy, the persistence of

  15. High affinity mouse-human chimeric Fab against Hepatitis B surface antigen

    OpenAIRE

    Bose, Biplab; Khanna, Navin; Acharya, Subrat K; Sinha, Subrata

    2005-01-01

    AIM: Passive immunotherapy using antibody against hepatitis B surface antigen (HBsAg) has been advocated in certain cases of Hepatitis B infection. We had earlier reported on the cloning and expression of a high affinity scFv derived from a mouse monoclonal (5S) against HBsAg. However this mouse antibody cannot be used for therapeutic purposes as it may elicit anti-mouse immune responses. Chimerization by replacing mouse constant domains with human ones can reduce the immunogenicity of this a...

  16. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    International Nuclear Information System (INIS)

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3ζ/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of FcγRII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  17. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    Energy Technology Data Exchange (ETDEWEB)

    Iri-Sofla, Farnoush Jafari [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ahmadvand, Davoud [Center of Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O (Denmark); Rasaee, Mohammad J. [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  18. Enhanced cytotoxicity of natural killer cells following the acquisition of chimeric antigen receptors through trogocytosis.

    Directory of Open Access Journals (Sweden)

    Fu-Nan Cho

    Full Text Available Natural killer (NK cells have the capacity to target tumors and are ideal candidates for immunotherapy. Viral vectors have been used to genetically modify in vitro expanded NK cells to express chimeric antigen receptors (CARs, which confer cytotoxicity against tumors. However, use of viral transduction methods raises the safety concern of viral integration into the NK cell genome. In this study, we used trogocytosis as a non-viral method to modify NK cells for immunotherapy. A K562 cell line expressing high levels of anti-CD19 CARs was generated as a donor cell to transfer the anti-CD19 CARs onto NK cells via trogocytosis. Anti-CD19 CAR expression was observed in expanded NK cells after these cells were co-cultured for one hour with freeze/thaw-treated donor cells expressing anti-CD19 CARs. Immunofluorescence analysis confirmed the localization of the anti-CD19 CARs on the NK cell surface. Acquisition of anti-CD19 CARs via trogocytosis enhanced NK cell-mediated cytotoxicity against the B-cell acute lymphoblastic leukemia (B-ALL cell lines and primary B-ALL cells derived from patients. To our knowledge, this is the first report that describes the increased cytotoxicity of NK cells following the acquisition of CARs via trogocytosis. This novel strategy could be a potential valuable therapeutic approach for the treatment of B-cell tumors.

  19. Chimeric alignment by dynamic programming: Algorithm and biological uses

    Energy Technology Data Exchange (ETDEWEB)

    Komatsoulis, G.A.; Waterman, M.S. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-12-01

    A new nearest-neighbor method for detecting chimeric 16S rRNA artifacts generated during PCR amplification from mixed populations has been developed. The method uses dynamic programming to generate an optimal chimeric alignment, defined as the highest scoring alignment between a query and a concatenation of a 5{prime} and a 3{prime} segment from two separate entries from a database of related sequences. Chimeras are detected by studying the scores and form of the chimeric and global sequence alignments. The chimeric alignment method was found to be marginally more effective than k-tuple based nearest-neighbor methods in simulation studies, but its most effective use is in concert with k-tuple methods. 15 refs., 3 figs., 1 tab.

  20. Virulence, immunogenicity and vaccine properties of a novel chimeric pestivirus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Reimann, Ilona;

    2007-01-01

    A chimeric pestivirus of border disease virus Gifhorn and bovine viral diarrhea virus CP7 (Meyers et al., 1996) was constructed. Virulence, immunogenicity and vaccine properties of the chimeric virus were studied in a vaccination–challenge experiment in pigs. The chimeric virus proved...... to be avirulent and neither chimeric virus nor viral RNA was detected in serum after vaccination. The safety of the vaccine was tested by horizontal transmission to sentinel pigs, which remained uninfected. The vaccine efficacy was examined by challenge infection with classical swine fever virus (CSFV) Eystrup....... In ‘challenge controls’, the viral load of CSFV coincided with the development of pronounced clinical symptoms. In contrast, the vaccinated pigs showed transient and weak clinical signs. Analysis of the viral load in these pigs showed 1000-fold lower viral RNA levels compared to ‘challenge controls...

  1. Does inversion abolish the left chimeric face processing advantage?

    Science.gov (United States)

    Butler, Stephen H; Harvey, Monika

    2005-12-19

    Experiments using chimeric stimuli have shown that the right hemisphere is more influential in processing facial information. Here, again, we found clear evidence that study participants used the information from the left side of the face to inform their gender decisions when chimeric male/female, female/male stimuli were presented. Most interestingly though, this effect was not only present for upright faces but also for inverted (flipped) faces (although the effect was significantly reduced). We propose that the chimeric bias effects found here argue against the idea that inversion destroys the right hemisphere superiority for faces. If this was indeed the case, flipping the chimeric faces should have resulted in a loss of the left face bias. This was not the case. PMID:16317340

  2. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    DEFF Research Database (Denmark)

    Christensen, M D; Geisler, C

    2000-01-01

    Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which...... recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling....... In this study, we constructed a chimeric TCR-KIR receptor. We demonstrated that SHP-1 is recruited to the chimeric TCR-KIR receptor following T-cell stimulation with either anti-TCR monoclonal antibody (MoAb) or superantigen. However, in spite of this we could not detect any effect of SHP-1 on TCR signalling...

  3. Synthesis and Evaluation of Cy7-Rituximab Targeting CD20 Antigen for in vivo Animal Fluorescence Imaging%CD20靶向Cy7-Rituximab分子探针的制备及在小鼠活体荧光成像中的应用

    Institute of Scientific and Technical Information of China (English)

    林新峰; 朱华; 洪业; 杨志

    2013-01-01

    以B淋巴细胞表面CD20抗原靶向的单克隆抗体Rituximab为载体,通过共价键偶联荧光基团菁染料Cy7,获得了新型荧光分子探针Cy7-Rituximab.利用全光谱紫外-可见分光光度仪、SDS-聚丙烯酰胺凝胶电泳和基质辅助激光解析电离飞行时间质谱等对该探针结构进行表征,并通过激光共聚焦显微镜观察了其在弥漫大B细胞淋巴瘤(DLBCL)细胞中的摄取情况.选用BALB/C裸鼠为模型,尾静脉注射Cy7-Rituximab,通过活体荧光成像系统观察了其在小鼠体内的分布情况.研究结果表明,修饰后的Cy7-Rituximab保持了原有抗体的免疫活性.活体荧光成像结果表明,在CD20高表达的脾脏部位监测到该分子探针的特异性浓集.

  4. Isolation and chimerization of a highly neutralizing antibody conferring passive protection against lethal Bacillus anthracis infection.

    Directory of Open Access Journals (Sweden)

    Ronit Rosenfeld

    Full Text Available Several studies have demonstrated that the passive transfer of protective antigen (PA-neutralizing antibodies can protect animals against Bacillus anthracis infection. The standard protocol for the isolation of PA-neutralizing monoclonal antibodies is based upon a primary selection of the highest PA-binders by ELISA, and usually yields only few candidates antibodies. We demonstrated that by applying a PA-neutralization functionality-based screen as the primary criterion for positive clones, it was possible to isolate more than 100 PA-neutralizing antibodies, some of which exhibited no measurable anti-PA titers in ELISA. Among the large panel of neutralizing antibodies identified, mAb 29 demonstrated the most potent activity, and was therefore chimerized. The variable region genes of the mAb 29 were fused to human constant region genes, to form the chimeric 29 antibody (cAb 29. Guinea pigs were fully protected against infection by 40LD(50B. anthracis spores following two separate administrations with 10 mg/kg of cAb 29: the first administration was given before the challenge, and a second dose was administered on day 4 following exposure. Moreover, animals that survived the challenge and developed endogenous PA-neutralizing antibodies with neutralizing titers above 100 were fully protected against repeat challenges with 40LD(50 of B. anthracis spores. The data presented here emphasize the importance of toxin neutralization-based screens for the efficient isolation of protective antibodies that were probably overlooked in the standard screening protocol. The protective activity of the chimeric cAb 29 demonstrated in this study suggest that it may serve as an effective immunotherapeutic agent against anthrax.

  5. Pharmacokinetics and pharmacokinetic/pharmacodynamic associations of ofatumumab, a human monoclonal CD20 antibody, in patients with relapsed or refractory chronic lymphocytic leukaemia: a phase 1-2 study

    DEFF Research Database (Denmark)

    Coiffier, Bertrand; Losic, Nedjad; Rønn, Birgitte Biilmann;

    2010-01-01

    The purpose of this phase 1-2 study was to investigate the association between the pharmacokinetic properties of ofatumumab, a human monoclonal CD20 antibody, and outcomes in 33 patients with relapsed/refractory chronic lymphocytic leukaemia receiving 4 weekly infusions of ofatumumab. The...

  6. Generation and characterization of a recombinant chimeric protein (rCpLi) consisting of B-cell epitopes of a dermonecrotic protein from Loxosceles intermedia spider venom.

    Science.gov (United States)

    Mendes, T M; Oliveira, D; Figueiredo, L F M; Machado-de-Avila, R A; Duarte, C G; Dias-Lopes, C; Guimarães, G; Felicori, L; Minozzo, J C; Chávez-Olortegui, C

    2013-06-01

    A chimeric protein was constructed expressing three epitopes of LiD1, a dermonecrotic toxin from the venom of Loxosceles intermedia spider. This species is responsible for a large number of accidents involving spiders in Brazil. We demonstrated that the chimeric protein (rCpLi) generated is atoxic and that antibodies previously developed in rabbits against synthetic epitopes reactive with rCpLi in ELISA and immunoblot assays. The antibody response in rabbits against the rCpLi was evaluated by ELISA and we have detected an antibody response in all immunized animals. Overlapping peptides covering the amino acid sequence of the rCpLi were synthesized on a cellulose membrane, and their recognition by rabbit anti-rCpLi serum assessed. Three different antigenic regions were identified. The percentage of inhibition of the dermonecrotic, hemorrhagic and edematogenic activities caused by the recombinant protein LiD1r in naïve rabbits was assessed by pre-incubation with anti-rCpLi antibodies. Anti-rCpLi induced good dermonecrotic and hemorrhagic protection. The levels of protection were similar to the antiboides anti-LiD1r. In summary, we have developed a polyepitope recombinant chimeric protein capable of inducing multiple responses of neutralizing antibodies in a rabbit model. This engineered protein may be a promising candidate for therapeutic serum development or vaccination.

  7. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells

    OpenAIRE

    Kochenderfer, James N.; Yu, Zhiya; Frasheri, Dorina; Restifo, Nicholas P; Rosenberg, Steven A.

    2010-01-01

    Adoptive T-cell therapy with anti-CD19 chimeric antigen receptor (CAR)–expressing T cells is a new approach for treating advanced B-cell malignancies. To evaluate anti-CD19–CAR-transduced T cells in a murine model of adoptive T-cell therapy, we developed a CAR that specifically recognized murine CD19. We used T cells that were retrovirally transduced with this CAR to treat mice bearing a syngeneic lymphoma that naturally expressed the self-antigen murine CD19. One infusion of anti-CD19–CAR-tr...

  8. Developmental competence of porcine chimeric embryos produced by aggregation

    DEFF Research Database (Denmark)

    Li, Juan; Jakobsen, Jannik E.; Xiong, Qiang;

    2015-01-01

    The purpose of our study was to compare the developmental competence and blastomere allocation of porcine chimeric embryos formed by micro-well aggregation. Chimeras were created by aggregating either two blastomeres originating from 2-cell embryos or two whole embryos, where embryos were produced...... either by parthenogenetic activation (PA) or handmade cloning (HMC). Results showed that the developmental competence of chimeric embryos, evaluated based on their blastocyst rate and total cell number per blastocyst, was increased when two whole 2-cell stage embryos (PA or HMC) were aggregated......, aggregation was made with HMC embryos cloned using EGFP transgenic cells; the cell contribution in the formation of the inner cell mass or trophectoderm was random in chimeric blastocysts. Finally, two blastomeres from 2-cell stage embryos were fused to construct tetraploid embryos, and when diploid...

  9. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases. PMID:26655601

  10. ANTI-B CELL THERAPY OF AUTOIMMUNE DISEASES

    Directory of Open Access Journals (Sweden)

    A. L. Masliansky

    2007-01-01

    Full Text Available Abstract. Our understanding of the multiple physiological and pathological functions of B-cells continues to expand at a fascinating rate. As pathogenic elements in the development of autoimmune diseases, B-cells have become the focus of new therapeutics. Based on the published data, rituximab, a chimeric monoclonal antibody to CD20, when used in combination with other agents (i.e., cyclophosphamide or methotrexate, appears to be a reasonable treatment option for refractory RA. There are now numerous case reports and small openlabel series using rituximab in many autoimmune diseases, others then RA. While these data must be interpreted with caution, they suggest that rituximab may be a promising addition to the therapeutic armamentarium in these diseases. However, additional controlled trials need to be conducted to confirm clinical efficacy, further define optimal dosage, response rates, comparative long-term efficacy, and treatment algorithm for rituximab in these patients.

  11. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  12. Combination of two anti-CD5 monoclonal antibodies synergistically induces complement-dependent cytotoxicity of chronic lymphocytic leukaemia cells

    DEFF Research Database (Denmark)

    Klitgaard, Josephine L; Koefoed, Klaus; Geisler, Christian;

    2013-01-01

    The treatment of chronic lymphocytic leukaemia (CLL) has been improved by introduction of monoclonal antibodies (mAbs) that exert their effect through secondary effector mechanisms. CLL cells are characterized by expression of CD5 and CD23 along with CD19 and CD20, hence anti-CD5 Abs that engage ...

  13. Enhanced protective efficacy of a chimeric form of the schistosomiasis vaccine antigen Sm-TSP-2.

    Directory of Open Access Journals (Sweden)

    Mark S Pearson

    Full Text Available The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1 and IgG(3 from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1, suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic.

  14. Chimera: construction of chimeric sequences for phylogenetic analysis

    NARCIS (Netherlands)

    Leunissen, J.A.M.

    2003-01-01

    Chimera allows the construction of chimeric protein or nucleic acid sequence files by concatenating sequences from two or more sequence files in PHYLIP formats. It allows the user to interactively select genes and species from the input files. The concatenated result is stored to one single output f

  15. Study of cancer-specific chimeric promoters induced by irradiation

    International Nuclear Information System (INIS)

    Objective: To combine the radio-inducible CArG element with cancer-specific human telomerase reverse transcriptase (hTERT) gene promoter, and to construct the novel chimeric promoters. Methods: The synthetic hTERT promoters containing different number of radio-inducible CArG elements were constructed, and the activities of the promoters in the cancer cells (HeLa, A549, and MHCC97 cells) and nomal cells (hEL cells) were detected by using luciferase-reporter assays after the treatment of irradiation (a single or fractionated irradiation dose). Results: Synthetic promoter containing 6 repeated CArG units was better in radio-inducibility than any other promoters containing different number of CArG units, and nearly maximum levels obtained at 4-6 Gy. The very low activities of the chimeric promoters could be detected in normal hEL cells. A similar level of reporter gene expression was observed after 3 fractionated doses of 2 Gy compared with a single dose of 6 Gy in cancer cells. Conclusions: The cancer-specific chimeric promoter containing 6 CArG elements showes the best radio-response, and the chimeric promoter system has the potential in cancer gene therapy. (authors)

  16. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    Science.gov (United States)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  17. 131Ⅰ标记抗CD20单克隆抗体不同给药途径对荷瘤裸鼠的放射免疫治疗实验%Experimental Research on Radioimmunotherapy of 131Ⅰ-labeled Anti-CD20 Monoclonal Antibody to Nude Mice Xenografted Tumor

    Institute of Scientific and Technical Information of China (English)

    左强; 罗宇玲; 罗荣城

    2011-01-01

    Objective To investigate the therapeutic efficacy of radioimmunotherapy of iodine-131 labeled Rituximab using intratumor injection(IT)in nude mice with xenografted raji cells tumor. Methods Iodine-131 labeled Rituximab was carried out by IODO-GEN method. The nude mice bearing raji cells tumor were divided into six groups based on the injected marked-drugs. The size of the tumor was measured every 2~3 day and the inhibition rates of different groups were calculated. Results The tumor inhibition rates of 131 I-Rituximab IT group were higher than those of IP group, 131 I-IgG IT group and cell control group(P<0. 05). 131 I-Rituximab with intratumor injection in different dose showed that inhibition rate of low dose group was lower than that of high group, while there was no significant difference(P>0. 05). Conclusion lodine-131 labeled Rituximab with intratumor injection showed the highest radioimmunotherapy efficacy which offered the experimental evidence for clinical application in the futrue.%目的 探讨131Ⅰ-Rituximab经瘤内注射对荷人Burkitt's淋巴瘤细胞系Raji细胞移植瘤裸鼠放射免疫治疗疗效.方法 131Ⅰ标记物的标记采用IODO-GEN碘化标记;按预定治疗方案分别注入含有131Ⅰ标记物,开始治疗前及治疗后每天用游标卡尺测量肿瘤长、短径,计算肿瘤体积,依公式计算肿瘤生长抑制率.结果 131Ⅰ-Rituximab瘤内注射组肿瘤抑制率显著高于腹腔注射组、131Ⅰ-IgG瘤内注射组以及对照细胞组(P0.05).结论 131Ⅰ-Rituximab经瘤内途径给药可以获得更好的放射免疫治疗效果,为下一步临床应用奠定了基础.

  18. A technical application of quantitative next generation sequencing for chimerism evaluation

    Science.gov (United States)

    Aloisio, Michelangelo; Licastro, Danilo; Caenazzo, Luciana; Torboli, Valentina; D'eustacchio, Angela; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2016-01-01

    At present, the most common genetic diagnostic method for chimerism evaluation following hematopoietic stem cell transplantation is microsatellite analysis by capillary electrophoresis. The main objective was to establish, through repeated analysis over time, if a complete chimerism was present, or if the mixed chimerism was stable, increasing or decreasing over time. Considering the recent introduction of next generation sequencing (NGS) in clinical diagnostics, a detailed study evaluating an NGS protocol was conducted, coupled with a custom bioinformatics pipeline, for chimerism quantification. Based on the technology of Ion AmpliSeq, a 44-amplicon custom chimerism panel was designed, and a custom bioinformatics pipeline dedicated to the genotyping and quantification of NGS data was coded. The custom chimerism panel allowed identification of an average of 16 informative recipient alleles. The limit of detection of the protocol was fixed at 1% due to the NGS background (NGS for chimerism quantification. PMID:27499173

  19. [Detection of mixed lymphoid chimerism after allogeneic bone marrow transplantation: demonstration by interphase cytogenetics in paraffin-embedded tissue].

    Science.gov (United States)

    Friedrich, T; Ott, G; Kalla, J; Helbig, W; Schwenke, H; Kubel, M; Pönisch, W; Feyer, P; Friedrich, A

    1994-01-01

    In bone marrow transplantation (BMT) the detection of residual host lymphoid or haematopoietic cells surviving conditioning therapy is because of its association to graft-versus-host disease, graft-versus-leukemia reaction, and relapse of leukemia a matter of great interest. We studied the occurrence of this mixed lymphoid chimerism (MC) in the formol-fixed lymphatic tissue of lymph nodes and spleen from 21 autopsies after allogeneic sex-mismatched BMT (5 females, 16 males, survival 5 to 1140 days after BMT). In situ hybridisation with biotinylated centromer-specific anti-X- and anti-Y-chromosome probes was performed on pepsin-digested paraffin sections. The number of double X-, single X-, and Y-chromosome bearing cells was analysed microscopically. Because of artefacts only 14 cases remained for valid investigation. MC was detected in 6 cases (5 out of 11 males 5 days to 840 days and 1 out of 3 females 76 days after BMT). MC occurred after whole body irradiation with 10 Gy (n = 5) and 7 Gy (n = 1). In 1 autopsy relapse of leukemia caused host cell infiltration. Cases with MC did not express histological signs of acute or chronic graft-versus-host disease, but 5 out of 8 with complete lymphoid chimerism did. The sensitivity of interphase cytogenetics on paraffin embedded tissue is low.

  20. A new MIC1-MAG1 recombinant chimeric antigen can be used instead of the Toxoplasma gondii lysate antigen in serodiagnosis of human toxoplasmosis.

    Science.gov (United States)

    Holec-Gąsior, Lucyna; Ferra, Bartłomiej; Drapała, Dorota; Lautenbach, Dariusz; Kur, Józef

    2012-01-01

    This study presents an evaluation of the MIC1 (microneme protein 1)-MAG1 (matrix antigen 1) Toxoplasma gondii recombinant chimeric antigen for the serodiagnosis of human toxoplasmosis for the first time. The recombinant MIC1-MAG1 antigen was obtained as a fusion protein containing His tags at the N- and C-terminal ends using an Escherichia coli expression system. After purification by metal affinity chromatography, the chimeric protein was tested for usefulness in an enzyme-linked immunosorbent assay (ELISA) for the detection of anti-T. gondii immunoglobulin G (IgG). One hundred ten sera from patients at different stages of infection and 40 sera from seronegative patients were examined. The results obtained for the MIC1-MAG1 chimeric antigen were compared with those of IgG ELISAs using a Toxoplasma lysate antigen (TLA), a combination of recombinant antigens (rMIC1ex2-rMAG1) and single recombinant proteins (rMIC1ex2 and rMAG1). The sensitivity of the IgG ELISA calculated from all of the positive serum samples was similar for the MIC1-MAG1 chimeric antigen (90.8%) and the TLA (91.8%), whereas the sensitivities of the other antigenic samples used were definitely lower, at 69.1% for the mixture of antigens, 75.5% for the rMIC1ex2, and 60% for rMAG1. This study demonstrates that the MIC1-MAG1 recombinant chimeric antigen can be used instead of the TLA in the serodiagnosis of human toxoplasmosis.

  1. Immunization with Human Papillomavirus 16 L1+E2 Chimeric Capsomers Elicits Cellular Immune Response and Antitumor Activity in a Mouse Model.

    Science.gov (United States)

    López-Toledo, Gabriela; Schädlich, Lysann; Alonso-Castro, Ángel Josabad; Monroy-García, Alberto; García-Rocha, Rosario; Guido, Miriam C; Gissmann, Lutz; García-Carrancá, Alejandro

    2016-06-01

    Development of cervical cancer is associated with persistent infections by high-risk human papillomavirus (HPV). Although current HPV L1-based prophylactic vaccines prevent infection, they do not help to eliminate prevalent infections or lesions. Our aims were (i) to generate a vaccine combining prophylactic and therapeutic properties by producing chimeric capsomers after fusion of the L1 protein to different fragments of E2 from HPV 16, and (ii) to evaluate their capacity to generate an antitumoral cellular response, while conserving L1 neutralizing epitopes. Chimeric proteins were produced in Escherichia coli and purified by glutathione S-transferase (GST)-affinity chromatography. Their structure was characterized using size exclusion chromatography, sucrose gradient centrifugation, electron microscopy, and anti-L1 enzyme-linked immunosorbent assay. All chimeric proteins form capsomers and heterogeneous aggregates. One, containing part of the carboxy-terminal domain of E2 and its hinge region (L1Δ+E2H/NC, aa 206-307), conserved the neutralizing epitope H16.V5. We then evaluated the capacity of this chimeric protein to induce a cytotoxic T-cell response against HPV 16 E2. In (51)Cr release cytotoxicity assays, splenocytes from C57BL/6 immunized mice recognized and lysed TC-1/E2 cells, which express and present endogenously processed E2 peptides. Moreover, this E2-specific cytotoxic response inhibited the growth of tumors of TC-1/E2 cells in mice. Finally, we identified an epitope (aa 292-301) of E2 involved in this cytotoxic response. We conclude that the L1Δ+E2H/NC chimeric protein produced in bacteria can be an effective and economically interesting candidate for a combined prophylactic and therapeutic vaccine that could help eliminating HPV16-positive low-grade cervical lesions and persistent viral infections, thus preventing the development of lesions and, at the same time, the establishment of new infections. PMID:27058179

  2. An E2-Substituted Chimeric Pestivirus With DIVA Vaccine Properties

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Nielsen, Jens;

    An advantage of the use of chimeric pestiviruses as modified live vaccines against classical swine fever (CSF) resides in their capacity to be manipulated to achieve the characteristics desired for safe and efficacious DIVA vaccines. We have recently generated a new chimeric virus, Riems26_E2gif...... engineered specifically for this purpose. The E2-substituted Riems26_E2gif was derived by homologues recombination of the complete E2 protein encoding genome region from Border disease strain Gifhorn into a bacterial artificial chromosome (BAC) harbouring the genome of the CSFV vaccine strain C......-Riems. The virulence, immunogenicity and vaccine properties of Riems26_E2gif were tested in a vaccine-challenge experiment in pigs. Riems26_E2gif vaccinated pigs could be differentiated from infected pigs using a CSFV-E2 specific ELISA. Following challenge infection with highly virulent CSFV strain Koslov, all...

  3. Chimeric creatures in Greek mythology and reflections in science.

    Science.gov (United States)

    Bazopoulou-Kyrkanidou, E

    2001-04-15

    "The Chimaera" in Homer's Iliad, "was of divine stock, not of men, in the forepart a lion, in the hinder a serpent, and in the midst a goat, ellipsis Bellerophon slew her, trusting in the signs of the gods." In Hesiod's Theogony it is emphasized that "Chimaera ellipsis had three heads, one of a grim-eyed lion, another of a goat, and another of a snakeellipsis". In addition to this interspecies animal chimera, human/animal chimeras are referred to in Greek mythology, preeminent among them the Centaurs and the Minotaur. The Centaurs, as horse/men, first appear in Geometric and early Archaic art, but in the literature not until early in the fifth century B.C. The bullheaded-man Minotaur, who is not certainly attested in the literary evidence until circa 500 B.C., first appears in art about 650 B.C. Attempts, in the fourth century B.C. and thereafter, to rationalize their mythical appearance were in vain; their chimeric nature retained its fascinating and archetypal form over the centuries. Early in the 1980s, experimental sheep/goat chimeras were produced removing the reproductive barrier between these two animal species. Late in the 1990s, legal, political, ethical, and moral fights loomed over a patent bid on human/animal chimeras. Chimeric technology is recently developed; however, the concept of chimerism has existed in literary and artistic form in ancient mythology. This is yet another example where art and literature precede scientific research and development.

  4. Chemoimmunotherapy for relapsed/refractory and progressive 17p13-deleted chronic lymphocytic leukemia (CLL) combining pentostatin, alemtuzumab, and low-dose rituximab is effective and tolerable and limits loss of CD20 expression by circulating CLL cells.

    Science.gov (United States)

    Zent, Clive S; Taylor, Ronald P; Lindorfer, Margaret A; Beum, Paul V; LaPlant, Betsy; Wu, Wenting; Call, Timothy G; Bowen, Deborah A; Conte, Michael J; Frederick, Lori A; Link, Brian K; Blackwell, Sue E; Veeramani, Suresh; Baig, Nisar A; Viswanatha, David S; Weiner, George J; Witzig, Thomas E

    2014-07-01

    Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) patients with purine analog refractory disease or TP53 dysfunction still have limited treatment options and poor survival. Alemtuzumab-containing chemoimmunotherapy regimens can be effective but frequently cause serious infections. We report a Phase II trial testing the efficacy and tolerability of a short-duration regimen combining pentostatin, alemtuzumab, and low-dose high-frequency rituximab designed to decrease the risk of treatment-associated infections and to limit the loss of CD20 expression by CLL cells. The study enrolled 39 patients with progressive CLL that was either relapsed/refractory (n = 36) or previously untreated with 17p13 deletion (17p13-) (n = 3). Thirteen (33%) patients had both 17p13- and TP53 mutations predicted to be dysfunctional, and eight patients had purine analog refractory CLL without TP53 dysfunction. Twenty-six (67%) patients completed therapy, with only five (13%) patients having treatment-limiting toxicity and no treatment-related deaths. Twenty-two (56%) patients responded to treatment, with 11 (28%) complete responses (four with incomplete bone marrow recovery). Median progression-free survival was 7.2 months, time to next treatment was 9.1 months, and overall survival was 34.1 months. The majority of deaths (82%) were caused by progressive disease, including transformed diffuse large B-cell lymphoma (n = 6). Correlative studies showed that low-dose rituximab activates complement and natural killer cells without a profound and sustained decrease in expression of CD20 by circulating CLL cells. We conclude that pentostatin, alemtuzumab, and low-dose high-frequency rituximab is a tolerable and effective therapy for CLL and that low-dose rituximab therapy can activate innate immune cytotoxic mechanisms without substantially decreasing CD20 expression. PMID:24723493

  5. Chimeric Proteins to Detect DNA Damage and Mismatches

    Energy Technology Data Exchange (ETDEWEB)

    McCutchen-Maloney, S; Malfatti, M; Robbins, K M

    2002-01-14

    The goal of this project was to develop chimeric proteins composed of a DNA mismatch or damage binding protein and a nuclease, as well as methods to detect DNA mismatches and damage. We accomplished this through protein engineering based on using polymerase chain reactions (PCRs) to create chimeras with novel functions for damage and mismatch detection. This project addressed fundamental questions relating to disease susceptibility and radiation-induced damage in cells. It also supported and enhanced LLNL's competency in the emerging field of proteomics. In nature, DNA is constantly being subjected to damaging agents such as exposure to ultraviolet (UV) radiation and various environmental and dietary carcinogens. If DNA damage is not repaired however, mutations in DNA result that can eventually manifest in cancer and other diseases. In addition to damage-induced DNA mutations, single nucleotide polymorphisms (SNPs), which are variations in the genetic sequence between individuals, may predispose some to disease. As a result of the Human Genome Project, the integrity of a person's DNA can now be monitored. Therefore, methods to detect DNA damage, mutations, and SNPs are useful not only in basic research but also in the health and biotechnology industries. Current methods of detection often use radioactive labeling and rely on expensive instrumentation that is not readily available in many research settings. Our methods to detect DNA damage and mismatches employ simple gel electrophoresis and flow cytometry, thereby alleviating the need for radioactive labeling and expensive equipment. In FY2001, we explored SNP detection by developing methods based on the ability of the chimeric proteins to detect mismatches. Using multiplex assays with flow cytometry and fluorescent beads to which the DNA substrates where attached, we showed that several of the chimeras possess greater affinity for damaged and mismatched DNA than for native DNA. This affinity was

  6. A phase III randomized trial comparing glucocorticoid monotherapy versus glucocorticoid and rituximab in patients with autoimmune haemolytic anaemia

    DEFF Research Database (Denmark)

    Birgens, Henrik; Frederiksen, Henrik; Hasselbalch, Hans Carl;

    2013-01-01

    The impact of first-line treatment with the anti-CD 20 chimeric monoclonal antibody rituximab in patients with warm-antibody reactive autoimmune haemolytic anaemia (WAIHA) is unknown. We report the first randomized study of 64 patients with newly diagnosed WAIHA who received prednisolone and ritu......The impact of first-line treatment with the anti-CD 20 chimeric monoclonal antibody rituximab in patients with warm-antibody reactive autoimmune haemolytic anaemia (WAIHA) is unknown. We report the first randomized study of 64 patients with newly diagnosed WAIHA who received prednisolone...

  7. Therapeutic Effect Evaluation of the Combination Regimen of Rituximab and CHOP for CD20 Positive Diffuse Large B-cell Lymphoma%R-CHOP方案初治CD20阳性弥漫大B细胞淋巴瘤的临床疗效评价

    Institute of Scientific and Technical Information of China (English)

    刘爱学; 张容榕; 李明淑; 周泽强; 冯天举

    2012-01-01

    目的:观察利妥昔单抗联合CHOP方案(R-CHOP方案)初治弥漫大B细胞淋巴瘤的疗效及不良反应.方法:对20例初治弥漫大B细胞淋巴瘤患者,给予6周期~8周期R-CHOP方案治疗.利妥昔单抗375mg/m2,静滴,d1;环磷酰胺750mg/m2,iv,d1;阿霉素50mg/m2,iv,d1;长春新碱1.4mg/m2,iv,d1;强的松100mg/d,口服,d1-5;21天为一周期.结果:20例患者中,完全缓解13例,部分缓解3例,稳定1例,进展3例,客观缓解率80%.主要毒副反应为血液学毒性,轻度胃肠道反应,无利妥昔单抗不良反应.结论:R-CHOP方案初治CD20阳性弥漫大B细胞淋巴瘤缓解率高,毒副反应可以耐受.%Objective: To observe the effect and toxicity of combination treatment of rituximab and CHOP-regimen for diffuse large B cell lymphoma( DLBCL ). Methods: 20 patients initially diagnosed as DLBCL received R-CHOP regimen of 6 - 8 cycles: rituximab 375mg/m intravenously infused on dayl, cyclophosphamide 750mg/m on clayl, adriamycin 50mg/m2 on clayl and vincristine 1. 4mg/m on day 1, prednisone lOOmg/d taken orally on day 1 ~5; 21days as one cycle. Results: In all 20 patients, 13 got complete response and 3 partial response, 1 SD, 3 PD. The overall response rate was 80. 0%. Main toxicity included myelosuppression, slightly gastrointestinal reaction. No rituximab related toxicity was observed in all the patients. Conclusion: R-CHOP regimen has high efficacy with mild toxicity in the treatment of initially diagnosed diffuse large B cell lymphoma.

  8. Rituximab-induced subacute interstitial pneumonitis: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Subramanian Murali

    2010-01-01

    Full Text Available Rituximab is a chimeric anti-CD20 monoclonal antibody used to treat CD20+ non-Hodgkin′s lymphoma (NHL. Some pulmonary adverse reactions such as cough, rhinitis, bronchospasm and dyspnea are relatively common. Severe respiratory conditions like cryptogenic organizing pneumonia, interstitial pneumonitis have rarely been reported. We present a case of interstitial pneumonitis in a patient who was treated with R-CHOP for extranodal NHL. He responded to the steroids.

  9. Construction, purification, and characterization of a chimeric TH1 antagonist

    Directory of Open Access Journals (Sweden)

    Javier-González Luís

    2006-05-01

    Full Text Available Abstract Background TH1 immune response antagonism is a desirable approach to mitigate some autoimmune and inflammatory reactions during the course of several diseases where IL-2 and IFN-γ are two central players. Therefore, the neutralization of both cytokines could provide beneficial effects in patients suffering from autoimmune or inflammatory illnesses. Results A chimeric antagonist that can antagonize the action of TH1 immunity mediators, IFN-γ and IL-2, was designed, engineered, expressed in E. coli, purified and evaluated for its in vitro biological activities. The TH1 antagonist molecule consists of the extracellular region for the human IFNγ receptor chain 1 fused by a four-aminoacid linker peptide to human 60 N-terminal aminoacid residues of IL-2. The corresponding gene fragments were isolated by RT-PCR and cloned in the pTPV-1 vector. E. coli (W3110 strain was transformed with this vector. The chimeric protein was expressed at high level as inclusion bodies. The protein was partially purified by pelleting and washing. It was then solubilized with strong denaturant and finally refolded by gel filtration. In vitro biological activity of chimera was demonstrated by inhibition of IFN-γ-dependent HLA-DR expression in Colo 205 cells, inhibition of IFN-γ antiproliferative effect on HEp-2 cells, and by a bidirectional effect in assays for IL-2 T-cell dependent proliferation: agonism in the absence versus inhibition in the presence of IL-2. Conclusion TH1 antagonist is a chimeric protein that inhibits the in vitro biological activities of human IFN-γ, and is a partial agonist/antagonist of human IL-2. With these attributes, the chimera has the potential to offer a new opportunity for the treatment of autoimmune and inflammatory diseases.

  10. Chimeric creatures in Greek mythology and reflections in science.

    Science.gov (United States)

    Bazopoulou-Kyrkanidou, E

    2001-04-15

    "The Chimaera" in Homer's Iliad, "was of divine stock, not of men, in the forepart a lion, in the hinder a serpent, and in the midst a goat, ellipsis Bellerophon slew her, trusting in the signs of the gods." In Hesiod's Theogony it is emphasized that "Chimaera ellipsis had three heads, one of a grim-eyed lion, another of a goat, and another of a snakeellipsis". In addition to this interspecies animal chimera, human/animal chimeras are referred to in Greek mythology, preeminent among them the Centaurs and the Minotaur. The Centaurs, as horse/men, first appear in Geometric and early Archaic art, but in the literature not until early in the fifth century B.C. The bullheaded-man Minotaur, who is not certainly attested in the literary evidence until circa 500 B.C., first appears in art about 650 B.C. Attempts, in the fourth century B.C. and thereafter, to rationalize their mythical appearance were in vain; their chimeric nature retained its fascinating and archetypal form over the centuries. Early in the 1980s, experimental sheep/goat chimeras were produced removing the reproductive barrier between these two animal species. Late in the 1990s, legal, political, ethical, and moral fights loomed over a patent bid on human/animal chimeras. Chimeric technology is recently developed; however, the concept of chimerism has existed in literary and artistic form in ancient mythology. This is yet another example where art and literature precede scientific research and development. PMID:11337752

  11. Immunogenicity of candidate chimeric DNA vaccine against tuberculosis and leishmaniasis.

    Science.gov (United States)

    Dey, Ayan; Kumar, Umesh; Sharma, Pawan; Singh, Sarman

    2009-08-13

    Mycobacterium tuberculosis and Leishmania donovani are important intracellular pathogens, especially in Indian context. In India and other South East Asian countries, both these infections are highly endemic and in about 20% cases co-infection of these pathogens is reported. For both these pathogens cell mediated immunity plays most important role. The available treatment of these infections is either prolonged or cumbersome or it is ineffective in controlling the outbreaks and spread. Therefore, potentiation of a common host defense mechanism can be used to prevent both the infections simultaneously. In this study we have developed a novel chimeric DNA vaccine candidate comprising the esat-6 gene of M. tuberculosis and kinesin motor domain gene of L. donovani. After developing this novel chimera, its immunogenicity was studied in mouse model. The immune response was compared with individual constructs of esat-6 and kinesin motor domain. The results showed that immunization with chimeric DNA vaccine construct resulted in stronger IFN-gamma and IL-2 response against kinesin (3012+/-102 and 367.5+/-8.92pg/ml) and ESAT-6 (1334+/-46.5 and 245.1+/-7.72pg/ml) in comparison to the individual vaccine constructs. The reciprocal immune response (IFN-gamma and IL-2) against individual construct was lower (kinesin motor domain: 1788+/-36.48 and 341.8+/-9.801pg/ml and ESAT-6: 867.0+/-47.23 and 170.8+/-4.578pg/ml, respectively). The results also suggest that using the chimeric construct both proteins yielded a reciprocal adjuvant affect over each other as the IFN-gamma production against chimera vaccination is statistically significant (pleishmaniasis and tuberculosis and have important implication in future vaccine design.

  12. Chimerism in cattle through microsurgical aggregation of morulae.

    Science.gov (United States)

    Brem, G; Tenhumberg, H; Kräußlich, H

    1984-11-01

    A cattle chimera was produced by combining four halves of two parent embryos of different breeds (Brown-Swiss x Braunvieh plus Holstein-Friesian x Holstein-Friesian) in one zona pellucida. Parent embryos in the 32-cell morula stage were recovered non-surgically, were bisected, and the combined four halves were transferred non-surgically to recipient heifers. Chimerism of coat colour was used as evidence. Combining of only two half embryos from different parents resulted in five pregnancies carried to term but none of the calves born was a chimera.

  13. Chimeric elk/mouse prion proteins in transgenic mice

    OpenAIRE

    Tamguney, G; Giles, K; Oehler, A.; Johnson, NL; DeArmond, SJ; Prusiner, SB

    2013-01-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). ...

  14. Construction and characterization of chimeric BHIV (BIV/HIV-1) viruses carrying the bovine immunodeficiency virus gag gene

    OpenAIRE

    Zhu, Yi-Xin; Liu, Chang; Liu, Xin-Lei; Qiao, Wen-Tao; Chen, Qi-Min; Zeng, Yi; Geng, Yun-Qi

    2005-01-01

    AIM: To explore the possibility of the replacement of the gag gene between human immunodeficiency virus and bovine immunodeficiency virus, to achieve chimeric virions, and thereby gain a new kind of AIDS vaccine based on BHIV chimeric viruses.

  15. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, Bodil; Pallesen, Lars; Jensen, Lars Bogø;

    1997-01-01

    . Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...

  16. The Construction of Chimeric T-Cell Receptor with Spacer Base of Modeling Study of VHH and MUC1 Interaction

    OpenAIRE

    Nazanin Pirooznia; Sadegh Hasannia; Majid Taghdir; Fatemeh Rahbarizadeh; Morteza Eskandani

    2011-01-01

    Adaptive cell immunotherapy with the use of chimeric receptors leads to the best and most specific response against tumors. Chimeric receptors consist of a signaling fragment, extracellular spacer, costimulating domain, and an antibody. Antibodies cause immunogenicity; therefore, VHH is a good replacement for ScFv in chimeric receptors. Since peptide sequences have an influence on chimeric receptors, the effect of peptide domains on each other's conformation were investigated. CD3Zeta, CD28, ...

  17. MHC-mismatched mixed chimerism augments thymic regulatory T-cell production and prevents relapse of EAE in mice

    OpenAIRE

    Wu, Limin; Li, Nainong; Zhang, Mingfeng; XUE, SHENG-LI; Cassady, Kaniel; Lin, Qing; Riggs, Arthur D; Zeng, Defu

    2015-01-01

    Induction of MHC- or HLA-matched mixed chimerism does not cause graft-versus-host disease (GVHD) in animal models or humans, but matched mixed chimerism cannot reverse autoimmunity. MHC-mismatched mixed chimerism is required for reversal of autoimmunity. Here, we report that, using a clinically applicable conditioning regimen consisting of cyclophosphamide, pentostatin, and antithymocyte globulin, MHC-mismatched mixed chimerism is established in experimental autoimmune encephalomyelitis (EAE)...

  18. Construction of exogenous multiple epitopes of helper T lymphocytes and DNA immunization of its chimeric plasmid with HBV pre-S2/S gene

    Institute of Scientific and Technical Information of China (English)

    Wen-Jun Gao; Xiao-Mou Peng; Dong-Ying Xie; Qi-Feng Xie; Zhi-Liang Gao; Ji-Lu Yao

    2004-01-01

    AIM: To design and construct an exogenous multiple epitope of helper T lymphocytes (HTL), and to evaluate its effect on anti-HBs response through DNA immunization.METHODS: Artificial HTL epitope, PADRE and four other HTL epitopes from different proteins were linked together using splicing by overlap extension to generate exogenous multiple epitopes of HTL, MTE5. pcMTE5 and pcHB weregenerated by cloning MTE5 and fragments of HBV pre-S2/S gene into mammalian expression plasmid pcDNA3. Four chimeric plasmids were constructed by cloning MTE5 into the region of pre-S2 gene (Bam HI), 5′ terminal of S gene (HincⅡ, Xba Ⅰ) and 3′ terminal of S gene (Acc Ⅰ) of pcHB respectively. BALB/c mice were used in DNA immunization of the recombinant plasmids. Anti-HBs was detected using Abbott IMx AUSAB test kits.RESULTS: The sequences of MTE5 and the 6 constructs of recombinant plasmids were confirmed to be correct by DNA sequencing. The anti-HBs response of the coinoculation of pcHB and pcMTE5 was much higher than that of the inoculation of pcHB only (136.7±69.1 mIU/mL vs 27.6±17.3 mIU/mL, P<0.01, t = -6.56). Among the 4 chimeric plasmids, only the plasmid in which MTE5 was inserted into the pre-S2 region had good anti-HBs response (57.54±7.68 mIU/mL), and had no significant difference compared with those of pcHB and the co-inoculation of pcHB and pcMTE5.CONCLUSION: Exogenous multiple epitopes of HTL had immune enhancement when they were co-inoculated with pre-S2/S gene or inoculated in the chimeric form at a proper site of pre-S2/S gene of HBV. It might suggest that it was possible to improve hepatitis B vaccine using exogenous multiple epitopes of HTL. The antibody responses were very low using DNA immunization in the study. Thus, the immune enhancement effect of exogenous multiple epitopes of HTL has to be confirmed and the effect on overcoming the drawback of the polymorphism of HLA Ⅱ antigens should also be evaluated after these chimeric plasmids are expressed

  19. Mapping of the C3b-binding site of CR1 and construction of a (CR1)2- F(ab')2 chimeric complement inhibitor

    OpenAIRE

    1991-01-01

    CR1/CR2 chimeric receptors in which various short consensus repeats (SCRs) of CR1 were attached to CR2 were transiently expressed on COS cells, and assessed for the binding of polymerized C3b (pC3b) and anti- CR2 by immunofluorescence. Of COS cells expressing chimeras containing SCR 1-4, 1-3, 2-4, 1-2, and 2-3 of the long homologous repeats (LHRs) - B or -C, 96%, 66%, 23%, 0%, and 0%, respectively, bound pC3b. K562 cells were stably transfected with wild-type CR1, deletion mutants of CR1, and...

  20. A clinical study on the therapeutic effect of rituximab in combination with autologous peripheral blood stem cell transplantation in treatment of CD20+ B cellulous non-Hodgkin lymphoma

    Directory of Open Access Journals (Sweden)

    Yong-sheng CHEN

    2013-07-01

    Full Text Available Objective To investigate the therapeutic effect of autologous peripheral blood stem cell transplantation (APBSCT in combination with rituximab in treatment of CD20+ B cellulous non-Hodgkin's lymphoma (B-NHL. Methods Sixty patients with CD20+ aggressive or refractory and recurrent B-NHL and treated with APBSCT in our department from Jan. 2005 to Jan. 2011 were admitted. All the subjects were divided into 2 groups according to their own choice: 25 patients received rituximab treatment (treatment group and 35 patients were treated without rituximab treatment (control group. All patients underwent chemotherapy and APBSCT. For patients in treatment group, rituximab was used with CHOP before collecting the stem cells and after the transplantation. After transplantation, rituximab and IL-2 were used in treatment group every 3-6 months as maintenance treatment. Results No side effect was observed during the use of rituximab either before or after transplantation. The mononuclear cell count in treatment and control group was (8.2±2.9×108/kg and (8.4±3.9×108/kg (P=0.822, respectively; CD34+cell count was (12.3±12.7×106/kg and (13.2±13.9×106/kg (P=0.799, respectively. Haemopoiesis reconstruction was successfully achieved in the patients of treatment group, while 3 patients in control group failed to have haemopoiesis reconstruction. No significant difference was found between two groups on the recovery time of neutrophilic granulocytes and platelets. All patients achieved complete remission. The average follow-up time was 22 months. The disease relapsed in two patients in treatment group and six in control group. The 3-year overall survival rate in treatment group (91.6% was a little higher than that in control group (69.5%, P=0.060. Conclusion To patients of CD20+ B lymphoma, the use of rituximab shows no side effect before or after collection of stem cell and hemopoiesis reconstruction, and the overall survival rate may be improved.

  1. Tumour targeting and radiation dose of radioimmunotherapy with {sup 90}Y-rituximab in CD20+ B-cell lymphoma as predicted by {sup 89}Zr-rituximab immuno-PET: impact of preloading with unlabelled rituximab

    Energy Technology Data Exchange (ETDEWEB)

    Muylle, Kristoff [Vrije Universiteit Brussel, MIMA Research Group, Brussels (Belgium); Universite Libre de Bruxelles, Department of Nuclear Medicine, Jules Bordet Institute, Brussels (Belgium); Flamen, Patrick; Guiot, Thomas; Ghanem, Ghanem; Meuleman, Nathalie; Bourgeois, Pierre; Vanderlinden, Bruno; Vaes, Melanie; Bron, Dominique [Universite Libre de Bruxelles, Jules Bordet Institute, Brussels (Belgium); Vugts, Danielle J.; Dongen, Guus A.M.S. van [VU University Medical Centre, Amsterdam (Netherlands); Everaert, Hendrik [Vrije Universiteit Brussel, UZ Brussel, Brussels (Belgium); Vrije Universiteit Brussel, MIMA Research Group, Brussels (Belgium)

    2015-07-15

    To compare using immuno-PET/CT the distribution of {sup 89}Zr-labelled rituximab without and with a preload of unlabelled rituximab to assess the impact of preloading with unlabelled rituximab on tumour targeting and radiation dose of subsequent radioimmunotherapy with {sup 90}Y-labelled rituximab in CD20+ B-cell lymphoma. Five patients with CD20+ B-cell lymphoma and progressive disease were prospectively enrolled. All patients underwent three study phases: initial dosimetric phase with baseline {sup 89}Zr-rituximab PET/CT imaging without a cold preload, followed 3 weeks later by a second dosimetric phase with administration of a standard preload (250 mg/m{sup 2}) of unlabelled rituximab followed by injection of {sup 89}Zr-rituximab, and a therapeutic phase 1 week later with administration of unlabelled rituximab followed by {sup 90}Y-rituximab. PET/CT imaging and tracer uptake by organs and lesions were assessed. With a cold rituximab preload, the calculated whole-body dose of {sup 90}Y-rituximab was similar (mean 0.87 mSv/MBq, range 0.82-0.99 mSv/MBq) in all patients. Without a preload, an increase in whole-body dose of 59 % and 87 % was noted in two patients with preserved circulating CD20+ B cells. This increase in radiation dose was primarily due to a 12.4-fold to 15-fold higher dose to the spleen without a preload. No significant change in whole-body dose was noted in the three other patients with B-cell depletion. Without a preload, consistently higher tumour uptake was noticed in patients with B-cell depletion. Administration of the standard preload of unlabelled rituximab impairs radioconjugate tumour targeting in the majority of patients eligible for radioimmunotherapy, that is patients previously treated with rituximab-containing therapeutic regimens. This common practice may need to be reconsidered and further evaluated as the rationale for this high preload has its origin in the ''prerituximab era''. (orig.)

  2. CHIMERE 2013: a model for regional atmospheric composition modelling

    Directory of Open Access Journals (Sweden)

    L. Menut

    2013-07-01

    Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, kinetics and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative contribution to the pollutants budgets can be quantified with chemistry-transport models. The CHIMERE chemistry-transport model is dedicated to regional atmospheric pollution event studies. Since it has now reached a certain level a maturity, the new stable version, CHIMERE 2013, is described to provide a reference model paper. The successive developments of the model are reviewed on the basis of published investigations that are referenced in order to discuss the scientific choices and to provide an overview of the main results.

  3. Assessment of absorbed dose and therapeutic response of tumor in repeated high-dose I-131 anti-CD20 monoclonal antibody (rituximab) radioimmunotherapy for non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Byung Hyun; Lim, Sang Moo; Kim, Kyeong Min [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2007-07-01

    We assessed the therapeutic dose absorbed to the tumor and response in repeated RIT with I-131 rituximab for NHL. Patients with NHL (n=6) were administered a therapeutic dose of I-131 rituximab (192.527.0 mCi). The number of repeated administration was 3 for all patients. Total 12 measurable tumor regions were assessed at the time of each RIT. Whole-body (WB) planar images with anterior and posterior views were acquired sequentially at 5 min, 5hr, 24hr, 48hr, and 72hr post-injection using gamma camera. F-18-FDG PET/CT was performed before (within 7 days) and after (on Day 30) RIT. From PET/CT image acquired before RIT, maximum intensity projection (MIP) image of coronal view was acquired. Serial WB planar images were overlaid to the coronal MIP PET image, respectively, by means of registration using 4 fiducial marks (bilateral shoulder and buttock) implemented in AMIDE software. On registered MIP PET and WB planar images, both 2D-ROIs were drawn on the region of tumor and background nearby tumor. The shape of 2D-ROI of tumor was determined from the MIP PET image. The volume of tumor was measured from the CT image, the % change of tumor volume before and after RIT was used in evaluation of the therapeutic response. The values of CT-based tumor volume were 8.216.3cc. The values of absorbed dose for tumor and the % changes of tumor volume before and after RIT were 231.8603.0rad, and 55.548.7%, respectively, and did not show the linear relationship (r=0.2787). The values of absorbed dose for tumor and the % changes of tumor volume did not correlate with the number of repeated administration (p>0.05, ANOVA). Aligning PET and planar images could estimate the quantitative values of absorbed dose to tumor. The data suggest that repeated RIT with I-131 rituximab is necessary for NHL, because single-RIT is insufficient to achieve remission of disease.

  4. Image-Based Assessment and Clinical Significance of Absorbed Radiation Dose to Tumor in Repeated High-Dose {sup 131}I Anti-CD20 Monoclonal Antibody (Rituximab) Radioimmunotherapy for Non-Hodgkin's Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Byung Hyun; Kim, Kyeong Min; Woo, Sang Keun; Choi, Tae Hyun; Kang, Hye Jin; Oh, Dong Hyun; Kim, Byeong Il; Choen, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-02-15

    We assessed the absorbed dose to the tumor (Dose tumor) by using pretreatment FDG-PET and whole-body (WB) planar images in repeated radioimmunotherapy (RIT) with {sup 131}I rituximab for NHL. Patients with NHL (n=4) were administered a therapeutic dose of {sup 131}I rituximab. Serial WB planar images after RIT were acquired and overlaid to the coronal maximum intensity projection (MIP) PET image before RIT. On registered MIP PET and WB planar images, 2D-ROIs were drawn on the region of tumor (n=7) and left medial thigh as background, and Dosetumor was calculated. The correlation between Dosetumor and the CT-based tumor volume change after RIT was analyzed. The differences of Dosetumor and the tumor volume change according to the number of RIT were also assessed. The values of absorbed dose were 397.7{+-}646.2cGy (53.0{approx}2853.0cGy). The values of CT-based tumor volume were 11.3{+-}9.1 cc (2.9{approx}34.2cc), and the % changes of tumor volume before and after RIT were -29.8{+-}44.3% (-100.0%{approx}+42.5%), respectively. Dosetumor and the tumor volume change did not show the linear relationship (p>0.05). Dosetumor and the tumor volume change did not correlate with the number of repeated administration (p>0.05). We could determine the position and contour of viable tumor by MIP PET image. And, registration of PET and gamma camera images was possible to estimate the quantitative values of absorbed dose to tumor.

  5. Construction, Expression and Characterization of a Chimeric Protein Targeting Carcinoembryonic Antigen in Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    LI Yang; HUA Shu-cheng; MA Cheng-yuan; YU Zhen-xiang; XU Li-jun; LI Dan; SUN Li-li; LI Xiao; PENG Li-ping

    2011-01-01

    The carcinoembryonic antigen(CEA) is an oncofetal glycoprotein known as an important clinical tumor marker and is overexpressed in several types of tumors, including colorectal and lung carcinomas. We constructed a chimeric protein that exhibits both specific binding and immune stimulating activities, by fusing staphylococcal enterotoxin A(SEA) to the C-terminus of an anti-CEA single-chain disulfide-stabilized Fv(scdsFv) antibody (single-chain-C-terminus/SEA, SC-C/SEA). The SC-C/SEA protein was expressed in Escherichia coli(E. coli), refolded, and purified on an immobilized Ni2+ affinity chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) and Western blot analysis reveal that the target protein was expressed sufficiently. We used immunofluorescence assays to demonstrate that SC-C/SEA could bind specifically to human lung carcinoma cells(A549), but almost human uterine cervix cells(HeLa). We also used the L-lactate dehydrogenase(LDH) release assay to show that SC-C/SEA elicits a strong A549 tumor-specific cytotoxic T lymphocyte(CTL) response in vitro. The results suggest that SC-C/SEA shows specific activity against CEA-positive cells and has potential application in CEA-targeted cancer immunotherapy.

  6. Chimeric DNA Vaccines against ErbB2{sup +} Carcinomas: From Mice to Humans

    Energy Technology Data Exchange (ETDEWEB)

    Quaglino, Elena; Riccardo, Federica; Macagno, Marco; Bandini, Silvio; Cojoca, Rodica; Ercole, Elisabetta [Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin (Italy); Amici, Augusto [Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy); Cavallo, Federica, E-mail: federica.cavallo@unito.it [2 Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy)

    2011-08-10

    DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2{sup +} carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.

  7. Identification and analysis of pig chimeric mRNAs using RNA sequencing data

    Directory of Open Access Journals (Sweden)

    Ma Lei

    2012-08-01

    Full Text Available Abstract Background Gene fusion is ubiquitous over the course of evolution. It is expected to increase the diversity and complexity of transcriptomes and proteomes through chimeric sequence segments or altered regulation. However, chimeric mRNAs in pigs remain unclear. Here we identified some chimeric mRNAs in pigs and analyzed the expression of them across individuals and breeds using RNA-sequencing data. Results The present study identified 669 putative chimeric mRNAs in pigs, of which 251 chimeric candidates were detected in a set of RNA-sequencing data. The 618 candidates had clear trans-splicing sites, 537 of which obeyed the canonical GU-AG splice rule. Only two putative pig chimera variants whose fusion junction was overlapped with that of a known human chimeric mRNA were found. A set of unique chimeric events were considered middle variances in the expression across individuals and breeds, and revealed non-significant variance between sexes. Furthermore, the genomic region of the 5′ partner gene shares a similar DNA sequence with that of the 3′ partner gene for 458 putative chimeric mRNAs. The 81 of those shared DNA sequences significantly matched the known DNA-binding motifs in the JASPAR CORE database. Four DNA motifs shared in parental genomic regions had significant similarity with known human CTCF binding sites. Conclusions The present study provided detailed information on some pig chimeric mRNAs. We proposed a model that trans-acting factors, such as CTCF, induced the spatial organisation of parental genes to the same transcriptional factory so that parental genes were coordinatively transcribed to give birth to chimeric mRNAs.

  8. Cell enrichment-free massive ex-vivo expansion of peripheral CD20⁺ B cells via CD40-CD40L signals in non-human primates.

    Science.gov (United States)

    Kim, Jung-Sik; Byun, Nari; Chung, Hyunwoo; Kim, Hyun-Je; Kim, Jong-Min; Chun, Taehoon; Lee, Won-Woo; Park, Chung-Gyu

    2016-04-22

    Non-human primates (NHPs) are valuable as preclinical resources that bridge the gap between basic science and clinical application. B cells from NHPs have been utilized for the development of B-cell targeted drugs and cell-based therapeutic modalities; however, few studies on the ex-vivo expansion of monkey B cells have been reported. In this study, we developed a highly efficient ex-vivo expansion protocol for monkey B cells resulting in 99% purity without the requirement for prior cell-enrichment procedures. To this end, monkey peripheral blood mononuclear cells (PBMCs) were stimulated for 12 days with cells constitutively expressing monkey CD40L in expansion medium optimized for specific and massive expansion of B cells. The B cells expansion rates obtained were 2-5 times higher than those previously reported in humans, with rates ranging from 7.9 to 16.6 fold increase. Moreover, expanded B cells sustained high expression of co-stimulatory molecules including CD83 and CD86 until day 12 of culture, and the simple application of a brief centrifugation resulted in a CD20(+) B cell purity rate of greater than 99%. Furthermore, small amounts of CD3(+)CD20(+)BT-like cells were generated and CD16 was expressed at moderate levels on expanded B cells. Thus, the establishment of this protocol provides a method to produce quantities of homogeneous, mature B cells in numbers sufficient for the in vitro study of B cell immunity as well as for the development of B cell-diagnostic tools and cell-based therapeutic modalities.

  9. Quantitative analysis of chimerism after allogeneic hematopoietic stem cell transplantation with molecular genetic methods

    Directory of Open Access Journals (Sweden)

    V. A. Lavrinenko

    2014-09-01

    Full Text Available Quantitative monitoring of chimerism after allogeneic hematopoietic stem cell transplantation (HSCT by molecular methods has becomea significant diagnostic tool in detection of engraftment / graft failure, predicting rejection and disease relapse. Despite the great utility of chimerism analysis there is not a unique standard method for its quantification. The objective of the present investigation was to compare perspective methods multiplex short tandem repeat polymerase chain reaction (STR-PCR and real-time PCR insertion / deletion polymorphisms (InDel-PCR for the quantification of chimerism after HSCT. We performed a study analyzing the chimerism status in 60 patients by STR-PCR and by InDel-PCR. Recipient / donor discrimination was possible with STR-PCR in all patient-donor pairs (100 %, whereas informative alleles for recipient were found in 88 % pairs with InDel-PCR. The sensitivity (detection limit of STR-PCR and InDel-PCR was 1–5 % and more than 0.01 % donor cells correspondingly. The accuracy of quantification was higher for STR-PCR than for InDel-PCR, when level of donor chimerism was 3–97 %. These methods can be successfully used to determine chimerism after allogeneic HSCT. Considering the higher sensitivity and quantification accuracy of InDel-PCR it should be chosen if donor chimerism level less 5 % or more 95 % and in other cases STR-PCR should be chosen.

  10. A technical application of quantitative next generation sequencing for chimerism evaluation.

    Science.gov (United States)

    Aloisio, Michelangelo; Licastro, Danilo; Caenazzo, Luciana; Torboli, Valentina; D'Eustacchio, Angela; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2016-10-01

    At present, the most common genetic diagnostic method for chimerism evaluation following hematopoietic stem cell transplantation is microsatellite analysis by capillary electrophoresis. The main objective was to establish, through repeated analysis over time, if a complete chimerism was present, or if the mixed chimerism was stable, increasing or decreasing over time. Considering the recent introduction of next generation sequencing (NGS) in clinical diagnostics, a detailed study evaluating an NGS protocol was conducted, coupled with a custom bioinformatics pipeline, for chimerism quantification. Based on the technology of Ion AmpliSeq, a 44‑amplicon custom chimerism panel was designed, and a custom bioinformatics pipeline dedicated to the genotyping and quantification of NGS data was coded. The custom chimerism panel allowed identification of an average of 16 informative recipient alleles. The limit of detection of the protocol was fixed at 1% due to the NGS background (Torrent Personal Genome Machine guidelines. Overall, the present study added to the scientific literature, identifying novel technical details for a possible future application of NGS for chimerism quantification. PMID:27499173

  11. Construction and characterization of chimeric BHIV (BIV/HIV-1) viruses carrying the bovine immunodeficiency virus gag gene

    Institute of Scientific and Technical Information of China (English)

    Yi-Xin Zhu; Chang Liu; Xin-Lei Liu; Wen-Tao Qiao; Qi-Min Chen; Yi Zeng; Yun-Qi Geng

    2005-01-01

    AIM: To explore the possibility of the replacement of the gag gene between human immunodeficiency virus and bovine immunodeficiency virus, to achieve chimeric virions,and thereby gain a new kind of AIDS vaccine based on BHIV chimeric viruses.METHODS: A series of chimeric BHIV proviral DNAs differing in the replacement regions in gag gene were constructed, and then were transfected into 293T cells. The expression of chimeric viral genes was detected at the RNA and protein level. The supematant of 293T cell was ultra centrifuged to detect the probable chimeric virion. Once the chimeric virion was detected, its biological activities were also assayed by infecting HIV-sensitive MT4 cells.RESULTS: Four chimeric BHIV proviral DNAs were constructed. Genes in chimeric viruses expressed correctly in transfected 293T cells. All four constructs assembled chimeric virions with different degrees of efficiency. These virions had complete structures common to retroviruses and packaged genomic RNAs, but the cleavages of the precursor Gag proteins were abnormal to some extent. Three of these virions tested could attach and enter into MT4 cells, and one of them could complete the course of reverse transcription. Yet none of them could replicate in MT4 cells.CONCLUSION: The replacement of partial gag gene of HIV with BIV gaggene is feasible. Genes in chimeric BHIVs are accurately expressed, and virions are assembled. These chimeric BHIVs (proviral DNA together with virus particles) have the potential to become a new kind of HIV/AIDS vaccine.

  12. Confined Blood Chimerism in Monochorionic Dizygotic Twins Conceived Spontaneously

    Directory of Open Access Journals (Sweden)

    Takashi Kanda

    2013-05-01

    Full Text Available Traditionally, monochorionicity has been regarded as synonymous with monozygosity. However, several recent cases of monochorionic dizygotic twins have shown that monochorionic twins can be dizygous. We report a rare case of monochorionic diamnionic, gender-discordant twins who were conceived spontaneously. Initially, a monochorionic placenta was diagnosed by ultrasonography at 8 weeks of gestation and then confirmed by pathology after delivery. The twins had different genders. A comparison of cytogenetic analyses using peripheral blood lymphocytes and skin fibroblasts revealed that chimerism was confined to blood cells. We have experienced two cases of monochorionic dizygotic twins since 2003. These cases suggest that monochorionic dizygotic twins are not as rare as previously thought.

  13. Mammalian Cell Culture Clarification: A Case Study Using Chimeric Anti-CEA Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Abol Hassan

    2011-12-01

    Full Text Available The extracellular expression of monoclonal antibodies (mAbs in mammalian cell culture provides both opportunities and restrictions for the design of robust harvest and clarification operations. With advances in cell culture media and cell lines, it is now possible to achieve high titers of over 5 g/l for mAbs. However, Mammalian cells are sensitive to breakage due to shear stress that can result in release of proteases and other host cell proteins (HCPs which eventually affects product stability and purity. There is larger number of mAbs undergoing clinical development and it has placed significant importance on platform technologies of process development. Generally, Centrifugation and microfiltration are the primary harvest techniques used in the industry and depth filtration is also used as a step operation on clarification. This study compares the unit operations; centrifugation, microfiltration and depth filtration for maximum recovery of monoclonal antibodies. The results have shown that the depth filtration as more suitable operation for mammalian cell culture clarification since it gives 96% recovery of mAbs in comparison to centrifugation and microfiltration. ABSTRAK: Pengungkapan luar sel dari antibodi monoklon (monoclonal antibodies ((mAbs dalam kultur sel mamalia memberi ruang dan batasan terhadap reka bentuk penuaian yang cekap dan penerangan operasi. Dengan kemajuan dalam media sel kultur dan cell lines (produk yang berupa sel kekal yang digunakan untuk tujuan kajian biologi, kini adalah berkemungkinan untuk memperolehi titer tinggi melebihi 5g/l untuk mAbs [2]. Walaupun begitu, sel mamalia sensitif terhadap retakan disebabkan tegasan ricih yang menyebabkan pengeluaran protease dan hos sel protein yang lain, (host cell proteins (HCPs akhirnya mempengaruhi kestabilan dan keaslian produk. Terdapat mAbs dalam jumlah besar yang masih menjalani pembangunan klinikal dan sesungguhnya ini penting sebagai satu landasan teknologi dalam proses pembangunan. Umumnya pengemparan dan mikropenurasan merupakan teknik asas tuaian dalam industri dan penurasan dalam juga digunakan sebagai satu pengendalian langkah dalam penjelasannya. Kajian ini membandingkan operasi unit: pengemparan, mikropenurasan dan penurasan dalam untuk perolehan antibodi monoklon yang maksima. Keputusan menunjukkan penurasan dalam adalah operasi yang lebih sesuai untuk penjelasan kultur sel mamalia kerana ia memberikan perolehan 96 % mAbs berbandingkan dengan cara pengemparan dan mikropenurasan.

  14. Protein L: a novel reagent for the detection of Chimeric Antigen Receptor (CAR expression by flow cytometry

    Directory of Open Access Journals (Sweden)

    Zheng Zhili

    2012-02-01

    Full Text Available Abstract Background There has been significant progress in the last two decades on the design of chimeric antigen receptors (CAR for adoptive immunotherapy targeting tumor-associated antigens. Structurally CARs consist of a single chain antibody fragment directed against a tumor-associated antigen fused to an extracellular spacer and transmembrane domain followed by T cell cytoplasmic signaling moieties. Currently several clinical trials are underway using gene modified peripheral blood lymphocytes (PBL with CARs directed against a variety of tumor associated antigens. Despite the improvements in the design of CARs and expansion of the number of target antigens, there is no universal flow cytometric method available to detect the expression of CARs on the surface of transduced lymphocytes. Methods Currently anti-fragment antigen binding (Fab conjugates are most widely used to determine the expression of CARs on gene-modified lymphocytes by flow cytometry. The limitations of these reagents are that many of them are not commercially available, generally they are polyclonal antibodies and often the results are inconsistent. In an effort to develop a simple universal flow cytometric method to detect the expression of CARs, we employed protein L to determine the expression of CARs on transduced lymphocytes. Protein L is an immunoglobulin (Ig-binding protein that binds to the variable light chains (kappa chain of Ig without interfering with antigen binding site. Protein L binds to most classes of Ig and also binds to single-chain antibody fragments (scFv and Fab fragments. Results We used CARs derived from both human and murine antibodies to validate this novel protein L based flow cytometric method and the results correlated well with other established methods. Activated human PBLs were transduced with retroviral vectors expressing two human antibody based CARs (anti-EGFRvIII, and anti-VEGFR2, two murine antibody derived CARs (anti-CSPG4, and anti

  15. Simulation,construction and characterization of a multi-functional thrombolytic agent with anti-thrombosis activity

    Institute of Scientific and Technical Information of China (English)

    Weiran YU; Jian JING

    2008-01-01

    Prourokinase (scu-PA),a thrombolytic agent,was inserted between Glyl 18 and Ilel 19 with foreign anti-thrombosis functional motif (Lys-Gly-Asp-Trp-motif) to construct a multi-functional chimeric molecule.The molecular model of a chimera was simulated and pre-dicted.The recombinant chimeric protein was expressed by the baculovirus-insect cell expression system and puri-fied by affinity chromatography.The physico-chemical characteristics of the chimeric molecule were assayed.The thrombolytic activity was determined to be 90000 IU/mg of fibrinolytic special activity by the fibrin-plate method.The anti-thrombosis activities were also assayed with IC50 of 9.6 μM by an inhibition test of ADP-induced platelet aggregation.

  16. In vitro effects of rituximab on the proliferation, activation and differentiation of human B cells.

    NARCIS (Netherlands)

    Kamburova, E.G.; Koenen, H.J.P.M.; Boon, L.; Hilbrands, L.B.; Joosten, I.

    2012-01-01

    Rituximab is a chimeric anti-CD20 monoclonal antibody (mAb) used in B-cell malignancies, various autoimmune disorders and organ transplantation. Although administration of a single dose of rituximab results in full B-cell depletion in peripheral blood, there remains a residual B-cell population in s

  17. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali;

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination...

  18. RT-SHIV, an infectious CCR5-tropic chimeric virus suitable for evaluating HIV reverse transcriptase inhibitors in macaque models

    Directory of Open Access Journals (Sweden)

    Emau Peter

    2009-11-01

    Full Text Available Abstract Background Non-nucleoside reverse transcriptase inhibitors (NNRTIs are an important category of drugs for both chemotherapy and prevention of human immunodeficiency virus type 1 (HIV-1 infection. However, current non-human primate (NHP models utilizing simian immunodeficiency virus (SIV or commonly used chimeric SHIV (SIV expressing HIV-1 envelope are inadequate due to the insensitivity to NNRTIs. To develop a NHP model for evaluation of NNRTI compounds, we characterized a RT-SHIV virus that was assembled by replacing the SIVmac239 reverse transcriptase (RT with that of HIV-1HXB2. Since RT-SHIV exhibited in vitro characteristics of high infectivity, CCR5-usage, and sensitivity to HIV-1 specific NNRTIs, this virus was thought to be suitable for mucosal transmission and then was used to carry out a vaginal transmission study in pigtail macaques (Macaca nemestrina. Results RT-SHIV exhibited in vitro characteristics of an infectious CCR5-tropic chimeric virus. This virus was not only highly sensitive to HIV-1 RT specific NNRTIs; its replication was also inhibited by a variety of NRTIs and protease inhibitors. For in vivo vaginal transmission studies, macaques were either pretreated with a single dose of DMPA (depot medroxyprogesterone acetate or left untreated before intravaginal inoculation with 500 or 1,000 TCID50 of RT-SHIV. All macaques became systemically infected by 2 or 3 weeks post-inoculation exhibiting persistent high viremia, marked CD4+T cell depletion, and antiviral antibody response. DMPA-pretreated macaques showed a higher mean plasma viral load after the acute infection stage, highly variable antiviral antibody response, and a higher incidence of AIDS-like disease as compared with macaques without DMPA pretreatment. Conclusion This chimeric RT-SHIV has exhibited productive replication in both macaque and human PBMCs, predominantly CCR5-coreceptor usage for viral entry, and sensitivity to NNRTIs as well as other anti

  19. Quantitative chimerism kinetics in relapsed leukemia patients after allogeneic hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    QIN Xiao-ying; WANG Jing-zhi; ZHANG Xiao-hui; LI Jin-lan; LI Ling-di; LIU Kai-yan; HUANG Xiao-jun; LI Guo-xuan; QIN Ya-zhen; WANG Yu; WANG Feng-rong; LIU Dai-hong; XU Lan-ping; CHEN Huan; HAN Wei

    2012-01-01

    Background Chimerism analysis is an important tool for the surveillance of post-transplant engraftment.It offers the possibility of identifying impending graft rejection and recurrence of underlying malignant or non-malignant disease.Here we investigated the quantitative chimerism kinetics of 21 relapsed leukemia patients after allogeneic hematopoietic stem cell transplantation (HSCT).Methods A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time polymerase chain reaction (RT-PCR) to obtain the informative marker for every leukemia patient.Quantitative chimerism analysis of bone marrow (BM) samples of 21 relapsed patients and 20 patients in stable remission was performed longitudinally.The chimerisms of BM and peripheral blood (PB) samples of 14 patients at relapse were compared.Results Twenty-one patients experienced leukemia relapse at a median of 135 days (range,30-720 days) after transplantation.High recipient chimerism in BM was found in all patients at relapse,and increased recipient chimerism in BM samples was observed in 90% (19/21) of patients before relapse.With 0.5% recipient DNA as the cut-off,median time between the detection of increased recipient chimerism and relapse was 45 days (range,0-120 days),with 76% of patients showing increased recipient chimerism at least 1 month prior to relapse.Median percentage of recipient DNA in 20 stable remission patients was 0.28%,0.04%,0.05%,0.05%,0.08%,and 0.05% at 1,2,3,6,9,and 12 months,respectively,after transplantation.This was concordant with other specific fusion transcripts and fluorescent in situ hybridization examination.The recipient chimerisms in BM were significantly higher than those in PB at relapse (P=0.001).Conclusions This SP-based RT-PCR essay is a reliable method for chimerism analysis.Chimerism kinetics in BM can be used as a marker of impending leukemia relapse,especially when no other specific marker is available.Based on our findings

  20. Chimeric hepatitis B virus core particles as probes for studying peptide-integrin interactions.

    OpenAIRE

    Chambers, M A; Dougan, G; Newman, J.; Brown, F.; Crowther, J.; Mould, A P; Humphries, M J; Francis, M. J.; Clarke, B.; Brown, A L; Rowlands, D.

    1996-01-01

    An RGD-containing epitope from the foot-and-mouth disease virus (FMDV) VP1 protein was inserted into the e1 loop of the hepatitis B virus core (HBc) protein. This chimeric protein was expressed at high levels in Escherichia coli and spontaneously assembled into virus-like particles which could be readily purified. These fusion particles elicited high levels of both enzyme-linked immunosorbent assay- and FMDV-neutralizing antibodies in guinea pigs. The chimeric particles bound specifically to ...

  1. Hematopoietic Chimerism Monitoring Based on STRs: Quantitative Platform Performance on Sequential Samples

    OpenAIRE

    Kristt, Don; Israeli, Moshe; Narinski, Ronit; Or, Hagit; Yaniv, I; Stein, Jerry; Klein, Tirza

    2005-01-01

    Hematopoietic stem cell transplantation (HSCT) creates a donor-recipient cellular chimerism in the patient, which is quantitatively assayed from peripheral blood based on STR-DNA. Since chimerism values often vary across a patient’s samples, it is important to determine to what extent this variability reflects technical aspects of platform performance. This issue is systematically assessed in the current study for the first time. Using the SGM Plus multiplex PCR kit and ABI platform, the long...

  2. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

    OpenAIRE

    Yin, HaiFang; Boisguerin, Prisca; Moulton, Hong M.; Betts, Corinne; Seow, Yiqi; Boutilier, Jordan; Wang, Qingsong; Walsh, Anthony; Lebleu, Bernard; Wood, Matthew JA

    2013-01-01

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was ...

  3. Targeting duplex DNA with chimeric α,β-triplex-forming oligonucleotides

    OpenAIRE

    Kolganova, N. A.; Shchyolkina, A K; Chudinov, A. V.; Zasedatelev, A S; Florentiev, V L; Timofeev, E. N.

    2012-01-01

    Triplex-directed DNA recognition is strictly limited by polypurine sequences. In an attempt to address this problem with synthetic biology tools, we designed a panel of short chimeric α,β-triplex-forming oligonucleotides (TFOs) and studied their interaction with fluorescently labelled duplex hairpins using various techniques. The hybridization of hairpin with an array of chimeric probes suggests that recognition of double-stranded DNA follows complicated rules combining reversed Hoogsteen and...

  4. Metabolic studies of prostanozol with the uPA-SCID chimeric mouse model and human liver microsomes.

    Science.gov (United States)

    Geldof, Lore; Lootens, Leen; Decroix, Lieselot; Botrè, Francesco; Meuleman, Philip; Leroux-Roels, Geert; Deventer, Koen; Van Eenoo, Peter

    2016-03-01

    Anabolic androgenic steroids are prohibited by the World Anti-Doping Agency because of their adverse health and performance enhancing effects. Effective control of their misuse by detection in urine requires knowledge about their metabolism. In case of designer steroids, ethical objections limit the use of human volunteers to perform excretion studies. Therefore the suitability of alternative models needs to be investigated. In this study pooled human liver microsomes (HLM) and an uPA(+/+)-SCID chimeric mouse model were used to examine the metabolism of the designer steroid prostanozol as a reference standard. Metabolites were detected by GC-MS (full scan) and LC-MS/MS (precursor ion scan). In total twenty-four prostanozol metabolites were detected with the in vitro and in vivo metabolism studies, which could be grouped into two broad classes, those with a 17-hydroxy- and those with a 17-keto-substituent. Major first phase metabolic sites were tentatively identified as C-3'; C-4 and C-16. Moreover, 3'- and 16β-hydroxy-17-ketoprostanozol could be unequivocally identified, since authentic reference material was available, in both models. Comparison with published data from humans showed a good correlation, except for phase II metabolism. As metabolites were in contrast to the human studies predominantly present in the free fraction. Two types of metabolites ((di)hydroxylated prostanozol metabolites) that have not been described before could be confirmed in a real positive doping control sample. Hence, the results provide further evidence for the applicability of chimeric mice and HLM to perform metabolism studies of designer steroids. PMID:26774429

  5. Hepatitis C virus infection suppresses the interferon response in the liver of the human hepatocyte chimeric mouse.

    Directory of Open Access Journals (Sweden)

    Masataka Tsuge

    Full Text Available BACKGROUND AND AIMS: Recent studies indicate that hepatitis C virus (HCV can modulate the expression of various genes including those involved in interferon signaling, and up-regulation of interferon-stimulated genes by HCV was reported to be strongly associated with treatment outcome. To expand our understanding of the molecular mechanism underlying treatment resistance, we analyzed the direct effects of interferon and/or HCV infection under immunodeficient conditions using cDNA microarray analysis of human hepatocyte chimeric mice. METHODS: Human serum containing HCV genotype 1b was injected into human hepatocyte chimeric mice. IFN-α was administered 8 weeks after inoculation, and 6 hours later human hepatocytes in the mouse livers were collected for microarray analysis. RESULTS: HCV infection induced a more than 3-fold change in the expression of 181 genes, especially genes related to Organismal Injury and Abnormalities, such as fibrosis or injury of the liver (P = 5.90E-16∼3.66E-03. IFN administration induced more than 3-fold up-regulation in the expression of 152 genes. Marked induction was observed in the anti-fibrotic chemokines such as CXCL9, suggesting that IFN treatment might lead not only to HCV eradication but also prevention and repair of liver fibrosis. HCV infection appeared to suppress interferon signaling via significant reduction in interferon-induced gene expression in several genes of the IFN signaling pathway, including Mx1, STAT1, and several members of the CXCL and IFI families (P = 6.0E-12. Genes associated with Antimicrobial Response and Inflammatory Response were also significantly repressed (P = 5.22×10(-10∼1.95×10(-2. CONCLUSIONS: These results provide molecular insights into possible mechanisms used by HCV to evade innate immune responses, as well as novel therapeutic targets and a potential new indication for interferon therapy.

  6. Study the effect of F17S mutation on the chimeric Bacillus thermocatenulatus lipase

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Khaleghinejad

    2016-06-01

    Full Text Available Lipases (triacylglycerol acylhydrolase, EC 3.1.1.3 are one of the highest value commercial enzymes as they have potential applications in biotechnology for detergents, food, pharmaceuticals, leather, textiles, cosmetics, and paper industries; and are currently receiving considerable attention because of their potential applications in biotechnology. Bacillus thermocatenulatus Lipase 2 (BTL2 is one of the most important research targets, because of its potential industrial applications. In this study, the effect of substitution Phe17 with Ser in mutated BTL2 lipase, which conserved pentapeptide (112Ala-His-Ser-Gln-Gly116 was replaced with similar sequences (207Gly-Glu-Ser-Ala-Gly211 of Candida rugosa lipase (CLR at the nucleophilic elbow region. Docking results confirmed the mutated lipase to be better than the chimeric lipase. So, cloning was conducted, and the mutated and chimeric btl2 genes were expressed in Escherichia coli, and then the enzymes were purified by anion exchange chromatography. The mutation increased lipase lipolytic activity against most of the applied substrates, with the exception of tributyrin when compared with chimeric lipase. Further, the mutated lipase exhibited higher activity than the chimeric lipase at all temperatures. Optimum pH of the mutated lipase was obtained at pH 9.5, which was more than the chimeric one. Enzyme activity of the mutated lipase in the presence of organic solvents, detergents, and metal ions was also improved than the chimeric lipase.

  7. Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris.

    Directory of Open Access Journals (Sweden)

    Helena Storchova

    Full Text Available Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1. We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.

  8. Adoptive immunotherapy for acute leukemia:New insights in chimeric antigen receptors

    Institute of Scientific and Technical Information of China (English)

    Ma?l; Heiblig; Mohamed; Elhamri; Mauricette; Michallet; Xavier; Thomas

    2015-01-01

    Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells(LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despitethe introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90’s, chimeric antigen receptors(CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding "living drug" specifically targeting the tumor-associated antigen, and ensure long-term antitumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia.

  9. Antistaphylococcal activity of bacteriophage derived chimeric protein P128

    Directory of Open Access Journals (Sweden)

    Vipra Aradhana A

    2012-03-01

    Full Text Available Abstract Background Bacterial drug resistance is one of the most significant challenges to human health today. In particular, effective antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA are urgently needed. A causal relationship between nasal commensal S. aureus and infection has been reported. Accordingly, elimination of nasal S. aureus reduces the risk of infection. Enzymes that degrade bacterial cell walls show promise as antibacterial agents. Bacteriophage-encoded bacterial cell wall-degrading enzymes exhibit intrinsic bactericidal activity. P128 is a chimeric protein that combines the lethal activity of the phage tail-associated muralytic enzyme of Phage K and the staphylococcal cell wall targeting-domain (SH3b of lysostaphin. Here we report results of in vitro studies evaluating the susceptibility of staphylococcal strains to this novel protein. Results Using the broth microdilution method adapted for lysostaphin, we found that P128 is effective against S. aureus clinical strains including MRSA, methicillin-sensitive S. aureus (MSSA, and a mupirocin-resistant S. aureus. Minimum bactericidal concentrations and minimum inhibitory concentrations of P128 (1-64 μg/mL were similar across the 32 S. aureus strains tested, demonstrating its bactericidal nature. In time-kill assays, P128 reduced colony-forming units by 99.99% within 1 h and inhibited growth up to 24 h. In an assay simulating topical application of P128 to skin or other biological surfaces, P128 hydrogel was efficacious when layered on cells seeded on solid media. P128 hydrogel was lethal to Staphylococci recovered from nares of healthy people and treated without any processing or culturing steps, indicating its in situ efficacy. This methodology used for in vitro assessment of P128 as an agent for eradicating nasal carriage is unique. Conclusions The novel chimeric protein P128 is a staphylococcal cell wall-degrading enzyme under development for

  10. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    Science.gov (United States)

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed.

  11. Dosimetry of chimeric TNT in lung tumor patients

    Institute of Scientific and Technical Information of China (English)

    CHEN Yangchun; CHEN Shaoliang; JU Dianwen; SHI Hongcheng; YAO Zhifeng

    2007-01-01

    The purpose of this study was to assess the absorbed dose of tumor and main critical organs in 131I labeled chimeric tumor necrotic treatment (chTNT). In 9 patients, a single intravenous dose of (29.6±3.7) MBq/kg was administered. Blood samples were drawn at different time intervals, and urine was collected for up to one week. Tissue distribution of 131I -chTNT was followed for up to one week by gamma camera imaging. Absorbed doses to the whole body and to normal organs were computed according to the MIRD scheme using Mirdose-3 software. S-factors for lung tumors were estimated by comparison with lungs of similar mass and position in the body. It was found that mean serum disappearance half time values for 131I-chTNT were (4.93±9.36) h and (61.7±21.2) h for α, β respectively,while that for whole body was(99±10) h. Mean urine biological clearance half time value was (90±10) h. The absorbed dose to tumor was (8.28±2.65) Gy, and the tumor-to-nontumor dose ratio was 3.95±1.55. And the mean effective dose to patients was (1.02±0.29) mSv/MBq.

  12. Chimerical pyrene-based [7]helicenes as twisted polycondensed aromatics.

    Science.gov (United States)

    Buchta, Michal; Rybáček, Jiří; Jančařík, Andrej; Kudale, Amit A; Buděšínský, Miloš; Chocholoušová, Jana Vacek; Vacek, Jaroslav; Bednárová, Lucie; Císařová, Ivana; Bodwell, Graham J; Starý, Ivo; Stará, Irena G

    2015-06-01

    Chimerical pyrene-based dibenzo[7]helicene rac-1 and 2H-pyran[7]helicene (M,R,R)-(-)-2, in which two pyrene subunits are fused to the [7]helicene/[7]heterohelicene scaffold, were synthesised by means of Ni(0) - or Co(I) -mediated [2+2+2] cycloisomerisation of dipyrenyl-acetylene-derived triynes. Pyrene-based dibenzo[7]helicene 1 was obtained in enantioenriched form by enantioselective cycloisomerisation under Ni(0) /QUINAP catalysis (57 % ee) or in enantiopure form by racemate resolution by liquid chromatography on a chiral column. 1,3-Allylic-type strain-controlled diastereoselective cycloisomerisation was employed in the synthesis of enantiopure (M,R,R)-(-)-2. Physicochemical properties of 1 and 2 encompassing the helicity assignment, stability to racemisation, X-ray crystal structure, UV/Vis, experimental/calculated electronic circular dichroism and fluorescence spectra were studied. Accordingly, comparison of the X-ray crystal structure of (M,R,R)-(-)-2 with calculated structures (DFT: B3LYP/cc-pVDZ, B97D/cc-pVDZ) indicated that its helical backbone is slightly over-flattened owing to intramolecular dispersion forces between tert-butylated pyrene subunits. Both 1 and 2 are fluorescent (with quantum yields in dichloromethane of ΦF =0.10 and 0.17, respectively) and are suggested to form intramolecular excimer states upon excitation, which are remarkably stabilised and exhibit large Stokes shifts (296 and 203 nm, respectively).

  13. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    Science.gov (United States)

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed. PMID:26873054

  14. Toxicities of chimeric antigen receptor T cells: recognition and management.

    Science.gov (United States)

    Brudno, Jennifer N; Kochenderfer, James N

    2016-06-30

    Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy. PMID:27207799

  15. Chimeric TALE recombinases with programmable DNA sequence specificity.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F

    2012-11-01

    Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.

  16. Immunomodulatory Effects of Different Cellular Therapies of Bone Marrow Origin on Chimerism Induction and Maintenance Across MHC Barriers in a Face Allotransplantation Model.

    Science.gov (United States)

    Hivelin, Mikael; Klimczak, Aleksandra; Cwykiel, Joanna; Sonmez, Erhan; Nasir, Serdar; Gatherwright, James; Siemionow, Maria

    2016-08-01

    Many more patients would benefit from vascularized composite allotransplantation if less toxic and safer immunosuppressive protocols will become available. Tolerance induction protocols with donor cells co-transplantation are one of the promising pathways to reduce maintenance immunosupressive regimens. We investigated the role of donor bone marrow cells (BMC), mesenchymal stromal cells (MSC) and in vivo created chimeric cells (CC) used as supportive therapies in a fully MHC-mismatched rat face transplantation model. Twenty-four fully MHC-mismatched hemiface transplantations were performed between ACI (RT1(a)) donors and Lewis (RT1(l)) recipients under combined seven-day immunosuppressive regimen of anti-αβ-T-cell receptor (TCR) monoclonal antibody and cyclosporin A. We studied four experimental groups-group 1: no cellular therapy; group 2: supportive therapy with BMC; group 3: supportive therapy with MSC; group 4: supportive therapy with CC generated in a primary chimera. We evaluated clinical and histological rejection grades, transplanted cells migration, donor-specific chimerism in the peripheral blood and bone marrow compartments, and CD4(+)/CD25(+) T-cell levels. Face allograft rejection was observed at 26.8 ± 0.6 days post-transplant (PT) in the absence of cellular therapy, at 34.5 ± 1.1 days for group 2, 29.3 ± 0.8 days for group 3, and 30.3 ± 1.38 PT for group 4. The longest survival was observed in allografts supported by co-transplantation of BMC. All support in cellular therapies delayed face allograft rejection by chimerism induction and/or immunomodulatory properties of co-transplanted cells. Survival time was comparable between groups, however, further studies, with different cell dosages, delivery routes and delivery times are required. PMID:26708158

  17. 扫描探针显微术用于B淋巴瘤细胞表面分子数量化与可视化研究%Visualization and quantitation of CD20 molecues on human B-cell lymphoma by scanning probe microscopy (SPM)

    Institute of Scientific and Technical Information of China (English)

    王淑蕙; 赵磊; 李华飞; 陈雅琳; 王皓; 郭亚军; 李博华

    2013-01-01

    AFM (atomic force microscopy) and NSOM (near field scanning microscopy) have extremely high resolution and many advantages in exploring the biology.In this work,AFM and NSOM were used to investigate the morphology and ultrastructure of human B-cell lymphoma before and after treatment with CD20 antibody Rituximab,we used AFM combined with NSOM to optically investigate CD20 molecules on human B-cell lymphoma.The location,distribution and variation of CD20 molecules were imaged by a high-resolve NSOM.The results showed that a method that could be used to observe the ultrastructure of surface molecules on B cell lymphoma was established and the distribution of membrane-bound CD20 molecules was observed by the two types of high-resolution microscopies.After treatment with Rituximab,the lymphoma cell surface has small granules,indicating abundant structure infomation inside the cells,and NSOM found that CD20 molecules remained scat tered on the cell surface.%本研究试图采用原子力显微术(AFM)和近场光学显微术(NSOM)对B淋巴瘤细胞的表面形态和超微结构进行了纳米级高分辨的成像研究,获得Rituximab抗体处理前后不同状态下的高清晰、对比度良好的NSOM和AFM的B淋巴瘤细胞图像,建立超高分辨率显微镜观测B淋巴瘤细胞膜分子表面分布的方法.采用AFM和NSOM,对B淋巴瘤细胞的表面形态及光学性质进行了观测.结果显示建立了一种观测B淋巴瘤细胞超微细胞表面结构的方法,结合NSOM对Rituximab抗体处理前后CD20膜蛋白分子在细胞膜表面位置进行高分辨率的观测.AFM的结果表明Rituximab抗体处理以后B淋巴瘤细胞细胞膜的颗粒度明显增加,NSOM结果发现在Rituximab处理B淋巴瘤细胞前后,CD20膜蛋白分子仍然散在分布在细胞膜表面.

  18. Immune Reconstitution Kinetics following Intentionally Induced Mixed Chimerism by Nonmyeloablative Transplantation.

    Directory of Open Access Journals (Sweden)

    Nayoun Kim

    Full Text Available Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated. Therefore, understanding the kinetics of engraftment during early post-transplant period may provide insight into establishing long-term mixed chimerism and permanent transplant tolerance. In this study, we intentionally induced allogeneic mixed chimerism using a nonmyeloablative regimen by host natural killer (NK cell depletion and T cell-depleted bone marrow (BM grafts in a major histocompatibility complex (MHC-mismatched murine model and analyzed the kinetics of donor (C57BL/6 and recipient (BALB/c engraftment in the weeks following transplantation. Donor BM cells were well engrafted and stabilized without graft-versus-host disease (GVHD as early as one week post-bone marrow transplantation (BMT. Donor-derived thymic T cells were reconstituted four weeks after BMT; however, the emergence of newly developed T cells was more obvious at the periphery as early as two weeks after BMT. Also, the emergence and changes in ratio of recipient- and donor-derived NKT cells and antigen presenting cells (APCs including dendritic cells (DCs and B cells were noted after BMT. Here, we report a longitudinal analysis of the development of donor- and recipient-originated hematopoietic cells in various lymphatic tissues of intentionally induced mixed chimerism mouse model during early post-transplant period. Through the understanding of immune reconstitution at early time points after nonmyeloablative BMT, we suggest guidelines on intentionally inducing durable mixed chimerism.

  19. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein

    International Nuclear Information System (INIS)

    The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV

  20. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation.

    Science.gov (United States)

    Otsuka, Ryoko; Imai, Susumu; Murata, Takatoshi; Nomura, Yoshiaki; Okamoto, Masaaki; Tsumori, Hideaki; Kakuta, Erika; Hanada, Nobuhiro; Momoi, Yasuko

    2015-01-01

    Water-insoluble glucan (WIG) produced by mutans streptococci, an important cariogenic pathogen, plays an important role in the formation of dental biofilm and adhesion of biofilm to tooth surfaces. Glucanohydrolases, such as mutanase (α-1,3-glucanase) and dextranase (α-1,6-glucanase), are able to hydrolyze WIG. The purposes of this study were to construct bi-functional chimeric glucanase, composed of mutanase and dextranase, and to examine the effects of this chimeric glucanase on the formation and decomposition of biofilm. The mutanase gene from Paenibacillus humicus NA1123 and the dextranase gene from Streptococcus mutans ATCC 25175 were cloned and ligated into a pE-SUMOstar Amp plasmid vector. The resultant his-tagged fusion chimeric glucanase was expressed in Escherichia coli BL21 (DE3) and partially purified. The effects of chimeric glucanase on the formation and decomposition of biofilm formed on a glass surface by Streptococcus sobrinus 6715 glucosyltransferases were then examined. This biofilm was fractionated into firmly adherent, loosely adherent, and non-adherent WIG fractions. Amounts of WIG in each fraction were determined by a phenol-sulfuric acid method, and reducing sugars were quantified by the Somogyi-Nelson method. Chimeric glucanase reduced the formation of the total amount of WIG in a dose-dependent manner, and significant reductions of WIG in the adherent fraction were observed. Moreover, the chimeric glucanase was able to decompose biofilm, being 4.1 times more effective at glucan inhibition of biofilm formation than a mixture of dextranase and mutanase. These results suggest that the chimeric glucanase is useful for prevention of dental biofilm formation.

  1. Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome

    Directory of Open Access Journals (Sweden)

    Petrov Dmitri A

    2005-11-01

    Full Text Available Abstract Background Recent analysis of the human and mouse genomes has shown that a substantial proportion of protein coding genes and cis-regulatory elements contain transposable element (TE sequences, implicating TE domestication as a mechanism for the origin of genetic novelty. To understand the general role of TE domestication in eukaryotic genome evolution, it is important to assess the acquisition of functional TE sequences by host genomes in a variety of different species, and to understand in greater depth the population dynamics of these mutational events. Results Using an in silico screen for host genes that contain TE sequences, we identified a set of 63 mature "chimeric" transcripts supported by expressed sequence tag (EST evidence in the Drosophila melanogaster genome. We found a paucity of chimeric TEs relative to expectations derived from non-chimeric TEs, indicating that the majority (~80% of TEs that generate chimeric transcripts are deleterious and are not observed in the genome sequence. Using a pooled-PCR strategy to assay the presence of gene-TE chimeras in wild strains, we found that over half of the observed chimeric TE insertions are restricted to the sequenced strain, and ~15% are found at high frequencies in North American D. melanogaster populations. Estimated population frequencies of chimeric TEs did not differ significantly from non-chimeric TEs, suggesting that the distribution of fitness effects for the observed subset of chimeric TEs is indistinguishable from the general set of TEs in the genome sequence. Conclusion In contrast to mammalian genomes, we found that fewer than 1% of Drosophila genes produce mRNAs that include bona fide TE sequences. This observation can be explained by the results of our population genomic analysis, which indicates that most potential chimeric TEs in D. melanogaster are deleterious but that a small proportion may contribute to the evolution of novel gene sequences such as nested or

  2. Chimeric antigen receptor (CAR-specific monoclonal antibody to detect CD19-specific T cells in clinical trials.

    Directory of Open Access Journals (Sweden)

    Bipulendu Jena

    Full Text Available Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63. We describe a novel anti-idiotype monoclonal antibody (mAb to detect CD19-specific CAR(+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1 was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19(+ tumor targets. This clone can be used to detect CD19-specific CAR(+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1 will be useful to investigators implementing CD19-specific CAR(+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.

  3. Chimeric antigen receptor (CAR)-engineered T cells redirected against hepatitis C virus (HCV) E2 glycoprotein

    Science.gov (United States)

    Sautto, Giuseppe A; Wisskirchen, Karin; Clementi, Nicola; Castelli, Matteo; Diotti, Roberta A; Graf, Julia; Clementi, Massimo; Burioni, Roberto; Protzer, Ulrike; Mancini, Nicasio

    2016-01-01

    Objective The recent availability of novel antiviral drugs has raised new hope for a more effective treatment of hepatitis C virus (HCV) infection and its severe sequelae. However, in the case of non-responding or relapsing patients, alternative strategies are needed. To this end we have used chimeric antigen receptors (CARs), a very promising approach recently used in several clinical trials to redirect primary human T cells against different tumours. In particular, we designed the first CARs against HCV targeting the HCV/E2 glycoprotein (HCV/E2). Design Anti-HCV/E2 CARs were composed of single-chain variable fragments (scFvs) obtained from a broadly cross-reactive and cross-neutralising human monoclonal antibody (mAb), e137, fused to the intracellular signalling motif of the costimulatory CD28 molecule and the CD3ζ domain. Activity of CAR-grafted T cells was evaluated in vitro against HCV/E2-transfected cells as well as hepatocytes infected with cell culture-derived HCV (HCVcc). Results In this proof-of-concept study, retrovirus-transduced human T cells expressing anti-HCV/E2 CARs were endowed with specific antigen recognition accompanied by degranulation and secretion of proinflammatory and antiviral cytokines, such as interferon γ, interleukin 2 and tumour necrosis factor α. Moreover, CAR-grafted T cells were capable of lysing target cells of both hepatic and non-hepatic origin expressing on their surface the HCV/E2 glycoproteins of the most clinically relevant genotypes, including 1a, 1b, 2a, 3a, 4 and 5. Finally, and more importantly, they were capable of lysing HCVcc-infected hepatocytes. Conclusions Clearance of HCV-infected cells is a major therapeutic goal in chronic HCV infection, and adoptive transfer of anti-HCV/E2 CARs-grafted T cells represents a promising new therapeutic tool. PMID:25661083

  4. Simulations of Mineral Dust Content With CHIMERE-Dust Model

    Science.gov (United States)

    Schmechtig, C.; Marticorena, B.; Menut, L.; Bergametti, G.

    2006-12-01

    Simulations of the mineral dust cycle have been performed whith CHIMERE-Dust model over a domain that includes North Africa, the Mediterranean basin and the North Tropical Atlantic Ocean (10S-60N and 90W-90E) with a 1°x1° resolution using the ECMWF (European Center for Medium-Range Weather Forecasts) meteorological fields for two years, 2000 and 2001. As a validation, we compare the simulated dust concentration fields with photometric data from the AERONET network. From the comparisons between the simulated and measured aerosol optical depth for several stations of the Mediterranean basin, the model appears to reproduce correctly the intensity and occurrences of the dust events. Over Western Africa, the results are not as satisfying since some of the most intense dust events observed on the continent and downwind are not captured by the model. In addition, the simulated events are generally underestimated compared to the measured ones. It appears that these differences in the model performances are connected to the origin of the dust plumes. For example, dust plumes coming from Libya are well simulated while dust plumes originating from the Bodélé depression not as frequent as intense as the observations suggest. Soil properties in these two regions are comparable and typical of very erodible surfaces. We thus focused on the comparison between the ECMWF 10m wind speed fields and 10m wind speed measured at the meteorological stations located in both areas. We noticed that over Libya, the measured and ECMWF 10m wind speed are in very good agreement, while the meteorological model does not reproduce the extrema of the measured wind speed in the Bodélé depression. We found that a crude empirical correction of the 10m wind field in the Bodélé Depression significantly improve the simulations in terms of occurrence and of intensity.

  5. Development of a recombinant, chimeric tetravalent dengue vaccine candidate.

    Science.gov (United States)

    Osorio, Jorge E; Partidos, Charalambos D; Wallace, Derek; Stinchcomb, Dan T

    2015-12-10

    Dengue is a significant threat to public health worldwide. Currently, there are no licensed vaccines available for dengue. Takeda Vaccines Inc. is developing a live, attenuated tetravalent dengue vaccine candidate (TDV) that consists of an attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the prM and E protein genes of DENV-1, -3 and -4 expressed in the context of the attenuated TDV-2 genome backbone (TDV-1, TDV-3, and TDV-4, respectively). TDV has been shown to be immunogenic and efficacious in nonclinical animal models. In interferon-receptor deficient mice, the vaccine induces humoral neutralizing antibody responses and cellular immune responses that are sufficient to protect from lethal challenge with DENV-1, DENV-2 or DENV-4. In non-human primates, administration of TDV induces innate immune responses as well as long lasting antibody and cellular immunity. In Phase 1 clinical trials, the safety and immunogenicity of two different formulations were assessed after intradermal or subcutaneous administration to healthy, flavivirus-naïve adults. TDV administration was generally well-tolerated independent of dose and route. The vaccine induced neutralizing antibody responses to all four DENV serotypes: after a single administration of the higher formulation, 24-67%% of the subjects seroconverted to all four DENV and >80% seroconverted to three or more viruses. In addition, TDV induced CD8(+) T cell responses to the non-structural NS1, NS3 and NS5 proteins of DENV. TDV has been also shown to be generally well tolerated and immunogenic in a Phase 2 clinical trial in dengue endemic countries in adults and children as young as 18 months. Additional clinical studies are ongoing in preparation for a Phase 3 safety and efficacy study.

  6. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    Science.gov (United States)

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation. PMID:25733873

  7. Induction of pluripotent protective immunity following immunisation with a chimeric vaccine against human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Jie Zhong

    Full Text Available Based on the life-time cost to the health care system, the Institute of Medicine has assigned the highest priority for a vaccine to control human cytomegalovirus (HCMV disease in transplant patients and new born babies. In spite of numerous attempts successful licensure of a HCMV vaccine formulation remains elusive. Here we have developed a novel chimeric vaccine strategy based on a replication-deficient adenovirus which encodes the extracellular domain of gB protein and multiple HLA class I & II-restricted CTL epitopes from HCMV as a contiguous polypeptide. Immunisation with this chimeric vaccine consistently generated strong HCMV-specific CD8(+ and CD4(+ T-cells which co-expressed IFN-gamma and TNF-alpha, while the humoral response induced by this vaccine showed strong virus neutralizing capacity. More importantly, immunization with adenoviral chimeric vaccine also afforded protection against challenge with recombinant vaccinia virus encoding HCMV antigens and this protection was associated with the induction of a pluripotent antigen-specific cellular and antibody response. Furthermore, in vitro stimulation with this adenoviral chimeric vaccine rapidly expanded multiple antigen-specific human CD8(+ and CD4(+ T-cells from healthy virus carriers. These studies demonstrate that the adenovirus chimeric HCMV vaccine provides an excellent platform for reconstituting protective immunity to prevent HCMV diseases in different clinical settings.

  8. Faith-based perspectives on the use of chimeric organisms for medical research.

    Science.gov (United States)

    Degeling, Chris; Irvine, Rob; Kerridge, Ian

    2014-04-01

    Efforts to advance our understanding of neurodegenerative diseases involve the creation chimeric organisms from human neural stem cells and primate embryos--known as prenatal chimeras. The existence of potential mentally complex beings with human and non-human neural apparatus raises fundamental questions as to the ethical permissibility of chimeric research and the moral status of the creatures it creates. Even as bioethicists find fewer reasons to be troubled by most types of chimeric organisms, social attitudes towards the non-human world are often influenced by religious beliefs. In this paper scholars representing eight major religious traditions provide a brief commentary on a hypothetical case concerning the development and use of prenatal human-animal chimeric primates in medical research. These commentaries reflect the plurality and complexity within and between religious discourses of our relationships with other species. Views on the moral status and permissibility of research on neural human animal chimeras vary. The authors provide an introduction to those who seek a better understanding of how faith-based perspectives might enter into biomedical ethics and public discourse towards forms of biomedical research that involves chimeric organisms.

  9. Endothelial cell chimerism by fluorescence in situ hybridization in gender mismatched renal allograft biopsies

    Institute of Scientific and Technical Information of China (English)

    BAI Hong-wei; SHI Bing-yi; QIAN Ye-yong; NA Yan-qun; ZENG Xuan; ZHONG Ding-rong; LU Min; ZOU Wan-zhong; WU Shi-fei

    2007-01-01

    Background The blood vessels of a transplanted organ are the interface between donor and recipient. The endothelium in the blood vessels is thought to be the major target for graft rejection. Endothelial cells of a transplanted organ can be of recipient origin after transplantation. In this study, we tested whether endothelial chimerism correlated with the graft rejection and cold ischemia.Methods We studied the biopsy samples from 34 renal transplants of female recipients who received the kidney from a male donor for the presence of endothelial cells of recipient origin. We examined the tissue sections of renal biopsy samples by fluorescence in situ hybridization (FISH) for the presence of endothelial cells containing two X chromosomes using a biotinylated Y chromosome probe and digoxigenin labelled X chromosome probe, and then analyzed the relationship between the endothelial cell chimerism and the rejection and cold ischemia.Results Endothelial chimerism was common and irrespective of rejections (P>0.05). The cold ischemic time of chimerism group was longer than no chimerism group ((14.83±4.03) hours vs (11.27±3.87) hours, P<0.05).Conclusions There is no correlation between the percentage of recipient endothelial cells in vascular endothelial cells and the type of graft rejection. The endothelium damaged by ischemic injury might be repaired by the endothelial cells from the recipient.

  10. Chimeric hERG channels containing a tetramerization domain are functional and stable.

    Science.gov (United States)

    Hausammann, Georg J; Grütter, Markus G

    2013-12-23

    Biochemical and detailed structural information of human ether-a-go-go-related gene (hERG) potassium channels are scarce but are a prerequisite to understand the unwanted interactions of hERG with drugs and the effect of mutations that lead to long QT syndrome. Despite the huge interest in hERG, to our knowledge, procedures that provide a purified, functional, and tetrameric hERG channel are not available. Here, we describe hybrid hERG molecules, termed chimeric hERG channels, in which the N-terminal Per-Arnt-Sim (PAS) domain is deleted and the C-terminal C-linker as well as the cyclic nucleotide binding domain (CNBD) portion is replaced by an artificial tetramerization domain. These chimeric hERG channels can be overexpressed in HEK cells, solubilized in detergent, and purified as tetramers. When expressed in Xenopus laevis oocytes, the chimeric channels exhibit efficient trafficking to the cell surface, whereas a hERG construct lacking the PAS and C-linker/CNBD domains is retained in the cytoplasm. The chimeric hERG channels retain essential hERG functions such as voltage-dependent gating and inhibition by astemizole and the scorpion toxin BeKm-1. The chimeric channels are thus powerful tools for helping to understand the contribution of the cytoplasmic hERG domains to the gating process and are suitable for in vitro biochemical and structural studies. PMID:24325597

  11. Recognition of base pair inversions in duplex by chimeric (alpha,beta) triplex-forming oligonucleotides.

    Science.gov (United States)

    Timofeev, Edward N; Goryaeva, Baira V; Florentiev, Vladimir L

    2006-10-01

    DNA recognition by triplex-forming oligonucleotides (TFOs) is usually limited by homopurine-homopyrimidine sequence in duplexes. Modifications of the third strand may overcome this limitation. Chimeric alpha-beta TFOs are expected to form triplex DNA upon binding to non-regular sequence duplexes. In the present study we describe binding properties of chimeric alpha-beta oligodeoxynucleotides in the respect to short DNA duplexes with one, three, and five base pair inversions. Non-natural chimeric TFO's contained alpha-thymidine residues inside (GT) or (GA) core sequences. Modified residues were addressed to AT/TA inversions in duplexes. It was found in the non-denaturing gel-electrophoresis experiments that single or five adjacent base pair inversions in duplexes may be recognized by chimeric alpha-beta TFO's at 10 degrees C and pH 7.8. Three dispersed base pair inversions in the double stranded DNA prevented triplex formation by either (GT) or (GA) chimeras. Estimation of thermal stability of chimeric alpha-beta triplexes showed decrease in T(m) values as compared with unmodified complexes. PMID:16928141

  12. Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells

    International Nuclear Information System (INIS)

    A chimeric mouse-human antibody has been created that recognizes an antigen found on the surface of cells from many carcinomas. Immunoglobulin constant (C) domains of the mouse monoclonal antibody L6, C/sub γ2a/ and C/sub kappa/, were substituted by the human C/sub γ1/ and C/sub kappa/ by recombining cDNA modules encoding variable or C domains. The cDNA constructs were transfected into lymphoid cells for antibody production. The chimeric antibody and mouse L6 antibody bound to carcinoma cells with equal affinity and mediated complement-dependent cytolysis. In the presence of human effector cells, the chimeric antibody gave antibody-dependent cellular cytotoxicity at 100 times lower concentration than that needed for the mouse L6 antibody. The assay for lysis was carried out with 51Cr-labeled target calls. The chimeric antibody, but not the mouse L6 antibody, is effective against a melanoma line expressing small amounts of the L6 antigen. The findings point to the usefulness of the chimeric antibody approach for obtaining agents with strong antitumor activity for possible therapeutic use in man

  13. Generation and evaluation of a chimeric classical swine fever virus expressing a visible marker gene.

    Science.gov (United States)

    Li, Yongfeng; Wang, Xiao; Sun, Yuan; Li, Lian-Feng; Zhang, Lingkai; Li, Su; Luo, Yuzi; Qiu, Hua-Ji

    2016-03-01

    Classical swine fever virus (CSFV) is a noncytopathogenic virus, and the incorporation of an enhanced green fluorescent protein (EGFP) tag into the viral genome provides a means of direct monitoring of viral infection without immunostaining. It is well established that the 3' untranslated region (3'-UTR) of the CSFV plays an important role in viral RNA replication. Although CSFV carrying a reporter gene and chimeric CSFV have been generated and evaluated, a chimeric CSFV with a visible marker has not yet been reported. Here, we generated and evaluated a chimeric virus containing the EGFP tag and the 3'-UTR from vaccine strain HCLV (C-strain) in the genetic background of the highly virulent CSFV Shimen strain. The chimeric marker CSFV was fluorescent and had an approximately 100-fold lower viral titer, lower replication level of viral genome, and weaker fluorescence intensity than the recombinant CSFV with only the EGFP tag or the parental virus. Furthermore, the marker chimera was avirulent and displayed no viremia in inoculated pigs, which were completely protected from lethal CSFV challenge as early as 15 days post-inoculation. The chimeric marker virus was visible in vitro and attenuated in vitro and in vivo, which suggests that CSFV can be engineered to produce attenuated variants with a visible marker to facilitate in vitro studies of CSFV infection and replication and to develop of novel vaccines against CSF. PMID:26614259

  14. Chimeric Bivalent Virus-Like Particle Vaccine for H5N1 HPAI and ND Confers Protection against a Lethal Challenge in Chickens and Allows a Strategy of Differentiating Infected from Vaccinated Animals (DIVA)

    Science.gov (United States)

    Noh, Jin-Yong; Park, Jae-Keun; Lee, Dong-Hun; Yuk, Seong-Su; Kwon, Jung-Hoon; Lee, Sang-Won; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-01-01

    Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are considered as the most devastating poultry infections, owing to their worldwide distribution and economical threat. Vaccines have been widely used to control these diseases in the poultry industry in endemic countries. However, vaccination policy without differentiating infected animals from vaccinated animals (DIVA) makes the virus surveillance difficult. In this study, we developed a bivalent virus-like particle (VLP) vaccine that is composed of the hemagglutinin (HA) and matrix 1 (M1) proteins of the H5N1 HPAI virus (HPAIV) and a chimeric protein containing the ectodomain of the ND virus (NDV) fusion (F) protein fused with the cytoplasmic and transmembrane domains of the HPAIV HA protein. A single immunization of chickens with the chimeric VLP vaccine induced high levels of hemagglutination inhibition (HI) antibody titers against H5N1 HPAI virus and anti-NDV antibody detected in ELISA and protected chickens against subsequent lethal HPAIV and NDV infections. Furthermore, we could easily perform DIVA test using the commercial NP-cELISA tests against HPAIV and HI assay against NDV. These results strongly suggest that utilization of chimeric VLP vaccine in poultry species would be a promising strategy for the better control of HPAI and ND simultaneously. PMID:27626934

  15. Chimeric Bivalent Virus-Like Particle Vaccine for H5N1 HPAI and ND Confers Protection against a Lethal Challenge in Chickens and Allows a Strategy of Differentiating Infected from Vaccinated Animals (DIVA).

    Science.gov (United States)

    Noh, Jin-Yong; Park, Jae-Keun; Lee, Dong-Hun; Yuk, Seong-Su; Kwon, Jung-Hoon; Lee, Sang-Won; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-01-01

    Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are considered as the most devastating poultry infections, owing to their worldwide distribution and economical threat. Vaccines have been widely used to control these diseases in the poultry industry in endemic countries. However, vaccination policy without differentiating infected animals from vaccinated animals (DIVA) makes the virus surveillance difficult. In this study, we developed a bivalent virus-like particle (VLP) vaccine that is composed of the hemagglutinin (HA) and matrix 1 (M1) proteins of the H5N1 HPAI virus (HPAIV) and a chimeric protein containing the ectodomain of the ND virus (NDV) fusion (F) protein fused with the cytoplasmic and transmembrane domains of the HPAIV HA protein. A single immunization of chickens with the chimeric VLP vaccine induced high levels of hemagglutination inhibition (HI) antibody titers against H5N1 HPAI virus and anti-NDV antibody detected in ELISA and protected chickens against subsequent lethal HPAIV and NDV infections. Furthermore, we could easily perform DIVA test using the commercial NP-cELISA tests against HPAIV and HI assay against NDV. These results strongly suggest that utilization of chimeric VLP vaccine in poultry species would be a promising strategy for the better control of HPAI and ND simultaneously. PMID:27626934

  16. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.

    2011-12-14

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  17. The determination of lymphoid cell chimerism using peripheral blood lymphocytes from murine bone marrow chimeras

    International Nuclear Information System (INIS)

    A simple, rapid and accurate method was devised for determining lymphoid cell chimerism in bone marrow-reconstituted mice. Chimeras were produced by reconstituting lethally irradiated mice with semi-allogeneic bone marrow cells. Lymphocytes from the peripheral blood of individual chimeric mice were purified by sedimentation in dextran solution and differential flotation in Ficoll-Hypaque gradients. From 250-500 μl of blood, 1-7 x 105 cells were routinely obtained. The extent of chimerism was determined serologically by using peripheral blood lymphocytes as target cells in a dye exclusion microcytotoxicity assay. Using this new technique, approximately 80% of the reconstituted mice were found to be repopulated with lymphocytes of the donor type. (Auth.)

  18. Patterns of Amino Acid Evolution in the Drosophila ananassae Chimeric Gene, siren, Parallel Those of Other Adh-Derived Chimeras

    Science.gov (United States)

    Shih, Hung-Jui; Jones, Corbin D.

    2008-01-01

    siren1 and siren2 are novel alcohol dehydrogenase (Adh)-derived chimeric genes in the Drosophila bipectinata complex. D. ananassae, however, harbors a single homolog of these genes. Like other Adh-derived chimeric genes, siren evolved adaptively shortly after it was formed. These changes likely shifted the catalytic activity of siren. PMID:18780749

  19. Design and production in Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain

    NARCIS (Netherlands)

    Levasseur, A.; Pagès, S.; Fierobe, H.-P.; Navarro, D.; Punt, P.; Belaïch, J.-P.; Asther, M.; Record, E.

    2004-01-01

    A chimeric enzyme associating feruloyl esterase A (FAEA) from Aspergilhis niger and dockerin from Clostridium thermocellum was produced in A. niger. A completely truncated form was produced when the dockerin domain was located downstream of the FAEA (FAEA-Doc), whereas no chimeric protein was produc

  20. Chimeric Antigen Receptor Therapy for B-cell Malignancies

    Directory of Open Access Journals (Sweden)

    David L Porter, Michael Kalos, Zhaohui Zheng, Bruce Levine, Carl June

    2011-01-01

    Full Text Available We presented data showing that the CART-19 cells expressing the 4-1BB signaling domain can have unprecedented and massive in-vivo expansion, traffic to tumor sites, persist long term in vivo, and induce rapid and potent anti-tumor activity in chemotherapy refractory CLL patients.

  1. Chimeric Antigen Receptor Therapy for B-cell Malignancies

    OpenAIRE

    Porter, David L.; Kalos, Michael; Zheng, Zhaohui; Levine, Bruce; June, Carl

    2011-01-01

    We presented data showing that the CART-19 cells expressing the 4-1BB signaling domain can have unprecedented and massive in-vivo expansion, traffic to tumor sites, persist long term in vivo, and induce rapid and potent anti-tumor activity in chemotherapy refractory CLL patients.

  2. Molecular chimerization of Pasteurella haemolytica leukotoxin to interleukin-2: effects on cytokine and antigen function.

    OpenAIRE

    Hughes, H P; Campos, M.; Potter, A A; Babiuk, L. A.

    1992-01-01

    A chimeric recombinant protein composed of the lktA gene product from Pasteurella haemolytica fused to bovine interleukin-2 (IL-2) was made. The LKT-IL-2 chimera was compared with recombinant bovine IL-2 with regard to the ability to induce proliferative responses and LAK cell activity in bovine peripheral blood mononuclear cells in vitro. In both instances, chimerization had no effect on IL-2 activity. Similarly, the LKT component was unaffected in its ability to induce an effective immune r...

  3. New advances in leukaemia immunotherapy by the use of Chimeric Artificial Antigen Receptors (CARs: state of the art and perspectives for the near future

    Directory of Open Access Journals (Sweden)

    Cribioli Elisabetta

    2011-09-01

    Full Text Available Abstract Leukaemia immunotherapy represents a fascinating and promising field of translational research, particularly as an integrative approach of bone marrow transplantation. Adoptive immunotherapy by the use of donor-derived expanded leukaemia-specific T cells has showed some kind of clinical response, but the major advance is nowadays represented by gene manipulation of donor immune cells, so that they acquire strict specificity towards the tumour target and potent lytic activity, followed by significant proliferation, increased survival and possibly anti-tumour memory state. This is achieved by gene insertion of Chimeric T-cell Antigen Receptors (CARs, which are artificial molecules containing antibody-derived fragments (to bind the specific target, joined with potent signalling T-Cell Receptor (TCR-derived domains that activate the manipulated cells. This review will discuss the main application of this approach particularly focusing on the paediatric setting, raising advantages and disadvantages and discussing relevant perspectives of use in the nearest future.

  4. Antigen-specific T cell activation independently of the MHC: chimeric antigen receptor (CAR-redirected T cells.

    Directory of Open Access Journals (Sweden)

    Hinrich eAbken

    2013-11-01

    Full Text Available Adoptive T cell therapy has recently shown powerful in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR which consists in the extracellular part of an antibody-derived domain for binding with a tumor-associated antigen and in the intracellular part of a TCR-derived signaling moiety for T cell activation. The specificity of CAR mediated T cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T cell targeting by an engineered CAR and review most significant progress recently made in early stage clinical trials to treat cancer.

  5. Mice chronically infected with chimeric HIV resist peripheral and brain superinfection: a model of protective immunity to HIV.

    Science.gov (United States)

    Kelschenbach, Jennifer L; Saini, Manisha; Hadas, Eran; Gu, Chao-Jiang; Chao, Wei; Bentsman, Galina; Hong, Jessie P; Hanke, Tomas; Sharer, Leroy R; Potash, Mary Jane; Volsky, David J

    2012-06-01

    Infection by some viruses induces immunity to reinfection, providing a means to identify protective epitopes. To investigate resistance to reinfection in an animal model of HIV disease and its control, we employed infection of mice with chimeric HIV, EcoHIV. When immunocompetent mice were infected by intraperitoneal (IP) injection of EcoHIV, they resisted subsequent secondary infection by IP injection, consistent with a systemic antiviral immune response. To investigate the potential role of these responses in restricting neurotropic HIV infection, we established a protocol for efficient EcoHIV expression in the brain following intracranial (IC) inoculation of virus. When mice were inoculated by IP injection and secondarily by IC injection, they also controlled EcoHIV replication in the brain. To investigate their role in EcoHIV antiviral responses, CD8+ T lymphocytes were isolated from spleens of EcoHIV infected and uninfected mice and adoptively transferred to isogenic recipients. Recipients of EcoHIV primed CD8+ cells resisted subsequent EcoHIV infection compared to recipients of cells from uninfected donors. CD8+ spleen cells from EcoHIV-infected mice also mounted modest but significant interferon-γ responses to two HIV Gag peptide pools. These findings suggest EcoHIV-infected mice may serve as a useful system to investigate the induction of anti-HIV protective immunity for eventual translation to human beings.

  6. Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Yotnda, P; Garcia, F; Peuchmaur, M; Grandchamp, B; Duval, M; Lemonnier, F; Vilmer, E; Langlade-Demoyen, P

    1998-07-15

    Cytotoxic T lymphocytes (CTL) are potent effector cells that could provide long term antitumor immunity if induced by appropriate vaccines. CTL recognize 8-14 amino acid-long peptides processed intracellularly and presented by MHC class I molecules. A well-characterized example of a potential tumor antigen in childhood pre-B Acute Lymphoblastic Leukemia (ALL) results from the chromosomal translocation 12;21 leading to the fusion of the ETV6 and AML1 genes. This translocation is observed in > 25% of ALL-patients. In this study, we have examined whether the chimeric ETV6-AML1 protein could serve as a tumor specific antigen for CTL in HLA-A2.1 individuals. We have identified a nonapeptide (RIAECILGM), encoded by the fusion region of the ETV6-AML1 protein, that binds to HLA-A2.1 molecules and induces specific primary CTL in peripheral blood lymphocytes from healthy donors. These CTL specifically lysed HLA-A2.1 tumor cells endogeneously expressing the ETV6-AML fusion protein. CTL with similar functional capacities were found with high frequencies and cloned from one patient's bone marrow indicating that ETV6-AML1-specific anti-ALL CTL are, at least in some patients, spontaneously stimulated and might participate to host antileukemia defense.

  7. High in Vitro Anti-Tumor Efficacy of Dimeric Rituximab/Saporin-S6 Immunotoxin

    Directory of Open Access Journals (Sweden)

    Massimo Bortolotti

    2016-06-01

    Full Text Available The anti-CD20 mAb Rituximab has revolutionized lymphoma therapy, in spite of a number of unresponsive or relapsing patients. Immunotoxins, consisting of toxins coupled to antibodies, are being investigated for their potential ability to augment Rituximab efficacy. Here, we compare the anti-tumor effect of high- and low-molecular-weight Rituximab/saporin-S6 immunotoxins, named HMW-IT and LMW-IT, respectively. Saporin-S6 is a potent and stable plant enzyme belonging to ribosome-inactivating proteins that causes protein synthesis arrest and consequent cell death. Saporin-S6 was conjugated to Rituximab through an artificial disulfide bond. The inhibitory activity of HMW-IT and LMW-IT was evaluated on cell-free protein synthesis and in two CD20+ lymphoma cell lines, Raji and D430B. Two different conjugates were separated on the basis of their molecular weight and further characterized. Both HMW-IT (dimeric and LMW-IT (monomeric maintained a high level of enzymatic activity in a cell-free system. HMW-IT, thanks to a higher toxin payload and more efficient antigen capping, showed stronger in vitro anti-tumor efficacy than LMW-IT against lymphoma cells. Dimeric HMW-IT can be used for lymphoma therapy at least for ex vivo treatments. The possibility of using HMW-IT augments the yield in immunotoxin preparation and allows the targeting of antigens with low internalization rates.

  8. High in Vitro Anti-Tumor Efficacy of Dimeric Rituximab/Saporin-S6 Immunotoxin.

    Science.gov (United States)

    Bortolotti, Massimo; Bolognesi, Andrea; Battelli, Maria Giulia; Polito, Letizia

    2016-01-01

    The anti-CD20 mAb Rituximab has revolutionized lymphoma therapy, in spite of a number of unresponsive or relapsing patients. Immunotoxins, consisting of toxins coupled to antibodies, are being investigated for their potential ability to augment Rituximab efficacy. Here, we compare the anti-tumor effect of high- and low-molecular-weight Rituximab/saporin-S6 immunotoxins, named HMW-IT and LMW-IT, respectively. Saporin-S6 is a potent and stable plant enzyme belonging to ribosome-inactivating proteins that causes protein synthesis arrest and consequent cell death. Saporin-S6 was conjugated to Rituximab through an artificial disulfide bond. The inhibitory activity of HMW-IT and LMW-IT was evaluated on cell-free protein synthesis and in two CD20⁺ lymphoma cell lines, Raji and D430B. Two different conjugates were separated on the basis of their molecular weight and further characterized. Both HMW-IT (dimeric) and LMW-IT (monomeric) maintained a high level of enzymatic activity in a cell-free system. HMW-IT, thanks to a higher toxin payload and more efficient antigen capping, showed stronger in vitro anti-tumor efficacy than LMW-IT against lymphoma cells. Dimeric HMW-IT can be used for lymphoma therapy at least for ex vivo treatments. The possibility of using HMW-IT augments the yield in immunotoxin preparation and allows the targeting of antigens with low internalization rates. PMID:27338475

  9. Synergistic effect of chimeric antigen receptors and cytokine-induced killer cells: An innovative combination for cancer therapy

    Directory of Open Access Journals (Sweden)

    Binh Thanh Vu

    2016-06-01

    Full Text Available In recent years, the combination of gene and immunotherapy for cancer treatment has been regarded as innovative and promising; together, both therapies can help overcome limitations associated with conventional treatments. In order to augment anti-cancer efficacy and to maintain the specificity of antibody therapy, chimeric antigen receptor (CAR-modified T cells, directed toward tumor-specific antigens, have emerged as a novel and promising therapeutic platform. CARs consist of a B cell receptor (BCR-derived extracellular domain and T cell receptor (TCR-associated signaling elements. Cytokine-induced killer (CIK cells are the effector immune cells that can be activated ex vivo and possess both the anti-tumor potency of T lymphocytes and the non-major histocompatibility complex-restricted elimination of natural killer cells. With their pre-eminent ability for robust proliferation, CIK cells may overcome the main limitations of adoptive immunotherapy strategies. CIK cells have strong tumor cell killing capacity; they are effective against a wide variety of malignant tumors and have been shown to be safe in cancer patients. This review summarizes the characteristics of CARs which make them attractive for in cancer treatment strategies. In addition, the role of CIK cells and the advantages of combining CIK cells with CAR-based therapy will be discussed. Scientific evidence to support their combined therapeutic application will be highlighted, with a focus on how their innovative combination may be translated into cancer clinical trials. [Biomed Res Ther 2016; 3(6.000: 653-665

  10. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Desai, D M; Sap, J; Schlessinger, J;

    1993-01-01

    CD45, a transmembrane protein tyrosine phosphatase (PTPase), is required for TCR signaling. Multiple CD45 isoforms, differing in the extracellular domain, are expressed in a tissue- and activation-specific manner, suggesting an important function for this domain. We report that a chimeric protein...

  11. Evidence for transcript networks composed of chimeric RNAs in human cells.

    Directory of Open Access Journals (Sweden)

    Sarah Djebali

    Full Text Available The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5' and 3' transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1 the non-random interconnections of genes involved, (2 the greater phylogenetic depth of the genes involved in many chimeric interactions, (3 the coordination of the expression of connected genes and (4 the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.

  12. Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available The formation of chimeric gene structures provides important routes by which novel proteins and functions are introduced into genomes. Signatures of these events have been identified in organisms from wide phylogenic distributions. However, the ability to characterize the early phases of these evolutionary processes has been difficult due to the ancient age of the genes or to the limitations of strictly computational approaches. While examples involving retrotransposition exist, our understanding of chimeric genes originating via illegitimate recombination is limited to speculations based on ancient genes or transfection experiments. Here we report a case of a young chimeric gene that has originated by illegitimate recombination in Drosophila. This gene was created within the last 2-3 million years, prior to the speciation of Drosophila simulans, Drosophila sechellia, and Drosophila mauritiana. The duplication, which involved the Bällchen gene on Chromosome 3R, was partial, removing substantial 3' coding sequence. Subsequent to the duplication onto the X chromosome, intergenic sequence was recruited into the protein-coding region creating a chimeric peptide with approximately 33 new amino acid residues. In addition, a novel intron-containing 5' UTR and novel 3' UTR evolved. We further found that this new X-linked gene has evolved testes-specific expression. Following speciation of the D. simulans complex, this novel gene evolved lineage-specifically with evidence for positive selection acting along the D. simulans branch.

  13. Viral Engineering of Chimeric Antigen Receptor Expression on Murine and Human T Lymphocytes.

    Science.gov (United States)

    Hammill, Joanne A; Afsahi, Arya; Bramson, Jonathan L; Helsen, Christopher W

    2016-01-01

    The adoptive transfer of a bolus of tumor-specific T lymphocytes into cancer patients is a promising therapeutic strategy. In one approach, tumor specificity is conferred upon T cells via engineering expression of exogenous receptors, such as chimeric antigen receptors (CARs). Here, we describe the generation and production of both murine and human CAR-engineered T lymphocytes using retroviruses. PMID:27581020

  14. Mixed chimerism following hematopoietic stem cell transplantation in pediatric thalassemia major patients: a single center experience

    Directory of Open Access Journals (Sweden)

    Elif Ünal İnce

    2010-03-01

    Full Text Available Objective: Stable mixed chimerism (MC may result in cure for thalassemia major patients following hematopoietic stem cell transplantation (HSCT, but rejection can occur. Twenty-eight HSCTs for thalassemia major were reviewed retrospectively to evaluate the clinical course of MC with possible risk factors and predictors of outcome, with a median follow-up of 1669 days (811-3576 days. Materials and Methods: Chimerism was detected by fluorescence in situ hybridization (FISH or multiplex polymerase chain reaction depending on the sex match between the donor and the recipient. Results: Primary rejection, stable MC and full donor chimerism was detected in 3.6%, 17.8% and 78.6% of patients, respectively. Clinically, 4/5 patients with stable MC had thalassemia trait with donor chimerism as low as 14%. One patient was started on pRBC transfusions at 2.5 years postHSCT. Conclusion: Stable MC can result in cure for thalassemia major patients. The clinical picture remains as the best guide for intervention until a more reliable predictor is available.

  15. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs

    Science.gov (United States)

    Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South Africa...

  16. Minimal Residual Disease Diagnostics and Chimerism in the Post-Transplant Period in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Ulrike Bacher

    2011-01-01

    Full Text Available In acute myeloid leukemia (AML, the selection of poor-risk patients for allogeneic hematopoietic stem cell transplantation (HSCT is associated with rather high post-transplant relapse rates. As immunotherapeutic intervention is considered to be more effective before the cytomorphologic manifestation of relapse, post-transplant monitoring gains increasing attention in stem cell recipients with a previous diagnosis of AML. Different methods for detection of chimerism (e.g., microsatellite analysis or quantitative real-time PCR are available to quantify the ratio of donor and recipient cells in the post-transplant period. Various studies demonstrated the potential use of mixed chimerism kinetics to predict relapse of the AML. CD34+-specific chimerism is associated with a higher specificity of chimerism analysis. Nevertheless, a decrease of donor cells can have other causes as well. Therefore, efforts continue to introduce minimal residual disease (MRD monitoring based on molecular mutations in the post-transplant period. The NPM1 (nucleophosmin mutations can be monitored by sensitive quantitative real-time PCR in subsets of stem cell recipients with AML, but for approximately 20% of patients, suitable molecular mutations for post-transplant MRD monitoring are not available so far. This emphasizes the need for an expansion of the panel of MRD markers in the transplant setting.

  17. Alloreactive regulatory T cells allow the generation of mixed chimerism and transplant tolerance

    Directory of Open Access Journals (Sweden)

    Paulina eRuiz

    2015-11-01

    Full Text Available The induction of donor-specific transplant tolerance is one of the main goals of modern immunology. Establishment of a mixed chimerism state in the transplant recipient has proven to be a suitable strategy for the induction of long-term allograft tolerance; however, current experimental recipient preconditioning protocols have many side effects, and are not feasible for use in future therapies. In order to improve the current mixed chimerism induction protocols, we developed a non-myeloablative bone-marrow transplant protocol using retinoic acid induced alloantigen-specific Tregs, clinically available immunosuppressive drugs and lower doses of irradiation. We demonstrate that retinoic acid induced alloantigen-specific Tregs in addition to a non-myeloablative bone-marrow transplant protocol generates stable mixed chimerism and induce tolerance to allogeneic secondary skin allografts in mice. Therefore, the establishment of mixed chimerism through the use of donor-specific Tregs rather than non-specific immunosuppression could have a potential use in organ transplantation.

  18. 78 FR 16505 - Prospective Grant of Exclusive License: Chimeric West Nile/Dengue Viruses

    Science.gov (United States)

    2013-03-15

    ... business in San Diego, California. The patent rights in these inventions have been assigned to the... virus exhibits much more robust viral replication in cell cultures, compared to the slow growing DEN viruses. The chimeric WN/DEN virus can be used as a substitute for wild-type dengue virus in...

  19. SAT Type Foot-and-Mouth Disease (FMD) Chimeric Vaccine Elicits Protection in Pigs

    Science.gov (United States)

    The recent development of infectious cDNA clone technology for foot-and-mouth disease (FMD), Southern African Territories (SAT) viruses has provided a valuable tool for genetic and biological characterization of field and laboratory strains. Recombinant chimeric viruses, containing the capsid-coding...

  20. Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis.

    Science.gov (United States)

    Lai, Ching-Juh; Monath, Thomas P

    2003-01-01

    Many arthropod-borne flaviviruses are important human pathogens responsible for diverse illnesses, including YF, JE, TBE, and dengue. Live, attenuated vaccines have afforded the most effective and economical means of prevention and control, as illustrated by YF 17D and JE SA14-14-2 vaccines. Recent advances in recombinant DNA technology have made it possible to explore a novel approach for developing live attenuated flavivirus vaccines against other flaviviruses. Full-length cDNA clones allow construction of infectious virus bearing attenuating mutations or deletions incorporated in the viral genome. It is also possible to create chimeric flaviviruses in which the structural protein genes for the target antigens of a flavivirus are replaced by the corresponding genes of another flavivirus. By combining these molecular techniques, the DNA sequences of DEN4 strain 814669, DEN2 PDK-53 candidate vaccine and YF 17D vaccine have been used as the genetic backbone to construct chimeric flaviviruses with the required attenuation phenotype and expression of the target antigens. Encouraging results from preclinical and clinical studies have shown that several chimeric flavivirus vaccines have the safety profile and satisfactory immunogenicity and protective efficacy to warrant further evaluation in humans. The chimeric flavivirus strategy has led to the rapid development of novel live-attenuated vaccines against dengue, TBE, JE, and West Nile viruses. PMID:14714441

  1. In Silico Design of a Chimeric Protein Containing Antigenic Fragments of Helicobacter pylori; A Bioinformatic Approach

    Science.gov (United States)

    Mohammad, Nazanin; Karsabet, Mehrnaz Taghipour; Amani, Jafar; Ardjmand, Abolfazl; Zadeh, Mohsen Razavi; Gholi, Mohammad Khalifeh; Saffari, Mahmood; Ghasemi, Amir

    2016-01-01

    Helicobacter pylori is a global health problem which has encouraged scientists to find new ways to diagnose, immunize and eradicate the H. pylori infection. In silico studies are a promising approach to design new chimeric antigen having the immunogenic potential of several antigens. In order to obtain such benefit in H. pylori vaccine study, a chimeric gene containing four fragments of FliD sequence (1-600 bp), UreB (327-334 bp),VacA (744-805 bp) and CagL(51-100 bp) which have a high density of B- and T-cell epitopes was designed. The secondary and tertiary structures of the chimeric protein and other properties such as stability, solubility and antigenicity were analyzed. The in silico results showed that after optimizing for the purpose of expression in Escherichia coli BL21, the solubility and antigenicity of the construct fragments were highly retained. Most regions of the chimeric protein were found to have a high antigenic propensity and surface accessibility. These results would be useful in animal model application and accounted for the development of an epitope-based vaccine against the H. pylori. PMID:27335622

  2. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain

    Directory of Open Access Journals (Sweden)

    Yukiko eMishina

    2014-09-01

    Full Text Available Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviours. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP prototypical design or on the voltage dependent state transitions of microbial opsins.We recently introduced a new VSFP design in which the voltage-sensing domain (VSD is sandwiched between a FRET pair of fluorescent proteins (termed VSFP-Butterflies and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  3. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    Directory of Open Access Journals (Sweden)

    Mark A Little

    Full Text Available Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3 antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener's granulomatosis. Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17% more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  4. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    LENUS (Irish Health Repository)

    Little, Mark A

    2012-01-01

    Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3) antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener\\'s granulomatosis). Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻\\/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17%) more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  5. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application.

  6. Murine immune responses to a Plasmodium vivax-derived chimeric recombinant protein expressed in Brassica napus

    Directory of Open Access Journals (Sweden)

    Chung Nam-Jun

    2011-04-01

    Full Text Available Abstract Background To develop a plant-based vaccine against Plasmodium vivax, two P. vivax candidate proteins were chosen. First, the merozoite surface protein-1 (MSP-1, a major asexual blood stage antigen that is currently considered a strong vaccine candidate. Second, the circumsporozoite protein (CSP, a component of sporozoites that contains a B-cell epitope. Methods A synthetic chimeric recombinant 516 bp gene encoding containing PvMSP-1, a Pro-Gly linker motif, and PvCSP was synthesized; the gene, named MLC, encoded a total of 172 amino acids. The recombinant gene was modified with regard to codon usage to optimize gene expression in Brassica napus. The Ti plasmid inducible gene transfer system was used for MLC chimeric recombinant gene expression in B. napus. Gene expression was confirmed by polymerase chain reaction (PCR, beta-glucuronidase reporter gene (GUS assay, and Western blot. Results The MLC chimeric recombinant protein expressed in B. napus had a molecular weight of approximately 25 kDa. It exhibited a clinical sensitivity of 84.21% (n = 38 and a clinical specificity of 100% (n = 24 as assessed by enzyme-linked immunosorbent assay (ELISA. Oral immunization of BALB/c mice with MLC chimeric recombinant protein successfully induced antigen-specific IgG1 production. Additionally, the Th1-related cytokines IL-12 (p40, TNF, and IFN-γ were significantly increased in the spleens of the BALB/c mice. Conclusions The chimeric MLC recombinant protein produced in B. napus has potential as both as an antigen for diagnosis and as a valuable vaccine candidate for oral immunization against vivax malaria.

  7. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  8. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    International Nuclear Information System (INIS)

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A⁎02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A⁎02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties

  9. Reduction of porcine circovirus type 2 (PCV2 viremia by a reformulated inactivated chimeric PCV1-2 vaccine-induced humoral and cellular immunity after experimental PCV2 challenge

    Directory of Open Access Journals (Sweden)

    Seo Hwi

    2012-10-01

    Full Text Available Abstract Background The objective of the present study was to elucidate the humoral and cellular immune response mechanisms by which a reformulated inactivated chimeric PCV1-2 vaccine reduces the PCV2 viremia. Forty PCV2 seronegative 3-week-old pigs were randomly divided into the following four groups: vaccinated challenged (T01, vaccinated non-challenged (T02, non-vaccinated challenged (T03, and non-vaccinated non-challenged (T04 animals. The pigs in groups T01 and T02 were immunized with a reformulated inactivated chimeric PCV1-2 vaccine (Fostera™ PCV; Pfizer Animal Health administered as a 2.0 ml dose at 21 days of age. At 35 days of age (0 days post-challenge, the pigs in groups T01 and T03 were inoculated intranasally with 2 ml each of PCV2b. Results A reduction of PCV2 viremia coincided with the appearance of both PCV2-specific neutralizing antibodies (NA and interferon-γ-secreting cells (IFN-γ-SCs in the vaccinated animals. However, the presence of anti-PCV2 IgG antibodies did not correlate with the reduction of PCV2 viremia. Lymphocyte subset analysis indicated that the numbers of CD3+ and CD4+ cells increased in vaccinated animals but the numbers of CD4+ cells decreased transiently in non-vaccinated animals. The observation of a delayed type hypersensitivity response in only the vaccinated animals also supports a CD4+ cell-associated protective cellular immune response induced by the reformulated inactivated chimeric PCV1-2 vaccine. Conclusions The induction of PCV2-specific NA and IFN-γ-SCs, and CD4+ cells by the reformulated inactivated chimeric PCV1-2 vaccine is the important protective immune response leading to reduction of the PCV2 viremia and control of the PCV2 infection. To our knowledge this is the first demonstration of protective humoral and cellular immunity induced by the reformulated inactivated chimeric PCV1-2 vaccine and its effect on reduction of PCV2 viremia by vaccination.

  10. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  11. Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes.

    Science.gov (United States)

    Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-11-01

    Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides.

  12. Very Long Term Stability of Mixed Chimerism after Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Hematologic Malignancies

    Directory of Open Access Journals (Sweden)

    Emmanuel Levrat

    2015-01-01

    Full Text Available The objective of this study is to analyze the evolution of chimerism of all patients transplanted for hematologic malignancies in our unit during a 20-year period, alive without relapse at 1 year after allogeneic hematopoietic stem cell transplantation (HSCT. Chimerism was tested using short tandem repeat polymorphisms after separation into mononuclear cells and granulocytes by Ficoll density gradient centrifugation. Of 155 patients studied, 89 had full chimerism (FC, 36 mononuclear cells mixed chimerism (MNC-MC, and 30 granulocytic MC with or without mononuclear cells MC (Gran-MC. Survival was significantly better in MNC-MC than in Gran-MC patients, with FC patients being intermediate. There was more disease relapse in the Gran-MC group but not in the MNC-MC group as compared to FC. MC was stable up to 21 years in the MNC-MC group and up to 19 years in the Gran-MC group. Of MC patients alive at 10 years, MC persisted in 83% in the MNC-MC and 57% in the Gran-MC groups. In conclusion, mixed chimerism may remain stable over a very long time period. In survivors without relapse at 1 year after HSCT, determining lineage specific chimerism may be useful as outcome differs, MNC-MC being associated with better outcome than Gran-MC.

  13. Suicide Gene Therapy to Increase the Safety of Chimeric Antigen Receptor-Redirected T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Monica Casucci, Attilio Bondanza

    2011-01-01

    Full Text Available Chimeric antigen receptors (CARs are generated by fusing the antigen-binding motif of a monoclonal antibody (mAb with the signal transduction machinery of the T-cell receptor (TCR. The genetic modification of T lymphocytes with chimeric receptors specific for tumor-associated antigens (TAAs allows for the redirection towards tumor cells. Clinical experience with CAR-redirected T cells suggests that antitumor efficacy associates with some degree of toxicity, especially when TAA expression is shared with healthy tissues. This situation closely resembles the case of allogeneic hematopoietic stem cell transplantation (HSCT, wherein allorecognition causes both the graft-versus-leukemia (GVL effect and graft-versus-host disease (GVHD. Suicide gene therapy, i.e. the genetic induction of a conditional suicide phenotype into donor T cells, enables dissociating the GVL effect from GVHD. Applying suicide gene modification to CAR-redirected T cells may therefore greatly increase their safety profile and facilitate their clinical development.

  14. DIVA vaccine properties of the live chimeric pestivirus strain CP7_E2gif

    DEFF Research Database (Denmark)

    von Rosen, Tanya; Rangelova, Desislava Yordanova; Nielsen, Jens;

    2014-01-01

    Live modified vaccines to protect against classical swine fever virus (CSFV), based on chimeric pestiviruses, have been developed to enable serological Differentiation of Infected from Vaccinated Animals (DIVA). In this context, the chimeric virus CP7_E2gif vaccine candidate is unique as it does...... not include any CSFV components. In the present study, the DIVA vaccine properties of CP7_E2gif were evaluated in comparison to the conventional live attenuated Riemser C-strain vaccine. Sera and tonsil samples obtained from pigs immunised with these two vaccines were analysed. No viral RNA was found in serum...... after vaccination with CP7_E2gif, whereas some serum samples from C-strain vaccinated animals were positive. In both vaccinated groups, individual viral RNA-positive tonsil samples were detected in animals euthanised between 7 and 21 days post vaccination. Furthermore, serum samples from these animals...

  15. [Harvesting technique of chimeric multiple paddles fibular flap for wide oromandibular defects].

    Science.gov (United States)

    Foy, J-P; Qassemyar, Q; Assouly, N; Temam, S; Kolb, F

    2016-08-01

    Carcinological head and neck reconstruction still remains a challenge due to the volume and varied tissues needed. Large and wide oromandibular defects require, not just the bone but also soft tissues for the pelvilingual reconstruction and therefore, a second free flap may become necessary in addition to a fibular flap. The option of an unique chimeric flap based on the fibular artery and its branches is less known whereas it offers the advantage of a unique flap with bone, muscle and multiple skin paddles, independent of each other. The aim of this technical note is to present step by step the surgical procedure of this chimeric flap and share this method that avoids a second free flap.

  16. Replication-competent chimeric lenti-oncovirus with expanded host cell tropism.

    Science.gov (United States)

    Reiprich, S; Gundlach, B R; Fleckenstein, B; Uberla, K

    1997-04-01

    Baboon bone marrow was grafted into human immunodeficiency virus type 1-infected patients in the course of recent trials for AIDS treatment. Since the baboon genome harbors multiple copies of an endogenous oncovirus, chimeric lenti-oncoviruses could emerge in the xenotransplant recipient. To analyze the potential replication competence of hybrid viruses between different genera of retroviruses, we replaced most of the env gene of simian immunodeficiency virus with the env gene of an amphotropic murine leukemia virus. The hybrid virus could be propagated in human T-cell lines, in peripheral blood mononuclear cells of rhesus macaques, and in CD4- B-cell lines. Because of the expanded cell tropism, the hybrid virus might have a selective advantage in comparison to parental viruses. Therefore, emerging chimeric viruses may be considered a serious risk of xenotransplantation. A note of caution is also suggested for the use of pseudotyped lentiviral vectors for human gene therapy.

  17. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa;

    2014-01-01

    with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than...... oligodendrocytes, and viral replication was noted primarily in human astrocytes and GPCs rather than oligodendrocytes, which instead expressed early viral T antigens and exhibited apoptotic death. Engraftment of human GPCs in normally myelinated and immunodeficient mice resulted in humanized white matter...... that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection...

  18. Chimerism of allogeneic mesenchymal cells in bone marrow, liver, and spleen after mesenchymal stem cells infusion.

    Science.gov (United States)

    Meleshko, Alexander; Prakharenia, Irina; Kletski, Semen; Isaikina, Yanina

    2013-12-01

    Although an infusion of culture-expanded MSCs is applied in clinic to improve results of HSCs transplantation and for a treatment of musculoskeletal disorders, homing, and engraftment potential of culture-expanded MSC in humans is still obscure. We report two female patients who received allogeneic BM transplantation as a treatment of hematological diseases and a transplantation of MSCs from third-party male donors. Both patients died within one yr of infectious complications. Specimens of paraffin-embedded blocks of tissues from transplanted patients were taken. The aim of the study was to estimate possible homing and engraftment of allogeneic BM-derived MSCs in some tissues/organs of recipient. Sensitive real-time quantitative PCR analysis was applied with SRY gene as a target. MSC chimerism was found in BM, liver, and spleen of both patients. We conclude that sensitive RQ-PCR analysis is acceptable for low-level chimerism evaluation even in paraffin-embedded tissue specimens.

  19. Skin Recurrence of Transformed Mycosis Fungoides Postumbilical Cord Blood Transplant despite Complete Donor Chimerism

    OpenAIRE

    Rahul Pawar; Anup Kasi Loknath Kumar; Janet Woodroof; Wei Cui; Joseph McGuirk; Sunil Abhyankar; Sid Ganguly; Anurag Singh; Tara Lin; Omar Aljitawi

    2014-01-01

    Background. Allogeneic stem cell transplant is the treatment of choice for systemic cutaneous T-cell lymphoma (CTCL) which provides graft-versus-lymphoma effect. Herein we discuss a case of recurrence of CTCL skin lesions after cord blood transplant in a patient who continued to have 100% donor chimerism in bone marrow. Case Presentation. A 48-year-old female with history of mycosis fungoides (MF) presented with biopsy proven large cell transformation of MF. PET scan revealed multiple adenop...

  20. Chimerism in M1 plants of Vicia faba, Capsicum annuum and Linum usitatissimum

    International Nuclear Information System (INIS)

    One important task of our group at IAEA is to develop procedures aiming to improve sampling of M2 seeds to facilitate the recovery of a maximum number of induced mutations in crop plants. Results from studies on three species are reported in this paper. Seeds have been mutagen treated and the chimeric M1 plants were progeny tested in M2. The position of the M2 seeds on the M1 plants has been recorded

  1. Chimeric nucleolin aptamer with survivin DNAzyme for cancer cell targeted delivery.

    Science.gov (United States)

    Subramanian, Nithya; Kanwar, Jagat R; Akilandeswari, Balachandran; Kanwar, Rupinder K; Khetan, Vikas; Krishnakumar, Subramanian

    2015-04-25

    A chimeric aptamer-DNAzyme conjugate was generated for the first time using a nucleolin aptamer (NCL-APT) and survivin Dz (Sur_Dz) and exhibited the targeted killing of cancer cells. This proof of concept of using an aptamer for the delivery of DNAzyme can be applied to other cancer types to target survivin in cancer cells in a specific manner. PMID:25797393

  2. Chimeric mice with a humanized liver as an animal model of troglitazone-induced liver injury.

    Science.gov (United States)

    Kakuni, Masakazu; Morita, Mayu; Matsuo, Kentaro; Katoh, Yumiko; Nakajima, Miki; Tateno, Chise; Yokoi, Tsuyoshi

    2012-10-01

    Troglitazone (Tro) is a thiazolidinedione antidiabetic drug that was withdrawn from the market due to its association with idiosyncratic severe liver injury. Tro has never induced liver injury in experimental animals in vivo. It was assumed that the species differences between human and experimental animals in the pharmaco- or toxicokinetics of Tro might be associated with these observations. In this study, we investigated whether a chimeric mouse with a humanized liver that we previously established, whose replacement index with human hepatocytes is up to 92% can reproduce Tro-induced liver injury. When the chimeric mice were orally administered Tro for 14 or 23 days (1000mg/kg/day), serum alanine aminotransferase (ALT) was significantly increased by 2.1- and 3.6-fold, respectively. Co-administration of l-buthionine sulfoximine (10mM in drinking water), an inhibitor of glutathione (GSH) synthesis, unexpectedly prevented the Tro-dependent increase of ALT, which suggests that the GSH scavenging pathway will not be involved in Tro-induced liver injury. To elucidate the mechanism of the onset of liver injury, hepatic GSH content, the level of oxidative stress markers and phase I and phase II drug metabolizing enzymes were determined. However, these factors were not associated with Tro-induced liver injury. An immune-mediated reaction may be associated with Tro-induced liver toxicity in vivo, because the chimeric mouse is derived from an immunodeficient SCID mouse. In conclusion, we successfully reproduced Tro-induced liver injury using chimeric mice with a humanized liver, which provides a new animal model for studying idiosyncratic drug-induced liver injury.

  3. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    OpenAIRE

    Wu, Chia-Yung; Kole T Roybal; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2015-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen spec...

  4. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells

    OpenAIRE

    Frigault, Matthew J.; Lee, Jihyun; Basil, Maria Ciocca; Carpenito, Carmine; Motohashi, Shinichiro; Scholler, John; Kawalekar, Omkar U.; Guedan, Sonia; McGettigan, Shannon E; Posey, Avery D; Ang, Sonny; Cooper, Laurence J. N.; Platt, Jesse M.; Johnson, F. Brad; Paulos, Chrystal M.

    2015-01-01

    This study compared second generation chimeric antigen receptors encoding signaling domains composed of CD28, ICOS and 4-1BB. Here we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T-cell with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to three months following a single stimulation through the TCR. Sustained numeric expansion was independent of cognate antigen and...

  5. Domain exchange: characterization of a chimeric lipase of hepatic lipase and lipoprotein lipase.

    OpenAIRE

    Wong, H; Davis, R. C.; Nikazy, J; Seebart, K E; Schotz, M C

    1991-01-01

    Hepatic lipase and lipoprotein lipase hydrolyze fatty acids from triacylglycerols and are critical in the metabolism of circulating lipoproteins. The two lipases are similar in size and amino acid sequence but are distinguished by functional differences in substrate preference and cofactor requirement. Presumably, these distinctions result from structural differences in functional domains. To begin localization of these domains, a chimeric lipase was constructed composed of the N-terminal 329...

  6. Generation of cloned and chimeric embryos/offspring using the new methods of animal biotechnology.

    Science.gov (United States)

    Skrzyszowska, Maria; Karasiewicz, Jolanta; Bednarczyk, Marek; Samiec, Marcin; Smorag, Zdzisław; Waś, Bogusław; Guszkiewicz, Andrzej; Korwin-Kossakowski, Maciej; Górniewska, Maria; Szablisty, Ewa; Modliński, Jacek A; Łakota, Paweł; Wawrzyńska, Magdalena; Sechman, Andrzej; Wojtysiak, Dorota; Hrabia, Anna; Mika, Maria; Lisowski, Mirosław; Czekalski, Przemysław; Rzasa, Janusz; Kapkowska, Ewa

    2006-01-01

    The article summarizes results of studies concerning: 1/ qualitative evaluation of pig nuclear donor cells to somatic cell cloning, 2/ developmental potency of sheep somatic cells to create chimera, 3/ efficient production of chicken chimera. The quality of nuclear donor cells is one of the most important factors to determine the efficiency of somatic cell cloning. Morphological criteria commonly used for qualitative evaluation of somatic cells may be insufficient for practical application in the cloning. Therefore, different types of somatic cells being the source of genomic DNA in the cloning procedure were analyzed on apoptosis with the use of live-DNA or plasma membrane fluorescent markers. It has been found that morphological criteria are a sufficient selection factor for qualitative evaluation of nuclear donor cells to somatic cell cloning. Developmental potencies of sheep somatic cells in embryos and chimeric animals were studied using blastocyst complementation test. Fetal fibroblasts stained with vital fluorescent dye and microsurgically placed in morulae or blastocysts were later identified in embryos cultured in vitro. Transfer of Polish merino blastocysts harbouring Heatherhead fibroblasts to recipient ewes brought about normal births at term. Newly-born animals were of merino appearance with dark patches on their noses, near the mouth and on their clovens. This overt chimerism shows that fetal fibroblasts introduced to sheep morulae/blastocysts revealed full developmental plasticity. To achieve the efficient production of chicken chimeras, the blastodermal cells from embryos of the donor breeds, (Green-legged Partridgelike breed or GPxAraucana) were transferred into the embryos of the recipient breed (White Leghorn), and the effect of chimerism on the selected reproductive and physiological traits of recipients was examined. Using the model which allowed identification of the chimerism at many loci, it has been found that 93.9% of the examined birds

  7. Chimeric External Control to Quantify Cell Free DNA in Plasma Samples by Real Time PCR

    OpenAIRE

    Eini, Maryam; Behzad-Behbahani, Abbas; Takhshid, Mohammad Ali; Ramezani, Amin; Rafiei Dehbidi, Gholam Reza; Okhovat, Mohammad Ali; Farhadi, Ali; Alavi, Parniyan

    2016-01-01

    Background: DNA isolation procedure can significantly influence the quantification of DNA by real time PCR specially when cell free DNA (cfDNA) is the subject. To assess the extraction efficiency, linearity of the extraction yield, presence of co-purified inhibitors and to avoid problems with fragment size relevant to cfDNA, development of appropriate External DNA Control (EDC) is challenging. Using non-human chimeric nucleotide sequences, an EDC was developed for standardization of qPCR for ...

  8. BRAF and MEK inhibition variably affect GD2-specific chimeric antigen receptor (CAR) T-cell function in vitro.

    Science.gov (United States)

    Gargett, Tessa; Fraser, Cara K; Dotti, Gianpietro; Yvon, Eric S; Brown, Michael P

    2015-01-01

    Cancer immunotherapy has long been used in the treatment of metastatic melanoma, and an anti-CTLA-4 monoclonal antibody treatment has recently been approved by the US Food and Drug Administration. Targeted therapies such as small molecule kinase inhibitors targeting deregulated mitogen-activated protein kinase (MAPK) signaling have markedly improved melanoma control in up to 50% of metastatic disease patients and have likewise been recently approved. Combination therapies for melanoma have been proposed as a way to exploit the high-level but short-term responses associated with kinase inhibitor therapies and the low-level but longer-term responses associated with immunotherapy. Cancer immunotherapy now includes adoptive transfer of autologous tumor-specific chimeric antigen receptor (CAR) T cells and this mode of therapy is a candidate for combination with small molecule drugs. This paper describes CART cells that target GD2-expressing melanoma cells and investigates the effects of approved MAPK pathway-targeted therapies for melanoma [vemurafenib (Vem), dabrafenib (Dab), and trametinib (Tram)] on the viability, activation, proliferation, and cytotoxic T lymphocyte activity of these CAR T cells, as well as on normal peripheral blood mononuclear cells. We report that, although all these drugs lead to inhibition of stimulated T cells at high concentrations in vitro, only Vem inhibited T cells at concentrations equivalent to reported plasma concentrations in treated patients. Although the combination of Dab and Tram also resulted in inhibition of T-cell effector functions at some therapeutic concentrations, Dab itself had little adverse effect on CAR T-cell function. These findings may have implications for novel therapeutic combinations of adoptive CAR T-cell immunotherapy and MAPK pathway inhibitors.

  9. Construction and characterization of a recombinant fowlpox virus containing HIV-1 multi-epitope-p24 chimeric gene in mice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The epidemic of HIV/AIDS is sweeping across the world. It is of great importance to figure out new ways to curb this disease. Epitope-based vaccine is one of these solutions. In this study, a chimeric gene was obtained by combination of a designed HIV-1 multi-epitope gene (MEG) and HIV-1 p24 gene. A re- combinant plasmid pUTA2-MEGp24 was then constructed by inserting MEGp24 gene into the down- stream of the promoter (ATI-P7.5×20) of fowlpox virus (FPV) transfer vector pUTA2. The recombinant plasmid and wild-type FPV 282E4 strain were then co-transfected into CEF cells and homologous re- combination occurred. A recombinant virus expressing HIV-1 protein MEGp24 was screened by ge- nome PCR and Western blot assay. Large scale preparation and purification of the recombinant fowl- pox virus (rFPV) were then carried out. BALB/c mice were immunized intramuscularly with the rFPV for three times on day 0, 14 and 42. Mice were executed and sampled one week after the third inoculation. Anti-HIV-1 antibody in serum and Th1 cytokines in the supernatant of cultured spleen cells were as- sayed by ELISA. The count of T lymphocyte subsets and the CTL activity of spleen lymphocytes were analyzed by flow cytometry and lactate dehydrogenase (LDH) release assay, respectively. The results showed that HIV-1 specific antibody in serum and increased T lymphocyte subsets (CD4+ T, CD8+ T) were detected in the immunization group. CTL target-killing activity and higher secretion of Th1 cyto- kines (IFN-γ and IL-2) of spleen lymphocytes stimulated by H-2d-restricted CTL peptide were observed in immunized mice. We concluded that the rFPV may induce HIV-1 specific immunity especially cellular immunity in mice.

  10. Construction and characterization of a recombinant fowlpox virus containing HIV-1 multi-epitope-p24 chimeric gene in mice

    Institute of Scientific and Technical Information of China (English)

    ZHANG LiShu; JIN NingYi; SONG YingJin; WANG Hong; MA HeWen; LI ZiJian; JIANG WenZheng

    2007-01-01

    The epidemic of HIV/AIDS is sweeping across the world. It is of great importance to figure out new ways to curb this disease. Epitope-based vaccine is one of these solutions. In this study, a chimeric gene was obtained by combination of a designed HIV-1 multi-epitope gene (MEG) and HIV-1 p24 gene. A recombinant plasmid pUTA2-MEGp24 was then constructed by inserting MEGp24 gene into the down-stream of the promoter (ATI-P7.5×20) of fowlpox virus (FPV) transfer vector pUTA2. The recombinant plasmid and wild-type FPV 282E4 strain were then co-transfected into CEF cells and homologous recombination occurred. A recombinant virus expressing HIV-1 protein MEGp24 was screened by genome PCR and Western blot assay. Large scale preparation and purification of the recombinant fowlpox virus (rFPV) were then carried out. BALB/c mice were immunized intramuscularly with the rFPV for three times on day 0, 14 and 42. Mice were executed and sampled one week after the third inoculation.Anti-HIV-1 antibody in serum and Th1 cytokines in the supernatant of cultured spleen cells were assayed by ELISA. The count of T lymphocyte subsets and the CTL activity of spleen lymphocytes were analyzed by flow cytometry and lactate dehydrogenase (LDH) release assay, respectively. The results showed that HIV-1 specific antibody in serum and increased T lymphocyte subsets (CD4+ T, CD8+ T)were detected in the immunization group. CTL target-killing activity and higher secretion of Th1 cytokines (IFN-Y and IL-2) of spleen lymphocytes stimulated by H-2d-restricted CTL peptide were observed in immunized mice.We concluded that the rFPV may induce HIV-1 specific immunity especially cellular immunity in mice.

  11. Pharmacokinetics of chimeric L6 conjugated to indium-111- and yttrium-90-DOTA-peptide in tumor-bearing mice

    International Nuclear Information System (INIS)

    A bifunctional chelating agent, DOTA-Gly3-L-(p-isothiocyanato)-phenylalanine amide (DOTA-peptide-NCS), was studied in nude mice bearing human breast cancer xenografts (HBT 3477) to determine its potential for radioimmunoconjugate therapy. Indium-111 and yttrium-90 were attached to an anti-adenocarcinoma chimeric L6 (ChL6) monoclonal antibody (MAb) after pre-chelation to the DOTA-peptide-NCS and the desired neutral radiochelates were obtained by purification. The unique characteristic of the DOTA-peptide-NCS to form neutral complexes with trivalent metals was utilized to separate the resulting 111In and 90Y radiochelates from excess chelating agent and other anionic by-products resulting from metal impurities. The purified radiochelates were then conjugated to ChL6. The paramacokinetics of 111In- and 90Y-DOTA-peptide-ChL6 were obtained for 5 days after injection in nude mice bearing HBT 3477 xenographs. The results were compared with the pharmacokinetics of 125I-ChL6 obtained in the same mouse model. The whole-body clearance of 125I-ChL6, 90Y-and 111In-DOTA-peptide-ChL6 was monoexponential with biologic half-times of 92, 104 and 160 hr, respectively. Blood clearances of the three radiopharmaceuticals were biphasic. The radiometal immunoconjugates had greater tumor uptake and slower clearances. Indium-111- and 90Y-DOTA-peptide-ChL6 can be produced at high specific activity with fewer than one chelate per MAb by using a pre-labeling method that permits radiochelate purification by charge selection. Studies in mouse xenografts indicate that tumor uptake in enhanced and a favorable therapeutic index is achieved using these agents. 29 refs., 7 figs., 2 tabs

  12. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy.

    Science.gov (United States)

    Destouni, Aspasia; Zamani Esteki, Masoud; Catteeuw, Maaike; Tšuiko, Olga; Dimitriadou, Eftychia; Smits, Katrien; Kurg, Ants; Salumets, Andres; Van Soom, Ann; Voet, Thierry; Vermeesch, Joris R

    2016-05-01

    Dramatic genome dynamics, such as chromosome instability, contribute to the remarkable genomic heterogeneity among the blastomeres comprising a single embryo during human preimplantation development. This heterogeneity, when compatible with life, manifests as constitutional mosaicism, chimerism, and mixoploidy in live-born individuals. Chimerism and mixoploidy are defined by the presence of cell lineages with different parental genomes or different ploidy states in a single individual, respectively. Our knowledge of their mechanistic origin results from indirect observations, often when the cell lineages have been subject to rigorous selective pressure during development. Here, we applied haplarithmisis to infer the haplotypes and the copy number of parental genomes in 116 single blastomeres comprising entire preimplantation bovine embryos (n = 23) following in vitro fertilization. We not only demonstrate that chromosome instability is conserved between bovine and human cleavage embryos, but we also discovered that zygotes can spontaneously segregate entire parental genomes into different cell lineages during the first post-zygotic cleavage division. Parental genome segregation was not exclusively triggered by abnormal fertilizations leading to triploid zygotes, but also normally fertilized zygotes can spontaneously segregate entire parental genomes into different cell lineages during cleavage of the zygote. We coin the term "heterogoneic division" to indicate the events leading to noncanonical zygotic cytokinesis, segregating the parental genomes into distinct cell lineages. Persistence of those cell lines during development is a likely cause of chimerism and mixoploidy in mammals. PMID:27197242

  13. Human-animal chimeras: ethical issues about farming chimeric animals bearing human organs.

    Science.gov (United States)

    Bourret, Rodolphe; Martinez, Eric; Vialla, François; Giquel, Chloé; Thonnat-Marin, Aurélie; De Vos, John

    2016-01-01

    Recent advances in stem cells and gene engineering have paved the way for the generation of interspecies chimeras, such as animals bearing an organ from another species. The production of a rat pancreas by a mouse has demonstrated the feasibility of this approach. The next step will be the generation of larger chimeric animals, such as pigs bearing human organs. Because of the dramatic organ shortage for transplantation, the medical needs for such a transgressive practice are indisputable. However, there are serious technical barriers and complex ethical issues that must be discussed and solved before producing human organs in animals. The main ethical issues are the risks of consciousness and of human features in the chimeric animal due to a too high contribution of human cells to the brain, in the first case, or for instance to limbs, in the second. Another critical point concerns the production of human gametes by such chimeric animals. These worst-case scenarios are obviously unacceptable and must be strictly monitored by careful risk assessment, and, if necessary, technically prevented. The public must be associated with this ethical debate. Scientists and physicians have a critical role in explaining the medical needs, the advantages and limits of this potential medical procedure, and the ethical boundaries that must not be trespassed. If these prerequisites are met, acceptance of such a new, borderline medical procedure may prevail, as happened before for in-vitro fertilization or preimplantation genetic diagnosis. PMID:27356872

  14. Venturing in coral larval chimerism: a compact functional domain with fostered genotypic diversity.

    Science.gov (United States)

    Rinkevich, Baruch; Shaish, Lee; Douek, Jacob; Ben-Shlomo, Rachel

    2016-01-01

    The globally distributed coral species Pocillopora damicornis is known to release either sexual or asexual derived planula-larvae in various reef locations. Using microsatellite loci as markers, we documented the release of asexually derived chimeric larvae (CL), originating from mosaicked maternal colonies that were also chimeras, at Thai and Philippines reefs. The CL, each presenting different combinations of maternal genotypic constituents, create genetically-complex sets of asexual propagules. This novel mode of inheritance in corals challenges classical postulations of sexual/asexual reproduction traits, as asexual derived CL represent an alliance between genotypes that significantly sways the recruits' absolute fitness. This type of inherited chimerism, while enhancing intra-entity genetic heterogeneity, is an evolutionary tactic used to increase genetic-heterogeneity, primarily in new areas colonized by a limited number of larvae. Chimerism may also facilitate combat global change impacts by exhibiting adjustable genomic combinations of within-chimera traits that could withstand alterable environmental pressures, helping Pocillopora become a successful cosmopolitan species. PMID:26758405

  15. Induced regulatory T cells in allograft tolerance via transient mixed chimerism

    Science.gov (United States)

    Hotta, Kiyohiko; Aoyama, Akihiro; Oura, Tetsu; Yamada, Yohei; Tonsho, Makoto; Huh, Kyu Ha; Kawai, Kento; Schoenfeld, David; Allan, James S.; Madsen, Joren C.; Benichou, Gilles; Smith, Rex-Neal; Colvin, Robert B.; Sachs, David H.; Cosimi, A. Benedict; Kawai, Tatsuo

    2016-01-01

    Successful induction of allograft tolerance has been achieved in nonhuman primates (NHPs) and humans via induction of transient hematopoietic chimerism. Since allograft tolerance was achieved in these recipients without durable chimerism, peripheral mechanisms are postulated to play a major role. Here, we report our studies of T cell immunity in NHP recipients that achieved long-term tolerance versus those that rejected the allograft (AR). All kidney, heart, and lung transplant recipients underwent simultaneous or delayed donor bone marrow transplantation (DBMT) following conditioning with a nonmyeloablative regimen. After DBMT, mixed lymphocyte culture with CFSE consistently revealed donor-specific loss of CD8+ T cell responses in tolerant (TOL) recipients, while marked CD4+ T cell proliferation in response to donor antigens was found to persist. Interestingly, a significant proportion of the proliferated CD4+ cells were FOXP3+ in TOL recipients, but not in AR or naive NHPs. In TOL recipients, CD4+FOXP3+ cell proliferation against donor antigens was greater than that observed against third-party antigens. Finally, the expanded Tregs appeared to be induced Tregs (iTregs) that were converted from non-Tregs. These data provide support for the hypothesis that specific induction of iTregs by donor antigens is key to long-term allograft tolerance induced by transient mixed chimerism. PMID:27446989

  16. Skin Recurrence of Transformed Mycosis Fungoides Postumbilical Cord Blood Transplant despite Complete Donor Chimerism

    Directory of Open Access Journals (Sweden)

    Rahul Pawar

    2014-01-01

    Full Text Available Background. Allogeneic stem cell transplant is the treatment of choice for systemic cutaneous T-cell lymphoma (CTCL which provides graft-versus-lymphoma effect. Herein we discuss a case of recurrence of CTCL skin lesions after cord blood transplant in a patient who continued to have 100% donor chimerism in bone marrow. Case Presentation. A 48-year-old female with history of mycosis fungoides (MF presented with biopsy proven large cell transformation of MF. PET scan revealed multiple adenopathy in abdomen and chest suspicious for lymphoma and skin biopsy showed large cell transformation. She was treated with multiple cycles of chemotherapy. Posttherapy PET scan showed resolution of lymphadenopathy. Later she underwent ablative preparative regimen followed by single cord blood transplant. Bone marrow chimerism studies at day +60 after transplant showed 100% donor cells without presence of lymphoma. However 5 months after transplant she had recurrence of MF with the same genotype as prior skin lesion. Bone marrow chimerism study continued to show 100% donor cells. Conclusion. A differential graft-versus-lymphoma effect in our case prevented lymphoma recurrence systemically but failed to do so in skin. We hypothesize that this response may be due to presence of other factors in the bone marrow and lymph node microenvironments preventing recurrence in these sites.

  17. Digital PCR Panel for Sensitive Hematopoietic Chimerism Quantification after Allogeneic Stem Cell Transplantation

    Science.gov (United States)

    Stahl, Tanja; Rothe, Caroline; Böhme, Manja U.; Kohl, Aloisa; Kröger, Nicolaus; Fehse, Boris

    2016-01-01

    Accurate and sensitive determination of hematopoietic chimerism is a crucial diagnostic measure after allogeneic stem cell transplantation to monitor engraftment and potentially residual disease. Short tandem repeat (STR) amplification, the current “gold standard” for chimerism assessment facilitates reliable accuracy, but is hampered by its limited sensitivity (≥1%). Digital PCR (dPCR) has been shown to combine exact quantification and high reproducibility over a very wide measurement range with excellent sensitivity (routinely ≤0.1%) and thus represents a promising alternative to STR analysis. We here aimed at developing a whole panel of digital-PCR based assays for routine diagnostic. To this end, we tested suitability of 52 deletion/insertion polymorphisms (DIPs) for duplex analysis in combination with either a reference gene or a Y-chromosome specific PCR. Twenty-nine DIPs with high power of discrimination and good performance were identified, optimized and technically validated. We tested the newly established assays on retrospective patient samples that were in parallel also measured by STR amplification and found excellent correlation. Finally, a screening plate for initial genotyping with DIP-specific duplex dPCR assays was designed for convenient assay selection. In conclusion, we have established a comprehensive dPCR system for precise and high-sensitivity measurement of hematopoietic chimerism, which should be highly useful for clinical routine diagnostics. PMID:27618030

  18. Development of a high-throughput microfluidic integrated microarray for the detection of chimeric bioweapons.

    Energy Technology Data Exchange (ETDEWEB)

    Sheppod, Timothy; Satterfield, Brent; Hukari, Kyle W.; West, Jason A. A.; Hux, Gary A.

    2006-10-01

    The advancement of DNA cloning has significantly augmented the potential threat of a focused bioweapon assault, such as a terrorist attack. With current DNA cloning techniques, toxin genes from the most dangerous (but environmentally labile) bacterial or viral organism can now be selected and inserted into robust organism to produce an infinite number of deadly chimeric bioweapons. In order to neutralize such a threat, accurate detection of the expressed toxin genes, rather than classification on strain or genealogical decent of these organisms, is critical. The development of a high-throughput microarray approach will enable the detection of unknowns chimeric bioweapons. The development of a high-throughput microarray approach will enable the detection of unknown bioweapons. We have developed a unique microfluidic approach to capture and concentrate these threat genes (mRNA's) upto a 30 fold concentration. These captured oligonucleotides can then be used to synthesize in situ oligonucleotide copies (cDNA probes) of the captured genes. An integrated microfluidic architecture will enable us to control flows of reagents, perform clean-up steps and finally elute nanoliter volumes of synthesized oligonucleotides probes. The integrated approach has enabled a process where chimeric or conventional bioweapons can rapidly be identified based on their toxic function, rather than being restricted to information that may not identify the critical nature of the threat.

  19. Tumor Antigen Specific Activation of Primary Human T-Cells Expressing a Virally Encoded Chimeric T-Cell Receptor Specific for p185HER2

    Institute of Scientific and Technical Information of China (English)

    杨建民; MichaelSFRIEDMAN; ChristopherMREYNOLDS; MarianneTHUBEN; LeeWILKE; JenniferFULLER; 李桥; ZeligESHHAR; JamesJMULE; KevimTMCDONAGH

    2004-01-01

    We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments,retroviral vectors expressing the N297 or N29ξ receptors were constructed in pRET6. Amphotropic viral producer cells were established in the GALV-based PG13 packaging cell line. Ficoll purified human peripheral blood lymphocytes (PBL) were vitally transduced using an optimized protocol incorporating activation with immobilized anti-CD3/anti-CD28 monoclonal antibodies, followed by viral infection in the presence of fibronectin fragment CH296. Transduced cells were co-cultured with human tumor cell lines that overexpress (SK-OV-3) or underexpress (MCF7) p185HER2 to assay for antigen specific immune responses. Both CD4+ and CD8+ T-cells transduced with the N297 or N29ξ chTCR demonstrated HER2-specific antigen responses, as determined by release of Th1 like cytokines, and cellular cytotoxicity assays. Our results support the feasibility of adoptive immunothempy with genetically modified T-cells expressing a chTCR specific for p185HER2.

  20. Preparation & in vitro evaluation of 90Y-DOTA-rituximab

    OpenAIRE

    Mythili Kameswaran; Usha Pandey; Ashutosh Dash; Grace Samuel; Meera Venkatesh

    2016-01-01

    Background & objectives: Radioimmunotherapy is extensively being used for the treatment of non-Hodgkin′s lymphoma (NHL). Use of rituximab, a chimeric anti-CD20 antibody directed against the CD20 antigen in combination with suitable beta emitters is expected to result in good treatment response by its cross-fire and bystander effects. The present work involves the conjugation of p-isothiocyanatobenzyl DOTA (p-SCN-Bn-DOTA) to rituximab, its radiolabelling with [90] Y and in vitro and in vivo ev...

  1. Rituximab used in three cases with relapsed non-Hodgkin’s lymphoma

    OpenAIRE

    Elli, Murat; YILMAZ, SEMA; AYDIN, RAMAZAN; MURAT, SADRIYE; Bilgici, Meltem Ceyhan; DAGDEMIR, AYHAN

    2013-01-01

    Relapsed or refractory B-cell non-Hodgkin’s lymphoma (B-NHL) patients have a poor prognosis. New treatment modalities have been used to improve survival rates in children with relapsed or refractory B-NHL. CD20 is expressed in >98% of childhood B-NHL and a chimeric anti-CD20 monoclonal antibody, rituximab, is increasingly being used at relapse. The aim of the present study was to determine the efficacy of rituximab on relapsed B-NHL. Three B-NHL cases were treated successfully with a combinat...

  2. In silico and experimental characterization of chimeric Bacillus thermocatenulatus lipase with the complete conserved pentapeptide of Candida rugosa lipase.

    Science.gov (United States)

    Hosseini, Mostafa; Karkhane, Ali Asghar; Yakhchali, Bagher; Shamsara, Mehdi; Aminzadeh, Saeed; Morshedi, Dena; Haghbeen, Kamahldin; Torktaz, Ibrahim; Karimi, Esmat; Safari, Zahra

    2013-02-01

    Lipases are one of the highest value commercial enzymes as they have broad applications in detergent, food, pharmaceutical, and dairy industries. To provide chimeric Bacillus thermocatenulatus lipase (BTL2), the completely conserved pentapeptide (¹¹²Ala-His-Ser-Gln-Gly¹¹⁶) was replaced with similar sequences (²⁰⁷Gly-Glu-Ser-Ala-Gly²¹¹) of Candida rugosa lipase (CLR) at the nucleophilic elbow region. For this purpose, three mutations including A112G, H113E, and Q115A were inserted in the conserved pentapeptide sequence of btl2 gene. Based on the crystal structures of 2W22, the best structure of opened form of the chimeric lipases were garnered using the MODELLER v9.10 software. The native and chimeric lipases were docked to a set of ligands, and a trial version of Molegro Virtual Docker (MVD) software was used to obtain the energy values. Docking results confirmed chimeric lipase to be better than the native lipase. Following the in silico study, cloning experiments were conducted and expression of native and chimeric btl2 gene in Pichia pastoris was performed. The native and chimeric lipases were purified, and the effect of these mutations on characteristics of chimeric lipase studied and then compared with those of native lipase. Chimeric lipase exhibited 1.6-fold higher activity than the native lipase at 55 °C. The highest percentage of both lipases activity was observed at 60 °C and pH of 8.0. The ion Ca²⁺ slightly inhibited the activity of both lipases, whereas the organic solvent enhanced the lipase stability of chimeric lipase as compared with the native lipase. According to the results, the presence of two glycine residues at the conserved pentapeptide region of this chimeric lipase (¹¹²Gly-Glu-Ser-Ala-Gly¹¹⁶) may increase the flexibility of the nucleophilic elbow region and affect the enzyme activity level. PMID:23274720

  3. Delineation of structural domains involved in the subtype specificity of tachykinin receptors through chimeric formation of substance P/substance K receptors.

    OpenAIRE

    Y. Yokota; Akazawa, C; Ohkubo, H; Nakanishi, S.

    1992-01-01

    The mammalian tachykinin receptors belong to the family of G protein-coupled receptors and consist of the substance P, substance K and neuromedin K receptors (SPR, SKR and NKR). We constructed 14 chimeric receptors in which seven transmembrane segments were sequentially exchanged between the rat SPR and SKR and examined the subtype specificity of the chimeric receptors by radioligand binding and inositol phosphate measurements after transfection into COS cells. All chimeric receptors showed m...

  4. Chimerism Analysis of Cell-Free DNA in Patients Treated with Hematopoietic Stem Cell Transplantation May Predict Early Relapse in Patients with Hematologic Malignancies

    OpenAIRE

    Mahmoud Aljurf; Hala Abalkhail; Amal Alseraihy; Said Y. Mohamed; Mouhab Ayas; Fahad Alsharif; Hazza Alzahrani; Abdullah Al-Jefri; Ghuzayel Aldawsari; Ali Al-Ahmari; Belgaumi, Asim F.; Claudia Ulrike Walter; Hassan El-Solh; Walid Rasheed; Maher Albitar

    2016-01-01

    Background. We studied DNA chimerism in cell-free DNA (cfDNA) in patients treated with HSCT. Methods. Chimerism analysis was performed on CD3+ cells, polymorphonuclear (PMN) cells, and cfDNA using 16 small tandem repeat loci. The resulting labeled PCR-products were size-fractionated and quantified. Results. Analyzing samples from 191 patients treated with HSCT for nonneoplastic hematologic disorders demonstrated that the cfDNA chimerism is comparable to that seen in PMN cells. Analyzing leuke...

  5. Activity identification of chimeric anti-caspase-3 mRNA hammerhead ribozyme in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    XU; Renhuan; (

    2001-01-01

    [1]Andrew, F., Gerard, E., A license to kill, Cell, 1996, 85: 781-784.[2]Thornberry, N. A., Lazebnik, Y., Caspases: Enemies within, Science, 1998, 281: 1312-1316.[3]Kijima, H., Ishida, H., Ohkawa, T. et al., Therapeutic application of ribozymes, Pharmacol. Ther., 1995, 68: 247-264.[4]Phylactou, L. A., Kilpatrick, M. W., Wood, M. J., Ribozymes as therapeutic tools for genetic disease, Hum. Mol. Genet., 1998, 7(10): 1649-1653.[5]Bettrand, E., Pictet, R ., Grange, T., Can heamerhead ribozymes be efficient tools inactivate gene function? Nucleic Acids Res., 1994, 22: 293-300.[6]Lieber, A., Strauss, M., Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library, Mol. Cell Biol., 1995, 15: 540-551.[7]Xu, R. H., Zhou, X. Q., Xie, Q. et al., Preparation and identification of hammerhead ribozyme in vitro against rat caspase-3 mRNA fragment, Chin. J. Hepatol., 2000,8: 361-363.[8]Liu, J., Jin, Y. X., Wang, D. B., A novel vector for abundant expression of antisense RNA, triplex-forming RNA and ribozyme in vivo, High Technology Letters, 2000, 6: 84-88.[9]Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.[10]Porter, A. G., J?nicke, R. U., Emerging roles of caspase-3 in apoptosis, Cell Death Differ, 1999, 6: 99-104.[11]Cryns, V., Yuan, J., Proteases to die for, Genes Dev., 1998, 12: 1551-1570.[12]Narendra, K. V., Anikumar, R. K., Fritz, E., Recent developments in the hammerhead ribozyme field, Nucleic Acids Research, 1998, 26: 5237-5242.

  6. Mapping of the C3b-binding site of CR1 and construction of a (CR1)2-F(ab')2 chimeric complement inhibitor.

    Science.gov (United States)

    Kalli, K R; Hsu, P H; Bartow, T J; Ahearn, J M; Matsumoto, A K; Klickstein, L B; Fearon, D T

    1991-12-01

    CR1/CR2 chimeric receptors in which various short consensus repeats (SCRs) of CR1 were attached to CR2 were transiently expressed on COS cells, and assessed for the binding of polymerized C3b (pC3b) and anti-CR2 by immunofluorescence. Of COS cells expressing chimeras containing SCR 1-4, 1-3, 2-4, 1-2, and 2-3 of the long homologous repeats (LHRs) -B or -C, 96%, 66%, 23%, 0%, and 0%, respectively, bound pC3b. K562 cells were stably transfected with wild-type CR1, deletion mutants of CR1, and the CR1/CR2 chimeras, respectively, and assayed for binding of 125I-pC3b. The dissociation constants (Kd) for pC3b of wild-type CR1 and the LHR-BD and -CD constructs were in the range of 1.0-2.7 nM, and of the CR1/CR2 chimeras containing SCRs 1-4, 1-3, and 2-4 of LHR-B or -C were 1.8-2.4, 6-9, and 22-36 nM, respectively. The factor I-cofactor function of the CR1/CR2 chimeras paralleled the C3b-binding function of the constructs. A CR1/immunoglobulin (Ig) chimeric protein was prepared by fusing SCRs 1-4 of LHR-B to the heavy chains of a murine F(ab')2 anti-nitrophenacetyl (NP) monoclonal antibody. The (CR1)2-F(ab')2 chimera, which retained its specificity for NP, was as effective as soluble, full-length CR1 in binding pC3b, serving as a cofactor for factor I-mediated cleavage of C3b, and inhibiting activation of the alternative pathway, indicating that the bivalent expression of these SCRs reconstitutes the alternative pathway inhibitory function of CR1. The feasibility of creating CR1/Ig chimeras makes possible a new strategy of targeting complement inhibition by the use of Ig fusion partners having particular antigenic specificities. PMID:1836011

  7. Mapping of the C3b-binding site of CR1 and construction of a (CR1)2-F(ab')2 chimeric complement inhibitor.

    Science.gov (United States)

    Kalli, K R; Hsu, P H; Bartow, T J; Ahearn, J M; Matsumoto, A K; Klickstein, L B; Fearon, D T

    1991-12-01

    CR1/CR2 chimeric receptors in which various short consensus repeats (SCRs) of CR1 were attached to CR2 were transiently expressed on COS cells, and assessed for the binding of polymerized C3b (pC3b) and anti-CR2 by immunofluorescence. Of COS cells expressing chimeras containing SCR 1-4, 1-3, 2-4, 1-2, and 2-3 of the long homologous repeats (LHRs) -B or -C, 96%, 66%, 23%, 0%, and 0%, respectively, bound pC3b. K562 cells were stably transfected with wild-type CR1, deletion mutants of CR1, and the CR1/CR2 chimeras, respectively, and assayed for binding of 125I-pC3b. The dissociation constants (Kd) for pC3b of wild-type CR1 and the LHR-BD and -CD constructs were in the range of 1.0-2.7 nM, and of the CR1/CR2 chimeras containing SCRs 1-4, 1-3, and 2-4 of LHR-B or -C were 1.8-2.4, 6-9, and 22-36 nM, respectively. The factor I-cofactor function of the CR1/CR2 chimeras paralleled the C3b-binding function of the constructs. A CR1/immunoglobulin (Ig) chimeric protein was prepared by fusing SCRs 1-4 of LHR-B to the heavy chains of a murine F(ab')2 anti-nitrophenacetyl (NP) monoclonal antibody. The (CR1)2-F(ab')2 chimera, which retained its specificity for NP, was as effective as soluble, full-length CR1 in binding pC3b, serving as a cofactor for factor I-mediated cleavage of C3b, and inhibiting activation of the alternative pathway, indicating that the bivalent expression of these SCRs reconstitutes the alternative pathway inhibitory function of CR1. The feasibility of creating CR1/Ig chimeras makes possible a new strategy of targeting complement inhibition by the use of Ig fusion partners having particular antigenic specificities.

  8. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors.

    Science.gov (United States)

    Thokala, Radhika; Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E; Laskowski, Tamara; McNamara, George; Cooper, Laurence J N

    2016-01-01

    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies.

  9. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors.

    Science.gov (United States)

    Thokala, Radhika; Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E; Laskowski, Tamara; McNamara, George; Cooper, Laurence J N

    2016-01-01

    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies. PMID:27548616

  10. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors

    Science.gov (United States)

    Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E.; Laskowski, Tamara; McNamara, George; Cooper, Laurence J. N.

    2016-01-01

    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR’s in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies. PMID:27548616

  11. Construction of a Chimeric Secretory IgA and Its Neutralization Activity against Avian Influenza Virus H5N1

    Directory of Open Access Journals (Sweden)

    Cun Li

    2014-01-01

    Full Text Available Secretory immunoglobulin A (SIgA acts as the first line of defense against respiratory pathogens. In this assay, the variable regions of heavy chain (VH and Light chain (VL genes from a mouse monoclonal antibody against H5N1 were cloned and fused with human IgA constant regions. The full-length chimeric light and heavy chains were inserted into a eukaryotic expressing vector and then transfected into CHO/dhfr-cells. The chimeric monomeric IgA antibody expression was confirmed by using ELISA, SDS-PAGE, and Western blot. In order to obtain a dimeric secretory IgA, another two expressing plasmids, namely, pcDNA4/His A-IgJ and pcDNA4/His A-SC, were cotransfected into the CHO/dhfr-cells. The expression of dimeric SIgA was confirmed by using ELISA assay and native gel electrophoresis. In microneutralization assay on 96-well immunoplate, the chimeric SIgA showed neutralization activity against H5N1 virus on MDCK cells and the titer was determined to be 1 : 64. On preadministrating intranasally, the chimeric SIgA could prevent mice from lethal attack by using A/Vietnam/1194/04 H5N1 with a survival rate of 80%. So we concluded that the constructed recombinant chimeric SIgA has a neutralization capability targeting avian influenza virus H5N1 infection in vitro and in vivo.

  12. Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.

    Science.gov (United States)

    Aghazadeh, Rustam; Zamani, Mohammadreza; Motallebi, Mostafa; Moradyar, Mehdi; Moghadassi Jahromi, Zahra

    2016-09-01

    Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant. PMID:27430511

  13. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Masaaki [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Morikawa, Katsuma [Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Suda, Tatsuya [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Ohno, Naohito [Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Matsushita, Sho [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Allergy Center, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Akatsuka, Toshitaka [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Handa, Hiroshi, E-mail: handa.h.aa@m.titech.ac.jp [Solutions Research Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503 (Japan); Matsui, Masanori, E-mail: mmatsui@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.

  14. Rituximab for the treatment of rheumatoid arthritis: an update

    OpenAIRE

    Mok CC

    2013-01-01

    Chi Chiu MokDepartment of Medicine, Tuen Mun Hospital, Hong Kong, Special Administrative Region of the People's Republic of ChinaAbstract: Rituximab is a chimeric monoclonal antibody that targets the CD20 molecule expressed on the surface of B cells. It was first used in the treatment of non-Hodgkin's lymphoma and later approved for the treatment of rheumatoid arthritis (RA) that does not respond adequately to disease-modifying antirheumatic drugs, including the anti-tumor-nec...

  15. Long-term experience of plasmapheresis in antibody-mediated rejection in renal transplantation.

    LENUS (Irish Health Repository)

    Brown, C M

    2009-11-01

    Antibody-mediated rejection (AMR) continues to pose a serious challenge in renal transplantation with potentially devastating consequences. Treatment options for this condition include plasmapheresis, high-dose intravenous immunoglobulin (IVIG), plasmapheresis with low-dose IVIG, and the use of rituximab (anti-CD20 chimeric antibody). We previously reported on the short-term outcome of plasmapheresis as a rescue therapy for AMR in our centre. We now report on the long-term follow up.

  16. Retrospective analysis of a B cell depletion therapy with rituximab in patients with systemic rheumatic autoimmune diseases refractory to standard therapy

    OpenAIRE

    Haasler, Nadja

    2016-01-01

    Objective: To assess the efficacy of rituximab (a chimeric monoclonal anti-CD20 antibody, RTX) in patients with 3 different rheumatic diseases: systemic lupus erythematodes (SLE), granulomatosis with polyangiitis (GPA, Wegener granulomatosis), scleroderma/polymyositis overlap syndrome. Methods: This is a retrospective study of case series of patients and the effects of RTX on clinical, serological and immunological parameters. Therefore we analysed data from 21 patients who had been treate...

  17. Chimerism induction by nonmyeloablactive preconditioning and bone marrow infusion in rat small bowel transplantation

    Directory of Open Access Journals (Sweden)

    Bakonyi Neto Alexandre

    2003-01-01

    Full Text Available In our previous work we demonstrated that the use of donor specific bone marrow infusions ( DSBMI after small bowel transplantation did not improve the graft survival after a short course of immunossupression. PURPOSE: In the current study, we evaluated whether recipient preconditioning with different regimens of radiation combined with DSBMI may enhance small bowel allograft survival with minimum recipient morbidity. METHODS: Heterotopic small bowel transplantation (SBTx was performed with Lewis rats as recipients and DA rats as donors, which were immunossupressed with a short course of tacrolimus (FK 506 at 1mg/Kg/day for 5 days and distributed in 4 groups: group 1 (n= 4 without both irradiation and DSBMI; Groups 2 (n= 6, 3 (n= 9 and 4 (n= 6 received 100 x 10(6 DSBM cells at the time of the transplant. Groups 3 and 4 were irradiated with 250 and 400 rd respectively. Animals were examined daily for clinical signs of rejection or GVHD. Blood samples were taken weekly for chimeric studies by FC and intestinal biopsies were performed every 2 weeks. RESULTS: Animals in G1 and G2 had minimal rejection at day 15 after SBTx while GVHD was clinically and histologically characterized in G 3 and G 4. Total chimerism and T-cell chimerism was higher in irradiated groups when compared to non-irradiated groups. With exception of G1 and 2 where rejection was the cause of death, all animals in G3 and 4 died of GVHD. CONCLUSION:We concluded that low cytoreductive of irradiation can successfully decrease the graft rejection but not prevent the occurrence of GVHD.

  18. Design and Construction of Chimeric VP8-S2 Antigen for Bovine Rotavirus and Bovine Coronavirus

    Science.gov (United States)

    Nasiri, Khadijeh; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza; Zibaee, Saeed

    2016-01-01

    Purpose: Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. Rotavirus VP8 subunit is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response. Methods: In the present study, several prediction programs were used to predict B and T-cells epitopes, secondary and tertiary structures, antigenicity ability and enzymatic degradation sites. Finally, a chimeric antigen was designed using computational techniques. The chimeric VP8-S2 antigen was constructed. It was cloned and sub-cloned into pGH and pET32a(+) expression vector. The recombinant pET32a(+)-VP8-S2 vector was transferred into E.oli BL21CodonPlus (DE3) as expression host. The recombinant VP8-S2 protein was purified by Ni-NTA chromatography column. Results: The results of colony PCR, enzyme digestion and sequencing showed that the VP8-S2 chimeric antigen has been successfully cloned and sub-cloned into pGH and pET32a(+).The results showed that E.coli was able to express VP8-S2 protein appropriately. This protein was expressed by induction of IPTG at concentration of 1mM and it was confirmed by Ni–NTA column, dot-blotting analysis and SDS-PAGE electrophoresis. Conclusion: The results of this study showed that E.coli can be used as an appropriate host to produce the recombinant VP8-S2 protein. This recombinant protein may be suitable to investigate to produce immunoglobulin, recombinant vaccine and diagnostic kit in future studies after it passes biological activity tests in vivo in animal model and or other suitable procedure. PMID:27123423

  19. Prokaryotic expression and renaturation of engineering chimeric Fab antibody against human hepatoma

    Institute of Scientific and Technical Information of China (English)

    Jin-Liang Xing; Xiang-Min Yang; Xi-Ying Yao; Fei Song; Zhi-Nan Chen

    2004-01-01

    AIM: To express chimeric Fd (cFd) and chimeric light chain (cL) in E.coli respectively and refold them into chimeric Fab (cFab) antibody.METHODS: cFd and cL genes were respectively inserted into the prokaryotic expression vector pET32a to construct recombinant vectors pET32a/cFd and pET32a/cL. Then,the competent E. colicells were transformed by the recombinant vectors and induced by IPTG. Moreover, a large quantity of cFd and cL expression products were prepared and mixed with equal molar to refold into cFab by gradient dialysis. The refolded products were identified and analyzed by sodium SDS-PAGE, Western blotting,ELISA and HPLC.RESULTS: High efficient prokaryotic expressions of both cFd and cL in the form of non-fusion protein were obtained with the expression levels of 28.3% and 32.3% of total bacteria proteins, respectively. Their relative molecular masses were all 24 ku or so, and both of them mainly existed in the form of inclusion bodies. In addition, cFd and cL were successfully refolded into cFab by gradient dialysis, with about 59.45% of recovery when the starting total protein concentration was 100 μg/mL. The renatured cFab could specifically bind to related antigen with high affinity.CONCLUSION: The cFab antibody against human hepatoma was highly and efficiently expressed and refolded, which laid a solid foundation for studying its application in the treatment of hepatoma.

  20. The chimeric VirA-tar receptor protein is locked into a highly responsive state.

    OpenAIRE

    Turk, S C; van Lange, R P; Sonneveld, E; Hooykaas, P J

    1993-01-01

    The wild-type VirA protein is known to be responsive not only to phenolic compounds but also to sugars via the ChvE protein (G. A. Cangelosi, R. G. Ankenbauer, and E. W. Nester, Proc. Natl. Acad. Sci. USA 87:6708-6712, 1990, and N. Shimoda, A. Toyoda-Yamamoto, J. Nagamine, S. Usami, M. Katayama, Y. Sakagami, and Y. Machida, Proc. Natl. Acad. Sci. USA 87:6684-6688, 1990). It is shown here that the mutant VirA(Ser-44, Arg-45) protein and the chimeric VirA-Tar protein are no longer responsive to...

  1. Construction of chimeric enzymes out of maize endosperm branching enzymes I and II: activity and properties.

    Science.gov (United States)

    Kuriki, T; Stewart, D C; Preiss, J

    1997-11-14

    Branching enzyme I and II isoforms from maize endosperm (mBE I and mBE II, respectively) have quite different properties, and to elucidate the domain(s) that determines the differences, chimeric genes consisting of part mBE I and part mBE II were constructed. When expressed under the control of the T7 promoter in Escherichia coli, several of the chimeric enzymes were inactive. The only fully active chimeric enzyme was mBE II-I BspHI, in which the carboxyl-terminal part of mBE II was exchanged for that of mBE I at a BspHI restriction site and was purified to homogeneity and characterized. Another chimeric enzyme, mBE I-II HindIII, in which the amino-terminal end of mBE II was replaced with that of mBE I, had very little activity and was only partially characterized. The purified mBE II-I BspHI exhibited higher activity than wild-type mBE I and mBE II when assayed by the phosphorylase a stimulation assay. mBE II-I BspHI had substrate specificity (preference for amylose rather than amylopectin) and catalytic capacity similar to mBE I, despite the fact that only the carboxyl terminus was from mBE I, suggesting that the carboxyl terminus may be involved in determining substrate specificity and catalytic capacity. In chain transfer experiments, mBE II-I BspHI transferred more short chains (with a degree of polymerization of around 6) in a fashion similar to mBE II. In contrast, mBE I-II HindIII transferred more long chains (with a degree of polymerization of around 11-12), similar to mBE I, suggesting that the amino terminus of mBEs may play a role in the size of oligosaccharide chain transferred. This study challenges the notion that the catalytic centers for branching enzymes are exclusively located in the central portion of the enzyme; it suggests instead that the amino and carboxyl termini may also be involved in determining substrate preference, catalytic capacity, and chain length transfer.

  2. Chimerism in a child with severe combined immunodeficiency: a case report.

    Science.gov (United States)

    Aureli, Anna; Piancatelli, Daniela; Monaco, Palmina I; Ozzella, Giuseppina; Canossi, Angelica; Piazza, Antonina; Isacchi, Giancarlo; Caniglia, Maurizio; Adorno, Domenico

    2006-09-01

    Severe combined immunodeficiency (SCID) represents a group of rare, sometimes fatal, congenital disorders in which there is a combined absence of T-lymphocyte and B-lymphocyte function. Children with SCID die within two years of age, if untreated. The effective treatment for SCID is a hematopoietic stem cell transplantation (HSCT). It has been repeatedly described that in peripheral blood of infants with SCID maternal T cells can be found. Here we report a case of blood chimerism in a one-year-old boy with SCID.

  3. Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression

    OpenAIRE

    Yuri Tanaka; Yoshimi Oshima; Tomomichi Yamamura; Masao Sugiyama; Nobutaka Mitsuda; Norihiro Ohtsubo; Masaru Ohme-Takagi; Teruhiko Terakawa

    2013-01-01

    Cyclamen persicum (cyclamen) is a commercially valuable, winter-blooming perennial plant. We cloned two cyclamen orthologues of AGAMOUS (AG), CpAG1 and CpAG2, which are mainly expressed in the stamen and carpel, respectively. Cyclamen flowers have 5 petals, but expression of a chimeric repressor of CpAG1 (CpAG1-SRDX) caused stamens to convert into petals, resulting in a flower with 10 petals. By contrast, CpAG2-SRDX only caused incomplete formation of stamens and carpels. Expression in Arabid...

  4. Chimeric antigen receptor T cell therapy: 25years in the making.

    Science.gov (United States)

    Gill, Saar; Maus, Marcela V; Porter, David L

    2016-05-01

    Chimeric antigen receptor (CAR) T cell therapy of cancer is generating enormous enthusiasm. Twenty-five years after the concept was first proposed, major advances in molecular biology, virology, and good manufacturing practices (GMP)-grade cell production have transformed antibody-T cell chimeras from a scientific curiosity to a fact of life for academic cellular immunotherapy researchers and, increasingly, for patients. In this review, we explain the preclinical concept, outline how it has been translated to the clinic, and draw lessons from the first years of CAR T cell therapy for the practicing clinician. PMID:26574053

  5. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae: effects of insert position and host background

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, B; Pallesen, L; Jensen, LB;

    1997-01-01

    with respect to host background in three different Escherichia coli strains, i.e. an isogenic set of K-12 strains, differing in the presence of an indigenous fim gene cluster, as well as a wild-type isolate. Immunization of rabbits with purified chimeric fimbriae resulted in serum which specifically recognized......The potential of the major structural protein of type 1 fimbriae as a display system for heterologous sequences was tested. As a reporter-epitope, a heterologous sequence mimicking a neutralizing epitope of the cholera toxin B chain was inserted, in one or two copies, into four different positions....... Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...

  6. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    Full Text Available BACKGROUND: Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown. METHODOLOGY/PRINCIPAL FINDINGS: The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall, based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies. CONCLUSIONS/SIGNIFICANCE: While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection.

  7. RECOMBINANT ANTI-TENASCIN ANTIBODY CONTRUCTS

    International Nuclear Information System (INIS)

    The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploit our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr ?-particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti

  8. Recombinant anti-tenascin antibody constructs

    Energy Technology Data Exchange (ETDEWEB)

    ZALUTSKY, MICHAEL R

    2006-08-29

    The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploit our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr -particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti

  9. Development of GR/MR Chimeric Receptors and Their Response to Steroid Hormones

    Institute of Scientific and Technical Information of China (English)

    Huang Qiman; Yang Qunying; Elisabeth Martinez; Guo Sandui

    2000-01-01

    We have established an effective and reliable technique of developing GR/MR chimeric receptors by DNA homologous recombination. To develop the method we transformed several different E. coli strains with a linearized plasmid containing full length of mGR(mouse GR) and hormone binding domain(HBD) of rMR(rat MR), the linear DNA undergoes recombination due to the homology of the mGR and the rMR and recircularize , and propagation in E. coli. PCR was performed to screen correct construction in which fusion between GR and MR took place. The constructs were digested with appropriate restriction endonucleases to test probable fusion sites of GR and HBD of MR. Precise fusion sites of GR and MR for constructs AB1157 # 2 , AB1157 # 18, AB 1157 # 22, AB1157 # 32, CMK603 # 6 were verified by DNA sequencing. Trans fection of COS- 7 cells with the constructs and subsequent treatment of transfected COS-7 cells with steroid hormones were carried out, the results showed that the constructs gave response to tested hormones. The study suggested that the GR/MR chimeric receptors can give rise to fusion proteins and their interactive function between hormone and receptor.

  10. Inter-specific coral chimerism: genetically distinct multicellular structures associated with tissue loss in Montipora capitata.

    Directory of Open Access Journals (Sweden)

    Thierry M Work

    Full Text Available Montipora white syndrome (MWS results in tissue-loss that is often lethal to Montipora capitata, a major reef building coral that is abundant and dominant in the Hawai'ian Archipelago. Within some MWS-affected colonies in Kane'ohe Bay, Oahu, Hawai'i, we saw unusual motile multicellular structures within gastrovascular canals (hereafter referred to as invasive gastrovascular multicellular structure-IGMS that were associated with thinning and fragmentation of the basal body wall. IGMS were in significantly greater densities in coral fragments manifesting tissue-loss compared to paired normal fragments. Mesenterial filaments from these colonies yielded typical M. capitata mitochondrial haplotypes (CO1, CR, while IGMS from the same colony consistently yielded distinct haplotypes previously only found in a different Montipora species (Montipora flabellata. Protein profiles showed consistent differences between paired mesenterial filaments and IGMS from the same colonies as did seven microsatellite loci that also exhibited an excess of alleles per locus inconsistent with a single diploid organism. We hypothesize that IGMS are a parasitic cellular lineage resulting from the chimeric fusion between M. capitata and M. flabellata larvae followed by morphological reabsorption of M. flabellata and subsequent formation of cell-lineage parasites. We term this disease Montiporaiasis. Although intra-specific chimerism is common in colonial animals, this is the first suspected inter-specific example and the first associated with tissue loss.

  11. Protection of Mice from Lethal Endotoxemia by Chimeric Human BPI-Fcγ1 Gene Delivery

    Institute of Scientific and Technical Information of China (English)

    Chen Li; Jing Li; Zhe Lv; Xinghua Guo; Qinghua Chen; Qingli Kong; Yunqing An

    2006-01-01

    To evaluate the potentiality of applying gene therapy to endotoxemia in high-risk patients, we investigated the effects of transferring an adeno-associated virus serotype 2 (AAV2)-mediated BPI-Fcγ1 gene on protecting mice from challenge of lethal endotoxin. The chimeric BPI-Fcγ1 gene consists of two parts, one encods functional N-terminus (1 to 199 amino acidic residues) of human BPI, which is a bactericidal/permeability-increasing protein,and the other encodes Fc segment of human immunoglobulin G1 (Fcγ1). Our results indicated that the target protein could be expressed and secreted into the serum of the gene-transferred mice. After lethal endotoxin challenge, the levels of endotoxin and TNF-α in the gene-transferred mice were decreased. The survival rate of the BPI-Fcγ1 gene-transferred mice was markedly increased. Our data suggest that AAV2-mediated chimeric BPI-Fcγ1 gene delivery can potentially be used clinically for the protection and treatment of endotoxemia and endotoxic shock in high-risk individuals.

  12. Chimeric piggyBac transposases for genomic targeting in human cells.

    Science.gov (United States)

    Owens, Jesse B; Urschitz, Johann; Stoytchev, Ilko; Dang, Nong C; Stoytcheva, Zoia; Belcaid, Mahdi; Maragathavally, Kommineni J; Coates, Craig J; Segal, David J; Moisyadi, Stefan

    2012-08-01

    Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy. PMID:22492708

  13. Report of a chimeric origin of transposable elements in a bovine-coding gene.

    Science.gov (United States)

    Almeida, L M; Amaral, M E J; Silva, I T; Silva, W A; Riggs, P K; Carareto, C M

    2008-02-01

    Despite the wide distribution of transposable elements (TEs) in mammalian genomes, part of their evolutionary significance remains to be discovered. Today there is a substantial amount of evidence showing that TEs are involved in the generation of new exons in different species. In the present study, we searched 22,805 genes and reported the occurrence of TE-cassettes in coding sequences of 542 cow genes using the RepeatMasker program. Despite the significant number (542) of genes with TE insertions in exons only 14 (2.6%) of them were translated into protein, which we characterized as chimeric genes. From these chimeric genes, only the FAST kinase domains 3 (FASTKD3) gene, present on chromosome BTA 20, is a functional gene and showed evidence of the exaptation event. The genome sequence analysis showed that the last exon coding sequence of bovine FASTKD3 is approximately 85% similar to the ART2A retrotransposon sequence. In addition, comparison among FASTKD3 proteins shows that the last exon is very divergent from those of Homo sapiens, Pan troglodytes and Canis familiares. We suggest that the gene structure of bovine FASTKD3 gene could have originated by several ectopic recombinations between TE copies. Additionally, the absence of TE sequences in all other species analyzed suggests that the TE insertion is clade-specific, mainly in the ruminant lineage.

  14. EspA-Intimin chimeric protein, a candidate vaccine against Escherichia coli O157:H7.

    Directory of Open Access Journals (Sweden)

    Hamid Sedighian Rad

    2013-09-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 is an important enteric pathogen in human causing bloody or nonbloody diarrhea, which may be complicated by hemolytic uremic syndrome (HUS. Cattle are an important reservoir of EHEC. This research aims at vaccination with a divalent chimer protein composed of EspA120 and Intimin 282 and its preventive effect of EHEC O157 colonization in mice rectal epithelium.A divalent recombinant EspA-Intimin (EI protein containing EspA120 and Intimin280 attached with a linker was amplified from a trivalent construct and cloned in pET-28a (+ vector. The immunization was conducted in mice after expression and purification of the recombinant EI (rEI.Mice subcutaneously immunized with rEI, elicited significant rEI specific serum IgG antibodies and showed significantly decreased E.coli O157:H7 shedding compared to the control group.The chimeric recombinant protein induced strong humoral response as well as protection against oral challenges with live E.coli O157:H7.

  15. A Simple Methodology for Conversion of Mouse Monoclonal Antibody to Human-Mouse Chimeric Form

    Directory of Open Access Journals (Sweden)

    Vinh T. Dang

    2013-01-01

    Full Text Available Passive immunotherapy has mainly been used as a therapy against cancer and inflammatory conditions. Recent studies have shown that monoclonal antibody-(mAb- based passive immunotherapy is a promising approach to combat virus infection. Specific mouse mAbs can be routinely generated in large amounts with the use of hybridoma technology but these cannot be used for therapy in human beings due to their immunogenicity. Therefore, the development of chimeric and humanized mAbs is important for therapeutic purpose. This is facilitated by a variety of molecular techniques like recombinant DNA technology and the better understanding of the structure and function of antibody. The human-mouse chimeric forms allow detailed analysis of the mechanism of inhibition and the potential for therapeutic applications. Here, a step-by-step description of the conversion process will be described. The commercial availability of the reagents required in each step means that this experimentation can be easily set up in research laboratories.

  16. Incorporation of chimeric HIV-SIV-Env and modified HIV-Env proteins into HIV pseudovirions

    International Nuclear Information System (INIS)

    Low level incorporation of the viral glycoprotein (Env) into human immunodeficiency virus (HIV) particles is a major drawback for vaccine strategies against HIV/AIDS in which HIV particles are used as immunogen. Within this study, we have examined two strategies aimed at achieving higher levels of Env incorporation into non-infectious pseudovirions (PVs). First, we have generated chimeric HIV/SIV Env proteins containing the truncated C-terminal tail region of simian immunodeficiency virus (SIV)mac239-Env767stop, which mediates strongly increased incorporation of SIV-Env into SIV particles. In a second strategy, we have employed a truncated HIV-Env protein (Env-Tr752N750K) which we have previously demonstrated to be incorporated into HIV virions, generated in infected T-cells, to a higher level than that of Wt-HIV-Env. Although the chimeric HIV/SIV Env proteins were expressed at the cell surface and induced increased levels of cell-cell fusion in comparison to Wt-HIV-Env, they did not exhibit increased incorporation into either HIV-PVs or SIV-PVs. Only Env-Tr752N750K exhibited significantly higher (threefold) levels of incorporation into HIV-PVs, an improvement, which, although not dramatic, is worthwhile for the large-scale preparation of non-infectious PVs for vaccine studies aimed at inducing Env humoral responses

  17. The identification of a spontaneous 47, XX, +21/46, XY chimeric fetus with male genitalia

    Directory of Open Access Journals (Sweden)

    Lee Kuei-Fang

    2012-09-01

    Full Text Available Abstract Background Approximately 30 sex-chromosome discordant chimera cases have been reported to date, of which only four cases carried trisomy 21. Here, we present an additional case, an aborted fetus with a karyotype of 47,XX, +21/46,XY. Case presentation Autopsy demonstrated that this fetus was normally developed and had male genitalia. Major characteristics of Down syndrome were not observed except an enlarged gap between the first and second toes. Karyotyping of tissues cultured from the fetus revealed the same chimeric chromosomal composition detected in the amniotic fluid but with a different ratio of [47,XX,+21] to [46,XY]. Further short tandem repeat analysis indicated a double paternal contribution and single maternal contribution to the fetus, with the additional chromosome 21 in the [47,XX,+21] cell lineage originating from the paternal side. Conclusion We thus propose that this chimeric fetus was formed via the dispermic fertilization of a parthenogenetic ovum with one (Y sperm and one (X,+21 sperm.

  18. Establishment and characterization of a chimeric infectious cDNA clone of classical swine fever virus.

    Science.gov (United States)

    Zhao, T S; Xia, Y H

    2016-06-01

    Classical swine fever virus (CSFV) causes a highly contagious disease among swine that has an important economic impact worldwide. There are two important CSFV strains in China, Shimen and hog cholera lapinized virus (HCLV). Shimen strain is highly virulent while HCLV, also referred to as C-strain, is a live attenuated vaccine strain considered to be one of the most effective and safest live vaccines. In this study, a chimeric infectious cDNA clone of CSFV named pT7SM-c was engineered by replacing the E(rns) genomic region of an infectious clone of CSFV Shimen strain, pT7SM, with the same region obtained from HCLV. RNA transcripts of pT7SM-c containing an engineered EcoRI site that served as a genetic marker were directly infectious in PK15 cells. The rescued virus vT7SM-c showed similar growth kinetics and cytopathic effect with the parental virus vT7SM in the cells. The chimeric infectious cDNA clone can be used as a practical tool for further studying of the virulence, protein function and pathogenesis of CSFV through genetic manipulation. PMID:27265471

  19. Simulating aerosols over Arabian Peninsula with CHIMERE: Sensitivity to soil, surface parameters and anthropogenic emission inventories

    Science.gov (United States)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Couvidat, Florian; Menut, Laurent; Ghedira, Hosni

    2016-03-01

    A three dimensional chemistry transport model, CHIMERE, was used to simulate the aerosol optical depths (AOD) over the Arabian Peninsula desert with an offline coupling of Weather Research and Forecasting (WRF) model. The simulations were undertaken with: (i) different horizontal and vertical configurations, (ii) new datasets derived for soil/surface properties, and (iii) EDGAR-HTAP anthropogenic emissions inventories. The model performance evaluations were assessed: (i) qualitatively using MODIS (Moderate-Resolution Imaging Spectroradiometer) deep blue (DB) AOD data for the two local dust events of August 6th and 23rd (2013), and (ii) quantitatively using AERONET (Aerosol Robotic Network) AOD observations, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) aerosol extinction profiles, and AOD simulations from various forecast models. The model results were observed to be highly sensitive to erodibility and aerodynamic surface roughness length. The use of new datasets on soil erodibility, derived from the MODIS reflectance, and aerodynamic surface roughness length (z0), derived from the ERA-Interim datasets, significantly improved the simulation results. Simulations with the global EDGAR-HTAP anthropogenic emission inventories brought the simulated AOD values closer to the observations. Performance testing of the adapted model for the Arabian Peninsula domain with improved datasets showed good agreement between AERONET AOD measurements and CHIMERE simulations, where the correlation coefficient (R) is 0.6. Higher values of the correlation coefficients and slopes were observed for the dusty periods compared to the non-dusty periods.

  20. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists

    Science.gov (United States)

    Margulis, L.; Dolan, M. F.; Guerrero, R.

    2000-01-01

    We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium "Thiodendron latens." By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This "earliest branching protist" that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa.

  1. Vaccine-induced protection from infection of mice by chimeric human immunodeficiency virus type 1, EcoHIV/NL4-3.

    Science.gov (United States)

    Saini, Manisha; Hadas, Eran; Volsky, David J; Potash, Mary Jane

    2007-12-17

    EcoHIV/NL4-3 is a chimeric human immunodeficiency virus type 1 (HIV-1) that can productively infect mice. This study tests the utility of EcoHIV/NL4-3 infection to reveal protective immune responses to an HIV-1 vaccine. Immunocompetent mice were first immunized with VRC 4306 which encodes subtype B consensus sequences of gag, pol, and nef and then were infected by EcoHIV/NL4-3. Anti-Gag antibodies were sampled during immunization and infection. The extent of EcoHIV/NL4-3 infection in spleen cells and peritoneal macrophages was determined by quantitative real-time PCR (QPCR). Although antibody titres were not significantly different in control and vaccinated groups, VRC 4306 immunization induced protective responses that significantly reduced virus burden in both lymphocyte and macrophage compartments. These results indicate that EcoHIV/NL4-3 infection can be controlled by HIV-1 vaccine-induced responses, introducing a small animal model to test vaccine efficacy against HIV-1 infection.

  2. Activation of antigen-exposed iMC-DCs at the "right place" and "right time" promotes potent anti-tumor immunity.

    Science.gov (United States)

    Spencer, David M

    2012-05-01

    To better control the "licensing" of pro-Th1 dendritic cells (DCs), Spencer and colleagues have developed a synthetic ligand-inducible chimeric receptor, iMyD88/CD40 (iMC), incorporating synergistic Toll-like receptor (TLR) and costimulatory signaling elements, permitting DC regulation in vivo within the context of an immunological synapse. This novel technology results in potent anti-cancer activity.

  3. Hepatitis C virus dynamics and cellular gene expression in uPA-SCID chimeric mice with humanized livers during intravenous silibinin monotherapy.

    Science.gov (United States)

    DebRoy, S; Hiraga, N; Imamura, M; Hayes, C N; Akamatsu, S; Canini, L; Perelson, A S; Pohl, R T; Persiani, S; Uprichard, S L; Tateno, C; Dahari, H; Chayama, K

    2016-09-01

    Legalon SIL (SIL) is a chemically hydrophilized version of silibinin, an extract of milk thistle (Silybum marianum) seeds that has exhibited hepatoprotective and antiviral effectiveness against hepatitis C virus (HCV) in patients leading to viral clearance in combination with ribavirin. To elucidate the incompletely understood mode of action of SIL against HCV, mathematical modelling of HCV kinetics and human hepatocyte gene expression studies were performed in uPA-SCID-chimeric mice with humanized livers. Chronically HCV-infected mice (n = 15) were treated for 14 days with daily intravenous SIL at 469, 265 or 61.5 mg/kg. Serum HCV and human albumin (hAlb) were measured frequently, and liver HCV RNA was analysed at days 3 and 14. Microarray analysis of human hepatocyte gene expression was performed at days 0, 3 and 14 of treatment. While hAlb remained constant, a biphasic viral decline in serum was observed consisting of a rapid 1st phase followed by a second slower phase (or plateau with the two lower SIL dosings). SIL effectiveness in blocking viral production was similar among dosing groups (median ε = 77%). However, the rate of HCV-infected hepatocyte decline, δ, was dose-dependent. Intracellular HCV RNA levels correlated (r = 0.66, P = 0.01) with serum HCV RNA. Pathway analysis revealed increased anti-inflammatory and antiproliferative gene expression in human hepatocytes in SIL-treated mice. The results suggest that SIL could lead to a continuous second-phase viral decline, that is potentially viral clearance, in the absence of adaptive immune response along with increased anti-inflammatory and antiproliferative gene expression in human hepatocytes. PMID:27272497

  4. 78 FR 70955 - Prospective Grant of Exclusive Patent License: GMCSF-BclxL-Derived Chimeric Therapeutics for Use...

    Science.gov (United States)

    2013-11-27

    ...- Derived Chimeric Therapeutics for Use in Treatment of Cancer, Neutropenia, CNS Injury and Parkinson's.... Receptors for GMCSF are found on a ] variety of normal tissues, including hematopoietic stem cells, neurons... also be used in patients receiving stem cell transplantation or in ex vivo expansion of...

  5. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad A;

    2013-01-01

    Despite the preclinical success of adoptive therapy with T cells bearing chimeric nanoconstructed antigen receptors (CARs), certain limitations of this therapeutic approach such as the immunogenicity of the antigen binding domain, the emergence of tumor cell escape variants and the blocking...

  6. Development of polyclonal antibodies for detection of aflatoxigenic molds involving culture filtrate and chimeric proteins expressed in Escherichia coli.

    Science.gov (United States)

    Shapira, R; Paster, N; Menasherov, M; Eyal, O; Mett, A; Meiron, T; Kuttin, E; Salomon, R

    1997-03-01

    Polyclonal antibodies (PAb) were raised against an aflatoxigenic strain of Aspergillus parasiticus by using two different sources for antibody elicitation: (i) filtrate of a culture on which the fungus had been grown (ii) and two chimeric proteins, expressed in Escherichia coli as separate products, of the genes ver-1 and apa-2, which are involved in aflatoxin biosynthesis. The gene products were amplified by PCR, and each was cloned into the E. coli expression vector pGEX2T. Upon induction, the bacteria overexpressed 38- and 33-kDa chimeric proteins corresponding to the N-terminal domains of the genes ver-1 and apa-2, respectively. The chimeric proteins were isolated and affinity purified for use as antigens. The specificity of the raised antibodies was examined by enzyme-linked immunosorbent assay (ELISA). The PAbs raised against the culture filtrate reacted with all the species of Aspergillus and Penicillium tested but not with Fusarium species or corn gain. However, the PAbs elicited against the chimeric proteins were highly specific, showing significantly higher ELISA absorbance values (A405) against A. parasiticus and A. flavus than against the other fungi tested and the corn grain. The approach of utilizing gene products associated with aflatoxin biosynthesis for antibody production therefore appears to be feasible. Such a multiantibody system combined with the PCR technique, could provide a useful tool for the rapid, sensitive, and accurate detection of aflatoxin producers present in grains and foods. PMID:9055416

  7. Chimeric Foot-and-Mouth Disease Viruses: Evaluation of Their Efficacy as Potential Marker Vaccines in Cattle

    Science.gov (United States)

    Previous work in swine has demonstrated that full protection against Foot-and-Mouth Disease (FMD) can be achieved following vaccination with chimeric Foot-and-Mouth Disease Virus (FMDV) vaccines, whereby the VP1 G-H loop has been substituted with a non-homologous alternative. If proven to be effect...

  8. Fiber-chimeric adenoviruses expressing fibers from serotype 16 and 50 improve gene transfer to human pancreatic adenocarcinoma

    NARCIS (Netherlands)

    Kuhlmann, K.F.D.; Geer, M.A. van; Bakker, C.T.; Dekker, J.E.M.; Havenga, M.J.E.; Oude Elferink, R.P.J.; Gouma, D.J.; Bosma, P.J.; Wesseling, J.G.

    2009-01-01

    Survival of patients with pancreatic cancer is poor. Adenoviral (Ad) gene therapy employing the commonly used serotype 5 reveals limited transduction efficiency due to the low amount of coxsackie-adenovirus receptor on pancreatic cancer cells. To identify fiber-chimeric adenoviruses with improved ge

  9. The Construction of Chimeric T-Cell Receptor with Spacer Base of Modeling Study of VHH and MUC1 Interaction

    Directory of Open Access Journals (Sweden)

    Nazanin Pirooznia

    2011-01-01

    Full Text Available Adaptive cell immunotherapy with the use of chimeric receptors leads to the best and most specific response against tumors. Chimeric receptors consist of a signaling fragment, extracellular spacer, costimulating domain, and an antibody. Antibodies cause immunogenicity; therefore, VHH is a good replacement for ScFv in chimeric receptors. Since peptide sequences have an influence on chimeric receptors, the effect of peptide domains on each other's conformation were investigated. CD3Zeta, CD28, VHH and CD8α, and FcgIIα are used as signaling moieties, costimulating domain, antibody, and spacers, respectively. To investigate the influence of the ligation of spacers on the conformational structure of VHH, models of VHH were constructed. Molecular dynamics simulation was run to study the influence of the presence of spacers on the conformational changes in the binding sites of VHH. Root mean square deviation and root mean square fluctuation of critical segments in the binding site showed no noticeable differences with those in the native VHH. Results from molecular docking revealed that the presence of spacer FcgIIα causes an increasing effect on VHH with MUC1 interaction. Each of the constructs was transformed into the Jurkat E6.1. Expression analysis and evaluation of their functions were examined. The results showed good expression and function.

  10. Hypothesis: Artifacts, Including Spurious Chimeric RNAs with a Short Homologous Sequence, Caused by Consecutive Reverse Transcriptions and Endogenous Random Primers.

    Science.gov (United States)

    Peng, Zhiyu; Yuan, Chengfu; Zellmer, Lucas; Liu, Siqi; Xu, Ningzhi; Liao, D Joshua

    2015-01-01

    Recent RNA-sequencing technology and associated bioinformatics have led to identification of tens of thousands of putative human chimeric RNAs, i.e. RNAs containing sequences from two different genes, most of which are derived from neighboring genes on the same chromosome. In this essay, we redefine "two neighboring genes" as those producing individual transcripts, and point out two known mechanisms for chimeric RNA formation, i.e. transcription from a fusion gene or trans-splicing of two RNAs. By our definition, most putative RNA chimeras derived from canonically-defined neighboring genes may either be technical artifacts or be cis-splicing products of 5'- or 3'-extended RNA of either partner that is redefined herein as an unannotated gene, whereas trans-splicing events are rare in human cells. Therefore, most authentic chimeric RNAs result from fusion genes, about 1,000 of which have been identified hitherto. We propose a hypothesis of "consecutive reverse transcriptions (RTs)", i.e. another RT reaction following the previous one, for how most spurious chimeric RNAs, especially those containing a short homologous sequence, may be generated during RT, especially in RNA-sequencing wherein RNAs are fragmented. We also point out that RNA samples contain numerous RNA and DNA shreds that can serve as endogenous random primers for RT and ensuing polymerase chain reactions (PCR), creating artifacts in RT-PCR.

  11. The construction of chimeric T-Cell receptor with spacer base of modeling study of VHH and MUC1 interaction.

    Science.gov (United States)

    Pirooznia, Nazanin; Hasannia, Sadegh; Taghdir, Majid; Rahbarizadeh, Fatemeh; Eskandani, Morteza

    2011-01-01

    Adaptive cell immunotherapy with the use of chimeric receptors leads to the best and most specific response against tumors. Chimeric receptors consist of a signaling fragment, extracellular spacer, costimulating domain, and an antibody. Antibodies cause immunogenicity; therefore, VHH is a good replacement for ScFv in chimeric receptors. Since peptide sequences have an influence on chimeric receptors, the effect of peptide domains on each other's conformation were investigated. CD3Zeta, CD28, VHH and CD8α, and FcgIIα are used as signaling moieties, costimulating domain, antibody, and spacers, respectively. To investigate the influence of the ligation of spacers on the conformational structure of VHH, models of VHH were constructed. Molecular dynamics simulation was run to study the influence of the presence of spacers on the conformational changes in the binding sites of VHH. Root mean square deviation and root mean square fluctuation of critical segments in the binding site showed no noticeable differences with those in the native VHH. Results from molecular docking revealed that the presence of spacer FcgIIα causes an increasing effect on VHH with MUC1 interaction. Each of the constructs was transformed into the Jurkat E6.1. Expression analysis and evaluation of their functions were examined. The results showed good expression and function. PMID:21869862

  12. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruilin Li

    2016-04-01

    Full Text Available Human epidermal growth factor receptor 2 (HER2 is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21 is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21 that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra, markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2 and protein kinase B (Akt signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy.

  13. Immunogenicity and therapeutic effects of Ag85A/B chimeric DNA vaccine in mice infected with Mycobacterium tuberculosis.

    Science.gov (United States)

    Liang, Yan; Wu, Xueqiong; Zhang, Junxian; Xiao, Li; Yang, Yourong; Bai, Xuejuan; Yu, Qi; Li, Zhongming; Bi, Lan; Li, Ning; Wu, Xiaoli

    2012-12-01

    The situation of tuberculosis (TB) is very severe in China. New therapeutic agents or regimens to treat TB are urgently needed. In this study, Mycobacterium tuberculosis-infected mice were given immunotherapy intramuscularly with Ag85A/B chimeric DNA or saline, plasmid vector pVAX1, or Mycobacterium vaccae vaccine. The mice treated with Ag85A/B chimeric DNA showed significantly higher numbers of T cells secreting interferon-gamma (IFN-γ), more IFN-γ in splenocyte culture supernatant, more Th1 and Tc1 cells, and higher ratios of Th1/Th2 and Tc1/Tc2 cells in whole blood, indicating a predominant Th1 immune response to treatment. Infected mice treated with doses of 100 μg Ag85A/B chimeric DNA had an extended time until death of 50% of the animals that was markedly longer than the saline and vector control groups, and the death rate at 1 month after the last dose was lower than that in the other groups. Compared with the saline group, 100 μg Ag85A/B chimeric DNA and 100 μg Ag85A DNA reduced the pulmonary bacterial loads by 0.79 and 0.45 logs, and the liver bacterial loads by 0.52 and 0.50 logs, respectively. Pathological changes in the lungs were less, and the lesions were more limited. These results show that Ag85A/B chimeric DNA was effective for the treatment of TB, significantly increasing the cellular immune response and inhibiting the growth of M. tuberculosis.

  14. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF activity.

    Directory of Open Access Journals (Sweden)

    Gözde Isik

    Full Text Available HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs that target the envelope glycoprotein complex (Env. An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  15. Application of functional genomics to the chimeric mouse model of HCV infection: optimization of microarray protocols and genomics analysis

    Directory of Open Access Journals (Sweden)

    Smith Maria W

    2006-05-01

    Full Text Available Abstract Background Many model systems of human viral disease involve human-mouse chimeric tissue. One such system is the recently developed SCID-beige/Alb-uPA mouse model of hepatitis C virus (HCV infection which involves a human-mouse chimeric liver. The use of functional genomics to study HCV infection in these chimeric tissues is complicated by the potential cross-hybridization of mouse mRNA on human oligonucleotide microarrays. To identify genes affected by mouse liver mRNA hybridization, mRNA from identical human liver samples labeled with either Cy3 or Cy5 was compared in the presence and absence of known amounts of mouse liver mRNA labeled in only one dye. Results The results indicate that hybridization of mouse mRNA to the corresponding human gene probe on Agilent Human 22 K oligonucleotide microarray does occur. The number of genes affected by such cross-hybridization was subsequently reduced to approximately 300 genes both by increasing the hybridization temperature and using liver samples which contain at least 80% human tissue. In addition, Real Time quantitative RT-PCR using human specific probes was shown to be a valid method to verify the expression level in human cells of known cross-hybridizing genes. Conclusion The identification of genes affected by cross-hybridization of mouse liver RNA on human oligonucleotide microarrays makes it feasible to use functional genomics approaches to study the chimeric SCID-beige/Alb-uPA mouse model of HCV infection. This approach used to study cross-species hybridization on oligonucleotide microarrays can be adapted to other chimeric systems of viral disease to facilitate selective analysis of human gene expression.

  16. PRODUCTION IN PICHIA PASTORIS AND CHARACTERIZATION OF GENETIC ENGINEERED CHIMERIC HBV/HEV VIRUS-LIKE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Hong-zhao Li; Hong-ying Gang; Qiang-ming Sun; Xiao Liu; Yan-bing Ma; Mao-sheng Sun; Chang-bai Dai

    2004-01-01

    Objective To investigate the presentation of a neutralization epitope-containing peptide antigen of hepatitis E virus (HEV)on chimeric virus-like particles (VLPs) of hepatitis B surface antigen (HBsAg).Methods The gene fragment corresponding to amino acids (aa) 551-607 (HEnAg) of HEV capsid protein, which contains the only neutralization epitope identified to date, was fused via a synthetic glycine linker in frame with the gene of HBsAg.The resulted fusion gene was then integrated through transformation into the genome of Pichiapastoris under the control of a methanol-induced alcohol oxidase 1 (A OX 1) promoter and expressed intracellularly. The expression products in the soluble cell extracts were characterized by Western blot, ELISA, CsCl density gradient analysis, and electron microscopic visualization.Results The novel fusion protein incorporating HBsAg and the neutralization epitope-containing HEnAg was expressed successfully in Pichiapastoris with an expected molecular weight of approximately 32 kD. It was found to possess the ability to assemble into chimeric HBV/HEV VLPs with immunological, physical and morphological characteristics akin to HBsAg particles. Not only did the chimeric VLPs show high activity levels in a HBsAg particle-specific ELISA but they were also strongly immunoreactive with hepatitis E (HE) positive human serum in a HEV specific ELISA, indicating that HEnAg peptide fragments were exposed on VLP surfaces and would be expected to be readily accessible by cells and molecules of the immune system. Similarity between chimeric VLPs to highly immunogenic HBsAg particles may confer good immunogenicity on surface-displayed HEnAg.Conclusion The chimeric HBV/HEV VLPs produced in this study may have potential to be a recombinant HBV/HEV bivalent vaccine candidate.

  17. MHC-mismatched mixed chimerism augments thymic regulatory T-cell production and prevents relapse of EAE in mice.

    Science.gov (United States)

    Wu, Limin; Li, Nainong; Zhang, Mingfeng; Xue, Sheng-Li; Cassady, Kaniel; Lin, Qing; Riggs, Arthur D; Zeng, Defu

    2015-12-29

    Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system with demyelination, axon damage, and paralysis. Induction of mixed chimerism with allogeneic donors has been shown to not cause graft-versus-host disease (GVHD) in animal models and humans. We have reported that induction of MHC-mismatched mixed chimerism can cure autoimmunity in autoimmune NOD mice, but this approach has not yet been tested in animal models of MS, such as experimental autoimmune encephalomyelitis (EAE). Here, we report that MHC-mismatched mixed chimerism with C57BL/6 (H-2(b)) donor in SJL/J (H-2(s)) EAE recipients eliminates clinical symptoms and prevents relapse. This cure is demonstrated by not only disappearance of clinical signs but also reversal of autoimmunity; elimination of infiltrating T, B, and macrophage cells in the spinal cord; and regeneration of myelin sheath. The reversal of autoimmunity is associated with a marked reduction of autoreactivity of CD4(+) T cells and significant increase in the percentage of Foxp3(+) Treg among host-type CD4(+) T cells in the spleen and lymph nodes. The latter is associated with a marked reduction of the percentage of host-type CD4(+)CD8(+) thymocytes and an increase of Treg percentage among the CD4(+)CD8(+) and CD4(+)CD8(-) thymocytes. Thymectomy leads to loss of prevention of EAE relapse by induction of mixed chimerism, although there is a dramatic expansion of host-type Treg cells in the lymph nodes. These results indicate that induction of MHC-mismatched mixed chimerism can restore thymic negative selection of autoreactive CD4(+) T cells, augment production of Foxp3(+) Treg, and cure EAE. PMID:26647186

  18. An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus

    International Nuclear Information System (INIS)

    A chimeric Pestivirus was constructed using an infectious cDNA clone of bovine viral diarrhea virus (BVDV) [J. Virol. 70 (1996) 8606]. After deletion of the envelope protein E2-encoding region, the respective sequence of classical swine fever virus (CSFV) strain Alfort 187 was inserted in-frame resulting in plasmid pA/CP7E2alf. After transfection of in vitro-transcribed CP7E2alf RNA, autonomous replication of chimeric RNA in bovine and porcine cell cultures was observed. Efficient growth of chimeric CP7E2alf virus, however, could only be demonstrated on porcine cells, and in contrast to the parental BVDV strain CP7, CP7E2alf only inefficiently infected and propagated in bovine cells. The virulence, immunogenicity, and 'marker vaccine' properties of the generated chimeric CP7E2alf virus were determined in an animal experiment using 27 pigs. After intramuscular inoculation of 1 x 107 TCID50, CP7E2alf proved to be completely avirulent, and neither viremia nor virus transmission to contact animals was observed; however, CSFV-specific neutralizing antibodies were detected from day 11 after inoculation. In addition, sera from all animals reacted positive in an E2-specific CSFV-antibody ELISA, but were negative for CSFV-ERNS-specific antibodies as determined with a CSFV marker ELISA. After challenge infection with highly virulent CSFV strain Eystrup, pigs immunized with CP7E2alf were fully protected against clinical signs of CSFV infection, viremia, and shedding of challenge virus, and almost all animals scored positive in a CSFV marker ELISA. From our results, we conclude that chimeric CP7E2alf may not only serve as a tool for a better understanding of Pestivirus attachment, entry, and assembly, but also represents an innocuous and efficacious modified live CSFV 'marker vaccine'

  19. Efficient, trans-complementing packaging systems for chimeric, pseudoinfectious dengue 2/yellow fever viruses

    International Nuclear Information System (INIS)

    In our previous studies, we have stated to build a new strategy for developing defective, pseudoinfectious flaviviruses (PIVs) and applying them as a new type of vaccine candidates. PIVs combined the efficiency of live vaccines with the safety of inactivated or subunit vaccines. The results of the present work demonstrate further development of chimeric PIVs encoding dengue virus 2 (DEN2V) glycoproteins and yellow fever virus (YFV)-derived replicative machinery as potential vaccine candidates. The newly designed PIVs have synergistically functioning mutations in the prM and NS2A proteins, which abolish processing of the latter proteins and make the defective viruses capable of producing either only noninfectious, immature and/or subviral DEN2V particles. The PIV genomes can be packaged to high titers into infectious virions in vitro using the NS1-deficient YFV helper RNAs, and both PIVs and helpers can then be passaged as two-component genome viruses at an escalating scale.

  20. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    Directory of Open Access Journals (Sweden)

    Marc Cartellieri

    2010-01-01

    Full Text Available CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs. First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells.

  1. Detecting chimeric 5′/3′UTRs with cross-chromosomal splicing by bioinformatics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhihua; ZHANG Yong; SHI Baochen; DENG Wei; ZHAO Yi; CHEN Runsheng

    2004-01-01

    The 5′/3′ UTRs of mRNA are crucial in translational regulation, and several serious diseases are believed to be associated with abnormal splicing of these parts of the mRNA sequence. In this work a novel method which uses sequence alignment database searching for detecting chimeric 5′3′ UTRs with cross-chromosomal splicing is reported. Eight highly credible instances of cross-chromosomal splicing have been found using this method, representing additional confirmation of the existence of cross-chromosomal splicing events provided by bioinformatics tools. Since no conserved motif has been found in any of the eight instances, and at the same time current prediction algorithms produce only trivial secondary structures at the "splicing sites", it is not possible to identify any specific signal leading to the splicing.

  2. Discovery of mitochondrial chimeric-gene associated with cytoplasmic male sterility of HL-rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mitochondrial genome libraries of HL-type sterile line(A) and maintainer line(B) have been constructed.Mitochondrial gene, atp6, was used to screen libraries, due to the different Southern and Northern blot results between sterile and maintainer line. Sequencing analysis of positive clones proved that there were two copies of atp6 gene in sterile line and only one in maintainer line. One copy of atpt6 in sterile line was same to that in maintainer line; the other showed different flanking sequence from the 49th nucleotide downstream of the termination codon of atp6 gene. A new chimeric gene, orfH79, was found in the region. OrfH79 had homology to mitochondrial gene coxⅡ and orfl07, and was special to HL-sterile cytoplasm.``

  3. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection

    Science.gov (United States)

    Andrew Mackay, J.; Chen, Mingnan; McDaniel, Jonathan R.; Liu, Wenge; Simnick, Andrew J.; Chilkoti, Ashutosh

    2009-12-01

    New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

  4. Giant trochanteric pressure sore: Use of a pedicled chimeric perforator flap for cover

    Directory of Open Access Journals (Sweden)

    Mehrotra Sandeep

    2009-01-01

    Full Text Available Pressure sores are increasing in frequency commensurate with an ageing population with multi-system disorders and trauma. Numerous classic options are described for providing stable wound cover. With the burgeoning knowledge on perforator anatomy, recent approaches focus on the use of perforator-based flaps in bedsore surgery. A giant neglected trochanteric pressure sore in a paraplegic is presented. Since conventional options of reconstruction appeared remote, the massive ulcer was successfully managed by a chimeric perforator-based flap. The combined muscle and fasciocutaneous flaps were raised as separate paddles based on the anterolateral thigh perforator branches and provided stable cover without complications. Perforators allow versatility in managing complex wounds without compromising on established principles.

  5. Stromal Vascular Fraction Transplantation as an Alternative Therapy for Ischemic Heart Failure: Anti-inflammatory Role

    Directory of Open Access Journals (Sweden)

    Lin Xue

    2011-03-01

    Full Text Available Abstract Background The aims of this study were: (1 to show the feasibility of using adipose-derived stromal vascular fraction (SVF as an alternative to bone marrow mono nuclear cell (BM-MNC for cell transplantation into chronic ischemic myocardium; and (2 to explore underlying mechanisms with focus on anti-inflammation role of engrafted SVF and BM-MNC post chronic myocardial infarction (MI against left ventricular (LV remodelling and cardiac dysfunction. Methods Four weeks after left anterior descending coronary artery ligation, 32 Male Lewis rats with moderate MI were divided into 3 groups. SVF group (n = 12 had SVF cell transplantation (6 × 106 cells. BM-MNC group (n = 12 received BM-MNCs (6 × 106 and the control (n = 10 had culture medium. At 4 weeks, after the final echocardiography, histological sections were stained with Styrus red and immunohistochemical staining was performed for α-smooth muscle actin, von Willebrand factor, CD3, CD8 and CD20. Results At 4 weeks, in SVF and BM-MNC groups, LV diastolic dimension and LV systolic dimension were smaller and fractional shortening was increased in echocardiography, compared to control group. Histology revealed highest vascular density, CD3+ and CD20+ cells in SVF transplanted group. SVF transplantation decreased myocardial mRNA expression of inflammatory cytokines TNF-α, IL-6, MMP-1, TIMP-1 and inhibited collagen deposition. Conclusions Transplantation of adipose derived SVF cells might be a useful therapeutic option for angiogenesis in chronic ischemic heart disease. Anti-inflammation role for SVF and BM transplantation might partly benefit for the cardioprotective effect for chronic ischemic myocardium.

  6. [Research of Human-mouse Chimeric Antibodies Against Ebola Virus Nucleoprotein].

    Science.gov (United States)

    Zhou, Rongping; Sun, Lina; Liu, Yang; Wu, Wei; Li, Chuan; Liang, Mifang; Qiu, Peihong

    2016-01-01

    The Ebola virus is highly infectious and can result in death in ≤ 90% of infected subjects. Detection of the Ebola virus and diagnosis of infection are extremely important for epidemic control. Presently, Chinese laboratories detect the nucleic acids of the Ebola virus by real-time reverse transcription-polymerase chain reaction (RT-PCR). However, such detection takes a relatively long time and necessitates skilled personnel and expensive equipment. Enzyme-linked immunosorbent assay (ELISA) of serum is simple, easy to operate, and can be used to ascertain if a patient is infected with the Ebola virus as well as the degree of infection. Hence, ELISA can be used in epidemiological investigations and is a strong complement to detection of nucleic acids. Cases of Ebola hemorrhagic fever have not been documented in China, so quality-control material for positive serology is needed. Construction and expression of human-mouse chimeric antibodies against the nucleoprotein of the Ebola virus was carried out. Genes encoding variable heavy (VH) and variable light (VL) chains were extracted and amplified from murine hybridoma cells. Genes encoding the VH and VL chains of monoclonal antibodies were amplified by RT-PCR. According to sequence analyses, a primer was designed to amplify functional sequences relative to VH and VL chain. The eukaryotic expression vector HL51-14 carrying some human antibody heavy chain- and light chain-constant regions was used. IgG antibodies were obtained by transient transfection of 293T cells. Subsequently, immunological detection and immunological identification were identified by ELISA, immunofluorescence assay, and western blotting. These results showed that we constructed and purified two human- mouse chimeric antibodies.

  7. Comparing regional modeling (CHIMERE) and satellite observations of aerosols (PARASOL): Methodology and case study over Mexico

    Science.gov (United States)

    Stromatas, Stavros

    2010-05-01

    S. Stromatas (1), S. Turquety (1), H. Chepfer (1), L. Menut (1), B. Bessagnet (2), JC Pere (2), D. Tanré (3) . (1) Laboratoire de Météorologie Dynamique, CNRS/IPSL, École Polytechnique, 91128 Palaiseau Cedex, France, (2) INERIS, Institut National de l'Environnement Industriel et des Risques, Parc technologique ALATA, 60550 Verneuil en Halatte, FRANCE, (3) Laboratoire d'Optique Atmosphérique/CNRS Univ. des Sciences et Tech. de Lille, 59650 - Villeneuve d'Ascq, France. Atmospheric suspended particles (aerosols) have significant radiative and environmental impacts, affecting human health, visibility and climate. Therefore, they are regulated by air quality standards worldwide, and monitored by regional observation networks. Satellite observations vastly improve the horizontal and temporal coverage, providing daily distributions. Aerosols are currently estimated using aerosol optical depth (AOD) retrievals, a quantitative measure of the extinction of solar radiation by aerosol scattering and absorption between the point of observation and the top of the atmosphere. Even though remarkable progresses in aerosol modeling by chemistry-transport models (CTM) and measurement experiments have been made in recent years, there is still a significant divergence between the modeled and observed results. However, AOD retrievals from satellites remains a highly challenging task mostly because it depends on a variety of different parameters such as cloud contamination, surface reflectance contributions and a priori assumptions on aerosol types, each one of them incorporating its own difficulties. Therefore, comparisons between CTM and observations are often difficult to interpret. In this presentation, we will discuss comparisons between regional modeling (CHIMERE CTM) over Mexico and satellite observations obtained by the POLDER instrument embarked on PARASOL micro-satellite. After a comparison of the model AOD with the retrieved L2 AOD, we will present an alternative

  8. Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway

    Directory of Open Access Journals (Sweden)

    Ye Xiaoting

    2012-09-01

    Full Text Available Abstract Background The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed. Results A chimeric Embden-Meyerhof (EM pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31. Conclusions In this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as “synthetic metabolic engineering”. Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be

  9. Solitary fibrous tumors: loss of chimeric protein expression and genomic instability mark dedifferentiation.

    Science.gov (United States)

    Dagrada, Gian P; Spagnuolo, Rosalin D; Mauro, Valentina; Tamborini, Elena; Cesana, Luca; Gronchi, Alessandro; Stacchiotti, Silvia; Pierotti, Marco A; Negri, Tiziana; Pilotti, Silvana

    2015-08-01

    Solitary fibrous tumors, which are characterized by their broad morphological spectrum and unpredictable behavior, are rare mesenchymal neoplasias that are currently divided into three main variants that have the NAB2-STAT6 gene fusion as their unifying molecular lesion: usual, malignant and dedifferentiated solitary fibrous tumors. The aims of this study were to validate molecular and immunohistochemical/biochemical approaches to diagnose the range of solitary fibrous tumors by focusing on the dedifferentiated variant, and to reveal the genetic events associated with dedifferentiation by integrating the findings of array comparative genomic hybridization. We studied 29 usual, malignant and dedifferentiated solitary fibrous tumors from 24 patients (including paired samples from five patients whose tumors progressed to the dedifferentiated form) by means of STAT6 immunohistochemistry and (when frozen material was available) reverse-transcriptase polymerase chain reaction and biochemistry. In addition, the array comparative genomic hybridization findings were used to profile 12 tumors from nine patients. The NAB2/STAT6 fusion was detected in all of the tumors, but immunohistochemistry and western blotting indicated that chimeric protein expression was atypical or absent in 9 out of 11 dedifferentiated tumors. The comparative genomic hybridization results revealed that the usual and malignant solitary fibrous tumors had a simple profile, whereas the genome of the dedifferentiated tumors was complex and unstable, and suggested that 13q and 17p deletions and TP53 mutations may be present in malignant lesions before the full expression of a dedifferentiated phenotype. Solitary fibrous tumor dedifferentiation is associated with the loss of chimeric oncoprotein expression, genomic instability, and cell decommitment and reprogramming. The assessment of dedifferentiated solitary fibrous tumors is based on the presence of the fusion transcripts and, in principle, negative

  10. Fibrinogen interaction of CHO cells expressing chimeric αIIb/αvβ3 integrin

    Institute of Scientific and Technical Information of China (English)

    Juan-juan CHEN; Xiao-yu SU; Xiao-dong XI; Li-ping LIN; Jian DING; He LU

    2008-01-01

    Aim: The molecular mechanisms of the affinity regulation of αvβ3 integrin are important in tumor development, wound repairing, and angiogenesis. It has been established that the cytoplasmic domains of αvβ3 integrin play an important role in integrin-ligand affinity regulation. However, the relationship of structure-func-tion within these domains remains unclear. Methods: The extracellular and trans-membrane domain of αⅡb was fused to the αv integrin cytoplasmic domain, and the chimeric α subunit was coexpressed in Chinese hamster ovary (CHO) cells with the wild-type β3 subunit or with 3 mutant 133 sequences bearing truncations at the positions of T741, Y747, and F754, respectively. The CHO cells expressing these recombinant integrins were tested for soluble fibrinogen binding and the cell adhesion and spreading on immobilized fibrinogen. Results: All 4 types of integrins bound soluble fibrinogen in the absence of agonist stimulation, and only the cells expressing the chimeric α subunit with the wild-type β3 subunit, but not those with truncated β3, could adhere to and spread on immobilized fibrinogen. Conclusion: The substitution αⅡb at the cytoplasmic domain with the ctv cyto-plasmic sequence rendered the extracellular αⅡbβ3 a constitutively activated con-formation for ligands without the need of "inside-out" signals. Our results also indicated that the COOH-terminal sequence of β3 might play a key role in integrin αⅡb/αvβ3-mediated cell adhesion and spreading on immobilized fibrinogen. The cells expressing αⅡb/αvβ3 have enormous potential for facilitating drug screen-ing for antagonists either to αvβ3 intracellular interactions or to αⅡbβ3 receptor functions.

  11. After anti-racism?

    OpenAIRE

    Lentin, Alana

    2008-01-01

    Abstract Anti-racism as a political discourse and a form of collective social action has long been ignored as a serious field of research. In contrast, I envision the study of anti-racism as a vital lens on both 'race' and racism. First, the heterogeneity of anti-racism is demonstrated, spanning both pro- and anti-state-based analyses of the origins of racism. Second, a parallel discourse of 'anti-anti-racism' within the radical Left reveals the reluctance of many on the Left to id...

  12. Immunotherapy: Beyond Anti-PD-1 and Anti-PD-L1 Therapies.

    Science.gov (United States)

    Antonia, Scott J; Vansteenkiste, Johan F; Moon, Edmund

    2016-01-01

    Advanced-stage non-small cell lung cancer (NSCLC) and small cell lung cancer are cancers in which chemotherapy produces a survival benefit, although it is small. We now know that anti-PD-1/PD-L1 has substantial clinical activity in both of these diseases, with an overall response rate (ORR) of 15%-20%. These responses are frequently rapid and durable, increase median overall survival (OS) compared with chemotherapy, and produce long-term survivors. Despite these very significant results, many patients do not benefit from anti-PD-1/PD-L1. This is because of the potential for malignancies to co-opt myriad immunosuppressive mechanisms other than aberrant expression of PD-L1. Conceptually, these can be divided into three categories. First, for some patients there is likely a failure to generate sufficient functional tumor antigen-specific T cells. Second, for others, tumor antigen-specific T cells may be generated but fail to enter into the tumor parenchyma. Finally, there are a large number of immunosuppressive mechanisms that have the potential to be operational within the tumor microenvironment: surface membrane immune checkpoint proteins PD-1, CTLA-4, LAG3, TIM3, BTLA, and adenosine A2AR; soluble factors and metabolic alterations interleukin (IL)-10, transforming growth factor (TGF)-β, adenosine, IDO, and arginase; and inhibitory cells, cancer-associated fibroblasts (CAFs), regulatory T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages. In this article, we discuss three strategies to generate more tumor-reactive T cells for patients: anti-CTLA-4, therapeutic tumor vaccination, and adoptive cellular therapy, with T cells redirected to tumor antigens using T-cell receptor (TCR) or chimeric antigen receptor (CAR) gene modification. We also review some of the various strategies in development to thwart tumor microenvironment immunosuppressive mechanisms. Strategies to drive more T cells into tumors remain a significant challenge.

  13. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab

    Directory of Open Access Journals (Sweden)

    Smolej L

    2014-12-01

    Full Text Available Lukáš Smolej 4th Department of Internal Medicine – Hematology, University Hospital Hradec Králové and Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic Abstract: Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101 is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL. Keywords: chronic lymphocytic leukemia, anti-CD20 antibodies, chlorambucil, rituximab, ofatumumab, obinutuzumab, overall survival

  14. 抗人CD25嵌合抗体基因的构建及其瞬时表达研究%Study on construction and transient expression of human-mouse chimeric antibody gene against human CD25

    Institute of Scientific and Technical Information of China (English)

    胡迪超; 张爱华; 潘勇兵; 詹珊珊; 杨晓明

    2011-01-01

    目的:构建抗人CD25嵌合抗体基因并在哺乳动物细胞中进行瞬时表达和初步鉴定.方法:采用RLM-RACE法克隆WuTac抗体可变区和信号肽序列,并利用基因拼接法构建嵌合抗体基因.用脂质体法瞬时转染三种哺乳动物细胞,并使用ELISA、FCM、WB、Dot blot和免疫荧光法进行检测.结果:成功克隆WuTac抗体可变区和信号肽序列,并构建了抗人CD25嵌合抗体表达质粒.瞬时转染结果表明所表达的嵌合抗体保留了亲本抗体WuTac的抗原结合力.结论:成功构建了抗人CD25嵌合抗体基因,为其进一步研究打下基础.%Objective:To construct chimeric antibody gene against human an CD25 angigen,and prelin inarily identify the expressed prod-ucts produced from transiently transfected mammalian cells in order to facilitate the further study of stable expression.Methods:The RLM-RACE was employed to clone variable region genes and leader sequences,and the Overlap PVR method was used to construct the chimeric anti-body gene.After transiently transfected in three mammalian cells with liposome method, the expressed products were determined by ELISA,FCM,W B,Dotblot and immunofluorescence assay.Results:The variable region genes and leader sequences were successfully amplified,and the eukayotic expression plasmids were constructed.The results from transient transfection indicate the expressed products retain the antigen binding capacity of parental antibody WuTac.Conclusion:The successfully constructed chimeric antibody gene against human CD25 lays sound foun-dation for further study.

  15. In Vitro and In Vivo Comparison of Lymphocytes Transduced with a Human CD16 or with a Chimeric Antigen Receptor Reveals Potential Off-Target Interactions due to the IgG2 CH2-CH3 CAR-Spacer

    Directory of Open Access Journals (Sweden)

    Béatrice Clémenceau

    2015-01-01

    Full Text Available The present work was designed to compare two mechanisms of cellular recognition based on Ab specificity: firstly, when the anti-HER2 mAb trastuzumab bridges target cells and cytotoxic lymphocytes armed with a Fc receptor (ADCC and, secondly, when HER2 positive target cells are directly recognized by cytotoxic lymphocytes armed with a chimeric antigen receptor (CAR. To compare these two mechanisms, we used the same cellular effector (NK-92 and the same signaling domain (FcεRIγ. The NK-92 cytotoxic cell line was transfected with either a FcγRIIIa-FcεRIγ (NK-92CD16 or a trastuzumab-based scFv-FcεRIγ chimeric receptor (NK-92CAR. In vitro, the cytotoxic activity against HER2 positive target cells after indirect recognition by NK-92CD16 was always inferior to that observed after direct recognition by NK-92CAR. In contrast, and somehow unexpectedly, in vivo, adoptive transfer of NK-92CD16 + trastuzumab but not of NK-92CAR induced tumor regression. Analysis of the in vivo xenogeneic system suggested that the human CH2-CH3 IgG2 used as a spacer in our construct was able to interact with the FcR present at the cell surface of the few NSG-FcR+ remaining immune cells. This interaction, leading to blockage of the NK-92CAR in the periphery of the engrafted tumor cells, stresses the critical role of the composition of the spacer domain.

  16. Detection of Salmonella invA by isothermal and chimeric primer-initiated amplification of nucleic acids (ICAN) in Zambia.

    Science.gov (United States)

    Isogai, Emiko; Makungu, Chitwambi; Yabe, John; Sinkala, Patson; Nambota, Andrew; Isogai, Hiroshi; Fukushi, Hideto; Silungwe, Manda; Mubita, Charles; Syakalima, Michelo; Hang'ombe, Bernard Mudenda; Kozaki, Shunji; Yasuda, Jun

    2005-01-01

    The isothermal and chimeric primer-initiated amplification of nucleic acids (ICAN) is a new isothermal DNA amplification method composed of exo Bca DNA polymerase, RNaseH and DNA-RNA chimeric primers. We detected invA of Salmonella from chicken carcasses, egg yolk and cattle fecal samples. Fifty-three of 59 isolates were invA-positive in ICAN-chromatostrip detection. The result was consistent with those obtained by standard PCR. Salmonella invA was detected in 12 of 14 carcass rinses by ICAN, while in 7 of 14 rinses by standard PCR. These results indicate that ICAN is an efficient, sensitive and simple system to detect invA of Salmonella species in developing countries such as Zambia.

  17. Characterization of oligosaccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9

    Energy Technology Data Exchange (ETDEWEB)

    Wathen, M.W.; Aeed, P.A.; Elhammer, A.P. (Upjohn Co., Kalamazoo, MI (United States))

    1991-03-19

    The oligosaccharide structures added to a chimeric protein (FG) composed of the extracellular domains of respiratory syncytial virus F and G proteins, expressed in the insect cell line Sf9, were investigated. Cells were labeled in vivo with ({sup 3}H)glucosamine and infected wit a recombinant baculovirus containing the FG gene. The secreted chimeric protein was isolated by immunoprecipitation and subjected to oligosaccharide analysis. The FG protein contains two types of O-linked oligosaccharides: GalNAc and Gal{beta}1-3GalNAc constituting 17 and 66% of the total number of structures respectively. Only one type of N-linked oligosaccharide, constituting the remaining 17% of the structures on FG, was detected: a trimannosyl core structure with a fucose residue linked {alpha}1-6 to the asparagine-linked N-acetylglucosamine.

  18. An Unusual Chimeric Diterpene Synthase from Emericella variecolor and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping.

    Science.gov (United States)

    Qin, Bin; Matsuda, Yudai; Mori, Takahiro; Okada, Masahiro; Quan, Zhiyang; Mitsuhashi, Takaaki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-26

    Di- and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene (1), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.

  19. A Chimeric Protein That Functions as both an Anthrax Dual-Target Antitoxin and a Trivalent Vaccine▿

    OpenAIRE

    Wu, Gaobing; Hong, Yuzhi; Guo, Aizhen; Feng, Chunfang; Cao, Sha; Zhang, Cheng-Cai; Shi, Ruiping; Tan, Yadi; Liu, Ziduo

    2010-01-01

    Effective measures for the prophylaxis and treatment of anthrax are still required for counteracting the threat posed by inhalation anthrax. In this study, we first demonstrated that the chimeric protein LFn-PA, created by fusing the protective antigen (PA)-binding domain of lethal factor (LFn) to PA, retained the functions of the respective molecules. On the basis of this observation, we attempted to develop an antitoxin that targets the binding of lethal factor (LF) and/or edema factor (EF)...

  20. MURINE MOBILIZED PERIPHERAL BLOOD STEM CELLS HAVE A LOWER CAPACITY THAN BONE MARROW TO INDUCE MIXED CHIMERISM AND TOLERANCE

    OpenAIRE

    Koporc, Zvonimir; Pilat, Nina; Nierlich, Patrick; Blaha, Peter; Bigenzahn, Sinda; Pree, Ines; Selzer, Edgar; Sykes, Megan; Muehlbacher, Ferdinand; Wekerle, Thomas

    2008-01-01

    Allogeneic bone marrow transplantation (BMT) under costimulation blockade allows induction of mixed chimerism and tolerance without global T cell depletion. The mildest such protocols without recipient cytoreduction, however, require clinically impracticable bone marrow (BM) doses. The successful use of mobilized peripheral blood stem cells (PBSC) instead of BM in such regimens would provide a substantial advance, allowing transplantation of higher doses of hematopoietic donor cells. We thus ...

  1. Chimeric β-lactamases: global conservation of parental function and fast time-scale dynamics with increased slow motions.

    Directory of Open Access Journals (Sweden)

    Christopher M Clouthier

    Full Text Available Enzyme engineering has been facilitated by recombination of close homologues, followed by functional screening. In one such effort, chimeras of two class-A β-lactamases - TEM-1 and PSE-4 - were created according to structure-guided protein recombination and selected for their capacity to promote bacterial proliferation in the presence of ampicillin (Voigt et al., Nat. Struct. Biol. 2002 9:553. To provide a more detailed assessment of the effects of protein recombination on the structure and function of the resulting chimeric enzymes, we characterized a series of functional TEM-1/PSE-4 chimeras possessing between 17 and 92 substitutions relative to TEM-1 β-lactamase. Circular dichroism and thermal scanning fluorimetry revealed that the chimeras were generally well folded. Despite harbouring important sequence variation relative to either of the two 'parental' β-lactamases, the chimeric β-lactamases displayed substrate recognition spectra and reactivity similar to their most closely-related parent. To gain further insight into the changes induced by chimerization, the chimera with 17 substitutions was investigated by NMR spin relaxation. While high order was conserved on the ps-ns timescale, a hallmark of class A β-lactamases, evidence of additional slow motions on the µs-ms timescale was extracted from model-free calculations. This is consistent with the greater number of resonances that could not be assigned in this chimera relative to the parental β-lactamases, and is consistent with this well-folded and functional chimeric β-lactamase displaying increased slow time-scale motions.

  2. Inducible Expression of Chimeric EWS/ETS Proteins Confers Ewing's Family Tumor-Like Phenotypes to Human Mesenchymal Progenitor Cells

    OpenAIRE

    Miyagawa, Yoshitaka; Okita, Hajime; Nakaijima, Hideki; Horiuchi, Yasuomi; Sato, Ban; TAGUCHI, Tomoko; Toyoda, Masashi; Katagiri, Yohko U; Fujimoto, Junichiro; Hata, Jun-Ichi; Umezawa, Akihiro; Kiyokawa, Nobutaka

    2008-01-01

    Ewing's family tumor (EFT) is a rare pediatric tumor of unclear origin that occurs in bone and soft tissue. Specific chromosomal translocations found in EFT cause EWS to fuse to a subset of ets transcription factor genes (ETS), generating chimeric EWS/ETS proteins. These proteins are believed to play a crucial role in the onset and progression of EFT. However, the mechanisms responsible for the EWS/ETS-mediated onset remain unclear. Here we report the establishment of a tetracycline-controlle...

  3. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice.

    OpenAIRE

    Perkins, S; Fleischman, R A

    1988-01-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produce...

  4. Protein L: a novel reagent for the detection of Chimeric Antigen Receptor (CAR) expression by flow cytometry

    OpenAIRE

    Zheng Zhili; Chinnasamy Nachimuthu; Morgan Richard A

    2012-01-01

    Abstract Background There has been significant progress in the last two decades on the design of chimeric antigen receptors (CAR) for adoptive immunotherapy targeting tumor-associated antigens. Structurally CARs consist of a single chain antibody fragment directed against a tumor-associated antigen fused to an extracellular spacer and transmembrane domain followed by T cell cytoplasmic signaling moieties. Currently several clinical trials are underway using gene modified peripheral blood lymp...

  5. Characterization and Functional Analysis of scFv-based Chimeric Antigen Receptors to Redirect T Cells to IL13Rα2-positive Glioma.

    Science.gov (United States)

    Krenciute, Giedre; Krebs, Simone; Torres, David; Wu, Meng-Fen; Liu, Hao; Dotti, Gianpietro; Li, Xiao-Nan; Lesniak, Maciej S; Balyasnikova, Irina V; Gottschalk, Stephen

    2016-02-01

    Immunotherapy with T cells expressing chimeric antigen receptors (CARs) is an attractive approach to improve outcomes for patients with glioblastoma (GBM). IL13Rα2 is expressed at a high frequency in GBM but not in normal brain, making it a promising CAR T-cell therapy target. IL13Rα2-specific CARs generated up to date contain mutated forms of IL13 as an antigen-binding domain. While these CARs target IL13Rα2, they also recognize IL13Rα1, which is broadly expressed. To overcome this limitation, we constructed a panel of IL13Rα2-specific CARs that contain the IL13Rα2-specific single-chain variable fragment (scFv) 47 as an antigen binding domain, short or long spacer regions, a transmembrane domain, and endodomains derived from costimulatory molecules and CD3.ζ (IL13Rα2-CARs). IL13Rα2-CAR T cells recognized IL13Rα2-positive target cells in coculture and cytotoxicity assays with no cross-reactivity to IL13Rα1. However, only IL13Rα2-CAR T cells with a short spacer region produced IL2 in an antigen-dependent fashion. In vivo, T cells expressing IL13Rα2-CARs with short spacer regions and CD28.ζ, 41BB.ζ, and CD28.OX40.ζ endodomains had potent anti-glioma activity conferring a significant survival advantage in comparison to mice that received control T cells. Thus, IL13Rα2-CAR T cells hold the promise to improve current IL13Rα2-targeted immunotherapy approaches for GBM and other IL13Rα2-positive malignancies. PMID:26514825

  6. Chimeric antigen receptor-engineered cytokine-induced killer cells overcome treatment resistance of pre-B-cell acute lymphoblastic leukemia and enhance survival.

    Science.gov (United States)

    Oelsner, Sarah; Wagner, Juliane; Friede, Miriam E; Pfirrmann, Verena; Genßler, Sabrina; Rettinger, Eva; Buchholz, Christian J; Pfeifer, Heike; Schubert, Ralf; Ottmann, Oliver G; Ullrich, Evelyn; Bader, Peter; Wels, Winfried S

    2016-10-15

    Pre-emptive cancer immunotherapy by donor lymphocyte infusion (DLI) using cytokine-induced killer (CIK) cells may be beneficial to prevent relapse with a reduced risk of causing graft-versus-host-disease. CIK cells are a heterogeneous effector cell population including T cells (CD3(+) CD56(-) ), natural killer (NK) cells (CD3(-) CD56(+) ) and natural killer T (T-NK) cells (CD3(+) CD56(+) ) that exhibit non-major histocompatibility complex (MHC)-restricted cytotoxicity and are generated by ex vivo expansion of peripheral blood mononuclear cells in the presence of interferon (IFN)-γ, anti-CD3 antibody, interleukin-2 (IL-2) and interleukin-15 (IL-15). To facilitate selective target-cell recognition and enhance specific cytotoxicity against B-cell acute lymphoblastic leukemia (B-ALL), we transduced CIK cells with a lentiviral vector encoding a chimeric antigen receptor (CAR) that carries a composite CD28-CD3ζ domain for signaling and a CD19-specific scFv antibody fragment for cell binding (CAR 63.28.z). In vitro analysis revealed high and specific cell killing activity of CD19-targeted CIK/63.28.z cells against otherwise CIK-resistant cancer cell lines and primary B-ALL blasts, which was dependent on CD19 expression and CAR signaling. In a xenograft model in immunodeficient mice, treatment with CIK/63.28.z cells in contrast to therapy with unmodified CIK cells resulted in complete and durable molecular remissions of established primary pre-B-ALL. Our results demonstrate potent antileukemic activity of CAR-engineered CIK cells in vitro and in vivo, and suggest this strategy as a promising approach for adoptive immunotherapy of refractory pre-B-ALL. PMID:27253354

  7. A Chimeric Cetuximab-Functionalized Corona as a Potent Delivery System for Microtubule-Destabilizing Nanocomplexes to Hepatocellular Carcinoma Cells: A Focus on EGFR and Tubulin Intracellular Dynamics.

    Science.gov (United States)

    Poojari, Radhika; Kini, Sudarshan; Srivastava, Rohit; Panda, Dulal

    2015-11-01

    In this study, we have developed microtubule destabilizing agents combretastatin A4 (CA4) or 2-methoxyestradiol (2ME) encapsulated poly(d,l-lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-b-PEG) nanocomplexes for targeted delivery to human hepatocellular carcinoma (HCC) cells. An epidermal growth factor receptor (EGFR) is known to be overexpressed in HCC cells. Therefore, the targeting moiety cetuximab (Cet), an anti-EGFR chimeric monoclonal antibody, is functionalized on the surface of these diblock copolymeric coronas. Cetuximab is associated with the extracellular domain of the EGFR; therefore, the uptake of the cetuximab conjugated nanocomplexes occurred efficiently in EGFR overexpressing HCC cells indicating potent internalization of the complex. The cetuximab targeted-PLGA-b-PEG nanocomplexes encapsulating CA4 or 2ME strongly inhibited phospho-EGFR expression, depolymerized microtubules, produced spindle abnormalities, stalled mitosis, and induced apoptosis in Huh7 cells compared to the free drugs, CA4 or 2ME. Further, the combinatorial strategy of targeted nanocomplexes, Cet-PLGA-b-PEG-CA4 NP and Cet-PLGA-b-PEG-2ME NP, significantly reduced the migration of Huh7 cells, and markedly enhanced the anticancer effects of the microtubule-targeted drugs in Huh7 cells compared to the free drugs, CA4 or 2ME. The results indicated that EGFR receptor-mediated internalization via cetuximab facilitated enhanced uptake of the nanocomplexes leading to potent anticancer efficacy in Huh7 cells. Cetuximab-functionalized PLGA-b-PEG nanocomplexes possess a strong potential for the targeted delivery of CA4 or 2ME in EGFR overexpressed HCC cells, and the strategy may be useful for selectively targeting microtubules in these cells.

  8. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    Directory of Open Access Journals (Sweden)

    Tamborrini Marco

    2011-12-01

    Full Text Available Abstract Background In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP. Methods The highly purified recombinant protein GMZ2 was coupled to phosphatidylethanolamine and the conjugates incorporated into the membrane of IRIVs. The immunogenicity of this adjuvant-free virosomal formulation was compared to GMZ2 formulated with the adjuvants Montanide ISA 720 and Alum in three mouse strains with different genetic backgrounds. Results Intramuscular injections of all three candidate vaccine formulations induced GMZ2-specific antibody responses in all mice tested. In general, the humoral immune response in outbred NMRI mice was stronger than that in inbred BALB/c and C57BL/6 mice. ELISA with the recombinant antigens demonstrated immunodominance of the GLURP component over the MSP3 component. However, compared to the Al(OH3-adjuvanted formulation the two other formulations elicited in NMRI mice a larger proportion of anti-MSP3 antibodies. Analyses of the induced GMZ2-specific IgG subclass profiles showed for all three formulations a predominance of the IgG1 isotype. Immune sera against all three formulations exhibited cross-reactivity with in vitro cultivated blood-stage parasites. Immunofluorescence and immunoblot competition experiments showed that both components of the hybrid protein induced IgG cross-reactive with the corresponding native proteins. Conclusion A virosomal formulation of the chimeric protein GMZ2 induced P. falciparum blood stage parasite cross-reactive IgG responses specific for both MSP3 and GLURP. GMZ2 thus represents a candidate component suitable for inclusion into a multi-valent virosomal

  9. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    Directory of Open Access Journals (Sweden)

    Mallya Meera

    2008-09-01

    Full Text Available Abstract Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD. This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC. This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C and not on their own.

  10. Assessment of Physicochemical Properties of Rituximab Related to Its Immunomodulatory Activity

    Directory of Open Access Journals (Sweden)

    Mariana P. Miranda-Hernández

    2015-01-01

    Full Text Available Rituximab is a chimeric monoclonal antibody employed for the treatment of CD20-positive B-cell non-Hodgkin’s lymphoma, chronic lymphocytic leukemia, rheumatoid arthritis, granulomatosis with polyangiitis and microscopic polyangiitis. It binds specifically to the CD20 antigen expressed on pre-B and consequently on mature B-lymphocytes of both normal and malignant cells, inhibiting their proliferation through apoptosis, CDC, and ADCC mechanisms. The immunomodulatory activity of rituximab is closely related to critical quality attributes that characterize its chemical composition and spatial configuration, which determine the recognition of CD20 and the binding to receptors or factors involved in its effector functions, while regulating the potential immunogenic response. Herein, we present a physicochemical and biological characterization followed by a pharmacodynamics and immunogenicity study to demonstrate comparability between two products containing rituximab. The physicochemical and biological characterization revealed that both products fit within the same response intervals exhibiting the same degree of variability. With regard to clinical response, both products depleted CD20+ B-cells until posttreatment recovery and no meaningful differences were found in their pharmacodynamic profiles. The evaluation of anti-chimeric antibodies did not show differential immunogenicity among products. Overall, these data confirm that similarity of critical quality attributes results in a comparable immunomodulatory activity.

  11. Expression of c-kit receptor in human cholangiocarcinoma and in vivo treatment with imatinib mesilate in chimeric mice

    Institute of Scientific and Technical Information of China (English)

    Thomas Kamenz; Karel Caca; Thilo Blüthner; Andrea Tannapfel; Joachim M(o)ssner; Marcus Wiedmann

    2006-01-01

    AIM: To investigate the c-kit expression in biliary tract cancer cell lines and histological sections from patients with extrahepatic cholangiocarcinoma (CC) and to evaluate the efficacy of in vitro and in vitro treatment with imatinib mesilate.METHODS: The protein expression of c-kit in the human biliary tract cancer cell lines Mz-ChA-2 and EGI-1 and histological sections from 19 patients with extrahepatic CC was assessed by immunoblotting,immunocytochemistry, and immunohistochemistry. The anti-proliferative effect of imatinib mesilate on biliary tract cancer cell lines Mz-ChA-2 and EGI-1 was studied in vitro by automated cell counting. In addition, immunodeficient NMRI mice (TaconicTM) were subcutaneously injected with 5×106 cells of cell lines MzChA-2 and EGI-1. After having reached a tumour volume of 200 mm3, daily treatment was started intraperitoneally with imatinib mesilate at a dose of 50 mg/kg or normal saline (NS).Tumor volume was calculated with a Vernier caliper.After 14 d, mice were sacrificed with tumors excised and tumor mass determined.RESULTS: Immunoblotting revealed presence of c-kit in Mz-ChA-2 and absence in EGI-1 cells.Immunocytochemistry with c-kit antibodies displayed a cytoplasmatic and membraneous localization of receptor protein in Mz-ChA-2 cells and absence of c-kit in EGI-1 cells, c-kit was expressed in 7 of 19 (37%) extrahepatic humanCC tissue samples, 2 showed a moderate and 5 a rather weak immunostaining. Imatinib mesilate at a low concentration of 5 μmol/L caused a significant growth inhibition in the c-kit positive cell line Mz-ChA-2 (31%), but not in the c-kit negative cell line EGI-1 (0%) (P< 0.05). Imatinib mesilate at an intermediate concentration of 10 μmol/L inhibited cellular growth of both cell lines (51% vs 57%). Imatinib mesilate at a higher concentration of 20 μmol/L seemed to have a general toxic effect on both cell lines. The IC50 values were 9.7 μmol/L and 11 μmol/L, respectively. After 14 d of in vitro

  12. Assessing the ammonium nitrate formation regime in the Paris megacity and its representation in the CHIMERE model

    Science.gov (United States)

    Petetin, Hervé; Sciare, Jean; Beekmann, Matthias; Sanchez, Olivier; Rosso, Amandine; Denier van der Gon, Hugo

    2014-05-01

    Ammonium nitrates significantly contribute to the fine particulate matter load, in particular in the Paris agglomeration where two measurement campaigns, PARTICULES and FRANCIPOL, have recently made available a large database on this compound and its gaseous precursors, nitric acid and ammonia. These new observations give the opportunity (for the first time in France) to assess the ammonium nitrate formation regime (in terms of limited species) as well as the ability of the CHIMERE chemistry-transport model to simulate each species and to reproduce in fine the observed regime. Quite satisfactory results are obtained on nitrates, mainly due to a significant contribution of imports from outside the agglomeration. However, significant biases affect both gaseous precursors. Various uncertainty sources are discussed, including those relative to ammonia trafic and agricultural emissions, thermodynamic equilibria or oxidative capacity of the atmosphere. Despite these errors, CHIMERE manages to simulate a HNO3-limited regime, in agreement with observations, at least at the daily scale. This study especially confirms that further work on the OH radical characterization in the CHIMERE model and agricultural ammonia emissions are required to improve the simulation of the ammonium nitrate formation regime.

  13. Useful oriented immobilization of antibodies on chimeric magnetic particles: direct correlation of biomacromolecule orientation with biological activity by AFM studies.

    Science.gov (United States)

    Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar

    2014-12-16

    The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.

  14. A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations.

    Science.gov (United States)

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Yamamoto, Yoko

    2016-07-01

    TaALMT1 from wheat (Triticum aestivum) and AtALMT1 from Arabidopsis thaliana encode aluminum (Al)-activated malate transporters, which confer acid-soil tolerance by releasing malate from roots. Chimeric proteins from TaALMT1 and AtALMT1 (Ta::At, At::Ta) were previously analyzed in Xenopus laevis oocytes. Those studies showed that Al could activate malate efflux from the Ta::At chimera but not from At::Ta. Here, functions of TaALMT1, AtALMT1 and the chimeric protein Ta::At were compared in cultured tobacco BY-2 cells. We focused on the sensitivity and specificity of their activation by trivalent cations. The activation of malate efflux by Al was at least two-fold greater in the chimera than the native proteins. All proteins were also activated by lanthanides (erbium, ytterbium, gadolinium, and lanthanum), but the chimera again released more malate than TaALMT1 or AtALMT1. In Xenopus oocytes, Al, ytterbium, and erbium activated inward currents from the native TaALMT1 and the chimeric protein, but gadolinium only activated currents from the chimera. Lanthanum inhibited currents from both proteins. These results demonstrated that function of the chimera protein was altered compared to the native proteins and was more responsive to a range of trivalent cations when expressed in plant cells. PMID:27039280

  15. Construction of an allogenic chimeric mouse model for the study of the behaviors of donor stem cells in vivo

    Institute of Scientific and Technical Information of China (English)

    WANG Mo-lin; YAN Jing-bin; XIAO Yan-ping; HUANG Shu-zhen

    2005-01-01

    Background It is essential to establish an animal model for the elucidation of the biological behaviors of stem cells in vivo. We constructed a chimeric animal model by in utero transplantation for investigation of stem cell transplantation.Methods This chimerism was achieved by injecting the stem cells derived from the bone marrow of green fluorescence protein (GFP)-transgenic mice into fetal mice at 13.5 days of gestation. Several methods such as polymerase chain reaction (PCR), real-time PCR, fluorescence-assisted cell sorting (FACS) and fluorescence in situ hybridization (FISH) were used for the observation of donor cells.Results Under a fluorescence microscope, we observed the GFP cells of donor-origin in a recipient. PCR, FACS analysis and FISH indicated chimerism at various intervals. Real-time PCR indicated that some donor cells existed in chimera for more than 6 months.Conclusions Allogenic stem cells may exist in recipients for a long time and this allogenic animal model provides a useful tool for studying the behavior of hematopoietic stem cells and also offers an effective model system for the study of stem cells.

  16. Replication of a chimeric origin containing elements from Epstein-Barr virus ori P and bovine papillomavirus minimal origin.

    Science.gov (United States)

    Kivimäe, S; Allikas, A; Kurg, R; Ustav, M

    2001-05-01

    The bovine papillomavirus E2 protein is a multifunctional protein that activates viral transcription, co-operates in initiation of viral DNA replication, and is required for long-term episomal maintenance of viral genomes. The EBNA1 protein of Epstein-Barr virus is required for synthesis and maintenance of Epstein-Barr virus genomes. Both viral proteins act through direct interactions with their respective DNA sequences in their origins of replication. The chimeric protein E2:EBNA1, which consists of an transactivation domain of E2 and DNA binding domain of EBNA1 supported the replication of the chimeric origin that contained EBNA1 binding sites in place of the E2 binding sites principally as full-length E2 did in the case of papillomavirus minimal origin. This indicates that the chimeric protein E2:EBNA1 is competent to assemble a replication complex similar to the E2 protein. These data confirm the earlier observations that the only part of E2 specifically required for its activity in replication is the N-terminal activation domain and the function of the DNA binding domain of E2 in the initiation of replication is to tether the transactivation domain of E2 to the origin of replication. PMID:11311423

  17. Functional participation of a nifH-arsA2 chimeric fusion gene in arsenic reduction by Escherichia coli

    International Nuclear Information System (INIS)

    The NifH (dimer) and ArsA proteins are structural homologs and share common motifs like nucleotide-binding domains, signal transduction domains and also possible similar metal center ligands. Given the similarity between two proteins, we investigated if the NifH protein from Azotobacter vinelandii could functionally substitute for the ArsA1 half of the ArsA protein of Escherichia coli. The chimeric NifH-ArsA2 protein was expressed and detected in the E. coli strain by Western blotting. Growth comparisons of E. coli strains containing plasmids encoding for complete ArsA, partial ArsA (ArsA2) or chimeric ArsA (NifH-ArsA2) in media with increasing sodium arsenite concentrations (0-5 mM) showed that the chimeric NifH-ArsA2 could substitute for the ArsA. This functional complementation demonstrated the strong conservation of essential domains that have been maintained in NifH and ArsA even after their divergence to perform varied functions

  18. Ag85A/ESAT-6 chimeric DNA vaccine induces an adverse response in tuberculosis-infected mice

    Science.gov (United States)

    Liang, Yan; Bai, Xuejuang; Zhang, Junxian; Song, Jingying; Yang, Yourong; Yu, Qi; Li, Ning; Wu, Xueqiong

    2016-01-01

    The Mycobacterium tuberculosis (M. tb) antigens encoded by the 6 kDa early secretory antigenic target (esat-6) and antigen 85A (ag85a) genes are known to exert protective effects against tuberculosis in animal models. In addition, these antigens represent vaccine components that were tested in early human clinical trials. In the present study, a chimeric DNA vaccine was constructed that contained two copies of the esat-6 gene inserted into the ag85a gene from M. tb. BALB/c mice were treated with this chimeric vaccine following infection with either M. tb H37Rv or a clinical multi drug resistant tuberculosis isolate. Treatment of both groups of mice with the chimeric vaccine resulted in accelerated mortality. These findings are in contrast with previous results, which indicated that DNA vaccines expressing the individual antigens were either beneficial or at least not harmful. The results of the present study suggested that the ESAT-6 antigen is not suitable for inclusion in therapeutic vaccines. PMID:27279275

  19. DPPC/poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) chimeric nanostructures as potential drug nanocarriers

    Energy Technology Data Exchange (ETDEWEB)

    Pippa, Natassa [Faculty of Pharmacy, National and Kapodistrian University of Athens, Department of Pharmaceutical Technology (Greece); Kaditi, Eleni; Pispas, Stergios [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation (Greece); Demetzos, Costas, E-mail: demetzos@pharm.uoa.gr [Faculty of Pharmacy, National and Kapodistrian University of Athens, Department of Pharmaceutical Technology (Greece)

    2013-06-15

    In this study, we report on the self assembly behavior and on stability studies of mixed (chimeric) nanosystems consisting of dipalmitoylphosphatidylcholine (DPPC) and poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) (MPOx) gradient copolymer in aqueous media and in fetal bovine serum (FBS). A gamut of light scattering techniques and fluorescence spectroscopy were used in order to extract information on the size and morphological characteristics of the nanoassemblies formed, as a function of gradient block copolymer content, as well as temperature. The hydrodynamic radii (R{sub h}) of nanoassemblies decreased in the process of heating up to 50 Degree-Sign C, while the fractal dimension (d{sub f}) values, also increased. Indomethacin was successfully incorporated into these chimeric nanocarriers. Drug release was depended on the components ratio. The present studies show that there are a number of parameters that can be used in order to alter the properties of chimeric nanosystems, and this is advantageous to the development of 'smart' nanocarriers for drug delivery.

  20. Identification of two amino acids within E2 important for the pathogenicity of chimeric classical swine fever virus.

    Science.gov (United States)

    Wu, Rui; Li, Ling; Zhao, Yu; Tu, Jun; Pan, Zishu

    2016-01-01

    Our previous study demonstrated that a chimeric classical swine fever virus (CSFV) vSM/CE2 containing the E2 gene of the vaccine C-strain on the genetic background of the virulent CSFV strain Shimen (vSM) was attenuated in swine but reversed to virulence after serial passages in PK15 cells. To investigate the molecular basis of the pathogenicity, the genome of the 11th passage vSM/CE2 variant (vSM/CE2-p11) was sequenced, and two amino acid mutations, T745I and M979K, within E2 of vSM/CE2-p11 were observed. Based on reverse genetic manipulation of the chimeric cDNA clone pSM/CE2, the mutated viruses vSM/CE2/T745I, vSMCE2/M979K and vSM/CE2/T745I;M979K were rescued. The data from infection of pigs demonstrated that the M979K amino acid substitution was responsible for pathogenicity. Studies in vitro indicated that T745I and M979K increased infectious virus production and replication. Our results indicated that two residues located at sites 745 and 979 within E2 play a key role in determining the replication in vitro and pathogenicity in vivo of chimeric CSFV vSM/CE2. PMID:26454191

  1. Induction of protective anti-CTL epitope responses against HER-2-positive breast cancer based on multivalent T7 phage nanoparticles.

    Directory of Open Access Journals (Sweden)

    Somayeh Pouyanfard

    Full Text Available We report here the development of multivalent T7 bacteriophage nanoparticles displaying an immunodominant H-2k(d-restricted CTL epitope derived from the rat HER2/neu oncoprotein. The immunotherapeutic potential of the chimeric T7 nanoparticles as anti-cancer vaccine was investigated in BALB/c mice in an implantable breast tumor model. The results showed that T7 phage nanoparticles confer a high immunogenicity to the HER-2-derived minimal CTL epitope, as shown by inducing robust CTL responses. Furthermore, the chimeric nanoparticles protected mice against HER-2-positive tumor challenge in both prophylactic and therapeutic setting. In conclusion, these results suggest that CTL epitope-carrying T7 phage nanoparticles might be a promising approach for development of T cell epitope-based cancer vaccines.

  2. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice

    DEFF Research Database (Denmark)

    Brennan, F.R.; Bellaby, T.; Helliwell, S.M.;

    1999-01-01

    The humoral immune responses to the D2 peptide of fibronectin-binding protein B (FnBP) of Staphylococcus aureus, expressed on the plant virus cowpea mosaic virus (CPMV), were evaluated after mucosal delivery to mice. Intranasal immunization of these chimeric virus particles (CVPs), either alone...... to generate antibody at distant mucosal sites. IgG2a and TgG2b were the dominant IgG subclasses in sera to both CPMV and FnBP, demonstrating a bias in the response toward the T helper 1 type. The sera completely inhibited the binding of human fibronectin to the S. aureus FnBP. Oral immunization of the CVPs...... also generated CPMV- and FnBP-specific serum IgG; however, these titers were significantly lower and more variable than those generated by the intranasal route, and FnBP-specific intestinal Ig A was undetectable. Neither the ISCOM matrix nor cholera toxin enhanced these responses. These studies...

  3. Prospects for adoptive immunotherapy of pancreatic cancer using chimeric antigen receptor-engineered T-cells.

    Science.gov (United States)

    Alrifai, Doraid; Sarker, Debashis; Maher, John

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor (CAR) engineered T-cells is emerging as a powerful new approach to cancer immunotherapy. CARs are fusion molecules that couple the antibody-like binding of a native cell surface target to the delivery of a bespoke T-cell activating signal. Recent studies undertaken by several centers have demonstrated highly compelling efficacy in patients with acute and chronic B-cell malignancies. However, comparable therapeutic activity has not been achieved in solid tumors. Modern management of pancreatic ductal adenocarcinoma (PDAC) remains ineffective, reflected in the virtual equivalence of annual incidence and mortality statistics for this tumor type. Increasing evidence indicates that these tumors are recognized by the immune system, but deploy powerful evasion strategies that limit natural immune surveillance and render efforts at immunotherapy challenging. Here, we review preclinical and clinical studies that have been initiated or completed in an effort to develop CAR-based immunotherapy for PDAC. We also consider the hurdles to the effective clinical development of this exciting new therapeutic modality.

  4. Modification of chimeric (2S, 3S)-butanediol dehydrogenase based on structural information.

    Science.gov (United States)

    Shimegi, Tomohito; Mochizuki, Kaito; Oyama, Takuji; Ohtsuki, Takashi; Kusunoki, Masami; Ui, Sadaharu

    2014-01-01

    A chimeric (2S, 3S)-butanediol dehydrogenase (cLBDH) was engineered to have the strict (S)-configuration specificity of the (2S, 3S)-BDH (BsLBDH) derived from Brevibacterium saccharolyticum as well as the enzymatic stability of the (2R, 3S)-BDH (KpMBDH) from Klebsiella pneumonia by swapping the domains of two native BDHs. However, while cLBDH possesses the stability, it lacks the specificity. In order to assist in the design a BDH having strict substrate specificity, an X-ray structural analysis of a cLBDH crystal was conducted at 1.58 Å. The results obtained show some readily apparent differences around the active sites of cLBDH and BsLBDH. Based on this structural information, a novel (2S, 3S)-BDH having a preferred specificity was developed by introducing a V254L mutation into cLBDH. The influence of this mutation on the stability of cLBDH was not evaluated. Nevertheless, the technique described herein is an effective method for the production of a tailor-made BDH. PMID:25612804

  5. Nanoparticles of cationic chimeric peptide and sodium polyacrylate exhibit striking antinociception activity at lower dose.

    Science.gov (United States)

    Gupta, Kshitij; Singh, Vijay P; Kurupati, Raj K; Mann, Anita; Ganguli, Munia; Gupta, Yogendra K; Singh, Yogendra; Saleem, Kishwar; Pasha, Santosh; Maiti, Souvik

    2009-02-20

    The current study investigates the performance of polyelectrolyte complexes based nanoparticles in improving the antinociceptive activity of cationic chimeric peptide-YFa at lower dose. Size, Zeta potential and morphology of the nanoparticles were determined. Size of the nanoparticles decreases and zeta potential increases with concomitant increase in charge ratio (Z(+/-)). The nanoparticles at Z(+/-)12 are spherical with 70+/-7 nm diameter in AFM and displayed positive surface charge and similar sizes (83+/-8 nm) by Zetasizer. The nanoparticles of Z(+/-) 12 are used in this study. Cytotoxicity by MTT assay on three different mammalian cell lines (liver, neuronal and kidney) revealed lower toxicity of nanoparticles. Hematological parameters were also not affected by nanoparticles compared to normal counts of water treated control group. Nanoparticles containing 10 mg/kg YFa produced increased antinociception, approximately 36%, in tail-flick latency test in mice, whereas the neat peptide at the same concentration did not show any antinociception activity. This enhancement in activity is attributed to the nanoparticle associated protection of peptide from proteolytic degradation. In vitro peptide release study in plasma also supported the antinociception profile of nanoparticles. Thus, our results suggest of a potential nanoparticle delivery system for cationic peptide drug candidates for improving their stability and bioavailability. PMID:19014986

  6. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.

    Science.gov (United States)

    Takeshima, Yasuhiro; Yagi, Mariko; Matsuo, Masafumi

    2012-01-01

    A molecular therapy for Duchenne muscular dystrophy (DMD) that converts dystrophin mRNA from out-of-frame to in-frame transcripts by inducing exon skipping with antisense oligonucleotides (AOs) is now approaching clinical application. To exploit the broad therapeutic applicability of exon skipping therapy, it is necessary to identify AOs that are able to induce efficient and specific exon skipping. To optimize AOs, we have established an in vitro splicing system using cultured DMD myocytes. Here, we describe the process of identifying the best AO.Cultured DMD myocytes are established from a biopsy sample and the target exon is chosen. A series of AOs are designed to cover the whole target exon sequence. As AOs, we use 15-20-mer chimeric oligonucleotides consisting of 2'-O-methyl RNA and modified nucleic acid (2'-O, 4'-C-ethylene-bridged nucleic acid). Each AO is transfected individually into cultured DMD myocytes, and the resulting mRNA is analyzed by reverse transcription-PCR. The ability of each AO to induce exon skipping is examined by comparing the amount of cDNA with and without exon skipping. If necessary, having roughly localized the target region, another set of AOs are designed and the exon skipping abilities of the new AOs are examined. Finally, one AO is determined as the best for the molecular therapy.Our simple and reliable methods using an in vitro splicing system have enabled us to identify optimized AOs against many exons of the DMD gene.

  7. Multiscale characterization of a chimeric biomimetic polypeptide for stem cell culture

    International Nuclear Information System (INIS)

    Mesenchymal stem cells have attracted great interest in the field of tissue engineering and regenerative medicine because of their multipotentiality and relative ease of isolation from adult tissues. The medical application of this cellular system requires the inclusion in a growth and delivery scaffold that is crucial for the clinical effectiveness of the therapy. In particular, the ideal scaffolding material should have the needed porosity and mechanical strength to allow a good integration with the surrounding tissues, but it should also assure high biocompatibility and full resorbability. For such a purpose, protein-inspired biomaterials and, in particular, elastomeric-derived polypeptides are playing a major role, in which they are expected to fulfil many of the biological and mechanical requirements. A specific chimeric protein, designed starting from elastin, resilin and collagen sequences, was characterized over different length scales. Single-molecule mechanics, aggregation properties and compatibility with human mesenchymal stem cells were tested, showing that the engineered compound is a good candidate as a stem cell scaffold to be used in tissue engineering applications. (paper)

  8. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.

    Science.gov (United States)

    Unterweger, Daniel; Kostiuk, Benjamin; Ötjengerdes, Rina; Wilton, Ashley; Diaz-Satizabal, Laura; Pukatzki, Stefan

    2015-08-13

    Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.

  9. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever.

    Science.gov (United States)

    Oestereich, Lisa; Lüdtke, Anja; Ruibal, Paula; Pallasch, Elisa; Kerber, Romy; Rieger, Toni; Wurr, Stephanie; Bockholt, Sabrina; Pérez-Girón, José V; Krasemann, Susanne; Günther, Stephan; Muñoz-Fontela, César

    2016-05-01

    Lassa fever (LASF) is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV) and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/-) was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology. PMID:27191716

  10. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever.

    Directory of Open Access Journals (Sweden)

    Lisa Oestereich

    2016-05-01

    Full Text Available Lassa fever (LASF is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/- was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology.

  11. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever

    Science.gov (United States)

    Oestereich, Lisa; Lüdtke, Anja; Ruibal, Paula; Pallasch, Elisa; Kerber, Romy; Rieger, Toni; Wurr, Stephanie; Bockholt, Sabrina; Krasemann, Susanne

    2016-01-01

    Lassa fever (LASF) is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV) and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/-) was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology. PMID:27191716

  12. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns.

    Science.gov (United States)

    Li, Fay-Wei; Villarreal, Juan Carlos; Kelly, Steven; Rothfels, Carl J; Melkonian, Michael; Frangedakis, Eftychios; Ruhsam, Markus; Sigel, Erin M; Der, Joshua P; Pittermann, Jarmila; Burge, Dylan O; Pokorny, Lisa; Larsson, Anders; Chen, Tao; Weststrand, Stina; Thomas, Philip; Carpenter, Eric; Zhang, Yong; Tian, Zhijian; Chen, Li; Yan, Zhixiang; Zhu, Ying; Sun, Xiao; Wang, Jun; Stevenson, Dennis W; Crandall-Stotler, Barbara J; Shaw, A Jonathan; Deyholos, Michael K; Soltis, Douglas E; Graham, Sean W; Windham, Michael D; Langdale, Jane A; Wong, Gane Ka-Shu; Mathews, Sarah; Pryer, Kathleen M

    2014-05-01

    Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor--neochrome--that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns.

  13. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms

    Science.gov (United States)

    Liu, Z.; Xia, M.; Poovaiah, B. W.

    1998-01-01

    cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.

  14. Assessment of fetal cell chimerism in transgenic pig lines generated by Sleeping beauty transposition.

    Science.gov (United States)

    Garrels, Wiebke; Holler, Stephanie; Taylor, Ulrike; Herrmann, Doris; Niemann, Heiner; Ivics, Zoltan; Kues, Wilfried A

    2014-01-01

    Human cells migrate between mother and fetus during pregnancy and persist in the respective host for long-term after birth. Fetal microchimerism occurs also in twins sharing a common placenta or chorion. Whether microchimerism occurs in multiparous mammals such as the domestic pig, where fetuses have separate placentas and chorions, is not well understood. Here, we assessed cell chimerism in litters of wild-type sows inseminated with semen of transposon transgenic boars. Segregation of three independent monomeric transposons ensured an excess of transgenic over non-transgenic offspring in every litter. Transgenic siblings (n = 35) showed robust ubiquitous expression of the reporter transposon encoding a fluorescent protein, and provided an unique resource to assess a potential cell trafficking to non-transgenic littermates (n = 7) or mothers (n = 4). Sensitive flow cytometry, fluorescence microscopy, and real-time PCR provided no evidence for microchimerism in porcine littermates, or piglets and their mothers in both blood and solid organs. These data indicate that the epitheliochorial structure of the porcine placenta effectively prevents cellular exchange during gestation. PMID:24811124

  15. Plant-derived chimeric virus particles for the diagnosis of primary Sjögren syndrome

    Directory of Open Access Journals (Sweden)

    Elisa eTinazzi

    2015-12-01

    Full Text Available Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX chimeric virus particles (CVPs and Cowpea mosaic virus (CPMV empty virus-like particles (eVLPs to display a linear peptide (lipo derived from human lipocalin , which is immunodominant in Sjögren’s syndrome (SjS and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles (VNPs were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay (ELISA format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

  16. Plant-Derived Chimeric Virus Particles for the Diagnosis of Primary Sjögren Syndrome.

    Science.gov (United States)

    Tinazzi, Elisa; Merlin, Matilde; Bason, Caterina; Beri, Ruggero; Zampieri, Roberta; Lico, Chiara; Bartoloni, Elena; Puccetti, Antonio; Lunardi, Claudio; Pezzotti, Mario; Avesani, Linda

    2015-01-01

    Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren's syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases. PMID:26648961

  17. Current status and regulatory perspective of chimeric antigen receptor-modified T cell therapeutics.

    Science.gov (United States)

    Kim, Mi-Gyeong; Kim, Dongyoon; Suh, Soo-Kyung; Park, Zewon; Choi, Min Joung; Oh, Yu-Kyoung

    2016-04-01

    Chimeric antigen receptor-modified T cells (CAR-T) have emerged as a new modality for cancer immunotherapy due to their potent efficacy against terminal cancers. CAR-Ts are reported to exert higher efficacy than monoclonal antibodies and antibody-drug conjugates, and act via mechanisms distinct from T cell receptor-engineered T cells. These cells are constructed by transducing genes encoding fusion proteins of cancer antigen-recognizing single-chain Fv linked to intracellular signaling domains of T cell receptors. CAR-Ts are classified as first-, second- and third-generation, depending on the intracellular signaling domain number of T cell receptors. This review covers the current status of CAR-T research, including basic proof-of-concept investigations at the cell and animal levels. Currently ongoing clinical trials of CAR-T worldwide are additionally discussed. Owing to the lack of existing approved products, several unresolved concerns remain with regard to safety, efficacy and manufacturing of CAR-T, as well as quality control issues. In particular, the cytokine release syndrome is the major side-effect impeding the successful development of CAR-T in clinical trials. Here, we have addressed the challenges and regulatory perspectives of CAR-T therapy. PMID:26895243

  18. Cancer T cell immunotherapy with bispecific antibodies and chimeric antigen receptors.

    Science.gov (United States)

    Lacher, Markus D; Provenzano, Maurizio

    2013-09-01

    Solid tumors contain several different types of malignant cells. This cellular heterogeneity complicates therapy for at least two reasons. First, each subpopulation may respond differently to a given treatment. Second, cancer cells are plastic, and thus may convert from a therapy-sensitive to a therapy-resistant cell type represented by another subpopulation. Therefore, successful therapies will have to target numerous malignant cell types, not just the rapidly proliferating cells as most standard treatments do. Immunotherapies with T cells engineered to recognize cancer cells via bispecific antibodies (bsAbs) or chimeric antigen receptors (CARs) are particularly promising approaches with potential to ablate both dividing and non/slow-dividing subpopulations of cancer cells. Here, we discuss several patents associated with exceptionally effective bsAbs of the tandem single-chain variable fragment (taFv) class and untangle a part of the complex network of patents directly or indirectly related to CARs. Furthermore, we speculate on the future of bsAbs and CARs for both treatment and prevention of solid tumors such as prostate cancer. PMID:23688207

  19. Homogeneized modeling of mineral dust emissions over Europe and Africa using the CHIMERE model

    Directory of Open Access Journals (Sweden)

    R. Briant

    2014-05-01

    Full Text Available In the region including Africa and Europe, the main part of mineral dust emissions is observed in Africa. The particles are thus transported towards Europe and constitute a non-negligible part of the surface aerosols measured and controlled in the framework of the European air quality legislation. The modelling of these African dust emissions fluxes and transport is widely studied and complex parameterizations are already used in regional to global model for this Sahara-Sahel region. In a lesser extent, mineral dust emissions occur locally in Europe, mainly over agricultural areas. Their modelling is generally poorly done or just ignored. But in some cases, this contribution may be important and may impact the European air quality budget. In this study, we propose an homogeneized calculations of mineral dust fluxes for Europe and Africa. For that, we extended the CHIMERE dust production model (DPM by using new soil and surface datasets, and the global aeolian roughness length dataset provided by GARLAP from microwave and visible satellite observations. This DPM is detailed along with academic tests case results and simulation on a real case results.

  20. Elimination of progressive mammary cancer by repeated administrations of chimeric antigen receptor-modified T cells.

    Science.gov (United States)

    Globerson-Levin, Anat; Waks, Tova; Eshhar, Zelig

    2014-05-01

    Continuous oncogenic processes that generate cancer require an on-going treatment approach to eliminate the transformed cells, and prevent their further development. Here, we studied the ability of T cells expressing a chimeric antibody-based receptor (CAR) to offer a therapeutic benefit for breast cancer induced by erbB-2. We tested CAR-modified T cells (T-bodies) specific to erbB-2 for their antitumor potential in a mouse model overexpressing a human erbB-2 transgene that develops mammary tumors. Comparing the antitumor reactivity of CAR-modified T cells under various therapeutic settings, either prophylactic, prior to tumor development, or therapeutically. We found that repeated administration of CAR-modified T cells is required to eliminate spontaneously developing mammary cancer. Systemic, as well as intratumoral administered CAR-modified T cells accumulated at tumor sites and eventually eliminated the malignant cells. Interestingly, within a few weeks after a single CAR T cells' administration, and rejection of primary lesion, tumors usually relapsed both in treated mammary gland and at remote sites; however, repeated injections of CAR-modified T cells were able to control the secondary tumors. Since spontaneous tumors can arise repeatedly, especially in the case of syndromes characterized by specific susceptibility to cancer, multiple administrations of CAR-modified T cells can serve to control relapsing disease.

  1. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells.

    Science.gov (United States)

    Levine, B L

    2015-03-01

    Performance enhancement of the immune system can now be generated through ex vivo gene modification of T cells in order to redirect native specificity to target tumor antigens. This approach combines the specificity of antibody therapy, the expanded response of cellular therapy and the memory activity of vaccine therapy. Recent clinical trials of chimeric antigen receptor (CAR) T cells directed toward CD19 as a stand-alone therapy have shown sustained complete responses in patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia. As these drug products are individually derived from a patient's own cells, a different manufacturing approach is required for this kind of personalized therapy compared with conventional drugs. Key steps in the CAR T-cell manufacturing process include the selection and activation of isolated T cells, transduction of T cells to express CARs, ex vivo expansion of modified T cells and cryopreservation in infusible media. In this review, the steps involved in isolating, genetically modifying and scaling-out the CAR T cells for use in a clinical setting are described in the context of in-process and release testing and regulatory standards. PMID:25675873

  2. Construction of a genetically engineered chimeric apoprotein consisting of sequences derived from lidamycin and neocarzinostatin.

    Science.gov (United States)

    Jiang, Wenguo; Shang, Boyang; Li, Liang; Zhang, Shenghua; Zhen, Yongsu

    2016-01-01

    Neocarzinostatin (NCS) consists of an enediyne chromophore and an apoprotein (NCP). Lidamycin (LDM) is composed of another active enediyne chromophore (AE) and an acidic protein (LDP). Although the structures of NCP and LDP are very similar, LDM has been shown to have an increased tumor-suppressive activity than that of NCS. The aim of this study was to construct a chimeric protein (CMP) that consists of both the terminus residue of NCP and an LDP pocket-forming residue that can bind AE. This CMP will have a structure similar to NCS and an antitumor activity similar to LDM. The assembling efficiency of LDP, CMP, and NCP was 73.9, 1.5, and 1.1%, respectively. The cytotoxicity was consistent with their assembling efficiency of AE in proteins. When CMP-AE and NCP-AE were administered at equivalent AE doses of LDM, the inhibition rate of CMP-AE was the same as LDM and significantly higher than that of NCP-AE. Our study implied that the binding activity between LDP and AE was very specific. The terminus residue of LDP could affect the specifically binding activity. The pocket-forming residue could confer a protective function to the chromophore. Further investigation of its bioactivity might serve as a new drug design strategy and drug-delivery carrier in targeted cancer therapy.

  3. Chimeric Antigen Receptor-Modified T Cells for Solid Tumors: Challenges and Prospects

    Directory of Open Access Journals (Sweden)

    Yelei Guo

    2016-01-01

    Full Text Available Recent studies have highlighted the successes of chimeric antigen receptor-modified T- (CART- cell-based therapy for B-cell malignancies, and early phase clinical trials have been launched in recent years. The few published clinical studies of CART cells in solid tumors have addressed safety and feasibility, but the clinical outcome data are limited. Although antitumor effects were confirmed in vitro and in animal models, CART-cell-based therapy still faces several challenges when directed towards solid tumors, and it has been difficult to achieve the desired outcomes in clinical practice. Many studies have struggled to improve the clinical responses to and benefits of CART-cell treatment of solid tumors. In this review, the status quo of CART cells and their clinical applications for solid tumors will be summarized first. Importantly, we will suggest improvements that could increase the therapeutic effectiveness of CART cells for solid tumors and their future clinical applications. These interventions will make treatment with CART cells an effective and routine therapy for solid tumors.

  4. Diverse hematological malignancies including hodgkin-like lymphomas develop in chimeric MHC class II transgenic mice.

    Directory of Open Access Journals (Sweden)

    Silke H Raffegerst

    Full Text Available A chimeric HLA-DR4-H2-E (DR4 homozygous transgenic mouse line spontaneously deve