WorldWideScience

Sample records for chimeric anti cd-20

  1. Radioimmunotherapy in refractory b-cell nonhodgkins lymphoma with I-131-labeled chimeric anti cd-20 c2b8 (I-131 rituximab): preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye Jin; Park, Yeon Hee; Kim, Sung Eun and others [Korea University Medical School, Seoul (Korea, Republic of)

    2005-07-01

    Recently, the native chimeric human-mouse anti CD-20 antibody IDEC-C2B8 (Rituximab) has been widely applied in NHL. This ongoing phase study was to evaluate whether radioimmunotherapy (RIT) with I-131 rituximab is effective in refractory B-cell NHL. Inclusion criteria were as follows: B-cell NHL with relapsed or refractory to primary standard therapy, measurable disease, adequate hematologic, renal, and hepatic function, informed consent. The rituximab (Mabthera, Roach) was radiolabeled with iodine-131(I-131) using a modified chloramine T method with high radiochemical purity (95%) and preservation of immuno-reactivity. All patients received loading doses of unlabeled rituximab (median, 40 mg: range, 20{approx}70 mg) immediately prior to administration of therapeutic dose (51.4{approx}152.2 MBq/kg), and then underwent gamma camera scan. 11 patients were enrolled (4 low-grade B-cell NHL, 7 DLBCL, median age 63 years). Patients had received a median of three prior chemotherapy regimens. The objective response rate was 36.4% (1 CR, 3 PRs). These all responses were observed in low-grade B-cell NHL, except one with DLBCL. Adverse events were primarily hematologic toxicities; the incidence of grade 3/4 neutropenia, thrombocytopenia, and anemia was 27.3%, 45.5%, and 18.2%, respectively. The treatment-related mortality was observed in one patient, who had been previously treated with high-dose chemotherapy plus TBI with autologous stem cell transplantation. RIT with I-131 rituximab seems to be effective tolerable in refractory low-grade B-cell NHL, although modest activity in refractory DLBCL. Further studies to define the efficacy of I-131 rituximab in DLBCL are warranted.

  2. Efficacy of anti-CD20 chi- meric Fab′fragment on pro- liferation of B lymphoma cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The variable domain of heavy chain (VH) and light chain (VL) genes of anti-CD20 monoclonal antibody HI47 were cloned from anti-CD20 ScFv expression vector pCANBTEcd20 by PCR and ligated into vector pYZF to construct chimeric anti-CD20 Fab¢ fragment expression vector pYZFcd20. Chimeric anti-CD20 Fab¢ fragment was expressed in E. coli 16C9 and purified by protein G affinity chromatography. Competitive inhibition assay showed that anti-CD20 Fab¢ fragment inhibited binding of HI47 to CD20 on the surface of Daudi cells. Results from MTT assay indicated that chimeric anti-CD20 Fab¢ fragment inhibited the proliferation of Daudi cells, IC50 = 69 mg/mL. Affinity of chimeric anti-CD20 Fab¢ fragment was determined, Ka was about 8.9′108 (mol/L)-1.

  3. Induction of Apoptosis of Raji Cell by Chimeric Anti-CD20 Fab′ Fragment CTAM Based Dynamic Analysis of Large Astronautical Structure%嵌合抗CD20 Fab′诱导Raji细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    范冬梅; 赖增祖; 熊冬生; 许元富; 彭晖; 杨纯正

    2001-01-01

    为了研究嵌合抗CD20基因工程抗体Fab′的抗肿瘤活性及其抗肿瘤机制,利用3H掺入法测定嵌合抗CD20 Fab′对Raji细胞生长的影响,结果显示嵌合抗CD20 Fab′对Raji细胞的生长具有抑制作用,利用流式细胞仪测定嵌合抗CD20 Fab′诱导Raji细胞凋亡作用,结果显示嵌合抗CD20 Fab′可诱导Raji细胞凋亡作用.这些实验结果证明嵌合抗CD20 Fab′通过诱导Raji细胞凋亡的机制抑制Raji细胞生长.

  4. Inhibition of Proliferation of Raji Cell by Chimeric Anti-CD20 Antibody Fab′ Fragment%嵌合抗CD20 Fab′对B淋巴瘤细胞Raji细胞生长的影响

    Institute of Scientific and Technical Information of China (English)

    范冬梅; 赖增祖; 熊冬生; 许元富; 彭晖; 杨纯正

    2001-01-01

    目的:研究嵌合抗CD20基因工程抗体Fab′的抗肿瘤活性.方法:利用MTT法以及3H掺入法测定嵌合抗CD20 Fab′对Raji细胞生长的影响.结果:MTT法测定结果显示嵌合抗CD20 Fab′对Raji细胞的生长具有抑制作用,抑制作用成剂量依赖性,其IC50为24μg/ml;嵌合抗CD20 Fab′对3H-TdR掺入Raji细胞无抑制作用,表明抗CD20 Fab′不影响Raji细胞DNA的合成;但嵌合抗CD20 Fab′抑制3H-UdR掺入Raji细胞,表明嵌合抗CD20 Fab′对Raji细胞RNA合成具有抑制作用,其抑制作用成剂量相关性.结论:嵌合抗CD20 Fab′抑制Raji细胞生长,嵌合抗CD20 Fab′具有较好的抗肿瘤活性.

  5. In vitro characterization of {sup 177}Lu-radiolabelled chimeric anti-CD20 monoclonal antibody and a preliminary dosimetry study

    Energy Technology Data Exchange (ETDEWEB)

    Forrer, Flavio; Mueller-Brand, Jan [University Hospital Basel, Institute of Nuclear Medicine, Basel (Switzerland); Chen, Jianhua; Fani, Melpomeni; Powell, Pia; Maecke, Helmut R. [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); Lohri, Andreas [Basel University Medical Clinic, Liestal (Switzerland); Moldenhauer, Gerhard [German Cancer Research Center, Division of Molecular Immunology, Heidelberg (Germany)

    2009-09-15

    {sup 131}I- and {sup 90}Y-labelled anti-CD20 antibodies have been shown to be effective in the treatment of low-grade, B-cell non-Hodgkin's lymphoma (NHL). However, the most appropriate radionuclide in terms of high efficiency and low toxicity has not yet been established. In this study we evaluated an immunoconjugate formed by the anti-CD20 antibody rituximab and the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). DOTA-rituximab was prepared as a kit formulation and can be labelled in a short time (<20 min) with either {sup 177}Lu or {sup 90}Y. Immunoconjugates with different numbers of DOTA molecules per rituximab were prepared using p-SCN-Bz-DOTA. In vitro immunoreactivity and stability were tested and preliminary dosimetric results were acquired in two patients. The immunological binding properties of DOTA-rituximab to the CD20 antigen were found to be retained after conjugation with up to four chelators. The labelled product was stable against a 10{sup 5} times excess of diethylenetriaminepentaacetic acid (DTPA, 37 C, 7 days). Two patients with relapsed NHL were treated with 740 MBq/m{sup 2} body surface {sup 177}Lu-DOTA-rituximab. Scintigraphic images showed specific uptake at tumour sites and acceptable dosimetric results. The mean whole-body dose was found to be 314 mGy. The administration of {sup 177}Lu-DOTA-rituximab was tolerated well. Our results show that DOTA-rituximab (4:1) can be labelled with {sup 177}Lu with sufficient stability while the immunoconjugate retains its immunoreactivity. {sup 177}Lu-DOTA-rituximab is an interesting, well-tolerated radiolabelled antibody with clinical activity in a low dose range, and provides an approach to the efficient treatment with few side effects for patients with relapsed NHL. (orig.)

  6. [{sup 177}Lu]DOTA-anti-CD20: Labeling and pre-clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Audicio, Paola F., E-mail: paudicio@cin.edu.u [Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Mataojo 2055, 11400 Montevideo (Uruguay); Castellano, Gustavo, E-mail: gcas@famaf.unc.edu.a [FaMAF, Universidad Nacional de Cordoba, Ciudad Universitaria, 5016 Cordoba (Argentina); Tassano, Marcos R.; Rezzano, Maria E.; Fernandez, Marcelo [Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Mataojo 2055, 11400 Montevideo (Uruguay); Riva, Eloisa [Clinica Hematologica ' Prof. Dra. L. Diaz' , Hospital de Clinicas. Av. Italia. sn, Montevideo (Uruguay); Robles, Ana; Cabral, Pablo; Balter, Henia; Oliver, Patricia [Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica, Mataojo 2055, 11400 Montevideo (Uruguay)

    2011-07-15

    Anti-CD20 (Rituximab), a specific chimeric monoclonal antibody used in CD20-positive Non-Hodgkin's Lymphoma, was conjugated to a bifunctional quelate (DOTA) and radiolabeled with {sup 177}Lu through a simple method. [{sup 177}Lu]-DOTA-anti-CD20 was obtained with a radiochemical purity higher than 97%, and showed good chemical and biological stability, maintaining its biospecificity to CD20 antigens. Monte Carlo simulation showed high doses deposited on a spheroid tumor mass model. This method seems to be an appropriate alternative for the production of [{sup 177}Lu]-DOTA-anti-CD20 as therapeutic radiopharmaceutical.

  7. In vitro characterization of a chimeric anti-CD20 antibody%抗CD20嵌和抗体的体外生物学活性研究

    Institute of Scientific and Technical Information of China (English)

    杨扬; 张大鹏; 郭怀祖; 吴兰; 聂丽; 钱卫珠; 李博华

    2010-01-01

    c8F6是我们实验室制备的一株抗CD20的鼠/人嵌合抗体.本研究对c8F6的体外生物学活性进行了测定并与临床上使用的CD20抗体Rituximab进行了比较.实验结果表明,c8F6具有与Rituximab相似的抗原结合活性,抗体依赖性细胞介导的细胞毒作用(ADCC),肿瘤细胞凋亡诱导活性及肿瘤细胞生长抑制作用.但c8F6的补体依赖性细胞毒作用(CDC)明显强于Rituximab,在10 μg/ml浓度时c8F6对Daudi细胞和Raji细胞的杀伤率分别为91%和86%,而Rituximab的杀伤率分别为65%(Daudi细胞)和32%(Raji细胞).研究结果提示,c8F6可能发展成为一个比Rituximab更为有效的用于治疗B细胞非霍奇金淋巴瘤的抗体制剂.

  8. High-dose radioimmunotherapy in refractory b-celI non-Hodgikin's lymphoma with I-131-labeled chimeric anti CD-20 C2B8 (I-131 rituximab): pilot trial

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Eun; Park, Yeon Hee; Cheon, Gi Jeong; Ryoo, Baek Yeol; Lee, Seung Sook; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Science, Seoul (Korea, Republic of)

    2004-07-01

    The native chimeric human-mouse anti CD-20 antibody IDEC-C2B8 (rituximab) is therapeutically applied in relapsed or refractory NHL. This ongoing pilot study was to evaluate whether high-dose radioimmunotherapy (RIT) with I-131 rituximab is therapeutically effective in refractory B-cell NHL. 5 patients (5 male, aged 50.89{+-}16.89) with chemorefractory NHL of B-cell origin (2 diffuse large B cell, 1 burkitt's lymphoma, and 2 mantle cell Iymphoma) oe, with a life expectancy of at least 3 months, and with a Kamofsky performance score of 60 and above were studied. The chimeric IgG1 anti CD 20 monoclonal antibody rituximab (mabthera, Roche) was radiolabelled with iodine-131 (I-131) using a modified chloaramine T method with high radiochemical purity (95%{+-}0.9) and preservation of immunoreactivity. All patients received therapeutic loading doses of unlabelled rituximab (18.5 MBq/kg) immediately prior to administration of therapeutic dose (3.7 GBq-8.5 GBq), and then underwent gamma camera scan and pre-and post-RIT FDG PET (within 7 day and day 30). Blood cell nadirs were reached at 2-3 weeks after therapy infusion, but all patients recovered at 6 weeks after treatment. Non hematologic toxicity was restricted to mild-to moderate nausea, fever, transient bilirubin, or liver enzyme elevation. Two (8.5 GBq) with mantle cell lymphoma and one with burkitt's lymphoma experienced good partial remissions, and one (5.5 GBq, DLBL) with bulky disease had a partial remission, and one patient (3.7 GBq, DLBL) with bulky disease had a mixed response. High-dose RIT with I-131 labelled rituximab seems to be effective and moderate toxicity. Further follow-up to monitor the long-term outcome are indicated.

  9. Structure verification of a recombinant chimeric anti-CD20 IgG1 monoclonal antibody%重组嵌合抗CD20 IgG1型单克隆抗体的结构验证

    Institute of Scientific and Technical Information of China (English)

    陶磊; 饶春明; 高凯; 史新昌; 赵阳; 王军志

    2010-01-01

    本文选择一种重组嵌合抗CD20 IgG1型单抗.应用液质联用仪及N-末端测序仪对其进行结构验证.对该单抗进行还原、烷基化、酶解等处理后,对其氨基酸序列、二硫键配对方式、糖链类型及糖基化位点进行分析测定.结果显示,该单抗轻、重链氨基酸序列与理论一致.通过液质肽图的解析,对单抗10条二硫键的配对方式进行了验证;通过比较单抗重链切糖前、后的相对分子质量,预测单抗所含糖链类型为岩藻糖化的双触角复杂型N-糖,糖基化位点位于重链的Asn301上.本方法可为该类重组单抗制品的质量控制及其参考品的结构确证提供参考.

  10. Anti-CD20 monoclonal antibodies as novel treatments for non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    White, C.A.; Larocca, A.; Grillo-Lopez, A.J. [IDEC Pharmaceuticals, 3030 Callan Road, San Diego, CA (United States)

    1999-03-01

    Anti-CD20 monoclonal antibodies (MAbs) offer new options for patients with non-Hodgkin's lymphoma, needed because existing therapies have many limitations. The unconjugated, chimeric anti-CD20 antibody, Rituximab (MabThera, Rituxan), has recently been approved in the USA for patients with relapsed or refractory, low-grade or follicular, B-cell non-Hodgkin's lymphoma, and in Europe for therapy of relapsed stage III/IV follicular lymphoma. In the pivotal study of Rituximab, an overall response rate of 50% was achieved with median time to progressionin responders of 13.2 months. Studies are ongoing with the {sup 90}Y-labelled murine anti-CD20 antibody, IDEC-Y2B8. The response rate in a Phase I/II study in low-grade and intermediate-grade patients was 67%. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Dosimetric studies of anti-CD20 labeled with therapeutic radionuclides at IPEN/CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, G.; Dias, C.R.B.R.; Osso Junior, J.A., E-mail: gracielabarrio@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-07-01

    Radioimmunotherapy (RIT) makes use of monoclonal antibodies (MAb) labeled with alpha/beta radionuclides for therapeutical purposes, leading to tumor irradiation and destruction, preserving the normal organs on the radiation excess. The therapeutic activity to be injected in a specific patient is based on information obtained in dosimetric studies. Beta emitting radionuclides such as {sup 131}I, {sup 188}Re, {sup 90}Y, {sup 177}Lu and {sup 166}Ho are useful for the development of therapeutic radiopharmaceuticals. Anti-CD20 (Rituximab) is a chimeric MAb directed against antigen surface CD20 on B-lymphocytes, used in non-Hodgkin lymphoma treatment (NHL). The association with beta radionuclides have shown greater therapeutic efficacy. Currently, two radiopharmaceuticals with Anti-CD20 for radioimmunotherapy have FDA approval for NHL treatment: {sup 131}I-AntiCD20 (Bexar) and {sup 90}Y-AntiCD20 (Zevalin). Techniques for the radiolabeling of {sup 188}Re-antiCD20 have been recently developed by IPEN-CNEN/SP in order to evaluate the clinical use of this radionuclide in particular. The use of {sup 188}Re (T{sub 1/2} 17h) produced by the decay of {sup 188}W (T{sub 1/2} 69d), from an {sup 188}W/{sup 188}Re generator system, has represented an alternative to RIT. Beyond high energy beta emission for therapy, {sup 188}Re also emits gamma rays (155keV) suitable for image. The aim of this new project is to compare the labeling of anti-CD20 with {sup 188}Re with the same MAb labeled with {sup 131}I, {sup 177}Lu, {sup 90}Y and even {sup 99m}Tc. The first step in this project is the review of the published data available concerning the labeling of this MAb with different radionuclides, along with data obtained at IPEN, taking into account labeling procedures, labeling yields, reaction time, level and kind of impurities and biodistribution studies. The pharmacokinetic code will be developed in Visual Studio.NET platform through VB.NET and C{sup ++} for biodistribution and dosimetric

  12. Microenvironment and anti-CD20 based therapies in CLL

    NARCIS (Netherlands)

    Jak, M.

    2012-01-01

    Chronische lymfatische leukemie (CLL) kenmerkt zich door een ophoping van kwaadaardige B-lymfocyten (witte bloedcellen) in bloed, lymfeklieren, milt en beenmerg. Het is niet te genezen omdat CLL-cellen resistent worden tegen behandeling. Margot Jak onderzocht twee typen anti-CD20-antilichamen. Antil

  13. Production of an active anti-CD20-hIL-2 immunocytokine in Nicotiana benthamiana.

    Science.gov (United States)

    Marusic, Carla; Novelli, Flavia; Salzano, Anna M; Scaloni, Andrea; Benvenuto, Eugenio; Pioli, Claudio; Donini, Marcello

    2016-01-01

    Anti-CD20 murine or chimeric antibodies (Abs) have been used to treat non-Hodgkin lymphomas (NHLs) and other diseases characterized by overactive or dysfunctional B cells. Anti-CD20 Abs demonstrated to be effective in inducing regression of B-cell lymphomas, although in many cases patients relapse following treatment. A promising approach to improve the outcome of mAb therapy is the use of anti-CD20 antibodies to deliver cytokines to the tumour microenvironment. In particular, IL-2-based immunocytokines have shown enhanced antitumour activity in several preclinical studies. Here, we report on the engineering of an anti-CD20-human interleukin-2 (hIL-2) immunocytokine (2B8-Fc-hIL2) based on the C2B8 mAb (Rituximab) and the resulting ectopic expression in Nicotiana benthamiana. The scFv-Fc-engineered immunocytokine is fully assembled in plants with minor degradation products as assessed by SDS-PAGE and gel filtration. Purification yields using protein-A affinity chromatography were in the range of 15-20 mg/kg of fresh leaf weight (FW). Glycopeptide analysis confirmed the presence of a highly homogeneous plant-type glycosylation. 2B8-Fc-hIL2 and the cognate 2B8-Fc antibody, devoid of hIL-2, were assayed by flow cytometry on Daudi cells revealing a CD20 binding activity comparable to that of Rituximab and were effective in eliciting antibody-dependent cell-mediated cytotoxicity of human PBMC versus Daudi cells, demonstrating their functional integrity. In 2B8-Fc-hIL2, IL-2 accessibility and biological activity were verified by flow cytometry and cell proliferation assay. To our knowledge, this is the first example of a recombinant immunocytokine based on the therapeutic Rituximab antibody scaffold, whose expression in plants may be a valuable tool for NHLs treatment.

  14. Unexpected and persistent depletion of B lymphocytes CD20 following a minimum dose of anti-CD20 antibody (Rituximab

    Directory of Open Access Journals (Sweden)

    V. Bruzzese

    2011-06-01

    Full Text Available Rituximab is a chemeric murine/human anti-B lymphocyte antigen CD20 monoclonal antibody used in the treatment of rheumatoid arthritis resistant to treatment by one or more anti TNF-alpha therapies (1. The recommended dose for an efficient depletion of the B CD 20 lymphocytes in rheumatoid arthritis is two infusions of 1000 mg, with the second infusion being administered two weeks after the first. At this dose, one obtains a rapid and persistent depletion of CD 20 cells, with repopulation occurring, on the average, in about eight months (2. Here, we present a case of a woman treated with only 50 mg of rituximab, who underwent both a rapid and pronounced reduction of B CD 20 lymphocytes...

  15. Ofatumumab: a novel monoclonal anti-CD20 antibody

    Directory of Open Access Journals (Sweden)

    Thomas S Lin

    2010-05-01

    Full Text Available Thomas S LinGlaxoSmithKline Oncology R&D, Collegeville, PA, USAAbstract: Ofatumumab, a novel humanized monoclonal anti-CD20 antibody, was recently approved by the FDA for the treatment of fludarabine and alemtuzumab refractory chronic lymphocytic leukemia (CLL. Ofatumumab effectively induces complement-dependent cytotoxicity (CDC in vitro, and recent studies demonstrated that ofatumumab also effectively mediates antibody-dependent cellular cytotoxicity (ADCC. Pharmacokinetic studies indicated that increased exposure to the antibody correlated with improved clinical outcome in CLL. Thus, pharmacogenomics may be important in identifying which patients are more likely to respond to ofatumumab therapy, although such studies have not yet been performed. Patients with the high-affinity FCGR3a 158 V/V polymorphism may be more likely to respond to therapy, if ADCC is the primary in vivo mechanism of action of ofatumumab. Patients with increased expression of the complement defense proteins CD55 and CD59 may be less likely to respond if ofatumumab works in vivo primarily via CDC. Patients with increased metabolism and clearance of ofatumumab may have lower exposure and be less likely to respond clinically. Thus, pharmacogenomics may determine the responsiveness of patients to ofatumumab therapy.Keywords: monoclonal antibody, CD20, CLL, NHL, lymphoma

  16. Development of a lyophilized formulation for preparing the radiopharmaceutical {sup 177}Lu-DOTA-Anti-CD20; Desarrollo de una formulacion liofilizada para la preparacion del radiofarmaco {sup 177}-DOTA-Anti-CD20

    Energy Technology Data Exchange (ETDEWEB)

    Serrano E, L. A.

    2015-07-01

    The radiolabeled proteins are molecules of interest in nuclear medicine for their diagnostic and therapeutic application in cancer. Antibodies, such as chimeric monoclonal antibody Anti-CD20 rituximab, have established themselves as suitable vectors of radionuclides (e.g. {sup 177}Lu) , introducing high affinity by the surface antigens over- expressed and widely distributed in cells involved in certain diseases. The aim of this work was to design, optimize and document the production process of radiopharmaceutical {sup 177}Lu-DOTA-Anti-CD20 for sanitary registration request to the Comision Federal para la Proteccion contra Riesgos Sanitarios (COFEPRIS). First, a raw material analysis using the Ft-Mir technique and gamma spectrometry was performed. Then, was carried out the development of the lyophilized formulation for the preparation of {sup 177}Lu-DOTA-Anti-CD20, in which an ANOVA was performed where the dependent variable was the radiochemical purity. The optimal pharmaceutical formulation was: 5 mg DOTA-CD20 and 80 mg Mannitol to be reconstituted with 1 m L of acetate buffer 0.25 M, ph 7, with an incubation time of 15 min at 37 degrees Celsius in a dry bath. Once completed the development of the lyophilized formulation, we proceeded to the optimization of the production process, development and validation of the analytical method. Three batches were prepared under protocols of Good Manufacturing Practice, which met pre-established specifications as sterile and endotoxin-free of bacterial formulations, with greater that 95% of radiochemical purity. Currently, is conducting the study of shelf stability. Upon completion of the stability studies, the legal record of {sup 177}Lu-DOTA-Anti-CD20 will be integrated with documented evidence of the quality and stability of the formulation of this radiopharmaceutical. (Author)

  17. Dosimetry and microdosimetry of {sup 188} Re-anti-CD20 and {sup 131} I-anti-CD20 for the treatment of No Hodgkin lymphomas; Dosimetria y microdosimetria del {sup 188} Re-anti-CD20 y {sup 131} I-anti-CD20 para el tratamiento de linfomas No Hodgkin

    Energy Technology Data Exchange (ETDEWEB)

    Torres G, E

    2007-07-01

    The purpose of this investigation was to prepare {sup 131}I-anti-CD20 and {sup 188}Re-anti-CD20 and to estimate the radiation absorbed dose at macro- and micro- level during a NHL treatment. The work was divided in 4 general objectives: 1) preparation of {sup 131}I-anti-CD20 and {sup 188}Re-anti-CD20, 2) application in patients to obtain biokinetic parameters and estimate the organ absorbed doses 3) estimation of the cellular dosimetry using the MIRD methodology and the MCNP4C2 code and 4) estimation of the cellular microdosimetry using the NOREC code. {sup 188}Re-anti-CD20 was prepared by a direct labelling method using sodium tartrate as a weak ligand. To evaluate the biological recognition a comparative study of the in vitro binding of {sup 188}Re-anti-CD20, {sup 125}I-anti-CD20 (positive control) and {sup 188}Re-anti-CEA (negative control) to normal B Iymphocytes was performed. Biodistribution studies in normal mice were accomplished to assess the in vivo Re-anti-CD20 complex stability. The binding of ' Re-anti-CD20 to cells was in the same range as '251-anti-CD20 (>80%) considered as the positive control. {sup 188}Re-anti-CD20 and '3'1-anti-CD20 prepared were administered in patients diagnosed with B cell NHL at the Centro Medico Siglo XXI (IMSS). The protocol was approved by the hospital's Medical Ethics Committee. AJI patients signed a consent form after receiving detailed information on the aims of the study. N data were the input for the OLINDA/EXM software to calculate the radiation absorbed dose to organs and whole body. Dosimetric studies indicate that after administration of 6.4 GBq and 4.87 to 8.75 GBq of '3'1-anti-CD20 and {sup 188}Re-anti-CD20 respectively, the absorbed dose to total body would be 0.75 Gy which corresponds to the recommended dose for NHL therapies. The calculated organ absorbed doses indicate that {sup 188}Re-anti-CD20 may be used in radioimmunotherapy without the risk of toxicity to red marrow or

  18. Intrathecal anti-CD20 efficiently depletes meningeal B cells in CNS autoimmunity

    Science.gov (United States)

    Lehmann-Horn, Klaus; Kinzel, Silke; Feldmann, Linda; Radelfahr, Florentine; Hemmer, Bernhard; Traffehn, Sarah; Bernard, Claude C A; Stadelmann, Christine; Brück, Wolfgang; Weber, Martin S

    2014-01-01

    Clinical trials revealed that systemic administration of B-cell-depleting anti-CD20 antibodies can hold lesion formation in the early relapsing-remitting phase of multiple sclerosis (MS). Throughout the secondary-progressive (SP) course of MS, pathogenic B cells may, however, progressively replicate within the central nervous system (CNS) itself, which is largely inaccessible to systemic anti-CD20 treatment. Utilizing the murine MS model of experimental autoimmune encephalomyelitis, we show that intrathecal (i.t.) administration of anti-CD20 alone very efficiently depletes meningeal B cells from established CNS lesions. In SP-MS patients, adding i.t. administration of anti-CD20 to its systemic use may be a valuable strategy to target pathogenic B-cell function. PMID:25356419

  19. Efecto de un anticuerpo monoclonal anti CD20 (Rituximab) en trombocitopenia inmune.

    OpenAIRE

    Untama, José; Médico, Departamento de Hematología, Hospital Nacional Edgardo Rebagliati Martins – EsSalud. Lima.; Del Carpio, Daniel; Médico, Departamento de Hematología, Hospital Nacional Edgardo Rebagliati Martins – EsSalud. Lima.

    2012-01-01

    Objetivo: Describir la respuesta terapéutica con un anticuerpo monoclonal anti CD20 (Rituximab), en pacientes con Trombocitopenia Inmune (PTI). Material y métodos: Estudio retrospectivo, descriptivo y observacional tipo serie de casos. Se revisaron las historias clínicas de pacientes adultos con PTI que recibieron el anticuerpo monoclonal anti CD20 (Rituximab), desde diciembre 2005 hasta diciembre 2010. Se definió respuesta: conteo plaquetario >30 mil, por lo menos duplicar el conteo plaqu...

  20. Compartmental and dosimetric studies of anti-CD20 labelled with {sup 188}Re; Estudo compartimental e dosimetrico do Anti-CD20 marcado com {sup 188}Re

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Graciela Barrio

    2016-10-01

    The radioimmunotherapy (RIT) uses MAbs conjugated to radionuclides α or β{sup -} emitters, both for therapy. Your treatment is based on the irradiation and tumor destruction, preserving the normal organs as the excess radiation. Radionuclides β{sup -} emitters as {sup 131}I, {sup 90}Y, {sup 188}Re {sup 177}Lu and are useful for the development of therapeutic radiopharmaceuticals and, when coupled with MAb and Anti-CD20 it is important mainly for the treatment of non-Hodgkin's lymphomas (NHL). {sup 188}Re (E{sub β} = 2.12 MeV; E{sub γ} = 155 keV; t1/2 = 16.9 h) is an attractive radionuclide for RIT. However, {sup 188}Re can be obtained from a radionuclide generator of {sup 188}W/{sup 188}Re, commercially available, making it convenient for use in research and for clinical routine. The CR of IPEN has a project aimed at the production of radiopharmaceutical {sup 188}Re-Anti-CD20, where the radionuclide can be obtained from a generator system {sup 188}W/{sup 188}Re. With this proposed a study to assess the efficiency of this labeling technique for treatment in accordance compartmental and dosimetry. The objective of this study was to compare the marking of anti-CD20 MAb with {sup 188}Re with the marking of the antibody with {sup 90}Y, {sup 131}I, {sup 177}Lu and {sup 99m}Tc (for their similar chemical characteristics) and {sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac); through the study of labeling techniques reported in literature, the proposal of a compartmental model to evaluate its pharmacokinetic and dosimetric studies, high interest for therapy. The result of the study shows a favorable kinetics for {sup 188}Re, by their physical and chemical characteristics compared to the other evaluated radionuclides. The compartment proposed study describes the metabolism of {sup 188}Reanti- CD20 through a compartment mammillary model, which by their pharmacokinetic analysis, performed compared to products emitters β{sup -131}I-labeled anti CD20, {sup 177

  1. Anti CD20 (Rituximab therapy in refractory pediatric rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Joel Reis

    2016-01-01

    Full Text Available Objectives: We aim to report the efficacy and safety of rituximab (RTX in patients diagnosed with juvenile systemic lupus erythematosus (JSLE or juvenile idiopathic arthritis (JIA refractory to conventional treatment. Methods: A retrospective review was made of all medical records of patients with JSLE or JIA treated with RTX between January 2009 and January 2015 in the Pediatric Rheumatology Unit of a central hospital. Results: Five patients, 4 with JSLE and 1 with extended oligoarticular JIA, received 10 cycles of RTX (23 infusions. The scheme of RTX frequently used was 750 mg/m2 two weeks apart. The median follow-up time after receiving the first cycle of RTX was 24 months (12 – 70. The four patients with JSLE were female (three caucasian and one black. The patient with JIA was a caucasian male. The median age at diagnosis was 10 years (16 months – 17years. The median evolution time until receiving RTX was 6 years (5 months – 15 years. Refractory class IV lupus nephritis was the most common indication for receiving RTX. Previous treatment to RTX included nonsteroidal anti-inflammatory drugs, disease-modifying anti-rheumatic drugs, immunosuppressive drugs and corticosteroids in all patients and anti-TNFα (etanercept in the patient with JIA. It was possible to reduce the mean oral corticosteroid dose after RTX, ranging from 23 mg/day (20-25mg/day before RTX to 11 mg/day (0–20 mg/day at the last evaluation. Disease activity before RTX and at last evaluation also improved. The SLEDAI score, for JSLE, decreased from a median of 15, 5 (11 – 18 to 3 (0 – 6, and the JADAS-27 score, for JIA, also diminished from 40.4 to 3.5. Adverse events occurred in 2 patients, including delayed second dose after the diagnosis of cryptococcosis and respiratory tract infection with concomitant hypogammaglobulinemia needing of immunoglobulin replacement and antibiotic therapy. Conclusions: Rituximab might have a role in the treatment of JSLE and JIA

  2. Combination treatment with anti-CD20 and oral anti-CD3 prevents and reverses autoimmune diabetes.

    Science.gov (United States)

    Hu, Changyun; Ding, Heyuan; Zhang, Xiaojun; Wong, F Susan; Wen, Li

    2013-08-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease, although B cells also play an important role in T1D development. Both T cell- and B cell-directed immunotherapies have shown efficacy in the prevention and reversal of T1D. However, whether the combined strategy of targeting both T and B cells could further improve therapeutic efficacy remains to be explored. We show that combined treatment with intravenous antihuman CD20 (hCD20) and oral anti-CD3 significantly delays diabetes development in prediabetic hCD20 transgenic NOD mice. More importantly, the combined treatment reverses diabetes in >60% of mice newly diagnosed with diabetes. Further mechanistic studies demonstrated that the addition of oral anti-CD3 to the B-cell depletion therapy synergistically enhances the suppressive function of regulatory T cells. Of note, the oral anti-CD3 treatment induced a fraction of interleukin (IL)-10-producing CD4 T cells in the small intestine through IL-10- and IL-27-producing dendritic cells. Thus, the findings demonstrate that combining anti-CD20 and oral anti-CD3 is superior to anti-CD20 monotherapy for restoring normoglycemia in diabetic NOD mice, providing important preclinical evidence for the optimization of B cell-directed therapy for T1D.

  3. Anti-CD20 B-cell depletion enhances monocyte reactivity in neuroimmunological disorders

    Directory of Open Access Journals (Sweden)

    Hohlfeld Reinhard

    2011-10-01

    Full Text Available Abstract Background Clinical trials evaluating anti-CD20-mediated B-cell depletion in multiple sclerosis (MS and neuromyelitis optica (NMO generated encouraging results. Our recent studies in the MS model experimental autoimmune encephalomyelitis (EAE attributed clinical benefit to extinction of activated B-cells, but cautioned that depletion of naïve B-cells may be undesirable. We elucidated the regulatory role of un-activated B-cells in EAE and investigated whether anti-CD20 may collaterally diminish regulatory B-cell properties in treatment of neuroimmunological disorders. Methods Myelin oligodendrocyte glycoprotein (MOG peptide-immunized C57Bl/6 mice were depleted of B-cells. Functional consequences for regulatory T-cells (Treg and cytokine production of CD11b+ antigen presenting cells (APC were assessed. Peripheral blood mononuclear cells from 22 patients receiving anti-CD20 and 23 untreated neuroimmunological patients were evaluated for frequencies of B-cells, T-cells and monocytes; monocytic reactivity was determined by TNF-production and expression of signalling lymphocytic activation molecule (SLAM. Results We observed that EAE-exacerbation upon depletion of un-activated B-cells closely correlated with an enhanced production of pro-inflammatory TNF by CD11b+ APC. Paralleling this pre-clinical finding, anti-CD20 treatment of human neuroimmunological disorders increased the relative frequency of monocytes and accentuated pro-inflammatory monocyte function; when reactivated ex vivo, a higher frequency of monocytes from B-cell depleted patients produced TNF and expressed the activation marker SLAM. Conclusions These data suggest that in neuroimmunological disorders, pro-inflammatory APC activity is controlled by a subset of B-cells which is eliminated concomitantly upon anti-CD20 treatment. While this observation does not conflict with the general concept of B-cell depletion in human autoimmunity, it implies that its safety and

  4. Comparative studies of antibody anti-CD20 labeled with {sup 188}Re; Estudo comparativo da marcacao do anticorpo anti-CD20 com {sup 188}Re

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Carla Roberta de Barros Rodrigues

    2010-07-01

    Nuclear Medicine is an unique and important modality in oncology and the development of new tumor-targeted radiopharmaceuticals for both diagnosis and therapy is an area of interest for researchers. Rituximab (RTX) is a quimeric monoclonal antibody (mAb) (IgG 1) that specifically binds to CD20 antigen with high affinity and has been successfully used for the treatment of Non-Hodgkin Lymphoma (NHL) of cell B. The CD20 antigen is expressed over more than 90% of cell B NHL. Technetium-99m ({sup 99m}Tc) and rhenium-188 ({sup 188}Re) are an attractive radionuclide pair for clinical use due to their favorable decay properties for diagnosis ({sup 99m}Tc: T{sub 1/2} = 6 h, {gamma} radiation = 140 keV) and therapy ({sup 188}Re: T{sub 1/2} = 17 h, maximum {beta} energy = 2.12 MeV) and to their availability in the form of {sup 99}Mo/{sup 99}mTc and {sup 188}W/{sup 188}Re generators. The radionuclides can be conjugated to mAb using similar chemical procedures. The aim of this work was to study the labeling of anti-CD20 mAb (RTX) with {sup 188}Re using two techniques: the direct labeling method [{sup 188}Re(V)] and the labeling method via the carbonyl nucleus [{sup 188}Re(I)]. Besides the quality control, the radiolabeled mAb was submitted to in vivo, in vitro and ex vivo biological studies. For the direct labeling, RTX was reducing by incubation with 2-mercaptoethanol for generating sulphydryl groups (-SH) and further labeled with {sup 188}Re(V), in a study of several parameters in order to reach an optimized formulation. The labeling via the carbonyl nucleus both {sup 99}mTc and {sup 188}Re were employed through 2 different procedures: (1) labeling of intact RTX with {sup 99}mTc(I) and (2) reduced RTX (RTX{sub red}) labeled with {sup 99}mTc(I)/{sup 188}Re(I). Also a parameter study was performed to obtain an optimized formulation. The quality control method for evaluating the radiochemical purity showed a good labeling yield (93%) for the direct method. The labeling method

  5. Anti-CD22/CD20 Bispecific antibody with enhanced trogocytosis for treatment of Lupus.

    Directory of Open Access Journals (Sweden)

    Edmund A Rossi

    Full Text Available The humanized anti-CD22 antibody, epratuzumab, has demonstrated therapeutic activity in clinical trials of lymphoma, leukemia and autoimmune diseases, treating currently over 1500 cases of non-Hodgkin lymphoma, acute lymphoblastic leukemias, Waldenström's macroglobulinemia, Sjögren's syndrome, and systemic lupus erythematosus. Because epratuzumab reduces on average only 35% of circulating B cells in patients, and has minimal antibody-dependent cellular cytotoxicity and negligible complement-dependent cytotoxicity when evaluated in vitro, its therapeutic activity may not result completely from B-cell depletion. We reported recently that epratuzumab mediates Fc/FcR-dependent membrane transfer from B cells to effector cells via trogocytosis, resulting in a substantial reduction of multiple BCR modulators, including CD22, CD19, CD21, and CD79b, as well as key cell adhesion molecules, including CD44, CD62L, and β7 integrin, on the surface of B cells in peripheral blood mononuclear cells obtained from normal donors or SLE patients. Rituximab has clinical activity in lupus, but failed to achieve primary endpoints in a Phase III trial. This is the first study of trogocytosis mediated by bispecific antibodies targeting neighboring cell-surface proteins, CD22, CD20, and CD19, as demonstrated by flow cytometry and immunofluorescence microscopy. We show that, compared to epratuzumab, a bispecific hexavalent antibody comprising epratuzumab and veltuzumab (humanized anti-CD20 mAb exhibits enhanced trogocytosis resulting in major reductions in B-cell surface levels of CD19, CD20, CD21, CD22, CD79b, CD44, CD62L and β7-integrin, and with considerably less immunocompromising B-cell depletion that would result with anti-CD20 mAbs such as veltuzumab or rituximab, given either alone or in combination with epratuzumab. A CD22/CD19 bispecific hexavalent antibody, which exhibited enhanced trogocytosis of some antigens and minimal B-cell depletion, may also be

  6. Preparation and quality control of {sup 166}Ho-DTPA-antiCD20 for radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zolghadri, S.; Jalilian, A.R.; Yousefnia, H.; Bahrami-Sumani, A.; Shirvani-Arani, S.; Ghannadi-Maragheh, M. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (IR). Radiopharmaceutical Research and Development Lab. (RRDL)

    2011-07-01

    In this work, anti-CD20 was successively labeled with beta-particle emitting radionuclide, Ho-166, for ultimate radioimmunotherapy applications. Ho-166 chloride was obtained by thermal neutron flux (1 x 10{sup 13} n cm{sup -2} s{sup -1}) of natural Ho{sub 2}(NO{sub 3}){sub 3} sample, dissolved in acidic media. {sup 166}Ho-holmium chloride (185 MBq) was added to the conjugated antibody after ccDTPA residulation at room temperature. Radiochemical purity of 95% (ITLC) and 98% (HPLC) were obtained for final radioimmunoconjugate (specific activity = 3-3.5 GBq/mg). The final isotonic {sup 166}Ho-rituximab complex was checked by gel electrophoresis for protein integrity retention. Biodistribution studies of Ho-166 chloride and radioimmunoconjugate were performed in wild-type rats to determine the biodistribution. The accumulation of the radiolabeled antibody in lungs, liver and spleen demonstrates a similar pattern to the other radiolabeled anti-CD20 immunoconjugates. (orig.)

  7. Phase 1 study results of the type II glycoengineered humanized anti-CD20 monoclonal antibody obinutuzumab (GA101) in B-cell lymphoma patients.

    Science.gov (United States)

    Salles, Gilles; Morschhauser, Franck; Lamy, Thierry; Milpied, Noel; Thieblemont, Catherine; Tilly, Hervé; Bieska, Gabi; Asikanius, Elina; Carlile, David; Birkett, Joe; Pisa, Pavel; Cartron, Guillaume

    2012-05-31

    Whereas the chimeric type I anti-CD20 Ab rituximab has improved outcomes for patients with B-cell malignancies significantly, many patients with non-Hodgkin lymphoma (NHL) remain incurable. Obinutuzumab (GA101) is a glycoengineered, humanized anti-CD20 type II Ab that has demonstrated superior activity against type I Abs in vitro and in preclinical studies. In the present study, we evaluated the safety, efficacy, and pharmacokinetics of GA101 in a phase 1 study of 21 patients with heavily pretreated, relapsed, or refractory CD20(+) indolent NHL. Patients received GA101 in a dose-escalating fashion (3 per cohort, range 50/100-1200/2000 mg) for 8 × 21-day cycles. The majority of adverse events (AEs) were grades 1 and 2 (114 of 132 total AEs). Seven patients reported a total of 18 grade 3 or 4 AEs. Infusion-related reactions were the most common AE, with most occurring during the first infusion and resolving with appropriate management. Three patients experienced grade 3 or 4 drug-related infusion-related reactions. The best overall response was 43%, with 5 complete responses and 4 partial responses. Data from this study suggest that GA101 was well tolerated and demonstrated encouraging activity in patients with previously treated NHL up to doses of 2000 mg. This trial is registered at www.clinicaltrials.gov as NCT00517530.

  8. A new approach to comparing anti-CD20 antibodies: importance of the lipid rafts in their lytic efficiency

    Directory of Open Access Journals (Sweden)

    Mariam Hammadi

    2010-06-01

    Full Text Available Mariam Hammadi, Jacques-Olivier Pers, Christian Berthou, Pierre Youinou, Anne BordronCentre Hospitalier Universitaire EA2216 and IFR148, Université de Bretagne Occidentale and Université Européenne de Bretagne, BP824, 29609 Brest cedex, FranceAbstract: The view that B lymphocytes are pathogenic in diverse pathological settings is supported by the efficacy of B-cell-ablative therapy in lymphoproliferative disorders, autoimmune diseases and graft rejection. Anti-B-cell antibodies (Abs directed against CD20 have therefore been generated, and of these, rituximab was the first anti-CD20 monoclonal Ab (mAb to be applied. Rituximab-mediated apoptosis, complement-dependent cytotoxicity and Ab-dependent cellular cytotoxicity differ from one disease to another, and, for the same disease, from one patient to another. This knowledge has prompted the development of new anti-CD20 mAbs in the hope of improving B-cell depletion. The inclusion of CD20/anti-CD20 complexes in large lipid rafts (LRs enhances the results of some, but not all, anti-CD20 mAbs, and it may be possible to include smaller LRs. Lipid contents of membrane may be abnormal in malignant B-cells, and could explain resistance to treatment. The function of these mAbs and the importance of LRs warrant further investigation. A detailed understanding of them will increase results for B-cell depletion in lymphoproliferative diseases.Keywords: anti-CD20 antibodies, lymphocyte B, lipid rafts, B-cell disorders

  9. Dosimetric evaluation of anti-CD20 labelled with {sup 188}Re

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, Graciela; Osso Junior, Joao A., E-mail: gracielabarrio@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Radioimmunotherapy has the potential to deliver lethal radiation energy directly to malignant cells via targeting of radioisotope-conjugated monoclonal antibodies (MAbs) to specific antigens. B-cell lymphoma is a particularly good candidate for radioimmunotherapy because the disease is inherently radiosensitive, malignant cells in the blood, bone marrow, spleen and lymphonodes are accessible, and MAbs have been developed to B-cell surface antigens that do not shed or modulate. Rituximab (RTX), the human IgG1-type chimeric form of the parent murine antibody ibritumomab, is specifically targeted against CD20, a surface antigen expressed by pre-B and mature human B lymphocytes. The use of rhenium-188 from a {sup 188}W/{sup 188}Re generator system represents an attractive alternative radionuclide for therapy. {sup 188}Re is produced from beta decay of the {sup 188}W parent. In addition to the emission of high-energy electrons (E{beta}= 2118 keV), {sup 188}Re also decays with emission of a gamma photon with an energy of 155 keV in 15% abundance. Besides the therapeutic usefulness of {sup 188}Re, the emission of gamma photon is an added advantage since the biodistribution of {sup 188}Re-labeled antibodies can be evaluated in vivo with a gamma camera. Also, rhenium has chemical properties similar to technetium. Thus, both can be conjugated to antibodies using similar chemistry methods. The objective of this work is to prove the usefulness of this radiopharmaceutical based on dosimetric studies, that are also required by the Brazilian Regulatory Agency (ANVISA). (author)

  10. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas.

    Science.gov (United States)

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O

    2015-08-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents.

  11. Anti-CD20 treatment of giant cell hepatitis with autoimmune hemolytic anemia.

    Science.gov (United States)

    Paganelli, Massimiliano; Patey, Natacha; Bass, Lee M; Alvarez, Fernando

    2014-10-01

    Giant cell hepatitis with autoimmune hemolytic anemia (GCH-AHA) is a rare autoimmune disease of infancy characterized by severe liver disease associated with Coombs-positive hemolytic anemia. We recently showed that GCH-AHA is probably caused by a humoral immune mechanism. Such data support the use of rituximab, an anti-CD-20 monoclonal antibody specifically targeting B lymphocytes, as a treatment for GCH-AHA. We describe here the detailed clinical evolution of 4 children with GCH-AHA who showed a complete response to rituximab. All patients shared a severe course of the disease with poor control on standard and aggressive immunosuppression. Rituximab was well tolerated, and no side effects or infections were registered. Several doses were needed to induce remission, and 5 to 11 additional maintenance injections were necessary in the 2 more severe cases. Weaning from corticosteroids was achieved in all subjects. A steroid-sparing effect was noted in the 3 children who started rituximab early in the course of the disease. Overall, we show here that there is a strong rationale for treating GCH-AHA with rituximab. Early treatment could reduce the use of corticosteroids. Nevertheless, short-term steroids should be initially associated with rituximab to account for autoantibodies' half-life. Repeated injections are needed to treat and prevent relapses, but the best frequency and duration of treatment remain to be defined.

  12. Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy

    DEFF Research Database (Denmark)

    Da Roit, F.; Engelberts, P. J.; Taylor, R. P.

    2015-01-01

    -treatment with ibrutinib did not inhibit complement activation or complement-mediated lysis. In contrast, ibrutinib strongly inhibited all cell-mediated mechanisms induced by anti-CD20 antibodies rituximab, ofatumumab or obinutuzumab, either in purified systems or whole blood assays. Activation of natural killer cells...

  13. Multivalent system for therapy of non-Hod king lymphomas based on Anti-CD20 conjugated to gold nanoparticles; Sistema multivalente para terapia de linfomas no-Hodking basado en Anti-CD20 conjugado a nanoparticulas de oro

    Energy Technology Data Exchange (ETDEWEB)

    Miranda O, R. M.

    2014-07-01

    In recent publications has been reported that gold nanoparticles have an effect in reducing the expression of the oncogene Bcl -2 and have a high biocompatibility , this is the importance for using gold nanoparticles for this work. The antibody CD20 is an antibody that specifically binds to that over expressed CD20 antigen on the cell membrane of B lymphoma cell non- Hodgkin (cell line Raji) behold the importance of combining this bio molecule to gold nanoparticles since they have a high specificity with CD20 positive cells , also to carry out the antigen- antibody immunological reactions triggered mediating cell lysis, possibly by cytotoxicity and apoptosis. Therefore, this system must have characteristics of both components to eliminate B cell non- Hodgkin lymphoma.In this work it was studied a multivalent system composed of gold nanoparticles and anti-CD20 antibody, the term multi valency refers to the number of biomolecules attached to the surface of the gold nanoparticle. The synthesis and characterization of the gold nanoparticles and the multivalent system was performed and the effect of the multivalent system on the expression of oncogene Bcl-2 (group of proteins associated with the apoptotic pathway) was evaluated. Characterization of raw materials and the multivalent system was performed using spectroscopic and microscopic techniques, this to verify structural changes in raw materials and thus confirm the formation of CD20 binding to the surface of the nanoparticle gold by the bond between gold and sulfur in the cysteines of CD20. Taking advantage that the metal nanoparticles have the optical property of surface plasmon resonance, the absorption of gold nanoparticles was measured on the UV-Vis as it is affected by the surface molecules bind to it, showing a bathochromic displacement effected. The hydrodynamic diameter of the gold nanoparticles was measured to verify that the antibody is bound to the surface; this evidence was complemented by micrographs

  14. Preparation of the radiopharmaceutical {sup 131}I-Anti-CD20 for the treatment of lymphomas; Preparacion del radiofarmaco {sup 131}I-Anti-CD20 para el tratamiento de linfomas

    Energy Technology Data Exchange (ETDEWEB)

    Pantoja H, I.E

    2004-07-01

    At the present time they are considered to the lymphomas like a problem of first magnitude since has happened it is necessary to be the fifth cancer cause in the world. Different treatments focused to the lymphoma like the chemotherapy and the radiotherapy, have been employees to counteract the No-Hodgkin lymphoma, without these they don't exclude the healthy tissue of the toxicity. It is for it that is taking a new direction with the employment of the directed radioimmunotherapy since this it allows to kill wicked cells selectively with radiation dose joined to the apoptosis and cytotoxicity induced by the own one bio molecule. The radioimmunotherapy with radiolabelled antibodies directed to the surface antigen CD20 represents a new modality for the treatment of No-Hodgkin lymphoma and potentially other illnesses. In this work the parameters of optimization are presented for the preparation, control of quality and evaluation of the stability in vitro and in vivo of the monoclonal antibody anti-CD20 labelled with {sup 131} I for the treatment of No-Hodgkin lymphoma. The anti-CD20 labelled by the chloramine-T method with high radiochemical purity (>98%), it is stable in solution for but of a half life of the radionuclide (8.04 days) The {sup 131} I-anti-CD20 doesn't present dehalogenation in vitro (human serum) during 24 h of incubation at 37 C. According to the tests carried out to establish the immunoreactivity, a percentage of union to cells was obtained (B lymphocytes) bigger to 30%. The biodistribution in mice balb/c one hour after their administration, it shows that there is not high reception in mucous neither kidneys, what indicates that the complex is stable in vivo. In conclusion, the radiopharmaceutical {sup 131} I-anti-CD20 was obtained in sterile injectable solution and free of pyrogens with a radiochemical purity bigger to 98% and a specific activity of 296 MBq. The radiolabelled molecule maintains its biological recognition for the receiving

  15. Binding Activity Difference of Anti-CD20 scFv-Fc Fusion Protein Derived from Variable Domain Exchange

    Institute of Scientific and Technical Information of China (English)

    Shusheng Geng; Beifen Shen; Jiannan Feng; Yan Li; Yingxun Sun; Xin Gu; Ying Huang; Yugang Wang; Xianjiang Kang; Hong Chang

    2006-01-01

    Two novel engineered antibody fragments binding to antigen CD20 were generated by fusing a murine IgM-type anti-CD20 single-chain Fv fragment (scFv) to the human IgG1 CH2 (I.e., Cγ2) and CH3 (I.e., Cγ3) domains with the human IgG1 hinge (I.e. Hγ). Given the relationship between structure and function of protein, the 3-D structures of the two engineered antibody fragments were modeled using computer-aided homology modeling method.Furthermore, the relationship between 3-D conformation and their binding activity was evaluated theoretically.Due to the change of active pocket formed by CDRs, the HL23 (VH-Linker-VL-Hγ-Cγ2-Cγ3) remained its activity because of its preserved conformation, while the binding activity of the LH23 (VL-Linker-VH-Hγ-Cγ2-Cγ3) was impaired severely. Experimental studies by flow cytometry and fluorescence microscopy showed that HL23 possessed significantly superior binding activity to CD20-expressing target cells than LH23. That is to say, the order of variable regions could influence the binding activity of the fusion protein to CD20+ cell lines, which was in accordance with the theoretical results. The study highlights the potential relationship between the antibody binding activity and their 3-D conformation, which appears to be worthwhile in providing direction for future antibody design of recombinant antibody.

  16. Anti-CD20 as the B cells targeting agent in the combined therapy to modulate anti-factor VIII immune responses in hemophilia A inhibitor mice

    Directory of Open Access Journals (Sweden)

    Chao Lien eLiu

    2014-01-01

    Full Text Available Neutralizing antibody formation against transgene products can represent a major complication following gene therapy with treatment of genetic diseases, such as hemophilia A. Although successful approaches have been developed to prevent the formation of anti-factor VIII (FVIII antibodies, innovative strategies to overcome pre-existing anti-FVIII immune responses in FVIII-primed subjects are still lacking. Anti-FVIII neutralizing antibodies circulate for long periods in part due to persistence of memory B cells. Anti-CD20 targets a variety of B cells (pre-B cells to mature/memory cells; therefore, we investigated the impact of B cell depletion on anti-FVIII immune responses in hemophilia A mice using anti-CD20 combined with regulatory T (Treg cell expansion using IL-2/IL-2mAb complexes plus rapamycin. We found that anti-CD20 alone can partially modulate anti-FVIII immune responses in both unprimed and FVIII-primed hemophilia A mice. Moreover, in mice treated with anti-CD20 + IL-2/IL-2mAb complexes + rapamycin + FVIII, anti-FVIII antibody titers were significantly reduced in comparison to mice treated with regimens targeting only B or T cells. In addition, titers remained low after a second challenge with FVIII plasmid . Treg cells and activation markers were transiently and significantly increased in the groups treated with IL-2/IL-2mAb complexes ; however,significant B cell depletion was obtained in anti-CD20-treated groups. Importantly, both FVIII-specific antibody-secreting cells and memory B cells were significantly reduced in mice treated with combination therapy. This study demonstrates that a combination regimen is highly promising as a treatment option for modulating anti-FVIII antibodies and facilitating induction of long-term tolerance to FVIII in hemophilia A mice.

  17. Intravital imaging reveals improved Kupffer cell-mediated phagocytosis as a mode of action of glycoengineered anti-CD20 antibodies

    Science.gov (United States)

    Grandjean, Capucine L.; Montalvao, Fabricio; Celli, Susanna; Michonneau, David; Breart, Beatrice; Garcia, Zacarias; Perro, Mario; Freytag, Olivier; Gerdes, Christian A.; Bousso, Philippe

    2016-01-01

    Anti-CD20 monoclonal antibodies (mAbs) represent an effective treatment for a number of B cell malignancies and autoimmune disorders. Glycoengineering of anti-CD20mAb may contribute to increased anti-tumor efficacy through enhanced antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADP) as reported by in vitro studies. However, where and how glycoengineered Ab may potentiate therapeutic responses in vivo is yet to be elucidated. Here, we have performed mouse liver transplants to demonstrate that the liver is sufficient to mediate systemic B cells depletion after anti-CD20 treatment. Relying on intravital two-photon imaging of human CD20-expressing mice, we provide evidence that ADP by Kupffer cells (KC) is a major mechanism for rituximab-mediated B cell depletion. Notably, a glycoengineered anti-mouse CD20 Ab but not its wild-type counterpart triggered potent KC-mediated B cell depletion at low doses. Finally, distinct thresholds for KC phagocytosis were also observed for GA101 (obinutuzumab), a humanized glycoengineered type II anti-CD20 Ab and rituximab. Thus, we propose that enhanced phagocytosis of circulating B cells by KC represents an important in vivo mechanism underlying the improved activity of glycoengineered anti-CD20 mAbs. PMID:27698437

  18. Two courses of rituximab (anti-CD20 monoclonal antibody) for recalcitrant pemphigus vulgaris

    DEFF Research Database (Denmark)

    Faurschou, A.; Gniadecki, R.

    2008-01-01

    Background Pemphigus vulgaris (PV) is a severe autoimmune blistering disease involving the skin and mucous membranes. The response to therapy varies greatly amongst patients and treatment may be challenging. Rituximab is a chimeric monoclonal antibody that selectively targets cell surface antigen...

  19. Rituximab chimeric anti-CD20 monoclonal antibody treatment for adult refractory idiopathic thrombocytopenic purpura

    DEFF Research Database (Denmark)

    Braendstrup, Peter; Bjerrum, Ole W; Nielsen, Ove J;

    2005-01-01

    with a dose regimen of 375 mg/m2 i.v. approximately once weekly for 4 consecutive weeks. Six patients received a fixed dose of 500 mg disregarding their weight supplemented by 100 mg of methylprednisone i.v. or 50-100 mg of Pred given as premedication together with an antihistamine just before infusion...

  20. The Different Clinical Effects of Anti-BLyS, Anti-APRIL and Anti-CD20 Antibodies Point at a Critical Pathogenic Role of gamma-Herpesvirus Infected B Cells in the Marmoset EAE Model

    NARCIS (Netherlands)

    Jagessar, S. Anwar; Fagrouch, Zahra; Heijmans, Nicole; Bauer, Jan; Laman, Jon D.; Oh, Luke; Migone, Thi; Verschoor, Ernst J.; 't Hart, Bert A.

    2013-01-01

    The robust and rapid clinical effect of depleting anti-CD20 monoclonal antibodies (mAb) in multiple sclerosis (MS) demonstrates a critical pathogenic contribution of B cells. The clinical effect of anti-CD20 mAb has been replicated in a relevant preclinical MS model, experimental autoimmune encephal

  1. Overcoming rituximab drug-resistance by the genetically engineered anti-CD20-hIFN-α fusion protein: Direct cytotoxicity and synergy with chemotherapy

    Science.gov (United States)

    VEGA, GABRIEL G.; FRANCO-CEA, LUZ ARELI; HUERTA-YEPEZ, SARA; MAYANI, HÉCTOR; MORRISON, SHERIE L.; BONAVIDA, BENJAMIN; VEGA, MARIO I.

    2015-01-01

    Treatment of patients with B-NHL with rituximab and CHOP has resulted in significant clinical responses. However, a subset of patients develops resistance to further treatments. The mechanism of unresponsiveness in vivo is not known. We have reported the development of rituximab-resistant clones derived from B-NHL cell lines as models to investigate the mechanism of resistance. The resistant clones exhibit hyper-activated survival/anti-apoptotic pathways and no longer respond to a combination of rituximab and drugs. Recent studies reported the therapeutic efficacy in mice bearing B-cell lymphoma xenografts following treatment with the anti-CD20-hIFNα fusion protein. We hypothesized that the fusion protein may bypass rituximab resistance and inhibit survival signaling pathways. Treatment of the rituximab-resistant clones with anti-CD20-hIFNα, but not with rituximab, IFNα, or rituximab+IFNα resulted in significant inhibition of cell proliferation and induction of cell death. Treatment with anti-CD20-hIFNα sensitized the cells to apoptosis by CDDP, doxorubicin and Treanda. Treatment with anti-CD20-hIFNα inhibited the NF-κB and p38 MAPK activities and induced the activation of PKC-δ and Stat-1. These effects were corroborated by the use of the inhibitors SB203580 (p38 MAPK) and Rottlerin (PKC-δ). Treatment with SB203580 enhanced the sensitization of the resistant clone by anti-CD20-hIFNα to CDDP apoptosis. In contrast, treatment with Rotterin inhibited significantly the sensitization induced by anti-CD20-hIFNα. Overall, the findings demonstrate that treatment with anti-CD20-hIFNα reverses resistance of B-NHL. These findings suggest the potential application of anti-CD20-hIFNα in combination with drugs in patients unresponsive to rituximab-containing regimens. PMID:26398317

  2. Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies

    Directory of Open Access Journals (Sweden)

    Capolla S

    2015-06-01

    Full Text Available Sara Capolla,1 Chiara Garrovo,2 Sonia Zorzet,1 Andrea Lorenzon,3 Enrico Rampazzo,4 Ruben Spretz,5 Gabriele Pozzato,6 Luis Núñez,7 Claudio Tripodo,8 Paolo Macor,1,9 Stefania Biffi2 1Department of Life Sciences, University of Trieste, 2Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, 3Animal Care Unit, Cluster in Biomedicine (CBM scrl, Trieste, Italy; 4Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy; 5LNK Chemsolutions LLC, Lincoln, NE, USA; 6Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy; 7Bio-Target, Inc., University of Chicago, Chicago, IL, USA; 8Department of Human Pathology, University of Palermo, Palermo, Italy; 9Callerio Foundation Onlus, Institutes of Biological Researches, Trieste, Italy Abstract: The expectations of nanoparticle (NP-based targeted drug delivery systems in cancer, when compared with convectional therapeutic methods, are greater efficacy and reduced drug side effects due to specific cellular-level interactions. However, there are conflicting literature reports on enhanced tumor accumulation of targeted NPs, which is essential for translating their applications as improved drug-delivery systems and contrast agents in cancer imaging. In this study, we characterized biodegradable NPs conjugated with an anti-CD20 antibody for in vivo imaging and drug delivery onto tumor cells. NPs’ binding specificity mediated by anti-CD20 antibody was evaluated on MEC1 cells and chronic lymphocytic leukemia patients’ cells. The whole-body distribution of untargeted NPs and anti-CD20 NPs were compared by time-domain optical imaging in a localized human/mouse model of B-cell malignancy. These studies provided evidence that NPs’ functionalization by an anti-CD20 antibody improves tumor pharmacokinetic profiles in vivo after systemic administration and increases in vivo imaging of tumor mass compared to non-targeted NPs. Together

  3. Circulating (CD3−CD19+CD20−IgD−CD27highCD38high) Plasmablasts: A Promising Cellular Biomarker for Immune Activity for Anti-PLA2R1 Related Membranous Nephropathy?

    Science.gov (United States)

    Beukinga, Ingrid; Willard-Gallo, Karen; Nortier, Joëlle; Pradier, Olivier

    2016-01-01

    Membranous nephropathy (MN) is a kidney specific autoimmune disease mainly mediated by anti-phospholipase A2 receptor 1 autoantibody (PLA2R1 Ab). The adequate assessment of chimeric anti-CD20 monoclonal antibody, rituximab (RTX), efficacy is still needed to improve clinical outcome of patient with MN. We evaluated the modification of plasmablasts (CD3−CD19+CD20−IgD−CD27highCD38high), a useful biomarker of RTX response in other autoimmune diseases, and memory (CD3−CD19+CD20+IgD−CD27+CD38−) and naive (CD3−CD19+CD20+IgD+CD27−CD38low) B cells by fluorescence-activated cell sorter analysis in PLA2R1 related MN in one patient during the 4 years of follow-up after RTX. RTX induced complete disappearance of CD19+ B cells, plasmablasts, and memory B cells as soon as day 15. Despite severe CD19+ lymphopenia, plasmablasts and memory B cells reemerged early before naive B cells (days 45, 90, and 120, resp.). During the follow-up, plasmablasts decreased more rapidly than memory B cells but still remained elevated as compared to day 0 of RTX. Concomitantly, anti-PLA2R1 Ab increased progressively. Our single case report suggests that, besides monitoring of serum anti-PLA2R1 Ab level, enumeration of circulating plasmablasts and memory B cells represents an attractive and complementary tool to assess immunological activity and efficacy of RTX induced B cells depletion in anti-PLA2R1 Ab related MN. PMID:27493452

  4. Transient B-cell depletion with anti-CD20 in combination with proinsulin DNA vaccine or oral insulin: immunologic effects and efficacy in NOD mice.

    Directory of Open Access Journals (Sweden)

    Ghanashyam Sarikonda

    Full Text Available A recent type 1 diabetes (T1D clinical trial of rituximab (a B cell-depleting anti-CD20 antibody achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin with anti-CD3 antibody (a T cell-directed immunomodulator offers better protection than either entity alone, indicating that novel combination therapies that include a T1D-related autoantigen are possible. To accelerate the identification and development of novel combination therapies that can be advanced into the clinic, we have evaluated the combination of a mouse anti-CD20 antibody with either oral insulin or a proinsulin-expressing DNA vaccine. Anti-CD20 alone, given once or on 4 consecutive days, produced transient B cell depletion but did not prevent or reverse T1D in the NOD mouse. Oral insulin alone (twice weekly for 6 weeks was also ineffective, while proinsulin DNA (weekly for up to 12 weeks showed a trend toward modest efficacy. Combination of anti-CD20 with oral insulin was ineffective in reversing diabetes in NOD mice whose glycemia was controlled with SC insulin pellets; these experiments were performed in three independent labs. Combination of anti-CD20 with proinsulin DNA was also ineffective in diabetes reversal, but did show modest efficacy in diabetes prevention (p = 0.04. In the prevention studies, anti-CD20 plus proinsulin resulted in modest increases in Tregs in pancreatic lymph nodes and elevated levels of proinsulin-specific CD4+ T-cells that produced IL-4. Thus, combination therapy with anti-CD20 and either oral insulin or proinsulin does not protect hyperglycemic NOD mice, but the combination with proinsulin offers limited efficacy in T1D prevention, potentially by augmentation of proinsulin-specific IL-4 production.

  5. Radiolabeling of anti-CD20 with Re-188 for treatment of non-Hodgkin's lymphoma: radiochemical control

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Carla R.; Osso Junior, Joao A., E-mail: carladias@usp.b, E-mail: jaosso@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The development of tumor-selective radiopharmaceuticals is clinically desirable as a means of detecting or confirming the presence and location of primary and metastatic lesions and monitoring tumor response to (chemo)therapy. In addition, the application of targeted radiotherapeutics provides a unique and effective modality for direct tumor treatment. In this manner the radioimmunotherapy (RIT) uses the targeting features of monoclonal antibody to deliver radiation from an attached radionuclide. Antibody therapy directed against the CD20 antigen on the surface of B-cells is considered one of the first successful target-specific therapies in oncology. The radionuclide rhenium-188 ({sup 188}Re) is currently produced from the father nuclide tungsten-188 ({sup 188}W) through a transportable generator system. Because of its easy availability and suitable nuclear properties (EbetaMAX = 2.1 MeV, t{sub 1/2} = 16.9 h, Egamma = 155 keV), this radionuclide is considered an attractive candidate for application as therapeutic agent and could be conveniently utilized for imaging and dosimetric purposes. The purpose of this work is to show the radiochemical control of the optimized formulation (solution) and lyophilized formulation (kit) of labeled rituximab (anti-CD20) with {sup 188}Re. Rituximab was reduced by incubation with 2-mercaptoethanol at room temperature. The number of resulting free sulfhydryl groups was assayed with Ellman's reagent. Radiochemical purity of {sup 188}Re-rituximab was evaluated using instant thin layer chromatography-silica gel (ITLC-SG). Quality control methods for evaluation of radiochemical purity showed good labeling yield of the antibody. (author)

  6. Standardization of methodology to derivatization and radiolabeling of the anti-CD20 monoclonal antibody from bifunctional chelator DOTA-NHS-Ester

    Energy Technology Data Exchange (ETDEWEB)

    Massicano, Adriana V.F.; Akanji, Akinkunmi G.; Santos, Josefina S.; Pujatti, Priscilla B.; Couto, Renata M.; Massicano, Felipe; Araujo, Elaine Bortoleti de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: adriana.avfernandes@gmail.com

    2009-07-01

    Lymphomas are cancers of the lymphatic system, being the most common the non-Hodgkin lymphoma (NHL). The Radioimmunotherapy (RIT), that increase the cytotoxic effect of monoclonal antibodies (mAb), therefore labeling these Mab with different radioisotopes. RIT combines the specificity of the antibody and the toxicity of the radionuclides. The mAb anti-CD20 is used for treatment of relapse or refractory NHL. The labeling of anti- CD20 with {sup 177}Lu, requires a bifunctional chelating agent that is designed to make a 'connect bridge' between the mAb and the radionuclide. The incorporation of the chelating group in mAb structure is called derivatization. The aim of this work is to study the derivatization of anti-CD20 antibody with DOTA-NHS-ester chelating group and labeling parameters to produce {sup 177}Lu-DOTA-Anti CD20. Five milligrams of anti-CD20 were purified by dialysis against phosphate buffer pH 8.0 and derivatized with DOTA-NHS-ester in 1:250, 1:500 and 1:1000 molar ratios. The reaction was conducted for 1 hour in gently mixing at room temperature and remained under refrigeration for 48 hours. The reaction mixture was purified in gel column Sephadex G-50 ; the aliquots that presented greater protein concentration, were mixed and concentrated. The purified antibody conjugated was added to 111-185MBq (3-5mCi) of {sup 177}LuCl3 diluted in 0.4 M acetate buffer pH 5.5. Radiochemical purity was less than 95% in all the molar ratios, indicating necessity of the purification after the labeling. The mAb derivatized showed stable when stored for to 1 month to 4 deg C and 4 days at -20 deg C. (author)

  7. Human IgG1 Cγ1 Domain Is Crucial for the Bioactivity of the Engineered Anti-CD20 Antibodies

    Institute of Scientific and Technical Information of China (English)

    Shusheng Geng; Jiannan Feng; Yan Li; Xianjiang Kang; Yingxun Sun; Xin Gu; Ying Huang; Hong Chang; Beifen Shen

    2007-01-01

    In this study, we discussed the necessity of human IgG1 Cγ1 domain for recombinant antibody using computeraided homology modeling method and experimental studies. The heavy (VH) and light (VL) chain variable regions of 1-28, a murine IgM-type anti-CD20 mAb, were ligated by linker peptide (Gly4Ser)3 to form the single-chain Fv fragment (scFv). Then, the engineered antibody (LH1-3) was generated by fusing scFv with the entire IgG1 heavy constant regions. The 3-D structure of LH1-3 was modeled using computer-aided homology modeling method and the binding activity of LH1-3 was evaluated theoretically. Compared to the 3-D structure of the Fv fragment of the parent antibody, the conformation of the active pocket of LH1-3 was remained because of the rigid support of Cγ1.Further experimental results of flow cytometry showed that the engineered anti-CD20 antibody possessed specifically binding activity to CD20-expressing target cells. The anti-CD20 antibody fragments could also mediate complement-dependent cytotoxicity (CDC) of human B-lymphoid cell lines. Our study highlights some interests and advantages of a methodology based on the homology modeling and analysis of molecular structural properties.

  8. Anti-CD20 Immunoglobulin G Radiolabeling with a 99mTc-Tricarbonyl Core: In Vitro and In Vivo Evaluations.

    Directory of Open Access Journals (Sweden)

    Hélène Carpenet

    Full Text Available In recent years, the diagnostic and therapeutic uses of radioisotopes have shown significant progress. Immunoglobulin (Ig appears to be a promising tracer, particularly due to its ability to target selected antigens. The main objective of this study is to optimize and assess an Ig radiolabeling method with Technetium 99m (99mTc, an attractive radioelement used widely for diagnostic imaging. Monoclonal anti-CD20 IgG was retained to study in vitro and in vivo radiolabeling impact. After IgG derivatization with 2-iminothiolane, IgG-SH was radiolabeled by an indirect method, using a 99mTc-tricarbonyl core. Radiolabeling stability was evaluated over 24h by thin-layer chromatography. IgG integrity was checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis coupled with Western blot and autoradiography. The radiolabeled Ig's immunoaffinity was assessed in vitro by a radioimmunoassay method and binding experiments with cells (EL4-hCD20 and EL4-WT. Biodistribution studies were performed in normal BALB/c mice. Tumor uptake was assessed in mice bearing EL4-hCD20 and EL4-WT subcutaneous xenografts. With optimized method, high radiolabeling yields were obtained (95.9 ± 3.5%. 99mTc-IgG-SH was stable in phosphate-buffered saline (4°C and 25°C and in serum (37°C, even if important sensitivity to transchelation was observed. IgG was not degraded by derivatization and radiolabeling, as shown by Western blot and autoradiography results. 99mTc-anti-CD20 IgG-SH immunoaffinity was estimated with Kd = 35 nM by both methods. In vivo biodistribution studies for 48h showed significant accumulation of radioactivity in plasma, liver, spleen, lungs and kidneys. Planar scintigraphy of mice bearing tumors showed a significant uptake of 99mTc-anti-CD20 IgG-SH in CD20+ tumor versus CD20- tumor. Radiolabeling of derivatized IgG with 99mTc-tricarbonyl was effective, stable and required few antibody amounts. This attractive radiolabeling method is "antibody safe

  9. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity

    NARCIS (Netherlands)

    Moessner, Ekkehard; Bruenker, Peter; Moser, Samuel; Puentener, Ursula; Schmidt, Carla; Herter, Sylvia; Grau, Roger; Gerdes, Christian; Nopora, Adam; van Puijenbroek, Erwin; Ferrara, Claudia; Sondermann, Peter; Jaeger, Christiane; Strein, Pamela; Fertig, Georg; Friess, Thomas; Schuell, Christine; Bauer, Sabine; Dal Porto, Joseph; Del Nagro, Christopher; Dabbagh, Karim; Dyer, Martin J. S.; Poppema, Sibrand; Klein, Christian; Umana, Pablo

    2010-01-01

    CD20 is an important target for the treatment of B-cell malignancies, including non-Hodgkin lymphoma as well as autoimmune disorders. B-cell depletion therapy using monoclonal antibodies against CD20, such as rituximab, has revolutionized the treatment of these disorders, greatly improving overall s

  10. Enhanced anti-tumor activity of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in combination with chemotherapy in xenograft models of human lymphoma

    OpenAIRE

    Herting, Frank; Friess, Thomas; Bader, Sabine; Muth, Gunter; Hölzlwimmer, Gabriele; Rieder, Natascha; Umana, Pablo; Klein, Christian

    2013-01-01

    Obinutuzumab (GA101) is a novel glycoengineered type II CD20 antibody in development for non-Hodgkin lymphoma. We compared the anti-tumor activity of obinutuzumab and rituximab in preclinical studies using subcutaneous Z138 and WSU-DLCL2 xenograft mouse models. Obinutuzumab and rituximab were assessed alone and in combination with bendamustine, fludarabine, chlorambucil, doxorubicin and cyclophosphamide/vincristine. Owing to strong single-agent efficacy in these models, suboptimal doses of ob...

  11. The different clinical effects of anti-BLyS, anti-APRIL and anti-CD20 antibodies point at a critical pathogenic role of γ-herpesvirus infected B cells in the marmoset EAE model.

    Science.gov (United States)

    Anwar Jagessar, S; Fagrouch, Zahra; Heijmans, Nicole; Bauer, Jan; Laman, Jon D; Oh, Luke; Migone, Thi; Verschoor, Ernst J; 't Hart, Bert A

    2013-06-01

    The robust and rapid clinical effect of depleting anti-CD20 monoclonal antibodies (mAb) in multiple sclerosis (MS) demonstrates a critical pathogenic contribution of B cells. The clinical effect of anti-CD20 mAb has been replicated in a relevant preclinical MS model, experimental autoimmune encephalomyelitis (EAE) in marmoset monkeys (Callithrix jacchus). By contrast, treatment with mAbs against two essential cytokines in B cell activation growth and survival, i.e. BlyS/BAFF and APRIL, was only partially effective. All three mAbs induced depletion of CD20+ B cells from the circulation, albeit with different kinetics and based on distinct mechanisms of action. In the current study we analyzed whether the different clinical effect of anti-CD20 mAb or the anti-BLyS and anti-APRIL mAbs is due to different depletion of B cells infected with the EBV of marmosets, CalHV3. Employing a novel PCR-based assay, half of the colony of group-housed marmosets was tested positive for CalHV3 DNA in secondary lymphoid organs. The same prevalence was observed in placebo-treated monkeys. In marmosets treated with anti-CD20 mAb the load of CalHV3 DNA in lymphoid organs was substantially reduced, while this was not observed in the monkeys treated with anti-BLyS or anti-APRIL mAbs. To examine the pathogenic role of virus-transformed B cells, we infused EBV-transformed B lymphoblastic cell (BLC) lines presenting the immunodominant MOG34-56 peptide. We observed in the recipients of MOG34-56 pulsed BLC, but not in their fraternal siblings infused with non-pulsed BLC, activation of anti-MOG34-56 T cells and meningeal inflammation. Collectively, the data show that among CD20+ B cells, the herpesvirus-transformed subset has a particularly important pathogenic role in the marmoset EAE model.

  12. Biodistribution and kinetics of {sup 131}I-labelled anti-CD20 MAB IDEC-C2B8 (rituximab) in relapsed non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Scheidhauer, Klemens; Wolf, Ingo; Baumgartl, Hans-Joachim; Reidel, Guenther; Schwaiger, Markus [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Muenchen (Germany); Schilling, Christoph von; Schmidt, Burkhard; Peschel, Christian [III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitaet Muenchen (Germany)

    2002-10-01

    The native chimeric human-mouse anti-CD20 antibody IDEC-C2B8 (rituximab) is therapeutically applied in relapsed non-Hodgkin's lymphoma (NHL). The purpose of this study was to evaluate the distribution and pharmacokinetics of iodine-131 labelled rituximab in humans for radioimmunotherapy of relapsed CD20-positive NHL. Thirty-five patients with relapsed NHL were administered 20-40 mg rituximab labelled with 250 MBq {sup 131}I. Biodistribution was determined by the gamma camera whole-body scans, whole-body probe measurements and the analysis of serial blood and urine samples. Dosimetry was performed using the MIRDOSE 3 program. Antibody administration was well tolerated. The whole-body activity showed a mono-exponential decrease with a wide range of effective half-lives, the mean value (88 h) being significantly longer than the half-life of its murine counterpart, tositumomab. This led to appropriately higher dose factors for the whole body and organs. Activity was excreted mainly through the kidneys. Normal organs showed decreasing ratios of organ to whole-body activity over time, whereas the tumour tissue presented different kinetics, with increasing ratios of tumour to whole-body activity as evidence for specific antibody binding. It is concluded that {sup 131}I-labelled rituximab is suitable for pretherapeutic dosimetry. Due to the wide range of whole-body and organ dose factors, individual dosimetry is necessary for radioimmunotherapy with {sup 131}I-labelled rituximab. The therapeutic activities of {sup 131}I-labelled rituximab required to deliver similar doses should be lower than those of its murine counterpart. (orig.)

  13. Evaluation of the cell death mechanisms activated by the radiopharmaceutical {sup 177}Lu-DOTA-anti-CD20 in a dose range of 1 to 5 Gy; Evaluacion de los mecanismos de muerte celular activados por el radiofarmaco {sup 177}Lu-DOTA-anti-CD20 en un intervalo de dosis de 1 a 5 Gy

    Energy Technology Data Exchange (ETDEWEB)

    Azorin V, E.P.; Rojas C, E. L.; Martinez V, B. E.; Ramos B, J. C.; Jimenez M, N. P.; Ferro F, G., E-mail: erica.azorin@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-10-15

    The radio immunotherapy with anti-CD20 antibodies significantly increases the remission rate of patients with B-cell lymphomas over expressing the CD20. The radiolabeled antibodies directed to surface antigens allow delivering scaled doses of radiation to specific targets thus limiting the dose to healthy tissue. The anti-CD20 causes cell death by two major pathways; activating the immune system to destroy malignant cells and inducing the activation of cell death pathways. The {sup 177}Lu is a beta particle emitter (max. 0.497 MeV) with a maximum reach on soft tissue of 0.7 mm and a half-life of 6.7 days. Several clinical studies have established a maximum tolerated dose (45 m Ci/m{sup 2}) for {sup 177}Lu-DOTA-rituximab, which shows a favorable clinical response without hematological toxicity. However, the molecular mechanisms of action by synergistic effect of anti-CD20 and radionuclide have not been studied. In this work was evaluated; by flow cytometry, the activation kinetics of the cell death mechanisms induced by the treatment with {sup 177}Lu-DOTA-Anti-CD20 in non-Hodgkin (Raji) lymphoma cells. The absorbed radiation dose delivered to the cell nucleus was calculated by Monte Carlo simulation, considering the contribution of the beta emissions of the radiopharmaceutical present in the cell membrane and surrounding environment, as well as crossfire. This work shows that the application of radiation doses of 1 to 5 Gy of the radiopharmaceutical {sup 177}Lu-DOTA-anti-CD20, are sufficient to induce cell death by apoptosis and arrest of the cell cycle. The combination of these factors (continuous delivery of radiation, activation of repair mechanisms and increased radio sensitivity) causes the acute activation of the apoptotic program resulting in significant cell death after 96 h of treatment. The temporal analysis of cell death suggests the early activation of apoptosis that is counteracted by the activation of repair processes caused by sustained irradiation

  14. Astatine-211 conjugated to an anti-CD20 monoclonal antibody eradicates disseminated B-cell lymphoma in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Green, Damian J.; Shadman, Mazyar; Jones, Jon C.; Frayo, Shani; Kenoyer, Aimee L.; Hylarides, Mark; Hamlin, Donald K.; Wilbur, D. Scott; Balkan, Ethan R.; Lin, Yukang; Miller, Brian W.; Frost, Sophia; Gopal, Ajay K.; Orozco, Johnnie J.; Gooley, Ted; Laird, Kelley L.; Till, B. G.; Back, Tom; Sandmaier, B. M.; Pagel, John M.; Press, Oliver W.

    2015-03-26

    Alpha emitting radionuclides release a large amount of energy within a few cell diameters and may be particularly effective for radioimmunotherapy targeting minimal residual disease (MRD) conditions in which micrometastatic disease satellites are broadly distributed. To evaluate this hypothesis, 211At conjugated 1F5 mAb (anti-CD20) was studied in both bulky lymphoma tumor xenograft and MRD animal models. Superior treatment responses to 211At conjugated 1F5 mAb were evident in the MRD setting. Lymphoma xenograft tumor bearing animals treated with doses of up to 48µCi of anti-CD20 211At-decaborate [211At-B10-1F5] experienced modest responses (0% cures but 2-3-fold prolongation of survival compared to negative controls). In contrast, 70% of animals in the MRD lymphoma model demonstrated complete eradication of disease when treated with 211At-B10-1F5 at a radiation dose that was less than one-third (15 µCi) of the highest dose given to xenograft animals. Tumor progression among untreated control animals in both models was uniformly lethal. After 130 days, no significant renal or hepatic toxicity is observed in the cured animals receiving 15 µCi of 211At-B10-1F5. These findings suggest that in a MRD lymphoma model, where isolated cells and tumor microclusters prevail, α-emitters may be uniquely efficacious.

  15. A Review of Obinutuzumab (GA101), a Novel Type II Anti-CD20 Monoclonal Antibody, for the Treatment of Patients with B-Cell Malignancies.

    Science.gov (United States)

    Tobinai, Kensei; Klein, Christian; Oya, Naoko; Fingerle-Rowson, Günter

    2017-02-01

    Obinutuzumab (GA101) is a novel, type II, glycoengineered, humanized anti-CD20 monoclonal antibody that has been developed to address the need for new therapeutics with improved efficacy in patients with lymphocytic leukemia and lymphoma of B-cell origin. Obinutuzumab has a distinct mode of action relative to type I anti-CD20 antibodies, such as rituximab, working primarily by inducing direct cell death and antibody-dependent cell-mediated cytotoxicity. Obinutuzumab is under investigation in a wide-ranging program of clinical trials in patients with B-cell malignancies. Efficacy as monotherapy has been reported in patients with relapsed/refractory indolent and aggressive non-Hodgkin lymphoma (NHL) and in chronic lymphocytic leukemia (CLL) of B-cell origin. Improved outcomes have also been noted when obinutuzumab is added to chemotherapy in patients with B-cell NHL, and superiority over rituximab has been reported with combination therapy in patients with CLL. Ongoing research is focusing on developing options for chemotherapy-free treatment and on new combinations of obinutuzumab with novel targeted agents.

  16. Specific Conjugation of the Hinge Region for Homogeneous Preparation of Antibody Fragment-Drug Conjugate: A Case Study for Doxorubicin-PEG-anti-CD20 Fab' Synthesis.

    Science.gov (United States)

    Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo

    2016-01-20

    Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects.

  17. Administration guidelines for radioimmunotherapy of non-Hodgkin's lymphoma with (90)Y-labeled anti-CD20 monoclonal antibody.

    Science.gov (United States)

    Wagner, Henry N; Wiseman, Gregory A; Marcus, Carol S; Nabi, Hani A; Nagle, Conrad E; Fink-Bennett, Darlene M; Lamonica, Dominick M; Conti, Peter S

    2002-02-01

    90Y-ibritumomab tiuxetan is a novel radioimmunotherapeutic agent recently approved for the treatment of relapsed or refractory low-grade, follicular, or CD20+ transformed non-Hodgkin's lymphoma (NHL). (90)Y-ibritumomab tiuxetan consists of a murine monoclonal antibody covalently attached to a metal chelator, which stably chelates (111)In for imaging and (90)Y for therapy. Both health care workers and patients receiving this therapy need to become familiar with how it differs from conventional chemotherapy and what, if any, safety precautions are necessary. Because (90)Y is a pure beta-emitter, the requisite safety precautions are not overly burdensome for health care workers or for patients and their families. (90)Y-ibritumomab tiuxetan is dosed on the basis of the patient's body weight and baseline platelet count; dosimetry is not required for determining the therapeutic dose in patients meeting eligibility criteria similar to those used in clinical trials, such as shielding during dose preparation and administration; primary lead shielding should be avoided because of the potential exposure risk from bremsstrahlung. Because there are no penetrating gamma-emissions associated with the therapy, (90)Y-ibritumomab tiuxetan is routinely administered on an outpatient basis. Furthermore, the risk of radiation exposure to patients' family members has been shown to be in the range of background radiation, even without restrictions on contact. There is therefore no need to determine activity limits or dose rate limits before patients who have been treated with (90)Y radioimmunotherapy are released, as is necessary with patients who have been treated with radiopharmaceuticals that contain (131)I. Standard universal precautions for handling body fluids are recommended for health care workers and patients and their family members after (90)Y-ibritumomab tiuxetan administration. In summary, (90)Y-ibritumomab tiuxetan introduces (90)Y into clinical practice and expands the role

  18. Enhanced anti-tumor activity of the glycoengineered type II CD20 antibody obinutuzumab (GA101) in combination with chemotherapy in xenograft models of human lymphoma.

    Science.gov (United States)

    Herting, Frank; Friess, Thomas; Bader, Sabine; Muth, Gunter; Hölzlwimmer, Gabriele; Rieder, Natascha; Umana, Pablo; Klein, Christian

    2014-09-01

    Obinutuzumab (GA101) is a novel glycoengineered type II CD20 antibody in development for non-Hodgkin lymphoma. We compared the anti-tumor activity of obinutuzumab and rituximab in preclinical studies using subcutaneous Z138 and WSU-DLCL2 xenograft mouse models. Obinutuzumab and rituximab were assessed alone and in combination with bendamustine, fludarabine, chlorambucil, doxorubicin and cyclophosphamide/vincristine. Owing to strong single-agent efficacy in these models, suboptimal doses of obinutuzumab were applied to demonstrate a combination effect. Obinutuzumab plus bendamustine achieved superior tumor growth inhibition versus rituximab plus bendamustine and showed a statistically significant effect versus the respective single treatments. Combinations of obinutuzumab with fludarabine, chlorambucil or cyclophosphamide/vincristine demonstrated significantly superior activity to rituximab-based treatment. Obinutuzumab monotherapy was at least as effective as rituximab plus chemotherapy in vivo, and obinutuzumab plus chemotherapy was superior to the respective monotherapies. These data support further clinical investigation of obinutuzumab plus chemotherapy.

  19. Quantitative Analysis of High Dose Radioimmunotherapy with I-131 Anti-CD20 Monoclonal Antibody (Rituximab) in Patients with Non-Hodgkin's Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Min; Kang, Hye Jin; Choi, Tae Hyun; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    Radioimmunotherapy (RIT) is therapeutic method for treatment of patient with incurable disease. I-131 is an radioisotope widely used for both diagnostic imaging and therapy, because of simultaneous emitting both gamma- and beta-ray. Recently, RIT using I-131 anti- CD20 rituximab has been introduced as one of the promising therapeutic model to treat patient with non- Hodgkin's Lymphoma (NHL). Although dosimetric approaches of low-dose I-131 rituximab imaging have been reported, there is no study of dosimetry with high dose imaging in patient with NHL yet. In this study, we evaluated strategy of high-dose RIT and investigated the kinetic behavior and absorbed dose to bone marrow and whole body in RIT study with high-dose strategy using I-131 rituximab for NHL.

  20. Monotherapy with anti-CD20 monoclonal antibody in a heart transplant recipient with sick sinus syndrome and posttransplantation lymphoproliferative disorder: a case report.

    Science.gov (United States)

    Yang, Hsiang-Yu; Ke, Hung-Yen; Hong, Gou-Jieng; Tsai, Yi-Ting; Lin, Chih-Yuan; Li, Chung-Yi; Tsai, Chien-Sung

    2009-10-01

    Posttransplantation lymphoproliferative disorder (PTLD) is a serious complication of organ transplantation, with an incidence of 0.8% to 20% in heart transplant (HTx) recipients, and standard treatment may be too toxic in some cases. Rituximab is an anti-CD20 monoclonal antibody that has demonstrated efficacy in patients with various lymphoid malignancies and has been demonstrated effective in combination with chemotherapy regimens such as CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisolone). Cardiotoxicity with CHOP remains a major concern for treating HTx recipients with PTLD, however. We present a case of an HTx recipient with sick sinus syndrome and PTLD who was successfully treated with rituximab alone, avoiding the cardiotoxicity of CHOP. The cardiotoxicity induced by CHOP should be kept in mind in HTx recipients with PTLD, especially when there is an existing heart problem in such recipients. Monotherapy with rituximab can be considered a safe choice.

  1. Orthotopic liver transplantation after successful treatment with anti-CD20 monoclonal antibody (rituximab) for severe steroid-resistant autoimmune hemolytic anemia: a case report.

    Science.gov (United States)

    Annicchiarico, B E; Siciliano, M; Avolio, A W; Agnes, S; Bombardieri, G

    2009-05-01

    Chronic hepatitis C virus (HCV) infection has been associated with a wide number of immunologic disorders, ranging from clinically silent laboratory abnormalities (eg, autoantibody positivity) to severe systemic diseases (eg, cryoglobulinemic vasculitis). Autoimmune hemolytic anemia (AIHA), due to the production of antibodies against erythrocyte membrane antigens, is an uncommon extrahepatic manifestation in the setting of chronic hepatitis C. Herein we have reported the case of a 57-year-old woman with decompensated HCV-related cirrhosis awaiting orthotopic liver transplantation (OLT) who experienced severe AIHA. After 1 month of treatment with prednisone (1 mg/kg body weight/d), there was no significant amelioration of anemia. Rituximab, an anti-CD20 monoclonal antibody that depletes B-lymphocytes reducing serum immunoglobulins, was initiated (375 mg/m(2) IV, weekly for 4 weeks) with a prompt, sustained increase in hemoglobin. The drug was well tolerated; it did not interfere with the course of the liver disease. Thirty-one months after rituximab therapy with resolution of AIHA, the patient successfully underwent OLT using immunosuppression with tacrolimus and low-dose steroids. The patient was discharged on postoperative day 36. No infectious event occurred in the postoperative period. At 18 months follow-up after OLT, there has been no infectious or hematological event. Our experience supported the safety of rituximab use in patients with advanced HCV-related liver disease before OLT.

  2. The study of labeling with Iodine-131 of monoclonal antibody anti-CD20 used for the treatment of non-Hodgkin lymphoma; Estudo de marcacao com Iodo-131 de anticorpo monoclonal anti-CD20 na terapia de linfoma nao-Hodgkin

    Energy Technology Data Exchange (ETDEWEB)

    Akanji, Akinkunmi Ganiyu

    2006-07-01

    Lymphomas are malignancies of the lymphatic system, described by Thomas Hodgkin in 1932. Traditionally, lymphomas are classified in two basic groups: Hodgkin disease and non-Hodgkin lymphoma (NHL). Patients with NHL were earlier treated with radiotherapy alone or in combination with immunotherapy using monoclonal antibody anti-CD20 (ex., Rituximab-Mabthera, Roche). However, Radioimmunotherapy is a new modality of treatment for patients with NHL, in which cytotoxic radiation from therapeutic radioisotopes is delivered to tumors through monoclonal antibodies. This study focused on labeling conditions of monoclonal antibody anti-CD20 (Rituximab-Mabthera, Roche) with iodine-131, by direct radioiodination method using Chloramine-T as oxidizing agent. Labeling parameters investigated were: Radiochemical purity (RP), method of purification, incubation time, antibody mass, oxidative agent mass, stability in vitro, stability in vivo, immunoreactivity and biological distribution performed in normal Swiss mouse. Product of high radiochemical purity was obtained with no notable difference between the methods applied. No clear evidence of direct influence of incubation time on radiochemical purity of the labeled antibody was observed. Whereas, a clear evidence of direct influence of activity on radiochemical purity of the labeled antibody was observed when antibody mass was varied. After purification, the labeled product presented radiochemical purity of approximately 100 %. Product of superior radiochemical yield was observed when standard condition of labeling was used. The labeled product presented variation in radiochemical purity using five different stabilizer conditions. The condition in which gentisic acid was combined with freeze appears more suitable and capable of minimizing autoradiolysis of the antibody labeled with high therapeutic activity of iodine-131. The labeled product presented low immunoreactivity when compared to the literature. Biological distribution in

  3. 两种重组抗CD20人源化单克隆抗体定量分析方法的比较及其在药代动力学研究中的应用%Comparison of Two Quantitative Assays for Determination of Rh-anti-CD20 zumab and Their Application to Pharmacokinetic Study

    Institute of Scientific and Technical Information of China (English)

    邓承莲; 邹佳; 欧伦; 董立厚; 宋海峰

    2014-01-01

    An enzyme linked immunosorbent assay ( ELISA ) and a flow cytometry assay ( FCA ) based on Wil2-S cells were developed and systematically compared for quantification of recombinant anti-CD20 humanized monoclonal antibody ( rh-anti-CD20zumab) in biological matrix. The specificity, precision and accuracy of each method at correspondingly different linear range showed good results. For ELISA, the precisions of intra-day and inter-day were both <19 . 5%, the relative error was from-18 . 2% to 17 . 6%;For FCA, the precisions of intra-day and inter-day were both <19. 0%, the relative error was from -18. 9% to 18. 4%. The sensitivity of ELISA was significantly higher than that of FCA. The quantitative ranges of ELISA and FCA methods were 0. 04-5. 0 mg/L and 3. 1-200 mg/L, respectively. The concentrations in serum samples and pharmacokinetics analysis were determined by both of two methods after vein drip administration of rh-anti-CD20zumab in rhesus monkeys. Pharmacokinetics data showed that there was excellent consistency between results obtained by two methods at the given dose. We believe that the novel FCA with high speed and high sensitivity can be used to perform PK and PD study of cell surface antigen-targeted antibody derivatives.%采用酶联免疫吸附分析( ELISA)与基于Wil2-S细胞的流式细胞术( FCA)两种方法对生物基质中的重组抗CD20人源化单克隆抗体(rh-anti-CD20zumab)进行定量分析,并对两种方法进行系统比较。方法学验证结果表明,两种方法均具有良好的特异性、精密度和准确度,但定量范围存在明显差异。 ELISA法批内和批间精密度均小于19.5%,准确度为-18.2%~17.6%;FCA法批内和批间精密度均小于19.0%,准确度为-18.9%~18.4%。二者定量范围分别为0.04~5.0 mg/L和3.1~200 mg/L,ELISA法的灵敏度显著高于FCA法。利用两种方法测定猕猴静脉滴注 rh-anti-CD20zumab后的血药浓度-时间变化并进行药代动力学( PK)分析。结果表明,

  4. Anti-CD20 Radioimmunotherapy Before Chemotherapy and Stem Cell Transplant in Treating Patients With High-Risk B-Cell Malignancies

    Science.gov (United States)

    2016-06-13

    Adult Burkitt Lymphoma; Adult Diffuse Large B-Cell Lymphoma; CD20-Positive Neoplastic Cells Present; Indolent Adult Non-Hodgkin Lymphoma; Mantle Cell Lymphoma; Recurrent B-Cell Non-Hodgkin Lymphoma; Refractory Mature B-Cell Non-Hodgkin Lymphoma

  5. Efficacy and safety of an anti-CD20 monoclonal antibody (Reditux™) for the treatment of patients with moderate to severe rheumatoid arthritis following the failure of conventional synthetic disease-modifying anti-rheumatic drugs.

    Science.gov (United States)

    Bhati, Manjeet; Bandyopadhyay, Syamasis

    2016-08-01

    Rituximab (anti-CD20 monoclonal antibody) has shown to improve symptoms in rheumatoid arthritis (RA) patients with inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs). An anti-CD20 monoclonal antibody (Reditux™) developed by Dr. Reddy's Laboratories, India, is currently approved for use both in rheumatology and oncology patients. This retrospective report evaluates the efficacy and safety data from the real-world use of Reditux™ over a 6-month period in Indian patients with RA. All consecutive moderate to severe RA patients who failed therapy with at least two DMARDs including methotrexate (MTX) for 6 months, TNFα inhibitor naive, and willing to take Reditux™ were included. They were prescribed two doses of 1 g Reditux™, at least 15 days apart, with continued stable doses of methotrexate. Efficacy and safety after 24 weeks relative to baseline was assessed using various health assessment variables. A total of 39 patients (mean age of 46 years; 67.5 % females) treated with Reditux™ were evaluated. Statistically significant differences were observed in mean changes of DAS28-CRP, DAS28-ESR, SDAI, HAQ and Patient Global Assessment scores from baseline to 24 weeks (p treatment. The treatment was well tolerated by patients without any clinically relevant serious adverse events over 24 weeks. Though limited by number of patients and retrospective in nature, this analysis serves as a real-world evidence of efficacy and safety of Dr. Reddy's rituximab (Reditux™) in the treatment of csDMARD-failed patients with RA over a 6-month period.

  6. Ofatumumab, a human anti-CD20 monoclonal antibody, for treatment of rheumatoid arthritis with an inadequate response to one or more disease-modifying antirheumatic drugs: results of a randomized, double-blind, placebo-controlled, phase I/II study

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Baslund, Bo; Rigby, William;

    2010-01-01

    To investigate the safety and efficacy of ofatumumab, a novel human anti-CD20 monoclonal antibody (mAb), in patients with active rheumatoid arthritis (RA) whose disease did not respond to > or = 1 disease-modifying antirheumatic drug....

  7. Establishment of a novel model suitable to evaluate the antitumor activity of anti-CD20 antibodies%一种适用于评价CD20抗体体内外抗肿瘤效应模型的建立

    Institute of Scientific and Technical Information of China (English)

    刘广洛; 钱卫珠; 李博华; 杨扬; 许静; 王皓

    2010-01-01

    研究通过基因转染的方法建立了稳定表达不同水平人CD20分子的小鼠骨髓瘤细胞克隆:CD20高表达(NS1CD20H)、中表达(NS1-CD20M)和低表达(NS1-CD20L)的NS-1细胞株.利用建立的CD20分子高、中、低表达的NS-1细胞系,我们初步研究了CD20分子表达水平与CD20抗体杀伤活性的关系.实验结果表明,随着CD20分子表达水平的提高,CD20抗体(Rituximab和2F2)的CDC和ADCC作用均相应增强.2F2抗体具有与Rituximab相似的ADCC作用.对于CD20高表达细胞,2F2抗体显示出和Rituximab相似的CDC活性.但对于CD20低表达的NS-1细胞,2F2的CDC活性远强于Rituximab.体内实验结果表明对于荷有NS1-CD20L的小鼠,Rituximab不能显示出抗肿瘤活性,而2F2则具有显著的抗肿瘤作用.由于这两个抗体有相似的ADCC活性,实验结果提示CDC可能是CD20抗体的重要作用机制之一.我们建立的不同程度表达CD20的NS-1细胞克隆可以成为一种新型的CD20抗体活性评价模型,并有助于进一步阐明CD20抗体的作用机制.

  8. Targeting CD20 in chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Nahas MR

    2015-03-01

    Full Text Available Myrna R Nahas, Jon E ArnasonBeth Israel Deaconess Medical Center, Boston, MA, USAAbstract: Chronic lymphocytic leukemia (CLL, the most common leukemia in adults, is standardly managed with chemotherapy in combination with the anti-CD20 antibody rituximab. In this review, we discuss the history, use, and evolution of rituximab in the treatment of CLL and explore the next generation CD20 antibodies ofatumumab and obinutuzumab with a focus on recent clinical trials. Increased understanding of the importance of B cell receptor (BCR signaling in CLL has resulted in the development of several drugs with significant clinical activity that are ideally suited for combination with CD20 therapy as is being currently explored. Moving forward, these developments have the potential to result in treatment regimens that do not include traditional chemotherapeutic agents, which is of particular importance in CLL given the late onset of diagnosis and potential frailty of the patients.Keywords: CLL, monoclonal antibody, rituximab, ofatumumab, obinutuzumab

  9. High-Dose [131I]Tositumomab (anti-CD20) Radioimmunotherapy and Autologous Hematopoietic Stem Cell Transplantation for Adults ≥ 60 Years Old with Relapsed or Refractory B-Cell Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Ajay K.; Rajendran, Joseph G.; Gooley, Ted; Pagel, John M.; Fisher, Darrell R.; Petersdorf, Stephen; Maloney, David G.; Eary, Janet F.; Appelbaum, Frederick R.; Press, Oliver W.

    2007-04-10

    Purpose: The majority of patients with relapsed or refractory B-cell, non-Hodgkin’s lymphoma (NHL) are over 60 years of age, yet they are often denied potentially curative high-dose therapy and autologous stem cell transplants (ASCT) due to the risk of excessive treatment-related morbidity and mortality. Myeloablative anti-CD20 radioimmunotherapy (RIT) can deliver curative radiation doses to tumor sites while limiting exposure to normal organs and may be particularly suited for older adults requiring high-dose therapy. Methods: Patients over age 60 with relapsed B-NHL received infusions of tositumomab anti-CD20 antibody labeled with 5-10mCi I-131 tracer for dosimetry purposes followed 10 days later by individualized therapeutic infusions of I-131-tositumomab (median 525 mCi, range 328-1154 mCi) to deliver 25-27Gy to the critical normal organ receiving the highest radiation dose. ASCT was performed approximately 2 weeks after therapy. Results: Twenty-four patients with a median age of 64 (range 60-76) who had received a median of four prior regimens (range 2-14) were treated. Thirteen (54%) had chemotherapy-resistant disease. The estimated 3-year overall and progression-free survivals were 59% and 51%, respectively with a median follow-up of 2.9 years (range 1-6 years). All patients experienced expected myeloablation with engraftment of platelets (≥20K/µL) and neutrophils (≥500/µL) occurring a median of 9 and 15 days, respectively following ASCT. There were no treatment-related deaths, and only two patients experienced grade 4 non-hematologic toxicity. Conclusions: Myeloablative RIT and ASCT is a safe and effective therapeutic option for older adults with relapsed B-NHL.

  10. CD20单克隆抗体联合自体外周血干细胞移植治疗非霍奇金淋巴瘤的临床研究%Clinical study of autologous peripheral blood stem cell transplantation combined with anti-CD20 monoclonal antibody in non-Hodgkin lymphoma

    Institute of Scientific and Technical Information of China (English)

    蔡宇; 王椿; 姜杰玲; 杨隽; 颜式可; 万理萍

    2010-01-01

    目的 探讨抗CD20单克隆抗体(利妥昔单抗,商品名:美罗华)联合自体外周血干细胞移植(APBSCT)治疗B细胞非霍奇金淋巴瘤(NHL)的疗效.方法 21例CD20阳性的NHL患者,经过前期治疗,5例达完全缓解(CR),难治性病例为16例,包括11例部分缓解(PR)和5例疾病进展(PD).在自体造血干细胞动员的第1、8天及预处理的-1、+7天每天应用利妥昔单抗375 mg/m2.结果 移植前疾病达到CR的5例患者,无一例复发;移植前处于PR的11例患者,仅1例在移植后6个月疾病复发,其余均无病生存;移植前处于PD的5例患者,2例无病生存.21例患者中位随访24(1~68)个月,复发、死亡4例(19%),其余17例均无病生存,2年无病生存(EFS)和总生存(OS)率均为81.0%.未观察到利妥昔单抗对采集所得干细胞的质量和数量以及移植后造血恢复有不良影响.结论 APBSCT联合利妥昔单抗做体内净化治疗B细胞NHL疗效与移植前状态有关,作为巩固治疗,能使移植前达CR的患者获得长期生存,提高治愈率;作为强化治疗,可提高缓解率,延长PR患者的EFS及OS.利妥昔单抗的加入不影响造血干细胞采集和移植后造血重建.%Objective To evaluate the efficacy of anti-CD20 monoclonal antibody (Rituximab) combined with autologous hematopoietic stem cell transplant (ASCT) in treatment of the patients with B cell non-Hodgkin lymphoma (NHL). Methods Twenty-one patients with B-cell NHL(CD20 positive) received ASCT with Rituximab at the dose of 385 mg·m-2·d-1 on day 1 and day 8 of mobilization,and day -1 and day +7 of conditioning regimen. Among the 21 patients receiving chemotherapy before the transplant, five cases achieved complete response (CR), eleven cases achieved partial remission (PR), and 5 cases had the progression of disease (PD) after many cycles of chemotherapy. Results The median follow-up was 24 months (1-68 months) in the present study. No relapse occurred among the 5 patients in CR before the

  11. Ublituximab (TG-1101), a novel glycoengineered anti-CD20 antibody, in combination with ibrutinib is safe and highly active in patients with relapsed and/or refractory chronic lymphocytic leukaemia: results of a phase 2 trial.

    Science.gov (United States)

    Sharman, Jeff P; Farber, Charles M; Mahadevan, Daruka; Schreeder, Marshall T; Brooks, Heather D; Kolibaba, Kathryn S; Fanning, Suzanne; Klein, Leonard; Greenwald, Daniel R; Sportelli, Peter; Miskin, Hari P; Weiss, Michael S; Burke, John M

    2017-02-01

    Ibrutinib is effective in patients with chronic lymphocytic leukaemia (CLL); however, treatment resistance remains a problem. Ublituximab is a novel, glycoengineered anti-CD20 monoclonal antibody with single-agent activity in relapsed CLL. We report the results of a phase 2 study evaluating combination therapy with ibrutinib and ublituximab in patients with relapsed or refractory CLL. Patients received ibrutinib 420 mg once daily. Ublituximab was administered on days 1, 8 and 15 of cycle 1 followed by day 1 of cycles 2-6. Response assessments were completed at cycles 3 and 6; patients then continued on ibrutinib monotherapy per standard of care. Forty-one of 45 enrolled patients were evaluable for efficacy. Safety was consistent with prior experience for each drug, with infusion reactions the most prevalent adverse event. Combination therapy resulted in an overall response rate (ORR) of 88% at 6 months. In the 20 patients with high-risk features (17p or 11q deletions or TP53 mutation) and evaluable for efficacy, the ORR was 95%, with three patients (15%) achieving negative minimal residual disease. Median time to response was 8 weeks. Ublituximab in combination with ibrutinib resulted in rapid and high response rates. The long-term clinical benefit of ublituximab will be defined by an ongoing phase 3 trial (NCT 02301156).

  12. Validation of prospective whole-body bone marrow dosimetry by SPECT/CT multimodality imaging in {sup 131}I-anti-CD20 rituximab radioimmunotherapy of non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Boucek, Jan A. [Fremantle Hospital, Department of Nuclear Medicine, Fremantle (Australia); Turner, J. Harvey [Fremantle Hospital, Department of Nuclear Medicine, Fremantle (Australia); University of Western Australia, School of Medicine and Pharmacology (Australia)

    2005-04-01

    Radioimmunotherapy (RIT) for relapsed non-Hodgkin's lymphoma is emerging as a promising treatment strategy. Myelosuppression is the dose-limiting toxicity and may be particularly problematic in patients heavily pretreated with chemotherapy. Reliable dosimetry is likely to minimise toxicity and improve treatment efficacy, and the aim of this study was to elucidate the complex problems of dosimetry of RIT by using an integrated SPECT/CT system. As a part of a clinical trial of {sup 131}I-anti-CD20 rituximab RIT of non-Hodgkin's lymphoma, we employed a patient-specific prospective dosimetry method utilising the whole-body effective half-life of antibody and the patient's ideal weight to calculate the administered activity for RIT corresponding to a prescribed radiation absorbed dose of 0.75 Gy to the whole body. A novel technique of quantitation of bone marrow uptake with hybrid SPECT/CT imaging was developed to validate this methodology by using post-RIT extended imaging and data collection. A strong, statistically significant correlation (p=0.001) between whole-body effective half-life of antibody and effective marrow half-life was demonstrated. Furthermore, it was found that bone marrow activity concentration was proportional to administered activity per unit weight, height or body surface area (p<0.001). The results of this study show the proposed whole-body dosimetry method to be valid and clinically applicable for safe, effective RIT. (orig.)

  13. Non-clinical study and evaluation thinking of biosimilar products in China: reviewing the case of anti-CD20 monoclonal antibody%从抗CD20单抗探讨我国生物类似药非临床研究与评价的思路

    Institute of Scientific and Technical Information of China (English)

    余珊珊; 胡晓敏; 王海学; 王庆利; 于冰

    2015-01-01

    CFDA发布《生物类似药研发与评价技术指导原则(试行)》,明确了生物类似药非临床研究和评价中的基本原则.国内外研发生物类似药成为热点,本文结合国内外相关指导原则的要求和国内抗CD20单抗品种的审评,讨论我国生物类似药非临床研究评价的思路.

  14. Detecting CD20-Rituximab specific interactions on lymphoma cells using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Elucidating the underlying mechanisms of cell physiology is currently an important research topic in life sciences. Atomic force microscopy methods can be used to investigate these molecular mechanisms. In this study, single-molecule force spectroscopy was used to explore the specific recognition between the CD20 antigen and anti-CD20 antibody Rituximab on B lymphoma cells under near-physiological conditions. The CD20-Rituximab specific binding force was measured through tip functionalization. Distribution of CD20 on the B lymphoma cells was visualized three-dimensionally. In addition, the relationship between the intramolecular force and the molecular extension of the CD20-Rituximab complex was analyzed under an external force. These results facilitate further investigation of the mechanism of Rituximab’s anti-cancer effect.

  15. CD20 monoclonal antibody targeted nanoscale drug delivery system for doxorubicin chemotherapy: an in vitro study of cell lysis of CD20-positive Raji cells.

    Science.gov (United States)

    Jiang, Shuang; Wang, Xiaobo; Zhang, Zhiran; Sun, Lan; Pu, Yunzhu; Yao, Hongjuan; Li, Jingcao; Liu, Yan; Zhang, Yingge; Zhang, Weijing

    A monoclonal antibody targeted nanoscale drug delivery system (NDDS) for chemotherapy was evaluated in CD20-positive Raji cells in vitro. Nanoparticles were formed by the assembly of an amphiphilic polymer consisting of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxypolyethyleneglycol-2000 (DSPE-PEG2000). Active carbon nanoparticles (ACNP) were conjugated to the chemotherapeutic agent, doxorubicin (DOX), and the nanoliposome carrier, DSPE-PEG2000 and DSPE-PEG2000-NH2 conjugated to the human anti-CD20 monoclonal antibody that targets B-lymphocytes. This monoclonal antibody targeted nanoparticle delivery system for chemotherapy formed the active NDDS complex, ACNP-DOX-DSPE-PEG2000-anti-CD20. This active NDDS was spherical in morphology and had good dispersion in the culture medium. When compared with the effects on CD20-negative YTS cells derived from natural killer/T-cell lymphoma, the active NDDS, ACNP-DOX-DSPE-PEG2000-anti-CD20, demonstrated DOX delivery to CD20-positive Raji cells derived from Burkitt's lymphoma (B cell lymphoma), resulting in increased cell killing in vitro. The intracellular targeting efficiency of the ACNP-DOX-DSPE-PEG2000-anti-CD20 complex was assessed by confocal laser microscopy and flow cytometry. The findings of this in vitro study have shown that the DSPE-PEG2000 polymeric liposome is an effective nanocarrier of both a monoclonal antibody and a chemotherapy agent and can be used to target chemotherapy to specific cells, in this case to CD20-positive B-cells. Future developments in this form of targeted therapy will depend on the development of monoclonal antibodies that are specific for malignant cells, including antibodies that can distinguish between lymphoma cells and normal lymphocyte subsets.

  16. HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen.

    Science.gov (United States)

    Li, Nainong; Zhao, Dongchang; Kirschbaum, Mark; Zhang, Chunyan; Lin, Chia-Lei; Todorov, Ivan; Kandeel, Fouad; Forman, Stephen; Zeng, Defu

    2008-03-25

    In allogeneic hematopoietic cell transplantation (HCT), donor T cell-mediated graft versus host leukemia (GVL) and graft versus autoimmune (GVA) activity play critical roles in treatment of hematological malignancies and refractory autoimmune diseases. However, graft versus host disease (GVHD), which sometimes can be fatal, remains a major obstacle in classical HCT, where recipients are conditioned with total body irradiation or high-dose chemotherapy. We previously reported that anti-CD3 conditioning allows donor CD8(+) T cells to facilitate engraftment and mediate GVL without causing GVHD. However, the clinical application of this radiation-free and GVHD preventative conditioning regimen is hindered by the cytokine storm syndrome triggered by anti-CD3 and the high-dose donor bone marrow (BM) cells required for induction of chimerism. Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are known to induce apoptosis of cancer cells and reduce production of proinflammatory cytokines by nonmalignant cells. Here, we report that SAHA inhibits the proliferative and cytotoxic activity of anti-CD3-activated T cells. Administration of low-dose SAHA reduces cytokine production and ameliorates the cytokine storm syndrome triggered by anti-CD3. Conditioning with anti-CD3 and SAHA allows induction of chimerism with lower doses of donor BM cells in old nonautoimmune and autoimmune lupus mice. In addition, conditioning with anti-CD3 and SAHA allows donor CD8(+) T cell-mediated GVA activity to reverse lupus glomerulonephritis without causing GVHD. These results indicate that conditioning with anti-CD3 and HDAC inhibitors represent a radiation-free and GVHD-preventative regimen with clinical application potential.

  17. {sup 99m}Tc-labeled chimeric anti-NCA 95 antigranulocyte monoclonal antibody for bone marrow imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sarwar, M.; Higuchi, Tetsuya; Tomiyoshi, Katsumi [Gunma Univ., Maebashi (Japan). School of Medicine] [and others

    1998-09-01

    Chimeric mouse-human antigranulocyte monoclonal antibody (ch MAb) against non-specific cross-reacting antigen (NCA-95) was labeled with {sup 99m}Tc (using a direct method) and {sup 125}I (using the chloramine T method), and its binding to human granulocytes and LS-180 colorectal carcinoma cells expressing carcinoembryonic antigen on their surfaces, cross-reactive with anti-NCA-95 chimeric monoclonal antibody, increased in proportion to the number of cells added and reached more than 80% and 90%, respectively. In biodistribution studies, {sup 99m}Tc and {sup 125}I-labeled ch anti-NCA-95 MAb revealed high tumor uptake, and the tumor-to-blood ratio was 2.9 after 24 hours. The tumor-to-normal-organ ratio was also more than 3.0 in all organs except for the tumor-to-kidney ratio. Scintigrams of athymic nude mice confirmed the results of biodistribution studies that showed higher radioactivity in tumor and kidney of the mice administered with {sup 99m}Tc-labeled ch MAb. A normal volunteer injected with {sup 99m}Tc-labeled ch anti-NCA-95 antigranulocyte MAb showed clear bone marrow images, and a patient with aplastic anemia revealed irregular uptake in his lumbar spine, suggesting its utility for bone marrow scintigraphy and for the detection of hematological disorders, infections, and bone metastasis. (author)

  18. In vivo anti-tumor activity of marine hematopoietic stem cells expressing a p185HER2-specific chimeric T-cell receptor gene

    Institute of Scientific and Technical Information of China (English)

    JIAN MIN YANG; MICHAEL S FRIEDMAN; MARIANNE T HUBEN; JENNIFER FULLER; QIAO LI; ALFRED E CHANG; JAMES J MULE; KEVIN T MCDONAGH

    2006-01-01

    We have confirmed efficient anti-tumor activities of the peripheral lymphocytes transduced with a p185HER2-specific chimeric T-cell receptor gene both in murine and in human in our previous studies. To further test the feasibility of chimeric T-cell receptor in a bone marrow transplantation model, we first, made two murine tumor cell lines: MT901 and MCA-205, to express human p185HER2by retroviral gene transduction. Murine bone marrow cells were retrovirally transduced to express the chimeric T-cell receptor and gene-modified bone marrow cells were transplanted into lethally irradiated mouse. Six months post transplantation, p185HER2-positive tumor cells: MT-901/HER2 or MCA-205/HER2 was subcutaneously or intravenously injected to make mouse models simulating primary breast cancer or pulmonary metastasis. The in vivo anti-tumor effects were monitored by the size of the subcutaneous tumor or counting the tumor nodules in the lungs after India ink staining. The size of the subcutaneous tumor was significantly inhibited and the number of pulmonary nodules were significantly decreased in mouse recipients transplanted with chimeric T-cell receptor modified bone marrow cells compared with the control group. Our results suggest the efficient in vivo anti-tumor activities of chimeric T-cell receptor gene modified bone marrow cells.

  19. Anti-tumor efficacy study of the Bruton's tyrosine kinase (BTK) inhibitor, ONO/GS-4059, in combination with the glycoengineered type II anti-CD20 monoclonal antibody obinutuzumab (GA101) demonstrates superior in vivo efficacy compared to ONO/GS-4059 in combination with rituximab.

    Science.gov (United States)

    Yasuhiro, Tomoko; Sawada, Wako; Klein, Christian; Kozaki, Ryohei; Hotta, Shingo; Yoshizawa, Toshio

    2017-03-01

    The activated B-cell diffuse large B-cell-like lymphoma (ABC-DLBCL) correlates with poor prognosis. The B-cell receptor signaling pathway is known to be dysregulated in NHL/CLL and given BTK is a downstream mediator of BCR signaling, BTK constitutes an interesting and obvious therapeutic target. Given the high potency and selectivity of the BTK inhibitor, ONO/GS-4059, it was hypothesized that, the anti-tumor activity of ONO/GS-4059 could be further enhanced by combining it with the anti-CD20 Abs, rituximab (RTX) or obinutuzumab (GA101). ONO/GS-4059 combined with GA101 or RTX was significantly better than the respective monotherapy with tumor growth inhibition (TGI) of 90% for the GA101 combination and 86% for the RTX combination. In contrast, ibrutinib (PCI-32765) combined with RTX did not result in improved efficacy compared with respective monotherapy. Taken together these data indicate that the combination of ONO/GS-4059 with rituximab and particularly obinutuzumab may be an effective treatment for ABC-DLBCL.

  20. Chimeric rhinoviruses displaying MPER epitopes elicit anti-HIV neutralizing responses.

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    Full Text Available BACKGROUND: The development of an effective AIDS vaccine has been a formidable task, but remains a critical necessity. The well conserved membrane-proximal external region (MPER of the HIV-1 gp41 glycoprotein is one of the crucial targets for AIDS vaccine development, as it has the necessary attribute of being able to elicit antibodies capable of neutralizing diverse isolates of HIV. METHODOLOGY/PRINCIPLE FINDINGS: Guided by X-ray crystallography, molecular modeling, combinatorial chemistry, and powerful selection techniques, we designed and produced six combinatorial libraries of chimeric human rhinoviruses (HRV displaying the MPER epitopes corresponding to mAbs 2F5, 4E10, and/or Z13e1, connected to an immunogenic surface loop of HRV via linkers of varying lengths and sequences. Not all libraries led to viable chimeric viruses with the desired sequences, but the combinatorial approach allowed us to examine large numbers of MPER-displaying chimeras. Among the chimeras were five that elicited antibodies capable of significantly neutralizing HIV-1 pseudoviruses from at least three subtypes, in one case leading to neutralization of 10 pseudoviruses from all six subtypes tested. CONCLUSIONS: Optimization of these chimeras or closely related chimeras could conceivably lead to useful components of an effective AIDS vaccine. While the MPER of HIV may not be immunodominant in natural infection by HIV-1, its presence in a vaccine cocktail could provide critical breadth of protection.

  1. Endowing self-binding feature restores the activities of a loss-of-function chimerized anti-GM2 antibody.

    Science.gov (United States)

    Zhao, Yunfeng; Russ, Michael; Retter, Marc; Fanger, Gary; Morgan, Charles; Kohler, Heinz; Muller, Sybille

    2007-02-01

    Our previous studies have described a rare type of antibody that spontaneously binds to itself, or homodimerizes. This self-binding, or autophilic antibody provides stronger protection against bacterial infection than a non-self-binding antibody with identical specificity and affinity, due to an increase of polymeric avidity. Furthermore, we have shown that a peptide derived from the self-binding domain of the autophilic T15 antibody can be crosslinked to the Fc carbohydrate of monoclonal antibodies specific for the B-cell receptor of B-cell tumors. These peptide-crosslinked antibodies can exert self-binding properties, leading to an increase in binding efficiency to the target cells as well as an increase in potential to induce apoptosis. Herein, we report a novel finding that crosslinking of the autophilic T15 peptide rescues a loss-of-function chimerized (ch) anti-GM2 antibody. The parental antibody demonstrates in vivo anti-tumor activity against melanoma xenografts. The T15 peptide-conjugated antibody shows the ability to bind to itself, as well as an increased binding to its antigen, ganglioside GM2. Moreover, the peptide-conjugated antibody also demonstrates an increased ability to bind to two GM2-positive tumor cell lines and notably important, restores its ability to induce apoptosis in two types of tumor cells. These results provide strong support for the clinical potential of the autophilic technology.

  2. Chimeric anti-staphylococcal enterotoxin B antibodies and lovastatin act synergistically to provide in vivo protection against lethal doses of SEB.

    Directory of Open Access Journals (Sweden)

    Mulualem E Tilahun

    Full Text Available Staphylococcal enterotoxin B (SEB is one of a family of toxins secreted by Staphylococcus aureus that act as superantigens, activating a large fraction of the T-cell population and inducing production of high levels of inflammatory cytokines that can cause toxic shock syndrome (TSS and death. Extracellular engagement of the TCR of T-cells and class II MHC of antigen presenting cells by SEB triggers the activation of many intracellular signaling processes. We engineered chimeric antibodies to block the extracellular engagement of cellular receptors by SEB and used a statin to inhibit intracellular signaling. Chimeric human-mouse antibodies directed against different neutralizing epitopes of SEB synergistically inhibited its activation of human T-cells in vitro. In the in vivo model of lethal toxic shock syndrome (TSS in HLA-DR3 transgenic mice, two of these antibodies conferred significant partial protection when administered individually, but offered complete protection in a synergistic manner when given together. Similarly, in vivo, lovastatin alone conferred only partial protection from TSS similar to single anti-SEB antibodies. However, used in combination with one chimeric neutralizing anti-SEB antibody, lovastatin provided complete protection against lethal TSS in HLA-DR3 transgenic mice. These experiments demonstrate that in vivo protection against lethal doses of SEB can be achieved by a statin of proven clinical safety and chimeric human-mouse antibodies, agents now widely used and known to be of low immunogenicity in human hosts.

  3. Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis.

    Science.gov (United States)

    Pavlasova, Gabriela; Borsky, Marek; Seda, Vaclav; Cerna, Katerina; Osickova, Jitka; Doubek, Michael; Mayer, Jiri; Calogero, Raffaele; Trbusek, Martin; Pospisilova, Sarka; Davids, Matthew S; Kipps, Thomas J; Brown, Jennifer R; Mraz, Marek

    2016-09-22

    Agents targeting B-cell receptor (BCR) signaling-associated kinases such as Bruton tyrosine kinase (BTK) or phosphatidylinositol 3-kinase can induce mobilization of neoplastic B cells from the lymphoid tissues into the blood, which makes them potentially ideal to combine with anti-CD20 monoclonal antibodies (such as rituximab, obinutuzumab, or ofatumumab) for treatment of B-cell lymphomas and chronic lymphocytic leukemia (CLL). Here we show that interactions between leukemia cells and stromal cells (HS-5) upregulate CD20 on CLL cells and that administering ibrutinib downmodulates CD20 (MS4A1) expression in vivo. We observed that CLL cells that have recently exited the lymph node microenvironment and moved into the peripheral blood (CXCR4(dim)CD5(bright) subpopulation) have higher cell surface levels of CD20 than the cells circulating in the bloodstream for a longer time (CXCR4(bright)CD5(dim) cells). We found that CD20 is directly upregulated by CXCR4 ligand stromal cell-derived factor 1 (SDF-1α, CXCL12) produced by stromal cells, and BTK-inhibitor ibrutinib and CXCR4-inhibitor plerixafor block SDF-1α-mediated CD20 upregulation. Ibrutinib also downmodulated Mcl1 levels in CLL cells in vivo and in coculture with stromal cells. Overall, our study provides a first detailed mechanistic explanation of CD20 expression regulation in the context of chemokine signaling and microenvironmental interactions, which may have important implications for microenvironment-targeting therapies.

  4. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20.

    Science.gov (United States)

    Teeling, Jessica L; Mackus, Wendy J M; Wiegman, Luus J J M; van den Brakel, Jeroen H N; Beers, Stephen A; French, Ruth R; van Meerten, Tom; Ebeling, Saskia; Vink, Tom; Slootstra, Jerry W; Parren, Paul W H I; Glennie, Martin J; van de Winkel, Jan G J

    2006-07-01

    We have previously defined a panel of fully human CD20 mAb. Most of these were unexpectedly efficient in their ability to recruit C1q to the surface of CD20-positive cells and mediate tumor lysis via activation of the classical pathway of complement. This complement-dependent cytotoxicity (CDC) potency appeared to relate to the unusually slow off-rate of these human Abs. However, we now present epitope-mapping data, which indicates that all human mAb bind a novel region of CD20 that may influence CDC potency. Epitope mapping, using both mutagenesis studies and overlapping 15-mer peptides of the extracellular loops of CD20, defined the amino acids required for binding by an extensive panel of mouse and human mAb. Binding by rituximab and mouse CD20 mAb, had an absolute requirement for alanine and proline at positions 170 and 172, respectively, within the large extracellular loop of CD20. Surprisingly, however, all of the human CD20 mAb recognize a completely novel epitope located N-terminally of this motif, also including the small extracellular loop of CD20. Thus, although off-rate may influence biological activity of mAb, another critical factor for determining CDC potency by CD20 mAb appears to be the region of the target molecule they recognize. We conclude that recognition of the novel epitope cooperates with slow off-rate in determining the activity of CD20 Ab in activation of complement and induction of tumor cell lysis.

  5. Human/bovine chimeric MxA-like GTPases reveal a contribution of N-terminal domains to the magnitude of anti-influenza A activity.

    Science.gov (United States)

    Garigliany, Mutien-Marie; Cornet, Anne; Desmecht, Daniel

    2012-07-01

    Type I interferons (IFN-α/β) provide powerful and universal innate intracellular defense mechanisms against viruses. Among the antiviral effectors induced by IFN-α/β, Mx proteins of some species appear as key components of defense against influenza A viruses. The body of work published to date suggests that to exert anti-influenza activity, an Mx protein should possess a GTP-binding site, structural bases allowing multimerisation, and a specific C-terminal GTPase effector domain (GED). Both the human MxA and bovine Mx1 proteins meet these minimal requirements, but the bovine protein is more active against influenza viruses. Here, we measured the anti-influenza activity exerted by 2 human/bovine chimeric Mx proteins. We show that substituting the bovine GED for the human one in human MxA does not affect the magnitude of anti-influenza activity. Strikingly, however, substituting the human GED for the bovine one in bovine Mx1 yields a chimeric protein with a much higher anti-influenza activity than the human protein. We conclude, in contradiction to the hypothesis currently in vogue in the literature, that the GED is not the sole determinant controlling the magnitude of the anti-influenza activity exercised by an Mx protein that can bind GTP and multimerise. Our results suggest that 1 or several motifs that remain to be discovered, located N-terminally with regard to the GED, may interact with a viral component or a cellular factor so as to alter the viral cycle. Identifying, in the N-terminal portion of bovine Mx1, the motif(s) responsible for its higher anti-influenza activity could contribute to the development of new anti-influenza molecules.

  6. Functional Recombinant Extra Membrane Loop of Human CD20, an Alternative of the Full Length CD20 Antigen

    OpenAIRE

    Anbouhi, Mahdi Habibi; Baraz, Aida Feiz; Bouzari, Saeid; Abolhassani,Mohsen; Khanahmad, Hossein; Golkar, Majid; Aghasadeghi, Mohammad Reza; Behdani, Mahdi; Najafabadi, Ali Jahanian; Shokrgozar, Mohammad Ali

    2012-01-01

    Background: Targeting of CD20 antigen with monoclonal antibodies has become the mainstay in the treatment of non-Hodgkin's lymphomas and immunotherapeutic depletion of malignant B cells. Accessibility of antigen is one of the crucial factors in development of monoclonal antibodies against this antigen. One major problem in expression of full length CD20 is aggregation and misfolding. Therefore, production of an alternative polypeptide is easer and favorable comparing to that of a full length ...

  7. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model

    Science.gov (United States)

    Suarez, Eloah Rabello; Chang, De-Kuan; Sun, Jiusong; Sui, Jianhua; Freeman, Gordon J.; Signoretti, Sabina; Zhu, Quan; Marasco, Wayne A.

    2016-01-01

    Advances in the treatment of metastatic clear cell renal cell carcinoma (ccRCC) have led to improved progression-free survival of many patients; however the therapies are toxic, rarely achieve durable long-term complete responses and are not curative. Herein we used a single bicistronic lentiviral vector to develop a new combination immunotherapy that consists of human anti-carbonic anhydrase IX (CAIX)-targeted chimeric antigen receptor (CAR) T cells engineered to secrete human anti-programmed death ligand 1 (PD-L1) antibodies at the tumor site. The local antibody delivery led to marked immune checkpoint blockade. Tumor growth diminished 5 times and tumor weight reduced 50–80% when compared with the anti-CAIX CAR T cells alone in a humanized mice model of ccRCC. The expression of PD-L1 and Ki67 in the tumors decreased and an increase in granzyme B levels was found in CAR T cells. The anti-PD-L1 IgG1 isotype, which is capable of mediating ADCC, was also able to recruit human NK cells to the tumor site in vivo. These armed second-generation CAR T cells empowered to secrete human anti-PD-L1 antibodies in the ccRCC milieu to combat T cell exhaustion is an innovation in this field that should provide renewed potential for CAR T cell immunotherapy of solid tumors where limited efficacy is currently seen. PMID:27145284

  8. New heavy-fermion antiferromagnet UPd2Cd20

    Science.gov (United States)

    Hirose, Yusuke; Doto, Hiroshi; Honda, Fuminori; Li, Dexin; Aoki, Dai; Haga, Yoshinori; Settai, Rikio

    2016-10-01

    We succeeded in growing a new high quality single crystal of a ternary uranium compound UPd2Cd20. From the electrical resistivity, magnetization, magnetic susceptibility, and specific heat experiments, UPd2Cd20 is found to be an antiferromagnetic heavy-fermion compound with the Néel temperature {{T}\\text{N}}   =  5 K and exhibits the large electronic specific heat coefficient γ exceeding 500 mJ (K2· mol)-1. This compound is the first one that exhibits the magnetic ordering with the magnetic moments of the U atom in a series of UT2X20 (T: transition metal, X  =  Al, Zn, Cd). UPd2Cd20 shows typical characteristic features in heavy-fermion systems such as a broad maximum in the magnetic susceptibility at {{T}{{χ\\text{max}}}} and a large coefficient A of T 2 term in the resistivity.

  9. Comparison of a chimeric anti-carcinoembryonic antigen antibody conjugated with visible or near-infrared fluorescent dyes for imaging pancreatic cancer in orthotopic nude mouse models

    Science.gov (United States)

    Maawy, Ali A.; Hiroshima, Yukihiko; Kaushal, Sharmeela; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2013-12-01

    The aim of this study was to evaluate a set of visible and near-infrared dyes conjugated to a tumor-specific chimeric antibody for high-resolution tumor imaging in orthotopic models of pancreatic cancer. BxPC-3 human pancreatic cancer was orthotopically implanted into pancreata of nude mice. Mice received a single intravenous injection of a chimeric anti-carcinoembryonic antigen antibody conjugated to one of the following fluorophores: 488-nm group (Alexa Fluor 488 or DyLight 488); 550-nm group (Alexa Fluor 555 or DyLight 550); 650-nm group (Alexa Fluor 660 or DyLight 650), or the 750-nm group (Alexa Fluor 750 or DyLight 755). After 24 h, the Olympus OV100 small-animal imaging system was used for noninvasive and intravital fluorescence imaging of mice. Dyes were compared with respect to depth of imaging, resolution, tumor-to-background ratio (TBR), photobleaching, and hemoglobin quenching. The longer wavelength dyes had increased depth of penetration and ability to detect the smallest tumor deposits and provided the highest TBRs, resistance to hemoglobin quenching, and specificity. The shorter wavelength dyes were more photostable. This study showed unique advantages of each dye for specific cancer imaging in a clinically relevant orthotopic model.

  10. Young T cells age during a redirected anti-tumour attack: chimeric antigen receptor (CAR-provided dual costimulation is half the battle.

    Directory of Open Access Journals (Sweden)

    Andreas A Hombach

    2013-06-01

    Full Text Available Adoptive therapy with chimeric antigen receptor (CAR-redirected T cells showed spectacular efficacy in the treatment of leukaemia in recent early phase trials. Patient's T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG-1+ CD57+ CD7- CCR7- phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134 stimulation. We discuss the strategy with respect to prolong the anti-tumour response and to improve the over-all efficacy of adoptive cell therapy.

  11. CD20(+) B Cell Depletion Alters T Cell Homing

    NARCIS (Netherlands)

    Kap, Yolanda S.; van Driel, Nikki; Laman, Jon D.; Tak, Paul P.; 't Hart, Bert A.

    2014-01-01

    Depleting mAbs against the pan B cell marker CD20 are remarkably effective in the treatment of autoimmune-mediated inflammatory disorders, but the underlying mechanisms are poorly defined. The primary objective of this study was to find a mechanistic explanation for the remarkable clinical effect of

  12. In Vitro and In Vivo Antitumor Effect of Anti-CD33 Chimeric Receptor-Expressing EBV-CTL against CD33+ Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    A. Dutour

    2012-01-01

    Full Text Available Genetic engineering of T cells with chimeric T-cell receptors (CARs is an attractive strategy to treat malignancies. It extends the range of antigens for adoptive T-cell immunotherapy, and major mechanisms of tumor escape are bypassed. With this strategy we redirected immune responses towards the CD33 antigen to target acute myeloid leukemia. To improve in vivo T-cell persistence, we modified human Epstein Barr Virus-(EBV- specific cytotoxic T cells with an anti-CD33.CAR. Genetically modified T cells displayed EBV and HLA-unrestricted CD33 bispecificity in vitro. In addition, though showing a myeloablative activity, they did not irreversibly impair the clonogenic potential of normal CD34+ hematopoietic progenitors. Moreover, after intravenous administration into CD33+ human acute myeloid leukemia-bearing NOD-SCID mice, anti-CD33-EBV-specific T cells reached the tumor sites exerting antitumor activity in vivo. In conclusion, targeting CD33 by CAR-modified EBV-specific T cells may provide additional therapeutic benefit to AML patients as compared to conventional chemotherapy or transplantation regimens alone.

  13. Clinical significance of chimerism.

    Science.gov (United States)

    Abuelo, Dianne

    2009-05-15

    Twins have been previously classified as either monozygotic or dizygotic. In recent years, fascinating, non-traditional mechanisms of twinning have been uncovered. We define chimerism versus mosaicism, touch on chimerism in the animal world, and explain timing of chimerism in humans. In addition, we discuss when to suspect chimerism in patients, and how to proceed with diagnostic evaluation and confirmation.

  14. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine.

    Directory of Open Access Journals (Sweden)

    Saurabh Jain

    Full Text Available Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2 that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7 isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a

  15. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine.

    Science.gov (United States)

    Jain, Saurabh; Aresu, Luca; Comazzi, Stefano; Shi, Jianguo; Worrall, Erin; Clayton, John; Humphries, William; Hemmington, Sandra; Davis, Paul; Murray, Euan; Limeneh, Asmare A; Ball, Kathryn; Ruckova, Eva; Muller, Petr; Vojtesek, Borek; Fahraeus, Robin; Argyle, David; Hupp, Ted R

    2016-01-01

    Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20

  16. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma.

    Science.gov (United States)

    Ali, Syed Abbas; Shi, Victoria; Maric, Irina; Wang, Michael; Stroncek, David F; Rose, Jeremy J; Brudno, Jennifer N; Stetler-Stevenson, Maryalice; Feldman, Steven A; Hansen, Brenna G; Fellowes, Vicki S; Hakim, Frances T; Gress, Ronald E; Kochenderfer, James N

    2016-09-29

    Therapies with novel mechanisms of action are needed for multiple myeloma (MM). B-cell maturation antigen (BCMA) is expressed in most cases of MM. We conducted the first-in-humans clinical trial of chimeric antigen receptor (CAR) T cells targeting BCMA. T cells expressing the CAR used in this work (CAR-BCMA) specifically recognized BCMA-expressing cells. Twelve patients received CAR-BCMA T cells in this dose-escalation trial. Among the 6 patients treated on the lowest 2 dose levels, limited antimyeloma activity and mild toxicity occurred. On the third dose level, 1 patient obtained a very good partial remission. Two patients were treated on the fourth dose level of 9 × 10(6) CAR(+) T cells/kg body weight. Before treatment, the first patient on the fourth dose level had chemotherapy-resistant MM, making up 90% of bone marrow cells. After treatment, bone marrow plasma cells became undetectable by flow cytometry, and the patient's MM entered a stringent complete remission that lasted for 17 weeks before relapse. The second patient on the fourth dose level had chemotherapy-resistant MM making up 80% of bone marrow cells before treatment. Twenty-eight weeks after this patient received CAR-BCMA T cells, bone marrow plasma cells were undetectable by flow cytometry, and the serum monoclonal protein had decreased by >95%. This patient is in an ongoing very good partial remission. Both patients treated on the fourth dose level had toxicity consistent with cytokine-release syndrome including fever, hypotension, and dyspnea. Both patients had prolonged cytopenias. Our findings demonstrate antimyeloma activity of CAR-BCMA T cells. This trial was registered to www.clinicaltrials.gov as #NCT02215967.

  17. Reactive oxygen species induced by therapeutic CD20 antibodies inhibit natural killer cell-mediated antibody-dependent cellular cytotoxicity against primary CLL cells

    Science.gov (United States)

    Werlenius, Olle; Aurelius, Johan; Hallner, Alexander; Akhiani, Ali A.; Simpanen, Maria; Martner, Anna; Andersson, Per-Ola; Hellstrand, Kristoffer; Thorén, Fredrik B.

    2016-01-01

    The antibody-dependent cellular cytotoxicity (ADCC) of natural killer (NK) cells is assumed to contribute to the clinical efficacy of monoclonal antibodies (mAbs) in chronic lymphocytic leukemia (CLL) and other hematopoietic malignancies of B cell origin. We sought to determine whether reactive oxygen species (ROS)-producing monocytes regulate the ADCC of NK cells against primary CLL cells using anti-CD20 as the linking antibody. The monoclonal CD20 antibodies rituximab and ofatumumab were found to trigger substantial release of ROS from monocytes. Antibody-exposed monocytes induced NK cell apoptosis and restricted NK cell-mediated ADCC against autologous CLL cells. The presence of inhibitors of ROS formation and scavengers of ROS preserved NK cell viability and restored NK cell-mediated ADCC against primary CLL cells. We propose that limiting the antibody-induced induction of immunosuppressive ROS may improve the anti-leukemic efficacy of anti-CD20 therapy in CLL. PMID:27097113

  18. Anti-CD19 chimeric antigen receptor T-cell therapy for adult Philadelphia chromosome-positive acute lymphoblastic leukemia

    Science.gov (United States)

    Zhu, Yang-min; Wu, Zhao; Tan, You-ping; Du, Yuan-yuan; Liu, Zhi; Ou, Rui-ming; Liu, Shuang; Pu, Cheng-fei; Jiang, Jing; Wang, Jin-ping; Xiao, Lei; Zhang, Qing

    2016-01-01

    Abstract Rationale: The presence of the Philadelphia chromosome (Ph) in acute lymphoblastic leukemia (ALL) has been associated with a high risk of disease relapse and a poor prognosis. Allogeneic hematopoietic stem cell transplantation (HSCT) is an established treatment for adults with Ph-positive ALL, but relapse remains the primary cause of treatment failure, and is associated with an extremely poor prognosis. The emergence of resistance to tyrosine kinase inhibitors (TKIs) poses a challenge for patients with disease relapses after initial treatment with TKI-containing regimens. Patient concerns: Two patients with TKI-resistant recurrent Ph-positive ALL. Diagnoses: Ph-positive ALL. Interventions: Anti-CD19 CAR T-cell infusion. Outcomes: One patient's bone marrow blasts decreased significantly, and the other reached negative minimal residual disease (MRD). However, we first recorded the development of new-onset acute graft-versus-host disease (aGVHD) after anti-CD19 CAR T-cell infusion in a patient who received allogeneic HSCT. Our 2 case reports also demonstrate the efficacy of anti-CD19 CAR T-cell therapy in the treatment of TKI-resistant Ph-positive ALL. Lessons: Our report suggests that anti-CD19 CAR T-cell therapy may be a promising option for the treatment of relapsed Ph-positive ALL after conventional chemotherapy or allogeneic HSCT. However, caution is due given the possibility of the adverse effects of cytokine release syndrome (CRS)-induced aGVHD for patients receiving allogeneic HSCT. PMID:28002337

  19. Synthesis and pharmacological evaluation of polyfunctional benzimidazole-NSAID chimeric molecules combining anti-inflammatory, immunomodulatory and antioxidant activities.

    Science.gov (United States)

    Bansal, Yogita; Silakari, Om

    2014-11-01

    Polyfunctional compounds comprise a novel class of therapeutic agents for treatment of multifactorial diseases. The present study reports a series of benzimidazole-non-steroidal anti-inflammatory drugs (NSAIDs) conjugates (1-10) as novel polyfunctional compounds synthesized in the presence of orthophosphoric acid. The compounds were evaluated for anti-inflammatory (carageenan-induced paw edema model), immunomodulatory (direct haemagglutination test and carbon clearance index models), antioxidant (in vitro and in vivo) and for ulcerogenic effects. Each of the compound has retained the anti-inflammatory activity of the corresponding parent NSAID while exhibiting significantly reduced gastric ulcers. Additionally, the compounds are found to possess potent immunostimulatory and antioxidant activities. The compound 8 was maximally potent (antibody titre value 358.4 ± 140.21, carbon clearance index 0.053 ± 0.002 and antioxidant EC50 value 0.03 ± 0.006). These compounds, exhibiting such multiple pharmacological activities, can be taken as lead for the development of potent drugs for the treatment of chronic multifactorial diseases involving inflammation, immune system modulation and oxidative stress such as cancers. The Lipinski's parameters suggested the compounds to be bear drug like properties.

  20. Construction and characterization of monoclonal antibodies against the extracellular domain of B-lymphocyte antigen CD20 using DNA immunization method.

    Science.gov (United States)

    Khademi, Fatemeh; Mostafaie, Ali; Parvaneh, Shahram; Gholami Rad, Farah; Mohammadi, Pantea; Bahrami, Gholamreza

    2017-02-01

    To date, several new anti-CD20 monoclonal antibodies (mAbs) have been developed for potential efficacies compared with familiar mAb rituximab. Despite the recent advances in development of anti-CD20 mAbs for the treatment of B cell malignancies, the efforts should be continued to develop novel antibodies with improved properties. However, the development of mAbs against CD20 as a multi-transmembrane protein is challenging due to the difficulty of providing a lipid environment that can maintain native epitopes. To overcome this limitation, we describe a simple and efficient DNA immunization strategy for the construction of a novel anti-CD20 mAb with improved anti-tumour properties. Using a DNA immunization strategy that includes intradermal (i.d.) immunization with naked plasmid DNA encoding the CD20 gene, we generated the hybridoma cell line D4, which secretes functional mAbs against an extracellular epitope of CD20. Immunocytochemistry analysis and a cell-based enzyme-linked immunosorbent assay using a Burkitt's lymphoma cell line showed that D4 mAbs are capable of binding to native extracellular epitopes of CD20. Moreover, the binding specificity of D4 mAbs was determined by western blot analysis. Cell proliferation was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by the annexin V/propidium iodide staining and dye exclusion assay. The results showed that D4 anti-CD20 mAbs produced by DNA immunization exhibit potent growth inhibitory activity and have superior direct B-cell cytotoxicity compared to rituximab. We propose that antibody-induced apoptosis is one of the mechanisms of cell growth inhibition. Taken together, the data reported here open the path to DNA-based immunization for generating pharmacologically active monoclonal antibodies against CD20. In addition, the data support future in vivo animal testing and subsequent procedures to produce a potential therapeutic mAb.

  1. Quantitative PET of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Weibo; Chen, Kai; He, Lina; Cao, Qizhen; Chen, Xiaoyuan [Stanford University School of Medicine, The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford, CA (United States); Koong, Albert [Stanford University School of Medicine, Department of Radiation Oncology, Stanford, CA (United States)

    2007-06-15

    Cetuximab, a chimeric monoclonal antibody targeting epidermal growth factor receptor (EGFR) on the surface of cancer cells, was approved by the FDA to treat patients with metastatic colorectal cancer. It is currently also in advanced-stage development for the treatment of several other solid tumors. Here we report for the first time the quantitative positron emission tomography (PET) imaging of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab. We conjugated cetuximab with macrocyclic chelating agent 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA), labeled with {sup 64}Cu, and tested the resulting {sup 64}Cu-DOTA-cetuximab in seven xenograft tumor models. The tracer uptake measured by PET was correlated with the EGFR expression quantified by western blotting. The estimated human dosimetry based on the PET data in Sprague-Dawley rats was also calculated. MicroPET imaging showed that {sup 64}Cu-DOTA-cetuximab had increasing tumor activity accumulation over time in EGFR-positive tumors but relatively low uptake in EGFR-negative tumors at all times examined (<5%ID/g). There was a good correlation (R {sup 2} = 0.80) between the tracer uptake (measured by PET) and the EGFR expression level (measured by western blotting). Human dosimetry estimation indicated that the tracer may be safely administered to human patients for tumor diagnosis, with the dose-limiting organ being the liver. The success of EGFR-positive tumor imaging using {sup 64}Cu-DOTA-cetuximab can be translated into the clinic to characterize the pharmacokinetics, to select the right population of patients for EGFR-targeted therapy, to monitor the therapeutic efficacy of anti-EGFR treatment, and to optimize the dosage of either cetuximab alone or cetuximab in combination with other therapeutic agents. (orig.)

  2. Screen of CD20 mimotope using monoclonal antibody Rituximab%CD20抗原模拟表位的筛选

    Institute of Scientific and Technical Information of China (English)

    吴守振; 张阔; 李萌; 贺丽清; 秦鑫; 张英起

    2009-01-01

    目的:筛选CD20分子的模拟表位肽,构建针对CD20分子的治疗性疫苗,以期为淋巴瘤以及其它B细胞相关性疾病的治疗提供新的方向.方法:利用噬菌体随机呈现肽库筛选技术,以人淋巴细胞分化抗原CD20 mAb Rituximab为靶点,筛选CD20分子的模拟表位肽.通过ELISA方法检测筛选出的阳性噬菌体与Rituximab的特异性结合,并以竞争性结合实验检测筛选出的阳性噬菌体与Raji细胞表面的CD20分子竞争结合Rituximab的能力.最后以Sanger双脱氧链终止法测定DNA序列,推断其氨基酸序列.结果:成功筛选出针对CD20 mAb Rituximab的阳性噬菌体,获得了CD20分子的模拟表位肽QDKLTQWPKWLE.获得的阳性噬菌体能够与Rituximab特异性结合,并且表达该表位的噬菌体可以竞争性抑制Rituximab与天然CD20分子的结合.结论:CD20分子的抗原表位肽QDKLTQWPKWLE能够与mAb Rituximab特异性结合,与天然CD20分子竞争性结合mAb Rituximab,并具有潜在的应用价值.

  3. Activatory and inhibitory Fcγ receptors augment rituximab-mediated internalization of CD20 independent of signaling via the cytoplasmic domain.

    Science.gov (United States)

    Vaughan, Andrew T; Chan, Claude H T; Klein, Christian; Glennie, Martin J; Beers, Stephen A; Cragg, Mark S

    2015-02-27

    Type I anti-CD20 mAb such as rituximab and ofatumumab engage with the inhibitory FcγR, FcγRIIb on the surface of B cells, resulting in immunoreceptor tyrosine-based inhibitory motif (ITIM) phosphorylation. Internalization of the CD20·mAb·FcγRIIb complex follows, the rate of which correlates with FcγRIIb expression. In contrast, although type II anti-CD20 mAb such as tositumomab and obinutuzumab also interact with and activate FcγRIIb, this interaction fails to augment the rate of CD20·mAb internalization, raising the question of whether ITIM phosphorylation plays any role in this process. We have assessed the molecular requirements for the internalization process and demonstrate that in contrast to internalization of IgG immune complexes, FcγRIIb-augmented internalization of rituximab-ligated CD20 occurs independently of the FcγRIIb ITIM, indicating that signaling downstream of FcγRIIb is not required. In transfected cells, activatory FcγRI, FcγRIIa, and FcγRIIIa augmented internalization of rituximab-ligated CD20 in a similar manner. However, FcγRIIa mediated a slower rate of internalization than cells expressing equivalent levels of the highly homologous FcγRIIb. The difference was maintained in cells expressing FcγRIIa and FcγRIIb lacking cytoplasmic domains and in which the transmembrane domains had been exchanged. This difference may be due to increased degradation of FcγRIIa, which traffics to lysosomes independently of rituximab. We conclude that the cytoplasmic domain of FcγR is not required for promoting internalization of rituximab-ligated CD20. Instead, we propose that FcγR provides a structural role in augmenting endocytosis that differs from that employed during the endocytosis of immune complexes.

  4. CD20 therapies in multiple sclerosis and experimental autoimmune encephalomyelitis - Targeting T or B cells?

    Science.gov (United States)

    Agahozo, Marie Colombe; Peferoen, Laura; Baker, David; Amor, Sandra

    2016-09-01

    MS is widely considered to be a T cell-mediated disease although T cell immunotherapy has consistently failed, demonstrating distinct differences with experimental autoimmune encephalomyelitis (EAE), an animal model of MS in which T cell therapies are effective. Accumulating evidence has highlighted that B cells also play key role in MS pathogenesis. The high frequency of oligoclonal antibodies in the CSF, the localization of immunoglobulin in brain lesions and pathogenicity of antibodies originally pointed to the pathogenic role of B cells as autoantibody producing plasma cells. However, emerging evidence reveal that B cells also act as antigen presenting cells, T cell activators and cytokine producers suggesting that the strong efficacy of anti-CD20 antibody therapy observed in people with MS may reduce disease progression by several different mechanisms. Here we review the evidence and mechanisms by which B cells contribute to disease in MS compared to findings in the EAE model.

  5. Polyethylene glycol (PEG) linked to near infrared (NIR) dyes conjugated to chimeric anti-carcinoembryonic antigen (CEA) antibody enhances imaging of liver metastases in a nude-mouse model of human colon cancer.

    Science.gov (United States)

    Maawy, Ali A; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A; Hoffman, Robert M; Bouvet, Michael

    2014-01-01

    We report here that polyethylene glycol (PEG) linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA) antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes) compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases.

  6. Polyethylene glycol (PEG linked to near infrared (NIR dyes conjugated to chimeric anti-carcinoembryonic antigen (CEA antibody enhances imaging of liver metastases in a nude-mouse model of human colon cancer.

    Directory of Open Access Journals (Sweden)

    Ali A Maawy

    Full Text Available We report here that polyethylene glycol (PEG linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases.

  7. Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities.

    Directory of Open Access Journals (Sweden)

    Radu O Minea

    Full Text Available Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., alphavbeta3, alphavbeta5, and alpha5beta1, VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis. Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN.

  8. Human umbilical cord-drived mesenchymal stem cells as vehicles of CD20 specific-TRAIL fusion protein against non-Hodgkin’ s lymphoma%脐带间充质干细胞运载scFvCD20:sTRAIL融合蛋白对B-淋巴瘤细胞的生长抑制作用

    Institute of Scientific and Technical Information of China (English)

    范冬梅; 张晓龙; 张晴; 卢杨; 杨圆圆; 袁向飞; 张砚君; 熊冬生

    2016-01-01

    migrated to tumor site, secreted a novel fusion protein scFvCD20:sTRAIL,and thus locally concentrated scFvCD20:sTRAIL extended antigen-restricted anti-tumor activity. The engineered HUMSCs secreting scFvCD20:sTRAIL showed potent effect on inhibiting tumor growth in BJAB lymphoma malignancy,which may play an essential role in the clinical research .%目的::探讨脐带间充质干细胞运载scFvCD20:sTRAIL融合蛋白的新型双重靶向系统对CD20+ BJAB细胞的生长抑制作用。方法:采用传统分子生物学技术构建 pLenR. scFvCD20:sTRAIL、pLenR. ISZ-sTRAIL、pLenR. scFvCD20及pLenR. copGFP四种慢病毒表达载体,利用四质粒慢病毒包装系统于293T细胞中包装慢病毒颗粒,并感染人脐带组织来源的MSCs( HUMSCs),使其稳定表达融合蛋白。于体外采用CCK8细胞增殖抑制实验检测scFvCD20:sTRAIL融合蛋白对CD20阳性BJAB细胞和Raji细胞、CD20阴性Jurkat细胞以及正常人外周血单个核细胞( PBMCs)的生长抑制作用。建立NOD/SCID鼠BJAB细胞皮下移植瘤模型,将MSC. scFvCD20:sTRAIL经尾静脉注射入小鼠体内,每3 d测量瘤体积,根据肿瘤体积计算抑瘤率。结果:成功构建了慢病毒表达载体pLenR. scFvCD20:sTRAIL、 pLenR. ISZ-sTRAIL、pLenR. scFvCD20及pLenR. copGFP,且经慢病毒感染可在HUMSCs中稳定表达。体外实验显示,scFvCD20:sTRAIL融合蛋白可不同程度地提高对CD20阳性BJAB和Raji细胞的生长抑制作用,而对CD20阴性Jurkat细胞的生长抑制作用降低;而且不影响PBMCs的生长。体内实验表明, MSC. scFvCD20:sTRAIL可显著抑制BJAB淋巴瘤的生长,初始治疗后第24天,抑瘤率达65.2%,与MSC. ISZ:sTRAIL治疗组比较(抑瘤率为52.7%),具统计学差异(P<0.05)。结论:建立了HUMSCs运载scFvCD20:sTRAIL融合蛋白的双重靶向治疗系统,HUMSCs可向BJAB淋巴瘤部位归巢并表达分泌scFvCD20:sTRAIL融合蛋白,后者在局部经scFvCD20的二次导向发挥CD20特异

  9. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab.

    Science.gov (United States)

    Golay, Josée; Da Roit, Fabio; Bologna, Luca; Ferrara, Claudia; Leusen, Jeanette H; Rambaldi, Alessandro; Klein, Christian; Introna, Martino

    2013-11-14

    Obinutuzumab (GA101) is a glycoengineered type 2 CD20 antibody with enhanced CD16A-binding and natural killer-mediated cytotoxicity. CD16B is highly homologous to CD16A and a major FcγR on human polymorphonuclear neutrophils (PMNs). We show here that glycoengineered obinutuzumab or rituximab bound CD16B with approximately sevenfold higher affinity, compared with nonglycoengineered wild-type parental antibodies. Furthermore, glycoengineered obinutuzumab activated PMNs, either purified or in chronic lymphoblastic leukemia whole blood, more efficiently than wild-type rituximab. Activation resulted in a 50% increase in CD11b expression and 70% down-modulation of CD62L on neutrophils and in release of tumor necrosis factor alpha, IL-6, and IL-8. Activation was not accompanied by generation of reactive oxygen species or antibody-dependent cellular cytotoxicity activity, but led to up to 47% phagocytosis of glycoengineered anti-CD20 opsonized chronic lymphoblastic leukemia targets by purified PMNs. Significant phagocytosis was observed in whole blood, but only in the presence of glycoengineered antibodies, and was followed by up to 50% PMN death. Finally we show, using anti-CD16B and anti-CD32A Fab and F(ab')2 fragments, that both of these receptors are involved in PMN activation, phagocytosis, and cell death induced by glycoengineered antibodies. We conclude that phagocytosis by PMNs is an additional mechanism of action of obinutuzumab mediated through its higher binding affinity for CD16B.

  10. The predictive significance of CD20 expression in B-cell lymphomas

    Directory of Open Access Journals (Sweden)

    Horvat Mateja

    2011-04-01

    Full Text Available Abstract Background In our recent study, we determined the cut-off value of CD20 expression at the level of 25 000 molecules of equivalent soluble fluorochrome (MESF to be the predictor of response to rituximab containing treatment in patients with B-cell lymphomas. In 17.5% of patients, who had the level of CD20 expression below the cut-off value, the response to rituximab containing treatment was significantly worse than in the rest of the patients with the level of CD20 expression above the cut-off value. The proportion of patients with low CD20 expression who might not benefit from rituximab containing treatment was not necessarily representative. Therefore the aim of this study was to quantify the CD20 expression in a larger series of patients with B-cell lymphomas which might allow us to determine more reliably the proportion of patients with the CD20 expression below the cut-off. Methods Cytological samples of 64 diffuse large B-cell lymphomas (DLBCL, 56 follicular lymphomas (FL, 31 chronic lymphocytic leukemias (CLL, 34 mantle cell lymphomas (MCL, 18 marginal zone lymphomas (MZL and 15 B-cell lymphomas unclassified were analyzed for CD20 expression by quantitative four-color flow cytometric measurements using FACSCalibur flow cytometer (BD Biosciences. Results The range of CD20 expression in different B-cell lymphomas was very broad, varying from 2 737 to 115 623 MESF in CLL and 3 549 to 679 577 MESF in DLBCL. However, when we compared the CD20 expression in the groups of patients with DLBCL, FL, MCL, MZL, CLL and B-cell lymphomas unclassified, it was found to be significantly lower (p = 0.002 only in CLL but did not significantly differ in other lymphoma types (p = NS. Fifty-three out of 218 (24.3% patients with B-cell lymphomas had the CD20 expression below the cut-off value. Conclusions The CD20 expression in CLL is significantly lower than in most histological types of mature B-cell lymphomas in which it appears to be comparable

  11. CONSTRUCTION AND EXPRESSION OF A HUMAN-MOUSE CHIMERIC ANTIBODY AGAINST HUMAN BLADDER CANCER

    Institute of Scientific and Technical Information of China (English)

    白银; 王琰; 周丽君; 俞莉章

    2001-01-01

    To construct and express a human-mouse chimeric antibody against human bladder cancer. Method: The variable region genes of anti-human bladder cancer monoclonal antibody BDI-1 were cloned by RT-PCR. A human-mouse chimeric antibody expression vector was constructed and transfected into CHO cells. The chimeric antibody against bladder cancer was expressed and characterized. Result: Eukaryotic expression vector of the chimeric antibody against human bladder carcinoma was successfully constructed, and was expressed in eukaryotic cells; the expressed chimeric antibody ch-BDI showed same specificity as its parent McAb against human bladder cancer cells. Conclusion: The constructed chimeric antibody was expressed successfully in eukaryotic cells, and the chimeric antibody had desired affinity against human bladder cancer cells.

  12. Lymphoma Remissions Caused by Anti-CD19 Chimeric Antigen Receptor T Cells Are Associated With High Serum Interleukin-15 Levels.

    Science.gov (United States)

    Kochenderfer, James N; Somerville, Robert P T; Lu, Tangying; Shi, Victoria; Bot, Adrian; Rossi, John; Xue, Allen; Goff, Stephanie L; Yang, James C; Sherry, Richard M; Klebanoff, Christopher A; Kammula, Udai S; Sherman, Marika; Perez, Arianne; Yuan, Constance M; Feldman, Tatyana; Friedberg, Jonathan W; Roschewski, Mark J; Feldman, Steven A; McIntyre, Lori; Toomey, Mary Ann; Rosenberg, Steven A

    2017-03-14

    Purpose T cells genetically modified to express chimeric antigen receptors (CARs) targeting CD19 (CAR-19) have potent activity against acute lymphoblastic leukemia, but fewer results supporting treatment of lymphoma with CAR-19 T cells have been published. Patients with lymphoma that is chemotherapy refractory or relapsed after autologous stem-cell transplantation have a grim prognosis, and new treatments for these patients are clearly needed. Chemotherapy administered before adoptive T-cell transfer has been shown to enhance the antimalignancy activity of adoptively transferred T cells. Patients and Methods We treated 22 patients with advanced-stage lymphoma in a clinical trial of CAR-19 T cells preceded by low-dose chemotherapy. Nineteen patients had diffuse large B-cell lymphoma, two patients had follicular lymphoma, and one patient had mantle cell lymphoma. Patients received a single dose of CAR-19 T cells 2 days after a low-dose chemotherapy conditioning regimen of cyclophosphamide plus fludarabine. Results The overall remission rate was 73% with 55% complete remissions and 18% partial remissions. Eleven of 12 complete remissions are ongoing. Fifty-five percent of patients had grade 3 or 4 neurologic toxicities that completely resolved. The low-dose chemotherapy conditioning regimen depleted blood lymphocytes and increased serum interleukin-15 (IL-15). Patients who achieved a remission had a median peak blood CAR(+) cell level of 98/μL and those who did not achieve a remission had a median peak blood CAR(+) cell level of 15/μL ( P = .027). High serum IL-15 levels were associated with high peak blood CAR(+) cell levels ( P = .001) and remissions of lymphoma ( P < .001). Conclusion CAR-19 T cells preceded by low-dose chemotherapy induced remission of advanced-stage lymphoma, and high serum IL-15 levels were associated with the effectiveness of this treatment regimen. CAR-19 T cells will likely become an important treatment for patients with relapsed lymphoma.

  13. The anti-CD20 antibody rituximab reduces the Th17 cell response

    NARCIS (Netherlands)

    Veerdonk, F.L. van de; Lauwerys, B.; Marijnissen, R.J.; Timmermans, K.; Padova, F.E. Di; Koenders, M.M.J.F.; Gutierrez-Roelens, I.; Durez, P.; Netea, M.G.; Meer, J.W. van der; Berg, W.B. van den; Joosten, L.A.B.

    2011-01-01

    OBJECTIVE: Rituximab has been shown to be successful in the treatment of rheumatoid arthritis (RA), and this unexpected finding indicates that B cells have an important role in this disease. The present study was undertaken to investigate the mechanism of action of rituximab in RA. METHODS: Twelve p

  14. Preparation, quality control and biodistribution studies of [{sup 67}Ga]-DOTA-anti-CD20

    Energy Technology Data Exchange (ETDEWEB)

    Jalilian, A.R.; Khorrami, A. [Nuclear Science and Technology Research Inst., Karaj (IR). Nuclear Medicine Research Group, Agriculture, Medicine and Industrial Research School (AMIRS); Mirsadeghi, L.; Haji-Hosseini, R. [Payam-e-Noor Univ., Tehran (Iran). Biochemistry Dept.

    2008-07-01

    Rituximab was successively labeled with [{sup 67}Ga]-gallium chloride. The macrocyclic bifunctional chelating agent, N-succinimidyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NHS) was prepared at 25 C using DOTA, N-hydroxy succinimide (NHS) in CH{sub 2}Cl{sub 2}. DOTA-Rituximab was obtained by the addition of 1 mL of a Rituximab pharmaceutical solution (5 mg/mL, in phosphate buffer, pH=7.8) to a glass tube pre-coated with DOTA-NHS (0.01-0.1 mg) at 25 C with continuous mild stirring for 15 h. Radiolabeling was performed at 37 C in 3 h. Radio-thin layer chromatography showed an overall radiochemical purity of 90%-95% at optimized conditions (specific activity = 30 GBq/mg, labeling efficacy; 82%). The final isotonic {sup 67}Ga-DOTA-rituximab complex was checked by gel electrophoresis for radiolysis. Radio-TLC was performed to ensure that only one species was present after filtration through a 0.22 {mu}m filter. Preliminary biodistribution studies in normal rat model performed to determine complex distribution of the radioimmunoconjugate up to 28 h. (orig.)

  15. Effective treatment of refractory pulmonary hemorrhage with monoclonal anti-CD20 antibody (rituximab).

    Science.gov (United States)

    Pinto, Luis Fernando; Candia, Liliana; Garcia, Patricia; Marín, Juan Ignacio; Pachón, Ines; Espinoza, Luis R; Marquez, Javier

    2009-01-01

    We report a 19-year-old female with systemic lupus erythematosus and lupus nephritis who developed pulmonary hemorrhage (PH) refractory to conventional immunosuppressive treatment. She was initially treated with intravenous methylprednisolone and cyclophosphamide pulses. She required mechanical ventilation due to a lack of responsiveness and her disease was considered refractory to conventional treatment. Rituximab was administered and this was followed by clinical improvement in both PH and nephritis. Rituximab may be a useful therapeutic option for the treatment of refractory PH.

  16. Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer

    Science.gov (United States)

    Maawy, Ali A.; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2014-10-01

    Labeling of metastatic tumors can aid in their staging and resection of cancer. Near infrared (NIR) dyes have been used in the clinic for tumor labeling. However, there can be a nonspecific uptake of dye by the liver, lungs, and lymph nodes, which hinders detection of metastasis. In order to overcome these problems, we have used two NIR dyes (DyLight 650 and 750) conjugated to a chimeric anti-carcinoembryonic antigen antibody to evaluate how polyethylene glycol linkage (PEGylation) can improve specific tumor labeling in a nude mouse model of human pancreatic cancer. The conjugated PEGylated and non-PEGylated DyLight 650 and 750 dyes were injected intravenously into non-tumor-bearing nude mice. Serum samples were collected at various time points in order to determine serum concentrations and elimination kinetics. Conjugated PEGylated dyes had significantly higher serum dye concentrations than non-PEGylated dyes (p=0.005 for the 650 dyes and pdecreased their accumulation in lymph nodes, liver, and lung. These results demonstrate enhanced selective tumor labeling by PEGylation of dyes conjugated to a tumor-specific antibody, suggesting their future clinical use in fluorescence-guided surgery.

  17. High affinity mouse-human chimeric Fab against Hepatitis B surface antigen

    Institute of Scientific and Technical Information of China (English)

    Biplab Bose; Navin Khanna; Subrat K Acharya; Subrata Sinha

    2005-01-01

    AIM: Passive immunotherapy using antibody against hepatitis B surface antigen (HBsAg) has been advocated in certain cases of Hepatitis B infection. We had earlier reported on the cloning and expression of a high affinity scFv derived from a mouse monoclonal (5S) against HBsAg. However this mouse antibody cannot be used for therapeutic purposes as it may elicit anti-mouse immune responses. Chimerization by replacing mouse constant domains with human ones can reduce the immunogenicity of this antibody.METHODS: We cloned the VH and VL genes of this mouse antibody; and fused them with CH1 domain of human IgG1 and CL domain of human kappa chain respectively. These chimeric genes were cloned into a phagemid vector. After initial screening using the phage display system, the chimeric Fab was expressed in soluble form in E. Coli.RESULTS: The chimeric Fab was purified from the bacterial periplasmic extract. We characterized the chimeric Fab using several in vitro techniques and it was observed that the chimeric molecule retained the high affinity and specificity of the original mouse monoclonal.This chimeric antibody fragment was further expressed in different strains of E> coli to increase the yield.CONCLUSION: We have generated a mouse-human chimeric Fab against HBsAg without any significant loss in binding and epitope specificity. This chimeric Fab fragment can be further modified to generate a fulllength chimeric antibody for therapeutic uses.

  18. Rotavirus VP7 epitope chimeric proteins elicit cross-immunoreactivity in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Bingxin; Zhao; Xiaoxia; Pan; Yumei; Teng; Wenyue; Xia; Jing; Wang; Yuling; Wen; Yuanding; Chen

    2015-01-01

    VP7 of group A rotavirus(RVA) contains major neutralizing epitopes. Using the antigenic protein VP6 as the vector, chimeric proteins carrying foreign epitopes have been shown to possess good immunoreactivity and immunogenicity. In the present study, using modified VP6 as the vector,three chimeric proteins carrying epitopes derived from VP7 of RVA were constructed. The results showed that the chimeric proteins reacted with anti-VP6 and with SA11 and Wa virus strains.Antibodies from guinea pigs inoculated with the chimeric proteins recognized VP6 and VP7 of RVA and protected mammalian cells from SA11 and Wa infection in vitro. The neutralizing activities of the antibodies against the chimeric proteins were significantly higher than those against the vector protein VP6 F. Thus, development of chimeric vaccines carrying VP7 epitopes using VP6 as a vector could be a promising alternative to enhance immunization against RVAs.

  19. Rotavirus VP7 epitope chimeric proteins elicit cross-immunoreactivity in guinea pigs.

    Science.gov (United States)

    Zhao, Bingxin; Pan, Xiaoxia; Teng, Yumei; Xia, Wenyue; Wang, Jing; Wen, Yuling; Chen, Yuanding

    2015-10-01

    VP7 of group A rotavirus (RVA) contains major neutralizing epitopes. Using the antigenic protein VP6 as the vector, chimeric proteins carrying foreign epitopes have been shown to possess good immunoreactivity and immunogenicity. In the present study, using modified VP6 as the vector, three chimeric proteins carrying epitopes derived from VP7 of RVA were constructed. The results showed that the chimeric proteins reacted with anti-VP6 and with SA11 and Wa virus strains. Antibodies from guinea pigs inoculated with the chimeric proteins recognized VP6 and VP7 of RVA and protected mammalian cells from SA11 and Wa infection in vitro. The neutralizing activities of the antibodies against the chimeric proteins were significantly higher than those against the vector protein VP6F. Thus, development of chimeric vaccines carrying VP7 epitopes using VP6 as a vector could be a promising alternative to enhance immunization against RVAs.

  20. T- and B-lymphocyte chimerism in the marmoset

    Energy Technology Data Exchange (ETDEWEB)

    Niblack, G.D.; Kateley, J.R.; Gengozian, N.

    1977-01-01

    Marmosets are natural blood chimeras, this condition resulting from the high frequency of fraternal twinning and the consistent development of placental vascular anastomoses between the two embryos. Identification of chimerism by sex-chromosome analysis of cultured blood lymphocytes provided a means of determining the proportion of chimerism among T and B lymphocytes. Peripheral blood lymphocytes were enriched for T or B cells by filtration through a nylon column (yields >95% T-cells) or inactivation of T lymphocytes by treatment with a goat anti-marmoset thymocyte antiserum in the presence of complement (yields >95% B cells). Mitogenic stimulation of these separated, enriched cell populations yielded metaphase plates which could be scored for percentage male and female cells. Tests on five different blood chimeras showed the T- and B-lymphocyte chimerism to be the same. Stimulation of blood lymphocytes with cells from another species of marmoset in a mixed lymphocyte culture test revealed the chimeric T-cell response (i.e., host and co-twin cells) to be similar to that obtained with a mitogenic lectin. The demonstration of equivalent T- and B-cell chimerism in these animals suggests derivation of these cells from a common stem cell pool and the response of both T-cell populations to an antigenic stimulus in proportions similar to their percentage chimerism suggests complete immunologic tolerance exists in this species for co-twin histocompatibility antigens.

  1. CD19(+) CD20(-) CD27(hi) IL-s10-producing B cells are overrepresented in R-CHOP-treated DLBCL patients in complete remission.

    Science.gov (United States)

    Qiu, Huiying; Li, Junguo; Feng, Zhenjun; Yuan, Joanna; Lu, Jie; Hu, Xiaoxia; Gao, Lei; Lv, Shuqing; Yang, Jianmin; Chen, Lei

    2016-09-01

    Treatment of diffuse large B cell lymphoma (DLBCL) with rituximab, an anti-CD20 monoclonal antibody, has resulted in significantly improved patient responses with longer event-free intervals and higher overall survival rates. However, since rituximab depletes all CD20-expressing cells, including noncancerous B cells, the effects of rituximab on the normal immunity of DLBCL patients under remission need to be examined. Here, we observed that DLBCL patients under remission contained significantly lower frequencies of total B cells, with a significantly overrepresented interleukin (IL)-10-producing B cell (B10) population in the peripheral blood. Further examination confirmed that a large fraction of B10 cells was CD20(-) CD27(hi) plasmablasts, possibly explaining the persistence of B10 cells after R-CHOP treatment. We also observed that the percentage of B10 cells in DLBCL patients in remission gradually reduced during the first year of achieving complete remission, primarily due to the replenishment of non-B10 B cells. Despite this, the percentage of B10 cells in DLBCL patients after 1 year of achieving complete remission was still higher than that in controls. CD4(+) and CD8(+) T cells cocultured with B10-enriched B cells secreted significantly lower levels of proinflammatory cytokines IFN-g and TNF-a, compared to those incubated with B10-depleted B cells. Together, our data observed a long-lasting overrepresentation of B10 cells in DLBCL patients under remission. Whether this change could impact on the overall anti-tumor immunity during remission requires further studies.

  2. Studies of tolerance induction through mixed chimerism in cynomolgus monkeys. Method for detection of chimeric cells and effect of thymic irradiation on induction of tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tomoaki; Kawai, Tatsuo; Ota, Kazuo [Tokyo Women`s Medical Coll. (Japan)

    1996-12-01

    To establish the method for the detection of chimerism in cynomologus monkeys, we tested cross reactivity of various anti-HLA monoclonal antibodies (mAb) to cynomolgus monkeys. In 29 mAb we tested, only three monoclonal anti-HLA antibodies crossreacted with lymphocytes of monkeys. With these mAb, chimeric cell can be detected up to 1% by flow cytometric analysis (study 1). Utilizing the method we developed in study 1, we applied the regimen that induces mixed chimerism and skin graft tolerance in mice to renal allotransplantation of cynomolgus monkey. Regimen A includes non-lethal dose of total body irradiation (TBI), administration of anti-thymocyte globulin (ATG) for 3 days, donor bone marrow infusion and 45 days course of cyclosporine (CYA) administration. We added 7 Gy of thymic irradiation on day-6 in regimen B and on day-1 in regimen C. Although all monkeys in regimen A and B consistently developed chimerism, they rejected kidney allografts soon after stopping CYA. In contrast, 4 monkeys out of 5 failed to develop chimerism in regimen C, but renal allograft tolerance was induced in one monkey who developed chimerism in regimen C. In conclusion, the induction of chimerism is considered necessary but not sufficient for tolerance induction. (author)

  3. Estudo dos linfócitos CD20, CD8 e CD4 nas hiperplasias inflamatórias e sua relação com a infecção por candida sp

    OpenAIRE

    Cristiano Macabú Badauy

    2003-01-01

    O objetivo do presente estudo é mapear e quantificar as populações de células CD 20, CD 8 e CD 4+ em Hiperplasias inflamatórias (HI) e estabelecer relação com a infecção por Candida sp. Foram utilizados 41 casos de HI do Laboratório de Patologia Bucal da UFRGS. Novos cortes de todos os casos foram submetidos à técnica de coloração do PAS, criando – se 2 grupos: com e sem infecção por Candida sp. Seguiu – se a marcação imunohistoquímica com os anticorpos monoclonais anti CD 20, anti CD 8 e ant...

  4. 抗p185erbB2人鼠嵌合抗体慢病毒表达载体的构建%Construction of the Lentiviral Expression Vector for Anti-p185erbB2 Mouse/Human Chimeric Antibody

    Institute of Scientific and Technical Information of China (English)

    刘芳; 李力; 张玮; 王琪

    2013-01-01

    本研究构建抗p185erbB2人鼠嵌合抗体慢病毒表达载体,并将其转染293T细胞,明确转染后嵌合抗体基因的表达情况.采用PCR法扩增抗p185erbB2鼠单抗轻、重链可变区基因(vL和vH)和人IgG1的轻、重链恒定区基因(κ和γ1),再利用三引物PCR法将vL和κ,vH和γ1进行拼接,得到嵌合轻链基因(L)和嵌合重链基因(H),分别插入质粒pVAX1/IRES的IRES元件的下、上游.用内切酶将H-IRES-L从pVAX1/H-IRES-L上切下,插入慢病毒载体pWPI中,经相应酶切和测序鉴定,正确构建了慢病毒表达载体pWPI/H-IRES-L.将其转染293T细胞,48 h后通过荧光显微镜检测绿色荧光蛋白(GFP)的表达,RT-PCR和直接ELISA法检测嵌合抗体的表达.结果显示,转染pWPI/H-IRES-L的293T细胞中有嵌合轻链和嵌合重链基因的共同表达,而且表达的嵌合抗体能够与p185erbB2分子特异性结合,为今后抗p185erbB2工程抗体的研究奠定了基础.%This research was to construct the lentiviral expression vector for anti- pl85erbB2 mouse/human chimeric antibody and to determine the expression of the chimeric antibody gene in 293T cells transfected with this vector. The genes (vL and vH) coding light and heavy chain of variable regions of anti-pl85erbB2 mAb and the constant regions of human IgG1 (Κ and γ1) were cloned with PCR method. The target genes were assembled by three-primers PCR method to obtain the chimeric light chain (L) and the chimeric heavy chain (H). Both chains inserted into the down stream and upper stream of IRES gene of the plasmid pVAX1/IRES respectively. We digested the plasmid pVAX1/ H-IRES-L with endoenzyme and subcloned H-IRES-L into the lentiviral vector pWPI. The enzyme digestion and sequence analysis showed that the lentiviral expression vector pWPI/H-IRES-L was constructed correctly. Then, it was transfected into 293T cells and after 48h, GFP protein expression in 293T cells were detected by fluorescent microscope and the chimeric antibody

  5. Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies

    NARCIS (Netherlands)

    Niederfellner, G.; Lammens, A.; Mundigl, O.; Georges, G.J.; Schaefer, W.; Schwaiger, M.; Franke, A.; Wiechmann, K.; Jenewein, S.; Slootstra, J.W.; Timmerman, P.; Brännström, A.; Lindstrom, F.; Mössner, E.; Umana, P.; Hopfner, K.P.; Klein, C.

    2011-01-01

    CD20 is a cell-surface marker of normal and malignant B cells. Rituximab, a monoclonal antibody targeting CD20, has improved the treatment of malignant lymphomas. Therapeutic CD20 antibodies are classified as either type I or II based on different mechanisms of killing malignant B cells. To reveal t

  6. A phase 1 study of obinutuzumab induction followed by 2 years of maintenance in patients with relapsed CD20-positive B-cell malignancies.

    Science.gov (United States)

    Sehn, Laurie H; Assouline, Sarit E; Stewart, Douglas A; Mangel, Joy; Gascoyne, Randy D; Fine, Gregg; Frances-Lasserre, Susan; Carlile, David J; Crump, Michael

    2012-05-31

    This phase 1 study evaluated the safety, tolerability, pharmacokinetics, and antitumor activity of obinutuzumab (GA101), a glycoengineered type II anti-CD20 monoclonal antibody administered as induction followed by 2 years of maintenance. Cohorts of 3 to 6 patients received obinutuzumab (200-2000 mg) intravenously weekly for 4 weeks. Patients with a complete or partial response (or stable disease and clinical benefit) continued to receive obinutuzumab every 3 months, for a maximum of 8 doses. Twenty-two patients with relapsed CD20-positive non-Hodgkin lymphoma or chronic lymphocytic leukemia with an indication for treatment and no therapy of higher priority were enrolled. Patients received a median of 4 prior regimens; 86% had received at least 1 rituximab-containing regimen. No dose-limiting or unexpected AEs were observed. Infusion-related reactions were most common (all grades, 73%; grade 3/4, 18%), followed by infection (32%), pyrexia (23%), neutropenia (23%), headache (18%), and nausea (18%). At end of induction, 5 (23%) patients achieved partial responses and 12 (54%) had stable disease. Eight patients received maintenance; best overall response was 32% (6 partial responses/1 complete response). Obinutuzumab induction and maintenance therapy was well tolerated with promising efficacy in this heterogeneous, highly pretreated population and warrants further investigation. This study was registered at www.clinicaltrials.gov (identifier NCT00576758).

  7. Acellbia® and Mabtera® are recognize CD20-positive cells with equal efficiency

    Directory of Open Access Journals (Sweden)

    V. A. Misyurin

    2015-01-01

    Full Text Available In present study were compared characteristics of rituximab produced by Hoffmann–La Roche (Mabtera® and first domestic biosimilar Acellbia® from Biocad Company. Concentration of protein was measured using Bradford, s method. According to our results, protein concentration in formulations was the same. We electrophoresed formulations in denaturing conditions. Protein from formulations was denatured into fragments. Heavy and light chains of immunoglobulin were observed in gel. Finally, we performed flow cytometry where rituximab was used as primary antibody to detect CD20-positive B-cells of patients with B-cell chronic lymphocytic leukemia. Both Mabtera® and Acellbia® recognized the same number of cells. Thus, assays performed in vitro submitted identity of Mabtera® and Acellbia® characteristics.

  8. 抗CD71人-鼠嵌合抗体的体外抗肿瘤效应及在肿瘤异种移植模型中的定位研究%The Anti-tumor Effects of an Anti-CD71 Chimeric Antibody in Vitro and Its Distribution in a Tumor Xenograft Model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To investigate the anti-tumor effects in vitro and in vivo distribution of the human/murine chimeric antibody (D2C). Methods The CD71 positive target cells (K562, CEM and SMMC7721) and the effector cells, freshly isolated human PBMC, with the ratio of target cells to effector cells 1∶50,were incubated in various dilutions of D2C antibody (Ab). Antibody dependent cytotoxicity (ADCC) was tested by using an LDH-release assay. Instead of effector cells, complement was added to the target cells (CEM, SMMC-7721) with various dilutions of D2C Ab. A method of counting death cells was used in complement dependent cytotoxicity(CDC) assay. Tumor localization and distribution of the chimeric antibody (D2C) were observed by labeling the chimeric Ab with radioiodine(131I) and injecting it into nude mice (Balb/c nu/nu) transplanted with human hepatocellular carcinoma cells (SMMC-7721). Results A significant ADCC was observed with the increased concentration of the D2C Ab. Cytolysis of CD71-positive target cells by the D2C Ab was found in the presence of fresh rabbit complement. Labeled D2C administered by intraperitoneal as well as tumor regional injection, was visualized by SPECT. The distribution of D2C Ab in murine organs and tissues showed that non-specific binding was lower following tumor regional administration than when the antibody was administered by an intraperitoneal injection. The human/murine chimeric antibody (D2C) has in vitro anti-tumor effects and can exert its effects in specific tumor localization. Its distribution and local effects in vivo can be detected by radioimmunoimaging. Conclusion CD71 human/murine chimeric antibody showed marked killing of tumor cells in vitro, and specific recognition and high affinity binding to tumor tissue in vivo%目的 研究人鼠嵌合抗体D2C的体外抗瘤活性和体内分布。方法 以表达CD71分子的人类肿瘤细胞(K562,CEM和SMMC7721) 为靶细胞,以新鲜分离的正常人外周血单

  9. Randomized Phase II Trial Comparing Obinutuzumab (GA101) With Rituximab in Patients With Relapsed CD20(+) Indolent B-Cell Non-Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Sehn, L. H.; Goy, A.; Offner, F. C.

    2015-01-01

    Purpose Obinutuzumab (GA101), a novel glycoengineered type II anti-CD20 monoclonal antibody, demonstrated responses in single-arm studies of patients with relapsed/refractory non-Hodgkin lymphoma. This is the first prospective, randomized study comparing safety and efficacy of obinutuzumab...... therapy and with previous response to a rituximab-containing regimen were randomly assigned (1:1) to four once-per-week infusions of either obinutuzumab (1,000 mg) or rituximab (375 mg/m(2)). Patients without evidence of disease progression after induction therapy received obinutuzumab or rituximab...... maintenance therapy every 2 months for up to 2 years. Results Among patients with follicular lymphoma (n = 149), ORR seemed higher for obinutuzumab than rituximab (44.6% v 33.3%; P = .08). This observation was also demonstrated by a blinded independent review panel that measured a higher ORR for obinutuzumab...

  10. Liver transplantation : chimerism, complications and matrix metalloproteinases

    NARCIS (Netherlands)

    Hove, Willem Rogier ten

    2011-01-01

    Chimerism after orthotopic liver transplantation (OLT) is the main focus of the studies described in this thesis. The first study showed that chimerism of different cell lineages within the liver graft does occur after OLT. Subsequently, in allogeneic blood stem cell recipients, chimerism was demons

  11. Chimeric enzymes with improved cellulase activities

    Science.gov (United States)

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  12. CD20单抗临床应用局限与免疫效应器耗竭的研究进展%Limitations of CD20mAb in clinical applications and effectors exhausting

    Institute of Scientific and Technical Information of China (English)

    温良鹤; 徐玉清

    2011-01-01

    CD20单克隆抗体(Rituximab),已被批准应用于非霍奇金B淋巴瘤的治疗,并取得了显著的免疫疗效.但在大负荷循环B细胞存在的情况下,由于机体效应器如效应细胞,效应因子的耗竭,继发表面抗原抗体结合物的削片反应,导致了肿瘤的耐药与复发,降低了Rituximab的疗效.此综述通过对近20年来CD20单抗研究现状的阐述,讨论其作用机制及在效应器耗竭方面的局限,探索适宜的改进方法,以拓展其应用前景.%Rituximab, an approved CD20 monoclonal antibody (CD20mAb), has prominent effects in B-cell non-Hodgkin's lymphoma (NHL). However, the presence of resistance and relapse under high circulatory target B cells burden makes it inefficacious, which may result from antigen antibody complex shaving action based on effectors exhausting, such as effect cells and cytokine. In this review, we expound the research of Rituximab's immunotherapy mechanisms and effectors exhausting in the last two decades, trying to explore eligible strategies to expand its application in the future.

  13. 抗VEGFR-2嵌合Fab抗体对裸鼠肝癌原位移植瘤的治疗作用%Therapeutical effect of chimeric anti-VEGFR-2 Fab antibody on orthotopic xenograft of hepatocellular carcinoma in BALB/c nude mice

    Institute of Scientific and Technical Information of China (English)

    李倩君; 潘峰; 王丙剑; 朱进; 张建民; 吴亚夫; 周传文

    2013-01-01

    目的 检测抗血管内皮生长因子受体2 (VEGFR-2)嵌合Fab抗体对裸鼠肝癌原位移植瘤的治疗作用.方法 40只4周龄雄性BALB/c裸鼠建立肝癌H22细胞移植瘤模型后随机均分为Fab抗体(A)组和生理盐水对照(B)组.比较两组裸鼠生存时间、移植瘤病理变化及微血管密度(MVD).结果 成功建立裸鼠H22肝癌原位移植瘤模型,HE染色显示肝细胞肝癌.A组裸鼠中位数生存时间明显长于B组(20.0 d vs.14.0 d)(P<0.01);A组肝脏实体瘤内MVD较B组显著减少(8.65±1.79 vs.25.64±1.53)(P<0.05).结论 抗VEGFR-2嵌合Fab抗体对裸鼠肝癌原位移植瘤有治疗作用.%Objective To investigate the therapeutical effect of chimeric anti-vascular endothelial growth factor receptor(VEGFR)-2 Fab antibody on orthotopic xenograft in BALB/c nude mice. Methods The orthotopic xenograft model of hepatocellular carcinoma H22 cells was established in 40 nude mice, which were equally randomized into two groups of A (treated with chimeric anti-VEGFR-2 Fab antibody) and B(treated with normal saline). The survival time, pathological changes and microvessel density(MVD) in H22 xenografts were compared between two groups. Results An orthotopic xenograft model of hepatocellular carcinoma was successfully created in nude mice, which was confermed as hepatocellular carcinoma by hematoxylin-eosin staining. The mean survival time was longer in group A than that in group B(20. 0 d vs. 14. 0 d) (P<0. 05). MVD in the xenografts was less in group A than that in group B(8. 65±1. 79 vs. 25. 64±1. 53) (P<0. 05). Conclusion The chimeric anti-VEGFR-2 Fab antibody has some therapeutical effect on an orthotopic xenografts in nude mice.

  14. Placental chimerism in early human pregnancy

    Directory of Open Access Journals (Sweden)

    Ashutosh Halder

    2005-01-01

    Full Text Available Background0 : Human chimerism is rare and usually uncovered through investigations of ambiguous genitalia or blood grouping or prenatal diagnosis. Most of the publications on placental chimerism are mainly case reports. There is no systematic search with sensitive techniques for placental chimerism in human. Aim0 : This study was aimed to asses placental chimerism through two sensitive molecular techniques i.e., interphase fluorescent in situ hybridization and quantitative fluorescent PCR. Material and methods0 : Placental chimerism was analyzed using X & Y dual color fluorescent in-situ hybridization onto 154 placentae from natural conceptions, obtained at termination of pregnancy between 7 to 16 weeks of gestation. Results0 : Three cases of placental sex chromosome chimerism were observed (1.95%. Exclusion of maternal contamination and diagnosis was confirmed later by quantitative fluorescent PCR. Conclusion0 : This finding indicates that placental chimerism in early human pregnancy is not rare.

  15. Analyses of CD20 Monoclonal Antibody–Mediated Tumor Cell Killing Mechanisms: Rational Design of Dosing Strategies

    Science.gov (United States)

    Lindorfer, Margaret A.

    2014-01-01

    Since approval of rituximab for treatment of B cell non-Hodgkin lymphoma, development of monoclonal antibodies (mAbs) for cancer treatment and elucidation of their cytotoxic mechanisms have been subject to intense investigations. Compelling evidence indicates that rituximab and another CD20 mAb, ofatumumab, must use the body’s cellular and humoral immune effector functions to kill malignant cells. Other U.S. Food and Drug Administration–approved mAbs, including obinutuzumab, cetuximab, and trastuzumab, require, in part, these effector mechanisms to eliminate tumor cells. Although gram quantities of mAbs can be administered to patients, our investigations of CD20 mAb-based therapies for chronic lymphocytic leukemia (CLL), including correlative measurements in clinical trials and studies with primary cells and cell lines, indicate that effector mechanisms necessary for mAb activity can be saturated or exhausted if tumor burdens are high, thus substantially compromising the efficacy of high-dose mAb therapy. Under these conditions, another reaction (trogocytosis) predominates in which bound CD20 mAb and CD20 are removed from targeted cells by effector cells that express Fcγ receptors, thereby allowing malignant cells to escape unharmed and continue to promote disease pathology. To address this problem, we propose that a low-dose strategy, based on administering 30–50 mg of CD20 mAb three times per week, may be far more effective for CLL than standard dosing because it will minimize effector function saturation and reduce trogocytosis. This approach may have general applicability to other mAbs that use immune effector functions, and could be formulated into a subcutaneous treatment strategy that would be more accessible and possibly more efficacious for patients. PMID:24944188

  16. 含F/2A序列的抗 P185erbB2人鼠嵌合抗体慢病毒表达载体的构建%Construction of the Lentiviral Expression Vector Containing F/2AFragment for Anti-P185erbB2 Mouse/Human Chimeric Antibody

    Institute of Scientific and Technical Information of China (English)

    刘芳; 李力; 张玮; 王琪

    2012-01-01

    目的 构建含 F/2A 序列的抗 P185erbB2 人鼠嵌合抗体慢病毒表达载体,观察其在 293T 细胞中的表达.方法 用具有自我剪切能力的弗林蛋白酶(Furin)/口蹄疫病毒2A多肽(F/2A)连接人鼠嵌合抗体的重链和轻链,形成一个开放阅读框 (ORF),插入慢病毒表达载体pWPI,构建重组抗P185erbB2全长人鼠嵌合抗体表达载体pWPI/H-F2A-L.以已构建的慢病毒表达载体pWPI/H-IRES-L为对照质粒.应用磷酸钙沉淀法将慢病毒载体 3 质粒系统共转染入 293T 细胞进行包装,测定病毒滴度.再感染 293T 细胞,荧光显微镜下观察 GFP 的表达和转染效率,RT-PCR、ELISA 方法分别检测嵌合抗体 mRNA和蛋白的表达.结果 经测序鉴定,pWPI/H-F2A-L与预期设计一致;pWPI/H-F2A-L组的病毒滴度为4.3×105 TU/ml,而pW-PI/H-IRES-L 组的病毒滴度为3.5×105 TU/ml;两组重组慢病毒的转染效率分别为 87.68%和 79.08%:两组重组慢病毒感染 293T 细胞后,都有嵌合重链和嵌合轻链的表达,由F/2A介导的嵌合抗体的表达水平要高于由 IRES 介导的嵌合抗体.结论 成功构建了含F/2A序列的抗P185erbB2人鼠嵌合抗体慢病毒表达载体,为今后抗P185erbB2工程抗体的研究奠定了基础.%Objective To construct the lentiviral expression vector containing F/2A fragment for anti-P185erbB2 mouse/human chimeric antibody , and detect its expression in 293T cells. Methods The heavy and light chains of chimeric antibody were joined by Furin and 2A ( F/ 2A) self-cleavage peptide and cloned into a lentiviral vector of pWPI , to generate the lentiviral ex-pression vector, pWPI/H-F2A-L Another lentiviral expression vector , pWPI/H4RES-L that had been generated already , was used as control plasmid. 293 T cells were co-transfected with the 3 helper plasmid system by using calcium phosphate precipitation , and then the virus titer was exam-ined. The 293 T cells were infected by the obtained lentiviral particles. The expression of

  17. The study of conjugation of anti-CD20 monoclonal antibody for labeling with metallic or lanthanides radionuclides; Estudo de conjugacao do anticorpo anti-CD20 para marcacao com radionuclideos metalicos ou lantanideos

    Energy Technology Data Exchange (ETDEWEB)

    Akanji, Akinkunmi Ganiyu

    2012-07-01

    Lymphomas are malignancies or cancers that start from the malign transformation of a lymphocyte in the lymphatic system. Generally, lymphomas start from the lymph nodes or from the agglomeration of the lymphatic tissues, organs like stomach, intestines, in some cases it can involve the bone marrow and the blood, it can also disseminate to other organs. Lymphomas are divided in two major categories: Hodgkin lymphoma and non-Hodgkin lymphoma (NHL). Patient with NHL are generally treated with radiotherapy alone or combined with immunotherapy using monoclonal antibody rituximab (MabThera Registered-Sign ). Currently, monoclonal antibodies (Acm) conjugated with bifunctional chelate agents and radiolabeled with metallic or lanthanides radionuclides are a treatment reality for patients with NHL by the principle of radioimmunotherapy (RIT). This study focused on the conditions of conjugation of Acm rituximab (MabThera Registered-Sign ) with bifunctional chelating agents DOTA and DTPA. Various parameters were studied: method of Acm purification, conditions of Acm conjugation, the method for determination of number of chelate agent coupled to the Acm, method for purification of the conjugated antibody Acm, conditions of labeling of the conjugated antibody with lutetium-177, method of purification of the radiolabeled immuno conjugate, method of radiochemical purity (RP), specific binding in vitro Raji cells (Human Burkitt) and biological distribution performed in normal Balb-c mouse. The three methodologies employed in pre-purification of Acm (dialysis, size exclusion chromatograph and dial filtration) demonstrated to be efficient; they provided sample recovery exceeding 90%. However, the methodology of dial filtration presents minimal sample loss, and gave the final recovery of the sample in micro liters; thereby facilitating sample use in subsequent experiments. Numbers of chelators attached to the Acm molecule was proportional to the molar ratio studied. When we evaluated the influence of different conditions of conjugation in the number of chelators bounded to the Acm, no notable differences were observed. The RP < 80% was observed in all the methods applied. Purification of the conjugated antibody by dialysis and size exclusion chromatography demonstrated to be efficient, but deficient in terms of high sample volume recovered. The dial filtration was efficient and practical besides it provided sample recovery in micro liters. The optimized conditions for purification of the conjugated antibody preserved the protein integrity. When the conjugated Acm was labeled with lutetium-177 a product with low RP was observed in all molar ratios studied. The methodology used in the control of RP of the radiolabeled antibody was efficient in the discrimination of radiochemical species presented in the reaction mixture. The method of purification of the conjugated antibody applied, proved to be efficient in separating the labeled antibody from free lutetium. The results of specific cell binding studies performed with the conjugated Acm showed high percentage of nonspecific binding. Biological distribution in normal Balb-c mice demonstrated higher uptake of the labeled antibody by kidney and liver. The relatively high uptake observed by bone tissue may indicate some in vivo instability. However, results obtained in this study showed to be close related in literature. Thus, these data confirm the potential of antibody conjugated to DOTA and DTPA labeled with lutetium-177 for radioimmunotherapy of non-Hodgkin lymphoma. (author)

  18. Generation of chimeric rhesus monkeys.

    Science.gov (United States)

    Tachibana, Masahito; Sparman, Michelle; Ramsey, Cathy; Ma, Hong; Lee, Hyo-Sang; Penedo, Maria Cecilia T; Mitalipov, Shoukhrat

    2012-01-20

    Totipotent cells in early embryos are progenitors of all stem cells and are capable of developing into a whole organism, including extraembryonic tissues such as placenta. Pluripotent cells in the inner cell mass (ICM) are the descendants of totipotent cells and can differentiate into any cell type of a body except extraembryonic tissues. The ability to contribute to chimeric animals upon reintroduction into host embryos is the key feature of murine totipotent and pluripotent cells. Here, we demonstrate that rhesus monkey embryonic stem cells (ESCs) and isolated ICMs fail to incorporate into host embryos and develop into chimeras. However, chimeric offspring were produced following aggregation of totipotent cells of the four-cell embryos. These results provide insights into the species-specific nature of primate embryos and suggest that a chimera assay using pluripotent cells may not be feasible.

  19. Comparative Efficacy of 177Lu and 90Y for Anti-CD20 Pretargeted Radioimmunotherapy in Murine Lymphoma Xenograft Models

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Sophia; Frayo, Shani; Miller, Brian W.; Orozco, Johnnie J.; Booth, Garrett C.; Hylarides, Mark; Lin, Yukang; Green, Damian J.; Gopal, Ajay K.; Pagel, John M.; Back, Tom; Fisher, Darrell R.; Press, Oliver W.

    2015-03-01

    Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice.

  20. Use of recombinant lentivirus pseudotyped with vesicular stomatitis virus glycoprotein G for efficient generation of human anti-cancer chimeric T cells by transduction of human peripheral blood lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    Kolokoltsov Andrey A

    2006-02-01

    Full Text Available Abstract Background Genetic redirection of lymphocytes that have been genetically engineered to recognize antigens other than those originally programmed in their germlines is a potentially powerful tool for immunotherapy of cancers and potentially also of persistent viral infections. The basis for this procedure is that both cancers and some viruses have developed strikingly similar mechanisms of evading attacks by host immune mechanisms. To redirect human peripheral blood lymphocytes (PBLs with a chimeric T cell receptor (chTCR so that they recognize a new target requires a high degree of transfection efficiency, a process that is regarded as technically demanding. Results Infection with a retroviral vector carrying a chTCR cassette was shown to transduce 100% of rapidly dividing murine T cells but typically, only ~10% of PBLs could be infected with the same vector. In contrast with other retroviruses, lentiviruses integrate their genomes into non-dividing cells. To increase host cell range, vesicular stomatitis virus G protein was pseudotyped with a lentivirus vector, which resulted in ~100% PBL transduction efficiency. Signaling of PBLs bearing chimeric receptors was shown by specific proliferation on exposure to cells expressing cognate ligand. Further, T-bodies against CEA showed a startling abilty to cause regression of maligant colon tumors in a nude mouse model of human cancer. Conclusion A lentivirus/VSV pseudotyped virus, which does not require replicating cells for integration of its genome, efficiently transduced a high proportion of human PBLs with chTCRs against CEA. PBLs transduced by infection with a lentivirus/VSV pseudotyped vector were able to proliferate specifically in vitro on exposure to CEA-expressing cells and further they had a startling therapeutic effect in a mouse model of human colon cancer.

  1. 基于AFM单分子力谱技术的CD20-Rituximab间相互作用力测量

    Institute of Scientific and Technical Information of China (English)

    李密; 刘连庆; 席宁; 王越超; 董再励; 李广勇; 肖秀斌; 张伟京

    2011-01-01

    原子力显微镜(AFM)的发明为测量分子间特异性相互作用力提供了新的技术手段.利用AFM单分子力谱(SMFS)技术分别测量了提纯的CD20,淋巴瘤Raji细胞表面的CD20和淋巴瘤病人B细胞表面的CD20与Rituximab(抗CD20单克隆抗体)之间的相互作用力.通过探针功能化技术,将Rituximab连接到AFM针尖;通过基底功能化技术,将提纯的CD20分子吸附到云母表面,对CD20分子进行了AFM成像,并测量了CD20与Rituximab之间的相互作用力;通过静电吸附和化学固定,将淋巴瘤Raji细胞和淋巴瘤病人细胞固定到载玻片表面,对Raji细胞和病人细胞进行了AFM成像,并分别测量了Raji细胞表面的CD20和病人B细胞表面的CD20与Rituximab之间的相互作用力.比较并分析了在提纯的CD20分子表面、Raji细胞表面和病人B细胞表面测量CD20-Rituximab相互作用力的差异,实验结果表明Raji细胞表面的CD20与Rituximab之间的相互作用力明显小于提纯的CD20以及淋巴瘤病人B细胞表面的CD20与Rituximab之间的相互作用力,为深入研究造成Rituximab耐药性差异的分子机理提供了技术思路和实验方法.

  2. Obinutuzumab (GA101) compared to rituximab significantly enhances cell death and antibody-dependent cytotoxicity and improves overall survival against CD20(+) rituximab-sensitive/-resistant Burkitt lymphoma (BL) and precursor B-acute lymphoblastic leukaemia (pre-B-ALL): potential targeted therapy in patients with poor risk CD20(+) BL and pre-B-ALL.

    Science.gov (United States)

    Awasthi, Aradhana; Ayello, Janet; Van de Ven, Carmella; Elmacken, Mona; Sabulski, Anthony; Barth, Matthew J; Czuczman, Myron S; Islam, Humayun; Klein, Christian; Cairo, Mitchell S

    2015-12-01

    Obinutuzumab is a novel glycoengineered Type-II CD20 monoclonal antibody. CD20 is expressed in approximately 100% of children and adolescents with Burkitt lymphoma (BL) and 40% with precursor B-cell acute lymphoblastic leukaemia (pre-B-ALL). We evaluated the anti-tumour activity of obinutuzumab versus rituximab against rituximab-resistant (Raji 4RH) and -sensitive (Raji) BL and pre-B-ALL (U698-M) cells in vitro and in human BL or Pre-B-ALL xenografted mice. We demonstrated that obinutuzumab compared to rituximab significantly enhanced cell death against Raji 35·6 ± 3·1% vs. 25·1 ± 2·0%, (P = 0·001), Raji4RH 19·7 ± 2·2% vs. 7·9 ± 1·5% (P = 0·001) and U-698-M 47·3 ± 4·9% vs. 23·2 ± 0·5% (P = 0·001), respectively. Obinutuzumab versus rituximab also induced a significant increase in antibody-dependent cellular cytotoxicity (ADCC) with K562-IL15-41BBL expanded NK cells against Raji 73·8 ± 8·1% vs. 56·81 ± 4·6% (P = 0·001), Raji-4RH 40·0 ± 1·6% vs. 0·5 ± 1·1% (P = 0·001) and U-698-M 70·0 ± 1·6% vs. 45·5 ± 0·1% (P = 0·001), respectively. Overall survival in tumour xenografted mice receiving 30 mg/kg of obinutuzumab was significantly increased when compared to those receiving 30 mg/kg of rituximab in BL; Raji (P = 0·05), Raji4RH (P = 0·02) and U698-M (P = 0·03), respectively. These preclinical data suggest obinutuzumab is significantly superior to rituximab in inducing cell death, ADCC and against rituximab-sensitive/-resistant BL and pre-B-ALL xenografted mice. Taken together, these preclinical results provide evidence to suggest that future investigation of obinutuzumab is warranted in patients with relapsed/refractory CD20(+) BL and/or pre-B-ALL.

  3. Targeting duplex DNA with chimeric α,β-triplex-forming oligonucleotides

    Science.gov (United States)

    Kolganova, N. A.; Shchyolkina, A. K.; Chudinov, A. V.; Zasedatelev, A. S.; Florentiev, V. L.; Timofeev, E. N.

    2012-01-01

    Triplex-directed DNA recognition is strictly limited by polypurine sequences. In an attempt to address this problem with synthetic biology tools, we designed a panel of short chimeric α,β-triplex-forming oligonucleotides (TFOs) and studied their interaction with fluorescently labelled duplex hairpins using various techniques. The hybridization of hairpin with an array of chimeric probes suggests that recognition of double-stranded DNA follows complicated rules combining reversed Hoogsteen and non-canonical homologous hydrogen bonding. In the presence of magnesium ions, chimeric TFOs are able to form highly stable α,β-triplexes, as indicated by native gel-electrophoresis, on-array thermal denaturation and fluorescence-quenching experiments. CD spectra of chimeric triplexes exhibited features typically observed for anti-parallel purine triplexes with a GA or GT third strand. The high potential of chimeric α,β-TFOs in targeting double-stranded DNA was demonstrated in the EcoRI endonuclease protection assay. In this paper, we report, for the first time, the recognition of base pair inversions in a duplex by chimeric TFOs containing α-thymidine and α-deoxyguanosine. PMID:22641847

  4. Use of CTLA4Ig for induction of mixed chimerism and renal allograft tolerance in nonhuman primates.

    Science.gov (United States)

    Yamada, Y; Ochiai, T; Boskovic, S; Nadazdin, O; Oura, T; Schoenfeld, D; Cappetta, K; Smith, R-N; Colvin, R B; Madsen, J C; Sachs, D H; Benichou, G; Cosimi, A B; Kawai, T

    2014-12-01

    We have previously reported successful induction of renal allograft tolerance via a mixed chimerism approach in nonhuman primates. In those studies, we found that costimulatory blockade with anti-CD154 mAb was an effective adjunctive therapy for induction of renal allograft tolerance. However, since anti-CD154 mAb is not clinically available, we have evaluated CTLA4Ig as an alternative agent for effecting costimulation blockade in this treatment protocol. Two CTLA4Igs, abatacept and belatacept, were substituted for anti-CD154 mAb in the conditioning regimen (low dose total body irradiation, thymic irradiation, anti-thymocyte globulin and a 1-month posttransplant course of cyclosporine [CyA]). Three recipients treated with the abatacept regimen failed to develop comparable lymphoid chimerism to that achieved with anti-CD154 mAb treatment and these recipients rejected their kidney allografts early. With the belatacept regimen, four of five recipients developed chimerism and three of these achieved long-term renal allograft survival (>861, >796 and >378 days) without maintenance immunosuppression. Neither chimerism nor long-term allograft survival were achieved in two recipients treated with the belatacept regimen but with a lower, subtherapeutic dose of CyA. This study indicates that CD28/B7 blockade with belatacept can provide a clinically applicable alternative to anti-CD154 mAb for promoting chimerism and renal allograft tolerance.

  5. Loss of CD20 expression in relapsed diffuse large B cell lymphoma after rituximab therapy: a case report and review of the literature

    Institute of Scientific and Technical Information of China (English)

    Yao Jiang; Yingchao Zhao; Xiaorong Dong; Sheng Zhang; Yan Li; Gang Wu

    2013-01-01

    Nowadays, resistance to rituximab has become a major issue in clinical practice. And loss of CD20 may contribute to it. Here we presented a case of loss of CD20 expression in relapsed diffuse large B cell lymphoma treated with rituximab and discuss the incidence, mechanism, influence factors, specific markers, prognosis and treatment of this disease. These results suggested that a post-relapse biopsy after rituximab treatment should be performed. CD79a and Pax-5 should be used as the first-line B lineage-specific markers for these patients. Though mechanisms of CD20 decrement are not fully elucidated, the down-regulation of CD20 mRNA is the most probable hypothesis. Recently various new agents are developed, but the prognosis is still poor. Further studies for new treatments are needed.

  6. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha

    Science.gov (United States)

    DOKI, Tomoyoshi; TAKANO, Tomomi; HOHDATSU, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of feline antibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. In contrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2–4-treated cats. PMID:27264736

  7. Progress in Chimeric Vector and Chimeric Gene Based Cardiovascular Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    HU Chun-Song; YOON Young-sup; ISNER Jeffrey M.; LOSORDO Douglas W.

    2003-01-01

    Gene therapy for cardiovascular diseases has developed from preliminary animal experiments to clinical trials. However, vectors and target genes used currently in gene therapy are mainly focused on viral, nonviral vector and single target gene or monogene. Each vector system has a series of advantages and limitations. Chimeric vectors which combine the advantages of viral and nonviral vector,chimeric target genes which combine two or more target genes and novel gene delivery modes are being developed. In this article, we summarized the progress in chimeric vectors and chimeric genes based cardiovascular gene therapy, which including proliferative or occlusive vascular diseases such as atheroslerosis and restenosis, hypertonic vascular disease such as hypertension and cardiac diseases such as myocardium ischemia, dilated cardiomyopathy and heart failure, even heart transplantation. The development of chimeric vector, chimeric gene and their cardiovascular gene therapy is promising.

  8. CD20-negative de novo diffuse large B-cell lymphoma in HIV-negative patients: A matched case-control analysis in a single institution

    Directory of Open Access Journals (Sweden)

    Li Ya-Jun

    2012-05-01

    Full Text Available Abstract Background HIV-negative, CD20-negative de novo diffuse large B-cell lymphoma (DLBCL patients has rarely been reported. To elucidate the nature of this entity, we retrospectively reviewed the data of 1,456 consecutive de novo DLBCL patients who were treated at Sun Yat-Sen University Cancer Center between January 1999 and March 2011. Methods The pathologic characteristics of CD20-negative patients, clinical features, response to initial treatment, and outcomes of 28 patients with available clinical data (n = 21 were reviewed. Then, a matched case-control (1:3 analysis was performed to compare patients with CD20-negative and -positive DLBCL. Results The median age of the 28 CD20-negative DLBCL patients was 48 years, with a male-female ratio of 20:8. Seventeen of 22 (77.3% CD20-negative DLBCL cases were of the non-germinal centre B-cell (non-GCB subtype. High Ki67 expression (≥80%, an index of cell proliferation, was demonstrated in 17 of 24 (70.8% cases. Extranodal involvement (≥ 1 site was observed in 76.2% of the patients. Following initial therapy, 9 of 21 (42.9% cases achieved complete remission, 4 (19% achieved partial remission, 1 (4.8% had stable disease, and 7 (33.3% had disease progression. The median overall survival was 23 months. The 3-year progression-free survival (PFS and overall survival (OS rates were 30.5% and 35%, respectively. A matched case-control analysis showed that patients with CD20-negative and -positive DLBCL did not exhibit a statistically significant difference with respect to the main clinical characteristics (except extranodal involvement, whereas the patients with CD20-positive DLBCL had a better survival outcome with 3-year PFS (P = 0.008 and OS (P = 0.008 rates of 52% and 74.1%, respectively. Conclusions This study suggests that HIV-negative, CD20-negative de novo DLBCL patients have a higher proportion of non-GCB subtype, a higher proliferation index, more frequent extranodal involvement, a poorer

  9. Manufacture of diploid/tetraploid chimeric mice.

    OpenAIRE

    Lu, T Y; Markert, C L

    1980-01-01

    Tetraploid mouse embryos were produced by cytochalasin B treatment. These embryos usually die before completion of embryonic development and are abnormal morphologically and physiologically. The tetraploid embryos can be rescued to develop to maturity by aggregating them with normal diploid embryos to produce diploid/tetraploid chimeric mice. The diploid/tetraploid chimeric embryos are frequently abnormal: the larger the proportion of tetraploid cells, the greater the abnormality. By karyotyp...

  10. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV.

    Directory of Open Access Journals (Sweden)

    Xiaolin Wen

    Full Text Available Respiratory syncytial virus (RSV and human metapneumovirus (HMPV are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1 is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections.

  11. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV

    Science.gov (United States)

    Wen, Xiaolin; Pickens, Jennifer; Mousa, Jarrod J.; Leser, George P.; Lamb, Robert A.; Crowe, James E.; Jardetzky, Theodore S.

    2016-01-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1) is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections. PMID:27224013

  12. Chimerism and xenotransplantation. New concepts.

    Science.gov (United States)

    Starzl, T E; Rao, A S; Murase, N; Demetris, A J; Thomson, A; Fung, J J

    1999-02-01

    In both transplant and infectious circumstances, the immune response is governed by migration and localization of the antigen. If the antigenic epitopes of transgenic xenografts are sufficiently altered to avoid evoking the destructive force of innate immunity, the mechanisms of engraftment should be the same as those that permit the chimerism-dependent immunologic confrontation and resolution that is the basis of allograft acceptance. In addition to "humanizing" the epitopes, one of the unanswered questions is whether the species restriction of complement described in 1994 by Valdivia and colleagues also necessitates the introduction of human complement regulatory genes in animal donors. Because the liver is the principal or sole source of most complement components, the complement quickly is transformed to that of the donor after hepatic transplantation. Thus, the need for complementary regulatory transgenes may vary according to the kind of xenograft used. Much evidence shows that physiologically important peptides produced by xenografts (e.g., insulin, clotting factors, and enzymes) are incorporated into the metabolic machinery of the recipient body. To the extent that this is not true, xenotransplantation could result in the production of diseases that are analogous to inborn errors of metabolism. In the climate of pessimism that followed the failures of baboon to human liver xenotransplantation in 1992-1993, it seemed inconceivable that the use of even more discordant donors, such as the pig, could ever be seriously entertained; however, this preceded insight into the xenogeneic and allogeneic barriers that has brought transplantation infectious immunity to common ground. With this new insight and the increasing ease of producing transgenic donors, the goal of clinical xenotransplantation may not be so distant.

  13. Humax-CD20治疗非何杰金氏淋巴瘤的Ⅲ期试验开始

    Institute of Scientific and Technical Information of China (English)

    贾永蕊(摘)

    2007-01-01

    Genmab公司已经开始其全人抗CD20单克隆抗体Humax-CD20(ofatumumab)(Ⅰ)治疗滤泡型非何杰金氏淋巴瘤的Ⅲ期试验。该试验选录了162例病人,他们用Roche/Genentech/Biogen Idec公司的Mabthera/Rituxan(rituximab)联合化疗或者将rituximab作为维持治疗的效果不佳。

  14. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    Science.gov (United States)

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  15. Obinutuzumab (GA101) for the treatment of chronic lymphocytic leukemia and other B-cell non-hodgkin's lymphomas: a glycoengineered type II CD20 antibody.

    Science.gov (United States)

    Goede, Valentin; Klein, Christian; Stilgenbauer, Stephan

    2015-01-01

    Obinutuzumab (GA101) is a humanized, monoclonal type II CD20 antibody modified by glycoengineering. The glycoengineered Fc portion enhances the binding affinity to the FcγRIII receptor on immune effector cells, resulting in increased antibody-dependent cellular cytotoxicity and phagocytosis. In addition, the type II antibody binding characteristics of obinutuzumab to CD20 lead to an efficient induction of direct non-apoptotic cell death. Preclinical data demonstrated more efficient B-cell depletion in whole blood and superior antitumor activity in xenograft models of obinutuzumab as compared to the type I CD20 antibody rituximab. In previously untreated patients with chronic lymphocytic leukemia (CLL) and comorbidities, obinutuzumab plus chlorambucil increased response rates and prolonged progression-free survival compared with rituximab plus chlorambucil. Obinutuzumab had an acceptable and manageable safety profile, with infusion-related reactions during the first infusion as the most common adverse event. Further phase I/II clinical trials have also shown promising activity in other CD20-positive B-cell non-Hodgkin's lymphomas (NHL). Therefore, several clinical studies are planned or ongoing to investigate obinutuzumab with different combination partners in both untreated and relapsed/refractory patients with different B-cell NHL entities, which in addition to CLL include diffuse large B-cell lymphoma and follicular lymphoma. © 2015 S. Karger GmbH, Freiburg.

  16. 利用AFM探测淋巴瘤细胞表面CD20抗原与其抗体的相互作用

    Institute of Scientific and Technical Information of China (English)

    李密; 刘连庆; 席宁; 王越超; 董再励; 李广勇; 肖秀斌; 张伟京

    2010-01-01

    在分子水平阐明细胞生理活动深层次的机制是当前生命科学的重要研究课题.AFM的发明为揭示细胞生理活动的分子本质提供了新的技术手段.利用AFM单分子力谱技术在近生理环境下对B淋巴瘤细胞表面的CD20抗原与其抗体Rituximab之间的特异性结合反应进行了探索性的研究,通过对探针进行功能化,测量了CD20抗原与Rituximab之间的特异性结合力,同时观察了CD20抗原在B淋巴瘤细胞表面的分布,并分析了在外部拉力作用下,CD20-Rituximab复合物的分子内力与伸长量的关系.实验结果为深入研究Rituximab的作用机制奠定了基础.

  17. Inflammation in disseminated lesions: an analysis of CD4+, CD20+, CD68+, CD31+ and vW+ cells in non-ulcerated lesions of disseminated leishmaniasis

    Directory of Open Access Journals (Sweden)

    Dayana Santos Mendes

    2013-02-01

    Full Text Available Disseminated leishmaniasis (DL differs from other clinical forms of the disease due to the presence of many non-ulcerated lesions (papules and nodules in non-contiguous areas of the body. We describe the histopathology of DL non-ulcerated lesions and the presence of CD4-, CD20-, CD68-, CD31- and von Willebrand factor (vW-positive cells in the inflamed area. We analysed eighteen biopsies from non-ulcerated lesions and quantified the inflamed areas and the expression of CD4, CD20, CD68, CD31 and vW using Image-Pro software (Media Cybernetics. Diffuse lymphoplasmacytic perivascular infiltrates were found in dermal skin. Inflammation was observed in 3-73% of the total biopsy area and showed a significant linear correlation with the number of vW+ vessels. The most common cells were CD68+ macrophages, CD20+ B-cells and CD4+ T-cells. A significant linear correlation between CD4+ and CD20+ cells and the size of the inflamed area was also found. Our findings show chronic inflammation in all DL non-ulcerated lesions predominantly formed by macrophages, plasmacytes and T and B-cells. As the inflamed area expanded, the number of granulomas and extent of the vascular framework increased. Thus, we demonstrate that vessels may have an important role in the clinical evolution of DL lesions.

  18. Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20+ NHL: A prospective randomized HOVON trial

    NARCIS (Netherlands)

    E. Vellenga (Edo); W.L.J. van Putten (Wim); M.B. van 't Veer (Mars); J.M. Zijlstra (Josée); W.E. Fibbe (Willem); M.H.J. van Oers (Marinus); L.F. Verdonck (Leo); P.W. Wijermans (Pierre); G. van Imhoff (Gustaaf); P.J. Lugtenburg (Pieternella); P.C. Huijgens (Peter)

    2008-01-01

    textabstractWe evaluated the role of rituximab during remission induction chemotherapy in relapsed aggressive CD20+non-Hodgkin lymphoma. Of 239 patients, 225 were evaluable for analysis. Randomized to DHAP (cisplatin-cytarabine- dexamethasone)-VIM (etoposide-ifosfamide-methotrexate)-DHAP (cisplatin-

  19. Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20(+) NHL : a prospective randomized HOVON trial

    NARCIS (Netherlands)

    Vellenga, Edo; van Putten, Wim L. J.; van't Veer, Mars B.; Zijlstra, Josee M.; Fibbe, Willem E.; van Oers, Marinus H. J.; Verdonck, Leo F.; Wijermans, Pierre W.; van Imhoff, Gustaaf W.; Lugtenburg, Pieternella J.; Huijgens, Peter C.

    2008-01-01

    We evaluated the role of rituximab during remission induction chemotherapy in relapsed aggressive CD20(+) non-Hodgkin lymphoma. Of 239 patients, 225 were evaluable for analysis. Randomized to DHAP (cisplatin-cytarabine-dexamethasone)-VIM (etoposide-ifosfamide-methotrexate)-DHAP (cisplatin-cytarabine

  20. Chimerism in health, transplantation and autoimmunity

    NARCIS (Netherlands)

    Koopmans, Marije; Kremer Hovinga, Idske Cornelia Lydia

    2009-01-01

    The term “chimerism” originates from Greek mythology and refers to the creature Chimaera, whose body was in front a lion, the back a serpent and the midsection a goat. In medicine, the term chimerism refers to an individual, organ or part consisting of tissues of diverse genetic constitution. Pregna

  1. Optimized total body irradiation for induction of renal allograft tolerance through mixed chimerism in cynomolgus monkeys

    Energy Technology Data Exchange (ETDEWEB)

    Kimikawa, Masaaki; Kawai, Tatsuo; Ota, Kazuo [Tokyo Women`s Medical Coll. (Japan)

    1996-12-01

    We previously demonstrated that a nonmyeloablative preparative regimen can induce mixed chimerism and renal allograft tolerance between MHC-disparate non-human primates. The basic regimen includes anti-thymocyte globulin (ATG), total body irradiation (TBI, 300 cGy), thymic irradiation (TI, 700 cGy), splenectomy, donor bone marrow (DBM) infusion, and posttransplant cyclosporine therapy (CYA, discontinued after 4 weeks). To evaluate the importance and to minimize the toxicity of irradiation, kidney allografts were transplanted with various manipulations of the irradiation protocol. Monkeys treated with the basic protocol without TBI and TI did not develop chimerism or long-term allograft survival. In monkeys treated with the full protocol, all six monkeys treated with two fractionated dose of 150 cGy developed chimerism and five monkeys appeared tolerant. In contrast, only two of the four monkeys treated with fractionated doses of 125 cGy developed chimerism and only one monkey survived long term. The degree of lymphocyte depletion in all recipients was proportional to the TBI dose. The fractionated TBI regimen of 150 cGy appears to be the most consistently effective regimen for establishing donor bone marrow cell engraftment and allograft tolerance. (author)

  2. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models.

    Science.gov (United States)

    Herter, Sylvia; Herting, Frank; Mundigl, Olaf; Waldhauer, Inja; Weinzierl, Tina; Fauti, Tanja; Muth, Gunter; Ziegler-Landesberger, Doris; Van Puijenbroek, Erwin; Lang, Sabine; Duong, Minh Ngoc; Reslan, Lina; Gerdes, Christian A; Friess, Thomas; Baer, Ute; Burtscher, Helmut; Weidner, Michael; Dumontet, Charles; Umana, Pablo; Niederfellner, Gerhard; Bacac, Marina; Klein, Christian

    2013-10-01

    We report the first preclinical in vitro and in vivo comparison of GA101 (obinutuzumab), a novel glycoengineered type II CD20 monoclonal antibody, with rituximab and ofatumumab, the two currently approved type I CD20 antibodies. The three antibodies were compared in assays measuring direct cell death (AnnexinV/PI staining and time-lapse microscopy), complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), and internalization. The models used for the comparison of their activity in vivo were SU-DHL4 and RL xenografts. GA101 was found to be superior to rituximab and ofatumumab in the induction of direct cell death (independent of mechanical manipulation required for cell aggregate disruption formed by antibody treatment), whereas it was 10 to 1,000 times less potent in mediating CDC. GA101 showed superior activity to rituximab and ofatumumab in ADCC and whole-blood B-cell depletion assays, and was comparable with these two in ADCP. GA101 also showed slower internalization rate upon binding to CD20 than rituximab and ofatumumab. In vivo, GA101 induced a strong antitumor effect, including complete tumor remission in the SU-DHL4 model and overall superior efficacy compared with both rituximab and ofatumumab. When rituximab-pretreated animals were used, second-line treatment with GA101 was still able to control tumor progression, whereas tumors escaped rituximab treatment. Taken together, the preclinical data show that the glyoengineered type II CD20 antibody GA101 is differentiated from the two approved type I CD20 antibodies rituximab and ofatumumab by its overall preclinical activity, further supporting its clinical investigation.

  3. Reducing ulcerogenic potential of biphenyl acetic acid: Design and development of chimeric derivatives with amino acids

    Directory of Open Access Journals (Sweden)

    Suneela Dhaneshwar

    2016-09-01

    Full Text Available In an attempt to minimize the ulcerogenic potential and associated gastro-intestinal toxicity of bioprecursor fenbufen and its active metabolite biphenyl acetic acid, carrier-linked chimeric derivatives of the latter were designed and synthesized using amino acids as the promoities. DCC coupling method was used for the synthesis of these amides. The chimeras were characterized by IR and 1H NMR. Pharmacological investigations were carried out in animal models for analgesic, anti-inflammatory, anti-arthritic and ulcerogenic activities. The chimeras exhibited high gastro-sparing effect; quick onset and longer duration of analgesia; enhanced/prolonged anti-inflammatory activity and better anti-arthritic effect than fenbufen or biphenyl acetic acid. These derivatives could be useful as a chronotherapy for rheumatoid arthritis due to their prolonged analgesic and anti-inflammatory effects.

  4. CD86嵌合抗体对系统性红斑狼疮患者自身反应性B细胞的作用及影响研究%Effects of an anti-CD86 chimeric antibody (ch1D1) on autoreactive B lymphocytes isolated from pa-tients with SLE

    Institute of Scientific and Technical Information of China (English)

    刘玉华; 陈兆军; 韩杰; 潘峰; 鄢巨振; 张腊红; 郑小银; 刘杨

    2016-01-01

    目的:探讨CD86嵌合抗体ch1D1对系统性红斑狼疮( systemic lupus erythematosus, SLE)患者自身反应性B细胞的作用及影响。方法利用流式细胞术分析SLE患者B细胞表面CD86的表达水平及ch1D1对SLE患者CD4+T细胞活化的影响;利用磁珠法分选出健康志愿者和SLE患者外周血单个核细胞( PBMC)中的B细胞、NK细胞以及CD4+T细胞用于后续实验;利用LDH释放法检测ch1D1介导对SLE患者B细胞的抗体依赖的细胞介导的细胞毒作用( antibody dependent cell medi-ated cytotoxicity,ADCC)及补体依赖的细胞介导的细胞毒作用( complement dependent cell mediated cy-totoxicity,CDC),利用ELISA法检测ch1D1对SLE患者B细胞分泌自身抗体的影响,利用3H掺入法分析ch1D1对SLE患者CD4+T细胞增殖的影响。结果 SLE患者B细胞上CD80(68.08±14.28 vs 46.10±12.14,n=24,P<0.0001)和CD86(44.72±14.90 vs 13.99±10.74,n=24,P<0.0001)的表达水平显著高于健康志愿者,提示B细胞异常活化;与对照组相比,ch1D1能更有效介导对SLE患者B细胞的ADCC和CDC作用(P=0.0172,P=0.0388);活化的T细胞显著增强SLE患者B细胞产生自身抗体,ch1D1显著抑制了SLE患者自身抗体的分泌(P=0.0019);SLE患者CD4+T细胞活化和增殖水平显著高于健康志愿者,而ch1D1显著抑制 SLE患者 CD4+T细胞的增殖和活化( P=0.0024,P=0.0495)。结论 CD86嵌合抗体能更有效地介导对SLE患者自身反应性B细胞的ADCC和CDC作用,抑制其自身抗体的分泌,抑制自身反应性CD4+T细胞的增殖和活化,有望成为治疗SLE的新型免疫制剂。%Objective To investigate the effects of ch1D1, an anti-CD86 chimeric antibody, on autoreactive B lymphocytes isolated from patients with systemic lupus erythematosus ( SLE) . Methods Flow cytometry analysis was performed to measure the expression of CD86 on the surface of B cells isolated from patients with SLE and to analyze the effects of ch1D1 on the activation of CD4+T cells

  5. CD20单克隆抗体rituximab在B淋巴细胞疾病靶向治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    钱军; 林江

    2002-01-01

    CD20是前B淋巴细胞向成熟淋巴细胞分化过程中表达的表面抗原.除了在正常B淋巴细胞分化过程中表达外,CD20也在许多B细胞性恶性肿瘤如淋巴瘤、慢性淋巴细胞白血病、多发性骨髓瘤以及Waldenstrom巨球蛋白血症中表达,为B细胞恶性肿瘤的特异性靶向治疗提供了较为理想的靶点.本文介绍近年来rituximab在B淋巴细胞性疾病中的临床应用概况.

  6. Spotlight on chimeric antigen receptor engineered T cell research and clinical trials in China.

    Science.gov (United States)

    Luo, Can; Wei, Jianshu; Han, Weidong

    2016-04-01

    T cell mediated adoptive immune response has been characterized as the key to anti-tumor immunity. Scientists around the world including in China, have been trying to harness the power of T cells against tumors for decades. Recently, the biosynthetic chimeric antigen receptor engineered T cell (CAR-T) strategy was developed and exhibited encouraging clinical efficacy, especially in hematological malignancies. Chimeric antigen receptor research reports began in 2009 in China according to our PubMed search results. Clinical trials have been ongoing in China since 2013 according to the trial registrations on clinicaltrials. gov.. After years of assiduous efforts, research and clinical scientists in China have made their own achievements in the CAR-T therapy field. In this review, we aim to highlight CAR-T research and clinical trials in China, to provide an informative reference for colleagues in the field.

  7. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors.

    Directory of Open Access Journals (Sweden)

    Katy Milne

    Full Text Available BACKGROUND: Tumor-infiltrating T cells are associated with survival in epithelial ovarian cancer (EOC, but their functional status is poorly understood, especially relative to the different risk categories and histological subtypes of EOC. METHODOLOGY/PRINCIPAL FINDINGS: Tissue microarrays containing high-grade serous, endometrioid, mucinous and clear cell tumors were analyzed immunohistochemically for the presence of lymphocytes, dendritic cells, neutrophils, macrophages, MHC class I and II, and various markers of activation and inflammation. In high-grade serous tumors from optimally debulked patients, positive associations were seen between intraepithelial cells expressing CD3, CD4, CD8, CD45RO, CD25, TIA-1, Granzyme B, FoxP3, CD20, and CD68, as well as expression of MHC class I and II by tumor cells. Disease-specific survival was positively associated with the markers CD8, CD3, FoxP3, TIA-1, CD20, MHC class I and class II. In other histological subtypes, immune infiltrates were less prevalent, and the only markers associated with survival were MHC class II (positive association in endometrioid cases and myeloperoxidase (negative association in clear cell cases. CONCLUSIONS/SIGNIFICANCE: Host immune responses to EOC vary widely according to histological subtype and the extent of residual disease. TIA-1, FoxP3 and CD20 emerge as new positive prognostic factors in high-grade serous EOC from optimally debulked patients.

  8. Chimeric virus-like particles for the delivery of an inserted conserved influenza A-specific CTL epitope.

    Science.gov (United States)

    Cheong, Wan-Shoo; Reiseger, Jessica; Turner, Stephen John; Boyd, Richard; Netter, Hans-Jürgen

    2009-02-01

    The small hepatitis B virus surface antigens (HBsAg-S) have the ability to self-assemble with host-derived lipids into empty non-infectious virus-like particles (VLPs). HBsAg-S VLPs are the sole component of the licensed hepatitis B vaccine, and they are a useful delivery platform for foreign epitopes. To develop VLPs capable of transporting foreign cytotoxic T lymphocyte (CTL) epitopes, HBsAg-S specific CTL epitopes at various sites were substituted with a conserved CTL epitope derived from the influenza matrix protein. Depending on the insertion site, the introduction of the MHC class I A2.1-restricted influenza epitope was compatible with the secretion competence of HBsAg-S indicating that chimeric VLPs were assembled. Immunizations of transgenic HHDII mice with chimeric VLPs induced anti-influenza CTL responses proving that the inserted foreign epitope can be correctly processed and cross-presented. Chimeric VLPs in the absence of adjuvant were able to induce memory T cell responses, which could be recalled by influenza virus infections in the mouse model system. The ability of chimeric HBsAg-S VLPs to induce anti-foreign CTL responses and also with the proven ability to induce humoral immune responses constitute a highly versatile platform for the delivery of selected multiple epitopes to target disease associated infectious agents.

  9. Regional atmospheric composition modeling with CHIMERE

    Science.gov (United States)

    Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; Mailler, S.; Meleux, F.; Monge, J.-L.; Pison, I.; Turquety, S.; Valari, M.; Vautard, R.; Vivanco, M. G.

    2013-01-01

    Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources), stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM). The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  10. Regional atmospheric composition modeling with CHIMERE

    Directory of Open Access Journals (Sweden)

    L. Menut

    2013-01-01

    Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM. The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  11. ChiTaRS-3.1—the enhanced chimeric transcripts and RNA-seq database matched with protein–protein interactions

    Science.gov (United States)

    Gorohovski, Alessandro; Tagore, Somnath; Palande, Vikrant; Malka, Assaf; Raviv-Shay, Dorith; Frenkel-Morgenstern, Milana

    2017-01-01

    Discovery of chimeric RNAs, which are produced by chromosomal translocations as well as the joining of exons from different genes by trans-splicing, has added a new level of complexity to our study and understanding of the transcriptome. The enhanced ChiTaRS-3.1 database (http://chitars.md.biu.ac.il) is designed to make widely accessible a wealth of mined data on chimeric RNAs, with easy-to-use analytical tools built-in. The database comprises 34 922 chimeric transcripts along with 11 714 cancer breakpoints. In this latest version, we have included multiple cross-references to GeneCards, iHop, PubMed, NCBI, Ensembl, OMIM, RefSeq and the Mitelman collection for every entry in the ‘Full Collection’. In addition, for every chimera, we have added a predicted chimeric protein–protein interaction (ChiPPI) network, which allows for easy visualization of protein partners of both parental and fusion proteins for all human chimeras. The database contains a comprehensive annotation for 34 922 chimeric transcripts from eight organisms, and includes the manual annotation of 200 sense-antiSense (SaS) chimeras. The current improvements in the content and functionality to the ChiTaRS database make it a central resource for the study of chimeric transcripts and fusion proteins. PMID:27899596

  12. Generation and preclinical evaluation of a DENV-1/2 prM+E chimeric live attenuated vaccine candidate with enhanced prM cleavage.

    Science.gov (United States)

    Keelapang, Poonsook; Nitatpattana, Narong; Suphatrakul, Amporn; Punyahathaikul, Surat; Sriburi, Rungtawan; Pulmanausahakul, Rojjanaporn; Pichyangkul, Sathit; Malasit, Prida; Yoksan, Sutee; Sittisombut, Nopporn

    2013-10-17

    In the absence of a vaccine or sustainable vector control measures, illnesses caused by dengue virus infection remain an important public health problem in many tropical countries. During the export of dengue virus particles, furin-mediated cleavage of the prM envelope protein is usually incomplete, thus generating a mixture of immature, partially mature and mature extracellular particles. Variations in the arrangement and conformation of the envelope proteins among these particles may be associated with their different roles in shaping the antibody response. In an attempt to improve upon live, attenuated dengue vaccine approaches, a mutant chimeric virus, with enhanced prM cleavage, was generated by introducing a cleavage-enhancing substitution into a chimeric DENV-1/2 virus genome, encoding the prM+E sequence of a recent DENV-1 isolate under an attenuated DENV-2 genetic background. A modest increase in virus specific infectivity observed in the mutant chimeric virus affected neither the attenuation phenotype, when assessed in the suckling mouse neurovirulence model, nor multiplication in mosquitoes. The two chimeric viruses induced similar levels of anti-DENV-1 neutralizing antibody response in mice and rhesus macaques, but more efficient control of viremia during viral challenge was observed in macaques immunized with the mutant chimeric virus. These results indicate that the DENV-1/2 chimeric virus, with enhanced prM cleavage, could be useful as an alternative live, attenuated vaccine candidate for further tests in humans.

  13. The rationale for B lymphocyte depletion in Graves' disease. Monoclonal anti-CD20 antibody therapy as a novel treatment option

    DEFF Research Database (Denmark)

    El Fassi, Daniel; Nielsen, Claus H; Hasselbalch, Hans K

    2006-01-01

    We have reviewed the immunology of thyroid autoimmunity with special reference to the importance of B lymphocytes (B cells) in thyroidal and extrathyroidal Graves' disease (GD), thus providing a framework for the hypothesis that B cell depletion may be beneficial in GD. Additionally, after...

  14. The rationale for B lymphocyte depletion in Graves' disease. Monoclonal anti-CD20 antibody therapy as a novel treatment option

    DEFF Research Database (Denmark)

    El Fassi, Daniel; Nielsen, Claus H; Hasselbalch, Hans K;

    2006-01-01

    We have reviewed the immunology of thyroid autoimmunity with special reference to the importance of B lymphocytes (B cells) in thyroidal and extrathyroidal Graves' disease (GD), thus providing a framework for the hypothesis that B cell depletion may be beneficial in GD. Additionally, after...... reviewing the efficacy and safety in other autoimmune diseases, we propose that treatment with the B cell-depleting agent Rituximab may become a clinically relevant treatment option in selected cases of GD, particularly when complicated with thyroid-associated ophthalmopathy....

  15. Development of [{sup 62}Zn/{sup 62}Cu]-DOTA-rituximab as a possible novel in vivo PET generator for anti-CD20 antigen imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Nazila [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Dept. of Radiopharmacy; Jalilian, Amir R.; Fazaeli, Yousef; Moradkhani, Sedigheh; Bolourinovin, Fateme [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Sabzevari, Omid [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Dept. of Toxicology and Pharmacology; Khalaj, Ali [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Dept. of Medical Chemistry

    2014-07-01

    In this study, zinc-62 was prepared at radiopharmaceutical grade (for {sup 62}Zn/{sup 62}Cu generator production) using {sup nat}Cu(p, xn) reaction with the production yield of 5.9 mCi/μAh at 30 MeV proton energy (radiochemical separation yield >95%, radionuclidic purity >99% and radiochemical purity >99%). In the next step, rituximab was successively labeled with [{sup 62}Zn]-ZnCl{sub 2} after conjugation with p-SCN-Bz-DOTA followed by molecular filtration and determination of the average number of DOTA conjugated per mAb (6:1) by spectrophotometric method. Radiochemical purity (>97%, measured by ITLC and HPLC), integrity of protein after radiolabeling (gel electrophoresis) and stability of [{sup 62}Zn]-DOTA-rituximab (in final formulation, and human serum) were determined 1-8 h as well as biodistribution studies in wild-type rats followed by coincidence imaging for 6 h. However, the accumulation of the radiolabeled antibody was not consistent with the former reported rituximab conjugates. [{sup 62}Zn]-labeled monoclonal antibodies and fragments can be prepared as potential in vivo PET generators for molecular imaging however, the search for application of stable zinc complexes must be continued.

  16. Safety of Repeated Open-Label Treatment Courses of Intravenous Ofatumumab, a Human Anti-CD20 Monoclonal Antibody, in Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Quattrocchi, Emilia; Ostergaard, Mikkel; Taylor, Peter C.

    2016-01-01

    OBJECTIVES: To investigate the safety of ofatumumab retreatment in rheumatoid arthritis. METHODS: Patients with active rheumatoid arthritis participating in two phase III trials (OFA110635 and OFA110634) and a phase II extension trial (OFA111752) received individualised open-label ofatumumab...... retreatment (700 mg X 2 intravenous infusions two weeks apart) ≥24 weeks following the first course and ≥16 weeks following further courses. Retreatment required evidence of clinical response followed by disease relapse. These studies were prematurely terminated by the sponsor to refocus development...... was 463, 182 and 175 patient-years, respectively. Mean time between courses was 17-47 weeks. Ofatumumab induced a profound depletion of peripheral B-lymphocytes. Retreated patients derived benefit based on improvement in DAS28. Adverse events were reported for 93% (226/243), 91% (134/148) and 76% (70...

  17. The impact of glucocorticoids and anti-cd20 therapy on cervical human papillomavirus infection risk in women with systemic lupus erythematosus

    Science.gov (United States)

    Mendoza-Pinto, Claudia; Garcia-Carrasco, Mario; Vallejo-Ruiz, Veronica; Taboada-Cole, Alejandro; Muñoz-Guarneros, Margarita; Solis-Poblano, Juan Carlos; Pezzat-Said, Elias; Aguilar-Lemarroy, Adriana; Jave-Suarez, Luis Felipe; de Lara, Luis Vazquez; Ramos-Alvarez, Gloria; Reyes-Leyva, Julio; Lopez-Colombo, Aurelio

    2013-01-01

    OBJECTIVE: To identify the prevalence and factors associated with cervical human papillomavirus infection in women with systemic lupus erythematosus METHODS: This cross-sectional study collected traditional and systemic lupus erythematosus-related disease risk factors, including conventional and biologic therapies. A gynecological evaluation and cervical cytology screen were performed. Human papillomavirus detection and genotyping were undertaken by PCR and linear array assay. RESULTS: A total of 148 patients were included, with a mean age and disease duration of 42.5±11.8 years and 9.7±5.3 years, respectively. The prevalence of squamous intraepithelial lesions was 6.8%. The prevalence of human papillomavirus infection was 29%, with human papillomavirus subtype 59 being the most frequent. Patients with human papillomavirus were younger than those without the infection (38.2±11.2 vs. 44.2±11.5 years, respectively; p = 0.05), and patients with the virus had higher daily prednisone doses (12.8±6.8 vs. 9.7±6.7 mg, respectively; p = 0.01) and cumulative glucocorticoid doses (14.2±9.8 vs. 9.7±7.3 g, respectively; p = 0.005) compared with patients without. Patients with human papillomavirus infection more frequently received rituximab than those without (20.9% vs. 8.5%, respectively; p = 0.03). In the multivariate analysis, only the cumulative glucocorticoid dose was associated with human papillomavirus infection. CONCLUSIONS: The cumulative glucocorticoid dose may increase the risk of human papillomavirus infection. Although rituximab administration was more frequent in patients with human papillomavirus infection, no association was found. Screening for human papillomavirus infection is recommended in women with systemic lupus erythematosus. PMID:24473503

  18. Bone marrow dosimetry using blood-based models for {sup 131}i-anti-cd20 rituximab radioimmunotherapy of non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J. H.; Kim, H. G.; Choi, T. H. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)] (and others)

    2005-07-01

    Accurate estimations of radiation absorbed dose are essential part of evaluating the risks and benefits associated with radiotherapy. Determination of red marrow dose is important because myelotoxicity is often dose limiting in radioimmunotherapy. The aim of this study is to set up the procedures of dosimetry with activities in the blood and whole-body and to estimate the dose of patients according to MIRD schema. Therapy activities of 131I (136, 185, 200 mCi) were administrated to patients (n=3). Blood activity concentrations and whole-body images by gamma camera were collected from patients with non-Hodgkin's lymphoma (5min, 6h, 24h, 48h, 72h, 2week). Two kinds of patient specific approaches based on Sgouros bone marrow dosimetry methodology were considered to estimate bone marrow dose. The mean effective half-life in blood and whole-body were 25.2h and 27.1h respectively and the mean absorbed dose to bone marrow was 0.48Gy (0.22{approx}0.93Gy). The dominant contribution of dose was found to be from bone marrow self-dose (over 60%). The procedures of dosimetry with blood and gamma camera image were established. These enable to estimate the radioimmunotherapy patient's dose retrospectively. Some parts of the procedures need to be elaborated to obtain more accurate dose in the near future.

  19. The impact of glucocorticoids and anti-cd20 therapy on cervical human papillomavirus infection risk in women with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Claudia Mendoza-Pinto

    2013-12-01

    Full Text Available OBJECTIVE: To identify the prevalence and factors associated with cervical human papillomavirus infection in women with systemic lupus erythematosus METHODS: This cross-sectional study collected traditional and systemic lupus erythematosus-related disease risk factors, including conventional and biologic therapies. A gynecological evaluation and cervical cytology screen were performed. Human papillomavirus detection and genotyping were undertaken by PCR and linear array assay. RESULTS: A total of 148 patients were included, with a mean age and disease duration of 42.5±11.8 years and 9.7±5.3 years, respectively. The prevalence of squamous intraepithelial lesions was 6.8%. The prevalence of human papillomavirus infection was 29%, with human papillomavirus subtype 59 being the most frequent. Patients with human papillomavirus were younger than those without the infection (38.2±11.2 vs. 44.2±11.5 years, respectively; p = 0.05, and patients with the virus had higher daily prednisone doses (12.8±6.8 vs. 9.7±6.7 mg, respectively; p = 0.01 and cumulative glucocorticoid doses (14.2±9.8 vs. 9.7±7.3 g, respectively; p = 0.005 compared with patients without. Patients with human papillomavirus infection more frequently received rituximab than those without (20.9% vs. 8.5%, respectively; p = 0.03. In the multivariate analysis, only the cumulative glucocorticoid dose was associated with human papillomavirus infection. CONCLUSIONS: The cumulative glucocorticoid dose may increase the risk of human papillomavirus infection. Although rituximab administration was more frequent in patients with human papillomavirus infection, no association was found. Screening for human papillomavirus infection is recommended in women with systemic lupus erythematosus.

  20. Pregnancy, chimerism and lupus nephritis : a multi-centre study

    NARCIS (Netherlands)

    Hovinga, I. C. L. Kremer; Koopmans, M.; Grootscholten, C.; van der Wal, A. M.; Bijl, M.; Derksen, R. H. W. M.; Voslcuyl, A. E.; de Heer, E.; Bruijn, J. A.; Berden, J. H. M.; Rajema, I. M.

    2008-01-01

    Chimerism occurs twice as often in the kidneys of women with lupus nephritis as in normal kidneys and may he involved in the pathogenesis of systemic lupus erythematosus. Pregnancy is considered the most important source of chimerism, but the exact relationship between pregnancy, the persistence of

  1. Pregnancy, chimerism and lupus nephritis: a multi-centre study.

    NARCIS (Netherlands)

    Hovinga, I.C. Kremer; Koopmans, M.; Grootscholten, C.; Wal, A.M. van der; Bijl, M. van der; Derksen, R.H.; Voskuyl, A.E.; Heer, E. de; Bruijn, J.A.; Berden, J.H.M.; Bajema, I.M.

    2008-01-01

    Chimerism occurs twice as often in the kidneys of women with lupus nephritis as in normal kidneys and may be involved in the pathogenesis of systemic lupus erythematosus. Pregnancy is considered the most important source of chimerism, but the exact relationship between pregnancy, the persistence of

  2. A new Toxoplasma gondii chimeric antigen containing fragments of SAG2, GRA1, and ROP1 proteins-impact of immunodominant sequences size on its diagnostic usefulness.

    Science.gov (United States)

    Ferra, Bartłomiej; Holec-Gąsior, Lucyna; Kur, Józef

    2015-09-01

    This study presents the first evaluation of new Toxoplasma gondii recombinant chimeric antigens containing three immunodominant regions of SAG2, GRA1, and one of two ROP1 fragments differing in length for the serodiagnosis of human toxoplasmosis. The recombinant chimeric antigens SAG2-GRA1-ROP1L (with large fragment of ROP1, 85-396 amino acid residues) and SAG2-GRA1-ROP1S (with a small fragment of ROP1, 85-250 amino acid residues) were obtained as fusion proteins containing His6-tags at both ends using an Escherichia coli expression system. The diagnostic utility of these chimeric antigens was determined using the enzyme-linked immunosorbent assay (ELISA) for the detection of specific anti-T. gondii immunoglobulin G (IgG). The IgG ELISA results obtained for the chimeric antigens were compared to those obtained for the use of Toxoplasma lysate antigen (TLA) and for a mixture of recombinant antigens containing rSAG2, rGRA1, and rROP1. The sensitivity of the IgG ELISA was similar for the SAG2-GRA1-ROP1L chimeric antigen (100 %), the mixture of three proteins (99.4 %) and the TLA (97.1 %), whereas the sensitivity of IgG ELISA with the SAG2-GRA1-ROP1S chimeric antigen was definitely lower, reaching 88.4 %. In conclusion, this study shows that SAG2-GRA1-ROP1L chimeric antigen can be useful for serodiagnosis of human toxoplasmosis with the use of the IgG ELISA assay. Therefore, the importance of proper selection of protein fragments for the construction of chimeric antigen with the highest reactivity in ELISA test is demonstrated.

  3. Interspecies Chimerism with Mammalian Pluripotent Stem Cells.

    Science.gov (United States)

    Wu, Jun; Platero-Luengo, Aida; Sakurai, Masahiro; Sugawara, Atsushi; Gil, Maria Antonia; Yamauchi, Takayoshi; Suzuki, Keiichiro; Bogliotti, Yanina Soledad; Cuello, Cristina; Morales Valencia, Mariana; Okumura, Daiji; Luo, Jingping; Vilariño, Marcela; Parrilla, Inmaculada; Soto, Delia Alba; Martinez, Cristina A; Hishida, Tomoaki; Sánchez-Bautista, Sonia; Martinez-Martinez, M Llanos; Wang, Huili; Nohalez, Alicia; Aizawa, Emi; Martinez-Redondo, Paloma; Ocampo, Alejandro; Reddy, Pradeep; Roca, Jordi; Maga, Elizabeth A; Esteban, Concepcion Rodriguez; Berggren, W Travis; Nuñez Delicado, Estrella; Lajara, Jeronimo; Guillen, Isabel; Guillen, Pedro; Campistol, Josep M; Martinez, Emilio A; Ross, Pablo Juan; Izpisua Belmonte, Juan Carlos

    2017-01-26

    Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.

  4. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    Directory of Open Access Journals (Sweden)

    Hui Xu

    Full Text Available MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  5. CD20+ B Cell Depletion in Systemic Autoimmune Diseases: Common Mechanism of Inhibition or Disease-Specific Effect on Humoral Immunity?

    Directory of Open Access Journals (Sweden)

    Panagiotis Pateinakis

    2014-01-01

    Full Text Available Autoimmunity remains a complex physiologic deviation, enabled and perpetuated by a variety of interplayers and pathways. Simplistic approaches, targeting either isolated end-effectors of more centrally placed interactors of these mechanisms, are continuously tried in an effort to comprehend and halt cascades with potential disabling and deleterious effects in the affected individuals. This review focuses on theoretical and clinically proved effects of rituximab-induced CD20+ B cell depletion on different systemic autoimmune diseases and extrapolates on pathogenetic mechanisms that may account for different interindividual or interdisease responses.

  6. CD20单克隆抗体在儿童B细胞恶性淋巴瘤中的应用

    Institute of Scientific and Technical Information of China (English)

    宋华; 石淑文; 徐卫群; 汤永民; 杨世隆; 沈红强

    2002-01-01

    @@ Rituximab(美罗华)为抗CD20的单克隆抗体.以Rituximab为单一制剂治疗低度/滤泡型非霍奇金淋巴瘤(NHL)取得了良好效果.但国内外均未见Rituximab在儿童中应用的报道.我们对4例儿童B细胞NHL应用Rituximab进行治疗,以了解儿童对Rituximab治疗的耐受性及治疗的副作用,现报告如下.

  7. 抗肿瘤坏死因子相关凋亡诱导配体受体2嵌合抗体表达载体的构建、表达及其抗肿瘤活性分析%Construction and stable expression of anti-human tumor necrosis factor-related apoptosis-inducing ligand receptor 2 chimeric antibody in CHO cells

    Institute of Scientific and Technical Information of China (English)

    吕付佳; 史娟; 张亚玺; 刘士廉; 刘彦信; 郑德先

    2011-01-01

    目的:构建抗人肿瘤坏死因子相关凋亡诱导配体(TRAIL)受体2(死亡受体5,DR5)的人-鼠嵌合抗体表达载体,获得稳定表达该嵌合抗体的细胞株,并分析嵌合抗体的抗肿瘤活性.方法:采用DNA重组技术,扩增抗人DR5的鼠源单克隆抗体(mAb)AD5-10的重链(HC)、轻链(LC)可变区基因片段,并将其分别插入含有人IgG重链、轻链恒定区基因的真核表达载体RpCI-neo,以重、轻链表达质粒共转染中国仓鼠卵巢细胞(CHO),筛选稳定表达抗人DR5嵌合抗体(hmAD5-10)的重组细胞.采用Western blot和间接ELISA检测嵌合抗体的表达量及其与抗原DR5的结合活性.采用MTS比色法检测嵌合抗体的生物学活性.并对重组细胞株进行无血清培养驯化.结果:获得了2株稳定表达嵌合抗体的重组细胞株CHO-A5和CHO-B11,抗体的表达水平分别为(0.36±0.11)mg/L和(0.16±0.01)mg/L,嵌合抗体与DR5有较好的结合活性,对体外培养的人T淋巴细胞白血病细胞SVT35有显著的杀伤作用.结论:在真核细胞中表达了具有生物学活性的抗DR5的人-鼠嵌合抗体,为其应用于肿瘤治疗研究奠定了基础.%AIM: To establish an human-mouse chimeric antibody against tumor necrosis factor-related apoptosisinducing ligand (TRAIL) receptor 2 (death receptor 5, DR5) in an eukaryotic cell line and analyse ifs tumoricidal activity. METHODS: The cDNAs encoding for the variable regions of heavy chain (VH) and light chain (VL) of AD5-10 were amplified by PCR and inserted into the human lgG heavy and light chain containing expression vector RpClneo, respectively. The recombinant plasmids were co-transfected into HEK293 and/or CHO cells. The production of anti-DR5 human-mouse chimeric antibody (hmAD5-10) and the antibody affinity for DR5 were identified by ELISA and Western blot assay. The tumoricidal activity of hmAD5-10 was demonstrated by MTS assay. The stable expression cells were selected and cultured in serum-free medium

  8. Mouse x pig chimeric antibodies expressed in Baculovirus retain the same properties of their parent antibodies.

    Science.gov (United States)

    Jar, Ana M; Osorio, Fernando A; López, Osvaldo J

    2009-01-01

    The development of hybridoma and recombinant DNA technologies has made it possible to use antibodies against cancer, autoimmune disorders, and infectious diseases in humans. These advances in therapy, as well as immunoprophylaxis, could also make it possible to use these technologies in agricultural species of economic importance such as pigs. Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus causing very important economic losses to the industry. Passive transfer of antibodies obtained by biotechnology could be used in the future to complement or replace vaccination against this and other pig pathogens. To this end, we constructed and studied the properties of chimeric mouse x pig anti-PRRSV antibodies. We cloned the constant regions of gamma-1 and gamma-2 heavy chains and the lambda light chain of pig antibodies in frame with the variable regions of heavy and light chains of mouse monoclonal antibody ISU25C1, which has neutralizing activity against PRRSV. The coding regions for chimeric IgG1 and IgG2 were expressed in a baculovirus expression system. Both chimeric antibodies recognized PRRSV in ELISA as well as in a Western-blot format and, more importantly, were able to neutralize PRRSV in the same fashion as the parent mouse monoclonal antibody ISU25C1. In addition, we show that both pig IgG1 and IgG2 antibodies could bind complement component C1q, with IgG2 being more efficient than IgG1 in binding C1q. Expressing chimeric pig antibodies with protective capabilities offers a new alternative strategy for infectious disease control in domestic pigs.

  9. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    Energy Technology Data Exchange (ETDEWEB)

    Iri-Sofla, Farnoush Jafari [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ahmadvand, Davoud [Center of Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O (Denmark); Rasaee, Mohammad J. [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  10. Positron Emission Tomography of (64)Cu-DOTA-Rituximab in a Transgenic Mouse Model Expressing Human CD20 for Clinical Translation to Image NHL

    DEFF Research Database (Denmark)

    Natarajan, Arutselvan; Gowrishankar, Gayatri; Nielsen, Carsten Haagen

    2012-01-01

    TM, n¿=¿6) PETRIT alone received 7.4 MBq/dose. Small animal PET was used to image mice at various time points (0, 1, 2, 4, 24, 48, and 72 h). The OLINDA/EXM software was used to determine the human equivalent dose for individual organs. RESULTS: PETRIT was obtained with a specific activity of 545.......86), respectively. The human equivalents of highest dose organs with and without pre-dose are osteogenic cells at 30.8¿±¿0.4 µSv/MBq and the spleen at 99¿±¿4 µSv/MBq, respectively. CONCLUSIONS: PET imaging with PETRIT in huCD20 transgenic mice provided human dosimetry data for eventual applications in non......PURPOSE: This study aims to evaluate (64)Cu-DOTA-rituximab (PETRIT) in a preclinical transgenic mouse model expressing human CD20 for potential clinical translation. PROCEDURES: (64)Cu was chelated to DOTA-rituximab. Multiple radiolabeling, quality assurance, and imaging experiments were performed...

  11. Identification and characterization of L985P, a CD20 related family member over-expressed in small cell lung carcinoma.

    Science.gov (United States)

    Bangur, Chaitanya S; Johnson, Jeffrey C; Switzer, Ann; Wang, Yi-Hong; Hill, Beth; Fanger, Gary R; Wang, Tongtong; Retter, Marc W

    2004-12-01

    We recently reported on the use of cDNA subtraction combined with microarray based expression analysis for identifying genes that are differentially over-expressed in small cell lung carcinoma. One of the several hundred genes identified using this approach was termed L985P and its molecular characterization is described in this report. The differential over-expression of L985P mRNA in SCLC, as determined by microarray analysis, was confirmed by real-time RT-PCR and Northern blot analysis. Immunohistochemical analyses show that L985P protein is highly expressed in SCLC with very restricted expression observed in normal lung, which was confined to the apical region of the ciliated bronchiolar epithelium. Flow cytometric and immunohistochemical analysis showed that L985P was localized to the cell surface. Sequence homology comparison indicated that L985P is identical to MS4A8B, a member of the recently described membrane-spanning 4-domain family, subfamily A (MS4A) gene family. The MS4A gene family currently consists of greater than 20 distinct human and mouse proteins that include CD20 and FcepsilonRIbeta. Both CD20 and FcepsilonRIbeta are involved in signaling events that regulate diverse cellular functions including cell growth regulation and differentiation. Collectively, the results presented herein demonstrate that L985P is differentially over-expressed in SCLC and may have potential clinical utility as an immunotherapeutic target for the treatment of SCLC.

  12. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    Science.gov (United States)

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  13. Influência do CD 20 na refratariedade do linfoma de Hodgkin clássico ao tratamento inicial com o esquema ABVD, no Ceará, Brasil Influence of CD 20 antigen expression in the refractoriness of classical Hodgkin lymphoma in the first line treatment with ABVD protocol in Ceará state, Brazil

    Directory of Open Access Journals (Sweden)

    Rogério Pinto Giesta

    2009-06-01

    Full Text Available INTRODUÇÃO: A significância prognóstica do marcador imunológico CD 20 no linfoma de Hodgkin clássico (LHc ainda é incerta, particularmente no que se refere à refratariedade ao tratamento inicial. OBJETIVOS: Avaliar a influência da positividade do marcador CD 20 na refratariedade do LHc ao tratamento poliquimioterápico inicial, com o esquema doxorubicina 25 mg/m², bleomicina 10 mg/m², vinblastina 6 mg/m² e dacarbazina 375 mg/m² (ABVD, no Ceará, Brasil. MATERIAL E MÉTODOS: Estudo analítico incluindo 97 pacientes com diagnóstico de LHc firmado entre janeiro de 2000 e dezembro de 2004. A análise foi realizada avaliando variáveis demográficas, clínicas e laboratoriais. RESULTADOS: Foi evidenciada uma positividade do CD 20 em 38,1% dos pacientes. Na análise bivariada, CD 20 positivo (razão de chance [RC] = 4,02; intervalo de confiança [IC] = 1,09 - 8,54; p = 0,02, a presença de sintomas B (RC = 4,02; IC = 1,18-17,51; p = 0,01 e a elevação da desidrogenase lática (mediana não-refratários 248,5 [200,5 - 389,5]; mediana refratários 356 [208,5 - 545]; p = 0,03 apresentaram relação de pior prognóstico quanto à refratariedade. Na regressão logística, o CD 20 positivo (RC ajustada = 3,6; IC = 0,99 - 13,09; p = 0,05 e a presença de sintomas B (RC ajustada = 5,41; IC = 1,16 - 25,34; p = 0,03 continuaram apresentando pior prognóstico. DISCUSSÃO: Esses dados coincidem com a literatura, em que a positividade do marcador CD 20 está relacionada com pior resposta ao tratamento com ABVD. CONCLUSÃO: Os nossos dados indicam que o tratamento com ABVD não é completamente adequado para a abordagem terapêutica inicial deste subgrupo de pacientes e novas pesquisas precisam ser realizadas no sentido de aperfeiçoar o tratamento destes pacientes.INTRODUCTION: The prognostic value of CD20 antigen expression in classical Hodgkin lymphoma (cHL is uncertain, particularly regarding the refractoriness to first-line treatment. OBJECTIVES

  14. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies.

    Science.gov (United States)

    Gill, Saar; June, Carl H

    2015-01-01

    On July 1, 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to CTL019, the anti-CD19 chimeric antigen receptor T-cell therapy developed at the University of Pennsylvania. This is the first personalized cellular therapy for cancer to be so designated and occurred 25 years after the first publication describing genetic redirection of T cells to a surface antigen of choice. The peer-reviewed literature currently contains the outcomes of more than 100 patients treated on clinical trials of anti-CD19 redirected T cells, and preliminary results on many more patients have been presented. At last count almost 30 clinical trials targeting CD19 were actively recruiting patients in North America, Europe, and Asia. Patients with high-risk B-cell malignancies therefore represent the first beneficiaries of an exciting and potent new treatment modality that harnesses the power of the immune system as never before. A handful of trials are targeting non-CD19 hematological and solid malignancies and represent the vanguard of enormous preclinical efforts to develop CAR T-cell therapy beyond B-cell malignancies. In this review, we explain the concept of chimeric antigen receptor gene-modified T cells, describe the extant results in hematologic malignancies, and share our outlook on where this modality is likely to head in the near future.

  15. Chimeric alignment by dynamic programming: Algorithm and biological uses

    Energy Technology Data Exchange (ETDEWEB)

    Komatsoulis, G.A.; Waterman, M.S. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-12-01

    A new nearest-neighbor method for detecting chimeric 16S rRNA artifacts generated during PCR amplification from mixed populations has been developed. The method uses dynamic programming to generate an optimal chimeric alignment, defined as the highest scoring alignment between a query and a concatenation of a 5{prime} and a 3{prime} segment from two separate entries from a database of related sequences. Chimeras are detected by studying the scores and form of the chimeric and global sequence alignments. The chimeric alignment method was found to be marginally more effective than k-tuple based nearest-neighbor methods in simulation studies, but its most effective use is in concert with k-tuple methods. 15 refs., 3 figs., 1 tab.

  16. Virulence, immunogenicity and vaccine properties of a novel chimeric pestivirus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Reimann, Ilona

    2007-01-01

    A chimeric pestivirus of border disease virus Gifhorn and bovine viral diarrhea virus CP7 (Meyers et al., 1996) was constructed. Virulence, immunogenicity and vaccine properties of the chimeric virus were studied in a vaccination–challenge experiment in pigs. The chimeric virus proved...... to be avirulent and neither chimeric virus nor viral RNA was detected in serum after vaccination. The safety of the vaccine was tested by horizontal transmission to sentinel pigs, which remained uninfected. The vaccine efficacy was examined by challenge infection with classical swine fever virus (CSFV) Eystrup....... In ‘challenge controls’, the viral load of CSFV coincided with the development of pronounced clinical symptoms. In contrast, the vaccinated pigs showed transient and weak clinical signs. Analysis of the viral load in these pigs showed 1000-fold lower viral RNA levels compared to ‘challenge controls...

  17. Enhanced cytotoxicity of natural killer cells following the acquisition of chimeric antigen receptors through trogocytosis.

    Directory of Open Access Journals (Sweden)

    Fu-Nan Cho

    Full Text Available Natural killer (NK cells have the capacity to target tumors and are ideal candidates for immunotherapy. Viral vectors have been used to genetically modify in vitro expanded NK cells to express chimeric antigen receptors (CARs, which confer cytotoxicity against tumors. However, use of viral transduction methods raises the safety concern of viral integration into the NK cell genome. In this study, we used trogocytosis as a non-viral method to modify NK cells for immunotherapy. A K562 cell line expressing high levels of anti-CD19 CARs was generated as a donor cell to transfer the anti-CD19 CARs onto NK cells via trogocytosis. Anti-CD19 CAR expression was observed in expanded NK cells after these cells were co-cultured for one hour with freeze/thaw-treated donor cells expressing anti-CD19 CARs. Immunofluorescence analysis confirmed the localization of the anti-CD19 CARs on the NK cell surface. Acquisition of anti-CD19 CARs via trogocytosis enhanced NK cell-mediated cytotoxicity against the B-cell acute lymphoblastic leukemia (B-ALL cell lines and primary B-ALL cells derived from patients. To our knowledge, this is the first report that describes the increased cytotoxicity of NK cells following the acquisition of CARs via trogocytosis. This novel strategy could be a potential valuable therapeutic approach for the treatment of B-cell tumors.

  18. Chimeric mitochondrial peptides from contiguous regular and swinger RNA

    Directory of Open Access Journals (Sweden)

    Hervé Seligmann

    2016-01-01

    Full Text Available Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A, multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200× rarer than swinger peptides (3/100,000 versus 6/1000. Among 186 peptides with >8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  19. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    Science.gov (United States)

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  20. Quantification of mixed chimerism allows early therapeutic interventions

    Directory of Open Access Journals (Sweden)

    Jóice Merzoni

    2014-10-01

    Full Text Available Hematopoietic stem cell transplantation is the curative option for patients with myelodysplastic syndrome; however, it requires a long post-transplantation follow-up. A 53-year-old woman with a diagnosis of myelodysplastic syndrome underwent related donor allogeneic hematopoietic stem cell transplantation in July 2006. Three months after transplantation, a comparative short tandem repeat analysis between donor and recipient revealed full chimerism, indicating complete, healthy bone marrow reconstitution. Three years and ten months after hematopoietic stem cell transplantation, the patient developed leukopenia and thrombocytopenia. Another short tandem repeat analysis was carried out which showed mixed chimerism (52.62%, indicating relapsed disease. A donor lymphocyte infusion was administered. The purpose of donor lymphocyte infusion is to induce a graft-versus-leukemia effect; in fact, this donor's lymphocyte infusion induced full chimerism. Successive short tandem repeat analyses were performed as part of post-transplantation follow-up, and in July 2010, one such analysis again showed mixed chimerism (64.25%. Based on this finding, a second donor lymphocyte infusion was administered, but failed to eradicate the disease. In September 2011, the patient presented with relapsed disease, and a second related donor allogeneic hematopoietic stem cell transplantation was performed. Subsequent short tandem repeat analyses revealed full chimerism, indicating complete bone marrow reconstitution. We conclude that quantitative detection of mixed chimerism is an important diagnostic tool that can guide early therapeutic intervention.

  1. Origin and ascendancy of a chimeric fusion gene: the beta/delta-globin gene of paenungulate mammals.

    Science.gov (United States)

    Opazo, Juan C; Sloan, Angela M; Campbell, Kevin L; Storz, Jay F

    2009-07-01

    The delta-globin gene (HBD) of eutherian mammals exhibits a propensity for recombinational exchange with the closely linked beta-globin gene (HBB) and has been independently converted by the HBB gene in multiple lineages. Here we report the presence of a chimeric beta/delta fusion gene in the African elephant (Loxodonta africana) that was created by unequal crossing-over between misaligned HBD and HBB paralogs. The recombinant chromosome that harbors the beta/delta fusion gene in elephants is structurally similar to the "anti-Lepore" duplication mutant of humans (the reciprocal exchange product of the hemoglobin Lepore deletion mutant). However, the situation in the African elephant is unique in that the chimeric beta/delta fusion gene supplanted the parental HBB gene and is therefore solely responsible for synthesizing the beta-chain subunits of adult hemoglobin. A phylogenetic survey of beta-like globin genes in afrotherian and xenarthran mammals revealed that the origin of the chimeric beta/delta fusion gene and the concomitant inactivation of the HBB gene predated the radiation of "Paenungulata," a clade of afrotherian mammals that includes three orders: Proboscidea (elephants), Sirenia (dugongs and manatees), and Hyracoidea (hyraxes). The reduced fitness of the human Hb Lepore deletion mutant helps to explain why independently derived beta/delta fusion genes (which occur on an anti-Lepore chromosome) have been fixed in a number of mammalian lineages, whereas the reciprocal delta/beta fusion gene (which occurs on a Lepore chromosome) has yet to be documented in any nonhuman mammal. This illustrates how the evolutionary fates of chimeric fusion genes can be strongly influenced by their recombinational mode of origin.

  2. Prevention of birch pollen-related food allergy by mucosal treatment with multi-allergen-chimers in mice.

    Directory of Open Access Journals (Sweden)

    Elisabeth Hoflehner

    Full Text Available BACKGROUND: Among birch pollen allergic patients up to 70% develop allergic reactions to Bet v 1-homologue food allergens such as Api g 1 (celery or Dau c 1 (carrot, termed as birch pollen-related food allergy. In most cases, specific immunotherapy with birch pollen extracts does not reduce allergic symptoms to the homologue food allergens. We therefore genetically engineered a multi-allergen chimer and tested if mucosal treatment with this construct could represent a novel approach for prevention of birch pollen-related food allergy. METHODOLOGY: BALB/c mice were poly-sensitized with a mixture of Bet v 1, Api g 1 and Dau c 1 followed by a sublingual challenge with carrot, celery and birch pollen extracts. For prevention of allergy sensitization an allergen chimer composed of immunodominant T cell epitopes of Api g 1 and Dau c 1 linked to the whole Bet v 1 allergen, was intranasally applied prior to sensitization. RESULTS: Intranasal pretreatment with the allergen chimer led to significantly decreased antigen-specific IgE-dependent β-hexosaminidase release, but enhanced allergen-specific IgG2a and IgA antibodies. Accordingly, IL-4 levels in spleen cell cultures and IL-5 levels in restimulated spleen and cervical lymph node cell cultures were markedly reduced, while IFN-γ levels were increased. Immunomodulation was associated with increased IL-10, TGF-β and Foxp3 mRNA levels in NALT and Foxp3 in oral mucosal tissues. Treatment with anti-TGF-β, anti-IL10R or anti-CD25 antibodies abrogated the suppression of allergic responses induced by the chimer. CONCLUSION: Our results indicate that mucosal application of the allergen chimer led to decreased Th2 immune responses against Bet v 1 and its homologue food allergens Api g 1 and Dau c 1 by regulatory and Th1-biased immune responses. These data suggest that mucosal treatment with a multi-allergen vaccine could be a promising treatment strategy to prevent birch pollen-related food allergy.

  3. Synthesis and Evaluation of Cy7-Rituximab Targeting CD20 Antigen for in vivo Animal Fluorescence Imaging%CD20靶向Cy7-Rituximab分子探针的制备及在小鼠活体荧光成像中的应用

    Institute of Scientific and Technical Information of China (English)

    林新峰; 朱华; 洪业; 杨志

    2013-01-01

    以B淋巴细胞表面CD20抗原靶向的单克隆抗体Rituximab为载体,通过共价键偶联荧光基团菁染料Cy7,获得了新型荧光分子探针Cy7-Rituximab.利用全光谱紫外-可见分光光度仪、SDS-聚丙烯酰胺凝胶电泳和基质辅助激光解析电离飞行时间质谱等对该探针结构进行表征,并通过激光共聚焦显微镜观察了其在弥漫大B细胞淋巴瘤(DLBCL)细胞中的摄取情况.选用BALB/C裸鼠为模型,尾静脉注射Cy7-Rituximab,通过活体荧光成像系统观察了其在小鼠体内的分布情况.研究结果表明,修饰后的Cy7-Rituximab保持了原有抗体的免疫活性.活体荧光成像结果表明,在CD20高表达的脾脏部位监测到该分子探针的特异性浓集.

  4. Immunoreactivity evaluation of a new recombinant chimeric protein against Brucella in the murine model

    Directory of Open Access Journals (Sweden)

    Abbas Abdollahi

    2016-10-01

    Full Text Available Background and Objectives: Brucellosis is an important health problem in developing countries and no vaccine is available for the prevention of infection in humans. Because of clinically infectious diseases and their economic consequences in human and animals, designing a proper vaccine against Brucella is desirable. In this study, we evaluated the immune responses induced by a designed recombinant chimera protein in murine model.Materials and Methods: Three immunodominant antigens of Brucella have been characterized as potential immunogenic and protective antigens including: trigger factor (TF, Omp31 and Bp26 were fused together by EAAAK linkers to produce a chimera (structure were designed in silico, which was synthesized, cloned, and expressed in E. coli BL21 (DE3. The purification of recombinant protein was performed using Ni-NTA agarose. SDS-PAGE and anti-His antibody was used for confirmation purified protein (Western blot. BALB/c immunization was performed by purified protein and adjuvant, and sera antibody levels were measured by ELISA. otted.Results: SDS-PAGE and Western blotting results indicated the similarity of in silico designing and in vitro experiments. ELISA result proved that the immunized sera of mice contain high levels of antibodies (IgG against recombinant chimeric protein.Conclusion: The recombinant chimeric protein could be a potential antigen candidate for the development of a subunit vaccine against Brucella. Keywords: Brucella, Vaccine, Immunity, Recombinant

  5. Generation and characterization of a recombinant chimeric protein (rCpLi) consisting of B-cell epitopes of a dermonecrotic protein from Loxosceles intermedia spider venom.

    Science.gov (United States)

    Mendes, T M; Oliveira, D; Figueiredo, L F M; Machado-de-Avila, R A; Duarte, C G; Dias-Lopes, C; Guimarães, G; Felicori, L; Minozzo, J C; Chávez-Olortegui, C

    2013-06-01

    A chimeric protein was constructed expressing three epitopes of LiD1, a dermonecrotic toxin from the venom of Loxosceles intermedia spider. This species is responsible for a large number of accidents involving spiders in Brazil. We demonstrated that the chimeric protein (rCpLi) generated is atoxic and that antibodies previously developed in rabbits against synthetic epitopes reactive with rCpLi in ELISA and immunoblot assays. The antibody response in rabbits against the rCpLi was evaluated by ELISA and we have detected an antibody response in all immunized animals. Overlapping peptides covering the amino acid sequence of the rCpLi were synthesized on a cellulose membrane, and their recognition by rabbit anti-rCpLi serum assessed. Three different antigenic regions were identified. The percentage of inhibition of the dermonecrotic, hemorrhagic and edematogenic activities caused by the recombinant protein LiD1r in naïve rabbits was assessed by pre-incubation with anti-rCpLi antibodies. Anti-rCpLi induced good dermonecrotic and hemorrhagic protection. The levels of protection were similar to the antiboides anti-LiD1r. In summary, we have developed a polyepitope recombinant chimeric protein capable of inducing multiple responses of neutralizing antibodies in a rabbit model. This engineered protein may be a promising candidate for therapeutic serum development or vaccination.

  6. Developmental competence of porcine chimeric embryos produced by aggregation

    DEFF Research Database (Denmark)

    Li, Juan; Jakobsen, Jannik E.; Xiong, Qiang

    2015-01-01

    The purpose of our study was to compare the developmental competence and blastomere allocation of porcine chimeric embryos formed by micro-well aggregation. Chimeras were created by aggregating either two blastomeres originating from 2-cell embryos or two whole embryos, where embryos were produced...... either by parthenogenetic activation (PA) or handmade cloning (HMC). Results showed that the developmental competence of chimeric embryos, evaluated based on their blastocyst rate and total cell number per blastocyst, was increased when two whole 2-cell stage embryos (PA or HMC) were aggregated....... In comparison, when two blastomeres were aggregated, the developmental competence of the chimeric embryos decreased if the blastomeres were either from PA or from HMC embryos, but not if they were from different sources, i.e. one PA and one HMC blastomere. To evaluate the cell contribution in embryo formation...

  7. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  8. Enhanced protective efficacy of a chimeric form of the schistosomiasis vaccine antigen Sm-TSP-2.

    Directory of Open Access Journals (Sweden)

    Mark S Pearson

    Full Text Available The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1 and IgG(3 from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1, suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic.

  9. Developmental competence of porcine chimeric embryos produced by aggregation

    DEFF Research Database (Denmark)

    Li, Juan; Jakobsen, Jannik E.; Xiong, Qiang

    2015-01-01

    The purpose of our study was to compare the developmental competence and blastomere allocation of porcine chimeric embryos formed by micro-well aggregation. Chimeras were created by aggregating either two blastomeres originating from 2-cell embryos or two whole embryos, where embryos were produced...

  10. A technical application of quantitative next generation sequencing for chimerism evaluation

    Science.gov (United States)

    Aloisio, Michelangelo; Licastro, Danilo; Caenazzo, Luciana; Torboli, Valentina; D'eustacchio, Angela; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2016-01-01

    At present, the most common genetic diagnostic method for chimerism evaluation following hematopoietic stem cell transplantation is microsatellite analysis by capillary electrophoresis. The main objective was to establish, through repeated analysis over time, if a complete chimerism was present, or if the mixed chimerism was stable, increasing or decreasing over time. Considering the recent introduction of next generation sequencing (NGS) in clinical diagnostics, a detailed study evaluating an NGS protocol was conducted, coupled with a custom bioinformatics pipeline, for chimerism quantification. Based on the technology of Ion AmpliSeq, a 44-amplicon custom chimerism panel was designed, and a custom bioinformatics pipeline dedicated to the genotyping and quantification of NGS data was coded. The custom chimerism panel allowed identification of an average of 16 informative recipient alleles. The limit of detection of the protocol was fixed at 1% due to the NGS background (NGS for chimerism quantification. PMID:27499173

  11. ANTI-B CELL THERAPY OF AUTOIMMUNE DISEASES

    Directory of Open Access Journals (Sweden)

    A. L. Masliansky

    2007-01-01

    Full Text Available Abstract. Our understanding of the multiple physiological and pathological functions of B-cells continues to expand at a fascinating rate. As pathogenic elements in the development of autoimmune diseases, B-cells have become the focus of new therapeutics. Based on the published data, rituximab, a chimeric monoclonal antibody to CD20, when used in combination with other agents (i.e., cyclophosphamide or methotrexate, appears to be a reasonable treatment option for refractory RA. There are now numerous case reports and small openlabel series using rituximab in many autoimmune diseases, others then RA. While these data must be interpreted with caution, they suggest that rituximab may be a promising addition to the therapeutic armamentarium in these diseases. However, additional controlled trials need to be conducted to confirm clinical efficacy, further define optimal dosage, response rates, comparative long-term efficacy, and treatment algorithm for rituximab in these patients.

  12. Novel in-ovo chimeric recombinant Newcastle disease vaccine protects against both Newcastle disease and infectious bursal disease.

    Science.gov (United States)

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Wen, Zhiyuan; Feng, Qiulin; Qi, Xiaole; Gao, Honglei; Wang, Xiaomei; Bu, Zhigao

    2014-03-14

    Development of a safe and efficient in-ovo vaccine against Newcastle disease (NDV) and very virulent infectious bursal disease virus (vvIBDV) is of great importance. In this study, a chimeric NDV LaSota virus with the L gene of Clone-30 (rLaC30L) was used to generate a recombinant chimeric virus expressing the VP2 protein of vvIBDV (rLaC30L-VP2). The safety and efficacy of rLaC30L-VP2 in-ovo vaccination was then evaluated in 18-day-old special pathogen free (SPF) chicken embryos and commercial broiler embryos for prevention of NDV and vvIBDV. Hatchability and global survival rate of the hatched birds was not affected by in-ovo rLaC30L-VP2 vaccination. However, rLaC30L-VP2 in-ovo vaccination induced significant anti-IBDV and anti-NDV antibodies in SPF birds and commercial broilers, and 100% of vaccinated chickens were protected against a lethal NDV challenge. In-ovo rLaC30L-VP2 vaccination also provided resistance against vvIBDV challenge in a significant amount of animals. These results suggest that rLaC30L-VP2 is a safe and efficient bivalent live in-ovo vaccine against NDV and vvIBDV.

  13. [Detection of mixed lymphoid chimerism after allogeneic bone marrow transplantation: demonstration by interphase cytogenetics in paraffin-embedded tissue].

    Science.gov (United States)

    Friedrich, T; Ott, G; Kalla, J; Helbig, W; Schwenke, H; Kubel, M; Pönisch, W; Feyer, P; Friedrich, A

    1994-01-01

    In bone marrow transplantation (BMT) the detection of residual host lymphoid or haematopoietic cells surviving conditioning therapy is because of its association to graft-versus-host disease, graft-versus-leukemia reaction, and relapse of leukemia a matter of great interest. We studied the occurrence of this mixed lymphoid chimerism (MC) in the formol-fixed lymphatic tissue of lymph nodes and spleen from 21 autopsies after allogeneic sex-mismatched BMT (5 females, 16 males, survival 5 to 1140 days after BMT). In situ hybridisation with biotinylated centromer-specific anti-X- and anti-Y-chromosome probes was performed on pepsin-digested paraffin sections. The number of double X-, single X-, and Y-chromosome bearing cells was analysed microscopically. Because of artefacts only 14 cases remained for valid investigation. MC was detected in 6 cases (5 out of 11 males 5 days to 840 days and 1 out of 3 females 76 days after BMT). MC occurred after whole body irradiation with 10 Gy (n = 5) and 7 Gy (n = 1). In 1 autopsy relapse of leukemia caused host cell infiltration. Cases with MC did not express histological signs of acute or chronic graft-versus-host disease, but 5 out of 8 with complete lymphoid chimerism did. The sensitivity of interphase cytogenetics on paraffin embedded tissue is low.

  14. A new MIC1-MAG1 recombinant chimeric antigen can be used instead of the Toxoplasma gondii lysate antigen in serodiagnosis of human toxoplasmosis.

    Science.gov (United States)

    Holec-Gąsior, Lucyna; Ferra, Bartłomiej; Drapała, Dorota; Lautenbach, Dariusz; Kur, Józef

    2012-01-01

    This study presents an evaluation of the MIC1 (microneme protein 1)-MAG1 (matrix antigen 1) Toxoplasma gondii recombinant chimeric antigen for the serodiagnosis of human toxoplasmosis for the first time. The recombinant MIC1-MAG1 antigen was obtained as a fusion protein containing His tags at the N- and C-terminal ends using an Escherichia coli expression system. After purification by metal affinity chromatography, the chimeric protein was tested for usefulness in an enzyme-linked immunosorbent assay (ELISA) for the detection of anti-T. gondii immunoglobulin G (IgG). One hundred ten sera from patients at different stages of infection and 40 sera from seronegative patients were examined. The results obtained for the MIC1-MAG1 chimeric antigen were compared with those of IgG ELISAs using a Toxoplasma lysate antigen (TLA), a combination of recombinant antigens (rMIC1ex2-rMAG1) and single recombinant proteins (rMIC1ex2 and rMAG1). The sensitivity of the IgG ELISA calculated from all of the positive serum samples was similar for the MIC1-MAG1 chimeric antigen (90.8%) and the TLA (91.8%), whereas the sensitivities of the other antigenic samples used were definitely lower, at 69.1% for the mixture of antigens, 75.5% for the rMIC1ex2, and 60% for rMAG1. This study demonstrates that the MIC1-MAG1 recombinant chimeric antigen can be used instead of the TLA in the serodiagnosis of human toxoplasmosis.

  15. An E2-Substituted Chimeric Pestivirus With DIVA Vaccine Properties

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Nielsen, Jens

    An advantage of the use of chimeric pestiviruses as modified live vaccines against classical swine fever (CSF) resides in their capacity to be manipulated to achieve the characteristics desired for safe and efficacious DIVA vaccines. We have recently generated a new chimeric virus, Riems26_E2gif...... engineered specifically for this purpose. The E2-substituted Riems26_E2gif was derived by homologues recombination of the complete E2 protein encoding genome region from Border disease strain Gifhorn into a bacterial artificial chromosome (BAC) harbouring the genome of the CSFV vaccine strain C......-Riems. The virulence, immunogenicity and vaccine properties of Riems26_E2gif were tested in a vaccine-challenge experiment in pigs. Riems26_E2gif vaccinated pigs could be differentiated from infected pigs using a CSFV-E2 specific ELISA. Following challenge infection with highly virulent CSFV strain Koslov, all...

  16. Mechanisms of Tolerance Induction by Hematopoietic Chimerism: The Immune Perspective.

    Science.gov (United States)

    Yolcu, Esma S; Shirwan, Haval; Askenasy, Nadir

    2017-03-01

    Hematopoietic chimerism is one of the effective approaches to induce tolerance to donor-derived tissue and organ grafts without administration of life-long immunosuppressive therapy. Although experimental efforts to develop such regimens have been ongoing for decades, substantial cumulative toxicity of combined hematopoietic and tissue transplants precludes wide clinical implementation. Tolerance is an active immunological process that includes both peripheral and central mechanisms of mutual education of coresident donor and host immune systems. The major stages include sequential suppression of early alloreactivity, establishment of hematopoietic chimerism and suppressor cells that sustain the state of tolerance, with significant mechanistic and temporal overlap along the tolerization process. Efforts to devise less toxic transplant strategies by reduction of preparatory conditioning focus on modulation rather than deletion of residual host immunity and early reinstitution of regulatory subsets at the central and peripheral levels. Stem Cells Translational Medicine 2017;6:700-712.

  17. Serodiagnosis of Toxoplasma gondii infection in farm animals (horses, swine, and sheep) by enzyme-linked immunosorbent assay using chimeric antigens.

    Science.gov (United States)

    Ferra, Bartłomiej; Holec-Gąsior, Lucyna; Kur, Józef

    2015-10-01

    Toxoplasma gondii infects all warm-blooded animals including humans, causing serious public health problems and great economic loss in the animal husbandry. Commonly used serological tests for diagnosis of toxoplasmosis involve preparation of whole Toxoplasma lysate antigen (TLA) from tachyzoites. The production of this antigen is associated with high costs and lengthy preparation and the possibility of staff infection. There are also some difficulties in the standardization of such tests. One approach in order to improve the diagnosis of T. gondii infection is to use recombinant chimeric antigens in place of the TLA, which was confirmed by studies in the serodiagnosis of toxoplasmosis in humans. In this paper, we assess, for the first time, the diagnostic utility of five T. gondii recombinant chimeric antigens (MIC1-MAG1-SAG1S, SAG1L-MIC1-MAG1, SAG2-GRA1-ROP1S, SAG2-GRA1-ROP1L, and GRA1-GRA2-GRA6) in immunoglobulin G (IgG) enzyme-linked immunosorbent assays (IgG ELISAs) with sera from three different groups of livestock animals (horses, pigs, and sheep). The reactivity of individual chimeric antigens was analyzed in relation to the results obtained in IgG ELISAs based on a mixture of three antigens (M1: rSAG1+rMIC1+rMAG1, M2: rSAG2+rGRA1+rROP1, and M3: rGRA1+rGRA2+rGRA6) and referenced to TLA. All chimeric antigens were characterized by high specificity (100%), and the sensitivity of the IgG ELISAs based on chimeric antigens was variable (between 28.4% and 100%) and mainly dependent on the animal species. The chimeric antigens were generally more reactive than mixtures of three antigens. The most effective for the diagnosis of toxoplasmosis was SAG2-GRA1-ROP1L, which can detect specific anti-T. gondii antibodies in 100%, 93.8%, and 100% of positive serum samples from horses, pigs, and sheep, respectively. The present study shows that recombinant chimeric antigens can be successfully used to diagnose T. gondii infection in farm animals, and can replace the commonly

  18. 131Ⅰ标记抗CD20单克隆抗体不同给药途径对荷瘤裸鼠的放射免疫治疗实验%Experimental Research on Radioimmunotherapy of 131Ⅰ-labeled Anti-CD20 Monoclonal Antibody to Nude Mice Xenografted Tumor

    Institute of Scientific and Technical Information of China (English)

    左强; 罗宇玲; 罗荣城

    2011-01-01

    Objective To investigate the therapeutic efficacy of radioimmunotherapy of iodine-131 labeled Rituximab using intratumor injection(IT)in nude mice with xenografted raji cells tumor. Methods Iodine-131 labeled Rituximab was carried out by IODO-GEN method. The nude mice bearing raji cells tumor were divided into six groups based on the injected marked-drugs. The size of the tumor was measured every 2~3 day and the inhibition rates of different groups were calculated. Results The tumor inhibition rates of 131 I-Rituximab IT group were higher than those of IP group, 131 I-IgG IT group and cell control group(P<0. 05). 131 I-Rituximab with intratumor injection in different dose showed that inhibition rate of low dose group was lower than that of high group, while there was no significant difference(P>0. 05). Conclusion lodine-131 labeled Rituximab with intratumor injection showed the highest radioimmunotherapy efficacy which offered the experimental evidence for clinical application in the futrue.%目的 探讨131Ⅰ-Rituximab经瘤内注射对荷人Burkitt's淋巴瘤细胞系Raji细胞移植瘤裸鼠放射免疫治疗疗效.方法 131Ⅰ标记物的标记采用IODO-GEN碘化标记;按预定治疗方案分别注入含有131Ⅰ标记物,开始治疗前及治疗后每天用游标卡尺测量肿瘤长、短径,计算肿瘤体积,依公式计算肿瘤生长抑制率.结果 131Ⅰ-Rituximab瘤内注射组肿瘤抑制率显著高于腹腔注射组、131Ⅰ-IgG瘤内注射组以及对照细胞组(P0.05).结论 131Ⅰ-Rituximab经瘤内途径给药可以获得更好的放射免疫治疗效果,为下一步临床应用奠定了基础.

  19. Novel nanocomposites from spider silk–silica fusion (chimeric) proteins

    OpenAIRE

    Wong Po Foo, Cheryl; Patwardhan, Siddharth V.; Belton, David J.; Kitchel, Brandon; Anastasiades, Daphne; Huang, Jia; Naik, Rajesh R.; Perry, Carole C.; Kaplan, David L.

    2006-01-01

    Silica skeletal architectures in diatoms are characterized by remarkable morphological and nanostructural details. Silk proteins from spiders and silkworms form strong and intricate self-assembling fibrous biomaterials in nature. We combined the features of silk with biosilica through the design, synthesis, and characterization of a novel family of chimeric proteins for subsequent use in model materials forming reactions. The domains from the major ampullate spidroin 1 (MaSp1) protein of Neph...

  20. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    Science.gov (United States)

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-09

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion.

  1. Chimeric creatures in Greek mythology and reflections in science.

    Science.gov (United States)

    Bazopoulou-Kyrkanidou, E

    2001-04-15

    "The Chimaera" in Homer's Iliad, "was of divine stock, not of men, in the forepart a lion, in the hinder a serpent, and in the midst a goat, ellipsis Bellerophon slew her, trusting in the signs of the gods." In Hesiod's Theogony it is emphasized that "Chimaera ellipsis had three heads, one of a grim-eyed lion, another of a goat, and another of a snakeellipsis". In addition to this interspecies animal chimera, human/animal chimeras are referred to in Greek mythology, preeminent among them the Centaurs and the Minotaur. The Centaurs, as horse/men, first appear in Geometric and early Archaic art, but in the literature not until early in the fifth century B.C. The bullheaded-man Minotaur, who is not certainly attested in the literary evidence until circa 500 B.C., first appears in art about 650 B.C. Attempts, in the fourth century B.C. and thereafter, to rationalize their mythical appearance were in vain; their chimeric nature retained its fascinating and archetypal form over the centuries. Early in the 1980s, experimental sheep/goat chimeras were produced removing the reproductive barrier between these two animal species. Late in the 1990s, legal, political, ethical, and moral fights loomed over a patent bid on human/animal chimeras. Chimeric technology is recently developed; however, the concept of chimerism has existed in literary and artistic form in ancient mythology. This is yet another example where art and literature precede scientific research and development.

  2. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections.

    Science.gov (United States)

    Yang, Zhenhua; Wu, Rui; Li, Robert W; Li, Ling; Xiong, Zhongliang; Zhao, Haizhong; Guo, Deyin; Pan, Zishu

    2012-04-01

    A trans-complemented chimeric CSF-JE virus replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The CSFV E2 gene was deleted, and a fragment containing the region encoding a truncated envelope protein (tE, amino acid 292-402, domain III) of JE virus (JEV) was inserted into the resultant plasmid, pA187delE2, to generate the recombinant cDNA clone pA187delE2/JEV-tE. Porcine kidney 15 (PK15) cells that constitutively express the CSFV E2p7 proteins were then transfected with in vitro-transcribed RNA from pA187delE2/JEV-tE. As a result, the chimeric CSF-JE virus replicon particle (VRP), rv187delE2/JEV-tE, was rescued. In a mouse model, immunization with the chimeric CSF-JE VRP induced strong production of JEV-specific antibody and conferred protection against a lethal JEV challenge. Pigs immunized with CSF-JE VRP displayed strong anti-CSFV and anti-JEV antibody responses and protection against CSFV and JEV challenge infections. Our evidence suggests that E2-complemented CSF-JE VRP not only has potential as a live-attenuated non-transmissible vaccine candidate against CSF and JE but also serves as a potential DIVA (Differentiating Infected from Vaccinated Animals) vaccine for CSF in pigs. Together, our data suggest that the non-transmissible chimeric VRP expressing foreign antigenic proteins may represent a promising strategy for bivalent DIVA vaccine design.

  3. Chimeric RNA Oligonucleotides with Triazole and Phosphate Linkages: Synthesis and RNA Interference.

    Science.gov (United States)

    Fujino, Tomoko; Kogashi, Kanako; Okada, Koudai; Mattarella, Martin; Suzuki, Takeru; Yasumoto, Kenichi; Sogawa, Kazuhiro; Isobe, Hiroyuki

    2015-12-01

    Chimeric RNA oligonucleotides with an artificial triazole linker were synthesized using solution-phase click chemistry and solid-phase automated synthesis. Scalable synthesis methods for jointing units for the chimeric structure have been developed, and after click-coupling of the jointing units with triazole linkers, a series of chimeric oligonucleotides was prepared by utilizing the well-established phosphoramidite method for the elongation. The series of chimeric 21-mer oligonucleotides that possessed the triazole linker at different strands and positions allowed for a screening study of the RNA interference to clarify the preference of the triazole modifications in small-interfering RNA molecules.

  4. Novel nanocomposites from spider silk–silica fusion (chimeric) proteins

    Science.gov (United States)

    Wong Po Foo, Cheryl; Patwardhan, Siddharth V.; Belton, David J.; Kitchel, Brandon; Anastasiades, Daphne; Huang, Jia; Naik, Rajesh R.; Perry, Carole C.; Kaplan, David L.

    2006-01-01

    Silica skeletal architectures in diatoms are characterized by remarkable morphological and nanostructural details. Silk proteins from spiders and silkworms form strong and intricate self-assembling fibrous biomaterials in nature. We combined the features of silk with biosilica through the design, synthesis, and characterization of a novel family of chimeric proteins for subsequent use in model materials forming reactions. The domains from the major ampullate spidroin 1 (MaSp1) protein of Nephila clavipes spider dragline silk provide control over structural and morphological details because it can be self-assembled through diverse processing methods including film casting and fiber electrospinning. Biosilica nanostructures in diatoms are formed in aqueous ambient conditions at neutral pH and low temperatures. The R5 peptide derived from the silaffin protein of Cylindrotheca fusiformis induces and regulates silica precipitation in the chimeric protein designs under similar ambient conditions. Whereas mineralization reactions performed in the presence of R5 peptide alone form silica particles with a size distribution of 0.5–10 μm in diameter, reactions performed in the presence of the new fusion proteins generate nanocomposite materials containing silica particles with a narrower size distribution of 0.5–2 μm in diameter. Furthermore, we demonstrate that composite morphology and structure could be regulated by controlling processing conditions to produce films and fibers. These results suggest that the chimeric protein provides new options for processing and control over silica particle sizes, important benefits for biomedical and specialty materials, particularly in light of the all aqueous processing and the nanocomposite features of these new materials. PMID:16769898

  5. Characterization of chimeric Bacillus thuringiensis Vip3 toxins.

    Science.gov (United States)

    Fang, Jun; Xu, Xiaoli; Wang, Ping; Zhao, Jian-Zhou; Shelton, Anthony M; Cheng, Jiaan; Feng, Ming-Guang; Shen, Zhicheng

    2007-02-01

    Bacillus thuringiensis vegetative insecticidal proteins (Vip) are potential alternatives for B. thuringiensis endotoxins that are currently utilized in commercial transgenic insect-resistant crops. Screening a large number of B. thuringiensis isolates resulted in the cloning of vip3Ac1. Vip3Ac1 showed high insecticidal activity against the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea but very low activity against the silkworm Bombyx mori. The host specificity of this Vip3 toxin was altered by sequence swapping with a previously identified toxin, Vip3Aa1. While both Vip3Aa1 and Vip3Ac1 showed no detectable toxicity against the European corn borer Ostrinia nubilalis, the chimeric protein Vip3AcAa, consisting of the N-terminal region of Vip3Ac1 and the C-terminal region of Vip3Aa1, became insecticidal to the European corn borer. In addition, the chimeric Vip3AcAa had increased toxicity to the fall armyworm. Furthermore, both Vip3Ac1 and Vip3AcAa are highly insecticidal to a strain of cabbage looper (Trichoplusia ni) that is highly resistant to the B. thuringiensis endotoxin Cry1Ac, thus experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins. The results in this study demonstrated that vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control.

  6. Immunogenicity of candidate chimeric DNA vaccine against tuberculosis and leishmaniasis.

    Science.gov (United States)

    Dey, Ayan; Kumar, Umesh; Sharma, Pawan; Singh, Sarman

    2009-08-13

    Mycobacterium tuberculosis and Leishmania donovani are important intracellular pathogens, especially in Indian context. In India and other South East Asian countries, both these infections are highly endemic and in about 20% cases co-infection of these pathogens is reported. For both these pathogens cell mediated immunity plays most important role. The available treatment of these infections is either prolonged or cumbersome or it is ineffective in controlling the outbreaks and spread. Therefore, potentiation of a common host defense mechanism can be used to prevent both the infections simultaneously. In this study we have developed a novel chimeric DNA vaccine candidate comprising the esat-6 gene of M. tuberculosis and kinesin motor domain gene of L. donovani. After developing this novel chimera, its immunogenicity was studied in mouse model. The immune response was compared with individual constructs of esat-6 and kinesin motor domain. The results showed that immunization with chimeric DNA vaccine construct resulted in stronger IFN-gamma and IL-2 response against kinesin (3012+/-102 and 367.5+/-8.92pg/ml) and ESAT-6 (1334+/-46.5 and 245.1+/-7.72pg/ml) in comparison to the individual vaccine constructs. The reciprocal immune response (IFN-gamma and IL-2) against individual construct was lower (kinesin motor domain: 1788+/-36.48 and 341.8+/-9.801pg/ml and ESAT-6: 867.0+/-47.23 and 170.8+/-4.578pg/ml, respectively). The results also suggest that using the chimeric construct both proteins yielded a reciprocal adjuvant affect over each other as the IFN-gamma production against chimera vaccination is statistically significant (pleishmaniasis and tuberculosis and have important implication in future vaccine design.

  7. CD20-negative DLBCL transformation after rituximab treatment in follicular small cleaved cell lymphoma-a clinicopathological analysis and review of the literature%滤泡型小裂细胞性淋巴瘤利妥昔单抗治疗后转变为CD20阴性的弥漫大B细胞淋巴瘤临床病理分析并文献复习

    Institute of Scientific and Technical Information of China (English)

    杨翔; 张瑗; 吴宁; 刘瑜; 王璇; 吴楠; 周晓军; 万文辉

    2016-01-01

    目的:探讨B细胞恶性肿瘤美罗华(rituximab)治疗后复发伴CD20抗原表达丢失患者的临床病理学特征、免疫学表型、治疗及预后。方法:回顾性分析1例滤泡型小裂细胞性淋巴瘤患者经美罗华治疗后转变为CD20阴性的弥漫大B细胞淋巴瘤的临床病理资料,并结合相关文献进行复习。结果:患者于1987年以左侧腮腺区淋巴结肿大为首发症状,1988年行左侧腮腺区淋巴结活检诊断为滤泡型小裂细胞性淋巴瘤,先后进行了50个疗程的“COP、OP”方案化疗及短期局部放疗。1998年出现白细胞升高及淋巴细胞百分数升高,骨髓穿刺诊断为慢性淋巴细胞白血病。2012年3月至2014年3月因白细胞急剧增高多次使用“美罗华”治疗,2014年3月患者出现咽喉部不适,行会厌部取检,诊断为右侧舌根部CD20阴性的弥漫大B细胞淋巴瘤,经过3个疗程的“mini-CHOP”治疗及2次“美罗华”治疗后右侧会厌部肿块消失,2015年5月再次出现右侧颈部淋巴结肿大,经活检诊断为CD20阳性的弥漫大B细胞淋巴瘤。结论:美罗华治疗恶性B细胞淋巴瘤后CD20抗原表达丢失在临床中并非罕见,建议临床中对于美罗华治疗复发或不敏感的病例重新取组织活检进行病理诊断、免疫标记,必要时进行分子遗传学检测,以免误诊,并可对复发病因的药物调整起到的积极指导作用。%Objective: To investigate the clinicopathological features, immunological phenotype, treatment and prognosis of relapsed B-cell malignancies with loss of CD20 immunoreactivity atfer rituximab therapy.Methods: A retrospective analysis of one case of follicular small cleaved cell lymphoma which transformed to CD20-negative DLBCL after rituximab treatment was conducted. We reviewed and analyzed the clinicopathological features, immunological phenotype, treatment and prognosis of the patients.Results: We describe an 87-year

  8. Chimeric mitochondrial peptides from contiguous regular and swinger RNA

    OpenAIRE

    Hervé Seligmann

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human m...

  9. High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE

    Directory of Open Access Journals (Sweden)

    E. Terrenoire

    2015-01-01

    The results suggest that future work should focus on the development of national bottom-up emission inventories including a better account for semi-volatile organic compounds and their conversion to SOA, the improvement of the CHIMERE urban parameterization, the introduction into CHIMERE of the coarse nitrate chemistry and an advanced parameterization accounting for windblown dust emissions.

  10. CHIMERE 2013: a model for regional atmospheric composition modelling

    Directory of Open Access Journals (Sweden)

    L. Menut

    2013-07-01

    Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, kinetics and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative contribution to the pollutants budgets can be quantified with chemistry-transport models. The CHIMERE chemistry-transport model is dedicated to regional atmospheric pollution event studies. Since it has now reached a certain level a maturity, the new stable version, CHIMERE 2013, is described to provide a reference model paper. The successive developments of the model are reviewed on the basis of published investigations that are referenced in order to discuss the scientific choices and to provide an overview of the main results.

  11. [Neutralizing Monoclonal and Chimeric Antibodies to Human IFN-γ].

    Science.gov (United States)

    Larina, M V; Aliev, T K; Solopova, O N; Pozdnyakova, L P; Korobova, S V; Yakimov, S A; Sveshnikov, P G; Dolgikh, D A; Kirpichnikov, M P

    2015-01-01

    Autoiminune disorders are chronic diseases characterized by abnormal immune response directed against self-antigens that leads to tissue damage and violation of its normal functioning. Such diseases often result in disability or even death of patients. Nowadays a number of monoclonal antibodies to pro-inflammatory cytokines and their receptors are successfully used for the targeted treatment of autoimmune diseases. One of the perspective targets in autoimmune disease therapy is interferon gamma, a key cytokine in Th1 cells differentiation, activation of macrophages, and inflammation. In the present work, 5 monoclonal antibodies to human IFN-γ were obtained. For the development of potential therapeutic agent, we have performed neutralizing activity and affinity analysis of the antibodies. Based on the data obtained, the monoclonal antibody F1 was selected. This antibody has a dissociation constant 1.7 x 10(-9) M and IC90 = 8.9 ± 2.0 nM measured upon antibody inhibition of the IFN-γ-induced HLA-DR expression on the surface of U937 cells. We have constructed a bicistronic vector for the production of recombinant chimeric Fab fragment F1 chim in E. coli cells. The recombinant chimeric Fab fragment Fl chim neutralizes IFN-γ activity in vitro and has a dissociation constant 1.8 x 10(-9) M.

  12. Serotype Chimeric Human Adenoviruses for Cancer GeneTherapy

    Directory of Open Access Journals (Sweden)

    Akseli Hemminki

    2010-09-01

    Full Text Available Cancer gene therapy consists of numerous approaches where the common denominator is utilization of vectors for achieving therapeutic effect. A particularly potent embodiment of the approach is virotherapy, in which the replication potential of an oncolytic virus is directed towards tumor cells to cause lysis, while normal cells are spared. Importantly, the therapeutic effect of the initial viral load is amplified through viral replication cycles and production of progeny virions. All cancer gene therapy approaches rely on a sufficient level of delivery of the anticancer agent into target cells. Thus,enhancement of delivery to target cells, and reduction of delivery to non-target cells, in an approach called transductional targeting, is attractive. Both genetic and non-genetic retargeting strategies have been utilized. However, in the context of oncolytic viruses, it is beneficial to have the specific modification included in progeny virions and hence genetic modification may be preferable. Serotype chimerism utilizes serotype specific differences in receptor usage, liver tropism and seroprevalence in order to gain enhanced infection of target tissue. This review will focus on serotype chimeric adenoviruses for cancer gene therapy applications.

  13. Chimeric behavior of excited thioxanthone in protic solvents: II. Theory.

    Science.gov (United States)

    Rai-Constapel, Vidisha; Villnow, Torben; Ryseck, Gerald; Gilch, Peter; Marian, Christel M

    2014-12-18

    The chimeric behavior of thioxanthone in protic solvents has been investigated employing computational chemistry methods. In particular, methanol and 2,2,2-trifluoroethanol have been chosen in this study. The solvent environment has been modeled using microsolvation in combination with a conductor-like screening model. The vertical excitation spectrum within the same solvent is seen to depend on the number of specific bonds formed between the chromophore and the solvent molecules. Two different models have been discussed in this work, namely, one and two H-bond models. In particular, the formation of the second H-bond causes the energy gap between the πHπL* and nOπL* states to increase further. Excited-state absorption spectra for the photophysically relevant electronic states have been theoretically determined for comparison with the time-resolved spectra recorded experimentally [Villnow, T.; Ryseck, G.; Rai-Constapel, V.; Marian, C. M.; Gilch, P. J. Phys. Chem. A 2014]. The equilibration of the 1(πHπL*) and 3(nOπL*) states holds responsible for the chimeric behavior. This equilibrium sets in with a calculated time constant of 23 ps in methanol and 14 ps in TFE (5 and 10 ps in experiment, respectively). The radiative decay from the optically bright 1(πHπL*) state is computed to occur with a time constant of 25 ns in both solvents (14–25 ns in experiment).

  14. A phase III randomized trial comparing glucocorticoid monotherapy versus glucocorticoid and rituximab in patients with autoimmune haemolytic anaemia

    DEFF Research Database (Denmark)

    Birgens, Henrik Sverre; Frederiksen, Henrik; Hasselbalch, Hans C;

    2013-01-01

    The impact of first-line treatment with the anti-CD 20 chimeric monoclonal antibody rituximab in patients with warm-antibody reactive autoimmune haemolytic anaemia (WAIHA) is unknown. We report the first randomized study of 64 patients with newly diagnosed WAIHA who received prednisolone and ritu......The impact of first-line treatment with the anti-CD 20 chimeric monoclonal antibody rituximab in patients with warm-antibody reactive autoimmune haemolytic anaemia (WAIHA) is unknown. We report the first randomized study of 64 patients with newly diagnosed WAIHA who received prednisolone...

  15. Comparison of different blood sample processing methods for sensitive detection of low level chimerism by RHD real-time PCR assay.

    Science.gov (United States)

    Javadi, Ahmad; Verduin, Esther P; Brand, Anneke; Schonewille, Henk

    2013-01-01

    The rhesus D blood group, which is expressed on the red blood cells (RBC) of 85% of the Caucasian population, is one of the most immunogenic RBC antigens, inducing D antibody formation in up to 20-80% of D-negative transfusion recipients and about 10% of pregnancies at risk. Pregnancy-induced D-antibodies can persist for many years, but the mechanisms underlying this persistence are unclear. The LOTUS study, a long-term follow-up study of mothers from severely affected children with hemolytic disease of the fetus and newborn investigates, among other endpoints, whether persistent feto-maternal chimerism is associated with long-term maternal anti-D persistence. We questioned which blood sample processing method should be used to detect low levels of RHD chimerism with the highest sensitivity and specificity using qPCR. After optimization of primer and probe concentrations for singleplex RHD exon 5 and 7 qPCR, sensitivity, specificity and efficiency of RHD and DYS1 qPCR were investigated in artificial chimeric samples. Sensitivity of DYS1 was one log higher (0.0001%) in enriched mononuclear cell fractions as compared with whole blood. Comparable linear sensitivity (0.007%) and mean efficiency (84-99%) for RHD qPCR were observed in all samples regardless whether whole blood or pre- or post-mixing of cellular fractions had been used. We conclude that RHD chimerism using singleplex exon 5 and 7 qPCR is linearly detectable down to 1.0 GE, without an advantage of fraction enrichment.

  16. The Anti—tumor Effects of an Anti—CD71 Chimeric Antibody in Vitro and Its Distribution in a Tumor Xenograft Model

    Institute of Scientific and Technical Information of China (English)

    YANGDaofeng; WANGShuo; 等

    2002-01-01

    Objective To investigate the anti-tumor effects in vitro and in vivo distribution of the human/murine chimeric antibody (D2C).Methods The CD71 positive target cells(K562,CEM and SMMC7721) and the effector cells ,freshly isolated human PBMC,with the ratio of target cells to effector cells 1:50,were incubated in various dilutions of D2C antibody(Ab).Antibody dependent cytotoxicity(AD-CC) was tested by using an LDH-release assay.Instead of effector cells,complement was added to the target cells (CEM,SMMC-7721) with various dilutions of D2C Ab.A method of counting death cells was used in complement dependent cytotoxicity(CDC) assay.Tumor localization and distribution of the chimeric antibody(D2C) were observed by labeling the chimeric Ab with radioiodine(131I) and injecting in into nude mice(Balb/c nu/nu) transplanted with human hepatocellular carcinoma cells (SMMC-7721).Results A significant ADCC was observed with the increased concentration of the D2C Ab.Cytolysis of CD71-positive target cells by the D2C Ab was found in the presence of fresh rabbit complement.Labeled D2C administered by intraperitoneal as well as tumor regional in-jection,was visualized by SPECT. The distribution of D2C Ab in murine organs and tissues showed that non-specific binding was lower fol-lowing tumor regional administration than when the antibody was administered by an intraperitoneal injection.The human/murine chimeric antibody(D2C) has in vitro anti-tumor effects and can exert its effects in specific tumor localization.Its distribution and local effects in vi-vo can be detected by radioimmunoimaging. Conclusion CD71 human/murine chimeric antibody showed marked killing of tumor cells in vitro,and specific recognition and high affinity binding to tumor tissue in vivo.

  17. Chimeric DNA Vaccines against ErbB2{sup +} Carcinomas: From Mice to Humans

    Energy Technology Data Exchange (ETDEWEB)

    Quaglino, Elena; Riccardo, Federica; Macagno, Marco; Bandini, Silvio; Cojoca, Rodica; Ercole, Elisabetta [Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin (Italy); Amici, Augusto [Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy); Cavallo, Federica, E-mail: federica.cavallo@unito.it [2 Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy)

    2011-08-10

    DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2{sup +} carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.

  18. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  19. Construction, Expression and Characterization of a Chimeric Protein Targeting Carcinoembryonic Antigen in Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    LI Yang; HUA Shu-cheng; MA Cheng-yuan; YU Zhen-xiang; XU Li-jun; LI Dan; SUN Li-li; LI Xiao; PENG Li-ping

    2011-01-01

    The carcinoembryonic antigen(CEA) is an oncofetal glycoprotein known as an important clinical tumor marker and is overexpressed in several types of tumors, including colorectal and lung carcinomas. We constructed a chimeric protein that exhibits both specific binding and immune stimulating activities, by fusing staphylococcal enterotoxin A(SEA) to the C-terminus of an anti-CEA single-chain disulfide-stabilized Fv(scdsFv) antibody (single-chain-C-terminus/SEA, SC-C/SEA). The SC-C/SEA protein was expressed in Escherichia coli(E. coli), refolded, and purified on an immobilized Ni2+ affinity chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) and Western blot analysis reveal that the target protein was expressed sufficiently. We used immunofluorescence assays to demonstrate that SC-C/SEA could bind specifically to human lung carcinoma cells(A549), but almost human uterine cervix cells(HeLa). We also used the L-lactate dehydrogenase(LDH) release assay to show that SC-C/SEA elicits a strong A549 tumor-specific cytotoxic T lymphocyte(CTL) response in vitro. The results suggest that SC-C/SEA shows specific activity against CEA-positive cells and has potential application in CEA-targeted cancer immunotherapy.

  20. [Safety and efficacy of biologics directed against TNF-alpha and CD20 in the therapy of vasculitis and systemic lupus erythematosus].

    Science.gov (United States)

    Walker, Ulrich A; Hasler, Paul

    2008-05-01

    While the inhibition of TNF-alpha has been shown to improve vasculitis in vitro and in animal models, the clinical evidence for the efficacy of TNF-alpha blockade in most forms of vasculitis is mainly based on case reports and case series. Randomised controlled studies have so far not shown superiority of anti-TNF-alpha agents for Wegener's granulomatosis and giant cell arteritis. Moreover, in the context of Wegener's granulomatosis, a higher frequency and severity of infections are to be expected. In refractory cases of Behçet's disease therapy of uveitis and other organ manifestations is promising. Rituximab has achieved good effects in case reports of vasculitis. Results from controlled trials are not available. Observational studies indicate that in refractory systemic lupus erythematosus, and possibly also in several instances of small vessel vasculitis, rituximab can achieve good responses. The increased frequency of severe infections under TNF-alpha blockade requires a stringent benefit and risk assessment in addition to a multidisciplinary analysis of follow-up parameters. A detailed information of the patient regarding symptoms and signs of a possible infection are a prerequisite. Due to the complexity of the field and the danger of morbidity and mortality as a consequence of vasculitis or systemic lupus erythematosus on the one hand, and of the therapy on the other, biologics should only be used to treat these disorders in institutions fully equipped and staffed for this purpose.

  1. Novel fusion genes and chimeric transcripts in ependymal tumors

    DEFF Research Database (Denmark)

    Olsen, Thale Kristin; Panagopoulos, Ioannis; Gorunova, Ludmila

    2016-01-01

    We have previously identified two ALK rearrangements in a subset of ependymal tumors using a combination of cytogenetic data and RNA sequencing. The aim of this study was to perform an unbiased search for fusion transcripts in our entire series of ependymal tumors. Fusion analysis was performed...... using the FusionCatcher algorithm on 12 RNA-sequenced ependymal tumors. Candidate transcripts were prioritized based on the software's filtering and manual visualization using the BLAST (Basic Local Alignment Search Tool) and BLAT (BLAST-like alignment tool) tools. Genomic and reverse transcriptase PCR...... with subsequent Sanger sequencing was used to validate the potential fusions. Fluorescent in situ hybridization (FISH) using locus-specific probes was also performed. A total of 841 candidate chimeric transcripts were identified in the 12 tumors, with an average of 49 unique candidate fusions per tumor. After...

  2. Modeling cognition and disease using human glial chimeric mice

    DEFF Research Database (Denmark)

    Goldman, Steven A.; Nedergaard, Maiken; Windrem, Martha S.

    2015-01-01

    As new methods for producing and isolating human glial progenitor cells (hGPCs) have been developed, the disorders of myelin have become especially compelling targets for cell-based therapy. Yet as animal modeling of glial progenitor cell-based therapies has progressed, it has become clear...... cognition and information processing. In addition, the cellular humanization of these brains permits their use in studying glial infectious and inflammatory disorders unique to humans, and the effects of those disorders on the glial contributions to cognition. Perhaps most intriguingly, by pairing our...... for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human...

  3. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.

    Science.gov (United States)

    Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa

    2009-01-01

    Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.

  4. Tumour targeting and radiation dose of radioimmunotherapy with {sup 90}Y-rituximab in CD20+ B-cell lymphoma as predicted by {sup 89}Zr-rituximab immuno-PET: impact of preloading with unlabelled rituximab

    Energy Technology Data Exchange (ETDEWEB)

    Muylle, Kristoff [Vrije Universiteit Brussel, MIMA Research Group, Brussels (Belgium); Universite Libre de Bruxelles, Department of Nuclear Medicine, Jules Bordet Institute, Brussels (Belgium); Flamen, Patrick; Guiot, Thomas; Ghanem, Ghanem; Meuleman, Nathalie; Bourgeois, Pierre; Vanderlinden, Bruno; Vaes, Melanie; Bron, Dominique [Universite Libre de Bruxelles, Jules Bordet Institute, Brussels (Belgium); Vugts, Danielle J.; Dongen, Guus A.M.S. van [VU University Medical Centre, Amsterdam (Netherlands); Everaert, Hendrik [Vrije Universiteit Brussel, UZ Brussel, Brussels (Belgium); Vrije Universiteit Brussel, MIMA Research Group, Brussels (Belgium)

    2015-07-15

    To compare using immuno-PET/CT the distribution of {sup 89}Zr-labelled rituximab without and with a preload of unlabelled rituximab to assess the impact of preloading with unlabelled rituximab on tumour targeting and radiation dose of subsequent radioimmunotherapy with {sup 90}Y-labelled rituximab in CD20+ B-cell lymphoma. Five patients with CD20+ B-cell lymphoma and progressive disease were prospectively enrolled. All patients underwent three study phases: initial dosimetric phase with baseline {sup 89}Zr-rituximab PET/CT imaging without a cold preload, followed 3 weeks later by a second dosimetric phase with administration of a standard preload (250 mg/m{sup 2}) of unlabelled rituximab followed by injection of {sup 89}Zr-rituximab, and a therapeutic phase 1 week later with administration of unlabelled rituximab followed by {sup 90}Y-rituximab. PET/CT imaging and tracer uptake by organs and lesions were assessed. With a cold rituximab preload, the calculated whole-body dose of {sup 90}Y-rituximab was similar (mean 0.87 mSv/MBq, range 0.82-0.99 mSv/MBq) in all patients. Without a preload, an increase in whole-body dose of 59 % and 87 % was noted in two patients with preserved circulating CD20+ B cells. This increase in radiation dose was primarily due to a 12.4-fold to 15-fold higher dose to the spleen without a preload. No significant change in whole-body dose was noted in the three other patients with B-cell depletion. Without a preload, consistently higher tumour uptake was noticed in patients with B-cell depletion. Administration of the standard preload of unlabelled rituximab impairs radioconjugate tumour targeting in the majority of patients eligible for radioimmunotherapy, that is patients previously treated with rituximab-containing therapeutic regimens. This common practice may need to be reconsidered and further evaluated as the rationale for this high preload has its origin in the ''prerituximab era''. (orig.)

  5. A clinical study on the therapeutic effect of rituximab in combination with autologous peripheral blood stem cell transplantation in treatment of CD20+ B cellulous non-Hodgkin lymphoma

    Directory of Open Access Journals (Sweden)

    Yong-sheng CHEN

    2013-07-01

    Full Text Available Objective To investigate the therapeutic effect of autologous peripheral blood stem cell transplantation (APBSCT in combination with rituximab in treatment of CD20+ B cellulous non-Hodgkin's lymphoma (B-NHL. Methods Sixty patients with CD20+ aggressive or refractory and recurrent B-NHL and treated with APBSCT in our department from Jan. 2005 to Jan. 2011 were admitted. All the subjects were divided into 2 groups according to their own choice: 25 patients received rituximab treatment (treatment group and 35 patients were treated without rituximab treatment (control group. All patients underwent chemotherapy and APBSCT. For patients in treatment group, rituximab was used with CHOP before collecting the stem cells and after the transplantation. After transplantation, rituximab and IL-2 were used in treatment group every 3-6 months as maintenance treatment. Results No side effect was observed during the use of rituximab either before or after transplantation. The mononuclear cell count in treatment and control group was (8.2±2.9×108/kg and (8.4±3.9×108/kg (P=0.822, respectively; CD34+cell count was (12.3±12.7×106/kg and (13.2±13.9×106/kg (P=0.799, respectively. Haemopoiesis reconstruction was successfully achieved in the patients of treatment group, while 3 patients in control group failed to have haemopoiesis reconstruction. No significant difference was found between two groups on the recovery time of neutrophilic granulocytes and platelets. All patients achieved complete remission. The average follow-up time was 22 months. The disease relapsed in two patients in treatment group and six in control group. The 3-year overall survival rate in treatment group (91.6% was a little higher than that in control group (69.5%, P=0.060. Conclusion To patients of CD20+ B lymphoma, the use of rituximab shows no side effect before or after collection of stem cell and hemopoiesis reconstruction, and the overall survival rate may be improved.

  6. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia.

    Science.gov (United States)

    Kenderian, S S; Ruella, M; Shestova, O; Klichinsky, M; Aikawa, V; Morrissette, J J D; Scholler, J; Song, D; Porter, D L; Carroll, M; June, C H; Gill, S

    2015-08-01

    Patients with chemo-refractory acute myeloid leukemia (AML) have a dismal prognosis. Chimeric antigen receptor T (CART) cell therapy has produced exciting results in CD19+ malignancies and may overcome many of the limitations of conventional leukemia therapies. We developed CART cells to target CD33 (CART33) using the anti-CD33 single chain variable fragment used in gemtuzumab ozogamicin (clone My96) and tested the activity and toxicity of these cells. CART33 exhibited significant effector functions in vitro and resulted in eradication of leukemia and prolonged survival in AML xenografts. CART33 also resulted in human lineage cytopenias and reduction of myeloid progenitors in xenograft models of hematopoietic toxicity, suggesting that permanently expressed CD33-specific CART cells would have unacceptable toxicity. To enhance the viability of CART33 as an option for AML, we designed a transiently expressed mRNA anti-CD33 CAR. Gene transfer was carried out by electroporation into T cells and resulted in high-level expression with potent but self-limited activity against AML. Thus our preclinical studies show potent activity of CART33 and indicate that transient expression of anti-CD33 CAR by RNA modification could be used in patients to avoid long-term myelosuppression. CART33 therapy could be used alone or as part of a preparative regimen prior to allogeneic transplantation in refractory AML.

  7. 4-1BB Costimulation Ameliorates T Cell Exhaustion Induced by Tonic Signaling of Chimeric Antigen Receptors

    Science.gov (United States)

    Long, Adrienne H.; Haso, Waleed M.; Shern, Jack F.; Wanhainen, Kelsey M.; Murgai, Meera; Ingaramo, Maria; Smith, Jillian P.; Walker, Alec J.; Kohler, M. Eric; Venkateshwara, Vikas R.; Kaplan, Rosandra N.; Patterson, George H.; Fry, Terry J.; Orentas, Rimas J.; Mackall, Crystal L.

    2015-01-01

    Chimeric antigen receptors (CARs) targeting CD19 have mediated dramatic anti-tumor responses in hematologic malignancies, but tumor regression has rarely occurred using CARs targeting other antigens. It remains unknown whether the impressive effects of CD19 CARs relate to greater susceptibility of hematologic malignancies to CAR therapies, or superior functionality of the CD19 CAR itself. We discovered that tonic CAR CD3ζ phosphorylation, triggered by antigen-independent clustering of CAR scFvs, can induce early exhaustion of CAR T cells that limits anti-tumor efficacy. Such activation is present to varying degrees in all CARs studied, with the exception of the highly effective CD19 CAR. We further identify that CD28 costimulation augments, while 4-1BB costimulation ameliorates, exhaustion induced by persistent CAR signaling. Our results provide biological explanations for the dramatic anti-tumor effects of CD19 CARs and for the observations that CD19.BBz CAR T cells are more persistent than CD19.28z CAR T cells in clinical trials. PMID:25939063

  8. Assessment of absorbed dose and therapeutic response of tumor in repeated high-dose I-131 anti-CD20 monoclonal antibody (rituximab) radioimmunotherapy for non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Byung Hyun; Lim, Sang Moo; Kim, Kyeong Min [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2007-07-01

    We assessed the therapeutic dose absorbed to the tumor and response in repeated RIT with I-131 rituximab for NHL. Patients with NHL (n=6) were administered a therapeutic dose of I-131 rituximab (192.527.0 mCi). The number of repeated administration was 3 for all patients. Total 12 measurable tumor regions were assessed at the time of each RIT. Whole-body (WB) planar images with anterior and posterior views were acquired sequentially at 5 min, 5hr, 24hr, 48hr, and 72hr post-injection using gamma camera. F-18-FDG PET/CT was performed before (within 7 days) and after (on Day 30) RIT. From PET/CT image acquired before RIT, maximum intensity projection (MIP) image of coronal view was acquired. Serial WB planar images were overlaid to the coronal MIP PET image, respectively, by means of registration using 4 fiducial marks (bilateral shoulder and buttock) implemented in AMIDE software. On registered MIP PET and WB planar images, both 2D-ROIs were drawn on the region of tumor and background nearby tumor. The shape of 2D-ROI of tumor was determined from the MIP PET image. The volume of tumor was measured from the CT image, the % change of tumor volume before and after RIT was used in evaluation of the therapeutic response. The values of CT-based tumor volume were 8.216.3cc. The values of absorbed dose for tumor and the % changes of tumor volume before and after RIT were 231.8603.0rad, and 55.548.7%, respectively, and did not show the linear relationship (r=0.2787). The values of absorbed dose for tumor and the % changes of tumor volume did not correlate with the number of repeated administration (p>0.05, ANOVA). Aligning PET and planar images could estimate the quantitative values of absorbed dose to tumor. The data suggest that repeated RIT with I-131 rituximab is necessary for NHL, because single-RIT is insufficient to achieve remission of disease.

  9. Image-Based Assessment and Clinical Significance of Absorbed Radiation Dose to Tumor in Repeated High-Dose {sup 131}I Anti-CD20 Monoclonal Antibody (Rituximab) Radioimmunotherapy for Non-Hodgkin's Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Byung Hyun; Kim, Kyeong Min; Woo, Sang Keun; Choi, Tae Hyun; Kang, Hye Jin; Oh, Dong Hyun; Kim, Byeong Il; Choen, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-02-15

    We assessed the absorbed dose to the tumor (Dose tumor) by using pretreatment FDG-PET and whole-body (WB) planar images in repeated radioimmunotherapy (RIT) with {sup 131}I rituximab for NHL. Patients with NHL (n=4) were administered a therapeutic dose of {sup 131}I rituximab. Serial WB planar images after RIT were acquired and overlaid to the coronal maximum intensity projection (MIP) PET image before RIT. On registered MIP PET and WB planar images, 2D-ROIs were drawn on the region of tumor (n=7) and left medial thigh as background, and Dosetumor was calculated. The correlation between Dosetumor and the CT-based tumor volume change after RIT was analyzed. The differences of Dosetumor and the tumor volume change according to the number of RIT were also assessed. The values of absorbed dose were 397.7{+-}646.2cGy (53.0{approx}2853.0cGy). The values of CT-based tumor volume were 11.3{+-}9.1 cc (2.9{approx}34.2cc), and the % changes of tumor volume before and after RIT were -29.8{+-}44.3% (-100.0%{approx}+42.5%), respectively. Dosetumor and the tumor volume change did not show the linear relationship (p>0.05). Dosetumor and the tumor volume change did not correlate with the number of repeated administration (p>0.05). We could determine the position and contour of viable tumor by MIP PET image. And, registration of PET and gamma camera images was possible to estimate the quantitative values of absorbed dose to tumor.

  10. Effective targeting of pathogens to neutrophils via chimeric surfactant protein D/anti-CD89 protein.

    NARCIS (Netherlands)

    Tacken, P.J.; Hartshorn, K.L.; White, M.R.; Kooten, C. van; Winkel, J.G.J. van de; Reid, K.B.; Batenburg, J.J.

    2004-01-01

    Targeting of specific pathogens to FcRs on immune effector cells by using bispecific Abs was reported to result in effective killing of the pathogens, both in vitro and in vivo. Instead of targeting a specific pathogen to an FcR, we assessed whether a broad spectrum of pathogens can be targeted to a

  11. Cell enrichment-free massive ex-vivo expansion of peripheral CD20⁺ B cells via CD40-CD40L signals in non-human primates.

    Science.gov (United States)

    Kim, Jung-Sik; Byun, Nari; Chung, Hyunwoo; Kim, Hyun-Je; Kim, Jong-Min; Chun, Taehoon; Lee, Won-Woo; Park, Chung-Gyu

    2016-04-22

    Non-human primates (NHPs) are valuable as preclinical resources that bridge the gap between basic science and clinical application. B cells from NHPs have been utilized for the development of B-cell targeted drugs and cell-based therapeutic modalities; however, few studies on the ex-vivo expansion of monkey B cells have been reported. In this study, we developed a highly efficient ex-vivo expansion protocol for monkey B cells resulting in 99% purity without the requirement for prior cell-enrichment procedures. To this end, monkey peripheral blood mononuclear cells (PBMCs) were stimulated for 12 days with cells constitutively expressing monkey CD40L in expansion medium optimized for specific and massive expansion of B cells. The B cells expansion rates obtained were 2-5 times higher than those previously reported in humans, with rates ranging from 7.9 to 16.6 fold increase. Moreover, expanded B cells sustained high expression of co-stimulatory molecules including CD83 and CD86 until day 12 of culture, and the simple application of a brief centrifugation resulted in a CD20(+) B cell purity rate of greater than 99%. Furthermore, small amounts of CD3(+)CD20(+)BT-like cells were generated and CD16 was expressed at moderate levels on expanded B cells. Thus, the establishment of this protocol provides a method to produce quantities of homogeneous, mature B cells in numbers sufficient for the in vitro study of B cell immunity as well as for the development of B cell-diagnostic tools and cell-based therapeutic modalities.

  12. Boosting BCG-primed mice with chimeric DNA vaccine HG856A induces potent multifunctional T cell responses and enhanced protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Ji, Ping; Hu, Zhi-Dong; Kang, Han; Yuan, Qin; Ma, Hui; Wen, Han-Li; Wu, Juan; Li, Zhong-Ming; Lowrie, Douglas B; Fan, Xiao-Yong

    2016-02-01

    The tuberculosis pandemic continues to rampage despite widespread use of the current Bacillus Calmette-Guerin (BCG) vaccine. Because DNA vaccines can elicit effective antigen-specific immune responses, including potent T cell-mediated immunity, they are promising vehicles for antigen delivery. In a prime-boost approach, they can supplement the inadequate anti-TB immunological memory induced by BCG. Based on this, a chimeric DNA vaccine HG856A encoding Mycobacterium tuberculosis (M. tuberculosis) immunodominant antigen Ag85A plus two copies of ESAT-6 was constructed. Potent humoral immune responses, as well as therapeutic effects induced by this DNA vaccine, were observed previously in M. tuberculosis-infected mice. In this study, we further evaluated the antigen-specific T cell immune responses and showed that repeated immunization with HG856A gave modest protection against M. tuberculosis challenge infection and significantly boosted the immune protection primed by BCG vaccination. Enhanced protection was accompanied by increased multifunctional Th1 CD4(+) T cell responses, most notably by an elevated frequency of M. tuberculosis antigen-specific IL-2-producing CD4(+) T cells post-vaccination. These data confirm the potential of chimeric DNA vaccine HG856A as an anti-TB vaccine candidate.

  13. Protein L: a novel reagent for the detection of Chimeric Antigen Receptor (CAR expression by flow cytometry

    Directory of Open Access Journals (Sweden)

    Zheng Zhili

    2012-02-01

    Full Text Available Abstract Background There has been significant progress in the last two decades on the design of chimeric antigen receptors (CAR for adoptive immunotherapy targeting tumor-associated antigens. Structurally CARs consist of a single chain antibody fragment directed against a tumor-associated antigen fused to an extracellular spacer and transmembrane domain followed by T cell cytoplasmic signaling moieties. Currently several clinical trials are underway using gene modified peripheral blood lymphocytes (PBL with CARs directed against a variety of tumor associated antigens. Despite the improvements in the design of CARs and expansion of the number of target antigens, there is no universal flow cytometric method available to detect the expression of CARs on the surface of transduced lymphocytes. Methods Currently anti-fragment antigen binding (Fab conjugates are most widely used to determine the expression of CARs on gene-modified lymphocytes by flow cytometry. The limitations of these reagents are that many of them are not commercially available, generally they are polyclonal antibodies and often the results are inconsistent. In an effort to develop a simple universal flow cytometric method to detect the expression of CARs, we employed protein L to determine the expression of CARs on transduced lymphocytes. Protein L is an immunoglobulin (Ig-binding protein that binds to the variable light chains (kappa chain of Ig without interfering with antigen binding site. Protein L binds to most classes of Ig and also binds to single-chain antibody fragments (scFv and Fab fragments. Results We used CARs derived from both human and murine antibodies to validate this novel protein L based flow cytometric method and the results correlated well with other established methods. Activated human PBLs were transduced with retroviral vectors expressing two human antibody based CARs (anti-EGFRvIII, and anti-VEGFR2, two murine antibody derived CARs (anti-CSPG4, and anti

  14. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali;

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination...

  15. Quantitative chimerism kinetics in relapsed leukemia patients after allogeneic hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    QIN Xiao-ying; WANG Jing-zhi; ZHANG Xiao-hui; LI Jin-lan; LI Ling-di; LIU Kai-yan; HUANG Xiao-jun; LI Guo-xuan; QIN Ya-zhen; WANG Yu; WANG Feng-rong; LIU Dai-hong; XU Lan-ping; CHEN Huan; HAN Wei

    2012-01-01

    Background Chimerism analysis is an important tool for the surveillance of post-transplant engraftment.It offers the possibility of identifying impending graft rejection and recurrence of underlying malignant or non-malignant disease.Here we investigated the quantitative chimerism kinetics of 21 relapsed leukemia patients after allogeneic hematopoietic stem cell transplantation (HSCT).Methods A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time polymerase chain reaction (RT-PCR) to obtain the informative marker for every leukemia patient.Quantitative chimerism analysis of bone marrow (BM) samples of 21 relapsed patients and 20 patients in stable remission was performed longitudinally.The chimerisms of BM and peripheral blood (PB) samples of 14 patients at relapse were compared.Results Twenty-one patients experienced leukemia relapse at a median of 135 days (range,30-720 days) after transplantation.High recipient chimerism in BM was found in all patients at relapse,and increased recipient chimerism in BM samples was observed in 90% (19/21) of patients before relapse.With 0.5% recipient DNA as the cut-off,median time between the detection of increased recipient chimerism and relapse was 45 days (range,0-120 days),with 76% of patients showing increased recipient chimerism at least 1 month prior to relapse.Median percentage of recipient DNA in 20 stable remission patients was 0.28%,0.04%,0.05%,0.05%,0.08%,and 0.05% at 1,2,3,6,9,and 12 months,respectively,after transplantation.This was concordant with other specific fusion transcripts and fluorescent in situ hybridization examination.The recipient chimerisms in BM were significantly higher than those in PB at relapse (P=0.001).Conclusions This SP-based RT-PCR essay is a reliable method for chimerism analysis.Chimerism kinetics in BM can be used as a marker of impending leukemia relapse,especially when no other specific marker is available.Based on our findings

  16. Frequency of chimerism in populations of the kelp Lessonia spicata in central Chile

    Science.gov (United States)

    2017-01-01

    Chimerism occurs when two genetically distinct conspecific individuals fuse together generating a single entity. Coalescence and chimerism in red seaweeds has been positively related to an increase in body size, and the consequent reduction in susceptibility to mortality factors, thus increasing survival, reproductive potential and tolerance to stress in contrast to genetically homogeneous organisms. In addition, they showed that a particular pattern of post-fusion growth maintains higher genetic diversity and chimerism in the holdfast but homogenous axes. In Chilean kelps (brown seaweeds), intraorganismal genetic heterogeneity (IGH) and holdfast coalescence has been described in previous research, but the extent of chimerism in wild populations and the patterns of distribution of the genetically heterogeneous thallus zone have scarcely been studied. Since kelps are under continuous harvesting, with enormous social, ecological and economic importance, natural chimerism can be considered a priceless in-situ reservoir of natural genetic resources and variability. In this study, we therefore examined the frequency of IGH and chimerism in three harvested populations of Lessonia spicata. We then evaluated whether chimeric wild-type holdfasts show higher genetic diversity than erect axes (stipe and lamina) and explored the impact of this on the traditional estimation of genetic diversity at the population level. We found a high frequency of IGH (60–100%) and chimerism (33.3–86.7%), varying according to the studied population. We evidenced that chimerism occurs mostly in holdfasts, exhibiting heterogeneous tissues, whereas stipes and lamina were more homogeneous, generating a vertical gradient of allele and genotype abundance as well as divergence, constituting the first time “within- plant” genetic patterns have been reported in kelps. This is very different from the chimeric patterns described in land plants and animals. Finally, we evidenced that IGH affected

  17. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy

    OpenAIRE

    Destouni, Aspasia; Zamani Esteki, Masoud; Catteeuw, Maaike; Dimitriadou, Eftychia; Smits, Katrien; Kurg, Ants; Salumets, Andres; Van Soom, Ann; Voet, Thierry; Vermeesch, Joris

    2016-01-01

    Dramatic genome dynamics, such as chromosome instability, contribute to the remarkable genomic heterogeneity among the blastomeres comprising a single embryo during human preimplantation development. This heterogeneity, when compatible with life, manifests as constitutional mosaicism, chimerism, and mixoploidy in live-born individuals. Chimerism and mixoploidy are defined by the presence of cell lineages with different parental genomes or different ploidy states in a single individual, respec...

  18. Antistaphylococcal activity of bacteriophage derived chimeric protein P128

    Directory of Open Access Journals (Sweden)

    Vipra Aradhana A

    2012-03-01

    Full Text Available Abstract Background Bacterial drug resistance is one of the most significant challenges to human health today. In particular, effective antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA are urgently needed. A causal relationship between nasal commensal S. aureus and infection has been reported. Accordingly, elimination of nasal S. aureus reduces the risk of infection. Enzymes that degrade bacterial cell walls show promise as antibacterial agents. Bacteriophage-encoded bacterial cell wall-degrading enzymes exhibit intrinsic bactericidal activity. P128 is a chimeric protein that combines the lethal activity of the phage tail-associated muralytic enzyme of Phage K and the staphylococcal cell wall targeting-domain (SH3b of lysostaphin. Here we report results of in vitro studies evaluating the susceptibility of staphylococcal strains to this novel protein. Results Using the broth microdilution method adapted for lysostaphin, we found that P128 is effective against S. aureus clinical strains including MRSA, methicillin-sensitive S. aureus (MSSA, and a mupirocin-resistant S. aureus. Minimum bactericidal concentrations and minimum inhibitory concentrations of P128 (1-64 μg/mL were similar across the 32 S. aureus strains tested, demonstrating its bactericidal nature. In time-kill assays, P128 reduced colony-forming units by 99.99% within 1 h and inhibited growth up to 24 h. In an assay simulating topical application of P128 to skin or other biological surfaces, P128 hydrogel was efficacious when layered on cells seeded on solid media. P128 hydrogel was lethal to Staphylococci recovered from nares of healthy people and treated without any processing or culturing steps, indicating its in situ efficacy. This methodology used for in vitro assessment of P128 as an agent for eradicating nasal carriage is unique. Conclusions The novel chimeric protein P128 is a staphylococcal cell wall-degrading enzyme under development for

  19. Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris.

    Directory of Open Access Journals (Sweden)

    Helena Storchova

    Full Text Available Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1. We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.

  20. Study the effect of F17S mutation on the chimeric Bacillus thermocatenulatus lipase

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Khaleghinejad

    2016-06-01

    Full Text Available Lipases (triacylglycerol acylhydrolase, EC 3.1.1.3 are one of the highest value commercial enzymes as they have potential applications in biotechnology for detergents, food, pharmaceuticals, leather, textiles, cosmetics, and paper industries; and are currently receiving considerable attention because of their potential applications in biotechnology. Bacillus thermocatenulatus Lipase 2 (BTL2 is one of the most important research targets, because of its potential industrial applications. In this study, the effect of substitution Phe17 with Ser in mutated BTL2 lipase, which conserved pentapeptide (112Ala-His-Ser-Gln-Gly116 was replaced with similar sequences (207Gly-Glu-Ser-Ala-Gly211 of Candida rugosa lipase (CLR at the nucleophilic elbow region. Docking results confirmed the mutated lipase to be better than the chimeric lipase. So, cloning was conducted, and the mutated and chimeric btl2 genes were expressed in Escherichia coli, and then the enzymes were purified by anion exchange chromatography. The mutation increased lipase lipolytic activity against most of the applied substrates, with the exception of tributyrin when compared with chimeric lipase. Further, the mutated lipase exhibited higher activity than the chimeric lipase at all temperatures. Optimum pH of the mutated lipase was obtained at pH 9.5, which was more than the chimeric one. Enzyme activity of the mutated lipase in the presence of organic solvents, detergents, and metal ions was also improved than the chimeric lipase.

  1. Hepatitis C virus infection suppresses the interferon response in the liver of the human hepatocyte chimeric mouse.

    Directory of Open Access Journals (Sweden)

    Masataka Tsuge

    Full Text Available BACKGROUND AND AIMS: Recent studies indicate that hepatitis C virus (HCV can modulate the expression of various genes including those involved in interferon signaling, and up-regulation of interferon-stimulated genes by HCV was reported to be strongly associated with treatment outcome. To expand our understanding of the molecular mechanism underlying treatment resistance, we analyzed the direct effects of interferon and/or HCV infection under immunodeficient conditions using cDNA microarray analysis of human hepatocyte chimeric mice. METHODS: Human serum containing HCV genotype 1b was injected into human hepatocyte chimeric mice. IFN-α was administered 8 weeks after inoculation, and 6 hours later human hepatocytes in the mouse livers were collected for microarray analysis. RESULTS: HCV infection induced a more than 3-fold change in the expression of 181 genes, especially genes related to Organismal Injury and Abnormalities, such as fibrosis or injury of the liver (P = 5.90E-16∼3.66E-03. IFN administration induced more than 3-fold up-regulation in the expression of 152 genes. Marked induction was observed in the anti-fibrotic chemokines such as CXCL9, suggesting that IFN treatment might lead not only to HCV eradication but also prevention and repair of liver fibrosis. HCV infection appeared to suppress interferon signaling via significant reduction in interferon-induced gene expression in several genes of the IFN signaling pathway, including Mx1, STAT1, and several members of the CXCL and IFI families (P = 6.0E-12. Genes associated with Antimicrobial Response and Inflammatory Response were also significantly repressed (P = 5.22×10(-10∼1.95×10(-2. CONCLUSIONS: These results provide molecular insights into possible mechanisms used by HCV to evade innate immune responses, as well as novel therapeutic targets and a potential new indication for interferon therapy.

  2. 嵌合抗体研究进展%Research advances in chimeric antibodies

    Institute of Scientific and Technical Information of China (English)

    张雪

    2012-01-01

    单克隆抗体在疾病的诊断、治疗和预防中发挥着重要作用,但是在临床治疗中人抗鼠抗体反应的出现使鼠源性单克隆抗体的应用受到了很大限制.随着分子生物学、分子免疫学技术的飞速发展,抗体技术已发展到第三代抗体——基因工程抗体阶段,可利用基因工程技术对鼠源性抗体进行改造,保留或增强天然抗体的特异性和主要生物学活性,同时减少鼠源成分,以避免鼠源性单克隆抗体在临床应用方面的缺陷.此文就基因工程抗体中的重要组成部分嵌合抗体的研究进展做一综述.%Monoclonal antibodies play an important role in diagnosis,treatment and prevention of diseases,but the clinical utility of murine monoclonal antibodies has been greatly limited by human anti-mouse antibody responses.With the rapid development of molecular biology and molecular immunology,antibody techniques run to the third generation-genetic engineering antibody.Murine antibodies are reconstructed with genetic engineering techniques,which reserve or increase the specificity and biological activity of natural antibodies,decrease murine components,getting rid of defects of murine monoclonal antibody in clinical application.In this review,research advancement in chimeric antibody which is one of the important constituents of genetic engineering antibodies is described.

  3. Adoptive immunotherapy for acute leukemia:New insights in chimeric antigen receptors

    Institute of Scientific and Technical Information of China (English)

    Ma?l; Heiblig; Mohamed; Elhamri; Mauricette; Michallet; Xavier; Thomas

    2015-01-01

    Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells(LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despitethe introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90’s, chimeric antigen receptors(CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding "living drug" specifically targeting the tumor-associated antigen, and ensure long-term antitumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia.

  4. Dosimetry of chimeric TNT in lung tumor patients

    Institute of Scientific and Technical Information of China (English)

    CHEN Yangchun; CHEN Shaoliang; JU Dianwen; SHI Hongcheng; YAO Zhifeng

    2007-01-01

    The purpose of this study was to assess the absorbed dose of tumor and main critical organs in 131I labeled chimeric tumor necrotic treatment (chTNT). In 9 patients, a single intravenous dose of (29.6±3.7) MBq/kg was administered. Blood samples were drawn at different time intervals, and urine was collected for up to one week. Tissue distribution of 131I -chTNT was followed for up to one week by gamma camera imaging. Absorbed doses to the whole body and to normal organs were computed according to the MIRD scheme using Mirdose-3 software. S-factors for lung tumors were estimated by comparison with lungs of similar mass and position in the body. It was found that mean serum disappearance half time values for 131I-chTNT were (4.93±9.36) h and (61.7±21.2) h for α, β respectively,while that for whole body was(99±10) h. Mean urine biological clearance half time value was (90±10) h. The absorbed dose to tumor was (8.28±2.65) Gy, and the tumor-to-nontumor dose ratio was 3.95±1.55. And the mean effective dose to patients was (1.02±0.29) mSv/MBq.

  5. Competitive annealing of multiple DNA origami: formation of chimeric origami

    Science.gov (United States)

    Majikes, Jacob M.; Nash, Jessica A.; LaBean, Thomas H.

    2016-11-01

    Scaffolded DNA origami are a robust tool for building discrete nanoscale objects at high yield. This strategy ensures, in the design process, that the desired nanostructure is the minimum free energy state for the designed set of DNA sequences. Despite aiming for the minimum free energy structure, the folding process which leads to that conformation is difficult to characterize, although it has been the subject of much research. In order to shed light on the molecular folding pathways, this study intentionally frustrates the folding process of these systems by simultaneously annealing the staple pools for multiple target or parent origami structures, forcing competition. A surprising result of these competitive, simultaneous anneals is the formation of chimeric DNA origami which inherit structural regions from both parent origami. By comparing the regions inherited from the parent origami, relative stability of substructures were compared. This allowed examination of the folding process with typical characterization techniques and materials. Anneal curves were then used as a means to rapidly generate a phase diagram of anticipated behavior as a function of staple excess and parent staple ratio. This initial study shows that competitive anneals provide an exciting way to create diverse new nanostructures and may be used to examine the relative stability of various structural motifs.

  6. Chimerical pyrene-based [7]helicenes as twisted polycondensed aromatics.

    Science.gov (United States)

    Buchta, Michal; Rybáček, Jiří; Jančařík, Andrej; Kudale, Amit A; Buděšínský, Miloš; Chocholoušová, Jana Vacek; Vacek, Jaroslav; Bednárová, Lucie; Císařová, Ivana; Bodwell, Graham J; Starý, Ivo; Stará, Irena G

    2015-06-01

    Chimerical pyrene-based dibenzo[7]helicene rac-1 and 2H-pyran[7]helicene (M,R,R)-(-)-2, in which two pyrene subunits are fused to the [7]helicene/[7]heterohelicene scaffold, were synthesised by means of Ni(0) - or Co(I) -mediated [2+2+2] cycloisomerisation of dipyrenyl-acetylene-derived triynes. Pyrene-based dibenzo[7]helicene 1 was obtained in enantioenriched form by enantioselective cycloisomerisation under Ni(0) /QUINAP catalysis (57 % ee) or in enantiopure form by racemate resolution by liquid chromatography on a chiral column. 1,3-Allylic-type strain-controlled diastereoselective cycloisomerisation was employed in the synthesis of enantiopure (M,R,R)-(-)-2. Physicochemical properties of 1 and 2 encompassing the helicity assignment, stability to racemisation, X-ray crystal structure, UV/Vis, experimental/calculated electronic circular dichroism and fluorescence spectra were studied. Accordingly, comparison of the X-ray crystal structure of (M,R,R)-(-)-2 with calculated structures (DFT: B3LYP/cc-pVDZ, B97D/cc-pVDZ) indicated that its helical backbone is slightly over-flattened owing to intramolecular dispersion forces between tert-butylated pyrene subunits. Both 1 and 2 are fluorescent (with quantum yields in dichloromethane of ΦF =0.10 and 0.17, respectively) and are suggested to form intramolecular excimer states upon excitation, which are remarkably stabilised and exhibit large Stokes shifts (296 and 203 nm, respectively).

  7. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    Science.gov (United States)

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed.

  8. Toxicities of chimeric antigen receptor T cells: recognition and management.

    Science.gov (United States)

    Brudno, Jennifer N; Kochenderfer, James N

    2016-06-30

    Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy.

  9. Chimeric TALE recombinases with programmable DNA sequence specificity.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F

    2012-11-01

    Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.

  10. The impact of MM5 and WRF meteorology over complex terrain on CHIMERE model calculations

    Directory of Open Access Journals (Sweden)

    A. de Meij

    2009-01-01

    Full Text Available The objective of this study is to evaluate the impact of meteorological input data on calculated gas and aerosol concentrations. We use two different meteorological models (MM5 and WRF together with the chemistry transport model CHIMERE. We focus on the Po valley area (Italy for January and June 2005.

    Firstly we evaluate the meteorological parameters with observations. The analysis shows that the performance of both models is similar, however some small differences are still noticeable.

    Secondly, we analyze the impact of using MM5 and WRF on calculated PM10 and O3 concentrations. In general CHIMERE/MM5 and CHIMERE/WRF underestimate the PM10 concentrations for January. The difference in PM10 concentrations for January between CHIMERE/MM5 and CHIMERE/WRF is around a factor 1.6 (PM10 higher for CHIMERE/MM5. This difference and the larger underestimation in PM10 concentrations by CHIMERE/WRF are related to the differences in heat fluxes and the resulting PBL heights calculated by WRF. In general the PBL height by WRF meteorology is a factor 2.8 higher at noon in January than calculated by MM5. This study showed that the difference in microphysics scheme has an impact on the profile of cloud liquid water (CLW calculated by the meteorological driver and therefore on the production of SO4 aerosol.

    A sensitivity analysis shows that changing the Noah Land Surface Model (LSM for the 5-layer soil temperature model, the calculated monthly mean PM10 concentrations increase by 30%, due to the change in the heat fluxes and the resulting PBL heights.

    For June, PM10 calculated concentrations by CHIMERE/MM5 and CHIMERE/WRF are similar and agree with the observations. Calculated O3 values for June are in general overestimated by a factor 1.3 by CHIMERE/MM5 and CHIMRE/WRF. The reason for this is that daytime NO2

  11. Simulation,construction and characterization of a multi-functional thrombolytic agent with anti-thrombosis activity

    Institute of Scientific and Technical Information of China (English)

    Weiran YU; Jian JING

    2008-01-01

    Prourokinase (scu-PA),a thrombolytic agent,was inserted between Glyl 18 and Ilel 19 with foreign anti-thrombosis functional motif (Lys-Gly-Asp-Trp-motif) to construct a multi-functional chimeric molecule.The molecular model of a chimera was simulated and pre-dicted.The recombinant chimeric protein was expressed by the baculovirus-insect cell expression system and puri-fied by affinity chromatography.The physico-chemical characteristics of the chimeric molecule were assayed.The thrombolytic activity was determined to be 90000 IU/mg of fibrinolytic special activity by the fibrin-plate method.The anti-thrombosis activities were also assayed with IC50 of 9.6 μM by an inhibition test of ADP-induced platelet aggregation.

  12. T-regulatory cell treatment prevents chronic rejection of heart allografts in a murine mixed chimerism model

    OpenAIRE

    Pilat, Nina; Farkas, Andreas M.; Mahr, Benedikt; Schwarz, Christoph; Unger, Lukas; Hock, Karin; Oberhuber, Rupert; Aumayr, Klaus; Wrba, Fritz; Wekerle, Thomas

    2014-01-01

    Background The mixed chimerism approach induces donor-specific tolerance in both pre-clinical models and clinical pilot trials. However, chronic rejection of heart allografts and acute rejection of skin allografts were observed in some chimeric animals despite persistent hematopoietic chimerism and tolerance toward donor antigens in vitro. We tested whether additional cell therapy with regulatory T cells (Tregs) is able to induce full immunologic tolerance and prevent chronic rejection. Metho...

  13. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation.

    Science.gov (United States)

    Otsuka, Ryoko; Imai, Susumu; Murata, Takatoshi; Nomura, Yoshiaki; Okamoto, Masaaki; Tsumori, Hideaki; Kakuta, Erika; Hanada, Nobuhiro; Momoi, Yasuko

    2015-01-01

    Water-insoluble glucan (WIG) produced by mutans streptococci, an important cariogenic pathogen, plays an important role in the formation of dental biofilm and adhesion of biofilm to tooth surfaces. Glucanohydrolases, such as mutanase (α-1,3-glucanase) and dextranase (α-1,6-glucanase), are able to hydrolyze WIG. The purposes of this study were to construct bi-functional chimeric glucanase, composed of mutanase and dextranase, and to examine the effects of this chimeric glucanase on the formation and decomposition of biofilm. The mutanase gene from Paenibacillus humicus NA1123 and the dextranase gene from Streptococcus mutans ATCC 25175 were cloned and ligated into a pE-SUMOstar Amp plasmid vector. The resultant his-tagged fusion chimeric glucanase was expressed in Escherichia coli BL21 (DE3) and partially purified. The effects of chimeric glucanase on the formation and decomposition of biofilm formed on a glass surface by Streptococcus sobrinus 6715 glucosyltransferases were then examined. This biofilm was fractionated into firmly adherent, loosely adherent, and non-adherent WIG fractions. Amounts of WIG in each fraction were determined by a phenol-sulfuric acid method, and reducing sugars were quantified by the Somogyi-Nelson method. Chimeric glucanase reduced the formation of the total amount of WIG in a dose-dependent manner, and significant reductions of WIG in the adherent fraction were observed. Moreover, the chimeric glucanase was able to decompose biofilm, being 4.1 times more effective at glucan inhibition of biofilm formation than a mixture of dextranase and mutanase. These results suggest that the chimeric glucanase is useful for prevention of dental biofilm formation.

  14. Immune Reconstitution Kinetics following Intentionally Induced Mixed Chimerism by Nonmyeloablative Transplantation.

    Directory of Open Access Journals (Sweden)

    Nayoun Kim

    Full Text Available Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated. Therefore, understanding the kinetics of engraftment during early post-transplant period may provide insight into establishing long-term mixed chimerism and permanent transplant tolerance. In this study, we intentionally induced allogeneic mixed chimerism using a nonmyeloablative regimen by host natural killer (NK cell depletion and T cell-depleted bone marrow (BM grafts in a major histocompatibility complex (MHC-mismatched murine model and analyzed the kinetics of donor (C57BL/6 and recipient (BALB/c engraftment in the weeks following transplantation. Donor BM cells were well engrafted and stabilized without graft-versus-host disease (GVHD as early as one week post-bone marrow transplantation (BMT. Donor-derived thymic T cells were reconstituted four weeks after BMT; however, the emergence of newly developed T cells was more obvious at the periphery as early as two weeks after BMT. Also, the emergence and changes in ratio of recipient- and donor-derived NKT cells and antigen presenting cells (APCs including dendritic cells (DCs and B cells were noted after BMT. Here, we report a longitudinal analysis of the development of donor- and recipient-originated hematopoietic cells in various lymphatic tissues of intentionally induced mixed chimerism mouse model during early post-transplant period. Through the understanding of immune reconstitution at early time points after nonmyeloablative BMT, we suggest guidelines on intentionally inducing durable mixed chimerism.

  15. In vitro effects of rituximab on the proliferation, activation and differentiation of human B cells.

    NARCIS (Netherlands)

    Kamburova, E.G.; Koenen, H.J.P.M.; Boon, L.; Hilbrands, L.B.; Joosten, I.

    2012-01-01

    Rituximab is a chimeric anti-CD20 monoclonal antibody (mAb) used in B-cell malignancies, various autoimmune disorders and organ transplantation. Although administration of a single dose of rituximab results in full B-cell depletion in peripheral blood, there remains a residual B-cell population in s

  16. ChimerDB 3.0: an enhanced database for fusion genes from cancer transcriptome and literature data mining

    Science.gov (United States)

    Lee, Myunggyo; Lee, Kyubum; Yu, Namhee; Jang, Insu; Choi, Ikjung; Kim, Pora; Jang, Ye Eun; Kim, Byounggun; Kim, Sunkyu; Lee, Byungwook; Kang, Jaewoo; Lee, Sanghyuk

    2017-01-01

    Fusion gene is an important class of therapeutic targets and prognostic markers in cancer. ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data and manual curations. In this update, the database coverage was enhanced considerably by adding two new modules of The Cancer Genome Atlas (TCGA) RNA-Seq analysis and PubMed abstract mining. ChimerDB 3.0 is composed of three modules of ChimerKB, ChimerPub and ChimerSeq. ChimerKB represents a knowledgebase including 1066 fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences. ChimerPub includes 2767 fusion genes obtained from text mining of PubMed abstracts. ChimerSeq module is designed to archive the fusion candidates from deep sequencing data. Importantly, we have analyzed RNA-Seq data of the TCGA project covering 4569 patients in 23 cancer types using two reliable programs of FusionScan and TopHat-Fusion. The new user interface supports diverse search options and graphic representation of fusion gene structure. ChimerDB 3.0 is available at http://ercsb.ewha.ac.kr/fusiongene/. PMID:27899563

  17. Development of a recombinant, chimeric tetravalent dengue vaccine candidate.

    Science.gov (United States)

    Osorio, Jorge E; Partidos, Charalambos D; Wallace, Derek; Stinchcomb, Dan T

    2015-12-10

    Dengue is a significant threat to public health worldwide. Currently, there are no licensed vaccines available for dengue. Takeda Vaccines Inc. is developing a live, attenuated tetravalent dengue vaccine candidate (TDV) that consists of an attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the prM and E protein genes of DENV-1, -3 and -4 expressed in the context of the attenuated TDV-2 genome backbone (TDV-1, TDV-3, and TDV-4, respectively). TDV has been shown to be immunogenic and efficacious in nonclinical animal models. In interferon-receptor deficient mice, the vaccine induces humoral neutralizing antibody responses and cellular immune responses that are sufficient to protect from lethal challenge with DENV-1, DENV-2 or DENV-4. In non-human primates, administration of TDV induces innate immune responses as well as long lasting antibody and cellular immunity. In Phase 1 clinical trials, the safety and immunogenicity of two different formulations were assessed after intradermal or subcutaneous administration to healthy, flavivirus-naïve adults. TDV administration was generally well-tolerated independent of dose and route. The vaccine induced neutralizing antibody responses to all four DENV serotypes: after a single administration of the higher formulation, 24-67%% of the subjects seroconverted to all four DENV and >80% seroconverted to three or more viruses. In addition, TDV induced CD8(+) T cell responses to the non-structural NS1, NS3 and NS5 proteins of DENV. TDV has been also shown to be generally well tolerated and immunogenic in a Phase 2 clinical trial in dengue endemic countries in adults and children as young as 18 months. Additional clinical studies are ongoing in preparation for a Phase 3 safety and efficacy study.

  18. Induction of pluripotent protective immunity following immunisation with a chimeric vaccine against human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Jie Zhong

    Full Text Available Based on the life-time cost to the health care system, the Institute of Medicine has assigned the highest priority for a vaccine to control human cytomegalovirus (HCMV disease in transplant patients and new born babies. In spite of numerous attempts successful licensure of a HCMV vaccine formulation remains elusive. Here we have developed a novel chimeric vaccine strategy based on a replication-deficient adenovirus which encodes the extracellular domain of gB protein and multiple HLA class I & II-restricted CTL epitopes from HCMV as a contiguous polypeptide. Immunisation with this chimeric vaccine consistently generated strong HCMV-specific CD8(+ and CD4(+ T-cells which co-expressed IFN-gamma and TNF-alpha, while the humoral response induced by this vaccine showed strong virus neutralizing capacity. More importantly, immunization with adenoviral chimeric vaccine also afforded protection against challenge with recombinant vaccinia virus encoding HCMV antigens and this protection was associated with the induction of a pluripotent antigen-specific cellular and antibody response. Furthermore, in vitro stimulation with this adenoviral chimeric vaccine rapidly expanded multiple antigen-specific human CD8(+ and CD4(+ T-cells from healthy virus carriers. These studies demonstrate that the adenovirus chimeric HCMV vaccine provides an excellent platform for reconstituting protective immunity to prevent HCMV diseases in different clinical settings.

  19. Faith-based perspectives on the use of chimeric organisms for medical research.

    Science.gov (United States)

    Degeling, Chris; Irvine, Rob; Kerridge, Ian

    2014-04-01

    Efforts to advance our understanding of neurodegenerative diseases involve the creation chimeric organisms from human neural stem cells and primate embryos--known as prenatal chimeras. The existence of potential mentally complex beings with human and non-human neural apparatus raises fundamental questions as to the ethical permissibility of chimeric research and the moral status of the creatures it creates. Even as bioethicists find fewer reasons to be troubled by most types of chimeric organisms, social attitudes towards the non-human world are often influenced by religious beliefs. In this paper scholars representing eight major religious traditions provide a brief commentary on a hypothetical case concerning the development and use of prenatal human-animal chimeric primates in medical research. These commentaries reflect the plurality and complexity within and between religious discourses of our relationships with other species. Views on the moral status and permissibility of research on neural human animal chimeras vary. The authors provide an introduction to those who seek a better understanding of how faith-based perspectives might enter into biomedical ethics and public discourse towards forms of biomedical research that involves chimeric organisms.

  20. Endothelial cell chimerism by fluorescence in situ hybridization in gender mismatched renal allograft biopsies

    Institute of Scientific and Technical Information of China (English)

    BAI Hong-wei; SHI Bing-yi; QIAN Ye-yong; NA Yan-qun; ZENG Xuan; ZHONG Ding-rong; LU Min; ZOU Wan-zhong; WU Shi-fei

    2007-01-01

    Background The blood vessels of a transplanted organ are the interface between donor and recipient. The endothelium in the blood vessels is thought to be the major target for graft rejection. Endothelial cells of a transplanted organ can be of recipient origin after transplantation. In this study, we tested whether endothelial chimerism correlated with the graft rejection and cold ischemia.Methods We studied the biopsy samples from 34 renal transplants of female recipients who received the kidney from a male donor for the presence of endothelial cells of recipient origin. We examined the tissue sections of renal biopsy samples by fluorescence in situ hybridization (FISH) for the presence of endothelial cells containing two X chromosomes using a biotinylated Y chromosome probe and digoxigenin labelled X chromosome probe, and then analyzed the relationship between the endothelial cell chimerism and the rejection and cold ischemia.Results Endothelial chimerism was common and irrespective of rejections (P>0.05). The cold ischemic time of chimerism group was longer than no chimerism group ((14.83±4.03) hours vs (11.27±3.87) hours, P<0.05).Conclusions There is no correlation between the percentage of recipient endothelial cells in vascular endothelial cells and the type of graft rejection. The endothelium damaged by ischemic injury might be repaired by the endothelial cells from the recipient.

  1. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.

    2011-12-14

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  2. 扫描探针显微术用于B淋巴瘤细胞表面分子数量化与可视化研究%Visualization and quantitation of CD20 molecues on human B-cell lymphoma by scanning probe microscopy (SPM)

    Institute of Scientific and Technical Information of China (English)

    王淑蕙; 赵磊; 李华飞; 陈雅琳; 王皓; 郭亚军; 李博华

    2013-01-01

    AFM (atomic force microscopy) and NSOM (near field scanning microscopy) have extremely high resolution and many advantages in exploring the biology.In this work,AFM and NSOM were used to investigate the morphology and ultrastructure of human B-cell lymphoma before and after treatment with CD20 antibody Rituximab,we used AFM combined with NSOM to optically investigate CD20 molecules on human B-cell lymphoma.The location,distribution and variation of CD20 molecules were imaged by a high-resolve NSOM.The results showed that a method that could be used to observe the ultrastructure of surface molecules on B cell lymphoma was established and the distribution of membrane-bound CD20 molecules was observed by the two types of high-resolution microscopies.After treatment with Rituximab,the lymphoma cell surface has small granules,indicating abundant structure infomation inside the cells,and NSOM found that CD20 molecules remained scat tered on the cell surface.%本研究试图采用原子力显微术(AFM)和近场光学显微术(NSOM)对B淋巴瘤细胞的表面形态和超微结构进行了纳米级高分辨的成像研究,获得Rituximab抗体处理前后不同状态下的高清晰、对比度良好的NSOM和AFM的B淋巴瘤细胞图像,建立超高分辨率显微镜观测B淋巴瘤细胞膜分子表面分布的方法.采用AFM和NSOM,对B淋巴瘤细胞的表面形态及光学性质进行了观测.结果显示建立了一种观测B淋巴瘤细胞超微细胞表面结构的方法,结合NSOM对Rituximab抗体处理前后CD20膜蛋白分子在细胞膜表面位置进行高分辨率的观测.AFM的结果表明Rituximab抗体处理以后B淋巴瘤细胞细胞膜的颗粒度明显增加,NSOM结果发现在Rituximab处理B淋巴瘤细胞前后,CD20膜蛋白分子仍然散在分布在细胞膜表面.

  3. Chimeric Antigen Receptor Therapy for B-cell Malignancies

    Directory of Open Access Journals (Sweden)

    David L Porter, Michael Kalos, Zhaohui Zheng, Bruce Levine, Carl June

    2011-01-01

    Full Text Available We presented data showing that the CART-19 cells expressing the 4-1BB signaling domain can have unprecedented and massive in-vivo expansion, traffic to tumor sites, persist long term in vivo, and induce rapid and potent anti-tumor activity in chemotherapy refractory CLL patients.

  4. Generation and developmental characteristics of porcine tetraploid embryos and tetraploid/diploid chimeric embryos.

    Science.gov (United States)

    He, Wenteng; Kong, Qingran; Shi, Yongqian; Xie, Bingteng; Jiao, Mingxia; Huang, Tianqing; Guo, Shimeng; Hu, Kui; Liu, Zhonghua

    2013-10-01

    The aim of this study was to optimize electrofusion conditions for generating porcine tetraploid (4n) embryos and produce tetraploid/diploid (4n/2n) chimeric embryos. Different electric field intensities were tested and 2 direct current (DC) pulses of 0.9 kV/cm for 30 μs was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos. The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos, reached 85.4% and 28.5%, respectively. 68.18% of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization (FISH). Although the number of blastomeres in 4n blastocysts was significantly lower than in 2n blastocysts (P0.05), suggesting that the blastocyst forming capacity in 4n embryos is similar to those in 2n embryos. Moreover, 4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos. We found that the developmental rate and cell number of blastocysts of 4-cell (4n)/4-cell (2n) chimeric embryos were significantly higher than those of 2-cell (4n)/4-cell (2n), 4-cell (4n)/8-cell (2n), 4-cell (4n)/2-cell (2n) chimeric embryos (P<0.05). Consistent with mouse chimeras, the majority of 4n cells contribute to the trophectoderm (TE), while the 2n cells are mainly present in the inner cell mass (ICM) of porcine 4n/2n chimeric embryos. Our study established a feasible and efficient approach to produce porcine 4n embryos and 4n/2n chimeric embryos.

  5. Patterns of Amino Acid Evolution in the Drosophila ananassae Chimeric Gene, siren, Parallel Those of Other Adh-Derived Chimeras

    Science.gov (United States)

    Shih, Hung-Jui; Jones, Corbin D.

    2008-01-01

    siren1 and siren2 are novel alcohol dehydrogenase (Adh)-derived chimeric genes in the Drosophila bipectinata complex. D. ananassae, however, harbors a single homolog of these genes. Like other Adh-derived chimeric genes, siren evolved adaptively shortly after it was formed. These changes likely shifted the catalytic activity of siren. PMID:18780749

  6. Design and production in Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain

    NARCIS (Netherlands)

    Levasseur, A.; Pagès, S.; Fierobe, H.-P.; Navarro, D.; Punt, P.; Belaïch, J.-P.; Asther, M.; Record, E.

    2004-01-01

    A chimeric enzyme associating feruloyl esterase A (FAEA) from Aspergilhis niger and dockerin from Clostridium thermocellum was produced in A. niger. A completely truncated form was produced when the dockerin domain was located downstream of the FAEA (FAEA-Doc), whereas no chimeric protein was produc

  7. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    Science.gov (United States)

    The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...

  8. Chimeric Antibody-Binding Vitreoscilla Hemoglobin (VHb Mediates Redox-Catalysis Reaction: New Insight into the Functional Role of VHb

    Directory of Open Access Journals (Sweden)

    Yaneenart Suwanwong, Malin Kvist, Chartchalerm Isarankura-Na-Ayudhya, Natta Tansila, Leif Bulow, Virapong Prachayasittikul

    2006-01-01

    Full Text Available Experimentation was initiated to explore insight into the redox-catalysis reaction derived from the heme prosthetic group of chimeric Vitreoscilla hemoglobin (VHb. Two chimeric genes encoding chimeric VHbs harboring one and two consecutive sequences of Fc-binding motif (Z-domain were successfully constructed and expressed in E. coli strain TG1. The chimeric ZVHb and ZZVHb were purified to a high purity of more than 95% using IgG-Sepharose affinity chromatography. From surface plasmon resonance, binding affinity constants of the chimeric ZVHb and ZZVHb to human IgG were 9.7 x 107 and 49.1 x 107 per molar, respectively. More importantly, the chimeric VHbs exhibited a peroxidase-like activity determined by activity staining on native PAGE and dot blotting. Effects of pH, salt, buffer system, level of peroxidase substrate and chromogen substrate were determined in order to maximize the catalytic reaction. From our findings, the chimeric VHbs displayed their maximum peroxidase-like activity at the neutral pH (~7.0 in the presence of high concentration (20-40 mM of hydrogen peroxide. Under such conditions, the detection limit derived from the calibration curve was at 250 ng for the chimeric VHbs, which was approximately 5-fold higher than that of the horseradish peroxidase. These findings reveal the novel functional role of Vitreoscilla hemoglobin indicating a high trend of feasibility for further biotechnological and medical applications.

  9. Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts.

    Science.gov (United States)

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-01

    The past decade's rapid progress in human pluripotent stem cell (hPSC) research has generated hope for meeting the rising demand of organ donation, which remains the only effective cure for end-stage organ failure, a major cause of death worldwide. Despite the potential, generation of transplantable organs from hPSCs using in vitro differentiation is far-fetched. An in vivo interspecies chimeric complementation strategy relying on chimeric-competent hPSCs and zygote genome editing provides an auspicious alternative for providing unlimited organ source for transplantation.

  10. The impact of chimerism in DNA-based forensic sex determination analysis.

    Science.gov (United States)

    George, Renjith; Donald, Preethy Mary; Nagraj, Sumanth Kumbargere; Idiculla, Jose Joy; Hj Ismail, Rashid

    2013-01-01

    Sex determination is the most important step in personal identification in forensic investigations. DNA-based sex determination analysis is comparatively more reliable than the other conventional methods of sex determination analysis. Advanced technology like real-time polymerase chain reaction (PCR) offers accurate and reproducible results and is at the level of legal acceptance. But still there are situations like chimerism where an individual possess both male and female specific factors together in their body. Sex determination analysis in such cases can give erroneous results. This paper discusses the phenomenon of chimerism and its impact on sex determination analysis in forensic investigations.

  11. Preintegration HIV-1 inhibition by a combination lentiviral vector containing a chimeric TRIM5 alpha protein, a CCR5 shRNA, and a TAR decoy.

    Science.gov (United States)

    Anderson, Joseph S; Javien, John; Nolta, Jan A; Bauer, Gerhard

    2009-12-01

    Human immunodeficiency virus (HIV) gene therapy offers a promising alternative approach to current antiretroviral treatments to inhibit HIV-1 infection. Various stages of the HIV life cycle including pre-entry, preintegration, and postintegration can be targeted by gene therapy to block viral infection and replication. By combining multiple highly potent anti-HIV transgenes in a single gene therapy vector, HIV-1 resistance can be achieved in transduced cells while prohibiting the generation of escape mutants. Here, we describe a combination lentiviral vector that encodes three highly effective anti-HIV genes functioning at separate stages of the viral life cycle including a CCR5 short hairpin RNA (shRNA) (pre-entry), a human/rhesus macaque chimeric TRIM5 alpha (postentry/preintegration), and a transactivation response element (TAR) decoy (postintegration). The major focus on designing this anti-HIV vector was to block productive infection of HIV-1 and to inhibit any formation of provirus that would maintain the viral reservoir. Upon viral challenge, potent preintegration inhibition of HIV-1 infection was achieved in combination vector-transduced cells in both cultured and primary CD34(+) hematopoietic progenitor cell (HPC)-derived macrophages. The generation of escape mutants was also blocked as evaluated by long-term culture of challenged cells. The ability of this combination anti-HIV lentiviral vector to prevent HIV-1 infection, in vitro, warrants further evaluation of its in vivo efficacy.

  12. Immunotherapy of acute leukemia by chimeric antigen receptor-modified lymphocytes using an improved Sleeping Beauty transposon platform.

    Science.gov (United States)

    Magnani, Chiara F; Turazzi, Nice; Benedicenti, Fabrizio; Calabria, Andrea; Tenderini, Erika; Tettamanti, Sarah; Giordano Attianese, Greta M P; Cooper, Laurence J N; Aiuti, Alessandro; Montini, Eugenio; Biondi, Andrea; Biagi, Ettore

    2016-08-09

    Chimeric antigen receptor (CAR)-modified T-cell adoptive immunotherapy is a remarkable therapeutic option proven effective in the treatment of hematological malignancies. In order to optimize cell manufacturing, we sought to develop a novel clinical-grade protocol to obtain CAR-modified cytokine-induced killer cells (CIKs) using the Sleeping Beauty (SB) transposon system. Administration of irradiated PBMCs overcame cell death of stimulating cells induced by non-viral transfection, enabling robust gene transfer together with efficient T-cell expansion. Upon single stimulation, we reached an average of 60% expression of CD123- and CD19- specific 3rd generation CARs (CD28/OX40/TCRzeta). Furthermore, modified cells displayed persistence of cell subsets with memory phenotype, specific and effective lytic activity against leukemic cell lines and primary blasts, cytokine secretion, and proliferation. Adoptive transfer of CD123.CAR or CD19.CAR lymphocytes led to a significant anti-tumor response against acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) disseminated diseases in NSG mice. Notably, we found no evidence of integration enrichment near cancer genes and transposase expression at the end of the differentiation. Taken all together, our findings describe a novel donor-derived non-viral CAR approach that may widen the repertoire of available methods for T cell-based immunotherapy.

  13. Mice chronically infected with chimeric HIV resist peripheral and brain superinfection: a model of protective immunity to HIV.

    Science.gov (United States)

    Kelschenbach, Jennifer L; Saini, Manisha; Hadas, Eran; Gu, Chao-Jiang; Chao, Wei; Bentsman, Galina; Hong, Jessie P; Hanke, Tomas; Sharer, Leroy R; Potash, Mary Jane; Volsky, David J

    2012-06-01

    Infection by some viruses induces immunity to reinfection, providing a means to identify protective epitopes. To investigate resistance to reinfection in an animal model of HIV disease and its control, we employed infection of mice with chimeric HIV, EcoHIV. When immunocompetent mice were infected by intraperitoneal (IP) injection of EcoHIV, they resisted subsequent secondary infection by IP injection, consistent with a systemic antiviral immune response. To investigate the potential role of these responses in restricting neurotropic HIV infection, we established a protocol for efficient EcoHIV expression in the brain following intracranial (IC) inoculation of virus. When mice were inoculated by IP injection and secondarily by IC injection, they also controlled EcoHIV replication in the brain. To investigate their role in EcoHIV antiviral responses, CD8+ T lymphocytes were isolated from spleens of EcoHIV infected and uninfected mice and adoptively transferred to isogenic recipients. Recipients of EcoHIV primed CD8+ cells resisted subsequent EcoHIV infection compared to recipients of cells from uninfected donors. CD8+ spleen cells from EcoHIV-infected mice also mounted modest but significant interferon-γ responses to two HIV Gag peptide pools. These findings suggest EcoHIV-infected mice may serve as a useful system to investigate the induction of anti-HIV protective immunity for eventual translation to human beings.

  14. Close-up of the alpha-1,3-Gal epitope as defined by a monoclonal chimeric IgE and human serum using saturation transfer difference (STD) NMR

    DEFF Research Database (Denmark)

    Plum, Melanie; Michel, Yvonne; Wallach, Katharina;

    2011-01-01

    by mediator release assays, surface plasmon resonance (SPR) and STD NMR analyses. The alpha-Gal-specific chimeric IgE and IgG antibodies were proven functional regarding interaction with antigen and Fc receptors. SPR measurements demonstrated affinities in the micromolar range. In contrast to a reference...... antibody, anti-Gal IgE did not induce mediator release, potentially reflecting the delayed type of anaphylaxis. The alpha-1,3-Gal epitope fine structure of both the recombinant IgE and affinity-purified serum were defined by STD NMR revealing similar contributions of carbohydrate residues and participation...

  15. Lymphadenectomy prior to rat hind limb allotransplantation prevents graft-versus-host disease in chimeric hosts

    NARCIS (Netherlands)

    Brouha, PCR; Perez-Abadia, G; Francois, CG; Laurentin-Perez, LA; Gorantla, [No Value; Vossen, M; Tai, C; Pidwell, D; Anderson, GL; Stadelmann, WK; Hewitt, CW; Kon, M; Barker, JH; Maldonado, C

    2004-01-01

    In previous rat studies, the use of mixed allogeneic chimerism (MAC) to induce host tolerance to hind limb allografts has resulted in severe graft-versus-host disease (GVHD). The purpose of this study was to determine if immunocompetent cells in bone marrow (BM) and/or lymph nodes (LNs) of transplan

  16. Alloreactive regulatory T cells allow the generation of mixed chimerism and transplant tolerance

    Directory of Open Access Journals (Sweden)

    Paulina eRuiz

    2015-11-01

    Full Text Available The induction of donor-specific transplant tolerance is one of the main goals of modern immunology. Establishment of a mixed chimerism state in the transplant recipient has proven to be a suitable strategy for the induction of long-term allograft tolerance; however, current experimental recipient preconditioning protocols have many side effects, and are not feasible for use in future therapies. In order to improve the current mixed chimerism induction protocols, we developed a non-myeloablative bone-marrow transplant protocol using retinoic acid induced alloantigen-specific Tregs, clinically available immunosuppressive drugs and lower doses of irradiation. We demonstrate that retinoic acid induced alloantigen-specific Tregs in addition to a non-myeloablative bone-marrow transplant protocol generates stable mixed chimerism and induce tolerance to allogeneic secondary skin allografts in mice. Therefore, the establishment of mixed chimerism through the use of donor-specific Tregs rather than non-specific immunosuppression could have a potential use in organ transplantation.

  17. Multipaddled anterolateral thigh chimeric flap for reconstruction of complex defects in head and neck.

    Directory of Open Access Journals (Sweden)

    Canhua Jiang

    Full Text Available The anterolateral thigh flap has been the workhouse flap for coverage of soft-tissue defects in head and neck for decades. However, the reconstruction of multiple and complex soft-tissue defects in head and neck with multipaddled anterolateral thigh chimeric flaps is still a challenge for reconstructive surgeries. Here, a clinical series of 12 cases is reported in which multipaddled anterolateral thigh chimeric flaps were used for complex soft-tissue defects with several separately anatomic locations in head and neck. Of the 12 cases, 7 patients presented with trismus were diagnosed as advanced buccal cancer with oral submucous fibrosis, 2 tongue cancer cases were found accompanied with multiple oral mucosa lesions or buccal cancer, and 3 were hypopharyngeal cancer with anterior neck skin invaded. All soft-tissue defects were reconstructed by multipaddled anterolateral thigh chimeric flaps, including 9 tripaddled anterolateral thigh flaps and 3 bipaddled flaps. The mean length of skin paddle was 19.2 (range: 14-23 cm and the mean width was 4.9 (range: 2.5-7 cm. All flaps survived and all donor sites were closed primarily. After a mean follow-up time of 9.1 months, there were no problems with the donor or recipient sites. This study supports that the multipaddled anterolateral thigh chimeric flap is a reliable and good alternative for complex and multiple soft-tissue defects of the head and neck.

  18. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain

    Directory of Open Access Journals (Sweden)

    Yukiko eMishina

    2014-09-01

    Full Text Available Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviours. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP prototypical design or on the voltage dependent state transitions of microbial opsins.We recently introduced a new VSFP design in which the voltage-sensing domain (VSD is sandwiched between a FRET pair of fluorescent proteins (termed VSFP-Butterflies and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  19. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Desai, D M; Sap, J; Schlessinger, J;

    1993-01-01

    CD45, a transmembrane protein tyrosine phosphatase (PTPase), is required for TCR signaling. Multiple CD45 isoforms, differing in the extracellular domain, are expressed in a tissue- and activation-specific manner, suggesting an important function for this domain. We report that a chimeric protein...

  20. Intravitreal injection of a chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis

    Science.gov (United States)

    Objectives: The treatment of endophthalmitis is becoming very challenging due to the emergence of multidrug-resistant bacteria. Hence, the development of novel therapeutic alternatives for ocular use is essential. Here, we evaluated the therapeutic potential of Ply187AN-KSH3b, a chimeric phage endol...

  1. Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis.

    Science.gov (United States)

    Pessoa, Carina Carraro; Ferreira, Éden Ramalho; Bayer-Santos, Ethel; Rabinovitch, Michel; Mortara, Renato Arruda; Real, Fernando

    2016-05-01

    The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol.

  2. Versatile bio-ink for covalent immobilization of chimeric avidin on sol-gel substrates.

    Science.gov (United States)

    Heikkinen, Jarkko J; Kivimäki, Liisa; Määttä, Juha A E; Mäkelä, Inka; Hakalahti, Leena; Takkinen, Kristiina; Kulomaa, Markku S; Hytönen, Vesa P; Hormi, Osmo E O

    2011-10-15

    A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film. Different concentrations of chimeric avidin and ratios between silane linkers were tested to find the best properties for the bio-ink to enable gravure or inkjet printing. Bio-ink prepared from 3-aminopropyltriethoxysilane was found to provide the highest amount of active immobilized chimeric avidin. The developed bio-ink was shown to be valuable for automated fabrication of avidin-functionalized polymer films.

  3. SAT Type Foot-and-Mouth Disease (FMD) Chimeric Vaccine Elicits Protection in Pigs

    Science.gov (United States)

    The recent development of infectious cDNA clone technology for foot-and-mouth disease (FMD), Southern African Territories (SAT) viruses has provided a valuable tool for genetic and biological characterization of field and laboratory strains. Recombinant chimeric viruses, containing the capsid-coding...

  4. Minimal Residual Disease Diagnostics and Chimerism in the Post-Transplant Period in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Ulrike Bacher

    2011-01-01

    Full Text Available In acute myeloid leukemia (AML, the selection of poor-risk patients for allogeneic hematopoietic stem cell transplantation (HSCT is associated with rather high post-transplant relapse rates. As immunotherapeutic intervention is considered to be more effective before the cytomorphologic manifestation of relapse, post-transplant monitoring gains increasing attention in stem cell recipients with a previous diagnosis of AML. Different methods for detection of chimerism (e.g., microsatellite analysis or quantitative real-time PCR are available to quantify the ratio of donor and recipient cells in the post-transplant period. Various studies demonstrated the potential use of mixed chimerism kinetics to predict relapse of the AML. CD34+-specific chimerism is associated with a higher specificity of chimerism analysis. Nevertheless, a decrease of donor cells can have other causes as well. Therefore, efforts continue to introduce minimal residual disease (MRD monitoring based on molecular mutations in the post-transplant period. The NPM1 (nucleophosmin mutations can be monitored by sensitive quantitative real-time PCR in subsets of stem cell recipients with AML, but for approximately 20% of patients, suitable molecular mutations for post-transplant MRD monitoring are not available so far. This emphasizes the need for an expansion of the panel of MRD markers in the transplant setting.

  5. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice

    DEFF Research Database (Denmark)

    Brennan, F.R.; Bellaby, T.; Helliwell, S.M.;

    1999-01-01

    The humoral immune responses to the D2 peptide of fibronectin-binding protein B (FnBP) of Staphylococcus aureus, expressed on the plant virus cowpea mosaic virus (CPMV), were evaluated after mucosal delivery to mice. Intranasal immunization of these chimeric virus particles (CVPs), either alone o...

  6. A phase II trial of chimeric monoclonal antibody G250 for advanced renal cell carcinoma patients.

    NARCIS (Netherlands)

    Bleumer, I.; Knuth, A.; Oosterwijk, E.; Hofmann, R.; Varga, Z.; Lamers, C.B.H.W.; Kruit, W.; Melchior, S.; Mala, C.; Ullrich, S.; Mulder, P.; Mulders, P.F.A.; Beck, J.L.M.

    2004-01-01

    Chimeric monoclonal antibody G250 (WX-G250) binds to a cell surface antigen found on >90% of renal cell carcinoma (RCC). A multicentre phase II study was performed to evaluate the safety and efficacy of WX-G250 in metastatic RCC (mRCC) patients. In all, 36 patients with mRCC were included. WX-G250 w

  7. Evidence for transcript networks composed of chimeric RNAs in human cells.

    Directory of Open Access Journals (Sweden)

    Sarah Djebali

    Full Text Available The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5' and 3' transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1 the non-random interconnections of genes involved, (2 the greater phylogenetic depth of the genes involved in many chimeric interactions, (3 the coordination of the expression of connected genes and (4 the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.

  8. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    Science.gov (United States)

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  9. Low levels of allogeneic but not syngeneic hematopoietic chimerism reverse autoimmune insulitis in prediabetic NOD mice.

    Science.gov (United States)

    Kaminitz, Ayelet; Mizrahi, Keren; Yaniv, Isaac; Farkas, Daniel L; Stein, Jerry; Askenasy, Nadir

    2009-09-01

    The relative efficiencies of allogeneic and syngeneic bone marrow transplantation and the threshold levels of donor chimerism required to control autoimmune insulitis were evaluated in prediabetic NOD mice. Male and female NOD mice were conditioned by radiation and grafted with bone marrow cells from allogeneic and syngeneic sex-mismatched donors. Establishment of full allogeneic chimerism in peripheral blood reversed insulitis and restored glucose tolerance despite persistence of residual host immune cells. By contrast, sublethal total body irradiation (with or without syngeneic transplant) reduced the incidence and delayed the onset of diabetes. The latter pattern was also seen in mice that rejected the bone marrow allografts. Low levels of stable allogeneic hematopoietic chimerism (>1%) were sufficient to prevent the evolution of diabetes following allogeneic transplantation. The data indicate that immunomodulation attained at low levels of allogeneic, but not syngeneic, hematopoietic chimerism is effective in resolution of islet inflammation at even relatively late stages in the evolution of the prediabetic state in a preclinical model. However, our data question the efficacy and rationale behind syngeneic (autologous-like) immuno-hematopoietic reconstitution in type 1 diabetes.

  10. Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis

    Science.gov (United States)

    Yang, Yujiao; Muruato, Antonio E.; Zou, Jing; Shan, Chao; Nunes, Bruno T. D.; Medeiros, Daniele B. A.; Vasconcelos, Pedro F. C.; Weaver, Scott C.; Rossi, Shannan L.

    2017-01-01

    ABSTRACT Compared with other flaviviruses, Zika virus (ZIKV) is uniquely associated with congenital diseases in pregnant women. One recent study reported that (i) ZIKV has higher thermostability than dengue virus (DENV [a flavivirus closely related to ZIKV]), which might contribute to the disease outcome; (ii) the higher thermostability of ZIKV could arise from an extended loop structure in domain III of the viral envelope (E) protein and an extra hydrogen-bond interaction between E molecules (V. A. Kostyuchenko, E. X. Y. Lim, S. Zhang, G. Fibriansah, T.-S. Ng, J. S. G. Ooi, J. Shi, and S.-M. Lok, Nature 533:425–428, 2016, https://doi.org/10.1038/nature17994). Here we report the functional analysis of the structural information in the context of complete ZIKV and DENV-2 virions. Swapping the prM-E genes between ZIKV and DENV-2 switched the thermostability of the chimeric viruses, identifying the prM-E proteins as the major determinants for virion thermostability. Shortening the extended loop of the E protein by 1 amino acid was lethal for ZIKV assembly/release. Mutations (Q350I and T351V) that abolished the extra hydrogen-bond interaction between the E proteins did not reduce ZIKV thermostability, indicating that the extra interaction does not increase the thermostability. Interestingly, mutant T351V was attenuated in A129 mice defective in type I interferon receptors, even though the virus retained the wild-type thermostability. Furthermore, we found that a chimeric ZIKV with the DENV-2 prM-E and a chimeric DENV-2 with the ZIKV prM-E were highly attenuated in A129 mice; these chimeric viruses were highly immunogenic and protective against DENV-2 and ZIKV challenge, respectively. These results indicate the potential of these chimeric viruses for vaccine development. PMID:28174309

  11. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application.

  12. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  13. Reduction of porcine circovirus type 2 (PCV2 viremia by a reformulated inactivated chimeric PCV1-2 vaccine-induced humoral and cellular immunity after experimental PCV2 challenge

    Directory of Open Access Journals (Sweden)

    Seo Hwi

    2012-10-01

    Full Text Available Abstract Background The objective of the present study was to elucidate the humoral and cellular immune response mechanisms by which a reformulated inactivated chimeric PCV1-2 vaccine reduces the PCV2 viremia. Forty PCV2 seronegative 3-week-old pigs were randomly divided into the following four groups: vaccinated challenged (T01, vaccinated non-challenged (T02, non-vaccinated challenged (T03, and non-vaccinated non-challenged (T04 animals. The pigs in groups T01 and T02 were immunized with a reformulated inactivated chimeric PCV1-2 vaccine (Fostera™ PCV; Pfizer Animal Health administered as a 2.0 ml dose at 21 days of age. At 35 days of age (0 days post-challenge, the pigs in groups T01 and T03 were inoculated intranasally with 2 ml each of PCV2b. Results A reduction of PCV2 viremia coincided with the appearance of both PCV2-specific neutralizing antibodies (NA and interferon-γ-secreting cells (IFN-γ-SCs in the vaccinated animals. However, the presence of anti-PCV2 IgG antibodies did not correlate with the reduction of PCV2 viremia. Lymphocyte subset analysis indicated that the numbers of CD3+ and CD4+ cells increased in vaccinated animals but the numbers of CD4+ cells decreased transiently in non-vaccinated animals. The observation of a delayed type hypersensitivity response in only the vaccinated animals also supports a CD4+ cell-associated protective cellular immune response induced by the reformulated inactivated chimeric PCV1-2 vaccine. Conclusions The induction of PCV2-specific NA and IFN-γ-SCs, and CD4+ cells by the reformulated inactivated chimeric PCV1-2 vaccine is the important protective immune response leading to reduction of the PCV2 viremia and control of the PCV2 infection. To our knowledge this is the first demonstration of protective humoral and cellular immunity induced by the reformulated inactivated chimeric PCV1-2 vaccine and its effect on reduction of PCV2 viremia by vaccination.

  14. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  15. Induction of Chimerism Permits Low-Dose Islet Grafts in the Liver or Pancreas to Reverse Refractory Autoimmune Diabetes

    OpenAIRE

    Zhang, Chunyan; Wang, Miao; Racine, Jeremy J.; Liu, Hongjun; Lin, Chia-Lei; Nair, Indu; Lau, Joyce; Cao, Yu-An; Todorov, Ivan; Atkinson, Mark; Zeng, Defu

    2010-01-01

    OBJECTIVE To test whether induction of chimerism lowers the amount of donor islets required for reversal of diabetes and renders the pancreas a suitable site for islet grafts in autoimmune diabetic mice. RESEARCH DESIGN AND METHODS The required donor islet dose for reversal of diabetes in late-stage diabetic NOD mice after transplantation into the liver or pancreas was compared under immunosuppression or after induction of chimerism. Recipient mice were monitored for blood glucose levels and ...

  16. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa;

    2014-01-01

    with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than...... oligodendrocytes, and viral replication was noted primarily in human astrocytes and GPCs rather than oligodendrocytes, which instead expressed early viral T antigens and exhibited apoptotic death. Engraftment of human GPCs in normally myelinated and immunodeficient mice resulted in humanized white matter...... that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection...

  17. DIVA vaccine properties of the live chimeric pestivirus strain CP7_E2gif

    DEFF Research Database (Denmark)

    von Rosen, Tanya; Rangelova, Desislava Yordanova; Nielsen, Jens

    2014-01-01

    Live modified vaccines to protect against classical swine fever virus (CSFV), based on chimeric pestiviruses, have been developed to enable serological Differentiation of Infected from Vaccinated Animals (DIVA). In this context, the chimeric virus CP7_E2gif vaccine candidate is unique as it does...... not include any CSFV components. In the present study, the DIVA vaccine properties of CP7_E2gif were evaluated in comparison to the conventional live attenuated Riemser C-strain vaccine. Sera and tonsil samples obtained from pigs immunised with these two vaccines were analysed. No viral RNA was found in serum...... after vaccination with CP7_E2gif, whereas some serum samples from C-strain vaccinated animals were positive. In both vaccinated groups, individual viral RNA-positive tonsil samples were detected in animals euthanised between 7 and 21 days post vaccination. Furthermore, serum samples from these animals...

  18. [Harvesting technique of chimeric multiple paddles fibular flap for wide oromandibular defects].

    Science.gov (United States)

    Foy, J-P; Qassemyar, Q; Assouly, N; Temam, S; Kolb, F

    2016-08-01

    Carcinological head and neck reconstruction still remains a challenge due to the volume and varied tissues needed. Large and wide oromandibular defects require, not just the bone but also soft tissues for the pelvilingual reconstruction and therefore, a second free flap may become necessary in addition to a fibular flap. The option of an unique chimeric flap based on the fibular artery and its branches is less known whereas it offers the advantage of a unique flap with bone, muscle and multiple skin paddles, independent of each other. The aim of this technical note is to present step by step the surgical procedure of this chimeric flap and share this method that avoids a second free flap.

  19. Suicide Gene Therapy to Increase the Safety of Chimeric Antigen Receptor-Redirected T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Monica Casucci, Attilio Bondanza

    2011-01-01

    Full Text Available Chimeric antigen receptors (CARs are generated by fusing the antigen-binding motif of a monoclonal antibody (mAb with the signal transduction machinery of the T-cell receptor (TCR. The genetic modification of T lymphocytes with chimeric receptors specific for tumor-associated antigens (TAAs allows for the redirection towards tumor cells. Clinical experience with CAR-redirected T cells suggests that antitumor efficacy associates with some degree of toxicity, especially when TAA expression is shared with healthy tissues. This situation closely resembles the case of allogeneic hematopoietic stem cell transplantation (HSCT, wherein allorecognition causes both the graft-versus-leukemia (GVL effect and graft-versus-host disease (GVHD. Suicide gene therapy, i.e. the genetic induction of a conditional suicide phenotype into donor T cells, enables dissociating the GVL effect from GVHD. Applying suicide gene modification to CAR-redirected T cells may therefore greatly increase their safety profile and facilitate their clinical development.

  20. Chimerism of allogeneic mesenchymal cells in bone marrow, liver, and spleen after mesenchymal stem cells infusion.

    Science.gov (United States)

    Meleshko, Alexander; Prakharenia, Irina; Kletski, Semen; Isaikina, Yanina

    2013-12-01

    Although an infusion of culture-expanded MSCs is applied in clinic to improve results of HSCs transplantation and for a treatment of musculoskeletal disorders, homing, and engraftment potential of culture-expanded MSC in humans is still obscure. We report two female patients who received allogeneic BM transplantation as a treatment of hematological diseases and a transplantation of MSCs from third-party male donors. Both patients died within one yr of infectious complications. Specimens of paraffin-embedded blocks of tissues from transplanted patients were taken. The aim of the study was to estimate possible homing and engraftment of allogeneic BM-derived MSCs in some tissues/organs of recipient. Sensitive real-time quantitative PCR analysis was applied with SRY gene as a target. MSC chimerism was found in BM, liver, and spleen of both patients. We conclude that sensitive RQ-PCR analysis is acceptable for low-level chimerism evaluation even in paraffin-embedded tissue specimens.

  1. Replication-competent chimeric lenti-oncovirus with expanded host cell tropism.

    Science.gov (United States)

    Reiprich, S; Gundlach, B R; Fleckenstein, B; Uberla, K

    1997-04-01

    Baboon bone marrow was grafted into human immunodeficiency virus type 1-infected patients in the course of recent trials for AIDS treatment. Since the baboon genome harbors multiple copies of an endogenous oncovirus, chimeric lenti-oncoviruses could emerge in the xenotransplant recipient. To analyze the potential replication competence of hybrid viruses between different genera of retroviruses, we replaced most of the env gene of simian immunodeficiency virus with the env gene of an amphotropic murine leukemia virus. The hybrid virus could be propagated in human T-cell lines, in peripheral blood mononuclear cells of rhesus macaques, and in CD4- B-cell lines. Because of the expanded cell tropism, the hybrid virus might have a selective advantage in comparison to parental viruses. Therefore, emerging chimeric viruses may be considered a serious risk of xenotransplantation. A note of caution is also suggested for the use of pseudotyped lentiviral vectors for human gene therapy.

  2. Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes.

    Science.gov (United States)

    Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-11-01

    Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides.

  3. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    Science.gov (United States)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  4. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    Science.gov (United States)

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  5. Generation of cloned and chimeric embryos/offspring using the new methods of animal biotechnology.

    Science.gov (United States)

    Skrzyszowska, Maria; Karasiewicz, Jolanta; Bednarczyk, Marek; Samiec, Marcin; Smorag, Zdzisław; Waś, Bogusław; Guszkiewicz, Andrzej; Korwin-Kossakowski, Maciej; Górniewska, Maria; Szablisty, Ewa; Modliński, Jacek A; Łakota, Paweł; Wawrzyńska, Magdalena; Sechman, Andrzej; Wojtysiak, Dorota; Hrabia, Anna; Mika, Maria; Lisowski, Mirosław; Czekalski, Przemysław; Rzasa, Janusz; Kapkowska, Ewa

    2006-01-01

    The article summarizes results of studies concerning: 1/ qualitative evaluation of pig nuclear donor cells to somatic cell cloning, 2/ developmental potency of sheep somatic cells to create chimera, 3/ efficient production of chicken chimera. The quality of nuclear donor cells is one of the most important factors to determine the efficiency of somatic cell cloning. Morphological criteria commonly used for qualitative evaluation of somatic cells may be insufficient for practical application in the cloning. Therefore, different types of somatic cells being the source of genomic DNA in the cloning procedure were analyzed on apoptosis with the use of live-DNA or plasma membrane fluorescent markers. It has been found that morphological criteria are a sufficient selection factor for qualitative evaluation of nuclear donor cells to somatic cell cloning. Developmental potencies of sheep somatic cells in embryos and chimeric animals were studied using blastocyst complementation test. Fetal fibroblasts stained with vital fluorescent dye and microsurgically placed in morulae or blastocysts were later identified in embryos cultured in vitro. Transfer of Polish merino blastocysts harbouring Heatherhead fibroblasts to recipient ewes brought about normal births at term. Newly-born animals were of merino appearance with dark patches on their noses, near the mouth and on their clovens. This overt chimerism shows that fetal fibroblasts introduced to sheep morulae/blastocysts revealed full developmental plasticity. To achieve the efficient production of chicken chimeras, the blastodermal cells from embryos of the donor breeds, (Green-legged Partridgelike breed or GPxAraucana) were transferred into the embryos of the recipient breed (White Leghorn), and the effect of chimerism on the selected reproductive and physiological traits of recipients was examined. Using the model which allowed identification of the chimerism at many loci, it has been found that 93.9% of the examined birds

  6. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Nakagawa

    Full Text Available BACKGROUND & AIMS: The interferon (IFN system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV and hepatitis B virus (HBV. METHODS: This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC. Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs in the livers and sera of these humanized chimeric mice. RESULTS: Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1, suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. CONCLUSIONS: These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  7. The impact of chimerism in DNA-based forensic sex determination analysis

    OpenAIRE

    George, Renjith; Donald, Preethy Mary; Nagraj, Sumanth Kumbargere; Idiculla, Jose Joy; Hj Ismail, Rashid

    2013-01-01

    Sex determination is the most important step in personal identification in forensic investigations. DNA-based sex determination analysis is comparatively more reliable than the other conventional methods of sex determination analysis. Advanced technology like real-time polymerase chain reaction (PCR) offers accurate and reproducible results and is at the level of legal acceptance. But still there are situations like chimerism where an individual possess both male and female specific factors t...

  8. Chimeric antigen receptor (CAR)-directed adoptive immunotherapy: a new era in targeted cancer therapy

    OpenAIRE

    Chen, Yamei; Liu, Delong

    2014-01-01

    As a result of the recent advances in molecular immunology, virology, genetics, and cell processing, chimeric antigen receptor (CAR)-directed cancer therapy has finally arrived for clinical application. CAR-directed adoptive immunotherapy represents a novel form of gene therapy, cellular therapy, and immunotherapy, a combination of three in one. Early phase clinical trial was reported in patients with refractory chronic lymphoid leukemia with 17p deletion. Accompanying the cyto...

  9. Bone marrow chimeric mice reveal a dual role for CD36 in Plasmodium berghei ANKA infection

    Directory of Open Access Journals (Sweden)

    Febbraio Maria

    2007-03-01

    Full Text Available Abstract Background Adhesion of Plasmodium-infected red blood cells (iRBC to different host cells, ranging from endothelial to red blood cells, is associated to malaria pathology. In vitro studies have shown the relevance of CD36 for adhesion phenotypes of Plasmodium falciparum iRBC such as sequestration, platelet mediated clumping and non-opsonic uptake of iRBC. Different adhesion phenotypes involve different host cells and are associated with different pathological outcomes of disease. Studies with different human populations with CD36 polymorphisms failed to attribute a clear role to CD36 expression in human malaria. Up to the present, no in vivo model has been available to study the relevance of different CD36 adhesion phenotypes to the pathological course of Plasmodium infection. Methods Using CD36-deficient mice and their control littermates, CD36 bone marrow chimeric mice, expressing CD36 exclusively in haematopoietic cells or in non-haematopoietic cells, were generated. Irradiated CD36-/- and wild type mice were also reconstituted with syngeneic cells to control for the effects of irradiation. The reconstituted mice were infected with Plasmodium berghei ANKA and analysed for the development of blood parasitaemia and neurological symptoms. Results All mice reconstituted with syngeneic bone marrow cells as well as chimeric mice expressing CD36 exclusively in non-haematopoietic cells died from experimental cerebral malaria between day 6 and 12 after infection. A significant proportion of chimeric mice expressing CD36 only in haematopoietic cells did not die from cerebral malaria. Conclusion The analysis of bone marrow chimeric mice reveals a dual role of CD36 in P. berghei ANKA infection. Expression of CD36 in haematopoietic cells, most likely macrophages and dendritic cells, has a beneficial effect that is masked in normal mice by adverse effects of CD36 expression in non-haematopoietic cells, most likely endothelial cells.

  10. Production and characterisation of a neutralising chimeric antibody against botulinum neurotoxin A.

    Directory of Open Access Journals (Sweden)

    Julie Prigent

    Full Text Available Botulinum neurotoxins, produced by Clostridium botulinum bacteria, are the causative agent of botulism. This disease only affects a few hundred people each year, thus ranking it among the orphan diseases. However, botulinum toxin type A (BoNT/A is the most potent toxin known to man. Due to their potency and ease of production, these toxins were classified by the Centers for Disease Control and Prevention (CDC as Category A biothreat agents. For several biothreat agents, like BoNT/A, passive immunotherapy remains the only possible effective treatment allowing in vivo neutralization, despite possible major side effects. Recently, several mouse monoclonal antibodies directed against a recombinant fragment of BoNT/A were produced in our laboratory and most efficiently neutralised the neurotoxin. In the present work, the most powerful one, TA12, was selected for chimerisation. The variable regions of this antibody were thus cloned and fused with the constant counterparts of human IgG1 (kappa light and gamma 1 heavy chains. Chimeric antibody production was evaluated in mammalian myeloma cells (SP2/0-Ag14 and insect cells (Sf9. After purifying the recombinant antibody by affinity chromatography, the biochemical properties of chimeric and mouse antibody were compared. Both have the same very low affinity constant (close to 10 pM and the chimeric antibody exhibited a similar capacity to its parent counterpart in neutralising the toxin in vivo. Its strong affinity and high neutralising potency make this chimeric antibody interesting for immunotherapy treatment in humans in cases of poisoning, particularly as there is a probable limitation of the immunological side effects observed with classical polyclonal antisera from heterologous species.

  11. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    LENUS (Irish Health Repository)

    Little, Mark A

    2012-01-01

    Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3) antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener\\'s granulomatosis). Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻\\/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17%) more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  12. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    Directory of Open Access Journals (Sweden)

    Mark A Little

    Full Text Available Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3 antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener's granulomatosis. Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17% more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  13. Skin Recurrence of Transformed Mycosis Fungoides Postumbilical Cord Blood Transplant despite Complete Donor Chimerism

    Directory of Open Access Journals (Sweden)

    Rahul Pawar

    2014-01-01

    Full Text Available Background. Allogeneic stem cell transplant is the treatment of choice for systemic cutaneous T-cell lymphoma (CTCL which provides graft-versus-lymphoma effect. Herein we discuss a case of recurrence of CTCL skin lesions after cord blood transplant in a patient who continued to have 100% donor chimerism in bone marrow. Case Presentation. A 48-year-old female with history of mycosis fungoides (MF presented with biopsy proven large cell transformation of MF. PET scan revealed multiple adenopathy in abdomen and chest suspicious for lymphoma and skin biopsy showed large cell transformation. She was treated with multiple cycles of chemotherapy. Posttherapy PET scan showed resolution of lymphadenopathy. Later she underwent ablative preparative regimen followed by single cord blood transplant. Bone marrow chimerism studies at day +60 after transplant showed 100% donor cells without presence of lymphoma. However 5 months after transplant she had recurrence of MF with the same genotype as prior skin lesion. Bone marrow chimerism study continued to show 100% donor cells. Conclusion. A differential graft-versus-lymphoma effect in our case prevented lymphoma recurrence systemically but failed to do so in skin. We hypothesize that this response may be due to presence of other factors in the bone marrow and lymph node microenvironments preventing recurrence in these sites.

  14. Human-animal chimeras: ethical issues about farming chimeric animals bearing human organs.

    Science.gov (United States)

    Bourret, Rodolphe; Martinez, Eric; Vialla, François; Giquel, Chloé; Thonnat-Marin, Aurélie; De Vos, John

    2016-06-29

    Recent advances in stem cells and gene engineering have paved the way for the generation of interspecies chimeras, such as animals bearing an organ from another species. The production of a rat pancreas by a mouse has demonstrated the feasibility of this approach. The next step will be the generation of larger chimeric animals, such as pigs bearing human organs. Because of the dramatic organ shortage for transplantation, the medical needs for such a transgressive practice are indisputable. However, there are serious technical barriers and complex ethical issues that must be discussed and solved before producing human organs in animals. The main ethical issues are the risks of consciousness and of human features in the chimeric animal due to a too high contribution of human cells to the brain, in the first case, or for instance to limbs, in the second. Another critical point concerns the production of human gametes by such chimeric animals. These worst-case scenarios are obviously unacceptable and must be strictly monitored by careful risk assessment, and, if necessary, technically prevented. The public must be associated with this ethical debate. Scientists and physicians have a critical role in explaining the medical needs, the advantages and limits of this potential medical procedure, and the ethical boundaries that must not be trespassed. If these prerequisites are met, acceptance of such a new, borderline medical procedure may prevail, as happened before for in-vitro fertilization or preimplantation genetic diagnosis.

  15. Construction of a photo-responsive chimeric histidine kinase in Escherichia coli.

    Science.gov (United States)

    Hori, Mayuko; Oka, Shyunsuke; Sugie, Yoshimi; Ohtsuka, Hokuto; Aiba, Hirofumi

    2017-01-31

    Two-component signal transduction systems (TCS), that are also referred to as His to Asp phosphorelay systems, are involved in widespread cellular responses to diverse signals from bacteria to plants. Previously, we succeeded in reconstructing a cyanobacterial photo-perception system in Escherichia coli by employing a CcaS-CcaR two-component system from Nostoc punctiforme. In this study, we have added a photo-responsive ability to ArcB-ArcA (anoxic redox control) TCS of E. coli by fusing a cyanobacterial photoreceptor domain of CcaS with an intracellular histidine kinase (HK) domain of ArcB. For this, we constructed several chimeric HKs between CcaS and ArcB and found that one chimeric HK, named ArcaS9, has a photo-responsive ability. When ArcaS9 was expressed with an ArcA response regulator in E. coli expressing phycocyanobilin (PCB)-producing enzymes, the expression of sdh, a target gene of ArcB-ArcA TCS was regulated in a light-color-dependent manner. Thus we succeeded in endowing E. coli HK with a photo-responsive ability. This provides an insight into how the sensing ability of HK can be manipulated by a chimeric construct.

  16. Development of a high-throughput microfluidic integrated microarray for the detection of chimeric bioweapons.

    Energy Technology Data Exchange (ETDEWEB)

    Sheppod, Timothy; Satterfield, Brent; Hukari, Kyle W.; West, Jason A. A.; Hux, Gary A.

    2006-10-01

    The advancement of DNA cloning has significantly augmented the potential threat of a focused bioweapon assault, such as a terrorist attack. With current DNA cloning techniques, toxin genes from the most dangerous (but environmentally labile) bacterial or viral organism can now be selected and inserted into robust organism to produce an infinite number of deadly chimeric bioweapons. In order to neutralize such a threat, accurate detection of the expressed toxin genes, rather than classification on strain or genealogical decent of these organisms, is critical. The development of a high-throughput microarray approach will enable the detection of unknowns chimeric bioweapons. The development of a high-throughput microarray approach will enable the detection of unknown bioweapons. We have developed a unique microfluidic approach to capture and concentrate these threat genes (mRNA's) upto a 30 fold concentration. These captured oligonucleotides can then be used to synthesize in situ oligonucleotide copies (cDNA probes) of the captured genes. An integrated microfluidic architecture will enable us to control flows of reagents, perform clean-up steps and finally elute nanoliter volumes of synthesized oligonucleotides probes. The integrated approach has enabled a process where chimeric or conventional bioweapons can rapidly be identified based on their toxic function, rather than being restricted to information that may not identify the critical nature of the threat.

  17. Construction and characterization of a recombinant fowlpox virus containing HIV-1 multi-epitope-p24 chimeric gene in mice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The epidemic of HIV/AIDS is sweeping across the world. It is of great importance to figure out new ways to curb this disease. Epitope-based vaccine is one of these solutions. In this study, a chimeric gene was obtained by combination of a designed HIV-1 multi-epitope gene (MEG) and HIV-1 p24 gene. A re- combinant plasmid pUTA2-MEGp24 was then constructed by inserting MEGp24 gene into the down- stream of the promoter (ATI-P7.5×20) of fowlpox virus (FPV) transfer vector pUTA2. The recombinant plasmid and wild-type FPV 282E4 strain were then co-transfected into CEF cells and homologous re- combination occurred. A recombinant virus expressing HIV-1 protein MEGp24 was screened by ge- nome PCR and Western blot assay. Large scale preparation and purification of the recombinant fowl- pox virus (rFPV) were then carried out. BALB/c mice were immunized intramuscularly with the rFPV for three times on day 0, 14 and 42. Mice were executed and sampled one week after the third inoculation. Anti-HIV-1 antibody in serum and Th1 cytokines in the supernatant of cultured spleen cells were as- sayed by ELISA. The count of T lymphocyte subsets and the CTL activity of spleen lymphocytes were analyzed by flow cytometry and lactate dehydrogenase (LDH) release assay, respectively. The results showed that HIV-1 specific antibody in serum and increased T lymphocyte subsets (CD4+ T, CD8+ T) were detected in the immunization group. CTL target-killing activity and higher secretion of Th1 cyto- kines (IFN-γ and IL-2) of spleen lymphocytes stimulated by H-2d-restricted CTL peptide were observed in immunized mice. We concluded that the rFPV may induce HIV-1 specific immunity especially cellular immunity in mice.

  18. Construction and characterization of a recombinant fowlpox virus containing HIV-1 multi-epitope-p24 chimeric gene in mice

    Institute of Scientific and Technical Information of China (English)

    ZHANG LiShu; JIN NingYi; SONG YingJin; WANG Hong; MA HeWen; LI ZiJian; JIANG WenZheng

    2007-01-01

    The epidemic of HIV/AIDS is sweeping across the world. It is of great importance to figure out new ways to curb this disease. Epitope-based vaccine is one of these solutions. In this study, a chimeric gene was obtained by combination of a designed HIV-1 multi-epitope gene (MEG) and HIV-1 p24 gene. A recombinant plasmid pUTA2-MEGp24 was then constructed by inserting MEGp24 gene into the down-stream of the promoter (ATI-P7.5×20) of fowlpox virus (FPV) transfer vector pUTA2. The recombinant plasmid and wild-type FPV 282E4 strain were then co-transfected into CEF cells and homologous recombination occurred. A recombinant virus expressing HIV-1 protein MEGp24 was screened by genome PCR and Western blot assay. Large scale preparation and purification of the recombinant fowlpox virus (rFPV) were then carried out. BALB/c mice were immunized intramuscularly with the rFPV for three times on day 0, 14 and 42. Mice were executed and sampled one week after the third inoculation.Anti-HIV-1 antibody in serum and Th1 cytokines in the supernatant of cultured spleen cells were assayed by ELISA. The count of T lymphocyte subsets and the CTL activity of spleen lymphocytes were analyzed by flow cytometry and lactate dehydrogenase (LDH) release assay, respectively. The results showed that HIV-1 specific antibody in serum and increased T lymphocyte subsets (CD4+ T, CD8+ T)were detected in the immunization group. CTL target-killing activity and higher secretion of Th1 cytokines (IFN-Y and IL-2) of spleen lymphocytes stimulated by H-2d-restricted CTL peptide were observed in immunized mice.We concluded that the rFPV may induce HIV-1 specific immunity especially cellular immunity in mice.

  19. BRAF and MEK inhibition variably affect GD2-specific chimeric antigen receptor (CAR) T-cell function in vitro.

    Science.gov (United States)

    Gargett, Tessa; Fraser, Cara K; Dotti, Gianpietro; Yvon, Eric S; Brown, Michael P

    2015-01-01

    Cancer immunotherapy has long been used in the treatment of metastatic melanoma, and an anti-CTLA-4 monoclonal antibody treatment has recently been approved by the US Food and Drug Administration. Targeted therapies such as small molecule kinase inhibitors targeting deregulated mitogen-activated protein kinase (MAPK) signaling have markedly improved melanoma control in up to 50% of metastatic disease patients and have likewise been recently approved. Combination therapies for melanoma have been proposed as a way to exploit the high-level but short-term responses associated with kinase inhibitor therapies and the low-level but longer-term responses associated with immunotherapy. Cancer immunotherapy now includes adoptive transfer of autologous tumor-specific chimeric antigen receptor (CAR) T cells and this mode of therapy is a candidate for combination with small molecule drugs. This paper describes CART cells that target GD2-expressing melanoma cells and investigates the effects of approved MAPK pathway-targeted therapies for melanoma [vemurafenib (Vem), dabrafenib (Dab), and trametinib (Tram)] on the viability, activation, proliferation, and cytotoxic T lymphocyte activity of these CAR T cells, as well as on normal peripheral blood mononuclear cells. We report that, although all these drugs lead to inhibition of stimulated T cells at high concentrations in vitro, only Vem inhibited T cells at concentrations equivalent to reported plasma concentrations in treated patients. Although the combination of Dab and Tram also resulted in inhibition of T-cell effector functions at some therapeutic concentrations, Dab itself had little adverse effect on CAR T-cell function. These findings may have implications for novel therapeutic combinations of adoptive CAR T-cell immunotherapy and MAPK pathway inhibitors.

  20. Development of β-lactoglobulin-specific chimeric human IgEκ monoclonal antibodies for in vitro safety assessment of whey hydrolysates.

    Directory of Open Access Journals (Sweden)

    Karen Knipping

    Full Text Available Cow's milk-derived whey hydrolysates are nutritional substitutes for allergic infants. Safety or residual allergenicity assessment of these whey hydrolysates is crucial. Currently, rat basophilic leukemia RBL-2H3 cells expressing the human IgE receptor α-chain (huFcεRIα-RBL-2H3, sensitized with serum IgE from cow's milk allergic children, are being employed to assess in vitro residual allergenicity of these whey hydrolysates. However, limited availability and inter-lot variation of these allergic sera impede standardization of whey hydrolysate safety testing in degranulation assays.An oligoclonal pool of chimeric human (chuIgE antibodies against bovine β-lactoglobulin (a major allergen in whey was generated to increase sensitivity, specificity, and reproducibility of existing degranulation assays.Mice were immunized with bovine β-lactoglobulin, and subsequently the variable domains of dissimilar anti-β-lactoglobulin mouse IgG antibodies were cloned and sequenced. Six chimeric antibodies were generated comprising mouse variable domains and human constant IgE/κ domains.After sensitization with this pool of anti-β-lactoglobulin chuIgEs, huFcεRIα-expressing RBL-2H3 cells demonstrated degranulation upon cross-linking with whey, native 18 kDa β-lactoglobulin, and 5-10 kDa whey hydrolysates, whereas a 3 kDa whey hydrolysate and cow's milk powder (mainly casein showed no degranulation. In parallel, allergic serum IgEs were less sensitive. In addition, our pool anti-β-lactoglobulin chuIgEs recognized multiple allergenic immunodominant regions on β-lactoglobulin, which were also recognized by serum IgEs from cow's milk allergic children.Usage of our 'unlimited' source and well-defined pool of β-lactoglobulin-specific recombinant chuIgEs to sensitize huFcεRIα on RBL-2H3 cells showed to be a relevant and sensitive alternative for serum IgEs from cow's milk allergic patients to assess safety of whey-based non-allergic hydrolyzed formula.

  1. B-cell epitope of beta toxin of Clostridium perfringens genetically conjugated to a carrier protein: expression, purification and characterization of the chimeric protein.

    Science.gov (United States)

    Bhatia, Bharti; Solanki, Amit Kumar; Kaushik, Himani; Dixit, Aparna; Garg, Lalit C

    2014-10-01

    Beta toxin (btx) is the prime virulence factor for the pathogenesis of Clostridium perfringens type C strain, known to cause necrotic enteritis and enterotoxaemia in mammalian species. The existing vaccines targeting btx are formaldehyde inactivated culture filtrates of Clostridium. These filtrates raise antigenic load in the host leading to nonspecific and poor responses. The present study aimed to overcome these drawbacks and generate a chimeric protein carrying in silico identified B-cell epitope of btx fused with a carrier protein as a vaccine candidate. Using bioinformatic tools, three stretches of amino acids were predicted as putative B-cell epitopes. One of the epitopes spanning 140-156 amino acid residues was genetically conjugated with B-subunit of heat labile enterotoxin (LTB) of Escherichia coli and expressed as a translational fusion in Vibrio cholerae secretory expression system. High level expression of the recombinant fusion protein rLTB-Btx140-156 was obtained and the protein was successfully purified. The recombinant protein retained the native LTB property to pentamerize and bind to GM1 ganglioside receptor of LTB. The antigenicity of both the epitope and the carrier protein was maintained in fusion protein as indicated by immunoblotting against anti-LTB and anti-btx antibody. The rLTB-Btx140-156 fusion protein therefore can be evaluated as a potential vaccine candidate against C. perfringens.

  2. Tumor Antigen Specific Activation of Primary Human T-Cells Expressing a Virally Encoded Chimeric T-Cell Receptor Specific for p185HER2

    Institute of Scientific and Technical Information of China (English)

    杨建民; MichaelSFRIEDMAN; ChristopherMREYNOLDS; MarianneTHUBEN; LeeWILKE; JenniferFULLER; 李桥; ZeligESHHAR; JamesJMULE; KevimTMCDONAGH

    2004-01-01

    We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments,retroviral vectors expressing the N297 or N29ξ receptors were constructed in pRET6. Amphotropic viral producer cells were established in the GALV-based PG13 packaging cell line. Ficoll purified human peripheral blood lymphocytes (PBL) were vitally transduced using an optimized protocol incorporating activation with immobilized anti-CD3/anti-CD28 monoclonal antibodies, followed by viral infection in the presence of fibronectin fragment CH296. Transduced cells were co-cultured with human tumor cell lines that overexpress (SK-OV-3) or underexpress (MCF7) p185HER2 to assay for antigen specific immune responses. Both CD4+ and CD8+ T-cells transduced with the N297 or N29ξ chTCR demonstrated HER2-specific antigen responses, as determined by release of Th1 like cytokines, and cellular cytotoxicity assays. Our results support the feasibility of adoptive immunothempy with genetically modified T-cells expressing a chTCR specific for p185HER2.

  3. In silico and experimental characterization of chimeric Bacillus thermocatenulatus lipase with the complete conserved pentapeptide of Candida rugosa lipase.

    Science.gov (United States)

    Hosseini, Mostafa; Karkhane, Ali Asghar; Yakhchali, Bagher; Shamsara, Mehdi; Aminzadeh, Saeed; Morshedi, Dena; Haghbeen, Kamahldin; Torktaz, Ibrahim; Karimi, Esmat; Safari, Zahra

    2013-02-01

    Lipases are one of the highest value commercial enzymes as they have broad applications in detergent, food, pharmaceutical, and dairy industries. To provide chimeric Bacillus thermocatenulatus lipase (BTL2), the completely conserved pentapeptide (¹¹²Ala-His-Ser-Gln-Gly¹¹⁶) was replaced with similar sequences (²⁰⁷Gly-Glu-Ser-Ala-Gly²¹¹) of Candida rugosa lipase (CLR) at the nucleophilic elbow region. For this purpose, three mutations including A112G, H113E, and Q115A were inserted in the conserved pentapeptide sequence of btl2 gene. Based on the crystal structures of 2W22, the best structure of opened form of the chimeric lipases were garnered using the MODELLER v9.10 software. The native and chimeric lipases were docked to a set of ligands, and a trial version of Molegro Virtual Docker (MVD) software was used to obtain the energy values. Docking results confirmed chimeric lipase to be better than the native lipase. Following the in silico study, cloning experiments were conducted and expression of native and chimeric btl2 gene in Pichia pastoris was performed. The native and chimeric lipases were purified, and the effect of these mutations on characteristics of chimeric lipase studied and then compared with those of native lipase. Chimeric lipase exhibited 1.6-fold higher activity than the native lipase at 55 °C. The highest percentage of both lipases activity was observed at 60 °C and pH of 8.0. The ion Ca²⁺ slightly inhibited the activity of both lipases, whereas the organic solvent enhanced the lipase stability of chimeric lipase as compared with the native lipase. According to the results, the presence of two glycine residues at the conserved pentapeptide region of this chimeric lipase (¹¹²Gly-Glu-Ser-Ala-Gly¹¹⁶) may increase the flexibility of the nucleophilic elbow region and affect the enzyme activity level.

  4. Earlier low-dose TBI or DST overcomes CD8+ T-cell-mediated alloresistance to allogeneic marrow in recipients of anti-CD40L.

    Science.gov (United States)

    Takeuchi, Yasuo; Ito, Hiroshi; Kurtz, Josef; Wekerle, Thomas; Ho, Leon; Sykes, Megan

    2004-01-01

    Treatment with a single injection of anti-CD40L (CD154) monoclonal antibody (mAb) and fully mismatched allogeneic bone marrow transplant (BMT) allows rapid tolerization of CD4+ T cells to the donor. The addition of in vivo CD8 T-cell depletion leads to permanent mixed hematopoietic chimerism and tolerance. We now describe two approaches that obviate the requirement for CD8 T-cell depletion by rapidly tolerizing recipient CD8 T cells in addition to CD4 cells. Administration of donor-specific transfusion (DST) to mice receiving 3 Gy total body irradiation (TBI), BMT and anti-CD40L mAb on day 0 uniformly led to permanent mixed chimerism and tolerance, compared with only 40% of mice receiving similar treatment without DST. In the absence of DST, moving the timing of 3 Gy TBI to day -1 or day -2 instead of day 0 led to rapid (by 2 weeks) induction of CD8+ cell tolerance, and also permitted uniform achievement of permanent mixed chimerism and donor-specific tolerance in recipients of anti-CD40L and BMT on day 0. These nontoxic regimens overcome CD8+ and CD4+ T-cell-mediated alloresistance without requiring host T-cell depletion, permitting the induction of permanent mixed chimerism and tolerance.

  5. Anti-tumor activity of obinutuzumab and rituximab in a follicular lymphoma 3D model.

    Science.gov (United States)

    Decaup, E; Jean, C; Laurent, C; Gravelle, P; Fruchon, S; Capilla, F; Marrot, A; Al Saati, T; Frenois, F-X; Laurent, G; Klein, C; Varoqueaux, N; Savina, A; Fournié, J-J; Bezombes, C

    2013-08-09

    Follicular lymphomas (FLs) account for 35-40% of all adult lymphomas. Treatment typically involves chemotherapy combined with the anti-CD20 monoclonal antibody (MAb) rituximab (RTX). The development of the type II anti-CD20 MAb obinutuzumab (GA101) aims to further improve treatment. Here, using FL cells we show that RTX and GA101 display a similar activity on RL cells cultured in 2D. However, 2D culture cannot mimic tumor spatial organization and conventional 2D models may not reflect the effects of antibodies as they occur in vivo. Thus, we created a non-Hodgkin's lymphoma (NHL) 3D culture system, termed multicellular aggregates of lymphoma cells (MALC), and used it to compare RTX and GA101 activity. Our results show that both antibodies display greater activity towards FL cells in 3D culture compared with 2D culture. Moreover, we observed that in the 3D model GA101 was more effective than RTX both in inhibiting MALC growth through induction of (lysosomal) cell death and senescence and in inhibiting intracellular signaling pathways, such as mammalian target of rapamycin, Akt, PLCgamma (Phospholipase C gamma) and Syk. Altogether, our study demonstrates that spatial organization strongly influences the response to antibody treatment, supporting the use of 3D models for the testing of therapeutic agents in NHL.

  6. Activity identification of chimeric anti-caspase-3 mRNA hammerhead ribozyme in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    XU; Renhuan; (

    2001-01-01

    [1]Andrew, F., Gerard, E., A license to kill, Cell, 1996, 85: 781-784.[2]Thornberry, N. A., Lazebnik, Y., Caspases: Enemies within, Science, 1998, 281: 1312-1316.[3]Kijima, H., Ishida, H., Ohkawa, T. et al., Therapeutic application of ribozymes, Pharmacol. Ther., 1995, 68: 247-264.[4]Phylactou, L. A., Kilpatrick, M. W., Wood, M. J., Ribozymes as therapeutic tools for genetic disease, Hum. Mol. Genet., 1998, 7(10): 1649-1653.[5]Bettrand, E., Pictet, R ., Grange, T., Can heamerhead ribozymes be efficient tools inactivate gene function? Nucleic Acids Res., 1994, 22: 293-300.[6]Lieber, A., Strauss, M., Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library, Mol. Cell Biol., 1995, 15: 540-551.[7]Xu, R. H., Zhou, X. Q., Xie, Q. et al., Preparation and identification of hammerhead ribozyme in vitro against rat caspase-3 mRNA fragment, Chin. J. Hepatol., 2000,8: 361-363.[8]Liu, J., Jin, Y. X., Wang, D. B., A novel vector for abundant expression of antisense RNA, triplex-forming RNA and ribozyme in vivo, High Technology Letters, 2000, 6: 84-88.[9]Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.[10]Porter, A. G., J?nicke, R. U., Emerging roles of caspase-3 in apoptosis, Cell Death Differ, 1999, 6: 99-104.[11]Cryns, V., Yuan, J., Proteases to die for, Genes Dev., 1998, 12: 1551-1570.[12]Narendra, K. V., Anikumar, R. K., Fritz, E., Recent developments in the hammerhead ribozyme field, Nucleic Acids Research, 1998, 26: 5237-5242.

  7. Construction of a Chimeric Secretory IgA and Its Neutralization Activity against Avian Influenza Virus H5N1

    Directory of Open Access Journals (Sweden)

    Cun Li

    2014-01-01

    Full Text Available Secretory immunoglobulin A (SIgA acts as the first line of defense against respiratory pathogens. In this assay, the variable regions of heavy chain (VH and Light chain (VL genes from a mouse monoclonal antibody against H5N1 were cloned and fused with human IgA constant regions. The full-length chimeric light and heavy chains were inserted into a eukaryotic expressing vector and then transfected into CHO/dhfr-cells. The chimeric monomeric IgA antibody expression was confirmed by using ELISA, SDS-PAGE, and Western blot. In order to obtain a dimeric secretory IgA, another two expressing plasmids, namely, pcDNA4/His A-IgJ and pcDNA4/His A-SC, were cotransfected into the CHO/dhfr-cells. The expression of dimeric SIgA was confirmed by using ELISA assay and native gel electrophoresis. In microneutralization assay on 96-well immunoplate, the chimeric SIgA showed neutralization activity against H5N1 virus on MDCK cells and the titer was determined to be 1 : 64. On preadministrating intranasally, the chimeric SIgA could prevent mice from lethal attack by using A/Vietnam/1194/04 H5N1 with a survival rate of 80%. So we concluded that the constructed recombinant chimeric SIgA has a neutralization capability targeting avian influenza virus H5N1 infection in vitro and in vivo.

  8. Intra-serotype SAT2 chimeric foot-and-mouth disease vaccine protects cattle against FMDV challenge.

    Science.gov (United States)

    Maree, Francois F; Nsamba, Peninah; Mutowembwa, Paidamwoyo; Rotherham, Lia S; Esterhuysen, Jan; Scott, Katherine

    2015-06-09

    The genetic diversity of the three Southern African Territories (SAT) types of foot-and-mouth disease virus (FMDV) reflects high antigenic variation, and indications are that vaccines targeting each SAT-specific topotype may be needed. This has serious implications for control of FMD using vaccines as well as the choice of strains to include in regional antigen banks. Here, we investigated an intra-serotype chimeric virus, vSAT2(ZIM14)-SAT2, which was engineered by replacing the surface-exposed capsid-coding region (1B-1D/2A) of a SAT2 genome-length clone, pSAT2, with that of the field isolate, SAT2/ZIM/14/90. The chimeric FMDV produced by this technique was viable, grew to high titres and stably maintained the 1B-1D/2A sequence upon passage. Chemically inactivated, oil adjuvanted vaccines of both the chimeric and parental immunogens were used to vaccinate cattle. The serological response to vaccination showed the production of strong neutralizing antibody titres that correlated with protection against homologous FMDV challenge. We also predicted a good likelihood that cattle vaccinated with an intra-serotype chimeric vaccine would be protected against challenge with viruses that caused recent outbreaks in southern Africa. These results provide support that chimeric vaccines containing the external capsid of field isolates induce protective immune responses in FMD host species similar to the parental vaccine.

  9. Construction and evaluation of a chimeric protein made from Fasciola hepatica leucine aminopeptidase and cathepsin L1.

    Science.gov (United States)

    Hernández-Guzmán, K; Sahagún-Ruiz, A; Vallecillo, A J; Cruz-Mendoza, I; Quiroz-Romero, H

    2016-01-01

    Leucine aminopeptidase (LAP) and cathepsin L1 (CL1) are important enzymes for the pathogenesis and physiology of Fasciola hepatica. These enzymes were analysed in silico to design a chimeric protein containing the most antigenic sequences of LAP (GenBank; AAV59016.1; amino acids 192-281) and CL1 (GenBank CAC12806.1; amino acids 173-309). The cloned 681-bp chimeric fragment (rFhLAP-CL1) contains 270 bp from LAP and 411 bp from CL1, comprising three epitopes, DGRVVHLKY (amino acids 54-62) from LAP, VTGYYTVHSGSEVELKNLV (amino acids 119-137) and YQSQTCLPF (amino acids 161-169) from CL1. The ~25 kDa rFhLAP-CL1 chimeric protein was expressed from the pET15b plasmid in the Rosetta (DE3) Escherichia coli strain. The chimeric protein rFhLAP-CL1, which showed antigenic and immunogenic properties, was recognized in Western blot assays using F. hepatica-positive bovine sera, and induced strong, specific antibody responses following immunization in rabbits. The newly generated chimeric protein may be used as a diagnostic tool for detection of antibodies against F. hepatica in bovine sera and as an immunogen to induce protection against bovine fasciolosis.

  10. High titers of anti-HBs prevent rituximab-related viral reactivation in resolved hepatitis B patient with non-Hodgkin's lymphoma.

    Science.gov (United States)

    Cho, Yuri; Yu, Su Jong; Cho, Eun Ju; Lee, Jeong-Hoon; Kim, Tae Min; Heo, Dae Seog; Kim, Yoon Jun; Yoon, Jung-Hwan

    2016-06-01

    Rituximab, an anti-CD20 monoclonal antibody, is associated with an increased risk of hepatitis B virus (HBV) reactivation. This study aimed to determine the predictive factors for rituximab-related HBV reactivation in resolved hepatitis B patients, defined as HBsAg-negative, anti-HBc-positive, and undetectable HBV DNA. Among 840 consecutive patients with CD20-positive B-cell lymphoma who received rituximab-based chemotherapy from 2003 through 2014 at Seoul National University Hospital, 732 patients were excluded because either anti-HBc was not assessed or they were HBsAg-seropositive. This retrospective study included 108 resolved hepatitis B patients. During a median 33.5-month follow-up period, eight cases of HBV reactivation occurred only among the patients with low anti-HBs titers (anti-HBs titers were the protective factors for HBV reactivation (hazard ratio [HR], 0.90 and 0.95, respectively). Among those who did not receive antiviral prophylaxis, patients with high baseline anti-HBs (≥100 mIU/ml) experienced significantly lower risk of HBV reactivation (HR, 0.49; P = 0.006) than the patients with low baseline anti-HBs (anti-HBs titer at baseline and antiviral prophylaxis prevented HBV reactivation, suggesting antiviral prophylaxis should be considered according to baseline anti-HBs titer. Meticulous follow-up for ALT and HBV DNA without antiviral prophylaxis might be possible for the patients with high baseline anti-HBs (≥100 mIU/ml).

  11. Mapping of the C3b-binding site of CR1 and construction of a (CR1)2-F(ab')2 chimeric complement inhibitor.

    Science.gov (United States)

    Kalli, K R; Hsu, P H; Bartow, T J; Ahearn, J M; Matsumoto, A K; Klickstein, L B; Fearon, D T

    1991-12-01

    CR1/CR2 chimeric receptors in which various short consensus repeats (SCRs) of CR1 were attached to CR2 were transiently expressed on COS cells, and assessed for the binding of polymerized C3b (pC3b) and anti-CR2 by immunofluorescence. Of COS cells expressing chimeras containing SCR 1-4, 1-3, 2-4, 1-2, and 2-3 of the long homologous repeats (LHRs) -B or -C, 96%, 66%, 23%, 0%, and 0%, respectively, bound pC3b. K562 cells were stably transfected with wild-type CR1, deletion mutants of CR1, and the CR1/CR2 chimeras, respectively, and assayed for binding of 125I-pC3b. The dissociation constants (Kd) for pC3b of wild-type CR1 and the LHR-BD and -CD constructs were in the range of 1.0-2.7 nM, and of the CR1/CR2 chimeras containing SCRs 1-4, 1-3, and 2-4 of LHR-B or -C were 1.8-2.4, 6-9, and 22-36 nM, respectively. The factor I-cofactor function of the CR1/CR2 chimeras paralleled the C3b-binding function of the constructs. A CR1/immunoglobulin (Ig) chimeric protein was prepared by fusing SCRs 1-4 of LHR-B to the heavy chains of a murine F(ab')2 anti-nitrophenacetyl (NP) monoclonal antibody. The (CR1)2-F(ab')2 chimera, which retained its specificity for NP, was as effective as soluble, full-length CR1 in binding pC3b, serving as a cofactor for factor I-mediated cleavage of C3b, and inhibiting activation of the alternative pathway, indicating that the bivalent expression of these SCRs reconstitutes the alternative pathway inhibitory function of CR1. The feasibility of creating CR1/Ig chimeras makes possible a new strategy of targeting complement inhibition by the use of Ig fusion partners having particular antigenic specificities.

  12. Mice with chimeric livers are an improved model for human lipoprotein metabolism.

    Directory of Open Access Journals (Sweden)

    Ewa C S Ellis

    Full Text Available OBJECTIVE: Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. DESIGN: FRG [ F ah(-/- R ag2(-/-Il2r g (-/-] mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. RESULTS: Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA. Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. CONCLUSION: Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.

  13. Prokaryotic expression and renaturation of engineering chimeric Fab antibody against human hepatoma

    Institute of Scientific and Technical Information of China (English)

    Jin-Liang Xing; Xiang-Min Yang; Xi-Ying Yao; Fei Song; Zhi-Nan Chen

    2004-01-01

    AIM: To express chimeric Fd (cFd) and chimeric light chain (cL) in E.coli respectively and refold them into chimeric Fab (cFab) antibody.METHODS: cFd and cL genes were respectively inserted into the prokaryotic expression vector pET32a to construct recombinant vectors pET32a/cFd and pET32a/cL. Then,the competent E. colicells were transformed by the recombinant vectors and induced by IPTG. Moreover, a large quantity of cFd and cL expression products were prepared and mixed with equal molar to refold into cFab by gradient dialysis. The refolded products were identified and analyzed by sodium SDS-PAGE, Western blotting,ELISA and HPLC.RESULTS: High efficient prokaryotic expressions of both cFd and cL in the form of non-fusion protein were obtained with the expression levels of 28.3% and 32.3% of total bacteria proteins, respectively. Their relative molecular masses were all 24 ku or so, and both of them mainly existed in the form of inclusion bodies. In addition, cFd and cL were successfully refolded into cFab by gradient dialysis, with about 59.45% of recovery when the starting total protein concentration was 100 μg/mL. The renatured cFab could specifically bind to related antigen with high affinity.CONCLUSION: The cFab antibody against human hepatoma was highly and efficiently expressed and refolded, which laid a solid foundation for studying its application in the treatment of hepatoma.

  14. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Masaaki [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Morikawa, Katsuma [Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Suda, Tatsuya [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Ohno, Naohito [Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Matsushita, Sho [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Allergy Center, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Akatsuka, Toshitaka [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Handa, Hiroshi, E-mail: handa.h.aa@m.titech.ac.jp [Solutions Research Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503 (Japan); Matsui, Masanori, E-mail: mmatsui@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.

  15. Chimerism in a child with severe combined immunodeficiency: a case report.

    Science.gov (United States)

    Aureli, Anna; Piancatelli, Daniela; Monaco, Palmina I; Ozzella, Giuseppina; Canossi, Angelica; Piazza, Antonina; Isacchi, Giancarlo; Caniglia, Maurizio; Adorno, Domenico

    2006-09-01

    Severe combined immunodeficiency (SCID) represents a group of rare, sometimes fatal, congenital disorders in which there is a combined absence of T-lymphocyte and B-lymphocyte function. Children with SCID die within two years of age, if untreated. The effective treatment for SCID is a hematopoietic stem cell transplantation (HSCT). It has been repeatedly described that in peripheral blood of infants with SCID maternal T cells can be found. Here we report a case of blood chimerism in a one-year-old boy with SCID.

  16. Construction of chimeric enzymes out of maize endosperm branching enzymes I and II: activity and properties.

    Science.gov (United States)

    Kuriki, T; Stewart, D C; Preiss, J

    1997-11-14

    Branching enzyme I and II isoforms from maize endosperm (mBE I and mBE II, respectively) have quite different properties, and to elucidate the domain(s) that determines the differences, chimeric genes consisting of part mBE I and part mBE II were constructed. When expressed under the control of the T7 promoter in Escherichia coli, several of the chimeric enzymes were inactive. The only fully active chimeric enzyme was mBE II-I BspHI, in which the carboxyl-terminal part of mBE II was exchanged for that of mBE I at a BspHI restriction site and was purified to homogeneity and characterized. Another chimeric enzyme, mBE I-II HindIII, in which the amino-terminal end of mBE II was replaced with that of mBE I, had very little activity and was only partially characterized. The purified mBE II-I BspHI exhibited higher activity than wild-type mBE I and mBE II when assayed by the phosphorylase a stimulation assay. mBE II-I BspHI had substrate specificity (preference for amylose rather than amylopectin) and catalytic capacity similar to mBE I, despite the fact that only the carboxyl terminus was from mBE I, suggesting that the carboxyl terminus may be involved in determining substrate specificity and catalytic capacity. In chain transfer experiments, mBE II-I BspHI transferred more short chains (with a degree of polymerization of around 6) in a fashion similar to mBE II. In contrast, mBE I-II HindIII transferred more long chains (with a degree of polymerization of around 11-12), similar to mBE I, suggesting that the amino terminus of mBEs may play a role in the size of oligosaccharide chain transferred. This study challenges the notion that the catalytic centers for branching enzymes are exclusively located in the central portion of the enzyme; it suggests instead that the amino and carboxyl termini may also be involved in determining substrate preference, catalytic capacity, and chain length transfer.

  17. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors.

    Science.gov (United States)

    Thokala, Radhika; Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E; Laskowski, Tamara; McNamara, George; Cooper, Laurence J N

    2016-01-01

    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies.

  18. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors

    Science.gov (United States)

    Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E.; Laskowski, Tamara; McNamara, George; Cooper, Laurence J. N.

    2016-01-01

    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR’s in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies. PMID:27548616

  19. Construction of a chimeric hepatitis C virus replicon based on a strain isolated from a chronic hepatitis C patient.

    Science.gov (United States)

    Cao, Huang; Zhu, Wandi; Han, Qingxia; Pei, Rongjuan; Chen, Xinwen

    2014-02-01

    Subgenomic replicons of hepatitis C virus (HCV) have been widely used for studying HCV replication. Here, we report a new subgenomic replicon based on a strain isolated from a chronically infected patient. The coding sequence of HCV was recovered from a Chinese chronic hepatitis C patient displaying high serum HCV copy numbers. A consensus sequence designated as CCH strain was constructed based on the sequences of five clones and this was classified by sequence alignment as belonging to genotype 2a. The subgenomic replicon of CCH was replication-deficient in cell culture, due to dysfunctions in NS3 and NS5B. Various JFH1/CCH chimeric replicons were constructed, and specific mutations were introduced. The introduction of mutations could partially restore the replication of chimeric replicons. A replication-competent chimeric construct was finally obtained by the introduction of NS3 from JFH1 into the backbone of the CCH strain.

  20. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    Full Text Available BACKGROUND: Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown. METHODOLOGY/PRINCIPAL FINDINGS: The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall, based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies. CONCLUSIONS/SIGNIFICANCE: While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection.

  1. T-cell chimerism is valuable in predicting early mortality in steroid-resistant acute graft-versus-host disease after myeloablative allogeneic cell transplantation

    DEFF Research Database (Denmark)

    Minculescu, Lia; Madsen, Hans O.; Sengeløv, Henrik

    2014-01-01

    The main aim of this study was to evaluate the impact of early T-cell chimerism status on the incidence and clinical course of acute graft-versus-host disease (aGVHD) in allogeneic transplant recipients after myeloablative conditioning. Of 62 patients, 38 (61%) had complete T-cell donor chimerism...

  2. Potato virus X movement in Nicotiana benthamiana: new details revealed by chimeric coat protein variants.

    Science.gov (United States)

    Betti, Camilla; Lico, Chiara; Maffi, Dario; D'Angeli, Simone; Altamura, Maria Maddalena; Benvenuto, Eugenio; Faoro, Franco; Baschieri, Selene

    2012-02-01

    Potato virus X coat protein is necessary for both cell-to-cell and phloem transfer, but it has not been clarified definitively whether it is needed in both movement phases solely as a component of the assembled particles or also of differently structured ribonucleoprotein complexes. To clarify this issue, we studied the infection progression of a mutant carrying an N-terminal deletion of the coat protein, which was used to construct chimeric virus particles displaying peptides selectively affecting phloem transfer or cell-to-cell movement. Nicotiana benthamiana plants inoculated with expression vectors encoding the wild-type, mutant and chimeric viral genomes were examined by microscopy techniques. These experiments showed that coat protein-peptide fusions promoting cell-to-cell transfer only were not competent for virion assembly, whereas long-distance movement was possible only for coat proteins compatible with virus particle formation. Moreover, the ability of the assembled PVX to enter and persist into developing xylem elements was revealed here for the first time.

  3. Structure-Activity Relationship and Signaling of New Chimeric CXCR4 Agonists.

    Science.gov (United States)

    Mona, Christine E; Besserer-Offroy, Élie; Cabana, Jérôme; Lefrançois, Marilou; Boulais, Philip E; Lefebvre, Marie-Reine; Leduc, Richard; Lavigne, Pierre; Heveker, Nikolaus; Marsault, Éric; Escher, Emanuel

    2016-08-25

    The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gαi full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor-ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series.

  4. Report of a chimeric origin of transposable elements in a bovine-coding gene.

    Science.gov (United States)

    Almeida, L M; Amaral, M E J; Silva, I T; Silva, W A; Riggs, P K; Carareto, C M

    2008-02-01

    Despite the wide distribution of transposable elements (TEs) in mammalian genomes, part of their evolutionary significance remains to be discovered. Today there is a substantial amount of evidence showing that TEs are involved in the generation of new exons in different species. In the present study, we searched 22,805 genes and reported the occurrence of TE-cassettes in coding sequences of 542 cow genes using the RepeatMasker program. Despite the significant number (542) of genes with TE insertions in exons only 14 (2.6%) of them were translated into protein, which we characterized as chimeric genes. From these chimeric genes, only the FAST kinase domains 3 (FASTKD3) gene, present on chromosome BTA 20, is a functional gene and showed evidence of the exaptation event. The genome sequence analysis showed that the last exon coding sequence of bovine FASTKD3 is approximately 85% similar to the ART2A retrotransposon sequence. In addition, comparison among FASTKD3 proteins shows that the last exon is very divergent from those of Homo sapiens, Pan troglodytes and Canis familiares. We suggest that the gene structure of bovine FASTKD3 gene could have originated by several ectopic recombinations between TE copies. Additionally, the absence of TE sequences in all other species analyzed suggests that the TE insertion is clade-specific, mainly in the ruminant lineage.

  5. Inter-specific coral chimerism: Genetically distinct multicellular structures associated with tissue loss in Montipora capitata

    Science.gov (United States)

    Work, Thierry M.; Forsman, Zac H.; Szabo, Zoltan; Lewis, Teresa D.; Aeby, Greta S.; Toonen, Robert J.

    2011-01-01

    Montipora white syndrome (MWS) results in tissue-loss that is often lethal to Montipora capitata, a major reef building coral that is abundant and dominant in the Hawai'ian Archipelago. Within some MWS-affected colonies in Kane'ohe Bay, Oahu, Hawai'i, we saw unusual motile multicellular structures within gastrovascular canals (hereafter referred to as invasive gastrovascular multicellular structure-IGMS) that were associated with thinning and fragmentation of the basal body wall. IGMS were in significantly greater densities in coral fragments manifesting tissue-loss compared to paired normal fragments. Mesenterial filaments from these colonies yielded typical M. capitata mitochondrial haplotypes (CO1, CR), while IGMS from the same colony consistently yielded distinct haplotypes previously only found in a different Montipora species (Montipora flabellata). Protein profiles showed consistent differences between paired mesenterial filaments and IGMS from the same colonies as did seven microsatellite loci that also exhibited an excess of alleles per locus inconsistent with a single diploid organism. We hypothesize that IGMS are a parasitic cellular lineage resulting from the chimeric fusion between M. capitata and M. flabellata larvae followed by morphological reabsorption of M. flabellata and subsequent formation of cell-lineage parasites. We term this disease Montiporaiasis. Although intra-specific chimerism is common in colonial animals, this is the first suspected inter-specific example and the first associated with tissue loss.

  6. Inter-specific coral chimerism: genetically distinct multicellular structures associated with tissue loss in Montipora capitata.

    Directory of Open Access Journals (Sweden)

    Thierry M Work

    Full Text Available Montipora white syndrome (MWS results in tissue-loss that is often lethal to Montipora capitata, a major reef building coral that is abundant and dominant in the Hawai'ian Archipelago. Within some MWS-affected colonies in Kane'ohe Bay, Oahu, Hawai'i, we saw unusual motile multicellular structures within gastrovascular canals (hereafter referred to as invasive gastrovascular multicellular structure-IGMS that were associated with thinning and fragmentation of the basal body wall. IGMS were in significantly greater densities in coral fragments manifesting tissue-loss compared to paired normal fragments. Mesenterial filaments from these colonies yielded typical M. capitata mitochondrial haplotypes (CO1, CR, while IGMS from the same colony consistently yielded distinct haplotypes previously only found in a different Montipora species (Montipora flabellata. Protein profiles showed consistent differences between paired mesenterial filaments and IGMS from the same colonies as did seven microsatellite loci that also exhibited an excess of alleles per locus inconsistent with a single diploid organism. We hypothesize that IGMS are a parasitic cellular lineage resulting from the chimeric fusion between M. capitata and M. flabellata larvae followed by morphological reabsorption of M. flabellata and subsequent formation of cell-lineage parasites. We term this disease Montiporaiasis. Although intra-specific chimerism is common in colonial animals, this is the first suspected inter-specific example and the first associated with tissue loss.

  7. HLA Chimerism in allogenic haplo-identical peripheral blood stem cell transplant

    Directory of Open Access Journals (Sweden)

    Chhaya Sonal

    2004-01-01

    Full Text Available HLA antigens were used as markers to establish the presence of chimerism (i.e. simultaneous presence of two lymphocyte populations from recipient as well as donor in a patient with chronic granulomatous disease treated with one haplotype matched stem cell transplant. Neutrophil engraftment occurred on Day 6 post peripheral blood stem cell transplant (PBSCT. Platelet counts were maintained above 20x10[9]/L. Six months after the allogenic PBSCT, lymphocyte population was chimeric and cells of both donor (father and host HLA type were present. The patient revealed a shift in his HLA antigen profile and there was evidence of donor cell engraftment. The HLA phenotype A26,CwXX,B8,DRB1FNx0103//A32,Cw4,B35,DRB1FNx0116// represented his true phenotype whereas A11,Cw7,B62,DRB1FNx0114 represented donor (father origin.. HLA system as a genetic marker is a useful additional approach to determine engraftment following an allogenic haplo-identical stem cell transplantation.

  8. Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia.

    Science.gov (United States)

    Rippey, Caitlin; Walsh, Tom; Gulsuner, Suleyman; Brodsky, Matt; Nord, Alex S; Gasperini, Molly; Pierce, Sarah; Spurrell, Cailyn; Coe, Bradley P; Krumm, Niklas; Lee, Ming K; Sebat, Jonathan; McClellan, Jon M; King, Mary-Claire

    2013-10-03

    Chimeric genes can be caused by structural genomic rearrangements that fuse together portions of two different genes to create a novel gene. We hypothesize that brain-expressed chimeras may contribute to schizophrenia. Individuals with schizophrenia and control individuals were screened genome wide for copy-number variants (CNVs) that disrupted two genes on the same DNA strand. Candidate events were filtered for predicted brain expression and for frequency genes in localization, regulation, or function. Subcellular localizations of DNAJA2-NETO2 and MAP3K3-DDX42 differed from their parent genes. On the basis of the expression profile of the MATK promoter, MATK-ZFR2 is likely to be far more highly expressed in the brain during development than the ZFR2 parent gene. MATK-ZFR2 includes a ZFR2-derived isoform that we demonstrate localizes preferentially to neuronal dendritic branch sites. These results suggest that the formation of chimeric genes is a mechanism by which CNVs contribute to schizophrenia and that, by interfering with parent gene function, chimeras may disrupt critical brain processes, including neurogenesis, neuronal differentiation, and dendritic arborization.

  9. Protection of Mice from Lethal Endotoxemia by Chimeric Human BPI-Fcγ1 Gene Delivery

    Institute of Scientific and Technical Information of China (English)

    Chen Li; Jing Li; Zhe Lv; Xinghua Guo; Qinghua Chen; Qingli Kong; Yunqing An

    2006-01-01

    To evaluate the potentiality of applying gene therapy to endotoxemia in high-risk patients, we investigated the effects of transferring an adeno-associated virus serotype 2 (AAV2)-mediated BPI-Fcγ1 gene on protecting mice from challenge of lethal endotoxin. The chimeric BPI-Fcγ1 gene consists of two parts, one encods functional N-terminus (1 to 199 amino acidic residues) of human BPI, which is a bactericidal/permeability-increasing protein,and the other encodes Fc segment of human immunoglobulin G1 (Fcγ1). Our results indicated that the target protein could be expressed and secreted into the serum of the gene-transferred mice. After lethal endotoxin challenge, the levels of endotoxin and TNF-α in the gene-transferred mice were decreased. The survival rate of the BPI-Fcγ1 gene-transferred mice was markedly increased. Our data suggest that AAV2-mediated chimeric BPI-Fcγ1 gene delivery can potentially be used clinically for the protection and treatment of endotoxemia and endotoxic shock in high-risk individuals.

  10. Tetravalent neutralizing antibody response against four dengue serotypes by a single chimeric dengue envelope antigen.

    Science.gov (United States)

    Apt, Doris; Raviprakash, Kanakatte; Brinkman, Alice; Semyonov, Andrey; Yang, Shumin; Skinner, Craig; Diehl, Lori; Lyons, Richard; Porter, Kevin; Punnonen, Juha

    2006-01-16

    We employed DNA shuffling and screening technologies to develop a single recombinant dengue envelope (E) antigen capable of inducing neutralizing antibodies against all four antigenically distinct dengue serotypes. By DNA shuffling of codon-optimized dengue 1-4 E genes, we created a panel of novel chimeric clones expressing C-terminal truncated E antigens that combined epitopes from all four dengue serotypes. DNA vaccines encoding these novel chimeras induced multivalent T cell and neutralizing antibody responses against all four dengue serotypes in mice. By contrast, a mixture of four unshuffled, parental DNA vaccines failed to produce tetravalent neutralizing antibodies in mice. The neutralizing antibody titers for some of these antigens could be further improved by extending the sequences to express full-length pre-membrane and envelope proteins. The chimeric antigens also protected mice against a lethal dengue-2 virus challenge. These data demonstrate that DNA shuffling and associated screening can lead to the selection of multi-epitope antigens against closely related dengue virus serotypes and suggest a broad utility for these technologies in optimizing vaccine antigens.

  11. EspA-Intimin chimeric protein, a candidate vaccine against Escherichia coli O157:H7.

    Directory of Open Access Journals (Sweden)

    Hamid Sedighian Rad

    2013-09-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 is an important enteric pathogen in human causing bloody or nonbloody diarrhea, which may be complicated by hemolytic uremic syndrome (HUS. Cattle are an important reservoir of EHEC. This research aims at vaccination with a divalent chimer protein composed of EspA120 and Intimin 282 and its preventive effect of EHEC O157 colonization in mice rectal epithelium.A divalent recombinant EspA-Intimin (EI protein containing EspA120 and Intimin280 attached with a linker was amplified from a trivalent construct and cloned in pET-28a (+ vector. The immunization was conducted in mice after expression and purification of the recombinant EI (rEI.Mice subcutaneously immunized with rEI, elicited significant rEI specific serum IgG antibodies and showed significantly decreased E.coli O157:H7 shedding compared to the control group.The chimeric recombinant protein induced strong humoral response as well as protection against oral challenges with live E.coli O157:H7.

  12. Development of GR/MR Chimeric Receptors and Their Response to Steroid Hormones

    Institute of Scientific and Technical Information of China (English)

    Huang Qiman; Yang Qunying; Elisabeth Martinez; Guo Sandui

    2000-01-01

    We have established an effective and reliable technique of developing GR/MR chimeric receptors by DNA homologous recombination. To develop the method we transformed several different E. coli strains with a linearized plasmid containing full length of mGR(mouse GR) and hormone binding domain(HBD) of rMR(rat MR), the linear DNA undergoes recombination due to the homology of the mGR and the rMR and recircularize , and propagation in E. coli. PCR was performed to screen correct construction in which fusion between GR and MR took place. The constructs were digested with appropriate restriction endonucleases to test probable fusion sites of GR and HBD of MR. Precise fusion sites of GR and MR for constructs AB1157 # 2 , AB1157 # 18, AB 1157 # 22, AB1157 # 32, CMK603 # 6 were verified by DNA sequencing. Trans fection of COS- 7 cells with the constructs and subsequent treatment of transfected COS-7 cells with steroid hormones were carried out, the results showed that the constructs gave response to tested hormones. The study suggested that the GR/MR chimeric receptors can give rise to fusion proteins and their interactive function between hormone and receptor.

  13. The imaging and the fractal metrology of chimeric liposomal Drug Delivery nano Systems: the role of macromolecular architecture of polymeric guest.

    Science.gov (United States)

    Pippa, Natassa; Pispas, Stergios; Demetzos, Costas

    2014-09-01

    The major advance of mixed liposomes (the so-called chimeric systems) is to control the size, structure, and morphology of these nanoassemblies, and therefore, system colloidal properties, with the aid of a large variety of parameters, such as chemical architecture and composition. The goal of this study is to investigate the alterations of the physicochemical and morphological characteristics of chimeric dipalmitoylphosphatidylcholine (DPPC) liposomes, caused by the incorporation of block and gradient copolymers (different macromolecular architecture) with different chemical compositions (different amounts of hydrophobic component). Light scattering techniques were utilized in order to characterize physicochemically and to delineate the fractal morphology of chimeric liposomes. In this study, we also investigated the structural differences between the prepared chimeric liposomes as are visualized by scanning electron microscopy (SEM). It could be concluded that all the chimeric liposomes have regular structure, as SEM images revealed, while their fractal dimensionality was found to be dependent on the macromolecular architecture of the polymeric guest.

  14. Construction and immunogenic properties of a chimeric protein comprising CfaE, CfaB and LTB against Enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Gheibi Hayat, Seyed-Mohammad; Mousavi Gargari, Seyed-Latif; Nazarian, Shahram

    2016-11-01

    ETEC (Enterotoxigenic Escherichia coli) is a major cause of diarrhea in developing countries and children. ETEC has two virulence factors including colonization factors antigen (CFA) and labile enterotoxins (LTs). CFA/I consists the major pilin subunit CfaB and a minor adhesive subunit, CfaE. In this study a tripartite fusion protein containing CfaB, CfaE and LTB was designed. In silico analysis of the tertiary structure of the chimeric protein showed a protein with three main domains linked together with linkers. Linear and conformational B-cell epitopes were identified. A chimera consisting cfaB, cfaE and ltB(BET)was then synthesized with E. coli codon bias in pUC57 and sub cloned into pET32 vector. Recombinant protein was expressed and purified by affinity chromatography and confirmed by western blotting. Mice were immunized with recombinant protein and the antibody titer and specificity of the sera were analyzed by ELISA. The efficiency of the immune sera against ETEC was evaluated by binding assay and GM1-ELISA. VaxiJen analysis of the protein showed high antigenicity. Post-immune sera contained high titers of anti-BET IgG. Pretreatment of ETEC cells with sera from immunized mice decreased their ability to adhere to cells of the human colon adenocarcinoma cell line HT29.

  15. Vaccine-induced protection from infection of mice by chimeric human immunodeficiency virus type 1, EcoHIV/NL4-3.

    Science.gov (United States)

    Saini, Manisha; Hadas, Eran; Volsky, David J; Potash, Mary Jane

    2007-12-17

    EcoHIV/NL4-3 is a chimeric human immunodeficiency virus type 1 (HIV-1) that can productively infect mice. This study tests the utility of EcoHIV/NL4-3 infection to reveal protective immune responses to an HIV-1 vaccine. Immunocompetent mice were first immunized with VRC 4306 which encodes subtype B consensus sequences of gag, pol, and nef and then were infected by EcoHIV/NL4-3. Anti-Gag antibodies were sampled during immunization and infection. The extent of EcoHIV/NL4-3 infection in spleen cells and peritoneal macrophages was determined by quantitative real-time PCR (QPCR). Although antibody titres were not significantly different in control and vaccinated groups, VRC 4306 immunization induced protective responses that significantly reduced virus burden in both lymphocyte and macrophage compartments. These results indicate that EcoHIV/NL4-3 infection can be controlled by HIV-1 vaccine-induced responses, introducing a small animal model to test vaccine efficacy against HIV-1 infection.

  16. Long-term experience of plasmapheresis in antibody-mediated rejection in renal transplantation.

    LENUS (Irish Health Repository)

    Brown, C M

    2009-11-01

    Antibody-mediated rejection (AMR) continues to pose a serious challenge in renal transplantation with potentially devastating consequences. Treatment options for this condition include plasmapheresis, high-dose intravenous immunoglobulin (IVIG), plasmapheresis with low-dose IVIG, and the use of rituximab (anti-CD20 chimeric antibody). We previously reported on the short-term outcome of plasmapheresis as a rescue therapy for AMR in our centre. We now report on the long-term follow up.

  17. Steroid-resistant autoimmune thrombocytopenia in systemic lupus erythematosus treated with rituximab

    Directory of Open Access Journals (Sweden)

    Vasudha V Sardesai

    2015-01-01

    Full Text Available Systemic Lupus Erythematosus (SLE is a multisystem disorder characterized by production of numerous autoantibodies, some of which have pathogenic consequences and result in considerable morbidity. Herein, we present a case of 48-year-old female with SLE having autoimmune hemolytic anemia, autoimmune thrombocytopenia, renal involvement, and recurrent flares of skin manifestations. She did not respond to the conventional therapy and was controlled and treated with Rituximab, a chimeric, monoclonal antiCD20 antibody, which specifically depletes B lymphocytes.

  18. The Construction of Chimeric T-Cell Receptor with Spacer Base of Modeling Study of VHH and MUC1 Interaction

    Directory of Open Access Journals (Sweden)

    Nazanin Pirooznia

    2011-01-01

    Full Text Available Adaptive cell immunotherapy with the use of chimeric receptors leads to the best and most specific response against tumors. Chimeric receptors consist of a signaling fragment, extracellular spacer, costimulating domain, and an antibody. Antibodies cause immunogenicity; therefore, VHH is a good replacement for ScFv in chimeric receptors. Since peptide sequences have an influence on chimeric receptors, the effect of peptide domains on each other's conformation were investigated. CD3Zeta, CD28, VHH and CD8α, and FcgIIα are used as signaling moieties, costimulating domain, antibody, and spacers, respectively. To investigate the influence of the ligation of spacers on the conformational structure of VHH, models of VHH were constructed. Molecular dynamics simulation was run to study the influence of the presence of spacers on the conformational changes in the binding sites of VHH. Root mean square deviation and root mean square fluctuation of critical segments in the binding site showed no noticeable differences with those in the native VHH. Results from molecular docking revealed that the presence of spacer FcgIIα causes an increasing effect on VHH with MUC1 interaction. Each of the constructs was transformed into the Jurkat E6.1. Expression analysis and evaluation of their functions were examined. The results showed good expression and function.

  19. Hypothesis: Artifacts, Including Spurious Chimeric RNAs with a Short Homologous Sequence, Caused by Consecutive Reverse Transcriptions and Endogenous Random Primers.

    Science.gov (United States)

    Peng, Zhiyu; Yuan, Chengfu; Zellmer, Lucas; Liu, Siqi; Xu, Ningzhi; Liao, D Joshua

    2015-01-01

    Recent RNA-sequencing technology and associated bioinformatics have led to identification of tens of thousands of putative human chimeric RNAs, i.e. RNAs containing sequences from two different genes, most of which are derived from neighboring genes on the same chromosome. In this essay, we redefine "two neighboring genes" as those producing individual transcripts, and point out two known mechanisms for chimeric RNA formation, i.e. transcription from a fusion gene or trans-splicing of two RNAs. By our definition, most putative RNA chimeras derived from canonically-defined neighboring genes may either be technical artifacts or be cis-splicing products of 5'- or 3'-extended RNA of either partner that is redefined herein as an unannotated gene, whereas trans-splicing events are rare in human cells. Therefore, most authentic chimeric RNAs result from fusion genes, about 1,000 of which have been identified hitherto. We propose a hypothesis of "consecutive reverse transcriptions (RTs)", i.e. another RT reaction following the previous one, for how most spurious chimeric RNAs, especially those containing a short homologous sequence, may be generated during RT, especially in RNA-sequencing wherein RNAs are fragmented. We also point out that RNA samples contain numerous RNA and DNA shreds that can serve as endogenous random primers for RT and ensuing polymerase chain reactions (PCR), creating artifacts in RT-PCR.

  20. Chimerism 47,XY,+21/46,XX in a female infant with anencephaly and other congenital defects

    Directory of Open Access Journals (Sweden)

    Danielle R. Lucon

    2006-01-01

    Full Text Available Chimerism is rare in humans and is usually discovered accidentally when a 46,XX and 46,XY karyotype is found in a same individual. We describe a malformed female infant with neural tube defect (NTD and a 47,XY,+21[5]/46,XX[30] karyotype.

  1. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    Science.gov (United States)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  2. Fiber-chimeric adenoviruses expressing fibers from serotype 16 and 50 improve gene transfer to human pancreatic adenocarcinoma

    NARCIS (Netherlands)

    Kuhlmann, K.F.D.; Geer, M.A. van; Bakker, C.T.; Dekker, J.E.M.; Havenga, M.J.E.; Oude Elferink, R.P.J.; Gouma, D.J.; Bosma, P.J.; Wesseling, J.G.

    2009-01-01

    Survival of patients with pancreatic cancer is poor. Adenoviral (Ad) gene therapy employing the commonly used serotype 5 reveals limited transduction efficiency due to the low amount of coxsackie-adenovirus receptor on pancreatic cancer cells. To identify fiber-chimeric adenoviruses with improved ge

  3. Immune response and protective profile elicited by a multi-epitope chimeric protein derived from Leptospira interrogans

    Directory of Open Access Journals (Sweden)

    Luis G.V. Fernandes

    2017-04-01

    Conclusions: Although a complete characterization of the immune response elicited by rChi/adjuvant in hamsters is required, it is believed that the construction of chimeric genes is an important attempt towards the generation of an effective vaccine against leptospirosis.

  4. [An analysis of chimeric mice obtained by the injection of the inner cell mass into the blastocyst].

    Science.gov (United States)

    Mitalipov, Sh M; Fedorov, L M; Strel'chenko, N S

    1993-01-01

    Mouse chimeras were produced using injections of ICM cells into blastocysts. Chimerism of resulting animals was determined by their coat color and spectrum of glucosephosphate isomerase isoenzymes. The use of modifications of the injection method for solving different genetic and embryological problems is discussed.

  5. A CssA, CssB and LTB chimeric protein induces protection against Enterotoxigenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Samane Bagheri

    2014-06-01

    Full Text Available OBJECTIVES: Enterotoxigenic Escherichia coli (ETEC, a major cause of diarrhea in children under 5, is an important agent for traveler's diarrhea. Heat-labile enterotoxin (LT and colonization factors (CFs are two main virulence mechanisms in ETEC. CS6 is one of the most prevalent CFs consisting of two structural subunits viz., CssA, CssB, necessary for attachment to the intestinal cells. METHODS: In the present research, a chimeric trivalent protein composed of CssB, CssA and LTB was constructed. The chimeric gene was synthesized with codon bias of E. coli for enhanced expression of the protein. Recombinant proteins were expressed and purified. Mice were immunized with the recombinant protein. The antibody titer and specificity of the immune sera were analyzed by ELISA and Western blotting. Efficiency of the immune sera against ETEC was evaluated. RESULTS: Antibody induction was followed by immunization of mice with the chimeric protein. Pretreatment of the ETEC cells with immunized animal antisera remarkably decreased their adhesion to Caco-2 cells. DISCUSSION: The results indicate efficacy of the recombinant chimeric protein as an effective immunogen, which induces strong humoral response as well as protection against ETEC adherence and toxicity.

  6. Induction of partial protection against infection with Toxoplasma gondii genotype II by DNA vaccination with recombinant chimeric tachyzoite antigens

    DEFF Research Database (Denmark)

    Rosenberg, Carina Agerbo; De Craeye, S.; Jongert, E.

    2009-01-01

    complications. Although several strategies have been suggested for making a vaccine, none is currently available. Here, we investigate the protection conferred by DNA vaccination with two constructs, pcEC2 (MIC2-MIC3-SAG1) and pcEC3 (GRA3-GRA7-M2AP), encoding chimeric proteins containing multiple antigenic...

  7. Adoptive immunotherapy to increase the level of donor hematopoietic chimerism after nonmyeloablative marrow transplantation for severe canine hereditary hemolytic anemia.

    Science.gov (United States)

    Takatu, Alessandra; Nash, Richard A; Zaucha, Jan M; Little, Marie-Terese; Georges, George E; Sale, George E; Zellmer, Eustacia; Kuhr, Christian S; Lothrop, Clinton D; Storb, Rainer

    2003-11-01

    Severe hemolytic anemia in Basenji dogs secondary to pyruvate kinase deficiency can be corrected by allogeneic hematopoietic cell transplantation (HCT) from littermates with normal hematopoiesis after conventional myeloablative or nonmyeloablative conditioning regimens. If the levels of donor chimerism were low (after nonmyeloablative HCT, there was only partial correction of the hemolytic anemia. We next addressed whether allogeneic cell therapy after nonmyeloablative HCT would convert mixed to full hematopoietic chimerism, achieve sustained remission from hemolysis, and prevent progression of marrow fibrosis and liver cirrhosis. Three pyruvate kinase-deficient dogs were given HCT from their respective dog leukocyte antigen-identical littermates after nonmyeloablative conditioning with 200 cGy of total body irradiation. Postgrafting immunosuppression consisted of mycophenolate mofetil and cyclosporine. All 3 dogs engrafted and had mixed hematopoietic chimerism with donor levels ranging from 12% to 55% in bone marrow. In 2 of the 3 dogs, there were decreases in the levels of donor chimerism so that at 25 weeks after nonmyeloablative HCT, hemolysis recurred that was associated with increased reticulocyte counts. All 3 dogs then had 2 serial infusions of donor lymphocytes (DLI) from their respective donors at least 20 weeks apart to convert from mixed to full donor chimerism. Both dogs with recurrence of hemolytic anemia after nonmyeloablative HCT achieved higher levels of donor chimerism, with donor contributions ranging from 47% to 62% in the bone marrow and 50% to 69% and 16% to 25% in the granulocyte and mononuclear cell fractions of the peripheral blood, respectively, and with remission of the hemolytic anemia. One dog responded after the first DLI, and 5 weeks after the second DLI, the other dog converted to full donor chimerism. At last follow-up, all these dogs showed clinical improvement, as determined by increasing hematocrits and normal reticulocyte counts

  8. Recombinant anti-tenascin antibody constructs

    Energy Technology Data Exchange (ETDEWEB)

    ZALUTSKY, MICHAEL R

    2006-08-29

    The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploit our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr -particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti

  9. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF activity.

    Directory of Open Access Journals (Sweden)

    Gözde Isik

    Full Text Available HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs that target the envelope glycoprotein complex (Env. An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  10. Immunogenicity and therapeutic effects of Ag85A/B chimeric DNA vaccine in mice infected with Mycobacterium tuberculosis.

    Science.gov (United States)

    Liang, Yan; Wu, Xueqiong; Zhang, Junxian; Xiao, Li; Yang, Yourong; Bai, Xuejuan; Yu, Qi; Li, Zhongming; Bi, Lan; Li, Ning; Wu, Xiaoli

    2012-12-01

    The situation of tuberculosis (TB) is very severe in China. New therapeutic agents or regimens to treat TB are urgently needed. In this study, Mycobacterium tuberculosis-infected mice were given immunotherapy intramuscularly with Ag85A/B chimeric DNA or saline, plasmid vector pVAX1, or Mycobacterium vaccae vaccine. The mice treated with Ag85A/B chimeric DNA showed significantly higher numbers of T cells secreting interferon-gamma (IFN-γ), more IFN-γ in splenocyte culture supernatant, more Th1 and Tc1 cells, and higher ratios of Th1/Th2 and Tc1/Tc2 cells in whole blood, indicating a predominant Th1 immune response to treatment. Infected mice treated with doses of 100 μg Ag85A/B chimeric DNA had an extended time until death of 50% of the animals that was markedly longer than the saline and vector control groups, and the death rate at 1 month after the last dose was lower than that in the other groups. Compared with the saline group, 100 μg Ag85A/B chimeric DNA and 100 μg Ag85A DNA reduced the pulmonary bacterial loads by 0.79 and 0.45 logs, and the liver bacterial loads by 0.52 and 0.50 logs, respectively. Pathological changes in the lungs were less, and the lesions were more limited. These results show that Ag85A/B chimeric DNA was effective for the treatment of TB, significantly increasing the cellular immune response and inhibiting the growth of M. tuberculosis.

  11. Insight into Substrate Preference of Two Chimeric Esterases by Combining Experiment and Molecular Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-li; HAN Wei-wei; ZHENG Bai-song; FENG Yan

    2013-01-01

    Better understanding of the relationship between the substrate preference and structural module of esterases is helpful to novel enzyme development.For this purpose,two chimeric esterases AAM7 and PAR,constructed via domain swapping between two ancient thermophilic esterases,were investigated on their molecular simulation(including homology modeling,substrates docking and substrate binding affinity validation) and enzymatic assay(specific activities and activation energies calculating).Our results indicate that the factors contributing to the substrate preference of many enzymes especially the broad-specificity enzymes like esterases are multiple and complicated,the substrate binding domains or binding pockets are important but not the only factor for substrate preference.

  12. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone.

    Science.gov (United States)

    Osorio, Jorge E; Wallace, Derek; Stinchcomb, Dan T

    2016-01-01

    Dengue fever is caused by infection with one of four dengue virus (DENV) serotypes (DENV-1-4), necessitating tetravalent dengue vaccines that can induce protection against all four DENV. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) comprises an attenuated DENV-2 strain plus chimeric viruses containing the prM and E genes of DENV-1, -3 and -4 cloned into the attenuated DENV-2 'backbone'. In Phase 1 and 2 studies, TDV was well tolerated by children and adults aged 1.5-45 years, irrespective of prior dengue exposure; mild injection-site symptoms were the most common adverse events. TDV induced neutralizing antibody responses and seroconversion to all four DENV as well as cross-reactive T cell-mediated responses that may be necessary for broad protection against dengue fever.

  13. Discovery of mitochondrial chimeric-gene associated with cytoplasmic male sterility of HL-rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mitochondrial genome libraries of HL-type sterile line(A) and maintainer line(B) have been constructed.Mitochondrial gene, atp6, was used to screen libraries, due to the different Southern and Northern blot results between sterile and maintainer line. Sequencing analysis of positive clones proved that there were two copies of atp6 gene in sterile line and only one in maintainer line. One copy of atpt6 in sterile line was same to that in maintainer line; the other showed different flanking sequence from the 49th nucleotide downstream of the termination codon of atp6 gene. A new chimeric gene, orfH79, was found in the region. OrfH79 had homology to mitochondrial gene coxⅡ and orfl07, and was special to HL-sterile cytoplasm.``

  14. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, Bodil; Pallesen, Lars; Jensen, Lars Bogø;

    1997-01-01

    The potential of the major structural protein of type 1 fimbriae as a display system for heterologous sequences was tested. As a reporter-epitope, a heterologous sequence mimicking a neutralizing epitope of the cholera toxin B chain was inserted, in one or two copies, into four different positions...... in the fimA gene. This was carried out by introduction of new restriction sites by PCR-mediated site-directed mutagenesis of fimA in positions predicted to correspond to optimally surface-located regions of the subunit protein. Subsequently, the synthetic cholera-toxin-encoding DNA segment was inserted...... with respect to host background in three different Escherichia coli strains, i.e. an isogenic set of K-12 strains, differing in the presence of an indigenous fim gene cluster, as well as a wild-type isolate. Immunization of rabbits with purified chimeric fimbriae resulted in serum which specifically recognized...

  15. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control.

  16. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection

    Science.gov (United States)

    Andrew Mackay, J.; Chen, Mingnan; McDaniel, Jonathan R.; Liu, Wenge; Simnick, Andrew J.; Chilkoti, Ashutosh

    2009-12-01

    New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

  17. Stem cell potency and the ability to contribute to chimeric organisms.

    Science.gov (United States)

    Polejaeva, Irina; Mitalipov, Shoukhrat

    2013-03-01

    Mouse embryonic chimeras are a well-established tool for studying cell lineage commitment and pluripotency. Experimental chimeras were successfully produced by combining two or more preimplantation embryos or by introducing into host embryo cultured pluripotent embryonic stem cells (ESCs). Chimera production using genetically modified ESCs became the method of choice for the generation of knockout or knockin mice. Although the derivation of ESCs or ESC-like cells has been reported for other species, only mouse and rat pluripotent stem cells have been shown to contribute to germline-competent chimeras, which is the defining feature of ESCs. Herein, we describe different approaches employed for the generation of embryonic chimeras, define chimera-competent cell types, and describe cases of spontaneous chimerism in humans. We also review the current state of derivation of pluripotent stem cells in several species and discuss outcomes of various chimera studies when such cells are used.

  18. Chikungunya, Influenza, Nipah, and Semliki Forest Chimeric Viruses with Vesicular Stomatitis Virus: Actions in the Brain.

    Science.gov (United States)

    van den Pol, Anthony N; Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K; Davis, John N

    2017-03-15

    Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain.IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah

  19. Fibrinogen interaction of CHO cells expressing chimeric αIIb/αvβ3 integrin

    Institute of Scientific and Technical Information of China (English)

    Juan-juan CHEN; Xiao-yu SU; Xiao-dong XI; Li-ping LIN; Jian DING; He LU

    2008-01-01

    Aim: The molecular mechanisms of the affinity regulation of αvβ3 integrin are important in tumor development, wound repairing, and angiogenesis. It has been established that the cytoplasmic domains of αvβ3 integrin play an important role in integrin-ligand affinity regulation. However, the relationship of structure-func-tion within these domains remains unclear. Methods: The extracellular and trans-membrane domain of αⅡb was fused to the αv integrin cytoplasmic domain, and the chimeric α subunit was coexpressed in Chinese hamster ovary (CHO) cells with the wild-type β3 subunit or with 3 mutant 133 sequences bearing truncations at the positions of T741, Y747, and F754, respectively. The CHO cells expressing these recombinant integrins were tested for soluble fibrinogen binding and the cell adhesion and spreading on immobilized fibrinogen. Results: All 4 types of integrins bound soluble fibrinogen in the absence of agonist stimulation, and only the cells expressing the chimeric α subunit with the wild-type β3 subunit, but not those with truncated β3, could adhere to and spread on immobilized fibrinogen. Conclusion: The substitution αⅡb at the cytoplasmic domain with the ctv cyto-plasmic sequence rendered the extracellular αⅡbβ3 a constitutively activated con-formation for ligands without the need of "inside-out" signals. Our results also indicated that the COOH-terminal sequence of β3 might play a key role in integrin αⅡb/αvβ3-mediated cell adhesion and spreading on immobilized fibrinogen. The cells expressing αⅡb/αvβ3 have enormous potential for facilitating drug screen-ing for antagonists either to αvβ3 intracellular interactions or to αⅡbβ3 receptor functions.

  20. Comparing regional modeling (CHIMERE) and satellite observations of aerosols (PARASOL): Methodology and case study over Mexico

    Science.gov (United States)

    Stromatas, Stavros

    2010-05-01

    S. Stromatas (1), S. Turquety (1), H. Chepfer (1), L. Menut (1), B. Bessagnet (2), JC Pere (2), D. Tanré (3) . (1) Laboratoire de Météorologie Dynamique, CNRS/IPSL, École Polytechnique, 91128 Palaiseau Cedex, France, (2) INERIS, Institut National de l'Environnement Industriel et des Risques, Parc technologique ALATA, 60550 Verneuil en Halatte, FRANCE, (3) Laboratoire d'Optique Atmosphérique/CNRS Univ. des Sciences et Tech. de Lille, 59650 - Villeneuve d'Ascq, France. Atmospheric suspended particles (aerosols) have significant radiative and environmental impacts, affecting human health, visibility and climate. Therefore, they are regulated by air quality standards worldwide, and monitored by regional observation networks. Satellite observations vastly improve the horizontal and temporal coverage, providing daily distributions. Aerosols are currently estimated using aerosol optical depth (AOD) retrievals, a quantitative measure of the extinction of solar radiation by aerosol scattering and absorption between the point of observation and the top of the atmosphere. Even though remarkable progresses in aerosol modeling by chemistry-transport models (CTM) and measurement experiments have been made in recent years, there is still a significant divergence between the modeled and observed results. However, AOD retrievals from satellites remains a highly challenging task mostly because it depends on a variety of different parameters such as cloud contamination, surface reflectance contributions and a priori assumptions on aerosol types, each one of them incorporating its own difficulties. Therefore, comparisons between CTM and observations are often difficult to interpret. In this presentation, we will discuss comparisons between regional modeling (CHIMERE CTM) over Mexico and satellite observations obtained by the POLDER instrument embarked on PARASOL micro-satellite. After a comparison of the model AOD with the retrieved L2 AOD, we will present an alternative

  1. Chimeric External Control to Quantify Cell Free DNA in Plasma Samples by Real Time PCR

    Science.gov (United States)

    Eini, Maryam; Behzad-Behbahani, Abbas; Takhshid, Mohammad Ali; Ramezani, Amin; Rafiei Dehbidi, Gholam Reza; Okhovat, Mohammad Ali; Farhadi, Ali; Alavi, Parniyan

    2016-01-01

    Background: DNA isolation procedure can significantly influence the quantification of DNA by real time PCR specially when cell free DNA (cfDNA) is the subject. To assess the extraction efficiency, linearity of the extraction yield, presence of co-purified inhibitors and to avoid problems with fragment size relevant to cfDNA, development of appropriate External DNA Control (EDC) is challenging. Using non-human chimeric nucleotide sequences, an EDC was developed for standardization of qPCR for monitoring stability of cfDNA concentration in blood samples over time. Methods: A0 DNA fragment of 167 bp chimeric sequence of parvovirus B19 and pBHA designated as EDC fragment was designed. To determine the impact of different factors during DNA extraction processing on quantification of cfDNA, blood samples were collected from normal subjects and divided into aliquots with and without specific treatment. In time intervals, the plasma samples were isolated. The amplicon of 167 bp EDC fragment in final concentration of 1.1 pg/500 μl was added to each plasma sample and total DNA was extracted by an in house method. Relative and absolute quantification real time PCR was performed to quantify both EDC fragment and cfDNA in extracted samples. Results: Comparison of real time PCR threshold cycle (Ct) for cfDNA fragment in tubes with and without specific treatment indicated a decrease in untreated tubes. In contrast, the threshold cycle was constant for EDC fragment in treated and untreated tubes, indicating the difference in Ct values of the cfDNA is because of specific treatments that were made on them. Conclusions: Spiking of DNA fragment size relevant to cfDNA into the plasma sample can be useful to minimize the bias due to sample preparation and extraction processing. Therefore, it is highly recommended that standard external DNA control be employed for the extraction and quantification of cfDNA for accurate data analysis. PMID:27141267

  2. [Research of Human-mouse Chimeric Antibodies Against Ebola Virus Nucleoprotein].

    Science.gov (United States)

    Zhou, Rongping; Sun, Lina; Liu, Yang; Wu, Wei; Li, Chuan; Liang, Mifang; Qiu, Peihong

    2016-01-01

    The Ebola virus is highly infectious and can result in death in ≤ 90% of infected subjects. Detection of the Ebola virus and diagnosis of infection are extremely important for epidemic control. Presently, Chinese laboratories detect the nucleic acids of the Ebola virus by real-time reverse transcription-polymerase chain reaction (RT-PCR). However, such detection takes a relatively long time and necessitates skilled personnel and expensive equipment. Enzyme-linked immunosorbent assay (ELISA) of serum is simple, easy to operate, and can be used to ascertain if a patient is infected with the Ebola virus as well as the degree of infection. Hence, ELISA can be used in epidemiological investigations and is a strong complement to detection of nucleic acids. Cases of Ebola hemorrhagic fever have not been documented in China, so quality-control material for positive serology is needed. Construction and expression of human-mouse chimeric antibodies against the nucleoprotein of the Ebola virus was carried out. Genes encoding variable heavy (VH) and variable light (VL) chains were extracted and amplified from murine hybridoma cells. Genes encoding the VH and VL chains of monoclonal antibodies were amplified by RT-PCR. According to sequence analyses, a primer was designed to amplify functional sequences relative to VH and VL chain. The eukaryotic expression vector HL51-14 carrying some human antibody heavy chain- and light chain-constant regions was used. IgG antibodies were obtained by transient transfection of 293T cells. Subsequently, immunological detection and immunological identification were identified by ELISA, immunofluorescence assay, and western blotting. These results showed that we constructed and purified two human- mouse chimeric antibodies.

  3. Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway

    Directory of Open Access Journals (Sweden)

    Ye Xiaoting

    2012-09-01

    Full Text Available Abstract Background The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed. Results A chimeric Embden-Meyerhof (EM pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31. Conclusions In this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as “synthetic metabolic engineering”. Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be

  4. Improved humoral and cellular immune responses against the gp120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the hepatitis B surface antigen

    DEFF Research Database (Denmark)

    Fomsgaard, A; Nielsen, H V; Bryder, K

    1998-01-01

    with the HIV MN gp160 envelope plasmid induced a slow and low titred anti-MN V3 antibody response at 12 weeks post-inoculation (p.i.) and a late appearing (7 weeks), weak and variable CTL response. In contrast, DNA vaccination with the HBsAg-encoding plasmid induced a rapid and high titred anti-HBsAg antibody...... response and a uniform strong anti-HBs CTL response already 1 week p.i. in all mice. DNA vaccination with the chimeric MN V3/HBsAg plasmid elicited humoral responses against both viruses within 3-6 weeks which peaked at 6-12 weeks and remained stable for at least 25 weeks. In addition, specific CTL......-2d-restricted cytotoxic T lymphocyte (CTL) epitope. In an attempt to improve the immunogenicity of V3 in DNA vaccines, a plasmid expressing MN V3 as a fusion protein with the highly immunogenic middle (pre-S2 + S) surface antigen of hepatitis B virus (HBsAg) was constructed. Epidermal inoculation...

  5. Improved humoral and cellular immune response against the gp120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the hepatites B surface antigen

    DEFF Research Database (Denmark)

    Fomsgaard, A.; Nielsen, H.V.; Bryder, K.

    1998-01-01

    MN gp160 envelope plasmid induced a slow and low titred anti-MN V3 antibody response at 12 weeks post-inoculation (p.i.) and a late appearing (7 weeks), weak and variable CTL response. In contrast, DNA vaccination with the HBsAg-encoding plasmid induced a rapid and high titred anti-HBsAg antibody...... response and a uniform strong anti-HBs CTL response already 1 week p.i. in all mice. DNA vaccination with the chimeric MN V2/HBsAg plasmid elicited humoral responses against both viruses within 3-6 weeks which peaked at 6-12 weeks and remained stable for at least 25 weeks. In addition, specific CTL......-2d-restricted cytotoxic T lymphocyte (CTL) epitope. In an attempt to improve the immunogenicity of V3 in DNA vaccines, a plasmid expressing MN V3 as a fusion protein with the highly immunogenic middle (pre-S2+S) surface antigen of hepatitis B virus (HBsAg) was constructed. Epidermal inoculation...

  6. Activation of antigen-exposed iMC-DCs at the "right place" and "right time" promotes potent anti-tumor immunity.

    Science.gov (United States)

    Spencer, David M

    2012-05-01

    To better control the "licensing" of pro-Th1 dendritic cells (DCs), Spencer and colleagues have developed a synthetic ligand-inducible chimeric receptor, iMyD88/CD40 (iMC), incorporating synergistic Toll-like receptor (TLR) and costimulatory signaling elements, permitting DC regulation in vivo within the context of an immunological synapse. This novel technology results in potent anti-cancer activity.

  7. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruilin Li

    2016-04-01

    Full Text Available Human epidermal growth factor receptor 2 (HER2 is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21 is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21 that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra, markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2 and protein kinase B (Akt signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy.

  8. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells.

    Science.gov (United States)

    Li, Ruilin; Hu, Siyi; Chang, Yan; Zhang, Zhihui; Zha, Zhao; Huang, Hui; Shen, Guodong; Liu, Jing; Song, Lihua; Wei, Wei

    2016-04-15

    Human epidermal growth factor receptor 2 (HER2) is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21) is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21) that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra), markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy.

  9. 抗人CD25嵌合抗体基因的构建及其瞬时表达研究%Study on construction and transient expression of human-mouse chimeric antibody gene against human CD25

    Institute of Scientific and Technical Information of China (English)

    胡迪超; 张爱华; 潘勇兵; 詹珊珊; 杨晓明

    2011-01-01

    目的:构建抗人CD25嵌合抗体基因并在哺乳动物细胞中进行瞬时表达和初步鉴定.方法:采用RLM-RACE法克隆WuTac抗体可变区和信号肽序列,并利用基因拼接法构建嵌合抗体基因.用脂质体法瞬时转染三种哺乳动物细胞,并使用ELISA、FCM、WB、Dot blot和免疫荧光法进行检测.结果:成功克隆WuTac抗体可变区和信号肽序列,并构建了抗人CD25嵌合抗体表达质粒.瞬时转染结果表明所表达的嵌合抗体保留了亲本抗体WuTac的抗原结合力.结论:成功构建了抗人CD25嵌合抗体基因,为其进一步研究打下基础.%Objective:To construct chimeric antibody gene against human an CD25 angigen,and prelin inarily identify the expressed prod-ucts produced from transiently transfected mammalian cells in order to facilitate the further study of stable expression.Methods:The RLM-RACE was employed to clone variable region genes and leader sequences,and the Overlap PVR method was used to construct the chimeric anti-body gene.After transiently transfected in three mammalian cells with liposome method, the expressed products were determined by ELISA,FCM,W B,Dotblot and immunofluorescence assay.Results:The variable region genes and leader sequences were successfully amplified,and the eukayotic expression plasmids were constructed.The results from transient transfection indicate the expressed products retain the antigen binding capacity of parental antibody WuTac.Conclusion:The successfully constructed chimeric antibody gene against human CD25 lays sound foun-dation for further study.

  10. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties.

    Science.gov (United States)

    Teulé, Florence; Miao, Yun-Gen; Sohn, Bong-Hee; Kim, Young-Soo; Hull, J Joe; Fraser, Malcolm J; Lewis, Randolph V; Jarvis, Donald L

    2012-01-17

    The development of a spider silk-manufacturing process is of great interest. However, there are serious problems with natural manufacturing through spider farming, and standard recombinant protein production platforms have provided limited progress due to their inability to assemble spider silk proteins into fibers. Thus, we used piggyBac vectors to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk proteins integrated in an extremely stable manner. Furthermore, these composite fibers were, on average, tougher than the parental silkworm silk fibers and as tough as native dragline spider silk fibers. These results demonstrate that silkworms can be engineered to manufacture composite silk fibers containing stably integrated spider silk protein sequences, which significantly improve the overall mechanical properties of the parental silkworm silk fibers.

  11. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    Science.gov (United States)

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  12. Chimeric FimH adhesin of type 1 fimbriae: a bacterial surface display system for heterologous sequences

    DEFF Research Database (Denmark)

    Pallesen, L; Poulsen, LK; Christiansen, Gunna;

    1995-01-01

    The FimH adhesin of type 1 fimbriae has been tested as a display system for heterologous protein segments on the surface of Escherichia coli. This was carried out by introduction of restriction site handles (BglII sites) in two different positions in the fimH gene, followed by in-frame insertion...... of heterologous DNA segments encoding two reporter sequences. In the selected positions such insertions did not significantly alter the function of the FimH protein with regard to surface location and adhesive ability. The system seemed to be quite flexible, since chimeric versions of the FimH adhesin containing...... as many as 56 foreign amino acids were transported to the bacterial surface as components of the fimbrial organelles. Furthermore, the foreign protein segments were recognized by insert-specific antibodies when expressed within chimeric proteins on the surface of the bacteria. The results from...

  13. Characterization of oligosaccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9

    Energy Technology Data Exchange (ETDEWEB)

    Wathen, M.W.; Aeed, P.A.; Elhammer, A.P. (Upjohn Co., Kalamazoo, MI (United States))

    1991-03-19

    The oligosaccharide structures added to a chimeric protein (FG) composed of the extracellular domains of respiratory syncytial virus F and G proteins, expressed in the insect cell line Sf9, were investigated. Cells were labeled in vivo with ({sup 3}H)glucosamine and infected wit a recombinant baculovirus containing the FG gene. The secreted chimeric protein was isolated by immunoprecipitation and subjected to oligosaccharide analysis. The FG protein contains two types of O-linked oligosaccharides: GalNAc and Gal{beta}1-3GalNAc constituting 17 and 66% of the total number of structures respectively. Only one type of N-linked oligosaccharide, constituting the remaining 17% of the structures on FG, was detected: a trimannosyl core structure with a fucose residue linked {alpha}1-6 to the asparagine-linked N-acetylglucosamine.

  14. Detection of Salmonella invA by isothermal and chimeric primer-initiated amplification of nucleic acids (ICAN) in Zambia.

    Science.gov (United States)

    Isogai, Emiko; Makungu, Chitwambi; Yabe, John; Sinkala, Patson; Nambota, Andrew; Isogai, Hiroshi; Fukushi, Hideto; Silungwe, Manda; Mubita, Charles; Syakalima, Michelo; Hang'ombe, Bernard Mudenda; Kozaki, Shunji; Yasuda, Jun

    2005-01-01

    The isothermal and chimeric primer-initiated amplification of nucleic acids (ICAN) is a new isothermal DNA amplification method composed of exo Bca DNA polymerase, RNaseH and DNA-RNA chimeric primers. We detected invA of Salmonella from chicken carcasses, egg yolk and cattle fecal samples. Fifty-three of 59 isolates were invA-positive in ICAN-chromatostrip detection. The result was consistent with those obtained by standard PCR. Salmonella invA was detected in 12 of 14 carcass rinses by ICAN, while in 7 of 14 rinses by standard PCR. These results indicate that ICAN is an efficient, sensitive and simple system to detect invA of Salmonella species in developing countries such as Zambia.

  15. An Unusual Chimeric Diterpene Synthase from Emericella variecolor and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping.

    Science.gov (United States)

    Qin, Bin; Matsuda, Yudai; Mori, Takahiro; Okada, Masahiro; Quan, Zhiyang; Mitsuhashi, Takaaki; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-01-26

    Di- and sesterterpene synthases produce C20 and C25 isoprenoid scaffolds from geranylgeranyl pyrophosphate (GGPP) and geranylfarnesyl pyrophosphate (GFPP), respectively. By genome mining of the fungus Emericella variecolor, we identified a multitasking chimeric terpene synthase, EvVS, which has terpene cyclase (TC) and prenyltransferase (PT) domains. Heterologous gene expression in Aspergillus oryzae led to the isolation of variediene (1), a novel tricyclic diterpene hydrocarbon. Intriguingly, in vitro reaction with the enzyme afforded the new macrocyclic sesterterpene 2 as a minor product from dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). The TC domain thus produces the diterpene 1 and the sesterterpene 2 from GGPP and GFPP, respectively. Notably, a domain swap of the PT domain of EvVS with that of another chimeric sesterterpene synthase, EvSS, successfully resulted in the production of 2 in vivo as well. Cyclization mechanisms for the production of these two compounds are proposed.

  16. Research Progress of Anti-angiogenesis Drugs in the Treatment of Lymphoma

    Institute of Scientific and Technical Information of China (English)

    Feng Jifeng

    2014-01-01

    As the targeted drugs come into being in recent years, such as monoclonal antibody, great achievements have been made for the treatment of malignant lymphoma (ML). Rituximab, a monoclonal antibody against CD20 whose effective rate is up to 85% in the ifrst-line treatment of lymphoma, has become the standard ifrst-line treatment of multiple B cell lymphomas. However, how to improve the therapeutic efficacy of B lymphoma and reduce reoccurrence rate in drug-resistant patients still need to be further studied. And great importance is increasingly attached to the development of new drugs, especially tumor angiogenesis drugs, in which Bevacizumab and Endostatin are studied as the main representative for the treatment of ML. This paper mainly made a review on Current situation and prospects of anti-angiogenesis drugs for the treatment of lymphoma.

  17. Research Progress of Anti-angiogenesis Drugs in the Treatment of Lymphoma

    Directory of Open Access Journals (Sweden)

    Jifeng Feng

    2014-06-01

    Full Text Available As the targeted drugs come into being in recent years, such as monoclonal antibody, great achievements have been made for the treatment of malignant lymphoma (ML. Rituximab, a monoclonal antibody against CD20 whose effective rate is up to 85% in the first-line treatment of lymphoma, has become the standard first-line treatment of multiple B cell lymphomas. However, how to improve the therapeutic efficacy of B lymphoma and reduce reoccurrence rate in drugresistant patients still need to be further studied. And great importance is increasingly attached to the development of new drugs, especially tumor angiogenesis drugs, in which Bevacizumab and Endostatin are studied as the main representative for the treatment of ML. This paper mainly made a review on Current situation and prospects of anti-angiogenesis drugs for the treatment of lymphoma.

  18. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    Directory of Open Access Journals (Sweden)

    Mallya Meera

    2008-09-01

    Full Text Available Abstract Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD. This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC. This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C and not on their own.

  19. Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV).

    Science.gov (United States)

    Huber, Bettina; Schellenbacher, Christina; Shafti-Keramat, Saeed; Jindra, Christoph; Christensen, Neil; Kirnbauer, Reinhard

    2017-01-01

    Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17-36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous HPV

  20. Construction and preliminary investigation of a novel dengue serotype 4 chimeric virus using Japanese encephalitis vaccine strain SA14-14-2 as the backbone.

    Science.gov (United States)

    Li, Zhushi; Yang, Huiqiang; Yang, Jian; Lin, Hua; Wang, Wei; Liu, Lina; Zhao, Yu; Liu, Li; Zeng, Xianwu; Yu, Yongxin; Li, Yuhua

    2014-10-13

    For the purpose of developing a novel dengue vaccine candidate, recombinant plasmids were constructed which contained the full length cDNA clone of Japanese encephalitis (JE) vaccine strain SA14-14-2 with its premembrane (PreM) and envelope (E) genes replaced by the counterparts of dengue virus type 4 (DENV4). By transfecting the in vitro transcription products of the recombinant plasmids into BHK-21 cells, a chimeric virus JEV/DENV4 was successfully recovered. The chimeric virus was identified by complete genome sequencing, Western blot and immunofluorescent staining. Growth characteristics revealed it was well adapted to primary hamster kidney (PHK) cells. Its genetic stability was investigated and only one unintentional mutation in 5'-untranslated region (5'-UTR) was found after 20 passages in PHK cells. Neurotropism, neurovirulence and immunogenicity of the chimeric virus were tested in mice. Besides, the influence of JE vaccine pre-immunization on the neutralizing antibody level induced by the chimeric virus was illuminated. To our knowledge, this is the first chimeric virus incorporating the JE vaccine stain SA14-14-2 and DENV4. It is probably a potential candidate to compose a tetravalent dengue chimeric vaccine.

  1. Monitoring of hematopoietic chimerism after transplantation for pediatric myelodysplastic syndrome: real-time or conventional short tandem repeat PCR in peripheral blood or bone marrow?

    Science.gov (United States)

    Willasch, Andre M; Kreyenberg, Hermann; Shayegi, Nona; Rettinger, Eva; Meyer, Vida; Zabel, Marion; Lang, Peter; Kremens, Bernhard; Meisel, Roland; Strahm, Brigitte; Rossig, Claudia; Gruhn, Bernd; Klingebiel, Thomas; Niemeyer, Charlotte M; Bader, Peter

    2014-12-01

    Quantitative real-time PCR (qPCR) has been proposed as a highly sensitive method for monitoring hematopoietic chimerism and may serve as a surrogate marker for the detection of minimal residual disease minimal residual disease in myelodysplastic syndrome (MDS), until specific methods of detection become available. Because a systematic comparison of the clinical utility of qPCR with the gold standard short tandem repeat (STR)-PCR has not been reported, we retrospectively measured chimerism by qPCR in 54 children transplanted for MDS in a previous study. Results obtained by STR-PCR in the initial study served as comparison. Because the detection limit of qPCR was sufficiently low to detect an autologous background, we defined the sample as mixed chimera if the proportion of recipient-derived cells exceeded .5%. The true positive rates were 100% versus 80% (qPCR versus STR-PCR, not significant), and mixed chimerism in most cases was detected earlier by qPCR than by STR-PCR (median, 31 days) when chimerism was quantified concurrently in peripheral blood and bone marrow. Both methods revealed a substantial rate of false positives (22.7% versus 13.6%, not significant), indicating the importance of serial testing of chimerism to monitor its progression. Finally, we propose criteria for monitoring chimerism in pediatric MDS with regard to the subtypes, specimens, PCR method, and timing of sampling.

  2. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells

    OpenAIRE

    Beard, Rachel E; Zheng, Zhili; Lagisetty, Kiran H.; Burns, William R.; Tran, Eric; Hewitt, Stephen M.; Abate-Daga, Daniel; Rosati, Shannon F.; Fine, Howard A.; Ferrone, Soldano; Rosenberg, Steven A.; Morgan, Richard A.

    2014-01-01

    Background The development of immunotherapy has led to significant progress in the treatment of metastatic cancer, including the development of genetic engineering technologies that redirect lymphocytes to recognize and target a wide variety of tumor antigens. Chimeric antigen receptors (CARs) are hybrid proteins combining antibody recognition domains linked to T cell signaling elements. Clinical trials of CAR-transduced peripheral blood lymphocytes (PBL) have induced remission of both solid ...

  3. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    OpenAIRE

    Teulé, Florence; Miao, Yun-Gen; Sohn, Bong-Hee; Kim, Young-Soo; Hull, J. Joe; Fraser, Malcolm J.; Lewis, Randolph V.; Jarvis, Donald L.

    2012-01-01

    The development of a spider silk-manufacturing process is of great interest. However, there are serious problems with natural manufacturing through spider farming, and standard recombinant protein production platforms have provided limited progress due to their inability to assemble spider silk proteins into fibers. Thus, we used piggyBac vectors to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials t...

  4. CD19-Chimeric Antigen Receptor T Cells for Treatment of Chronic Lymphocytic Leukaemia and Acute Lymphoblastic Leukaemia

    DEFF Research Database (Denmark)

    Lorentzen, C L; thor Straten, Per

    2015-01-01

    Adoptive cell therapy (ACT) for cancer represents a promising new treatment modality. ACT based on the administration of cytotoxic T cells genetically engineered to express a chimeric antigen receptor (CAR) recognizing CD19 expressed by B cell malignancies has been shown to induce complete lasting......-associated toxicities, which needs attention. Herein we review current data and discuss key aspects of this powerful approach to treat and potentially cure B cell malignancies....

  5. A tailor-made chimeric thiamine diphosphate dependent enzyme for the direct asymmetric synthesis of (S)-benzoins.

    Science.gov (United States)

    Westphal, Robert; Vogel, Constantin; Schmitz, Carlo; Pleiss, Jürgen; Müller, Michael; Pohl, Martina; Rother, Dörte

    2014-08-25

    Thiamine diphosphate dependent enzymes are well known for catalyzing the asymmetric synthesis of chiral α-hydroxy ketones from simple prochiral substrates. The steric and chemical properties of the enzyme active site define the product spectrum. Enzymes catalyzing the carboligation of aromatic aldehydes to (S)-benzoins have not so far been identified. We were able to close this gap by constructing a chimeric enzyme, which catalyzes the synthesis of various (S)-benzoins with excellent enantiomeric excess (>99%) and very good conversion.

  6. Alemtuzumab levels impact acute GVHD, mixed chimerism, and lymphocyte recovery following alemtuzumab, fludarabine, and melphalan RIC HCT.

    Science.gov (United States)

    Marsh, Rebecca A; Lane, Adam; Mehta, Parinda A; Neumeier, Lisa; Jodele, Sonata; Davies, Stella M; Filipovich, Alexandra H

    2016-01-28

    Reduced intensity conditioning (RIC) allogeneic hematopoietic cell transplantation (HCT) with alemtuzumab, fludarabine, and melphalan is an effective approach for patients with nonmalignant disorders. Mixed chimerism and graft-versus-host-disease (GVHD) remain limitations on success. We hypothesized that higher levels of alemtuzumab at day 0 would result in a low risk of acute GVHD, a higher risk of mixed chimerism, and delayed early lymphocyte recovery and that alemtuzumab level thresholds for increased risks of these outcomes would be definable. We collected data from 105 patients to examine the influence of peritransplant alemtuzumab levels on acute GVHD, mixed chimerism, and lymphocyte recovery. The cumulative incidences of initial grades I-IV, II-IV, and III-IV acute GVHD in patients with alemtuzumab levels ≤0.15 vs ≥0.16 μg/mL were 68% vs 18% (P alemtuzumab level ≤0.15 μg/mL was 21%, vs 42% with levels of 0.16 to 4.35 μg/mL, and 100% with levels >4.35 μg/mL (P = .003). Patients with alemtuzumab levels ≤0.15 or 0.16 to 0.56 μg/mL had higher lymphocyte counts at day +30 and higher T-cell counts at day +100 compared with patients with levels ≥0.57 μg/mL (all P alemtuzumab levels impact acute GVHD, mixed chimerism, and lymphocyte recovery following RIC HCT with alemtuzumab, fludarabine, and melphalan. Precision dosing trials are warranted. We recommend a day 0 therapeutic range of 0.2 to 0.4 μg/mL.

  7. Use of homologous recombination in yeast to create chimeric bovine viral diarrhea virus cDNA clones

    Directory of Open Access Journals (Sweden)

    Sandra Arenhart

    Full Text Available Abstract The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3. The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.

  8. Construction of an allogenic chimeric mouse model for the study of the behaviors of donor stem cells in vivo

    Institute of Scientific and Technical Information of China (English)

    WANG Mo-lin; YAN Jing-bin; XIAO Yan-ping; HUANG Shu-zhen

    2005-01-01

    Background It is essential to establish an animal model for the elucidation of the biological behaviors of stem cells in vivo. We constructed a chimeric animal model by in utero transplantation for investigation of stem cell transplantation.Methods This chimerism was achieved by injecting the stem cells derived from the bone marrow of green fluorescence protein (GFP)-transgenic mice into fetal mice at 13.5 days of gestation. Several methods such as polymerase chain reaction (PCR), real-time PCR, fluorescence-assisted cell sorting (FACS) and fluorescence in situ hybridization (FISH) were used for the observation of donor cells.Results Under a fluorescence microscope, we observed the GFP cells of donor-origin in a recipient. PCR, FACS analysis and FISH indicated chimerism at various intervals. Real-time PCR indicated that some donor cells existed in chimera for more than 6 months.Conclusions Allogenic stem cells may exist in recipients for a long time and this allogenic animal model provides a useful tool for studying the behavior of hematopoietic stem cells and also offers an effective model system for the study of stem cells.

  9. DPPC/poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) chimeric nanostructures as potential drug nanocarriers

    Energy Technology Data Exchange (ETDEWEB)

    Pippa, Natassa [Faculty of Pharmacy, National and Kapodistrian University of Athens, Department of Pharmaceutical Technology (Greece); Kaditi, Eleni; Pispas, Stergios [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation (Greece); Demetzos, Costas, E-mail: demetzos@pharm.uoa.gr [Faculty of Pharmacy, National and Kapodistrian University of Athens, Department of Pharmaceutical Technology (Greece)

    2013-06-15

    In this study, we report on the self assembly behavior and on stability studies of mixed (chimeric) nanosystems consisting of dipalmitoylphosphatidylcholine (DPPC) and poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) (MPOx) gradient copolymer in aqueous media and in fetal bovine serum (FBS). A gamut of light scattering techniques and fluorescence spectroscopy were used in order to extract information on the size and morphological characteristics of the nanoassemblies formed, as a function of gradient block copolymer content, as well as temperature. The hydrodynamic radii (R{sub h}) of nanoassemblies decreased in the process of heating up to 50 Degree-Sign C, while the fractal dimension (d{sub f}) values, also increased. Indomethacin was successfully incorporated into these chimeric nanocarriers. Drug release was depended on the components ratio. The present studies show that there are a number of parameters that can be used in order to alter the properties of chimeric nanosystems, and this is advantageous to the development of 'smart' nanocarriers for drug delivery.

  10. DPPC/poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) chimeric nanostructures as potential drug nanocarriers

    Science.gov (United States)

    Pippa, Natassa; Kaditi, Eleni; Pispas, Stergios; Demetzos, Costas

    2013-06-01

    In this study, we report on the self assembly behavior and on stability studies of mixed (chimeric) nanosystems consisting of dipalmitoylphosphatidylcholine (DPPC) and poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) (MPOx) gradient copolymer in aqueous media and in fetal bovine serum (FBS). A gamut of light scattering techniques and fluorescence spectroscopy were used in order to extract information on the size and morphological characteristics of the nanoassemblies formed, as a function of gradient block copolymer content, as well as temperature. The hydrodynamic radii ( R h) of nanoassemblies decreased in the process of heating up to 50 °C, while the fractal dimension ( d f) values, also increased. Indomethacin was successfully incorporated into these chimeric nanocarriers. Drug release was depended on the components ratio. The present studies show that there are a number of parameters that can be used in order to alter the properties of chimeric nanosystems, and this is advantageous to the development of "smart" nanocarriers for drug delivery.

  11. Task demands modulate decision and eye movement responses in the chimeric face test: examining the right hemisphere processing account

    Directory of Open Access Journals (Sweden)

    Jason eCoronel

    2014-03-01

    Full Text Available A large and growing body of work, conducted in both brain-intact and brain-damaged populations, has used the free viewing chimeric face test as a measure of hemispheric dominance for the extraction of emotional information from faces. These studies generally show that normal right-handed individuals tend to perceive chimeric faces as more emotional if the emotional expression is presented on the half of the face to the viewer’s left (left hemiface. However, the mechanisms underlying this lateralized bias remain unclear. Here, we examine the extent to which this bias is driven by right hemisphere processing advantages versus default scanning biases in a unique way -- by changing task demands. In particular, we compare the original task with one in which right-hemisphere-biased processing cannot provide a decision advantage. Our behavioral and eye-movement data are inconsistent with the predictions of a default scanning bias account and support the idea that the left hemiface bias found in the chimeric face test is largely due to strategic use of right hemisphere processing mechanisms.

  12. Useful oriented immobilization of antibodies on chimeric magnetic particles: direct correlation of biomacromolecule orientation with biological activity by AFM studies.

    Science.gov (United States)

    Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar

    2014-12-16

    The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.

  13. Expression of c-kit receptor in human cholangiocarcinoma and in vivo treatment with imatinib mesilate in chimeric mice

    Institute of Scientific and Technical Information of China (English)

    Thomas Kamenz; Karel Caca; Thilo Blüthner; Andrea Tannapfel; Joachim M(o)ssner; Marcus Wiedmann

    2006-01-01

    AIM: To investigate the c-kit expression in biliary tract cancer cell lines and histological sections from patients with extrahepatic cholangiocarcinoma (CC) and to evaluate the efficacy of in vitro and in vitro treatment with imatinib mesilate.METHODS: The protein expression of c-kit in the human biliary tract cancer cell lines Mz-ChA-2 and EGI-1 and histological sections from 19 patients with extrahepatic CC was assessed by immunoblotting,immunocytochemistry, and immunohistochemistry. The anti-proliferative effect of imatinib mesilate on biliary tract cancer cell lines Mz-ChA-2 and EGI-1 was studied in vitro by automated cell counting. In addition, immunodeficient NMRI mice (TaconicTM) were subcutaneously injected with 5×106 cells of cell lines MzChA-2 and EGI-1. After having reached a tumour volume of 200 mm3, daily treatment was started intraperitoneally with imatinib mesilate at a dose of 50 mg/kg or normal saline (NS).Tumor volume was calculated with a Vernier caliper.After 14 d, mice were sacrificed with tumors excised and tumor mass determined.RESULTS: Immunoblotting revealed presence of c-kit in Mz-ChA-2 and absence in EGI-1 cells.Immunocytochemistry with c-kit antibodies displayed a cytoplasmatic and membraneous localization of receptor protein in Mz-ChA-2 cells and absence of c-kit in EGI-1 cells, c-kit was expressed in 7 of 19 (37%) extrahepatic humanCC tissue samples, 2 showed a moderate and 5 a rather weak immunostaining. Imatinib mesilate at a low concentration of 5 μmol/L caused a significant growth inhibition in the c-kit positive cell line Mz-ChA-2 (31%), but not in the c-kit negative cell line EGI-1 (0%) (P< 0.05). Imatinib mesilate at an intermediate concentration of 10 μmol/L inhibited cellular growth of both cell lines (51% vs 57%). Imatinib mesilate at a higher concentration of 20 μmol/L seemed to have a general toxic effect on both cell lines. The IC50 values were 9.7 μmol/L and 11 μmol/L, respectively. After 14 d of in vitro

  14. Stromal Vascular Fraction Transplantation as an Alternative Therapy for Ischemic Heart Failure: Anti-inflammatory Role

    Directory of Open Access Journals (Sweden)

    Lin Xue

    2011-03-01

    Full Text Available Abstract Background The aims of this study were: (1 to show the feasibility of using adipose-derived stromal vascular fraction (SVF as an alternative to bone marrow mono nuclear cell (BM-MNC for cell transplantation into chronic ischemic myocardium; and (2 to explore underlying mechanisms with focus on anti-inflammation role of engrafted SVF and BM-MNC post chronic myocardial infarction (MI against left ventricular (LV remodelling and cardiac dysfunction. Methods Four weeks after left anterior descending coronary artery ligation, 32 Male Lewis rats with moderate MI were divided into 3 groups. SVF group (n = 12 had SVF cell transplantation (6 × 106 cells. BM-MNC group (n = 12 received BM-MNCs (6 × 106 and the control (n = 10 had culture medium. At 4 weeks, after the final echocardiography, histological sections were stained with Styrus red and immunohistochemical staining was performed for α-smooth muscle actin, von Willebrand factor, CD3, CD8 and CD20. Results At 4 weeks, in SVF and BM-MNC groups, LV diastolic dimension and LV systolic dimension were smaller and fractional shortening was increased in echocardiography, compared to control group. Histology revealed highest vascular density, CD3+ and CD20+ cells in SVF transplanted group. SVF transplantation decreased myocardial mRNA expression of inflammatory cytokines TNF-α, IL-6, MMP-1, TIMP-1 and inhibited collagen deposition. Conclusions Transplantation of adipose derived SVF cells might be a useful therapeutic option for angiogenesis in chronic ischemic heart disease. Anti-inflammation role for SVF and BM transplantation might partly benefit for the cardioprotective effect for chronic ischemic myocardium.

  15. A Chimeric Cetuximab-Functionalized Corona as a Potent Delivery System for Microtubule-Destabilizing Nanocomplexes to Hepatocellular Carcinoma Cells: A Focus on EGFR and Tubulin Intracellular Dynamics.

    Science.gov (United States)

    Poojari, Radhika; Kini, Sudarshan; Srivastava, Rohit; Panda, Dulal

    2015-11-01

    In this study, we have developed microtubule destabilizing agents combretastatin A4 (CA4) or 2-methoxyestradiol (2ME) encapsulated poly(d,l-lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-b-PEG) nanocomplexes for targeted delivery to human hepatocellular carcinoma (HCC) cells. An epidermal growth factor receptor (EGFR) is known to be overexpressed in HCC cells. Therefore, the targeting moiety cetuximab (Cet), an anti-EGFR chimeric monoclonal antibody, is functionalized on the surface of these diblock copolymeric coronas. Cetuximab is associated with the extracellular domain of the EGFR; therefore, the uptake of the cetuximab conjugated nanocomplexes occurred efficiently in EGFR overexpressing HCC cells indicating potent internalization of the complex. The cetuximab targeted-PLGA-b-PEG nanocomplexes encapsulating CA4 or 2ME strongly inhibited phospho-EGFR expression, depolymerized microtubules, produced spindle abnormalities, stalled mitosis, and induced apoptosis in Huh7 cells compared to the free drugs, CA4 or 2ME. Further, the combinatorial strategy of targeted nanocomplexes, Cet-PLGA-b-PEG-CA4 NP and Cet-PLGA-b-PEG-2ME NP, significantly reduced the migration of Huh7 cells, and markedly enhanced the anticancer effects of the microtubule-targeted drugs in Huh7 cells compared to the free drugs, CA4 or 2ME. The results indicated that EGFR receptor-mediated internalization via cetuximab facilitated enhanced uptake of the nanocomplexes leading to potent anticancer efficacy in Huh7 cells. Cetuximab-functionalized PLGA-b-PEG nanocomplexes possess a strong potential for the targeted delivery of CA4 or 2ME in EGFR overexpressed HCC cells, and the strategy may be useful for selectively targeting microtubules in these cells.

  16. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV.

    Science.gov (United States)

    Lucas, Carolina G D O; Matassoli, Flavio L; Peçanha, Ligia M T; Santillo, Bruna Tereso; Oliveira, Luanda Mara da Silva; Oshiro, Telma Miyuki; Marques, Ernesto T D A; Oxenius, Annette; de Arruda, Luciana B

    2016-08-01

    The decline in number and function of T cells is a hallmark of HIV infection, and preservation or restoration of HIV-specific cellular immune response is a major goal of AIDS treatment. Dendritic cells (DCs) play a key role in the initiation and maintenance of the immune response, and their use as a vaccine vehicle is a promising strategy for enhancing vaccine efficacy. We evaluated the potential of DC-mediated immunization with a DNA vaccine consisting of HIV-1-p55gag (gag, group-specific antigen) associated to lysosomal associated protein (LAMP) sequence (LAMP/gag vaccine). Immunization of mice with mouse DCs transfected with LAMP/gag (Lg-mDCs) stimulated more potent B- and T-cell responses than naked DNA or DCs pulsed with inactivated HIV. Anti-Gag antibody levels were sustained for at least 3 mo after immunization, and recall T-cell responses were also strongly detected at this time point. Human DCs transfected with LAMP/gag (Lg-hDCs) were also activated and able to stimulate greater T-cell response than native gag-transfected DCs. Coculture between Lg-hDCs and T lymphocytes obtained from patients with HIV resulted in upregulation of CD38, CD69, HLA-DR, and granzyme B by CD4(+) and CD8(+) T cells, and increased IFN-γ and TNF-α production. These results indicate that the use of LAMP/gag-DC may be an efficient strategy for enhancing immune function in patients with HIV.-Lucas, C. G. D. O., Matassoli, F. L., Peçanha, L. M. T., Santillo, B. T., Oliveira, L. M. D. S., Oshiro, T. M., Marques, E. T. D. A., Jr., Oxenius, A., de Arruda, L. B. Dendritic cells primed with a chimeric plasmid containing HIV-1-gag associated with lysosomal-associated protein-1 (LAMP/gag) is a potential therapeutic vaccine against HIV.

  17. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    Directory of Open Access Journals (Sweden)

    Tamborrini Marco

    2011-12-01

    Full Text Available Abstract Background In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP. Methods The highly purified recombinant protein GMZ2 was coupled to phosphatidylethanolamine and the conjugates incorporated into the membrane of IRIVs. The immunogenicity of this adjuvant-free virosomal formulation was compared to GMZ2 formulated with the adjuvants Montanide ISA 720 and Alum in three mouse strains with different genetic backgrounds. Results Intramuscular injections of all three candidate vaccine formulations induced GMZ2-specific antibody responses in all mice tested. In general, the humoral immune response in outbred NMRI mice was stronger than that in inbred BALB/c and C57BL/6 mice. ELISA with the recombinant antigens demonstrated immunodominance of the GLURP component over the MSP3 component. However, compared to the Al(OH3-adjuvanted formulation the two other formulations elicited in NMRI mice a larger proportion of anti-MSP3 antibodies. Analyses of the induced GMZ2-specific IgG subclass profiles showed for all three formulations a predominance of the IgG1 isotype. Immune sera against all three formulations exhibited cross-reactivity with in vitro cultivated blood-stage parasites. Immunofluorescence and immunoblot competition experiments showed that both components of the hybrid protein induced IgG cross-reactive with the corresponding native proteins. Conclusion A virosomal formulation of the chimeric protein GMZ2 induced P. falciparum blood stage parasite cross-reactive IgG responses specific for both MSP3 and GLURP. GMZ2 thus represents a candidate component suitable for inclusion into a multi-valent virosomal

  18. The developmental fate of green fluorescent mouse embryonic germ cells in chimeric embryos

    Institute of Scientific and Technical Information of China (English)

    XUXIN; SUMIOSUGANO; 等

    1999-01-01

    Primordial germ cells (PGCs),as precursors of mammalian germ lineage,have been gaining more attention as a new resource of pluripotent stem cells,which bring a great possibility to study developmental events of germ cell in vitro and at animal level.EG4 cells derived from 10.5 days post coitum (dpc) PGCs of 129/svJ strain mouse were established and maintained in an undifferentiated state.With an attempt to study the differentiation capability of EG4 cells with a reporter protein:green fluorescence protein,and the possible application of EG4 cells in the research of germ cell development,we have generated several EG4-GFP cell lines expressing enhanced green fluorescence protein (EGFP) and still maintaining typical characteristics of pluripotent stem cells.Then,the differentiation of EG4-GFP cells in vitro as well as their developmental fate in chimeric embryos which were produced by aggregating EG4-GFP cells to 8-cell stage embryos were studied.The results showed that EG4 cells carrying green fluorescence have a potential use in the research of germ cell development and other related studies.

  19. Modification of chimeric (2S, 3S)-butanediol dehydrogenase based on structural information.

    Science.gov (United States)

    Shimegi, Tomohito; Mochizuki, Kaito; Oyama, Takuji; Ohtsuki, Takashi; Kusunoki, Masami; Ui, Sadaharu

    2014-01-01

    A chimeric (2S, 3S)-butanediol dehydrogenase (cLBDH) was engineered to have the strict (S)-configuration specificity of the (2S, 3S)-BDH (BsLBDH) derived from Brevibacterium saccharolyticum as well as the enzymatic stability of the (2R, 3S)-BDH (KpMBDH) from Klebsiella pneumonia by swapping the domains of two native BDHs. However, while cLBDH possesses the stability, it lacks the specificity. In order to assist in the design a BDH having strict substrate specificity, an X-ray structural analysis of a cLBDH crystal was conducted at 1.58 Å. The results obtained show some readily apparent differences around the active sites of cLBDH and BsLBDH. Based on this structural information, a novel (2S, 3S)-BDH having a preferred specificity was developed by introducing a V254L mutation into cLBDH. The influence of this mutation on the stability of cLBDH was not evaluated. Nevertheless, the technique described herein is an effective method for the production of a tailor-made BDH.

  20. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.

    Science.gov (United States)

    Unterweger, Daniel; Kostiuk, Benjamin; Ötjengerdes, Rina; Wilton, Ashley; Diaz-Satizabal, Laura; Pukatzki, Stefan

    2015-08-13

    Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.

  1. Rapid recombination among transfected plasmids, chimeric episome formation and trans gene expression in Plasmodium falciparum.

    Science.gov (United States)

    Kadekoppala, M; Cheresh, P; Catron, D; Ji, D D; Deitsch, K; Wellems, T E; Seifert, H S; Haldar, K

    2001-02-01

    Although recombination is known to be important to generating diversity in the human malaria parasite P. falciparum, the low efficiencies of transfection and the fact that integration of transfected DNA into chromosomes is observed only after long periods (typically 12 weeks or more) have made it difficult to genetically manipulate the blood stages of this major human pathogen. Here we show that co-transfection of a P. falciparum line with two plasmids, one expressing a green fluorescent protein (gfp) reporter and the other expressing a drug resistance marker (Tgdhfr-ts M23), allowed selection of a population in which about approximately 30% of the parasites produce GFP. In these GFP-producing parasites, the transfected plasmids had recombined into chimeric episomes as large as 20 kb and could be maintained under drug pressure for at least 16 weeks. Our data suggest that chimera formation occurs early (detected by 7--14 days) and that it involves homologous recombination favored by presence of the same P. falciparum 5'hrp3 UTR promoting transcription from each plasmid. This indicates the presence of high levels of homologous recombination activity in blood stage parasites that can be used to drive rapid recombination of newly introduced DNA, study mechanisms of recombination, and introduce genes for trans expression in P. falciparum.

  2. Chimeric antigen receptor T cells: a novel therapy for solid tumors.

    Science.gov (United States)

    Yu, Shengnan; Li, Anping; Liu, Qian; Li, Tengfei; Yuan, Xun; Han, Xinwei; Wu, Kongming

    2017-03-29

    The chimeric antigen receptor T (CAR-T) cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs) expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII) was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2), and mesothelin (MSLN), as well as the challenges for CAR-T cell therapy.

  3. Chimeric antigen receptor T cell therapy in AML: How close are we?

    Science.gov (United States)

    Gill, Saar

    2016-12-01

    The majority of patients presenting with acute myeloid leukemia (AML) initially respond to chemotherapy but post-remission therapy is required to consolidate this response and achieve long-term disease-free survival. The most effective form of post-remission therapy relies on T cell immunotherapy in the form of allogeneic hematopoietic cell transplantation (HCT). However, patients with active disease cannot usually expect to be cured with HCT. This inherent dichotomy implies that traditional T cell-based immunotherapy in the form of allogeneic HCT stops being efficacious somewhere between the measurable residual disease (MRD) and the morphologically obvious range. This is in part because the full power of T cells must be restrained in order to avoid lethal graft-versus-host disease (GVHD) and partly because only a sub-population of donor T cells are expected to be able to recognize AML cells via their T cell receptor. Chimeric antigen receptor (CAR) T cell therapy, most advanced in the treatment of patients with B-cell malignancies, may circumvent some of these limitations. However, major challenges remain to be overcome before CAR T cell therapy can be safely applied to AML.

  4. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.

    Science.gov (United States)

    Takeshima, Yasuhiro; Yagi, Mariko; Matsuo, Masafumi

    2012-01-01

    A molecular therapy for Duchenne muscular dystrophy (DMD) that converts dystrophin mRNA from out-of-frame to in-frame transcripts by inducing exon skipping with antisense oligonucleotides (AOs) is now approaching clinical application. To exploit the broad therapeutic applicability of exon skipping therapy, it is necessary to identify AOs that are able to induce efficient and specific exon skipping. To optimize AOs, we have established an in vitro splicing system using cultured DMD myocytes. Here, we describe the process of identifying the best AO.Cultured DMD myocytes are established from a biopsy sample and the target exon is chosen. A series of AOs are designed to cover the whole target exon sequence. As AOs, we use 15-20-mer chimeric oligonucleotides consisting of 2'-O-methyl RNA and modified nucleic acid (2'-O, 4'-C-ethylene-bridged nucleic acid). Each AO is transfected individually into cultured DMD myocytes, and the resulting mRNA is analyzed by reverse transcription-PCR. The ability of each AO to induce exon skipping is examined by comparing the amount of cDNA with and without exon skipping. If necessary, having roughly localized the target region, another set of AOs are designed and the exon skipping abilities of the new AOs are examined. Finally, one AO is determined as the best for the molecular therapy.Our simple and reliable methods using an in vitro splicing system have enabled us to identify optimized AOs against many exons of the DMD gene.

  5. Immunogenicity and efficacy of chimeric dengue vaccine (DENVax) formulations in interferon-deficient AG129 mice.

    Science.gov (United States)

    Brewoo, Joseph N; Kinney, Richard M; Powell, Tim D; Arguello, John J; Silengo, Shawn J; Partidos, Charalambos D; Huang, Claire Y-H; Stinchcomb, Dan T; Osorio, Jorge E

    2012-02-14

    Formulations of chimeric dengue vaccine (DENVax) viruses containing the pre-membrane (prM) and envelope (E) genes of serotypes 1-4 expressed in the context of the attenuated DENV-2 PDK-53 genome were tested for safety, immunogenicity and efficacy in interferon receptor knock-out mice (AG129). Monovalent formulations were safe and elicited robust neutralizing antibody responses to the homologous virus and only limited cross-reactivity to other serotypes. A single dose of monovalent DENVax-1, -2, or -3 vaccine provided eighty or greater percent protection against both wild-type (wt) DENV-1 (Mochizuki strain) and DENV-2 (New Guinea C strain) challenge viruses. A single dose of monovalent DENVax-4 also provided complete protection against wt DENV-1 challenge and significantly increased the survival times after challenge with wt DENV-2. In studies using tetravalent mixtures, DENVax ratios were identified that: (i) caused limited viremia, (ii) induced serotype-specific neutralizing antibodies to all four DENV serotypes with different hierarchies, and (iii) conferred full protection against clinical signs of disease following challenge with either wt DENV-1 or DENV-2 viruses. Overall, these data highlight the immunogenic profile of DENVax, a novel candidate tetravalent dengue vaccine and the advantage of sharing a common attenuated genomic backbone among the DENVax monovalent vaccines that confer protection against homologous or heterologous virus challenge.

  6. Chimeric monoclonal antibody to tumor necrosis factor alpha (infliximab in psoriasis

    Directory of Open Access Journals (Sweden)

    Sridhar J

    2006-01-01

    Full Text Available Background: Insights into the pathogenesis of psoriasis have provided opportunities to target key steps in the disease process. Tumor necrosis factor-alpha (TNF-a being crucial to the pathogenesis of psoriasis, monoclonal antibodies against this cytokine have proved useful in its treatment. Aim: To study the efficacy of chimeric monoclonal antibody to TNF-a (infliximab in Indian patients with recalcitrant psoriasis vulgaris. Materials and Methods: Three patients with recalcitrant psoriasis vulgaris were studied. Baseline haemogram, biochemical parameters, chest radiograph and Mantoux skin test were performed. A loading dose regimen of 5 mg/kg infliximab was administered at weeks 0, 2 and 6. PASI assessment, adverse drug event monitoring and laboratory assessments were carried out at 2-week intervals until week 10. Patients were followed up until week 22 for relapse. Results: Infliximab was well tolerated. The mean PASI was 25.4 at presentation and declined to 5.5 at 10 weeks. PASI 75 was attained at a mean of 9.6 weeks. Relapse occurred at a mean of 18.6 weeks after the first infusion. Conclusions: This study on Indian patients brings out the importance of cytokine-based therapies in psoriasis. Indigenous production could make these therapies a viable therapeutic option for psoriasis patients in the near future.

  7. Functionality of Chimeric E2 Glycoproteins of BVDV and CSFV in Virus Replication

    Directory of Open Access Journals (Sweden)

    H.G.P. van Gennip

    2008-01-01

    Full Text Available An intriguing difference between the E2 glycoprotein of CSFV and the other groups of pestiviruses (nonCSFV is a lack of two cysteine residues on positions cysteine 751 and 798. Other groups of pestivirus are not restricted to one species as swine, whereas CSFV is restricted to swine and wild boar. We constructed chimeric CSFV/BVDV E2 genes based on a 2D model of E2 proposed by van Rijn et al. (van Rijn et al. 1994, J Virol 68, 3934–42 and confirmed their expression by immunostaining of plasmid-transfected SK6 cells. No equivalents for the antigenic units B/C and A were found on E2 of BVDVII. This indicates major structural differences in E2. However, the immunodominant BVDVII domain A, containing epitopes with essential amino acids between position 760–764, showed to be dependent on the presence of the region defined by amino acids 684 to 796. As for the A domain of CSFV, the BVDVII A-like domain seemed to function as a separate unit. These combined domains in E2 proved to be the only combination which was functional in viral background of CSFV C-strain. The fitness of this virus (vfl c36BVDVII 684–796 seemed to be reduced compared to vfl c9 (with the complete antigenic region of BVDVII.

  8. Construction of a genetically engineered chimeric apoprotein consisting of sequences derived from lidamycin and neocarzinostatin.

    Science.gov (United States)

    Jiang, Wenguo; Shang, Boyang; Li, Liang; Zhang, Shenghua; Zhen, Yongsu

    2016-01-01

    Neocarzinostatin (NCS) consists of an enediyne chromophore and an apoprotein (NCP). Lidamycin (LDM) is composed of another active enediyne chromophore (AE) and an acidic protein (LDP). Although the structures of NCP and LDP are very similar, LDM has been shown to have an increased tumor-suppressive activity than that of NCS. The aim of this study was to construct a chimeric protein (CMP) that consists of both the terminus residue of NCP and an LDP pocket-forming residue that can bind AE. This CMP will have a structure similar to NCS and an antitumor activity similar to LDM. The assembling efficiency of LDP, CMP, and NCP was 73.9, 1.5, and 1.1%, respectively. The cytotoxicity was consistent with their assembling efficiency of AE in proteins. When CMP-AE and NCP-AE were administered at equivalent AE doses of LDM, the inhibition rate of CMP-AE was the same as LDM and significantly higher than that of NCP-AE. Our study implied that the binding activity between LDP and AE was very specific. The terminus residue of LDP could affect the specifically binding activity. The pocket-forming residue could confer a protective function to the chromophore. Further investigation of its bioactivity might serve as a new drug design strategy and drug-delivery carrier in targeted cancer therapy.

  9. Preclinical evaluation of MORAb-009, a chimeric antibody targeting tumor-associated mesothelin

    Science.gov (United States)

    Hassan, Raffit; Ebel, Wolfgang; Routhier, Eric L.; Patel, Rina; Kline, J. Bradford; Zhang, Jingli; Chao, Qimin; Jacob, Sara; Turchin, Howard; Gibbs, Lester; Phillips, Martin D.; Mudali, Shiyama; Iacobuzio-Donahue, Christine; Jaffee, Elizabeth M.; Moreno, Maria; Pastan, Ira; Sass, Philip M.; Nicolaides, Nicholas C.

    2007-01-01

    Novel therapeutic agents that are safe and effective are needed for the treatment of pancreatic, ovarian, lung adenocarcinomas and mesotheliomas. Mesothelin is a glycosyl-phosphatidyl inositol (GPI)-linked membrane protein of 40 kDa over-expressed in all pancreatic adenocarcinoma and mesothelioma, in >70% of ovarian adenocarcinoma, and in non-small cell lung and colorectal cancers. The biological functions of mesothelin are not known, although it appears to be involved in cell adhesion via its interaction with MUC16. We have recently developed MORAb-009, a mouse-human chimeric IgG1κ monoclonal antibody with an affinity of 1.5 nM for human mesothelin. Here we provide evidence that MORAb-009 prevents adhesion of mesothelin-bearing tumor cells to MUC16 positive cells and can elicit cell-mediated cytotoxicity on mesothelin-bearing tumor cells. Treatment that included MORAb-009 in combination with chemotherapy led to a marked reduction in tumor growth of mesothelin-expressing tumors in nude mice compared to chemotherapy or MORAb-009 treatment alone. No adverse effects of MORAb-009 were noted during toxicology studies conducted in non-human primates. The preclinical data obtained from our studies warrants pursuing clinical testing of MORAb-009. We have in fact initiated a Phase I clinical study enrolling patients with mesothelin-positive pancreatic, mesothelioma, non-small cell lung and ovarian cancers. PMID:18088084

  10. Chimeric Antigen Receptor-Modified T Cells for Solid Tumors: Challenges and Prospects

    Directory of Open Access Journals (Sweden)

    Yelei Guo

    2016-01-01

    Full Text Available Recent studies have highlighted the successes of chimeric antigen receptor-modified T- (CART- cell-based therapy for B-cell malignancies, and early phase clinical trials have been launched in recent years. The few published clinical studies of CART cells in solid tumors have addressed safety and feasibility, but the clinical outcome data are limited. Although antitumor effects were confirmed in vitro and in animal models, CART-cell-based therapy still faces several challenges when directed towards solid tumors, and it has been difficult to achieve the desired outcomes in clinical practice. Many studies have struggled to improve the clinical responses to and benefits of CART-cell treatment of solid tumors. In this review, the status quo of CART cells and their clinical applications for solid tumors will be summarized first. Importantly, we will suggest improvements that could increase the therapeutic effectiveness of CART cells for solid tumors and their future clinical applications. These interventions will make treatment with CART cells an effective and routine therapy for solid tumors.

  11. Elimination of progressive mammary cancer by repeated administrations of chimeric antigen receptor-modified T cells.

    Science.gov (United States)

    Globerson-Levin, Anat; Waks, Tova; Eshhar, Zelig

    2014-05-01

    Continuous oncogenic processes that generate cancer require an on-going treatment approach to eliminate the transformed cells, and prevent their further development. Here, we studied the ability of T cells expressing a chimeric antibody-based receptor (CAR) to offer a therapeutic benefit for breast cancer induced by erbB-2. We tested CAR-modified T cells (T-bodies) specific to erbB-2 for their antitumor potential in a mouse model overexpressing a human erbB-2 transgene that develops mammary tumors. Comparing the antitumor reactivity of CAR-modified T cells under various therapeutic settings, either prophylactic, prior to tumor development, or therapeutically. We found that repeated administration of CAR-modified T cells is required to eliminate spontaneously developing mammary cancer. Systemic, as well as intratumoral administered CAR-modified T cells accumulated at tumor sites and eventually eliminated the malignant cells. Interestingly, within a few weeks after a single CAR T cells' administration, and rejection of primary lesion, tumors usually relapsed both in treated mammary gland and at remote sites; however, repeated injections of CAR-modified T cells were able to control the secondary tumors. Since spontaneous tumors can arise repeatedly, especially in the case of syndromes characterized by specific susceptibility to cancer, multiple administrations of CAR-modified T cells can serve to control relapsing disease.

  12. Homogeneized modeling of mineral dust emissions over Europe and Africa using the CHIMERE model

    Directory of Open Access Journals (Sweden)

    R. Briant

    2014-05-01

    Full Text Available In the region including Africa and Europe, the main part of mineral dust emissions is observed in Africa. The particles are thus transported towards Europe and constitute a non-negligible part of the surface aerosols measured and controlled in the framework of the European air quality legislation. The modelling of these African dust emissions fluxes and transport is widely studied and complex parameterizations are already used in regional to global model for this Sahara-Sahel region. In a lesser extent, mineral dust emissions occur locally in Europe, mainly over agricultural areas. Their modelling is generally poorly done or just ignored. But in some cases, this contribution may be important and may impact the European air quality budget. In this study, we propose an homogeneized calculations of mineral dust fluxes for Europe and Africa. For that, we extended the CHIMERE dust production model (DPM by using new soil and surface datasets, and the global aeolian roughness length dataset provided by GARLAP from microwave and visible satellite observations. This DPM is detailed along with academic tests case results and simulation on a real case results.

  13. Diverging catalytic capacities and selectivity profiles with haloalkane substrates of chimeric alpha class glutathione transferases.

    Science.gov (United States)

    Kurtovic, Sanela; Shokeer, Abeer; Mannervik, Bengt

    2008-05-01

    Six homologous Alpha class glutathione transferases of human, bovine, and rat origins were hybridized by means of DNA shuffling. The chimeric mutants were compared with the parental enzymes in their activities with several alkyl iodides. In order to facilitate a multivariate analysis of relationships between substrates and enzyme activities, three descriptors were introduced: 'specific catalytic capacity', 'substrate selectivity', and 'unit-scaled substrate selectivity'. In some cases the purified mutants showed higher specific activity with a certain alkyl iodide than any of the parental enzymes. However, the overriding effect of DNA shuffling was the generation of chimeras with altered substrate selectivity profiles and catalytic capacities. The altered substrate selectivity profiles of some mutants could be rationalized by changes of the substrate-binding residues in the active site of the enzyme. However, in four of the isolated mutants all active-site residues were found identical with those of rat GST A2-2, even though their substrate specificity profiles were significantly different. Clearly, amino acid residues distant from first-sphere interactions with the substrate influence the catalytic activity. These results are relevant both to the understanding how functional properties may develop in natural enzyme evolution and in the tailoring of novel functions in protein engineering.

  14. Chimeric antigen receptor (CAR)-directed adoptive immunotherapy: a new era in targeted cancer therapy.

    Science.gov (United States)

    Chen, Yamei; Liu, Delong

    2014-01-01

    As a result of the recent advances in molecular immunology, virology, genetics, and cell processing, chimeric antigen receptor (CAR)-directed cancer therapy has finally arrived for clinical application. CAR-directed adoptive immunotherapy represents a novel form of gene therapy, cellular therapy, and immunotherapy, a combination of three in one. Early phase clinical trial was reported in patients with refractory chronic lymphoid leukemia with 17p deletion. Accompanying the cytokine storm and tumor lysis syndrome was the shocking disappearance of the leukemia cells refractory to chemotherapy and monoclonal antibodies. CAR therapy was reproduced in both children and adults with refractory acute lymphoid leukemia. The CAR technology is being explored for solid tumor therapy, such as glioma. Close to 30 clinical trials are underway in the related fields (www.clinicaltrials.gov). Further improvement in gene targeting, cell expansion, delivery constructs (such as using Sleeping Beauty or Piggyback transposons) will undoubtedly enhance clinical utility. It is foreseeable that CAR-engineered T cell therapy will bring targeted cancer therapy into a new era.

  15. Prospects for adoptive immunotherapy of pancreatic cancer using chimeric antigen receptor-engineered T-cells.

    Science.gov (United States)

    Alrifai, Doraid; Sarker, Debashis; Maher, John

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor (CAR) engineered T-cells is emerging as a powerful new approach to cancer immunotherapy. CARs are fusion molecules that couple the antibody-like binding of a native cell surface target to the delivery of a bespoke T-cell activating signal. Recent studies undertaken by several centers have demonstrated highly compelling efficacy in patients with acute and chronic B-cell malignancies. However, comparable therapeutic activity has not been achieved in solid tumors. Modern management of pancreatic ductal adenocarcinoma (PDAC) remains ineffective, reflected in the virtual equivalence of annual incidence and mortality statistics for this tumor type. Increasing evidence indicates that these tumors are recognized by the immune system, but deploy powerful evasion strategies that limit natural immune surveillance and render efforts at immunotherapy challenging. Here, we review preclinical and clinical studies that have been initiated or completed in an effort to develop CAR-based immunotherapy for PDAC. We also consider the hurdles to the effective clinical development of this exciting new therapeutic modality.

  16. Unique chimeric composition of the trehalase gene from brine shrimp, Artemia franciscana.

    Science.gov (United States)

    Tanaka, Shin; Nambu, Fumiko; Nambu, Ziro

    2010-03-01

    To investigate the exon/intron structure of the Artemia trehalase gene, four overlapping clones were isolated from a genome library derived from an inbred strain of crustacean Artemia franciscana, and a 49 kb genetic area was re-constructed. The re-constructed area contained eight exons corresponding to the trehalase cDNA sequence that we had previously reported [1]. Comparative analysis of the Artemia trehalase gene with other animal trehalase genes revealed the existence of conserved exon/intron boundaries among different phyla. Comparison of the 5' UTR region of trehalase mRNA obtained by the 5' RACE method with the trehalase genes indicated the existence of a novel exon/intron boundary in the region designated "Exon I". Surprisingly, a part of a mitochondrial ribosomal protein gene (MRP-S33) was found to be inserted in the 5' UTR region of the trehalase gene. This sequence had the same polyadenylation signal that the Artemia MRP-S33 cDNAs did. Using the 3' RACE method, it was demonstrated that the poly (A) additional signal is still functional and that the chimeric mRNAs composed of the 5' UTR of the trehalase mRNA and of the 3' end derived from the MRP-S33 gene are transcribed.

  17. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever.

    Directory of Open Access Journals (Sweden)

    Lisa Oestereich

    2016-05-01

    Full Text Available Lassa fever (LASF is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/- was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology.

  18. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever.

    Science.gov (United States)

    Oestereich, Lisa; Lüdtke, Anja; Ruibal, Paula; Pallasch, Elisa; Kerber, Romy; Rieger, Toni; Wurr, Stephanie; Bockholt, Sabrina; Pérez-Girón, José V; Krasemann, Susanne; Günther, Stephan; Muñoz-Fontela, César

    2016-05-01

    Lassa fever (LASF) is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV) and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/-) was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology.

  19. Current status and regulatory perspective of chimeric antigen receptor-modified T cell therapeutics.

    Science.gov (United States)

    Kim, Mi-Gyeong; Kim, Dongyoon; Suh, Soo-Kyung; Park, Zewon; Choi, Min Joung; Oh, Yu-Kyoung

    2016-04-01

    Chimeric antigen receptor-modified T cells (CAR-T) have emerged as a new modality for cancer immunotherapy due to their potent efficacy against terminal cancers. CAR-Ts are reported to exert higher efficacy than monoclonal antibodies and antibody-drug conjugates, and act via mechanisms distinct from T cell receptor-engineered T cells. These cells are constructed by transducing genes encoding fusion proteins of cancer antigen-recognizing single-chain Fv linked to intracellular signaling domains of T cell receptors. CAR-Ts are classified as first-, second- and third-generation, depending on the intracellular signaling domain number of T cell receptors. This review covers the current status of CAR-T research, including basic proof-of-concept investigations at the cell and animal levels. Currently ongoing clinical trials of CAR-T worldwide are additionally discussed. Owing to the lack of existing approved products, several unresolved concerns remain with regard to safety, efficacy and manufacturing of CAR-T, as well as quality control issues. In particular, the cytokine release syndrome is the major side-effect impeding the successful development of CAR-T in clinical trials. Here, we have addressed the challenges and regulatory perspectives of CAR-T therapy.

  20. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns.

    Science.gov (United States)

    Li, Fay-Wei; Villarreal, Juan Carlos; Kelly, Steven; Rothfels, Carl J; Melkonian, Michael; Frangedakis, Eftychios; Ruhsam, Markus; Sigel, Erin M; Der, Joshua P; Pittermann, Jarmila; Burge, Dylan O; Pokorny, Lisa; Larsson, Anders; Chen, Tao; Weststrand, Stina; Thomas, Philip; Carpenter, Eric; Zhang, Yong; Tian, Zhijian; Chen, Li; Yan, Zhixiang; Zhu, Ying; Sun, Xiao; Wang, Jun; Stevenson, Dennis W; Crandall-Stotler, Barbara J; Shaw, A Jonathan; Deyholos, Michael K; Soltis, Douglas E; Graham, Sean W; Windham, Michael D; Langdale, Jane A; Wong, Gane Ka-Shu; Mathews, Sarah; Pryer, Kathleen M

    2014-05-06

    Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor--neochrome--that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns.

  1. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    Directory of Open Access Journals (Sweden)

    Chise Tateno

    Full Text Available We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID. We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and

  2. Immunotherapy: Beyond Anti-PD-1 and Anti-PD-L1 Therapies.

    Science.gov (United States)

    Antonia, Scott J; Vansteenkiste, Johan F; Moon, Edmund

    2016-01-01

    Advanced-stage non-small cell lung cancer (NSCLC) and small cell lung cancer are cancers in which chemotherapy produces a survival benefit, although it is small. We now know that anti-PD-1/PD-L1 has substantial clinical activity in both of these diseases, with an overall response rate (ORR) of 15%-20%. These responses are frequently rapid and durable, increase median overall survival (OS) compared with chemotherapy, and produce long-term survivors. Despite these very significant results, many patients do not benefit from anti-PD-1/PD-L1. This is because of the potential for malignancies to co-opt myriad immunosuppressive mechanisms other than aberrant expression of PD-L1. Conceptually, these can be divided into three categories. First, for some patients there is likely a failure to generate sufficient functional tumor antigen-specific T cells. Second, for others, tumor antigen-specific T cells may be generated but fail to enter into the tumor parenchyma. Finally, there are a large number of immunosuppressive mechanisms that have the potential to be operational within the tumor microenvironment: surface membrane immune checkpoint proteins PD-1, CTLA-4, LAG3, TIM3, BTLA, and adenosine A2AR; soluble factors and metabolic alterations interleukin (IL)-10, transforming growth factor (TGF)-β, adenosine, IDO, and arginase; and inhibitory cells, cancer-associated fibroblasts (CAFs), regulatory T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages. In this article, we discuss three strategies to generate more tumor-reactive T cells for patients: anti-CTLA-4, therapeutic tumor vaccination, and adoptive cellular therapy, with T cells redirected to tumor antigens using T-cell receptor (TCR) or chimeric antigen receptor (CAR) gene modification. We also review some of the various strategies in development to thwart tumor microenvironment immunosuppressive mechanisms. Strategies to drive more T cells into tumors remain a significant challenge.

  3. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab

    Directory of Open Access Journals (Sweden)

    Smolej L

    2014-12-01

    Full Text Available Lukáš Smolej 4th Department of Internal Medicine – Hematology, University Hospital Hradec Králové and Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic Abstract: Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101 is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL. Keywords: chronic lymphocytic leukemia, anti-CD20 antibodies, chlorambucil, rituximab, ofatumumab, obinutuzumab, overall su