WorldWideScience

Sample records for childhood brain tumor

  1. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  2. Brain tumors in childhood; Hirntumoren im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Sinzig, M.; Gasser, J.; Hausegger, K.A. [Landeskrankenhaus Klagenfurt, Kinderradiologie RZI, Klagenfurt (Austria); Jauk, B. [Landeskrankenhaus Klagenfurt, Abt. fuer Kinder- und Jugendheilkunde, Klagenfurt (Austria)

    2008-10-15

    Central nervous system (CNS) tumors are the most common solid neoplasms in childhood and the second most common malignancies after leukemia in the pediatric age group. Supratentorial tumors are more common in children younger than 2 years old and in adolescents, whereas in patients between 2 and 12 years of age brain tumors originating in the posterior fossa dominate. This implies a relationship between the type of tumor, its location and the age of the patient, which has to be considered in differential diagnoses. Medulloblastoma represents the most common malignant brain tumor in childhood. In the posterior fossa medulloblastomas are approximately as frequent as astrocytomas. Supratentorial astrocytomas are by far the main tumor type. In this report some typical CNS neoplasms in children are discussed and their neuroradiological features are demonstrated. (orig.) [German] Hirntumoren sind die haeufigsten soliden Tumoren des Kindesalters und repraesentieren nach den Leukaemien die zweithaeufigsten malignen Erkrankungen bei Kindern. Waehrend bei Kleinkindern und Adoleszenten supratentorielle Hirntumoren ueberwiegen, ist bei Patienten zwischen 2 und 12 Jahren haeufiger die hintere Schaedelgrube Ursprungsort dieser Malignome. Daraus geht hervor, dass gewisse Tumortypen eine gewisse Alterspraedilektion aufweisen, was neben der radiologischen Morphologie der Raumforderung fuer differenzialdiagnostische Ueberlegungen ueberaus hilfreich sein kann. Das Medulloblastom ist das haeufigste ZNS-Malignom des Kindesalters und repraesentiert zusammen mit zerebellaeren Astrozytomen auch den haeufigsten Tumortyp der hinteren Schaedelgrube. Supratentoriell stehen die Astrozytome ganz im Vordergrund. In dieser Arbeit werden einige typische kindliche infra- und supratentorielle Hirntumoren diskutiert und ihre neuroradiologischen Merkmale dargestellt. (orig.)

  3. Gonadal status in male survivors following childhood brain tumors

    DEFF Research Database (Denmark)

    Schmiegelow, M; Lassen, S; Poulsen, H S;

    2001-01-01

    The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males......The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males...

  4. Life satisfaction in adult survivors of childhood brain tumors.

    Science.gov (United States)

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population.

  5. Staging Childhood Brain and Spinal Cord Tumors

    Science.gov (United States)

    ... tests to check the brain, spinal cord, and nerve function. The exam checks a person’s mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro ...

  6. Childhood exposure to ionizing radiation and brain tumors

    International Nuclear Information System (INIS)

    Brain has been categorized into the low risk group of radiogenic tumors. However, recent epidemiologic studies on the cancer risks among children who received repeated CT scans, radiotherapies and A-bomb have revealed that low-to-moderate dose of ionizing radiation is effective to induce brain tumors. Ionizing radiation is more strongly associated with risk for meningiomas and schwannomas compared to gliomas. While risk of meningiomas is independent of age at the time of exposure, that of gliomas is profoundly high after neonatal and infantile exposures. Inherited susceptibility to brain tumors is suggested by family history or cancer prone syndromes. People with certain gene mutations such as RB, NF1 or PTCH1 are associated with enhanced cancer risk after radiotherapies. Genetic polymorphism of cancer-related genes on brain tumor risk deserves further investigation. (author)

  7. Cilengitide in Treating Children With Refractory Primary Brain Tumors

    Science.gov (United States)

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  8. Pathology, treatment and management of posterior fossa brain tumors in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, K.; Siegel, K.R.

    1988-04-01

    Brain tumors are the second most common childhood malignancy. Between 1975 and 1985, 462 newly diagnosed patients were treated at the Children's Hospital of Philadelphia; 207 (45%) tumors arose in the posterior fossa and 255 (55%) appeared supratentorially. A wide variety of histological subtypes were seen, each requiring tumor-specific treatment approaches. These included primitive neuroectodermal tumor (n = 86, 19%), astrocytoma (n = 135, 30%), brainstem glioma (n = 47, 10%), anaplastic astrocytoma (n = 32, 7%), and ependymoma (n = 30, 6%). Because of advances in diagnostic abilities, surgery, radiotherapy, and chemotherapy, between 60% and 70% of these patients are alive today. Diagnostic tools such as computed tomography and magnetic resonance imaging allow for better perioperative management and follow-up, while the operating microscope, CO/sub 2/ laser, cavitron ultrasonic aspirator and neurosurgical microinstrumentation allow for more extensive and safer surgery. Disease specific treatment protocols, utilizing radiotherapy and adjuvant chemotherapy, have made survival common in tumors such as medulloblastoma. As survival rates increase, cognitive, endocrinologic and psychologic sequelae become increasingly important. The optimal management of children with brain tumors demands a multidisciplinary approach, best facilitated by a neuro-oncology team composed of multiple subspecialists. This article addresses incidence, classification and histology, clinical presentation, diagnosis, pre-, intra- and postoperative management, long-term effects and the team approach in posterior fossa tumors in childhood. Management of specific tumor types is included as well. 57 references.

  9. Survival Rates for Selected Childhood Brain and Spinal Cord Tumors

    Science.gov (United States)

    ... Type of Tumor 5-Year Survival Rate Pilocytic astrocytoma About 95% Fibrillary (diffuse) astrocytoma About 80% to 85% Anaplastic astrocytoma About 30% Glioblastoma About 20% Oligodendroglioma About 90% ...

  10. Memory deficits in long-term survivors of childhood brain tumors may primarily reflect general cognitive dysfunctions

    DEFF Research Database (Denmark)

    Reimers, Tonny Solveig; Mortensen, Erik Lykke; Schmiegelow, Kjeld

    2007-01-01

    To analyze the impact of potential predictors on memory performance in survivors of childhood brain tumors and to examine whether deficits in memory after radiotherapy (RT) should be considered part of a more global mental dysfunction.......To analyze the impact of potential predictors on memory performance in survivors of childhood brain tumors and to examine whether deficits in memory after radiotherapy (RT) should be considered part of a more global mental dysfunction....

  11. Management of childhood brain tumors: consensus report by the Pediatric Hematology Oncology (PHO) Chapter of Indian Academy of Pediatrics (IAP).

    Science.gov (United States)

    Bhat, Sunil; Yadav, Satya Prakash; Suri, Vaishali; Patir, Rana; Kurkure, Purna; Kellie, Stewart; Sachdeva, Anupam

    2011-12-01

    Brain tumors are the second most common childhood tumors and remain the leading cause of cancer related deaths in children. Appropriate diagnosis and management of these tumors are essential to improve survival. There are no clinical practical guidelines available for the management of brain tumors in India. This document is a consensus report prepared after a National Consultation on Pediatric Brain Tumors held in Delhi on 06 Nov 2008. The meeting was attended by eminent experts from all over the country, in the fields of Neurosurgery, Radiation Oncology, Pediatric Oncology, Neuropathology, Diagnostic Imaging, Pediatric Endocrinology and Allied Health Professionals. This article highlights that physicians looking after children with brain tumors should work as part of a multidisciplinary team to improve the survival, quality of life, neuro-cognitive outcomes and standards of care for children with brain tumors. Recommendations for when to suspect, diagnostic workup, initial management, long-term follow up and specific management of individual tumors are outlined.

  12. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  13. Disruption of White Matter Integrity in Adult Survivors of Childhood Brain Tumors: Correlates with Long-Term Intellectual Outcomes

    OpenAIRE

    King, Tricia Z.; Liya Wang; Hui Mao

    2015-01-01

    Background Although chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood. Methods Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an in...

  14. Brain Magnetic Resonance Imaging After High-Dose Chemotherapy and Radiotherapy for Childhood Brain Tumors

    International Nuclear Information System (INIS)

    Purpose: Brain necrosis or other subacute iatrogenic reactions has been recognized as a potential complication of radiotherapy (RT), although the possible synergistic effects of high-dose chemotherapy and RT might have been underestimated. Methods and Materials: We reviewed the clinical and radiologic data of 49 consecutive children with malignant brain tumors treated with high-dose thiotepa and autologous hematopoietic stem cell rescue, preceded or followed by RT. The patients were assessed for neurocognitive tests to identify any correlation with magnetic resonance imaging (MRI) anomalies. Results: Of the 49 children, 18 (6 of 25 with high-grade gliomas and 12 of 24 with primitive neuroectodermal tumors) had abnormal brain MRI findings occurring a median of 8 months (range, 2-39 months) after RT and beginning to regress a median of 13 months (range, 2-26 months) after onset. The most common lesion pattern involved multiple pseudonodular, millimeter-size, T1-weighted unevenly enhancing, and T2-weighted hyperintense foci. Four patients with primitive neuroectodermal tumors also had subdural fluid leaks, with meningeal enhancement over the effusion. One-half of the patients had symptoms relating to the new radiographic findings. The MRI lesion-free survival rate was 74% ± 6% at 1 year and 57% ± 8% at 2 years. The number of marrow ablative courses correlated significantly to the incidence of radiographic anomalies. No significant difference was found in intelligent quotient scores between children with and without radiographic changes. Conclusion: Multiple enhancing cerebral lesions were frequently seen on MRI scans soon after high-dose chemotherapy and RT. Such findings pose a major diagnostic challenge in terms of their differential diagnosis vis-a-vis recurrent tumor. Their correlation with neurocognitive results deserves further investigation

  15. Beauty product-related exposures and childhood brain tumors in seven countries: results from the SEARCH International Brain Tumor Study.

    Science.gov (United States)

    Efird, J T; Holly, E A; Cordier, S; Mueller, B A; Lubin, F; Filippini, G; Peris-Bonet, R; McCredie, M; Arslan, A; Bracci, P; Preston-Martin, S

    2005-04-01

    Data from 1218 cases of childhood brain tumors (CBT) diagnosed between 1976 and 1994 and 2223 matched controls from the general population were included in an analysis of maternal beauty product exposure and beauty-related employment in 9 centers in 7 countries. A 50% increased odds ratio (OR) [95% confidence interval (CI) = 1.0-2.1] for CBT was observed among children of mothers who were exposed via personal use of and/or possible ambient contact with beauty products during the 5 years preceding the index child's birth compared with children of mothers never exposed to beauty products during this time period. Overall maternal personal use of hair-coloring agents in the month before or during the pregnancy of the index child's birth was not associated with CBT (OR = 1.0, CI = 0.83-1.3) or with astroglial (OR = 1.1, CI = 0.85-1.4), PNET (OR = 1.0, CI = 0.71-1.5) and other glial subtypes (OR = 1.0, CI = 0.62-1.0). Similarly, no statistically increased ORs or discernable pattern of risk estimates were observed for period of use or for number of applications per year for maternal personal use of hair-coloring agents overall or by histologic type. Among children born on or after 1980, increased ORs for CBT were associated with maternal non-work-related exposure to any beauty products (OR = 2.6, CI = 1.2-5.9), hair-dyes (OR = 11, CI = 1.2-90), and hair sprays (OR = 3.4, CI = 1.0-11). No overall increased OR for CBT was observed among children of mothers employed in beauty-related jobs during the 5 years preceding the index child's birth compared with those who reported no beauty-related employment. In general, other specific beauty product-related exposures were not associated with increased ORs for CBT. Data from our study provide little evidence of an increased risk for CBT with mothers' exposures to beauty products.

  16. Beauty product-related exposures and childhood brain tumors in seven countries: results from the SEARCH International Brain Tumor Study.

    Science.gov (United States)

    Efird, J T; Holly, E A; Cordier, S; Mueller, B A; Lubin, F; Filippini, G; Peris-Bonet, R; McCredie, M; Arslan, A; Bracci, P; Preston-Martin, S

    2005-04-01

    Data from 1218 cases of childhood brain tumors (CBT) diagnosed between 1976 and 1994 and 2223 matched controls from the general population were included in an analysis of maternal beauty product exposure and beauty-related employment in 9 centers in 7 countries. A 50% increased odds ratio (OR) [95% confidence interval (CI) = 1.0-2.1] for CBT was observed among children of mothers who were exposed via personal use of and/or possible ambient contact with beauty products during the 5 years preceding the index child's birth compared with children of mothers never exposed to beauty products during this time period. Overall maternal personal use of hair-coloring agents in the month before or during the pregnancy of the index child's birth was not associated with CBT (OR = 1.0, CI = 0.83-1.3) or with astroglial (OR = 1.1, CI = 0.85-1.4), PNET (OR = 1.0, CI = 0.71-1.5) and other glial subtypes (OR = 1.0, CI = 0.62-1.0). Similarly, no statistically increased ORs or discernable pattern of risk estimates were observed for period of use or for number of applications per year for maternal personal use of hair-coloring agents overall or by histologic type. Among children born on or after 1980, increased ORs for CBT were associated with maternal non-work-related exposure to any beauty products (OR = 2.6, CI = 1.2-5.9), hair-dyes (OR = 11, CI = 1.2-90), and hair sprays (OR = 3.4, CI = 1.0-11). No overall increased OR for CBT was observed among children of mothers employed in beauty-related jobs during the 5 years preceding the index child's birth compared with those who reported no beauty-related employment. In general, other specific beauty product-related exposures were not associated with increased ORs for CBT. Data from our study provide little evidence of an increased risk for CBT with mothers' exposures to beauty products. PMID:15925993

  17. Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors

    Science.gov (United States)

    2013-05-01

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Extra-adrenal Paraganglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  18. Temozolomide and O6-Benzylguanine in Treating Children With Recurrent Brain Tumors

    Science.gov (United States)

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  19. Disruption of White Matter Integrity in Adult Survivors of Childhood Brain Tumors: Correlates with Long-Term Intellectual Outcomes.

    Directory of Open Access Journals (Sweden)

    Tricia Z King

    Full Text Available Although chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood.Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an intelligence test (IQ. Voxel-wise group comparisons of fractional anisotropy calculated from DTI data were performed using Tract Based Spatial Statistics (TBSS on 27 survivors (14 treated with radiation with and without chemotherapy and 13 treated without radiation treatment on average over 13 years since diagnosis and 27 healthy comparison participants. Whole brain white matter fractional anisotropy (FA differences were explored between each group. The relationships between IQ and FA in the regions where statistically lower FA values were found in survivors were examined, as well as the role of cumulative neurological factors.The group of survivors treated with radiation with and without chemotherapy had lower IQ relative to the group of survivors without radiation treatment and the healthy comparison group. TBSS identified white matter regions with significantly different mean fractional anisotropy between the three different groups. A lower level of white matter integrity was found in the radiation with or without chemotherapy treated group compared to the group without radiation treatment and also the healthy control group. The group without radiation treatment had a lower mean FA relative to healthy controls. The white matter disruption of the radiation with or without chemotherapy treated survivors was positively correlated with IQ and cumulative neurological factors.Lower long-term intellectual outcomes of childhood brain tumor survivors are associated with lower white

  20. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  1. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  2. Surviving a brain tumor in childhood : impact on family functioning in adolescence

    NARCIS (Netherlands)

    Beek, Laura; Schappin, R; Gooskens, Rob; Huisman, Jaap; Jongmans, Marian

    2015-01-01

    ObjectiveTo investigate family functioning in families with an adolescent survivor of a pediatric brain tumor. We explored whether adolescent, parent, disease and treatment factors, and demographic characteristics predicted family functioning. MethodsIn this cross-sectional study, 45 adolescent surv

  3. Cerebral glucose metabolism in long-term survivors of childhood primary brain tumors treated with surgery and radiotherapy

    DEFF Research Database (Denmark)

    Andersen, Preben B.; Krabbe, Katja; Leffers, Anne M.;

    2003-01-01

    Delayed structural cerebral sequelae has been reported following cranial radiation therapy (CRT) to children with primary brain tumors, but little is known about potential functional changes. Twenty-four patients were included, diagnosed and treated at a median age of 11 years, and examined after...... that there is a general reduction in rCMRglc in long-term recurrence free survivors of childhood primary brain tumors treated with CRT in high doses (44-56 Gy)......Delayed structural cerebral sequelae has been reported following cranial radiation therapy (CRT) to children with primary brain tumors, but little is known about potential functional changes. Twenty-four patients were included, diagnosed and treated at a median age of 11 years, and examined after...... a median recurrence free survival of 16 years by MRI and Positron Emission Tomography using the glucose analog 2-18F-fluoro-2-deoxy-D-glucose (18FDG). Three patients were not analyzed further due to diffuse cerebral atrophy, which might be related to previous hydrocephalus. Twenty-one patients were...

  4. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  5. Brain Development in Childhood

    OpenAIRE

    Taki, Yasuyuki; Kawashima, Ryuta

    2012-01-01

    Although human brain development continues throughout childhood and adolescence, it is a non-linear process both structurally and functionally. Here we review studies of brain development in healthy children from the viewpoint of structure and the perfusion of gray and white matter. Gray matter volume increases and then decreases with age, with the developmental time of the peak volume differing among brain regions in the first and second decades of life. On the other hand, white matter volum...

  6. Maternal dietary intake of folate and vitamins B6 and B12 during pregnancy and risk of childhood brain tumors.

    Science.gov (United States)

    Greenop, Kathryn R; Miller, Margaret; de Klerk, Nicholas H; Scott, Rodney J; Attia, John; Ashton, Lesley J; Dalla-Pozza, Luciano; Bower, Carol; Armstrong, Bruce K; Milne, Elizabeth

    2014-01-01

    Childhood brain tumors (CBT) are the second most common childhood cancers, yet their etiology is largely unknown. We investigated whether maternal gestational intake of folate and vitamins B6 and B12 was associated with CBT risk in a nationwide case-control study conducted 2005-2010. Case children 0-14 years were recruited from all 10 Australian pediatric oncology centers. Control children were recruited by national random digit dialing, frequency matched to cases on age, sex, and state of residence. Dietary intake was ascertained using food frequency questionnaires and adjusted for total energy intake. Data from 293 case and 726 control mothers were analyzed using unconditional logistic regression. The odds ratio (OR) for the highest versus lowest tertile of folate intake was 0.70 [95% confidence interval (CI): 0.48, 1.02]. The ORs appeared lower in mothers who drank alcohol during pregnancy (OR = 0.45, 95% CI: 0.22, 0.93), mothers who took folic acid (OR = 0.67, 95% CI: 0.42, 1.06) or B6/B12 supplements (OR = 0.51, 95% CI: 0.25, 1.06) and in children younger than 5 years (OR = 0.50, 95% CI: 0.27, 0.93). These findings are consistent with folate's crucial role in maintenance of genomic integrity and DNA methylation. Dietary intake of B6 and B12 was not associated with risk of CBT. PMID:24897174

  7. Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma, Primitive Neuroectodermal Tumor, or Brain Stem Glioma

    Science.gov (United States)

    2013-10-07

    Childhood High-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  8. Pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Poussaint, Tina Y. [Department of Radiology, Boston, MA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Johns Hopkins Hospital, Division of Pediatric Radiology and Pediatric Neuroradiology, Baltimore, MD (United States)

    2015-09-15

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  9. Brain Development in Childhood

    Science.gov (United States)

    Taki, Yasuyuki; Kawashima, Ryuta

    2012-01-01

    Although human brain development continues throughout childhood and adolescence, it is a non-linear process both structurally and functionally. Here we review studies of brain development in healthy children from the viewpoint of structure and the perfusion of gray and white matter. Gray matter volume increases and then decreases with age, with the developmental time of the peak volume differing among brain regions in the first and second decades of life. On the other hand, white matter volume increase is mostly linear during those periods. As regards fractional anisotropy, most regions show an exponential trajectory with aging. In addition, cerebral blood flow and gray matter volume are proportional at similar developmental ages. Moreover, we show that several lifestyle choices, such as sleeping habits and breakfast staple, affect gray matter volume in healthy children. There are a number of uninvestigated important issues that require future study. PMID:23166579

  10. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... to make progress in “immunogenomics” Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  11. Health-related quality of life in long-term survivors of childhood brain tumors

    DEFF Research Database (Denmark)

    Reimers, Tonny Solveig; Mortensen, Erik Lykke; Nysom, Karsten;

    2009-01-01

    while tumor location in the third ventricle region remained significant for body image, younger age at diagnosis for social functioning and intimate relations, and younger age at follow-up for physical symptoms. In contrasts, neither gender nor presence of hydrocephalus requiring shunt inserted...

  12. Brain and Spinal Tumors

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS NINDS Brain and Spinal Tumors Information Page Synonym(s): Spinal Cord ... en Español Additional resources from MedlinePlus What are Brain and Spinal Tumors? Tumors of the brain and ...

  13. Epilepsy and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhi-yi Sha

    2009-01-01

    @@ Epidemiology It is estimated 61,414 new cases of primary brain tumors are expected to be diagnosed in 2009 in the U.S. The incidence statistic of 61,414 persons diagnosed per year includes both malignant (22,738) and non-malignant (38,677) brain tumors. (Data from American Brain Tumor Association). During the years 2004-2005, approximately 359,000 people in the United States were living with the diagnosis of a primary brain or central nervous system tumor. Specifically, more than 81,000 persons were living with a malignant tumor, more than 267,000 persons with a benign tumor. For every 100,000 people in the United States, approximately 131 are living following the diagnosis of a brain tumor. This represents a prevalence rate of 130.8 per 100,000 person years[1].

  14. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    Science.gov (United States)

    2016-05-17

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  15. Brain Tumor Statistics

    Science.gov (United States)

    ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Press Releases Headlines Newsletter ABTA ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Careers Brain Tumor Information Brain ...

  16. Brain SPECT in childhood

    International Nuclear Information System (INIS)

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  17. Brain tumor - children

    Science.gov (United States)

    Glioblastoma multiforme - children; Ependymoma - children; Glioma - children; Astrocytoma - children; Medulloblastoma - children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children)

  18. The MOBI-Kids Study Protocol: Challenges in Assessing Childhood and Adolescent Exposure to Electromagnetic Fields from Wireless Telecommunication Technologies and Possible Association with Brain Tumor Risk

    Science.gov (United States)

    Sadetzki, Siegal; Langer, Chelsea Eastman; Bruchim, Revital; Kundi, Michael; Merletti, Franco; Vermeulen, Roel; Kromhout, Hans; Lee, Ae-Kyoung; Maslanyj, Myron; Sim, Malcolm R.; Taki, Masao; Wiart, Joe; Armstrong, Bruce; Milne, Elizabeth; Benke, Geza; Schattner, Rosa; Hutter, Hans-Peter; Woehrer, Adelheid; Krewski, Daniel; Mohipp, Charmaine; Momoli, Franco; Ritvo, Paul; Spinelli, John; Lacour, Brigitte; Delmas, Dominique; Remen, Thomas; Radon, Katja; Weinmann, Tobias; Klostermann, Swaantje; Heinrich, Sabine; Petridou, Eleni; Bouka, Evdoxia; Panagopoulou, Paraskevi; Dikshit, Rajesh; Nagrani, Rajini; Even-Nir, Hadas; Chetrit, Angela; Maule, Milena; Migliore, Enrica; Filippini, Graziella; Miligi, Lucia; Mattioli, Stefano; Yamaguchi, Naohito; Kojimahara, Noriko; Ha, Mina; Choi, Kyung-Hwa; Mannetje, Andrea ’t; Eng, Amanda; Woodward, Alistair; Carretero, Gema; Alguacil, Juan; Aragones, Nuria; Suare-Varela, Maria Morales; Goedhart, Geertje; Schouten-van Meeteren, A. Antoinette Y. N.; Reedijk, A. Ardine M. J.; Cardis, Elisabeth

    2014-01-01

    The rapid increase in mobile phone use in young people has generated concern about possible health effects of exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF). MOBI-Kids, a multinational case–control study, investigates the potential effects of childhood and adolescent exposure to EMF from mobile communications technologies on brain tumor risk in 14 countries. The study, which aims to include approximately 1,000 brain tumor cases aged 10–24 years and two individually matched controls for each case, follows a common protocol and builds upon the methodological experience of the INTERPHONE study. The design and conduct of a study on EMF exposure and brain tumor risk in young people in a large number of countries is complex and poses methodological challenges. This manuscript discusses the design of MOBI-Kids and describes the challenges and approaches chosen to address them, including: (1) the choice of controls operated for suspected appendicitis, to reduce potential selection bias related to low response rates among population controls; (2) investigating a young study population spanning a relatively wide age range; (3) conducting a large, multinational epidemiological study, while adhering to increasingly stricter ethics requirements; (4) investigating a rare and potentially fatal disease; and (5) assessing exposure to EMF from communication technologies. Our experience in thus far developing and implementing the study protocol indicates that MOBI-Kids is feasible and will generate results that will contribute to the understanding of potential brain tumor risks associated with use of mobile phones and other wireless communications technologies among young people. PMID:25295243

  19. The MOBI-Kids study protocol: challenges in assessing childhood and adolescent exposure to electromagnetic fields from wireless telecommunication technologies and possible association with brain tumor risk

    Directory of Open Access Journals (Sweden)

    Siegal eSadetzki

    2014-09-01

    Full Text Available The rapid increase in mobile phone use in young people has generated concern about possible health effects of exposure to radiofrequency (RF, extremely low frequency (ELF electromagnetic fields (EMF. MOBI-Kids, a multinational case-control study, investigates the potential effects of childhood and adolescent exposure to EMF from mobile communications technologies on brain tumor risk in 14 countries. The study, which aims to include approximately 1,000 brain tumor cases aged 10-24 years and two individually matched controls for each case, follows a common protocol and builds upon the methodological experience of the INTERPHONE study. The design and conduct of a study on EMF exposure and brain tumor risk in young people in a large number of countries is complex and poses methodological challenges. This manuscript discusses the design of MOBI-Kids and describes the challenges and approaches chosen to address them, including: 1 the choice of controls operated for suspected appendicitis, to reduce potential selection bias related to low response rates among population controls; 2 investigating a young study population spanning a relatively wide age-range. 3 conducting a large, multinational epidemiological study, while adhering to increasingly stricter ethics requirements; 4 investigating a rare and potentially fatal disease; and 5 assessing exposure to EMF from communication technologies. Our experience thus far developing and implementing the study protocol indicates that MOBI-Kids is feasible and will generate results that will contribute to the understanding of potential brain tumor risks associated with use of mobile phones and other wireless communications technologies among young people.

  20. The MOBI-Kids Study Protocol: Challenges in Assessing Childhood and Adolescent Exposure to Electromagnetic Fields from Wireless Telecommunication Technologies and Possible Association with Brain Tumor Risk.

    Science.gov (United States)

    Sadetzki, Siegal; Langer, Chelsea Eastman; Bruchim, Revital; Kundi, Michael; Merletti, Franco; Vermeulen, Roel; Kromhout, Hans; Lee, Ae-Kyoung; Maslanyj, Myron; Sim, Malcolm R; Taki, Masao; Wiart, Joe; Armstrong, Bruce; Milne, Elizabeth; Benke, Geza; Schattner, Rosa; Hutter, Hans-Peter; Woehrer, Adelheid; Krewski, Daniel; Mohipp, Charmaine; Momoli, Franco; Ritvo, Paul; Spinelli, John; Lacour, Brigitte; Delmas, Dominique; Remen, Thomas; Radon, Katja; Weinmann, Tobias; Klostermann, Swaantje; Heinrich, Sabine; Petridou, Eleni; Bouka, Evdoxia; Panagopoulou, Paraskevi; Dikshit, Rajesh; Nagrani, Rajini; Even-Nir, Hadas; Chetrit, Angela; Maule, Milena; Migliore, Enrica; Filippini, Graziella; Miligi, Lucia; Mattioli, Stefano; Yamaguchi, Naohito; Kojimahara, Noriko; Ha, Mina; Choi, Kyung-Hwa; Mannetje, Andrea 't; Eng, Amanda; Woodward, Alistair; Carretero, Gema; Alguacil, Juan; Aragones, Nuria; Suare-Varela, Maria Morales; Goedhart, Geertje; Schouten-van Meeteren, A Antoinette Y N; Reedijk, A Ardine M J; Cardis, Elisabeth

    2014-01-01

    The rapid increase in mobile phone use in young people has generated concern about possible health effects of exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF). MOBI-Kids, a multinational case-control study, investigates the potential effects of childhood and adolescent exposure to EMF from mobile communications technologies on brain tumor risk in 14 countries. The study, which aims to include approximately 1,000 brain tumor cases aged 10-24 years and two individually matched controls for each case, follows a common protocol and builds upon the methodological experience of the INTERPHONE study. The design and conduct of a study on EMF exposure and brain tumor risk in young people in a large number of countries is complex and poses methodological challenges. This manuscript discusses the design of MOBI-Kids and describes the challenges and approaches chosen to address them, including: (1) the choice of controls operated for suspected appendicitis, to reduce potential selection bias related to low response rates among population controls; (2) investigating a young study population spanning a relatively wide age range; (3) conducting a large, multinational epidemiological study, while adhering to increasingly stricter ethics requirements; (4) investigating a rare and potentially fatal disease; and (5) assessing exposure to EMF from communication technologies. Our experience in thus far developing and implementing the study protocol indicates that MOBI-Kids is feasible and will generate results that will contribute to the understanding of potential brain tumor risks associated with use of mobile phones and other wireless communications technologies among young people.

  1. Understanding Brain Tumors

    Science.gov (United States)

    ... Our Mission Advance Research Clinical Trial Endpoints Defeat GBM Oligo Research Fund Pediatric Initiatives Funded Research & Accomplishments ... no symptoms when their brain tumor is discovered Recurrent headaches Issues with vision Seizures Changes in personality ...

  2. Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors

    Science.gov (United States)

    2016-09-07

    Acoustic Schwannoma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Supratentorial Ependymoma; Meningeal Melanocytoma; Newly Diagnosed Childhood Ependymoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood

  3. Metastatic Brain Tumors

    Directory of Open Access Journals (Sweden)

    Ersin Haciyakupoglu

    2014-04-01

    Full Text Available Metastatic tumor is secondary spread to the central nervous system of primer systemic cancers originating from tissues other than the central nervous system. In adults; there are metastases respectively from lungs, breasts, malign melanoma, renal cell carcinoma, colon and thyroid cancers. 30-60% of lung cancers metastasis to the brain. In children there are quite a few cerebral metastases. Most commonly leukemia, lymphoma, osteogenic sarcoma, rhabdomyosarcoma and germ cell tumors metastasis to the brain. %50 of malign melanoma, lung, breast and colon cancers intend to make multipl metastases but renal cell cancers intend to make solitary metastasis.While lung cancers metastasis to brain in 6-9 months after the definitive diagnosis, renal cancers in 1 year, colon cancers in 2 years, breast cancers and malign melanoma in 3 years metastasis to brain. In 6% of cases there are cerebral metastasis while there isn’t a symptom of a primary tumor. For treatment corticosteroids, surgery, Radiotherapy(RT, Chemotherapy(CT and Stereotactic Radiosurgery(SRS can be implemented. Small cell lung cancers, lymphoma, germ cell tumors are sensitive to RT and CT. Non small cell lung cancers, renal, colon cancers and malign melanoma are radioresistant. The purposes in the surgery of the metastatic brain tumors are; total resection of tumors without neurologic deficits, decreasing the intracranial pressure and decreasing the dose of postoperative radiotherapy. Key Words: Metastatic brain tumors, Stereotactic radiosurgery, Malign melanoma, Lung cancers, Renal cell carcinoma, Radiotherapy, Chemotherapy [Cukurova Med J 2014; 39(2.000: 191-202

  4. Brain tumors in infants

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Ghodsi

    2015-01-01

    Full Text Available Background: Brain tumors in infants have different clinical presentations, anatomical distribution, histopathological diagnosis, and clinical prognosis compared with older children. Materials and Methods: A retrospective analysis was done in patients <12 months old who were operated on for primary brain tumor in Children's Hospital Medical Center since 2008 to 2014. Results: Thirty-one infants, 20 males and 11 females, with the mean age of 7.13 months (0.5–12 were enrolled. There were 16 supratentorial and 15 infratentorial tumors. The presenting symptoms included increased head circumference (16; bulge fontanel (15; vomiting (15; developmental regression (11; sunset eye (7; seizure (4; loss of consciousness (4; irritability (3; nystagmus (2; visual loss (2; hemiparesis (2; torticollis (2; VI palsy (3; VII, IX, X nerve palsy (each 2; and ptosis (1. Gross total and subtotal resection were performed in 19 and 11 cases, respectively. Fourteen patients needed external ventricular drainage in the perioperative period, from whom four infants required a ventriculoperitoneal shunt. One patient underwent ventriculoperitoneal shunting without tumor resection. The most common histological diagnoses were primitive neuroectodermal tumor (7, followed by anaplastic ependymoma (6 and grade II ependymoma. The rate of 30-day mortality was 19.3%. Eighteen patients are now well-controlled with or without adjuvant therapy (overall survival; 58%, from whom 13 cases are tumor free (disease free survival; 41.9%, 3 cases have residual masses with fixed or decreased size (progression-free survival; 9.6%, and 2 cases are still on chemotherapy. Conclusion: Brain tumors in infants should be treated with surgical resection, followed by chemotherapy when necessary.

  5. NEW APPROACHES TO PHARMACOTHERAPY OF TUMORS OF THE NERVOUS SYSTEM DURING CHILDHOOD AND ADOLESCENCE

    OpenAIRE

    Schor, Nina F.

    2009-01-01

    Tumors of the nervous system are among the most common and most chemoresistant neoplasms of childhood and adolescence. Malignant tumors of the brain collectively account for 21% of all cancers and 24% of all cancer-related deaths in this age group. Neuroblastoma, a peripheral nervous system tumor, is the most common extracranial solid tumor of childhood, and 65% of children with this tumor have only a 10 or 15% chance of living 5 years beyond the time of initial diagnosis. Novel pharmacologic...

  6. Ispinesib in Treating Young Patients With Relapsed or Refractory Solid Tumors or Lymphoma

    Science.gov (United States)

    2013-01-15

    Childhood Burkitt Lymphoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Spinal Cord Neoplasm; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Unspecified Childhood Solid Tumor, Protocol Specific

  7. Adult brain tumors

    International Nuclear Information System (INIS)

    Radiotherapy plays an important role in the management of adults with brain tumors. This refresher course will focus on a variety of benign and malignant brain neoplasms and how contemporary radiotherapy affects outcome. Successful outcome after radiotherapy requires that (1) there is no tumor extension beyond the selected target volume, (2) adequate dose is delivered to the target volume, and (3) normal tissue tolerance dose is not exceeded. For many neoplasms serial post-treatment scans may show little change, and success is often measured more by absence of tumor progression than by scan normalization. Three-dimensional treatment planning based on MRI or CT makes it possible to guarantee delivery of the full prescription dose to gross tumor while minimizing the volume of normal tissue receiving high dose. Acceptable dose conformity can often be achieved with 2-4 static beams or arcs, which is usually preferable to opposed lateral fields. Protocols involving substantial dose escalation require a large number of non-coplanar x-ray beams or particle therapy. This course will cover important concepts and techniques which relate to the treatment of brain tumors, including conformal radiotherapy, brachytherapy, radiosurgery, fractionated stereotactic radiotherapy, altered fractionation, inverse treatment planning, re-irradiation, and biologically effective dose (BED). Examples of planning solutions for a variety of tumor types, size and anatomical locations will be given. Note: I will incorporate examples of interesting, difficult and unusual cases from other practices as time permits, provided slides and descriptive materials are sent to me in advance of the course

  8. Intraaxial brain tumors

    International Nuclear Information System (INIS)

    The incidence of primary intracranial tumors in the United States is approximately 15,0000 new cases per year. It has been estimated that 80--85% of all intracranial tumors occur in adults; the majority are situated in the supratentorial compartment. In the pediatric population, intracranial tumors are extraordinarily common---the CNS is the second most common site of pediatric neoplasia. Excluding the first year of life and adolescence, the location of intracranial tumors in the pediatric age group is infratentorial in 60--70% of cases, of which 75% involve the cerebellum and 25% reside in the brainstem. The limitations of neuroimaging are often revealed by understanding the microscopic pathology of these lesions, just as the neuropathologist would find if he or she relied solely on gross pathology. The general correlation between pathology and imaging will be stressed in this paper. Innumerable schemes for tumor classification have been devised; unfortunately, no classification is perfect. For the purposes of this discussion, the author has modified the proposed classifications of tumors in an attempt to combine typical neuroanatomic sites with the complex divisions traditionally formed on the basis of histopathology, since it is well recognized that the clinical behavior of brain tumors can depend largely on their sites of origin

  9. Epidemiological features of brain tumors

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2013-01-01

    Full Text Available Brain tumors account for 1.4% of all cancers and 2.4% of all cancer-related deaths. The incidence of brain tumors varies and it is higher in developed countries of Western Europe, North America, Australia and New Zealand. In Serbia, according to data from 2009, malignant brain tumors account for 2. 2 of all tumors, and from all cancer­related deaths, 3.2% is caused by malignant brain tumors. According to recent statistical reports, an overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 persons/year. The most common benign brain tumor in adults is meningioma, which is most present in women, and the most common malignant tumor is glioblastoma, which is most present in adult men. Due to high mortality, especially in patients diagnosed with glioblastoma and significant brain tumor morbidity, there is a constant interest in understanding its etiology in order to possibly prevent tumor occurrence in future and enable more efficient treatment strategies for this fatal brain disease. Despite the continuously growing number of epidemiological studies on possible factors of tumor incidence, the etiology remains unclear. The only established environmental risk factor of gliomas is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor of brain tumor development. However, studies have been inconsistent and inconclusive, so more definite results are still expected.

  10. Lenalidomide in Treating Young Patients With Recurrent, Progressive, or Refractory CNS Tumors

    Science.gov (United States)

    2013-09-27

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  11. Tumor Microenvironment in the Brain

    Energy Technology Data Exchange (ETDEWEB)

    Lorger, Mihaela [Leeds Institute of Molecular Medicine, University of Leeds, St. James’s University Hospital, Beckett Street, Leeds, LS9 7TF (United Kingdom)

    2012-02-22

    In addition to malignant cancer cells, tumors contain a variety of different stromal cells that constitute the tumor microenvironment. Some of these cell types provide crucial support for tumor growth, while others have been suggested to actually inhibit tumor progression. The composition of tumor microenvironment varies depending on the tumor site. The brain in particular consists of numerous specialized cell types such as microglia, astrocytes, and brain endothelial cells. In addition to these brain-resident cells, primary and metastatic brain tumors have also been shown to be infiltrated by different populations of bone marrow-derived cells. The role of different cell types that constitute tumor microenvironment in the progression of brain malignancies is only poorly understood. Tumor microenvironment has been shown to be a promising therapeutic target and diagnostic marker in extracranial malignancies. A better understanding of tumor microenvironment in the brain would therefore be expected to contribute to the development of improved therapies for brain tumors that are urgently required due to a poor availability of treatments for these malignancies. This review summarizes some of the known interactions between brain tumors and different stromal cells, and also discusses potential therapeutic approaches within this context.

  12. Staging Childhood Central Nervous System Embryonal Tumors

    Science.gov (United States)

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  13. NANOROBOTS IN BRAIN TUMOR

    Directory of Open Access Journals (Sweden)

    Sayyed Tarannum, Garje Dattatray H

    2011-02-01

    Full Text Available Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured today, including the interaction of nanostructured materials with biological systems. The authors predict that technology-assisted medicine and robotics in particular, will have a significant impact over the next few decades. Robots will augment the surgeon’s motor performance, diagnosis capability, and senses with haptics (feel, augmented reality (sight, and ultrasound (sound. Robotic devices have been used in cardiac surgery, urology, fetal surgery, pediatrics, neurosurgery, orthopedics, and many other medical disciplines. In this article, we present the Nanorobot drug delivery to brain tumor, paying special attention to the transformation trends of organizations, and the integration of robots in brain tumor and underscoring potential repercussions which may deserve more attention and further research.

  14. Imaging of brain tumors

    International Nuclear Information System (INIS)

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.)

  15. Living with a Brain Tumor

    Science.gov (United States)

    ... when you have been diagnosed with a brain tumor diagnosis. Dealing with changes to your appearance – such as losing your hair or losing weight is difficult for most of us. Keep in mind that your life is not so much ... with a brain tumor may mean rethinking your work and professional goals, ...

  16. Brain Tumor Epidemiology Consortium (BTEC)

    Science.gov (United States)

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  17. ABT-751 in Treating Young Patients With Refractory Solid Tumors

    Science.gov (United States)

    2012-03-14

    Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Kidney Cancer; Liver Cancer; Neuroblastoma; Ovarian Cancer; Sarcoma; Unspecified Childhood Solid Tumor, Protocol Specific

  18. Palbociclib Isethionate in Treating Younger Patients With Recurrent, Progressive, or Refractory Central Nervous System Tumors

    Science.gov (United States)

    2016-10-19

    Childhood Choroid Plexus Tumor; Childhood Ependymoblastoma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor

  19. A 10 YEAR SURVEY ON CHILDHOOD CNS TUMORS

    Directory of Open Access Journals (Sweden)

    F. Jadali

    2008-10-01

    Full Text Available AbstractObjectiveTumors of the central nervous system constitute the largest group of solid neoplasms in children and are second only to leukemia in their overall frequency during childhood. The main purpose of the present study is to determine the incidence, age, sex, location and histological diagnosis of CNS tumors in children, less than 15 years of age, in the Mofid Children's Hospital, in the past 10 years. Materials and MethodsIn this descriptive retrospective study we reviewed the medical records of 143 children with diagnosis of CNS tumors admitted during the past 10 years in neurology and surgery departments of Mofid Children's Hospital between the years 1996 and 2006.ResultsDuring the 10 year study period, CNS tumor was diagnosed in 143 patients; of these tumors, 119 were intracranial and 58 were intraspinal; 51.3% of brain tumors were located in the supratentorial and 48.7% in the infratentorial regions. The most common intracranial neoplasms were astrocytic tumors (36.8%, embryonal tumors (31.1% and ependymal tumors (13.4%. Of the intraspinal neoplasms the most frequently noted were embryonal tumors(37.5%, mesenchymal meningothelial tumors (20.8%, followed by astrocytic tumors (16.7%. The median age at diagnosis was 8.9 ± 4.1 years with a male to female ratio of 1.4:1 (P Conclusion Brain tumors in children constitute a diverse group in terms of incidence,distribution and histopathological diagnosis.Keywords: CNS tumors, Histopathology, Children.

  20. A 10 YEAR SURVEY ON CHILDHOOD CNS TUMORS

    Directory of Open Access Journals (Sweden)

    F. Jadali

    2008-06-01

    Full Text Available ObjectiveTumors of the central nervous system constitute the largest group of solid neoplasms in children and are second only to leukemia in their overall frequency during childhood. The main purpose of the present study is to determine the incidence, age, sex, location and histological diagnosis of CNS tumors in children, less than 15 years of age, in the Mofid Children’s Hospital, in the past 10 years.Materials and Methods In this descriptive retrospective study we reviewed the medical records of 143children with diagnosis of CNS tumors admitted during the past 10 years in neurology and surgery departments of Mofid Children’s Hospital between the years 1996 and 2006.ResultsDuring the 10 year study period, CNS tumor was diagnosed in 143 patients; of these tumors, 119 were intracranial and 58 were intraspinal; 51.3% of brain tumors were located in the supratentorial and 48.7% in the infratentorial regions. The most common intracranial neoplasms were astrocytic tumors (36.8%, embryonal tumors (31.1% and ependymal tumors (13.4%. Of the intraspinal neoplasms the most frequently noted were embryonal tumors (37.5%, mesenchymal meningothelial tumors (20.8%, followed by astrocytic tumors (16.7%. The median age at diagnosis was 8.9 ± 4.1 years with a male to female ratio of 1.4:1 (P<0.5. The most common intracranial astrocytic and embryonal neoplasms were pilocytic astrocytoma and medulloblastoma / PNET respectively.ConclusionBrain tumors in children constitute a diverse group in terms of incidence, distribution and histopathological diagnosis.

  1. Brain and Spinal Cord Tumors in Adults

    Science.gov (United States)

    ... saved articles window. My Saved Articles » My ACS » Brain and Spinal Cord Tumors in Adults Download Printable ... the topics below to get started. What Is Brain/CNS Tumors In Adults? What are adult brain ...

  2. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...... signaling plays a fundamental role during development. Recent findings have shown that Notch signaling is dysregulated, and contributes to the malignant potential of these tumors. Growing evidence point towards an important role for cancer stem cells in the initiation and maintenance of glioma...... and medulloblastoma. In this chapter we will cover the present findings of Notch signaling in human glioma and medulloblastoma and try to create an overall picture of its relevance in the pathogenesis of these tumors....

  3. Temozolomide and O6-benzylguanine in Treating Children With Solid Tumors

    Science.gov (United States)

    2015-04-28

    Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Kidney Cancer; Liver Cancer; Neuroblastoma; Ovarian Cancer; Sarcoma; Unspecified Childhood Solid Tumor, Protocol Specific

  4. FR901228 in Treating Children With Refractory or Recurrent Solid Tumors or Leukemia

    Science.gov (United States)

    2013-01-15

    Blastic Phase Chronic Myelogenous Leukemia; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Chronic Myelogenous Leukemia; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Spinal Cord Neoplasm; Childhood Supratentorial Ependymoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Refractory Chronic Lymphocytic Leukemia; Relapsing Chronic Myelogenous Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  5. Multiclass imbalance learning:Improving classification of pediatric brain tumors from magnetic resonance spectroscopy

    OpenAIRE

    Zarinabad, Niloufar; Wilson, Martin P; Gill, Simrandip K.; Manias, Karen A; Davies, Nigel P; Peet, Andrew C

    2016-01-01

    PURPOSE: Classification of pediatric brain tumors from (1) H-magnetic resonance spectroscopy (MRS) can aid diagnosis and management of brain tumors. However, varied incidence of the different tumor types leads to imbalanced class sizes and introduces difficulties in classifying rare tumor groups. This study assessed different imbalanced multiclass learning techniques and compared the use of complete spectra and quantified metabolite profiles for classification of three main childhood brain tu...

  6. Extra-axial brain tumors.

    Science.gov (United States)

    Rapalino, Otto; Smirniotopoulos, James G

    2016-01-01

    Extra-axial brain tumors are the most common adult intracranial neoplasms and encompass a broad spectrum of pathologic subtypes. Meningiomas are the most common extra-axial brain tumor (approximately one-third of all intracranial neoplasms) and typically present as slowly growing dural-based masses. Benign meningiomas are very common, and may occasionally be difficult to differentiate from more aggressive subtypes (i.e., atypical or malignant varieties) or other dural-based masses with more aggressive biologic behavior (e.g., hemangiopericytoma or dural-based metastases). Many neoplasms that typically affect the brain parenchyma (intra-axial), such as gliomas, may also present with primary or secondary extra-axial involvement. This chapter provides a general and concise overview of the common types of extra-axial tumors and their typical imaging features. PMID:27432671

  7. Melphalan, Carboplatin, Mannitol, and Sodium Thiosulfate in Treating Patients With Recurrent or Progressive CNS Embryonal or Germ Cell Tumors

    Science.gov (United States)

    2016-04-28

    Adult Central Nervous System Germ Cell Tumor; Adult Ependymoblastoma; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Primitive Neuroectodermal Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Ependymoblastoma; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor

  8. AZD2171 in Treating Young Patients With Recurrent, Progressive, or Refractory Primary CNS Tumors

    Science.gov (United States)

    2016-03-04

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Cerebral Anaplastic Astrocytoma; Childhood Cerebral Astrocytoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Oligodendroglioma; Childhood Spinal Cord Neoplasm; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Neoplasm; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway Glioma

  9. Oxaliplatin in Treating Young Patients With Recurrent Solid Tumors That Have Not Responded to Previous Treatment

    Science.gov (United States)

    2013-06-04

    Childhood Central Nervous System Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Hepatoblastoma; Childhood Hepatocellular Carcinoma; Childhood High-grade Cerebral Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Childhood Teratoma; Recurrent Adrenocortical Carcinoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Liver Cancer; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Colon Cancer; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Nasopharyngeal Cancer; Recurrent Neuroblastoma; Recurrent Osteosarcoma; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer

  10. Flavopiridol in Treating Children With Relapsed or Refractory Solid Tumors or Lymphomas

    Science.gov (United States)

    2013-07-01

    Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Liver Cancer; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Neuroblastoma; Recurrent Osteosarcoma; Recurrent Retinoblastoma; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Recurrent/Refractory Childhood Hodgkin Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific

  11. Brain and Spinal Tumors: Hope through Research

    Science.gov (United States)

    ... and worsen as the tumor grows. The most obvious sign of a brain tumor in infants is ... blood flow, antidepressants to treat anxiety or ease depression that might occur following a tumor diagnosis, and ...

  12. Brain tumors in children and adolescents and exposure to animals and farm life

    DEFF Research Database (Denmark)

    Christensen, Jeppe Schultz; Mortensen, Laust Hvas; Röösli, Martin;

    2012-01-01

    The etiology of brain tumors in children and adolescents is largely unknown, and very few environmental risk factors have been identified. The aim of this study was to examine the relationship between pre- or postnatal animal contacts or farm exposures and the risk of childhood brain tumors (CBTs...

  13. ABT-888 and Temozolomide in Treating Young Patients With Recurrent or Refractory CNS Tumors

    Science.gov (United States)

    2014-07-07

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  14. Gene therapy for brain tumors.

    Science.gov (United States)

    Bansal, K; Engelhard, H H

    2000-09-01

    "Gene therapy" can be defined as the transfer of genetic material into a patient's cells for therapeutic purposes. To date, a diverse and creative assortment of treatment strategies utilizing gene therapy have been devised, including gene transfer for modulating the immune system, enzyme prodrug ("suicide gene") therapy, oncolytic therapy, replacement/therapeutic gene transfer, and antisense therapy. For malignant glioma, gene-directed prodrug therapy using the herpes simplex virus thymidine kinase gene was the first gene therapy attempted clinically. A variety of different strategies have now been pursued experimentally and in clinical trials. Although, to date, gene therapy for brain tumors has been found to be reasonably safe, concerns still exist regarding issues related to viral delivery, transduction efficiency, potential pathologic response of the brain, and treatment efficacy. Improved viral vectors are being sought, and potential use of gene therapy in combination with other treatments is being investigated.

  15. Phase II Study of Intraventricular Methotrexate in Children With Recurrent or Progressive Malignant Brain Tumors

    Science.gov (United States)

    2016-06-30

    Recurrent Childhood Medulloblastoma; Recurrent Childhood Ependymoma; Childhood Atypical Teratoid/Rhabdoid Tumor; Embryonal Tumor With Abundant Neuropil and True Rosettes; Metastatic Malignant Neoplasm to the Leptomeninges

  16. The MOBI-Kids Study Protocol : Challenges in Assessing Childhood and Adolescent Exposure to Electromagnetic Fields from Wireless Telecommunication Technologies and Possible Association with Brain Tumor Risk

    NARCIS (Netherlands)

    Sadetzki, Siegal; Langer, Chelsea Eastman; Bruchim, Revital; Kundi, Michael; Merletti, Franco; Vermeulen, Roel; Kromhout, Hans; Lee, Ae-Kyoung; Maslanyj, Myron; Sim, Malcolm R; Taki, Masao; Wiart, Joe; Armstrong, Bruce; Milne, Elizabeth; Benke, Geza; Schattner, Rosa; Hutter, Hans-Peter; Woehrer, Adelheid; Krewski, Daniel; Mohipp, Charmaine; Momoli, Franco; Ritvo, Paul; Spinelli, John; Lacour, Brigitte; Delmas, Dominique; Remen, Thomas; Radon, Katja; Weinmann, Tobias; Klostermann, Swaantje; Heinrich, Sabine; Petridou, Eleni; Bouka, Evdoxia; Panagopoulou, Paraskevi; Dikshit, Rajesh; Nagrani, Rajini; Even-Nir, Hadas; Chetrit, Angela; Maule, Milena; Migliore, Enrica; Filippini, Graziella; Miligi, Lucia; Mattioli, Stefano; Yamaguchi, Naohito; Kojimahara, Noriko; Ha, Mina; Choi, Kyung-Hwa; Mannetje, Andrea 't; Eng, Amanda; Woodward, Alistair; Carretero, Gema; Alguacil, Juan; Aragones, Nuria; Suare-Varela, Maria Morales; Goedhart, Geertje; Schouten-van Meeteren, A Antoinette Y N; Reedijk, A Ardine M J; Cardis, Elisabeth; Goedhart - de Wolf, Geertje

    2014-01-01

    The rapid increase in mobile phone use in young people has generated concern about possible health effects of exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF). MOBI-Kids, a multinational case-control study, investigates the potential effects of childhood

  17. Cancer stem cells and brain tumors

    OpenAIRE

    Pérez Castillo, Ana; Aguilar Morante, Diana; Morales-García, José A.; Dorado, Jorge

    2008-01-01

    Besides the role of normal stem cells in organogenesis, cancer stem cells are thought to be crucial for tumorigenesis. Most current research on human tumors is focused on molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and, more recently, in solid tumors suggests that the tumor cell population is heterogeneous. In recent years, several groups have described the existence of a cancer stem cell population in different brain tumors. These neural cancer stem ...

  18. Radiosensitized treatment of malignant brain tumors

    Science.gov (United States)

    Bloznelyte-Plesniene, Laima

    2003-12-01

    Around 12,000 deaths from glioblastoma occurs within the European Community annually. At present, the best available treatment for malignant brain tumors results in a median survival of patients of 15 months despite surgery, radiotherapy, and chemotherapy. The purpose of this paper is to review our results of radiosensitized treatment of malignant brain tumors.

  19. Busulfan, Melphalan, Topotecan Hydrochloride, and a Stem Cell Transplant in Treating Patients With Newly Diagnosed or Relapsed Solid Tumor

    Science.gov (United States)

    2016-05-04

    Solid Tumor; Adult Central Nervous System Germ Cell Tumor; Adult Rhabdomyosarcoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Soft Tissue Sarcoma; Ewing Sarcoma; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Ovarian Mixed Germ Cell Tumor; Previously Untreated Childhood Rhabdomyosarcoma; Recurrent Adult Brain Tumor; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Extragonadal Germ Cell Tumor; Recurrent Extragonadal Non-seminomatous Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Neuroblastoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  20. Dynamic perfusion CT in brain tumors.

    Science.gov (United States)

    Yeung, Timothy Pok Chi; Bauman, Glenn; Yartsev, Slav; Fainardi, Enrico; Macdonald, David; Lee, Ting-Yim

    2015-12-01

    Dynamic perfusion CT (PCT) is an imaging technique for assessing the vascular supply and hemodynamics of brain tumors by measuring blood flow, blood volume, and permeability-surface area product. These PCT parameters provide information complementary to histopathologic assessments and have been used for grading brain tumors, distinguishing high-grade gliomas from other brain lesions, differentiating true progression from post-treatment effects, and predicting prognosis after treatments. In this review, the basic principles of PCT are described, and applications of PCT of brain tumors are discussed. The advantages and current challenges, along with possible solutions, of PCT are presented.

  1. Bleomycin treatment of brain tumors: an evaluation

    DEFF Research Database (Denmark)

    Linnert, Mette; Gehl, Julie

    2009-01-01

    Bleomycin has been used in the treatment of brain tumors for over 30 years. Currently, we are evaluating electrochemotherapy (the use of electric pulses to enhance uptake of bleomycin) for patients with secondary brain tumors. We, therefore, reviewed the literature with specific reference...... to the tolerability and toxicity of bleomycin. Using the keywords 'brain' and 'bleomycin', a database search without date restriction was performed and over 500 articles were found. Twenty-five articles were used for this study based on relevance determined by: (i) clinical studies, (ii) use of bleomycin, and (iii......) direct injection into brain tissue or cysts. There were two main indications for the use of bleomycin directly into the brain: (i) cystic tumors in the form of craniopharyngiomas and (ii) solid brain tumors such as glioblastomas and astrocytomas. The most frequent adverse effects reported were transient...

  2. High-Dose Thiotepa Plus Peripheral Stem Cell Transplantation in Treating Patients With Refractory Solid Tumors

    Science.gov (United States)

    2013-03-06

    Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Ovarian Cancer; Retinoblastoma; Testicular Germ Cell Tumor; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  3. Treatment Option Overview (Childhood Central Nervous System Embryonal Tumors)

    Science.gov (United States)

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  4. General Information about Childhood Central Nervous System Embryonal Tumors

    Science.gov (United States)

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  5. General Information About Childhood Central Nervous System Germ Cell Tumors

    Science.gov (United States)

    ... germ cell tumors to form is near the pineal gland and in an area of the brain that ... of the inside of the brain, showing the pineal and pituitary glands, optic nerve, ventricles (with cerebrospinal fluid shown in ...

  6. Brain tumors in children; Hirntumoren beim Kind

    Energy Technology Data Exchange (ETDEWEB)

    Harting, I.; Seitz, A. [Universitaetsklinikum Heidelberg (Germany). Abt. Neuroradiologie

    2009-06-15

    Brain tumors are common in children; in Germany approximately 400 children are diagnosed every year. In the posterior fossa, cerebellar neoplasms outnumber brainstem gliomas. In contrast to their rarity in adults, brainstem gliomas are not uncommon in children. Supratentorial tumors can be subdivided by location into neoplasms of the cerebral hemispheres, suprasellar and pineal tumors. Astrocytoma is the most common pediatric brain tumor followed by medulloblastoma, ependymoma and craniopharyngeoma. The combination of imaging morphology, tumor localisation and patient age at manifestation form the basis of the neuroradiological differential diagnosis. (orig.)

  7. Brain tumors in patients primarly treated psychiatrically

    Directory of Open Access Journals (Sweden)

    Ignjatović-Ristić Dragana

    2011-01-01

    Full Text Available Introduction. Psychiatric symptoms are not rare manifestations of brain tumors. Brain tumors presented by symptoms of raised intracranial pressure, focal neurological signs, or convulsions are usually first seen by the neurologist or less frequently by the neurosurgeon in routine diagnostic procedures. On the other hand, when psychiatric symptoms are the first manifestation in “neurologically silent” brain tumors, the patients are sent to the psychiatrist for the treatment of psychiatric symptoms and brain tumors are left misdiagnosed for a long period of time. Case Report. We presented three patients with the diagnosed brain tumor where psychiatrist had been the first specialist to be consulted. In all three cases neurological examination was generally unremarkable with no focal signs or features of raised intracranial pressure. CT scan demonstrated right insular tumor in a female patient with obsessive-compulsive disorder (OCD; right parietal temporal tumor in a patient with delusions and depression and left frontal tumor in a patient with history of alcohol dependency. Conclusion. Psychiatric symptoms/disorders in patients with brain tumors are not specific enough and can have the same clinical presentation as the genuine psychiatric disorder. Therefore, we emphasize the consideration of neuroimaging in patients with abrupt beginning of psychiatric symptoms, in those with a change in mental status, or when headaches suddenly appear or in cases of treatment resistant psychiatric disorders regardless the lack of neurological symptoms.

  8. Treatment Options for Childhood Central Nervous System Embryonal Tumors and Childhood Pineoblastoma

    Science.gov (United States)

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  9. Brain tumor stem cell dancing

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2014-09-01

    Full Text Available Background. Issues regarding cancer stem cell (CSC movement are important in neurosphere biology as cell-cell or cell-environment interactions may have significant impacts on CSC differentiation and contribute to the heterogeneity of the neurosphere. Aims. Despite the growing body of literature data on the biology of brain tumor stem cells, floating CSC-derived neurospheres have been scarcely characterized from a morphological and ultrastructural point of view. Results. Here we report a morphological and ultrastructural characterization performed by live imaging and scanning electron microscopy. Glioblastoma multiforme (GBM CSC-derived neurospheres are heterogeneous and are constituted by cells, morphologically different, capable of forming highly dynamic structures. These dynamic structures are regulated by not serendipitous cell-cell interactions, and they synchronously pulsate following a cyclic course made of "fast" and "slow" alternate phases. Autocrine/paracrine non canonical Wnt signalling appears to be correlated with the association status of neurospheres. Conclusions. The results obtained suggest that GBM CSCs can behave both as independents cells and as "social" cells, highly interactive with other members of its species, giving rise to a sort of "multicellular organism".

  10. Asymptomatic brain tumor detected at brain check-up

    Energy Technology Data Exchange (ETDEWEB)

    Onizuka, Masanari; Suyama, Kazuhiko; Shibayama, Akira; Hiura, Tsuyoshi; Horie, Nobutaka; Miyazaki, Hisaya [Sankoukai Miyazaki Hospital, Isahaya, Nagasaki (Japan)

    2001-09-01

    Brain check-up was performed in 4000 healthy subjects who underwent medical and radiological examinations for possible brain diseases in our hospital from April 1996 to March 2000. Magnetic resonance imaging revealed 11 brain tumors which consisted of six meningiomas, three pituitary adenomas, one astrocytoma, and one epidermoid cyst. The detection rate of incidental brain tumor in our hospital was 0.3%. Nine patients underwent surgery, with one case of morbidity due to postoperative transient oculomotor nerve paresis. The widespread use of brain check-up may increasingly detect asymptomatic brain tumors. Surgical indications for such lesions remain unclear, and the strategy for treatment should be determined with consideration of the patient's wishes. (author)

  11. The therapy of infantile malignant brain tumors: current status?

    Science.gov (United States)

    Kalifa, Chantal; Grill, Jacques

    2005-12-01

    Malignant brain tumors are not uncommon in infants as their occurrence before the age of three represents 20-25% of all malignant brain tumors in childhood [1]. Genetic predisposition to infantile malignant brain tumors are known in Gorlin syndrome for example who present with desmoplastic medulloblastoma in about 5% of the affected patients. In addition, sequelae from tumor and its treatment are more severe at this age [2]. Thus, malignant brain tumors represent a true therapeutic challenge in neuro-oncology. Before the era of modern imaging and modern neurosurgery these malignant brain tumors were misdiagnosed or could not benefit of the surgical procedures as well as older children because of increased risks in this age group. Since the end of the 80s, noninvasive imaging procedures produce accurate diagnosis of brain tumors and improvement in neurosurgery, neuroanesthesia and perioperative intensive care permit safe tumor resections or at least biopsies. Consequently, the pediatric oncologists are more often confronted with very young children who need a complementary treatment. Before the development of specific approaches for this age group, these children received the same kind of treatment than the older children did, but their survival and quality of life were significantly worse. The reasons of these poor results were probably due in part to the fear of late effects induced by radiation therapy, leading to decrease the necessary doses of irradiation which increased treatment failures without avoiding treatment related complications [3]. At the end of the 80s, pilot studies were performed using postoperative chemotherapy in young medulloblastoma patients. Van Eys treated 12 selected children with medulloblastoma with MOPP regimen and without irradiation; 8 of them were reported to be long term survivors [4]. Subsequently, the pediatric oncology cooperative groups studies have designed therapeutic trials for very young children with malignant brain tumors

  12. Cognitive deficits in patients with brain tumor

    Institute of Scientific and Technical Information of China (English)

    SHEN Chao; BAO Wei-min; YANG Bo-jie; XIE Rong; CAO Xiao-yun; LUAN Shi-hai; MAO Ying

    2012-01-01

    Objective To discuss the present status and progress of clinical research on the cognitive effects caused by different types of brain tumors and common treatments.Data sources The data used in this review were mainly from PubMed articles published in English from 1990 to Febuary 2012.Research terms were "cognitive deficits" or "cognitive dysfunction".Study selection Articals including any information about brain tumor related cognitive deficits were selected.Results It is widely accepted that brain tumors and related treatments can impair cognitive function across manydomains,and can impact on patients' quality of life.Tumor localization,lateralization,surgery,drugs,radiotherapy and chemotherapy are all thought to be important factors in this process.However,some conflicting findings regarding brain tumor-related cognitive deficits have been reported.It can be difficult to determine the mechanism of these treatments,such as chemotherapy,antibiotics,antiepileptics,and steroids.Future research is needed to clarify these potential treatment effects.Conclusions Cognitive function is important for patients with brain tumor.Much more focus has been paid on this field.It should be regarded as an important prognostic index for the patients with brain tumor,and neuropsychological tests should be used in regular examinations.

  13. HIT`91 (prospective, co-operative study for the treatment of malignant brain tumors in childhood): accuracy and acute toxicity of the irradiation of the craniospinal axis

    Energy Technology Data Exchange (ETDEWEB)

    Kortmann, R.D.; Timmermann, B.; Bamberg, M. [Tuebingen Univ. (Germany). Dept. of Radiotherapy; Kuehl, J. [Wuerzburg Univ. (Germany). Children`s Hospital; Willich, N. [Muenster Univ. (Germany). Dept. of Radiotherapy; Flentje, M. [Wuerzburg Univ. (Germany). Dept. of Radiotherapy; Meisner, C. [Tuebingen Univ. (Germany). Inst. for Medical Information Processing

    1999-04-01

    Background: It was the aim of the quality control program of the randomized trial HIT `91 (intensive chemotherapy before irradiation versus maintenance chemotherapy after irradiation) to assess prospectively the quality of neuroaxis irradiation with respect to the protocol guidelines and to evaluate acute toxicity with respect to treatment arm. Patients, Materials and Methods: Data of 134 patients undergoing irradiation of the craniospinal axis were available. Positioning aids, shielding techniques, treatment machines, choice of energy, total dose and fractionation were evaluated. A total of 651 simulation and verification films were analyzed to assess the coverage of the clinical target volume (whole brain, posterior fossa, sacral nerve roots) and deviations of field alignment between simulation and verification of first treatment. Field matching between whole brain and adjacent cranial spinal fields was analyzed with respect to site and width of junction. Acute maximal side effects were evaluated according to a modified WHO score for neurotoxicity, infections, skin, mucosa and myelotoxicity. Results: In 91.3% of patients contemporary positioning aids and individualized shielding techniques were used to assure a reproducible treatment. In 98 patients (73.1%) linear accelerators and in 36 patients (26.8%) {sup 60}Cobalt machines were used. Single and total dose were administered according to the protocol guidelines in more than 90% of patients. In 20.2% of patients the cribriform plate, in 1.4% the middle cranial fossa and in 21.1% the posterior fossa and in 4.5% the 2nd sacral segment were incompletely encompassed by the treatment portals. Ninety-five percent of deviations of field alignment were less than 13.0 mm (whole brain) and 12 mm (cranial spinal field) with a random error between 4.9 and 7.6 mm (whole brain) and 6.9 mm and 9.9 mm (spinal canal), respectively. In 77.5% of patients the junctions between whole brain and cranial spinal fields were placed

  14. Radiotherapy for pediatric brain tumors: Standards of care, current clinical trials, and new directions

    International Nuclear Information System (INIS)

    The objectives of the course are to evaluate the role of radiation therapy in the treatment of pediatric brain tumors. Areas where the role is evolving will be identified, and the results of clinical trials which been mounted to clarify radiotherapy's role will be reviewed. Brain tumors are the second most common malignancy of childhood after leukemias and lymphomas. However, they remain the most common group of childhood tumors to require radiation therapy. Therefore, a thorough understanding of these tumors, and the appropriate role of surgery, radiation and chemotherapy is critical. Issues surrounding the management of sequelae are no less important. The role of radiotherapy for the treatment of these tumors is far different from that for adults. These differences relate to the profound potential for sequelae from therapy, the higher overall cure rates, and the utility of multimodality therapies. In addition, the rarity of childhood brain tumors compared with adults' makes them more difficult to study. In this session, the following issues will be reviewed; 1. Incidence of pediatric brain tumors, 2. General issues regarding symptoms, diagnosis, diagnostic tests and evaluation, 3. Importance of a team approach, 4. General issues regarding treatment sequelae, 5. Specific tumor types/entities; a. Cerebellar Astrocytomas b. Benign and malignant Gliomas including brainstem and chiasmatic lesions c. Primitive Neuroectodermal Tumors (PNET) and Medulloblastoma d. Ependymomas e. Craniopharyngiomas f. Germ cell tumors g. Miscellaneous and rare pediatric brain tumors 6. Management of sequelae 7. New and future directions a. Treatment of infants b. The expanding role of chemotherapy c. Advances in radiotherapy. The attendees will complete the course with a better understanding of the role that radiation therapy plays in the treatment of pediatric brain tumors. They will be knowledgeable in the foundation for that role, and the changes which are likely to take place in the

  15. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Chang; Weon, Young Cheol; Suh, Jae Hee; Kim, Young; Hwang, Jae Cheol [Ulsan University Hospital, Ulsan (Korea, Republic of)

    2010-08-15

    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  16. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    OpenAIRE

    Qiao, Guanqun; Li, Qingquan; Peng, Gang; Ma, Jun; Fan, Hongwei; Li, Yingbin

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain t...

  17. Oncogenic extracellular vesicles in brain tumor progression.

    Science.gov (United States)

    D'Asti, Esterina; Garnier, Delphine; Lee, Tae H; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2012-01-01

    The brain is a frequent site of neoplastic growth, including both primary and metastatic tumors. The clinical intractability of many brain tumors and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS) and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs). Their biogenesis (vesiculation) and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumor cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumor-derived EVs (oncosomes) also contain oncogenic proteins, transcripts, DNA, and microRNA (miR). Uptake of this material may change properties of the recipient cells and impact the tumor microenvironment. Examples of transformation-related molecules found in the cargo of tumor-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII), tumor suppressors (PTEN), and oncomirs (miR-520g). It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF) of brain tumor patients may be used to decipher molecular features (mutations) of the underlying malignancy, reflect responses to therapy, or molecular subtypes of primary brain tumors [e.g., glioma or medulloblastoma (MB)]. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus, EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies. PMID:22934045

  18. Fluorescent Nanoparticle Uptake for Brain Tumor Visualization

    Directory of Open Access Journals (Sweden)

    Rachel Tréhin

    2006-04-01

    Full Text Available Accurate delineation of tumor margins is vital to the successful surgical resection of brain tumors. We have previously developed a multimodal nanoparticle CLIO-Cy5.5, which is detectable by both magnetic resonance imaging and fluorescence, to assist in intraoperatively visualizing tumor boundaries. Here we examined the accuracy of tumor margin determination of orthotopic tumors implanted in hosts with differing immune responses to the tumor. Using a nonuser-based signal intensity method applied to fluorescent micrographs of 9L gliosarcoma green fluorescent protein (GFP tumors, mean overestimations of 2 and 24 µm were obtained using Cy5.5 fluorescence, compared to the true tumor margin determined by GFP fluorescence, in nude mice and rats, respectively. To resolve which cells internalized the nanoparticle and to quantitate degree of uptake, tumors were disaggregated and cells were analyzed by flow cytometry and fluorescence microscopy. Nanoparticle uptake was seen in both CD11b+ cells (representing activated microglia and macrophages and tumor cells in both animal models by both methods. CD11b+ cells were predominantly found at the tumor margin in both hosts, but were more pronounced at the margin in the rat model. Additional metastatic (CT26 colon and primary (Gli36 glioma brain tumor models likewise demonstrated that the nanoparticle was internalized both by tumor cells and by host cells. Together, these observations suggest that fluorescent nanoparticles provide an accurate method of tumor margin estimation based on a combination of tumor cell and host cell uptake for primary and metastatic tumors in animal model systems and offer potential for clinical translation.

  19. Permeability imaging in pediatric brain tumors

    OpenAIRE

    Lam, Sandi; Lin, Yimo; Warnke, Peter C.

    2014-01-01

    While traditional computed tomography (CT) and magnetic resonance (MR) imaging illustrate the structural morphology of brain pathology, newer, dynamic imaging techniques are able to show the movement of contrast throughout the brain parenchyma and across the blood-brain barrier (BBB). These data, in combination with pharmacokinetic models, can be used to investigate BBB permeability, which has wide-ranging applications in the diagnosis and management of central nervous system (CNS) tumors in ...

  20. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  1. Dasatinib, Ifosfamide, Carboplatin, and Etoposide in Treating Young Patients With Metastatic or Recurrent Malignant Solid Tumors

    Science.gov (United States)

    2016-02-10

    Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Kidney Cancer; Liver Cancer; Lymphoma; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor; Unspecified Childhood Solid Tumor, Protocol Specific

  2. Imaging of childhood inflammatory myofibroblastic tumor

    Energy Technology Data Exchange (ETDEWEB)

    Oguz, Berna; Ozcan, Hatice Nursun; Omay, Burak; Ozgen, Burce; Haliloglu, Mithat [Division of Pediatric Radiology, Hacettepe University Faculty of Medicine, Department of Radiology, Altindag / Sihhiye, Ankara (Turkey)

    2015-10-15

    Inflammatory myofibroblastic tumor is a rare benign neoplasm and most commonly involves the lung but occurs in extrapulmonary locations. To present imaging findings in inflammatory myofibroblastic tumors in children based on a single-centre experience. We retrospectively reviewed CT and MRI findings of children diagnosed with inflammatory myofibroblastic tumor in a single institution. We identified 15 children (range: 1-17 years) with inflammatory myofibroblastic tumor. The tumor was localized to the lung (n = 5), mediastinum (n = 3), trachea (n = 1), bronchus (n = 1), abdomen (n = 2) and orbit (n = 3). All the extraorbital tumors were solid masses with homogeneous or heterogeneous enhancement. Four lung tumors and one posterior mediastinal tumor contained calcification. Local recurrence following surgical removal occurred in two children with invasion of the esophagus and of the left atrium in one. Localized masses were seen in all children with orbital tumour. Two of these had episcleritis and perineuritis; one had episcleritis, tendonitis, perineuritis, myositis and dacryoadenitis. The locations and imaging features of inflammatory myofibroblastic tumors are variable. (orig.)

  3. Vorinostat and Bortezomib in Treating Young Patients With Refractory or Recurrent Solid Tumors, Including Central Nervous System Tumors and Lymphoma

    Science.gov (United States)

    2013-07-01

    Childhood Burkitt Lymphoma; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Medulloepithelioma; Childhood Meningioma; Childhood Mixed Glioma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Oligodendroglioma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific

  4. Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia

    Science.gov (United States)

    2014-11-04

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Gonadotroph Adenoma; Pituitary Basophilic Adenoma; Pituitary Chromophobe Adenoma; Pituitary Eosinophilic Adenoma; Prolactin Secreting Adenoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Pituitary Tumor; Recurrent/Refractory Childhood Hodgkin Lymphoma; T-cell Childhood Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; TSH Secreting Adenoma; Unspecified Childhood Solid Tumor, Protocol Specific

  5. Proton MRS imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Maria [Aghia Sophia Children' s Hospital, Department of Radiology, Athens (Greece); Tzika, A.A. [Harvard Medical School, Department of Surgery, Massachusetts General Hospital, Boston, MA (United States); Shriners Burn Hospital, Boston, MA (United States)

    2016-06-15

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. (orig.)

  6. Childhood kidney tumors - the relevance of imaging

    International Nuclear Information System (INIS)

    Kidney tumors represent 6.2% of malignant tumors in children. History, clinical course and radiological findings are necessary elements in the differential diagnosis of the different renal tumors. In the case of nephroblastoma, chemotherapy is based solely on the radiological diagnosis without prior histology. In therapy-optimizing studies of the Society of Pediatric Oncology and Hematology, preoperative chemotherapy is performed. Therapy monitoring is performed in the course of and after preoperative chemotherapy to verify tumor response. Radiological staging plays a significant role in deciding on further treatment and in operative planning. Three-dimensional visualization of the abdominal situs can assist preoperative planning. In summary, diagnostic imaging in renal tumors in children plays a role in differential diagnosis, staging, monitoring of therapy, and surgical planning. (orig.)

  7. Recent developments in brain tumor predisposing syndromes.

    Science.gov (United States)

    Johansson, Gunnar; Andersson, Ulrika; Melin, Beatrice

    2016-01-01

    The etiologies of brain tumors are in the most cases unknown, but improvements in genetics and DNA screening have helped to identify a wide range of brain tumor predisposition disorders. In this review we are discussing some of the most common predisposition disorders, namely: neurofibromatosis type 1 and 2, schwannomatosis, rhabdoid tumor predisposition disorder, nevoid basal cell carcinoma syndrome (Gorlin), tuberous sclerosis complex, von Hippel-Lindau, Li-Fraumeni and Turcot syndromes. Recent findings from the GLIOGENE collaboration and the newly identified glioma causing gene POT1, will also be discussed. Genetics. We will describe these disorders from a genetic and clinical standpoint, focusing on the difference in clinical symptoms depending on the underlying gene or germline mutation. Central nervous system (CNS) tumors. Most of these disorders predispose the carriers to a wide range of symptoms. Herein, we will focus particularly on tumors affecting the CNS and discuss improvements of targeted therapy for the particular disorders. PMID:26634384

  8. Stages of Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... immature teratomas , and malignant germ cell tumors: Mature Teratomas Mature teratomas are the most common type of ... that cause signs and symptoms of disease. Immature Teratomas Immature teratomas also usually occur in the sacrum ...

  9. MRI and MRS of human brain tumors.

    Science.gov (United States)

    Hou, Bob L; Hu, Jiani

    2009-01-01

    The purpose of this chapter is to provide an introduction to magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of human brain tumors, including the primary applications and basic terminology involved. Readers who wish to know more about this broad subject should seek out the referenced books (1. Tofts (2003) Quantitative MRI of the brain. Measuring changes caused by disease. Wiley; Bradley and Stark (1999) 2. Magnetic resonance imaging, 3rd Edition. Mosby Inc; Brown and Semelka (2003) 3. MRI basic principles and applications, 3rd Edition. Wiley-Liss) or reviews (4. Top Magn Reson Imaging 17:127-36, 2006; 5. JMRI 24:709-724, 2006; 6. Am J Neuroradiol 27:1404-1411, 2006).MRI is the most popular means of diagnosing human brain tumors. The inherent difference in the magnetic resonance (MR) properties of water between normal tissues and tumors results in contrast differences on the image that provide the basis for distinguishing tumors from normal tissues. In contrast to MRI, which provides spatial maps or images using water signals of the tissues, proton MRS detects signals of tissue metabolites. MRS can complement MRI because the observed MRS peaks can be linked to inherent differences in biochemical profiles between normal tissues and tumors.The goal of MRI and MRS is to characterize brain tumors, including tumor core, edge, edema, volume, types, and grade. The commonly used brain tumor MRI protocol includes T2-weighted images and T1-weighted images taken both before and after the injection of a contrast agent (typically gadolinium: Gd). The commonly used MRS technique is either point-resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM).

  10. Brain tumor and Gliadel wafer treatment

    Directory of Open Access Journals (Sweden)

    M Panigrahi

    2011-01-01

    Full Text Available Glioblastoma is a rapidly progressive and extremely fatal form of brain tumor with poor prognosis. It is the most common type of primary brain tumor. Even with the most aggressive conventional treatment that comprises surgery followed by radiotherapy and chemotherapy, most patients die within a year of diagnosis. Developments in molecular and cell biology have led to better understanding of tumor development, leading to novel treatment strategies including biological therapy and immunotherapy to combat the deadly disease. Targeted drug delivery strategies to circumvent the blood-brain barrier have shown efficiency in clinical trials. Gliadel wafer is a new approach to the treatment of glioblastoma, which involves controlled release delivery of carmustine from biodegradable polymer wafers. It has shown promising results and provides a silver lining for glioblastoma patients.

  11. Parental Exposure to Pesticides and Childhood Brain Cancer: U.S. Atlantic Coast Childhood Brain Cancer Study

    OpenAIRE

    Shim, Youn K.; Mlynarek, Steven P.; van Wijngaarden, Edwin

    2009-01-01

    Background The etiology of childhood brain cancer remains largely unknown. However, previous studies have yielded suggestive associations with parental pesticide use. Objectives We aimed to evaluate parental exposure to pesticides at home and on the job in relation to the occurrence of brain cancer in children. Methods We included 526 one-to-one–matched case–control pairs. Brain cancer cases were diagnosed at < 10 years of age, and were identified from statewide cancer registries of four U.S....

  12. [Chemotherapy for brain tumors in adult patients].

    Science.gov (United States)

    Weller, M

    2008-02-01

    Chemotherapy has become a third major treatment option for patients with brain tumors, in addition to surgery and radiotherapy. The role of chemotherapy in the treatment of gliomas is no longer limited to recurrent disease. Temozolomide has become the standard of care in newly diagnosed glioblastoma. Several ongoing trials seek to define the role of chemotherapy in the primary care of other gliomas. Some of these studies are no longer only based on histological diagnoses, but take into consideration molecular markers such as MGMT promoter methylation and loss of genetic material on chromosomal arms 1p and 19q. Outside such clinical trials chemotherapy is used in addition to radiotherapy, e.g., in anaplastic astrocytoma, medulloblastoma or germ cell tumors, or as an alternative to radiotherapy, e.g., in anaplastic oligodendroglial tumors or low-grade gliomas. In contrast, there is no established role for chemotherapy in other tumors such as ependymomas, meningiomas or neurinomas. Primary cerebral lymphomas are probably the only brain tumors which can be cured by chemotherapy alone and only by chemotherapy. The chemotherapy of brain metastases follows the recommendations for the respective primary tumors. Further, strategies of combined radiochemotherapy using mainly temozolomide or topotecan are currently explored. Leptomeningeal metastases are treated by radiotherapy or systemic or intrathecal chemotherapy depending on their pattern of growth. PMID:18253773

  13. The delivery of BCNU to brain tumors.

    Science.gov (United States)

    Wang, C C; Li, J; Teo, C S; Lee, T

    1999-08-27

    This paper reports the development of three-dimensional simulations to study the effect of various factors on the delivery of 1-3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to brain tumors. The study yields information on the efficacy of various delivery methods, and the optimal location of polymer implantation. Two types of drug deliveries, namely, systemic administration and controlled release from polymers, were simulated using fluid dynamics analysis package (FIDAP) to predict the temporal and spatial variation of drug distribution. Polymer-based delivery provides higher mean concentration, longer BCNU exposure time and reduced systemic toxicity than bolus injection. Polymer implanted in the core gives higher concentration of drug in both the core and viable zone than the polymer in the viable zone case. The penetration depth of BCNU is very short. This is because BCNU can get drained out of the system before diffusing to any appreciable distance. Since transvascular permeation is the dominant means of BCNU delivery, the interstitial convection has minor effect because of the extremely small transvascular Peclet number. The reaction of BCNU with brain tissues reduces the drug concentration in all regions and its effect increases with rate constant. The implantation of BCNU/ethylene-vinyl acetate copolymer (EVAc) matrix at the lumen of the viable zone immediately following the surgical removal of 80% of the tumor may be an effective treatment for the chemotherapy of brain tumors. The present study provides a quantitative examination on the working principle of Gliadel wafer for the treatment of brain tumors.

  14. MicroRNA and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    MicroRNAs (miRNAs) were first described in 1993 by Lee and colleagues, and the term microRNA was only introduced in 2001 in a set of three articles in Science[1]. One of the biggest surprises in the past few years has been the emergence of miRNAs as a major new class of gene expression regulators. Recent studies suggest that miRNA alterations are involved in the initiation and progression of human cancer. The brain tumor,glioblastoma multiforme, is the most malignant and deadly form of gliomas.The prognosis is poor and the median survival with combined radiotherapy and chemotherapy is only 14.6 months. With the discovery of miRNA, the miRNA profiles may become useful biomarkers for brain tumor diagnostics,and miRNA therapy could be a powerful tool for brain tumor prevention and therapeutics. This review outlines the background of miRNA and its expression and therapeutic potential for brain tumors.

  15. [Differential infratentorial brain tumor diagnosis in children].

    Science.gov (United States)

    Warmuth-Metz, M; Kühl, J; Rutkowski, S; Krauss, J; Solymosi, L

    2003-11-01

    With the exception of the first year of life, infratentorial brain tumors are more frequent in the first decade than tumors in the supratentorial compartment. In particular these are cerebellar low-grade astrocytomas, medulloblastomas, brainstem gliomas and ependymomas of the fourth ventricle. The morphology on MRI and CT and the mode of dissemination permit differential diagnosis in many cases. To allow correct stratification into different treatments in possibly disseminating malignant brain tumors, knowledge of the status of dissemination is essential, and therefore not only cranial but also spinal MRI is indispensable for staging. If the spinal MRI is performed in the immediate postoperative period, knowledge of the normal non-specific purely postoperative changes, often seen as enhancement in the subdural spinal spaces, is necessary in order to avoid misinterpretation as meningial seeding. The differential diagnosis of pediatric infratentorial brain tumors and the morphology of subdural enhancement are illustrated with typical images. The natural history of the most frequent tumors and its importance for treatment decisions is discussed in light of the literature.

  16. A Rare Malignant Fetal Brain Tumor.

    Science.gov (United States)

    Iruretagoyena, Jesus Igor; Heiser, Timothy; Iskandar, Bermans; Shah, Dinesh

    2016-01-01

    A gravida 4, para 3 female at 37 weeks' gestation presented for a routine ultrasound. She had an otherwise uncomplicated low-risk pregnancy. The sonographic evaluation of the fetus revealed a macrocephaly and a deviation of the brain midline structures with a mass effect as well as a massively dilated left cerebral ventricular system with ill-defined echogenic ventricular delineation. Multiple free intracavitary echogenicities and disruptions of the brain mantle were visible. Our images were suggestive of either an intracranial bleed with the presence of an underlying tumor or a spontaneous bleed. A postnatal MRI was consistent with our prenatal findings of a possible tumor. The postnatal biopsy revealed an anaplastic astroblastoma within a hemorrhagic background. The infant received multiple courses of chemotherapy and further tumor debulking. At present, the infant is 18 months old. This is only the 4th case of an astrocytoma identified in the fetal period, and our case has the longest known survival yet. PMID:26044034

  17. Pituitary tumors in childhood: update of diagnosis, treatment and molecular genetics.

    Science.gov (United States)

    Keil, Margaret F; Stratakis, Constantine A

    2008-04-01

    Pituitary tumors are rare in childhood and adolescence, with a reported prevalence of up to one per 1 million children. Only 2-6% of surgically treated pituitary tumors occur in children. Although pituitary tumors in children are almost never malignant and hormonal secretion is rare, these tumors may result in significant morbidity. Tumors within the pituitary fossa are mainly of two types: craniopharyngiomas and adenomas. Craniopharyngiomas cause symptoms by compressing normal pituitary, causing hormonal deficiencies and producing mass effects on surrounding tissues and the brain; adenomas produce a variety of hormonal conditions such as hyperprolactinemia, Cushing disease and acromegaly or gigantism. Little is known about the genetic causes of sporadic lesions, which comprise the majority of pituitary tumors, but in children, more frequently than in adults, pituitary tumors may be a manifestation of genetic conditions such as multiple endocrine neoplasia type 1, Carney complex, familial isolated pituitary adenoma and McCune-Albright syndrome. The study of pituitary tumorigenesis in the context of these genetic syndromes has advanced our knowledge of the molecular basis of pituitary tumors and may lead to new therapeutic developments. PMID:18416659

  18. Malignant brain tumor treatments and hyperbaric oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Kohshi, Kiyotaka [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan)

    2000-09-01

    Malignant brain tumor treatment and hyperbaric oxygenation: Combined hyperbaric oxygenation (HBO) therapy and radiation therapy of malignant gliomas is reviewed. Malignant glioma tissue is hypoxic, and the efficacy of radiation therapy is increased by raising the oxygen density in glioma tissue. Residual tumor was reduced by a radiation dose of approximately 40 Gy in many cases when radiation therapy was begun within 15 minutes after HBO. In the experiment in animal models with different hypoxic fractions (HFs) of cells (SCCVII and 9L gliosarcoma), the tumor reduction effect was more significant in the SCCVII model, which has a higher HF. When the SCCVII model was irradiated within 30 minutes after HBO, the improvement effect was more significant (1.60-1.78 times) than by irradiation alone. HBO was effective in the treatment of radionecrosis of the brain. However, there were some cases in which radionecrosis progressed when the HBO treatments were discontinued, and the optimal duration of HBO treatment should be determined. It is difficult to differentiate between radionecrosis and tumor recurrence after radiosurgery of a malignant intracranial tumor. When no lesion reduction is observed in response to HBO treatment and steroid administration for about one month, the lesion is concluded to be a recurrence of the tumor, and additional irradiation should be performed. HBO treatment in combination with chemotherapy is also discussed. (K.H.)

  19. Music and the Brain in Childhood Development. Review of Research.

    Science.gov (United States)

    Strickland, Susan J.

    2002-01-01

    Reviews literature on effects of music on the brain in childhood development. Areas include: (1) early synaptic growth; (2) nature versus nurture; (3) background music; (4) musical practice; (5) music learning and cognitive skills; (6) transfer of music learning; (7) musical instrument practice; (8) children and music; and (9) transfer effects.…

  20. Targeted Toxins in Brain Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Walter A. Hall

    2010-11-01

    Full Text Available Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins.

  1. Mapping brain development during childhood, adolescence and young adulthood

    Science.gov (United States)

    Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Li, Yao

    2009-02-01

    Using optimized voxel-based morphometry (VBM), this study systematically investigated the differences and similarities of brain structural changes during the early three developmental periods of human lives: childhood, adolescence and young adulthood. These brain changes were discussed in relationship to the corresponding cognitive function development during these three periods. Magnetic Resonance Imaging (MRI) data from 158 Chinese healthy children, adolescents and young adults, aged 7.26 to 22.80 years old, were included in this study. Using the customized brain template together with the gray matter/white matter/cerebrospinal fluid prior probability maps, we found that there were more age-related positive changes in the frontal lobe, less in hippocampus and amygdala during childhood, but more in bilateral hippocampus and amygdala and left fusiform gyrus during adolescence and young adulthood. There were more age-related negative changes near to central sulcus during childhood, but these changes extended to the frontal and parietal lobes, mainly in the parietal lobe, during adolescence and young adulthood, and more in the prefrontal lobe during young adulthood. So gray matter volume in the parietal lobe significantly decreased from childhood and continued to decrease till young adulthood. These findings may aid in understanding the age-related differences in cognitive function.

  2. Brain Tumor Detection Based On Symmetry Information

    OpenAIRE

    G., Narkhede Sachin; Khairnar, Vaishali

    2013-01-01

    Advances in computing technology have allowed researchers across many fields of endeavor to collect and maintain vast amounts of observational statistical data such as clinical data, biological patient data, data regarding access of web sites, financial data, and the like. This paper addresses some of the challenging issues on brain magnetic resonance (MR) image tumor segmentation caused by the weak correlation between magnetic resonance imaging (MRI) intensity and anatomical meaning. With th...

  3. Mapping of language brain areas in patients with brain tumors.

    Science.gov (United States)

    Hyder, Rasha; Kamel, Nidal; Boon, Tang Tong; Reza, Faruque

    2015-08-01

    Language cortex in the human brain shows high variability among normal individuals and may exhibit a considerable shift from its original position due to tumor growth. Mapping the precise location of language areas is important before surgery to avoid postoperative language deficits. In this paper, the Magnetoencephalography (MEG) recording and the MRI scanning of six brain tumorous subjects are used to localize the language specific areas. MEG recordings were performed during two silent reading tasks; silent word reading and silent picture naming. MEG source imaging is performed using distributed source modeling technique called CLARA ("Classical LORETA Analysis Recursively Applied"). Estimated MEG sources are overlaid on individual MRI of each patient to improve interpretation of MEG source imaging results. The results show successful identification of the essential language areas and clear definition of the time course of neural activation connecting them. PMID:26736340

  4. 18F FDOPA PET/CT or PET/MRI in Measuring Tumors in Patients With Newly Diagnosed or Recurrent Gliomas

    Science.gov (United States)

    2016-06-22

    Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Oligoastrocytoma; Recurrent Childhood Oligodendroglioma; Recurrent Childhood Pilomyxoid Astrocytoma; Recurrent Childhood Protoplasmic Astrocytoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligoastrocytoma; Untreated Childhood Anaplastic Oligodendroglioma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Cerebellar Astrocytoma; Untreated Childhood Cerebral Astrocytoma; Untreated Childhood Diffuse Astrocytoma; Untreated Childhood Fibrillary Astrocytoma; Untreated Childhood Gemistocytic Astrocytoma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliomatosis Cerebri; Untreated Childhood Gliosarcoma; Untreated Childhood

  5. Ixabepilone in Treating Young Patients With Solid Tumors or Leukemia That Haven't Responded to Therapy

    Science.gov (United States)

    2012-03-14

    Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Kidney Cancer; Leukemia; Liver Cancer; Neuroblastoma; Ovarian Cancer; Sarcoma; Unspecified Childhood Solid Tumor, Protocol Specific

  6. Extracellular Vesicles in Brain Tumor Progression.

    Science.gov (United States)

    D'Asti, Esterina; Chennakrishnaiah, Shilpa; Lee, Tae Hoon; Rak, Janusz

    2016-04-01

    Brain tumors can be viewed as multicellular 'ecosystems' with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as 'oncosomes'). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways

  7. Treatment Options for Childhood Brain Stem Glioma

    Science.gov (United States)

    ... tests to check the brain, spinal cord, and nerve function. The exam checks a person’s mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro ...

  8. Stages of Childhood Brain Stem Glioma

    Science.gov (United States)

    ... tests to check the brain, spinal cord, and nerve function. The exam checks a person’s mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro ...

  9. Language and focal brain lesion in childhood.

    Science.gov (United States)

    Avila, Lia; Riesgo, Rudimar; Pedroso, Fleming; Goldani, Marcelo; Danesi, Marlene; Ranzan, Josiane; Sleifer, Pricila

    2010-07-01

    Childhood ischemic strokes can lead to problems like hemiplegias, epilepsies, cognitive changes (memory and mathematical solutions), and language ability (reading, writing, and aphasias). The purpose of this study was to evaluate language and its aspects in children with unilateral ischemic stroke and associate them with the age during the event, injured side, and occurrence of epilepsy. Thirty-two children between 8 months and 19 years of age were evaluated. Among them, 21 (65%) had a change in their language skills, there being a connection between age and the time of injury (P < .05). The most impaired aspects were their phonology, semantics, and syntax. In this sample, there was a persistent change in the semantic aspect, which is an alert for the early detection of learning and future development problems.

  10. Brain Tumor Database, a free relational database for collection and analysis of brain tumor patient information.

    Science.gov (United States)

    Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio

    2015-03-01

    In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org.

  11. Problems of radiotherapy on the brain tumors in children less than two years of age

    Energy Technology Data Exchange (ETDEWEB)

    Miyagami, Mitsusuke; Tsubokawa, Takashi (Nihon Univ., Tokyo (Japan). School of Medicine); Nishimoto, Hiroshi; Ueno, Yuhichi

    1990-06-01

    Impaired growth and mental or developmental disturbance due to radiotherapy for 10 cases of brain tumors in the children ages less than 2 years old were evaluated. Six cases of brain tumor which did not involve the hypothalamic-pituitary axis, were followed more than 2 years after cranial or craniospinal irradiation. Four cases irradiated greater than 2900 rad to the whole brain all revealed markedly lower body heights than -2 SD of the medium. Growth impairment was found to be progressive over time, and markedly evident after 2 years following cranial or craniospinal radiotherapy. Somatomedin C in the blood was measured in 8 cases of brain tumors in childhood receiving radiotherapy. The measurement of Somatomedin C showed markedly low values measuring 0.19 to 0.54 U/ml (medium; 0.36 U/ml) in children having lower body height than -2 SD. Mental retardation or developmental disturbances were found in IQ or DQ tests in all of 5 infants or children younger than 2 years with brain tumors who got radiotherapy over 2900 rad to the whole brain. A case of craniopharyngioma, which had 5400 rad for tumor localization at the hypothalamus-pituitary axis and showed markedly low height, was given growth hormone and grew to normal height without distinct side effects. It was suggested that radiotherapy for brain tumors in infants or children should have special care in deciding the dose, field and time of radiation. If low height due to radiotherapy results, growth hormone therapy should be used for its treatment in childhood. (author).

  12. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  13. Nuclear magnetic resonance imaging in brain tumors

    International Nuclear Information System (INIS)

    Full text: Magnetic resonance imaging (MRI) is a non-invasive imaging method based on the detecting signal from hydrogen nuclei of water molecules and fat. Performances of MRI are continuously increasing, and its domains of investigation of the human body are growing in both morphological and functional study. MRI also allows It also performing advanced management of tumours especially in the brain, by combining anatomical information (morphological MRI), functional (diffusion, perfusion and BOLD contrast) and metabolic (tissue composition in magnetic resonance spectroscopy (MRS)). The MRI techniques have an important role in cancerology. These techniques allow essential information for the diagnosis and answering therapist's questions before, during or after the treatment. The MR allows clarifying the localization of expanding processes, the differential diagnosis between brain tumour and a lesion confined by another structural aspect, the diagnosis of the tumoral aspect of a lesion, the histological ranking in case of glial tumour and the extension of its localization as well as the therapeutic follow-up (pre-therapeutic and post-therapeutics assessments). A better combination between the morphological, functional and metabolic studies, as well as integrating new technical developments, especially while using a multichannel bird cage coils the 3T magnet and suitable computing software, would allow significant improvements of the exploration strategies and management of brain tumors.

  14. Photodynamic Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Akimoto, Jiro

    2016-04-15

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area. PMID:26888042

  15. Brain Tumors and Neurosurgeon Neuroradiologist Relations

    Directory of Open Access Journals (Sweden)

    Jalal Jalal Shokouhi

    2009-01-01

    Full Text Available "nToday the modality of choice for brain tumors is MRI with and without GD. "nGD injection needs during to stage T1, before injection and after injection for image subtracts to see the enhancement degree, detecting crystallized calcification, colloid and fat material also methemoglubin inside the tumor. "n- In case of thin layer seeding, GD MRI could be positive but T2 and FLAIR images could be negative "no mass effect". "n- For meningiomas if you do not want to inject contrast media please request plain CT SCAN that is stronger than non-contrasted MRI but GD MRI is the choice and better than both. "n- For small or micro-vestibular schwannoma do not request CT please request MRI with GD. "n- In craniopharyngioma request non-contrast CT with combination of MRI with and without GD. "n- For micro-adenoma request dynamic MRI "better than Dynamic CT" "n- please do not use axial CT and non-contrasted coronal CT for micro-adenoma". "n- Few infiltrative non-enhancing tumors need serial MRI to be differentiated from CVA. "n- For differentiation of tumor recurrency from radiotherapy necrosis MRS is necessary. "nOther lecture notes will be discussed in the round table.  

  16. Intraoperative MRI in pediatric brain tumors

    International Nuclear Information System (INIS)

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. (orig.)

  17. Intraoperative MRI in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhri, Asim F. [Le Bonheur Children' s Hospital, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Siddiqui, Adeel [University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Klimo, Paul; Boop, Frederick A. [University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States); St. Jude Children' s Hospital, Division of Neurosurgery, Department of Surgery, Memphis, TN (United States)

    2015-09-15

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. (orig.)

  18. The Impact of Childhood Trauma on Brain Development: A Literature Review and Supporting Handouts

    Science.gov (United States)

    Kirouac, Samantha; McBride, Dawn Lorraine

    2009-01-01

    This project provides a comprehensive overview of the research literature on the brain and how trauma impacts brain development, structures, and functioning. A basic exploration of childhood trauma is outlined in this project, as it is essential in making associations and connections to brain development. Childhood trauma is processed in the…

  19. Positron Scanner for Locating Brain Tumors

    Science.gov (United States)

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  20. An integrative view on sex differences in brain tumors

    OpenAIRE

    Sun, Tao; Plutynski, Anya; Ward, Stacey; Rubin, Joshua B.

    2015-01-01

    Sex differences in human health and disease can range from undetectable to profound. Differences in brain tumor rates and outcome are evident in males and females throughout the world and regardless of age. These observations indicate that fundamental aspects of sex determination can impact the biology of brain tumors. It is likely that optimal personalized approaches to the treatment of male and female brain tumor patients will require recognizing and understanding the ways in which the biol...

  1. Fetal antigen 2 in primary and secondary brain tumors

    DEFF Research Database (Denmark)

    Rasmussen, H B; Teisner, B; Schrøder, H D;

    1991-01-01

    Immunohistochemical deposition and distribution of fetal antigen 2 (FA2) was examined in normal brain tissue and in primary and metastatic tumors of the brain. In normal brain tissue FA2 was exclusively found linearly around the vessels, along pia and in arachnoidea. A similar localization was seen...... in primary brain tumors except in gliosarcoma where FA2 was distributed diffusely in the sarcoma region and was absent in the glioma region. In metastatic carcinoma with tumor stroma a diffuse staining reaction was seen in the stroma and with a basement membrane (BM) like staining at the tumor cell....../stroma interface. Intracytoplasmic FA2 staining of the tumor cells was seen in areas without tumor stroma. In metastatic melanoma a BM like FA2 staining was seen around and between individual tumor cells. The staining patterns seen in the metastatic tumors were in accordance with that of the corresponding primary...

  2. Skeletal sequelae of radiation therapy for malignant childhood tumors

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.S.; Robertson, W.W. Jr.; Rate, W.; D' Angio, G.J.; Drummond, D.S. (UMDNJ Robert Wood Johnson Medical School, New Brunswick (USA))

    1990-02-01

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) had scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy.

  3. Skeletal sequelae of radiation therapy for malignant childhood tumors

    International Nuclear Information System (INIS)

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) had scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy

  4. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  5. Therapeutic vaccines for malignant brain tumors

    Directory of Open Access Journals (Sweden)

    Michael P Gustafson

    2008-12-01

    Full Text Available Michael P Gustafson1, Keith L Knutson2, Allan B Dietz11Division of Transfusion Medicine; 2Department of Immunology, Mayo Clinic, Rochester, MN, USAAbstract: Malignant gliomas are the most common and aggressive form of brain tumors. Current therapy consists of surgical resection, followed by radiation therapy and concomitant chemotherapy. Despite these treatments, the prognosis for patients is poor. As such, investigative therapies including tumor vaccines have targeted this devastating condition. Recent clinical trials involving immunotherapy, specifically dendritic cell (DC based vaccines, have shown promising results. Overall, these vaccines are well tolerated with few documented side effects. In many patients receiving vaccines, tumor progression was delayed and the median overall survival of these patients was prolonged. Despite these encouraging results, several factors have limited the efficacy of DC vaccines. Here we discuss the potential of DC vaccines as adjuvant therapy and current obstacles of generating highly pure and potent DC vaccines in the context of malignant glioma. Taken together, the results from earlier clinical studies justify additional clinical trials aimed at improving the efficacy of DC vaccines.Keywords: malignant glioma, glioblastoma multiforme, vaccine, immunotherapy, dendritic cells

  6. Presentation of the project MobiKids Communication technologies, environmental exposures and risk of brain tumors in young people

    International Nuclear Information System (INIS)

    MOBI-Kids, an international study coordinated by CREAL, Barcelona, aims to assess the possible relationship between exposure in children and adolescents to electromagnetic fields (EMF) from communication technologies (RF - and extremely low frequency - ELF) and the risk of developing a brain tumor. It also investigated the effects of other risk factors, including environmental exposures in childhood and in utero.

  7. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  8. Photodynamic therapy for implanted VX2 tumor in rabbit brains

    Science.gov (United States)

    Li, Fei; Feng, Hua; Lin, Jiangkai; Zhu, Gang; Chen, Zhi; Li, Cong-yan

    2005-07-01

    To evaluate the therapeutic effect and the safety of single photodynamic therapy (PDT) with hematoporphyrin derivative produced in China, 60 New Zealand adult rabbits with VX2 tumor implanted into the brain were divided randomly into non-PDT-group and PDT-group. 36 rabbits of the PDT-group were performed photodynamic therapy. The survival time, neurological deteriorations, intracranial pressure (ICP), histology, pathology, tumor volume and brain water content were measured. Other 12 rabbits were received hematoporphyrin derivative and light irradiation of the normal brain. The ICP, histology, pathology, and brain water content were measured. The result indicated that Simple PDT may elongate the average survival time of the rabbits with VX2 tumors significantly; kill tumor cells; cause transient brain edema and increase ICP, but it is safe to be used in treating brain tumor.

  9. Disseminated lesions of the central nervous system in course of pediatric brain tumors

    International Nuclear Information System (INIS)

    Neoplasms of the central nervous system (CNS) are, apart from leukemia, the most frequent malignant disorders in the childhood. Among the brain tumors, those of poorly differentiated cells - give metastatic lesions to the CNS. The aim of the paper was to evaluate the features of CT and MR images detecting dissemination of the primary brain tumors. From 1993 to 2005 in the Department of Radiology of the Polish Mother's Memorial Hospital - Research Institute, the disseminations to CNS were observed in 35 children who were previously operated for primary brain tumors. CT and MR examinations of the brain were performed in all patients (22 males and 13 females; age: 5 mo - 18 y) and MR imaging of the spinal cord was done in 18 children. Multiple metastases to the cerebral structures were detected more often (in 23 patients - 66%) as compared to single lesions. The most frequent disseminations were observed in patients with diagnosis of medulloblastoma - 13 children, PNET - 4 and pineoblastoma - 3 patients. Twelve children had single metastatic tumors (out of the primary neoplasm location): in the course of medulloblastoma - 6, and PNET - 2 patients. Eighteen MR examinations of the spinal canal showed disseminations of the brain tumors in 9 children; concomitant metastatic nodules in the brain were detected in 4 patients. CT and MR imaging of the CNS enables evaluating the dissemination of primary brain tumors in children. Any asymptomatic progression of the primary neoplastic disease may be detected by means of control diagnostic imaging, which reveals the tumor spread. Especially in patients with medulloblastoma and pineoblastoma, the spine MR imaging with gadolinium is mandatory. (author)

  10. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  11. Bone Mineral Density Reduction Following Irradiation of Brain Tumors

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-11-01

    Full Text Available Total body bone mineral density (TBBMD was measured by X-ray absorptiometry in 46 brain tumor patients aged from 3.8 to 28.7 years (mean 14.9 y at a mean of 6.4 y (range 1.4-14.8 y after end of treatment for brain tumor.

  12. Anticonvulsant therapy in brain-tumor related epilepsy

    Directory of Open Access Journals (Sweden)

    Fröscher Walter

    2016-06-01

    Full Text Available Background. The lifetime risk of patients with brain tumors to have focal epileptic seizures is 10-100%; the risk depends on different histology. Specific guidelines for drug treatment of brain tumor-related seizures have not yet been established.

  13. Diagnosis and prognosis of brain tumors in clinical trials

    NARCIS (Netherlands)

    T.S. Gorlia (Thierry)

    2013-01-01

    textabstractAccording to the Central Brain Registry Of The United States (CBTRUS) statistical report (February 2012) the incidence rate of all primary non malignant and malignant brain and central nervous system tumors is 19.89 cases per 100.000 (11.58 for non-malignant tumors and 7.31 for malignant

  14. Pediatric Cancers and Brain Tumors in Adolescents and Young Adults.

    Science.gov (United States)

    McCabe, Martin G; Valteau-Couanet, Dominique

    2016-01-01

    Embryonal tumors classically occur in young children, some principally within the first year of life. Prospective national and international clinical trials during recent decades have brought about progressive improvements in survival, and associated biological studies have advanced our understanding of tumor biology, in some cases allowing biological tumor characteristics to be harnessed for therapeutic benefit. Embryonal tumors continue to occur, albeit less commonly, during childhood, adolescence and throughout adulthood. These tumors are less well understood, usually not managed according to standardized protocols and rarely included in clinical trials. Survival outcomes are generally poorer than their childhood equivalents. We present here a summary of the published literature on embryonal tumors that present ectopically during adolescence and adulthood. We show that for some tumors protocol-driven treatment, supported by accurate and complete diagnostics and staging, can result in equivalent outcomes to those seen during childhood. We make the case that clinical trial eligibility criteria should be disease-based rather than age-based, and support improvements in dialogue between children's and adults' cancer clinicians to improve outcomes for these rare tumors. PMID:27595358

  15. Preliminary study of MR elastography in brain tumors

    International Nuclear Information System (INIS)

    Objective: To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods: Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years) underwent brain MRE studies. Informed consent was obtained from all patients. A dedicated external force actuator for brain MRE study was developed. The actuator was fixed to the head coil. During scan, one side of the actuator was attached to the patients' head. Low frequency oscillation was produced by the actuator and caused shear waves propagating into brain tissue. The pulse sequence used in the study was phase-contrast gradient-echo sequence. Phase images of the brain were obtained and the shear waves within the brain were directly imaged. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity image. Consistency of brain tumors was evaluated at surgery and was classified as soft, intermediate, or hard with comparison to the white matter of the brain. Correspondence of MRE evaluation with operative results was studied. Results: The elastic modulus of the tumor was lower than that of white matter in 1 patient, higher in 11 patients, and similar in 2 patients. At surgery, the tumor manifested a soft consistency in 1 patient, hard consistency in 11 patients, intermediate consistency in 2 patients. The elasticity of tumors in 14 patients evaluated by MRE was correlated with the tumor consistency on the operation. Conclusion: MRE can noninvasively display the elasticity of brain tumors in vivo, and evaluate the brain tumor consistency before operation. (authors)

  16. A study of ICAM expression in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hoon; Lee, Seung Hoon; Hong, Seok Il [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1995-12-01

    The purpose of this study is to test the possibility of using sICAM-1 as a marker for follow-up of treatment. The micro-ELISA method was adopted. The brain stem gliomas showed positive results in 67%. Overall, 23% of brain tumors showed positive results. It is possible that we can use sICAM-1 as a marker for metastatic brain tumors, and measurement after radiation therapy is not reliable. 6 refs. (Author) (Author).

  17. Brain Tumor Detection Based On Mathematical Analysis and Symmetry Information

    OpenAIRE

    G., Narkhede Sachin; Khairnar, Vaishali; Kadu, Sujata

    2014-01-01

    Image segmentation some of the challenging issues on brain magnetic resonance image tumor segmentation caused by the weak correlation between magnetic resonance imaging intensity and anatomical meaning.With the objective of utilizing more meaningful information to improve brain tumor segmentation,an approach which employs bilateral symmetry information as an additional feature for segmentation is proposed.This is motivated by potential performance improvement in the general automatic brain tu...

  18. Comparison of Swallowing Functions Between Brain Tumor and Stroke Patients

    OpenAIRE

    Park, Dae Hwan; Chun, Min Ho; Lee, Sook Joung; Song, Yoon Bum

    2013-01-01

    Objective To compare the swallowing functions according to the lesion locations between brain tumor and stroke patients. Methods Forty brain tumor patients and the same number of age-, lesion-, and functional status-matching stroke patients were enrolled in this study. Before beginning the swallowing therapy, swallowing function was evaluated in all subjects by videofluoroscopic swallowing study. Brain lesions were classified as either supratentorial or in-fratentorial. We evaluated the follo...

  19. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology

    Science.gov (United States)

    Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M.; Elzinga, Bernet M.; van der Wee, Nic J. A.; Veltman, Dick J.; Penninx, Brenda W. J. H.

    2016-01-01

    Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the entire BDNF pathway. We examined the effects of CM, BDNF (genotype, gene expression and protein level) and their interactions on hippocampus, amygdala and anterior cingulate cortex (ACC) morphology. Data were collected from patients with depression and/or an anxiety disorder and healthy subjects within the Netherlands Study of Depression and Anxiety (NESDA) (N = 289). CM was assessed using the Childhood Trauma Interview. BDNF Val66Met genotype, gene expression and serum protein levels were determined in blood and T1 MRI scans were acquired at 3T. Regional brain morphology was assessed using FreeSurfer. Covariate-adjusted linear regression analyses were performed. Amygdala volume was lower in maltreated individuals. This was more pronounced in maltreated met-allele carriers. The expected positive relationship between BDNF gene expression and volume of the amygdala is attenuated in maltreated subjects. Finally, decreased cortical thickness of the ACC was identified in maltreated subjects with the val/val genotype. CM was associated with altered brain morphology, partly in interaction with multiple levels of the BNDF pathway. Our results suggest that CM has different effects on brain morphology in met-carriers and val-homozygotes and that CM may disrupt the neuroprotective effect of BDNF. PMID:27405617

  20. Patients With Brain Tumors: Who Receives Postacute Occupational Therapy Services?

    Science.gov (United States)

    Chan, Vincy; Xiong, Chen; Colantonio, Angela

    2015-01-01

    Data on the utilization of occupational therapy among patients with brain tumors have been limited to those with malignant tumors and small samples of patients outside North America in specialized palliative care settings. We built on this research by examining the characteristics of patients with brain tumors who received postacute occupational therapy services in Ontario, Canada, using health care administrative data. Between fiscal years 2004-2005 and 2008-2009, 3,199 patients with brain tumors received occupational therapy services in the home care setting after hospital discharge; 12.4% had benign brain tumors, 78.2% had malignant brain tumors, and 9.4% had unspecified brain tumors. However, patients with benign brain tumors were older (mean age=63.3 yr), and a higher percentage were female (65.2%). More than 90% of patients received in-home occupational therapy services. Additional research is needed to examine the significance of these differences and to identify factors that influence access to occupational therapy services in the home care setting.

  1. How do brain tumors alter functional connectivity? : A magnetoencephalography study

    NARCIS (Netherlands)

    Bartolomei, Fabrice; Bosma, Ingeborg; Klein, Martin; Baayen, Johannes C; Reijneveld, Jaap C; Postma, Tjeerd J; Heimans, Jan J; van Dijk, Bob W; de Munck, Jan C; de Jongh, Arent; Cover, Keith S; Stam, Cornelis J

    2006-01-01

    OBJECTIVE: This study was undertaken to test the hypothesis that brain tumors interfere with normal brain function by disrupting functional connectivity of brain networks. METHODS: Functional connectivity was assessed by computing the synchronization likelihood in a broad band (0.5-60Hz) or in the g

  2. Research on Perfusion CT in Rabbit Brain Tumor Model

    International Nuclear Information System (INIS)

    We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of 1 x 107 cells/ml(0.1 ml) was implanted in the brain of nine New Zealand white rabbits (weight: 2.4 kg-3.0 kg, mean: 2.6 kg). The perfusion CT was scanned when the tumors were grown up to 5 mm. The tumor volume and perfusion value were quantitatively analyzed by using commercial workstation (advantage windows workstation, AW, version 4.2, GE, USA). The mean volume of implanted tumors was 316±181 mm3, and the biggest and smallest volumes of tumor were 497 mm3 and 195 mm3, respectively. All the implanted tumors in rabbits are single-nodular tumors, and intracranial metastasis was not observed. In the perfusion CT, cerebral blood volume (CBV) were 74.40±9.63, 16.8±0.64, 15.24±3.23 ml/100g in the tumor core, ipsilateral normal brain, and contralateral normal brain, respectively (p≤0.05). In the cerebral blood flow (CBF), there were significant differences between the tumor core and both normal brains (p≤0.05), but no significant differences between ipsilateral and contralateral normal brains (962.91±75.96 vs. 357.82±12.82 vs. 323.19±83.24 ml/100g/min). In the mean transit time (MTT), there were significant differences between the tumor core and both normal brains (p≤0.05), but no significant differences between ipsilateral and contralateral normal brains (4.37±0.19 vs. 3.02±0.41 vs. 2.86±0.22 sec). In the permeability surface (PS), there were significant differences among the tumor core, ipsilateral and contralateral normal brains (47.23±25.44 vs. 14.54±1.60 vs. 6.81±4.20 ml/100g/min)(p≤0.05). In the time to peak (TTP) were no significant differences among the tumor core, ipsilateral and contralateral normal brains. In the positive enhancement integral (PEI), there were significant differences among the tumor core, ipsilateral and contralateral brains (61.56±16.07 vs. 12.58±2.61 vs. 8.26±5

  3. Research on Perfusion CT in Rabbit Brain Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Bon Chul; Kwak, Byung Kook; Jung, Ji Sung [Dept. of Diagnostic Radiology, Chung Ang University Hospital, Seoul (Korea, Republic of); Lim, Cheong Hwan; Jung, Hong Ryang [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2012-06-15

    We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of 1 x 10{sup 7} cells/ml(0.1 ml) was implanted in the brain of nine New Zealand white rabbits (weight: 2.4 kg-3.0 kg, mean: 2.6 kg). The perfusion CT was scanned when the tumors were grown up to 5 mm. The tumor volume and perfusion value were quantitatively analyzed by using commercial workstation (advantage windows workstation, AW, version 4.2, GE, USA). The mean volume of implanted tumors was 316{+-}181 mm{sup 3}, and the biggest and smallest volumes of tumor were 497 mm{sup 3} and 195 mm{sup 3}, respectively. All the implanted tumors in rabbits are single-nodular tumors, and intracranial metastasis was not observed. In the perfusion CT, cerebral blood volume (CBV) were 74.40{+-}9.63, 16.8{+-}0.64, 15.24{+-}3.23 ml/100g in the tumor core, ipsilateral normal brain, and contralateral normal brain, respectively (p{<=}0.05). In the cerebral blood flow (CBF), there were significant differences between the tumor core and both normal brains (p{<=}0.05), but no significant differences between ipsilateral and contralateral normal brains (962.91{+-}75.96 vs. 357.82{+-}12.82 vs. 323.19{+-}83.24 ml/100g/min). In the mean transit time (MTT), there were significant differences between the tumor core and both normal brains (p{<=}0.05), but no significant differences between ipsilateral and contralateral normal brains (4.37{+-}0.19 vs. 3.02{+-}0.41 vs. 2.86{+-}0.22 sec). In the permeability surface (PS), there were significant differences among the tumor core, ipsilateral and contralateral normal brains (47.23{+-}25.44 vs. 14.54{+-}1.60 vs. 6.81{+-}4.20 ml/100g/min)(p{<=}0.05). In the time to peak (TTP) were no significant differences among the tumor core, ipsilateral and contralateral normal brains. In the positive enhancement integral (PEI), there were significant differences among the tumor core, ipsilateral and

  4. Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way.

    Science.gov (United States)

    Fontebasso, Adam M; Jabado, Nada

    2015-01-01

    Primary malignant brain tumors remain a disproportionate cause of morbidity and mortality in humans. A number of studies exploring the cancer genome of brain tumors across ages using integrated genetics and epigenetics and next-generation sequencing technologies have recently emerged. This has led to considerable advances in the understanding of the basic biology and pathogenesis of brain tumors, including the most malignant and common variants in children: gliomas and medulloblastoma. Notably, studies of pediatric brain tumors have identified unexpected oncogenic pathways implicated in tumorigenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated protein kinase pathway, considered to be a hallmark of pilocytic astrocytomas, to alterations in the epigenome as a critical component altered in many subgroups of high-grade brain tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of the respective brain tumor they target and critical markers for therapy that will help refine pathological grading. We summarize these novel findings in pediatric brain tumors, which also are put in the context of the evolving notion of molecular pathology, now a mandated tool for proper classification and therapy assignment in the clinical setting.

  5. Childhood brain tumours : Health and function in adult survivors and parental fears

    OpenAIRE

    Anclair, Malin

    2009-01-01

    The general aim of the present research was to investigate health and functional ability of patients treated for childhood brain tumour and systematically examine parental fears after a child s brain tumour. The aims were realised through two part-studies. Childhood cancer once regarded as an acute fatal illness has become a life threatening disease. Previous studies of the long-term sequelae in survivors of children treated for a brain tumour reflect the fact that most ...

  6. Radiosurgery-induced brain tumor. Case report.

    Science.gov (United States)

    Kaido, T; Hoshida, T; Uranishi, R; Akita, N; Kotani, A; Nishi, N; Sakaki, T

    2001-10-01

    The authors describe a case of glioblastoma multiforme (GBM) associated with previous gamma knife radiosurgery for a cerebral arteriovenous malformation (AVM). A 14-year-old boy had undergone radiosurgery for an AVM, which was performed using a 201-source 60Co gamma knife system at another institution. The maximum and margin radiation doses used in the procedure were 40 and 20 Gy, respectively. One year after radiosurgery, the patient noticed onset of mild left hemiparesis due to radiation necrosis. Six and one-half years after radiosurgery, at the age of 20 years, the patient experienced an attack of generalized tonic-clonic seizure. Magnetic resonance (MR) imaging revealed the existence of a brain tumor in the right parietal lobe. The patient underwent an operation and the histological diagnosis of the lesion was GBM. Ten months following the operation, that is, 99 months postradiosurgery, this patient died. To the best of the authors' knowledge, this is the first reported case of a neoplasm induced by radiosurgery for an AVM and the second case in which it occurred following radiosurgery for intracranial disease.

  7. A review of endocrine late effects in children after brain tumor therapy

    International Nuclear Information System (INIS)

    Background: Advances in the therapy of malignant brain tumors in children have led to a significant improvement in survival rates over the last few decades. As a result, the recognition and treatment of late effects have become more important. In addition to secondary tumors and deficiencies in cognitive and intellectual skills, the resulting endocrine disturbances play an important role. Method: Own data and literature review. Results: Deviations from the normal growth hormone secretion are usually recognized first and are most common, and have already been observed after conventional whole brain irradiation with 18 G. With some delay, other hypothalamopituitary deficiencies may occur, including panhypopituitarism. Puberty may come too early or too late or may not appear at all. Girls in particular, frequently experience an early and rapid pubertal development after brain tumor therapy, which may lead to further reduction in height due to an accelerated bone maturation. Functional disturbances of the thyroid and adrenal glands due to hypothalamic or pituitary deficiency are less common, and usually seen only after a radiation dose of over 40 Gy. Conclusion: Survivors of childhood brain tumors must be considered as long-term survivors, in whom the first therapy-induced long-term side effects appear almost immediately after the end of therapy. Maximum quality of life for the individual patient can only be achieved by long-term care and close cooperation of specialists in the different medical disciplines involved. (orig.)

  8. Caring for children with brain tumors in an oncology ward: a phenomenologic-hermeneutic study

    Directory of Open Access Journals (Sweden)

    Chiara Fioretti

    2014-01-01

    Full Text Available Brain tumors are the most common form of solid tumors in childhood and are characterized by an uncertain prognosis, often meaning tumor invasive surgical procedures in the first steps of the patient’s treatment. In a Pediatric Oncology Ward, children with brain tumors are considered a challenge for health professionals, due to the nature of the relationship between the child, the parents, and the health care providers in the initial phase of the patient’s illness. Here we present a phenomenologic-hermeneutic study, developed in the Oncology Ward of a Hospital in Southern Spain. All the caregivers of the Ward underwent interviews concerning their experience in caring for children with brain tumors. Interviews were recorded and transcribed with the consent of the participants and were analyzed by content themes. In the present paper, we focus on the experiences concerning the first meeting of the professionals with the children and their families and the principal critical issues related to the communication of the diagnosis.

  9. Air pollution from traffic and risk for brain tumors

    DEFF Research Database (Denmark)

    Poulsen, Aslak Harbo; Sørensen, Mette; Andersen, Zorana J;

    2016-01-01

    PURPOSE: Air pollution is an established lung carcinogen, and there is increasing evidence that air pollution also negatively affects the brain. We have previously reported an association between air pollution and risk of brain tumors in a cohort study based on only 95 cases. We set out to replic......PURPOSE: Air pollution is an established lung carcinogen, and there is increasing evidence that air pollution also negatively affects the brain. We have previously reported an association between air pollution and risk of brain tumors in a cohort study based on only 95 cases. We set out...... to replicate that finding in a large nationwide case-control study. METHODS: We identified all 4,183 adult brain tumor cases in Denmark in the years 2000-2009 and 8,018 risk set sampled population controls matched on gender and year of birth. We extracted residential address histories and estimated mean...... and risk of brain tumors which was found in our previous study. The suggestion of an increased brain tumor risk at high exposures merits further attention as does the differing results according to tumor morphology....

  10. Clinical results of BNCT for malignant brain tumors in children

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [Department of Neurosurgery, Kagawa National Children' s Hospital, Kagawa 765-8501 (Japan)], E-mail: ynakagawa0517@yahoo.co.jp; Kageji, Teruyoshi; Mizobuchi, Yoshifumi [Department of Neurosurgery, University of Tokushima, Tokushima 770-8503 (Japan); Kumada, Hiroaki [Department of Research Reactor, Japan Atomic Energy Research Institute, Ibaragi 319-1195 (Japan); Nakagawa, Yoshiaki [Department of Medical Informatics, Post Graduated School, Kyoto University, Kyoto (Japan)

    2009-07-15

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  11. Cortical Plasticity in the Setting of Brain Tumors.

    Science.gov (United States)

    Fisicaro, Ryan A; Jost, Ethan; Shaw, Katharina; Brennan, Nicole Petrovich; Peck, Kyung K; Holodny, Andrei I

    2016-02-01

    Cortical reorganization of function due to the growth of an adjacent brain tumor has clearly been demonstrated in a number of surgically proven cases. Such cases demonstrate the unmistakable implications for the neurosurgical treatment of brain tumors, as the cortical function may not reside where one may initially suspect based solely on the anatomical magnetic resonance imaging (MRI). Consequently, preoperative localization of eloquent areas adjacent to a brain tumor is necessary, as this may demonstrate unexpected organization, which may affect the neurosurgical approach to the lesion. However, in interpreting functional MRI studies, the interpreting physician must be cognizant of artifacts, which may limit the accuracy of functional MRI in the setting of brain tumors. PMID:26848558

  12. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  13. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  14. Brain Tumor Detection Based On Mathematical Analysis and Symmetry Information

    OpenAIRE

    Narkhede Sachin G.,; Prof. Vaishali Khairnar

    2014-01-01

    Image segmentation some of the challenging issues on brain magnetic resonance (MR) image tumor segmentation caused by the weak correlation between magnetic resonance imaging (MRI) intensity and anatomical meaning. With the objective of utilizing more meaningful information to improve brain tumor segmentation, an approach which employs bilateral symmetry information as an additional feature for segmentation is proposed. This is motivated by potential performance improvement in ...

  15. Proteomic and immunologic analyses of brain tumor exosomes

    OpenAIRE

    Graner, Michael W.; Alzate, Oscar; Dechkovskaia, Angelika M.; Keene, Jack D.; Sampson, John H; Mitchell, Duane A; Bigner, Darell D.

    2009-01-01

    Brain tumors are horrific diseases with almost universally fatal outcomes; new therapeutics are desperately needed and will come from improved understandings of glioma biology. Exosomes are endosomally derived 30–100 nm membranous vesicles released from many cell types into the extracellular milieu; surprisingly, exosomes are virtually unstudied in neuro-oncology. These microvesicles were used as vaccines in other tumor settings, but their immunological significance is unevaluated in brain tu...

  16. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    Directory of Open Access Journals (Sweden)

    Yacoob Sulafa M

    2012-08-01

    Full Text Available Abstract Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  17. The impact of dietary isoflavonoids on malignant brain tumors.

    Science.gov (United States)

    Sehm, Tina; Fan, Zheng; Weiss, Ruth; Schwarz, Marc; Engelhorn, Tobias; Hore, Nirjhar; Doerfler, Arnd; Buchfelder, Michael; Eyüpoglu, Iiker Y; Savaskan, Nic E

    2014-08-01

    Poor prognosis and limited therapeutic options render malignant brain tumors one of the most devastating diseases in clinical medicine. Current treatment strategies attempt to expand the therapeutic repertoire through the use of multimodal treatment regimens. It is here that dietary fibers have been recently recognized as a supportive natural therapy in augmenting the body's response to tumor growth. Here, we investigated the impact of isoflavonoids on primary brain tumor cells. First, we treated glioma cell lines and primary astrocytes with various isoflavonoids and phytoestrogens. Cell viability in a dose-dependent manner was measured for biochanin A (BCA), genistein (GST), and secoisolariciresinol diglucoside (SDG). Dose-response action for the different isoflavonoids showed that BCA is highly effective on glioma cells and nontoxic for normal differentiated brain tissues. We further investigated BCA in ex vivo and in vivo experimentations. Organotypic brain slice cultures were performed and treated with BCA. For in vivo experiments, BCA was intraperitoneal injected in tumor-implanted Fisher rats. Tumor size and edema were measured and quantified by magnetic resonance imaging (MRI) scans. In vascular organotypic glioma brain slice cultures (VOGIM) we found that BCA operates antiangiogenic and neuroprotective. In vivo MRI scans demonstrated that administered BCA as a monotherapy was effective in reducing significantly tumor-induced brain edema and showed a trend for prolonged survival. Our results revealed that dietary isoflavonoids, in particular BCA, execute toxicity toward glioma cells, antiangiogenic, and coevally neuroprotective properties, and therefore augment the range of state-of-the-art multimodal treatment approach. PMID:24898306

  18. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis

    Science.gov (United States)

    Zhao, Liya; Jia, Kebin

    2016-01-01

    Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness. PMID:27069501

  19. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  20. Wavelet Based Image Fusion for Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    CYN Dwith

    2013-01-01

    Full Text Available Brain tumor, is one of the major causes for the increase in mortality among children and adults. Detecting the regions of brain is the major challenge in tumor detection. In the field of medical image processing, multi sensor images are widely being used as potential sources to detect brain tumor. In this paper, a wavelet based image fusion algorithm is applied on the Magnetic Resonance (MR images and Computed Tomography (CT images which are used as primary sources to extract the redundant and complementary information in order to enhance the tumor detection in the resultant fused image. The main features taken into account for detection of brain tumor are location of tumor and size of the tumor, which is further optimized through fusion of images using various wavelet transforms parameters. We discuss and enforce the principle of evaluating and comparing the performance of the algorithm applied to the images with respect to various wavelets type used for the wavelet analysis. The performance efficiency of the algorithm is evaluated on the basis of PSNR values. The obtained results are compared on the basis of PSNR with gradient vector field and big bang optimization. The algorithms are analyzed in terms of performance with respect to accuracy in estimation of tumor region and computational efficiency of the algorithms.

  1. Rapid and automatic detection of brain tumors in MR images

    Science.gov (United States)

    Wang, Zhengjia; Hu, Qingmao; Loe, KiaFock; Aziz, Aamer; Nowinski, Wieslaw L.

    2004-04-01

    An algorithm to automatically detect brain tumors in MR images is presented. The key concern is speed in order to process efficiently large brain image databases and provide quick outcomes in clinical setting. The method is based on study of asymmetry of the brain. Tumors cause asymmetry of the brain, so we detect brain tumors in 3D MR images using symmetry analysis of image grey levels with respect to the midsagittal plane (MSP). The MSP, separating the brain into two hemispheres, is extracted using our previously developed algorithm. By removing the background pixels, the normalized grey level histograms are calculated for both hemispheres. The similarity between these two histograms manifests the symmetry of the brain, and it is quantified by using four symmetry measures: correlation coefficient, root mean square error, integral of absolute difference (IAD), and integral of normalized absolute difference (INAD). A quantitative analysis of brain normality based on 42 patients with tumors and 55 normals is presented. The sensitivity and specificity of IAD and INAD were 83.3% and 89.1%, and 85.7% and 83.6%, respectively. The running time for each symmetry measure for a 3D 8bit MR data was between 0.1 - 0.3 seconds on a 2.4GHz CPU PC.

  2. Crossing the barrier: treatment of brain tumors using nanochain particles.

    Science.gov (United States)

    Karathanasis, Efstathios; Ghaghada, Ketan B

    2016-09-01

    Despite advancements in surgery and radiotherapy, the aggressive forms of brain tumors, such as gliomas, are still uniformly lethal with current therapies offering only palliation complicated by significant toxicities. Gliomas are characteristically diffuse with infiltrating edges, resistant to drugs and nearly inaccessible to systemic therapies due to the brain-tumor barrier. Currently, aggressive efforts are underway to further understand brain-tumor's microenvironment and identify brain tumor cell-specific regulators amenable to pharmacologic interventions. While new potent agents are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. To tackle the drug delivery issues, a multicomponent chain-like nanoparticle has been developed. These nanochains are comprised of iron oxide nanospheres and a drug-loaded liposome chemically linked into a 100-nm linear, chain-like assembly with high precision. The nanochain possesses a unique ability to scavenge the tumor endothelium. By utilizing effective vascular targeting, the nanochains achieve rapid deposition on the vascular bed of glioma sites establishing well-distributed drug reservoirs on the endothelium of brain tumors. After reaching the target sites, an on-command, external low-power radiofrequency field can remotely trigger rapid drug release, due to mechanical disruption of the liposome, facilitating widespread and effective drug delivery into regions harboring brain tumor cells. Integration of the nanochain delivery system with the appropriate combination of complementary drugs has the potential to unfold the field and allow significant expansion of therapies for the disease where success is currently very limited. WIREs Nanomed Nanobiotechnol 2016, 8:678-695. doi: 10.1002/wnan.1387 For further resources related to this article, please visit the WIREs website.

  3. Crossing the barrier: treatment of brain tumors using nanochain particles.

    Science.gov (United States)

    Karathanasis, Efstathios; Ghaghada, Ketan B

    2016-09-01

    Despite advancements in surgery and radiotherapy, the aggressive forms of brain tumors, such as gliomas, are still uniformly lethal with current therapies offering only palliation complicated by significant toxicities. Gliomas are characteristically diffuse with infiltrating edges, resistant to drugs and nearly inaccessible to systemic therapies due to the brain-tumor barrier. Currently, aggressive efforts are underway to further understand brain-tumor's microenvironment and identify brain tumor cell-specific regulators amenable to pharmacologic interventions. While new potent agents are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. To tackle the drug delivery issues, a multicomponent chain-like nanoparticle has been developed. These nanochains are comprised of iron oxide nanospheres and a drug-loaded liposome chemically linked into a 100-nm linear, chain-like assembly with high precision. The nanochain possesses a unique ability to scavenge the tumor endothelium. By utilizing effective vascular targeting, the nanochains achieve rapid deposition on the vascular bed of glioma sites establishing well-distributed drug reservoirs on the endothelium of brain tumors. After reaching the target sites, an on-command, external low-power radiofrequency field can remotely trigger rapid drug release, due to mechanical disruption of the liposome, facilitating widespread and effective drug delivery into regions harboring brain tumor cells. Integration of the nanochain delivery system with the appropriate combination of complementary drugs has the potential to unfold the field and allow significant expansion of therapies for the disease where success is currently very limited. WIREs Nanomed Nanobiotechnol 2016, 8:678-695. doi: 10.1002/wnan.1387 For further resources related to this article, please visit the WIREs website. PMID:26749497

  4. Congenital Brain Tumors, a Series of Seven Patients

    Directory of Open Access Journals (Sweden)

    Farideh Nejat

    2007-05-01

    Full Text Available Objective: Congenital brain tumors are very rare. We review these tumors in patients younger than 2 months diagnosed in our Department. Material & Methods: Seven congenital brain tumors were diagnosed during five years. Clinical and radiological findings and prognosis are analyzed. Findings: The study included 5 female and two male infants. Two cases were diagnosed antenatally by means of ultrasonography. All patients presented with intracranial hypertension. The tumor was non-homogenous with cystic and solid components in all neuroimaging, except for the case with choroid plexus papilloma. Hydrocephalus was evident in all of them. Most findings were infra-tentorial lesions. There were three teratomas, one primitive neuro-ectodermal tumor, one ependymoblastoma and one choroid plexus papilloma. Six patients were operated on, with one intra-operative death. Two passed away postoperatively with aspiration pneumonia. One patient died due to complications of chemotherapy and another one due to tumor recurrence one year after surgery. Only the patient with choroid plexus papilloma is alive after 2 years. Conclusion: Today, the availability of noninvasive imaging procedures such as computerized tomography scan and magnetic resonance imaging has improved the diagnosis of congenital brain tumors. Inspite of development in prenatal diagnosis, appropriate pre and post operative management, the mortality associated with these tumors still remains high. The final prognosis in these patients is still discouraging despite early surgery and operative and anesthetic improvements. Choroid plexus papilloma accompanies the best prognosis, whereas teratoma and primitive neuroectodermal tumors have the worst prognosis.

  5. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  6. Demographic and histopathologic profile of pediatric brain tumors: A hospital-based study

    Directory of Open Access Journals (Sweden)

    Harshil C Shah

    2015-01-01

    Full Text Available Background: Very few hospital-based or population-based studies are published in the context to the epidemiologic profile of pediatric brain tumors (PBTs in India and Indian subcontinent. Aim: To study the demographic and histopathologic profile of PBTs according to World Health Organization 2007 classification in a single tertiary health care center in India. Materials and Methods: Data regarding age, gender, topography, and histopathology of 76 pediatric patients (0–19 years with brain tumors operated over a period of 24 months (January-2012 to December-2013 was collected retrospectively and analyzed using EpiInfo 7. Chi-square test and test of proportions (Z-test were used wherever necessary. Results: PBTs were more common in males (55.3% as compared to females (44.7% with male to female ratio of 1.23:1. Mean age was 10.69 years. Frequency of tumors was higher in childhood age group (65.8% when compared to adolescent age group (34.2%. The most common anatomical site was cerebellum (39.5%, followed by hemispheres (22.4%. Supratentorial tumors (52.6% were predominant than infratentorial tumors (47.4%. Astrocytomas (40.8% and embryonal tumors (29.0% were the most common histological types almost contributing more than 2/3rd of all tumors. Craniopharyngiomas (11.8% and ependymomas (6.6% were the third and fourth most common tumors, respectively. Conclusion: Astrocytomas and medulloblastomas are the most common tumors among children and adolescents in our region, which needs special attention from the neurosurgical department of our institute. Demographic and histopathologic profile of cohort in the present study do not differ substantially from that found in other hospital-based and population-based studies except for slight higher frequency of craniopharyngiomas.

  7. Research of the multimodal brain-tumor segmentation algorithm

    Science.gov (United States)

    Lu, Yisu; Chen, Wufan

    2015-12-01

    It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. A new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain tumor images, we developed the algorithm to segment multimodal brain tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated and compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance.

  8. Presentation of the project MobiKids Communication technologies, environmental exposures and risk of brain tumors in young people; Presentacion del proyecto MobiKids: Tecnologias de la comunicacion, exposiciones ambientales y riesgo de tumores cerebrales en gente joven

    Energy Technology Data Exchange (ETDEWEB)

    Cardis, E.; Alguacil, J.; Aragones, N.; Morales, M.; Carretero, G.; Ferreras, E.; Kinci, L.; Kogevinas, M.; Pollan, M.; Solis, R.; Vriheid, M.; Zumel, A.

    2011-07-01

    MOBI-Kids, an international study coordinated by CREAL, Barcelona, aims to assess the possible relationship between exposure in children and adolescents to electromagnetic fields (EMF) from communication technologies (RF - and extremely low frequency - ELF) and the risk of developing a brain tumor. It also investigated the effects of other risk factors, including environmental exposures in childhood and in utero.

  9. Occurrence of DNET and other brain tumors in Noonan syndrome warrants caution with growth hormone therapy.

    Science.gov (United States)

    McWilliams, Geoffrey D; SantaCruz, Karen; Hart, Blaine; Clericuzio, Carol

    2016-01-01

    Noonan syndrome (NS) is an autosomal dominant developmental disorder caused by mutations in the RAS-MAPK signaling pathway that is well known for its relationship with oncogenesis. An 8.1-fold increased risk of cancer in Noonan syndrome has been reported, including childhood leukemia and solid tumors. The same study found a patient with a dysembryoplastic neuroepithelial tumor (DNET) and suggested that DNET tumors are associated with NS. Herein we report an 8-year-old boy with genetically confirmed NS and a DNET. Literature review identified eight other reports, supporting the association between NS and DNETs. The review also ascertained 13 non-DNET brain tumors in individuals with NS, bringing to 22 the total number of NS patients with brain tumors. Tumor growth while receiving growth hormone (GH) occurred in our patient and one other patient. It is unknown whether the development or progression of tumors is augmented by GH therapy, however there is concern based on epidemiological, animal and in vitro studies. This issue was addressed in a 2015 Pediatric Endocrine Society report noting there is not enough data available to assess the safety of GH therapy in children with neoplasia-predisposition syndromes. The authors recommend that GH use in children with such disorders, including NS, be undertaken with appropriate surveillance for malignancies. Our case report and literature review underscore the association of NS with CNS tumors, particularly DNET, and call attention to the recommendation that clinicians treating NS patients with GH do so with awareness of the possibility of increased neoplasia risk. PMID:26377682

  10. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis

    Science.gov (United States)

    Meyer, Tobias; Bergner, Norbert; Bielecki, Christiane; Krafft, Christoph; Akimov, Denis; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Dietzek, Benjamin; Popp, Jürgen

    2011-02-01

    Contemporary brain tumor research focuses on two challenges: First, tumor typing and grading by analyzing excised tissue is of utmost importance for choosing a therapy. Second, for prognostication the tumor has to be removed as completely as possible. Nowadays, histopathology of excised tissue using haematoxylin-eosine staining is the gold standard for the definitive diagnosis of surgical pathology specimens. However, it is neither applicable in vivo, nor does it allow for precise tumor typing in those cases when only nonrepresentative specimens are procured. Infrared and Raman spectroscopy allow for very precise cancer analysis due to their molecular specificity, while nonlinear microscopy is a suitable tool for rapid imaging of large tissue sections. Here, unstained samples from the brain of a domestic pig have been investigated by a multimodal nonlinear imaging approach combining coherent anti-Stokes Raman scattering, second harmonic generation, and two photon excited fluorescence microscopy. Furthermore, a brain tumor specimen was additionally analyzed by linear Raman and Fourier transform infrared imaging for a detailed assessment of the tissue types that is required for classification and to validate the multimodal imaging approach. Hence label-free vibrational microspectroscopic imaging is a promising tool for fast and precise in vivo diagnostics of brain tumors.

  11. Multidrug resistance (MDR) in brain tumors; its clinical importance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Z. [Thomas Jefferson Univ., Philadelphia (United States); Park, C. H.; Kim, S. M.; Cho, K. K.; Bai, M. S.; Yoon, S. N.; Cho, C. W.; Jin, Y. M.; Kim, Y. S. [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1997-07-01

    MDR is one of the important factors affecting chemotherapy in high grade brain malignancies. Especially it affects commonly used agents such as vincristine, VP16, VM26, and cisplatin. MDR1 gene encoded P-glycoprotein (Pgp) prevents intratumoral retention of such drugs by expelling them at the plasma membrance of brain tumor cells. Therefore, the objective of this study was to evaluate MDR in various brain tumors including metastatic tumors including metastatic tumors by dual isotope SPECT, Northern blotting or immunohistochemical staining (IHCS) using JSB-1 monoclonal antibody against MDR1 gene encoded Pgp. Twenty one patients with various brain tumors of primary, secondary, and recurrent tumors were included from 2 institutions. Whenever possible, surgical specimen from these patients were obtained to study MDR. SPET was performed with a tripple head system (Trionix, Twinsburg, Ohio or MultiSPECT 3, Siemens). Three millicuries of {sup 201}Tl chloride and 20 mCi of {sup 99m}Tc-sestamibi were adminstered and SPET was performed in about 15 min. Nineteen percent of patients had MIBI (-) and Tl (+) suggesting MDR (+). MIBI tumor uptake was higher in recurrence (6.67 +/- 1.3) than the stable original tumors (3.12 +/-0.77) (For {sup 201}Tl, 3.65 +/-2.2 Vs 1.5 +/-0.41). Three recurrent gliomas biopsied showed positive blotting and these patients failed several courses of chemotherapy. Six patients with various tumors such as oligodendroglioma, meningioma, recurrent G-M (2), and astrocytoma (2) were studied by IHCS, Weakly positive MDR was seen in one recurrent G-M and an astrocytoma case. Positive MDR was seen in the other recurrent G-M and a meningioma. In conclusion, MDR in brain tumors is detected successfully by dual isotope SPECT studies in a limited number of patients. MDR in benign brain tumors has no clinical significance since they are cured by surgical removal. However, we believe its presence in metastatic and high grade especially recurrent tumors is an

  12. Ovarian tumors in childhood and adolescence: Histopathological evaluation of 44 cases

    Directory of Open Access Journals (Sweden)

    Sevgiye KAÇAR ÖZKARA

    2007-09-01

    Full Text Available Ovarian tumors of childhood and adolescence constitute the most frequent and special group of gynaecologic tumors due to clinical and histopathological peculiarities and age specific therapeutic implications related to physically, hormonally and immunologically immature host. Pathologic features of ovarian tumors of children and adolescents diagnosed in our department in ten-year period, constitute the perspective of this report. Macroscopical, microscopical, immunohistochemical, and cytopathological features of ovarian tumors under 21-years-of age, and diagnosed in 1997-2006 are re-evaluated.Fourty-two cases (9.7% belong to the young patients among 391 primary ovarian tumors diagnosed in tenyears. Germ-cell tumors were the most frequent (54.8% while epithelial tumors were 38.1% and sexcord- stromal tumors was 7.1%. Malignancy rate was 28.6% among all subtypes while epithelial malignancy were 4.8%. Malignancy under 16 years was 31.3% while it was 26.9% in adolescence. Epithelial tumors in childhood was 18.8% while it was 50% over 16 years; the difference was significant (p=0.043. In our series, 60.9% of germ cell tumors were mature cystic teratomas. Malignancy rate within this group was 39.1%. There were four pure dysgerminomas, three mixed germ cell tumors and two immature teratomas within the malignant germ cell tumors. The mean tumor diameter was 92.1 mm. in benign tumors while it was 172.9 mm. in malignant tumors, and the difference was significant (p=0.001. Most of the solid tumors were malignant (p=0.002.As the malignancy potential among the young was considerably high, a detailed clinical and pathological evaluation is mandatory for abdominopelvic masses.

  13. Radiotherapy for pediatric brain tumors: Standard of care, current clinical trials, and new directions

    International Nuclear Information System (INIS)

    Objectives: To review the clinical characteristics of childhood brain tumors, including neurologic signs, neuroimaging and neuropathology. To critically assess indications for therapy relevant to presenting characteristics, age, and disease status. To discuss current management strategies including neurosurgery, radiation therapy, and chemotherapy. To analyze current clinical trials and future directions of clinical research. Brain tumors account for 20% of neoplastic diseases in children. The most common tumors include astrocytoma and malignant gliomas, medulloblastoma and supratentorial PNET's, ependymoma, craniopharyngioma, and intracranial germ cell tumors. Tumor type and clinical course are often correlated with age at presentation and anatomic site. The clinical characteristics and disease extent largely determine the relative merits of available 'standard' and investigational therapeutic approaches. Treatment outcome, including disease control and functional integrity, is dependent upon age at presentation, tumor type, and disease extent. An understanding of the clinical, neuroimaging, and histologic characteristics as they relate to decisions regarding therapy is critical to the radiation oncologist. Appropriate radiation therapy is central to curative therapy for a majority of pediatric brain tumor presentations. Technical advances in neurosurgery provide greater safety for 'gross total resection' in a majority of hemispheric astrocytomas and medulloblastomas. The relative roles of 'standard' radiation therapy and evolving chemotherapy for centrally located astrocytomas (e.g., diencephalic, optic pathway) need to be analyzed in the context of initial and overall disease control, neurotoxicities, and potential modifications in the risk:benefit ratio apparent in the introduction of precision radiation techniques. Modifications in radiation delivery are fundamental to current investigations in medulloblastoma; the rationale for contemporary and projected

  14. Assessment of serum L-fucose in brain tumor cases

    Directory of Open Access Journals (Sweden)

    Manjula S

    2010-01-01

    Full Text Available Background: Glycosylation of altered tumor cell in relation to cellular heterogeneity in human intracranial tumors remains relatively unexposed. Serum protein-bound carbohydrate, L-Fucose is reported to be overexpressed during tumor progression by many investigators. Therefore, there is a need to determine the diagnostic, prognostic, functional significance of glycoprotein elevations in various cases of tumors. Objective: The objective of the present study was to evaluate the clinical utility of serum L-fucose in patients with brain tumor. Materials and Methods: Serum glyco-conjugate levels were estimated in 99 patients with brain tumors. Estimation of L-fucose was carried out colorimetrically by the method of Winzler using cysteine hydrochloride. Results: There was a significant increase in L-fucose level in most of the patients. In the posttreatment cases, the L-fucose levels were apparently low compared to preoperative values. Conclusion: Our results showed that the rise in serum L-fucose may be used as a general marker for brain tumors in addition to other markers.

  15. Dysembryoplastic neuroepithelial tumor: A rare brain tumor not to be misdiagnosed

    OpenAIRE

    Sukheeja, Deepti; Mehta, Jayanti

    2016-01-01

    Dysembryoplastic neuroepithelial tumor (DNET) is a recently described, morphologically unique, and surgically curable low-grade brain tumor which is included in the latest WHO classification as neuronal and mixed neuronal-glial tumor. It is usually seen in children and young adults. The importance of this particular entity is that it is a surgically curable neuroepithelial neoplasm. When recognized, the need for adjuvant radiotherapy and chemotherapy is obviated. We hereby present a case repo...

  16. Photon spectrum and absorbed dose in brain tumor

    International Nuclear Information System (INIS)

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  17. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  18. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  19. Training stem cells for treatment of malignant brain tumors

    Institute of Scientific and Technical Information of China (English)

    Shengwen; Calvin; Li; Mustafa; H; Kabeer; Long; T; Vu; Vic; Keschrumrus; Hong; Zhen; Yin; Brent; A; Dethlefs; Jiang; F; Zhong; John; H; Weiss; William; G; Loudon

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for pa-tients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution(i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  20. A Comparative Study of Segmentation Methods for Brain tumor Detection

    OpenAIRE

    Smita Haribhau Zol

    2012-01-01

    This paper introduces a comparative study of three methods of automated medical image segmentation which can be used to locate volumetric objects such asbrain tumor in Magnetic Resonance Imaging (MRI) images and they are - Automated Medical Image Segmentation Using a New Deformable Surface Model, Brain Tumor Detection Using Segmentation Based on Neuro Fuzzy Technique, An Image Segmentation Method Based on a Discrete Version of the Topological Derivative.

  1. Clinical features of depressive disorders in patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Ogorenko V.V.

    2014-03-01

    Full Text Available The aim of the study was to examine the structure of psychopathology and clinical features of depressive disorders in patients with brain oncopathology. Polymorphic mental disorders of various clinical content and severity in most cases not only are comorbid to oncological pathology of the brain, but most often are the first clinical signs of early tumors. The study was conducted using the following methods: clinical psychiatric, questionnaire Simptom Check List- 90 -Revised-SCL- 90 -R, Luscher test and mathematical processing methods. Sample included 175 patients with brain tumors with non-psychotic level of mental disorders. The peculiarities of mental disorders and psychopathological structure of nonpsychotic depressive disorders have been a clinical option of cancer debut in patients with brain tumors. We found that nonpsychotic depression is characterized by polymorphism and syndromal incompletion; this causes ambiguity of diagnoses interpretation on stages of diagnostic period. Features of depressive symptoms depending on the signs of malignancy / nonmalignancy of brain tumor were defined.

  2. Brain Tumor Detection Based On Mathematical Analysis and Symmetry Information

    Directory of Open Access Journals (Sweden)

    Narkhede Sachin G.,

    2014-02-01

    Full Text Available Image segmentation some of the challenging issues on brain magnetic resonance (MR image tumor segmentation caused by the weak correlation between magnetic resonance imaging (MRI intensity and anatomical meaning. With the objective of utilizing more meaningful information to improve brain tumor segmentation, an approach which employs bilateral symmetry information as an additional feature for segmentation is proposed. This is motivated by potential performance improvement in the general automatic brain tumor segmentation systems which are important for many medical and scientific applications. Brain Magnetic Resonance Imaging (MRI segmentation is a complex problem in the field of medical imaging despite various presented methods. MR image of human brain can be divided into several sub-regions especially soft tissues such as gray matter, white matter and cerebrospinal fluid. Although edge information is the main clue in image segmentation, it can’t get a better result in analysis the content of images without combining other information. Our goal is to detect the position and boundary of tumors automatically. Experiments were conducted on real pictures, and the results show that the algorithm is flexible and convenient.

  3. Dysphagia outcomes in patients with brain tumors undergoing inpatient rehabilitation.

    Science.gov (United States)

    Wesling, Michele; Brady, Susan; Jensen, Mary; Nickell, Melissa; Statkus, Donna; Escobar, Nelson

    2003-01-01

    The purpose of this retrospective study was to compare functional dysphagia outcomes following inpatient rehabilitation for patients with brain tumors with that of patients following a stroke. Group 1 (n = 24) consisted of consecutive admissions to the brain injury program with the diagnosis of brain tumor and dysphagia. Group 2 (n = 24) consisted of matched, consecutive admissions, with the diagnosis of acute stroke and dysphagia. Group 2 was matched for age, site of lesion, and initial composite cognitive FIM score. The main outcome measures for this study included the American Speech-Language-Hearing Association (ASHA) National Outcome Measurement System (NOMS) swallowing scale, length of stay, hospital charges, and medical complications. Results showed that swallowing gains made by both groups as evaluated by the admission and discharge ASHA NOMS levels were considered to be statistically significant. The differences for length of stay, total hospital charges, and speech charges between the two groups were not considered to be statistically significant. Three patients in the brain tumor group (12.5%) demonstrated dysphagia complications of either dehydration or pneumonia during their treatment course as compared to 0% in the stroke group. This study confirms that functional dysphagia gains can be achieved for patients with brain tumors undergoing inpatient rehabilitation and that they should be afforded the same type and intensity of rehabilitation for their swallowing that is provided to patients following a stroke.

  4. Delayed contrast extravasation MRI for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors.

    Directory of Open Access Journals (Sweden)

    Leor Zach

    Full Text Available The current standard of care for newly diagnosed glioblastoma multiforme (GBM is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that

  5. BRAIN TUMOR CLASSIFICATION USING NEURAL NETWORK BASED METHODS

    OpenAIRE

    Kalyani A. Bhawar*, Prof. Nitin K. Bhil

    2016-01-01

    MRI (Magnetic resonance Imaging) brain neoplasm pictures Classification may be a troublesome tasks due to the variance and complexity of tumors. This paper presents two Neural Network techniques for the classification of the magnetic resonance human brain images. The proposed Neural Network technique consists of 3 stages, namely, feature extraction, dimensionality reduction, and classification. In the first stage, we have obtained the options connected with tomography pictures victimization d...

  6. Tumor-infiltrating lymphocytes expressing IOT-10 marker. An immunohistochemical study of a series of 185 brain tumors.

    Science.gov (United States)

    Zurita, M; Vaquero, J; Coca, S; Oya, S; Garcia, N

    1993-04-01

    The presence of IOT-10-positive lymphocytes among the tumor-infiltrating-lymphocyte (TIL) population was studied in a series of 185 brain tumors. In most of the tumors, IOT-10-positive lymphocytes were identified, but generally they were scarce and masked among the tumor cells, suggesting that NK-cells exercise a poor participation in the tissular response against brain tumors. Isolated tumor cells showing IOT-10-positivity were found in low-grade astrocytomas, neurinomas and medulloblastomas. IOT-10-positivity on both tumor neuropil and tumor cells was considered a characteristic finding in oligodendrogliomas. The number of IOT-10-positive NK-cells in brain metastases and in cerebellar hemangioblastomas was comparatively greater than in other types of brain tumor. Since in brain metastases, the presence of IOT-10-positive NK-cells can be related to the tissular response to an extracerebral malignancy, their considerable presence in cerebellar hemangioblastomas is an enigmatic finding that deserves further attention.

  7. Meningeous sarcoma: a rare tumor among the central nervous system neoplasia in childhood; Sarcoma meningeo: rara entidade dentre as neoplasias de sistema nervoso central na infancia

    Energy Technology Data Exchange (ETDEWEB)

    Rondinelli, Patricia Imperatriz Porto; Salvajoli, Joao Victor; Sredni, Simone Treiger; Araujo, Maria Betania Mahler [Hospital do Cancer de Sao Paulo, SP (Brazil). Dept. de Pediatria

    2003-07-01

    We describe a case of meningeous malignancy in childhood, diagnosed by the Pediatric Department of the Cancer Hospital in Sao Paulo, Brazil, and do revise the world literature as well. The meningeous sarcoma (M S) is an extremely aggressive tumor, which appears in the central nervous system, at any age, but mainly in children. They represent a tiny percentage of brain tumors in children and sporadic cases are related in the world literature. Consequently, there are not enough clinical experiences about this distinct entity to allow the conclusion about which is the best therapeutic approach. (author)

  8. Brain tumors induced in rats by human adenovirus type 12

    Directory of Open Access Journals (Sweden)

    Murao,Tsuyoshi

    1974-02-01

    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  9. Social competence in pediatric brain tumor survivors: application of a model from social neuroscience and developmental psychology.

    Science.gov (United States)

    Hocking, Matthew C; McCurdy, Mark; Turner, Elise; Kazak, Anne E; Noll, Robert B; Phillips, Peter; Barakat, Lamia P

    2015-03-01

    Pediatric brain tumor (BT) survivors are at risk for psychosocial late effects across many domains of functioning, including neurocognitive and social. The literature on the social competence of pediatric BT survivors is still developing and future research is needed that integrates developmental and cognitive neuroscience research methodologies to identify predictors of survivor social adjustment and interventions to ameliorate problems. This review discusses the current literature on survivor social functioning through a model of social competence in childhood brain disorder and suggests future directions based on this model. Interventions pursuing change in survivor social adjustment should consider targeting social ecological factors.

  10. Aerobic Glycolysis as a Marker of Tumor Aggressiveness: Preliminary Data in High Grade Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Andrei G. Vlassenko

    2015-01-01

    Full Text Available Objectives. Glucose metabolism outside of oxidative phosphorylation, or aerobic glycolysis (AG, is a hallmark of active cancer cells that is not directly measured with standard 18F-fluorodeoxyglucose (FDG positron emission tomography (PET. In this study, we characterized tumor regions with elevated AG defined based on PET measurements of glucose and oxygen metabolism. Methods. Fourteen individuals with high-grade brain tumors underwent structural MR scans and PET measurements of cerebral blood flow (CBF, oxygen (CMRO2 and glucose (CMRGlu metabolism, and AG, using 15O-labeled CO, O2 and H2O, and FDG, and were compared to a normative cohort of 20 age-matched individuals. Results. Elevated AG was observed in most high-grade brain tumors and it was associated with decreased CMRO2 and CBF, but not with significant changes in CMRGlu. Elevated AG was a dramatic and early sign of tumor growth associated with decreased survival. AG changes associated with tumor growth were differentiated from the effects of nonneoplastic processes such as epileptic seizures. Conclusions. Our findings demonstrate that high-grade brain tumors exhibit elevated AG as a marker of tumor growth and aggressiveness. AG may detect areas of active tumor growth that are not evident on conventional FDG PET.

  11. Effect of tumor resection on the characteristics of functional brain networks

    NARCIS (Netherlands)

    Wang, H.; Douw, L.; Hernández, J.M.; Reijneveld, J.C.; Stam, C.J.; Van Mieghem, P.

    2010-01-01

    Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted

  12. American brain tumor patients treated with BNCT in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-11-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.

  13. Ovarian cysts and tumors in infancy and childhood

    Directory of Open Access Journals (Sweden)

    Madhumita Mukhopadhyay

    2013-01-01

    Full Text Available Aim: Review of the clinical presentation, types (histology, and stages of presentation and overall outcome of ovarian tumors. Materials and Methods: This is a retrospective study. Forty nine girls from 3 days to 12 years were included in the study. Results: Fourteen girls had benign and thirty three had malignant ovarian tumors. One girl had bilateral ovarian non-Hodgkin lymphoma. Dysgerminoma (40% was the commonest malignant tumor followed by malignant teratoma (16.6%. Conclusion: Pain and abdominal lump are the most common modes of presentation. Prognosis depends on the size of the tumor, stage and histology of the tumor. Conservative surgery should be the aim. Multidisciplinary management gives good prognosis.

  14. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  15. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  16. Spectroscopy of brain tumors; Spektroskopie bei Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Peter; Lanfermann, Heinrich [Medizinische Hochschule Hannover (Germany). Inst. fuer Diagnostische und Interventionelle Neuroradiologie; Pilatus, Ulrich [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Neuroradiologie

    2008-09-15

    Metabolic imaging with NMR-spectroscopy has become a diagnostic tool that is used for the examination of cerebral pathologies. It is a non-invasive technique, which can detect and quantify biochemical changes. This paper describes the history of NMR-spectroscopy, its technical basis and possible areas of use for tumor diagnostics. An overview of the literature is given and upcoming developments are mentioned. (orig.)

  17. Tumores testiculares na infância Testicular tumors in childhood

    Directory of Open Access Journals (Sweden)

    Roni Leonardo Teixeira

    2009-02-01

    Full Text Available Testicular and paratesticular prepuberal tumors are rare. They represent around 1% of the total of tumors of infancy. They subdivide in 2 groups: germ cells tumors and non germ cells tumors, being able to occur in all the ages, and about 75% are malignant, and about 19% of these they present metastasis. The tumors of germ cells tumors represent 60 75% of the tumors testiculars in infancy, having as main example the yolk sac tumor (65% of the neoplasms, followed for teratomas (14%; although some works to exist where teratoma, if presents as most common .The non germ cells tumors include the Leydig cell tumor and Sertoli cell tumor. The Leydig cell tumor, are most frequent between the non germ cells tumors testicular. This review article on epidemiology, diagnosis and treatment of to testicular and to paratesticular tumors in child.

  18. Dexamethasone alleviates tumor-associated brain damage and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Zheng Fan

    Full Text Available Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA, a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc-; SLC7a11 and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage.

  19. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  20. Application of nanoparticles in brain tumor treatment

    CERN Document Server

    Caruso, Gerardo

    2012-01-01

    Despite progress in surgery, radiotherapy, and chemotherapy, an effective treatment of gliomas does not yet exist. This new monograph in the ASME-Momentum Press series on Biomedical & Nanomedical Technologies book shows how nanotechnology could be used both to improve the treatment efficacy and to reduce the adverse side effects. It will explain how nanotechnology-based approaches to targeted delivery of drugs across the brain-blood barrier may potentially be engineered to carry out specific functions as needed.

  1. Differential diagnosis of cystic bone tumors in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Refior, H.J.; Stuerz, H.

    1982-09-01

    Skeletal changes leading to a suspicion of the presence of a tumour frequently occur in childhood with the roentgenological manifestation of a cyst. X-ray morphology can differ depending upon the localisation and the course. In childhood, however such findings are mainly classified as tumour-like bone lesions. This group comprises, inter alia, the juvenile bone cyst, the aneurysmatic bone cyst and fibrous dysplasia. However, it is necessary to exclude by differential diagnosis - even though the main age of manifestation is after completion of growth - genuine bone tumours with cystic phenomena, such as the giant cell tumour, chondroma or chondroblastoma. Verification of the diagnosis can be effected via radiologic-diagnostic methods such as tomography and angiography as well as computerized tomography. The use of scintigraphy of the skeleton can likewise be indicated. Numerous laboratory parameters can be used in individual cases to exclude certain diagnoses. Taking these aspects into consideration, the article reviews differential diagnosis of the most frequent skeletal affections in childhood. Great emphasis is given to the ranking and importance of the individual diagnostic methods.

  2. Radiotherapy combined with Tegafur (FT-207s) for brain tumors

    International Nuclear Information System (INIS)

    5-Fluorouracil (5-FU) has anti-tumor effects as an anti-metabolite, but it cannot pass the Blood-Brain-Barrier (BBB). FT-207 a masked-compound of 5-FU, is easily lipid soluble and is able to pass the BBB. Twenty eight patients of primary brain tumor and 8 patients of metastatic brain tumor were treated with irradiation combined with 750 mg of FT-207 suppository. Twenty four patients of primary brain tumor were treated only with irradiation as control. The mean survival time was 20.4 +- 11.8 months for the combined therapy group and 17.6 +- 8.6 months for the control. The concentration of FT-207 and 5-FU in serum and in cerebrospinal fluid (CSF) was investigated after administration of 750 mg of FT-207 suppository per annum. The maximum concentration of FT-207 and of 5-FU in serum was 20.4 +- 11.8 mcg/ml and 0.06 +- 0.02 mcg/ml, respectively. There were observed several side effects, such as anorexia, nausea, exanthema and etc. These side effects were not so great as to interrupt the therapy at the dose level of 750 mg of FT-207. However, at the dose of 1500 mg, one case showed disturbance of consciousness, to which attention should be called. (author)

  3. Genetic abnormality predicts benefit for a rare brain tumor

    Science.gov (United States)

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  4. What Are Brain and Spinal Cord Tumors in Children?

    Science.gov (United States)

    ... tissues and cells, which can develop into different types of tumors. Neurons (nerve cells): These are the most important cells ... as long as several feet. Unlike many other types of cells that can grow and divide to repair damage from injury or disease, neurons in the brain and spinal cord largely stop ...

  5. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  6. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    Science.gov (United States)

    Klinger, Neil V.

    2016-01-01

    Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin's ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors.

  7. Treatment Options for Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... immature teratomas , and malignant germ cell tumors: Mature Teratomas Mature teratomas are the most common type of ... that cause signs and symptoms of disease. Immature Teratomas Immature teratomas also usually occur in the sacrum ...

  8. Childhood Central Nervous System Germ Cell Tumors Treatment

    Science.gov (United States)

    ... the tumor responds to treatment. Newly Diagnosed CNS Teratomas Treatment of newly diagnosed mature and immature central nervous system (CNS) teratomas may include the following: Surgery to remove as ...

  9. General Information about Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... immature teratomas , and malignant germ cell tumors: Mature Teratomas Mature teratomas are the most common type of ... that cause signs and symptoms of disease. Immature Teratomas Immature teratomas also usually occur in the sacrum ...

  10. Specific aspects of radiotherapy of malignant tumors in childhood

    International Nuclear Information System (INIS)

    Based on the experience with radiotherapy of malignant tumors in 1839 children treated at the Oncological Clinic in Prague from 1946 to 1985, the conclusion is arrived at that some specific aspects of radiotherapy of tumors in children, such as kinetics and biological features are so important that it can be considered a special sub-discipline of clinical radiotherapy. An opinion is expressed about the application of irradiation in non-malignant affections in children. (author). 2 figs., 4 tabs., 25 refs

  11. Cytokine Gene Polymorphisms in Egyptian Cases with Brain Tumors

    International Nuclear Information System (INIS)

    Background: Cytokines are proposed to play important roles in brain tumor biology as well as neuro degeneration or impaired neuronal function. Objectives: This work aimed to check the association of polymorphisms of cytokine genes in Egyptian cases with brain tumors. Methods: This work included 45 cases affected by brain tumors diagnosed as 24 benign and 21 malignant. Their median age was 45 years, and they were 20 males and 25 females. These cases were taken randomly from the Neurosurgery Department of Mansoura University Hospital, Egypt. Case genotypes were compared to 98 healthy unrelated controls from the same locality. DNA was amplified using PCR utilizing sequence specific primers (SSP) for detection of polymorphisms related to TNF-a-308 (G/A), IL-10-1082 (G/A), IL-6-174 (G/C) and IL-1Ra (VNTR) genes. Results: Cases affected with benign brain tumors showed a significant higher frequency of IL-10-1082 A/A [odds ratio (OR=8.0), p<0.001] and IL-6-174 C/C (OR=6.3, p=0.002) homozygous genotypes as compared to controls. Malignant cases, on the other hand, showed significantly higher frequency of IL-6-174 C/C (OR =4.8, p=0.002) homozygous genotype and TNF-a-308 A/A (OR=4.9, p<0.001) homozygous genotype when compared to controls. In the meantime, all cases showed no significant difference regarding the distribution of IL-1Ra VNTR genotype polymorphism compared to controls. Conclusions: Cytokine gene polymorphisms showed a pattern of association with brain tumors which may have potential impact on family counseling and disease management.

  12. Simulation of brain tumor resection in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2011-03-01

    Preoperative magnetic resonance images are typically used for neuronavigation in image-guided neurosurgery. However, intraoperative brain deformation (e.g., as a result of gravitation, loss of cerebrospinal fluid, retraction, resection, etc.) significantly degrades the accuracy in image guidance, and must be compensated for in order to maintain sufficient accuracy for navigation. Biomechanical finite element models are effective techniques that assimilate intraoperative data and compute whole-brain deformation from which to generate model-updated MR images (uMR) to improve accuracy in intraoperative guidance. To date, most studies have focused on early surgical stages (i.e., after craniotomy and durotomy), whereas simulation of more complex events at later surgical stages has remained to be a challenge using biomechanical models. We have developed a method to simulate partial or complete tumor resection that incorporates intraoperative volumetric ultrasound (US) and stereovision (SV), and the resulting whole-brain deformation was used to generate uMR. The 3D ultrasound and stereovision systems are complimentary to each other because they capture features deeper in the brain beneath the craniotomy and at the exposed cortical surface, respectively. In this paper, we illustrate the application of the proposed method to simulate brain tumor resection at three temporally distinct surgical stages throughout a clinical surgery case using sparse displacement data obtained from both the US and SV systems. We demonstrate that our technique is feasible to produce uMR that agrees well with intraoperative US and SV images after dural opening, after partial tumor resection, and after complete tumor resection. Currently, the computational cost to simulate tumor resection can be up to 30 min because of the need for re-meshing and the trial-and-error approach to refine the amount of tissue resection. However, this approach introduces minimal interruption to the surgical workflow

  13. Chemo-radiotherapy for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kochi, Masato; Ushio, Yukitaka [Kumamoto Univ. (Japan). School of Medicine

    2002-05-01

    Malignant gliomas: Randomized clinical trials conducted in the USA showed that radiotherapy plus chemotherapy with nitrosoureas offered a long-term survival advantage to patients younger than 60 years old with malignant gliomas. Combination chemotherapy, such as procarbazine/CCNU/vincristine (PCV) must be tested further, and intra-arterial chemotherapy with nitrosoureas offered no survival advantage. Combination chemotherapy with PCV showed efficacy for patients with anaplastic oligodendroglioma and anaplastic oligoastrocytoma. Medulloblastoma: The addition of chemotherapy to radiotherapy improved the survival of patients with poor risk medulloblastoma, and may reduce the required craniospinal radiation dose in patients with good risk medulloblastoma. Primary CNS lymphoma (PCNSL): Combination of chemotherapy with high-dose MTX and radiotherapy improved survival of patients with PCNSL; however, the neurotoxicity produced by this treatment modality is a serious problem in older patients. Intracranial germ cell tumors: The addition of chemotherapy to radiotherapy may produce long term survival with good quality of life in patients with germinoma. Neoadjuvant therapy consisting of chemotherapy and radiotherapy followed by complete surgical excision improved survival of patients with intracranial nongerminomatous germ cell tumors. (author)

  14. Anti-angiogenic therapy in pediatric brain tumors : An effective strategy?

    NARCIS (Netherlands)

    Sie, Mariska; den Dunnen, Wilfred F. A.; Hoving, Eelco W.; de Bont, Eveline S. J. M.

    2014-01-01

    Brain tumors are still the leading cause of cancer morbidity and mortality among children, despite different therapeutic options including neurosurgery, chemotherapy and radiation. As angiogenesis is highly crucial in brain tumor growth and progression, numerous clinical trials evaluating diverse an

  15. Stereotactic interstitial brachytherapy for the treatment of oligodendroglial brain tumors

    International Nuclear Information System (INIS)

    We evaluated the treatment of oligodendroglial brain tumors with interstitial brachytherapy (IBT) using 125iodine seeds (125I) and analyzed prognostic factors. Between January 1991 and December 2010, 63 patients (median age 43.3 years, range 20.8-63.4 years) suffering from oligodendroglial brain tumors were treated with 125I IBT either as primary, adjuvantly after incomplete resection, or as salvage therapy after tumor recurrence. Possible prognostic factors influencing disease progression and survival were retrospectively investigated. The actuarial 2-, 5-, and 10-year overall and progression-free survival rates after IBT for WHO II tumors were 96.9, 96.9, 89.8 % and 96.9, 93.8, 47.3 %; for WHO III tumors 90.3, 77, 54.9 % and 80.6, 58.4, 45.9 %, respectively. Magnetic resonance imaging demonstrated complete remission in 2 patients, partial remission in 13 patients, stable disease in 17 patients and tumor progression in 31 patients. Median time to progression for WHO II tumors was 87.6 months and for WHO III tumors 27.8 months. Neurological status improved in 10 patients and remained stable in 20 patients, while 9 patients deteriorated. There was no treatment-related mortality. Treatment-related morbidity was transient in 11 patients. WHO II, KPS ≥ 90 %, frontal location, and tumor surface dose > 50 Gy were associated with increased overall survival (p ≤ 0.05). Oligodendroglioma and frontal location were associated with a prolonged progression-free survival (p ≤ 0.05). Our study indicates that IBT achieves local control rates comparable to surgery and radio-/chemotherapy treatment, is minimally invasive, and safe. Due to the low rate of side effects, IBT may represent an attractive option as part of a multimodal treatment schedule, being supplementary to microsurgery or as a salvage therapy after chemotherapy and conventional irradiation. (orig.)

  16. Radiation treatment of brain tumors: Concepts and strategies

    Energy Technology Data Exchange (ETDEWEB)

    Marks, J.E. (Loyola Univ. of Chicago Stritch School of Medicine, Maywood, IL (USA))

    1989-01-01

    Ionizing radiation has demonstrated clinical value for a multitude of CNS tumors. Application of the different physical modalities available has made it possible for the radiotherapist to concentrate the radiation in the region of the tumor with relative sparing of the surrounding normal tissues. Correlation of radiation dose with effect on cranial soft tissues, normal brain, and tumor has shown increasing effect with increasing dose. By using different physical modalities to alter the distribution of radiation dose, it is possible to increase the dose to the tumor and reduce the dose to the normal tissues. Alteration of the volume irradiated and the dose delivered to cranial soft tissues, normal brain, and tumor are strategies that have been effective in improving survival and decreasing complications. The quest for therapeutic gain using hyperbaric oxygen, neutrons, radiation sensitizers, chemotherapeutic agents, and BNCT has met with limited success. Both neoplastic and normal cells are affected simultaneously by all modalities of treatment, including ionizing radiation. Consequently, one is unable to totally depopulate a tumor without irreversibly damaging the normal tissues. In the case of radiation, it is the brain that limits delivery of curative doses, and in the case of chemical additives, it is other organ systems, such as bone marrow, liver, lung, kidneys, and peripheral nerves. Thus, the major obstacle in the treatment of malignant gliomas is our inability to preferentially affect the tumor with the modalities available. Until it is possible to directly target the neoplastic cell without affecting so many of the adjacent normal cells, the quest for therapeutic gain will go unrealized.72 references.

  17. Thallium uptake and biological behaviour in childhood brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, E.J.; Howman-Giles, R.; Kellie, S.; Uren, R.F. [Royal Alexandra Hospital for Children, Sydney, NSW (Australia)

    1998-03-01

    Full text: The histopathological grade and radiological appearance of the diverse cerebral neoplasms in childhood frequently poorly reflect their biological behaviour. We examined thallium accumulation prior to treatment (and in several cases, at intervals there after) in 13 children to determine its usefulness as a tumour marker. 23 SPECT studies were acquired 20 minutes after the injection of 1-3 mCi of {sup 201}TI. Thallium index (TI), the ratio of counts in tumour/normal brain, was calculated. No uptake was seen in two patients (pts) with a Grade 1 cerebellar astrocytomas (disease free at 4/12 f/u). Three pts with medulloblastomas were studied. One pt showed intense uptake (Tl =12). His tumour (proliferative antigen stain Ki67 = 50%) recurred early after debulking surgery (Tl +ve prior to CT or MRI changes). The second pt was imaged at relapse (Ki67 = 60%) and showed intense uptake, Tl = 17. The third pt showed lower level uptake (Tl = 2), Ki67 = 5%, and is disease-free at 5/12 (as per {sup 201}TI and MRI). One pt with a Grade 1 brainstem glioma showed Tl = 5 and has progressed rapidly despite low grade histology. Four pts with chiasmatic-hypothalamic gliomas have been studied. Although these neoplasms are usually low grade histologically, their growth properties vary greatly. Two pts with Tl<2.5 have been conservatively managed because of slow tumour growth. The other two pts have Tl>3.5 and have required aggressive treatment for rapid disease progression. One pt with a large pilocytic astrocytoma of the optic chiasm showed Tl = 9.5. Active treatment was not undertaken. One pt with a pineal germ cell tumour showed avid {sup 201}TI uptake (Tl not performed) and has had two normal studies, and is clinically well, since BMT. Avid {sup 201}TI uptake also seen in one pt with cerebral neuroblastoma. (Died at 8/12 after Dx.) Thus, {sup 201}TI accumulates in histologically diverse paediatric neoplasms. The Tl appears to reflect biological behaviour in the limited

  18. Differential MRI Diagnosis Between Brain Abscess and Necrotic or Cystic Brain Tumors Using Diffusion Weighted Images

    Directory of Open Access Journals (Sweden)

    Zinat Miabi

    2009-01-01

    Full Text Available "nIntroduction: Differentiating brain abscesses from cystic or necrotic tumors by CT or MR imaging can be difficult. Difficulties in the diagnosis of intracranial abscess are mainly due to the combination of often unspecified clinical findings and similarities in the morphologic appearance of some intracranial mass lesions, such as cystic gliomas, metastases, and brain abscesses. Diffusion-weighted imaging provides a way to evaluate the diffusion properties of water molecules in tissue and has been used for diseases such as ischemia, tumors, epilepsy, and white matter disorders. The goal of this study was to evaluate the diagnostic utility of diffusion MRI to differentiate between brain abscesses and necrotic or cystic brain tumors. "nMaterials and Methods: MRI was performed in 17 patients (12 men and five women; age range, 19–74 years [mean, 55 years] with necrotic lesions and MR imaging evidence of ring-shaped enhancement after the injection of contrast material .In addition to standard MR sequences diffusion weighted MRI with apparent coefficient (ADC maps. "nResults: Eleven patients had tumors, and six had pyogenic abscesses. The tumors were glioblastomas (five patients, anaplastic astrocytoma (three patients, metastases (three patients, and primary malignancy, including lung (2 and breast (1 cancer. Surgical or stereotactic biopsies were obtained, and histologic studies were performed in all except one case (case 5. In the cases of abscess, bacteriologic analysis was also conducted. None of these lesions appeared hemorrhagic on T1-weighted images. "nConclusion: Diffusion-weighted imaging is useful for differentiating brain abscess from cystic or necrotic brain tumor, which is often difficult with conventional MR imaging. Diffusion-weighted imaging is useful as an additional imaging technique for establishing the differential diagnosis between brain abscesses and cystic or necrotic brain tumors. It requires less imaging time and is more

  19. Caring for the brain tumor patient: Family caregiver burden and unmet needs

    OpenAIRE

    Schubart, Jane R.; Kinzie, Mable B.; Farace, Elana

    2008-01-01

    The rapid onset and progression of a brain tumor, cognitive and behavioral changes, and uncertainty surrounding prognosis are issues well known to health practitioners in neuro-oncology. We studied the specific challenges that family caregivers face when caring for patients experiencing the significant neurocognitive and neurobehavioral disorders associated with brain tumors. We selected 25 family caregivers of adult brain tumor patients to represent the brain tumor illness trajectory (crisis...

  20. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan;

    2015-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low......- and high-grade glioma patients – manually annotated by up to four raters – and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74...... a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  1. Interstitial radiotherapy using photon radiosurgery system for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Osami; Iseki, Hiroshi; Muragaki, Yoshihiro; Takakura, Kintomo [Tokyo Women`s Medical Coll. (Japan)

    1998-02-01

    The photon radiosurgery system is a miniature X ray generator that can be placed stereotactically and intraoperatively into intracranial tumors to deliver a single fraction of high dose interstitial irradiation. This battery powered device produces low energy X ray photons in a spherical and symmetrical pattern at the probe tip. Dose rates of up to 200 cGy/Mim are possibly allowing for the administration of 20 Gy to a lesion 3 cm in diameter in less than 1 hr. Background exposure is minimal and no special shielding of the patient or health care personnel is required. Thirty-two patients with brain tumor were treated in this method. There were no adverse effects. During the follow-up period of l-28 months, 3 of 4 patients with metastatic brain tumor died in several months after this treatment. Five recurrent cases of 21 patients with malignant glioma died in several months. We concluded interstitial radiotherapy using photon radiosurgery system for brain tumors is useful. (author)

  2. Brain tumor stem cells as research and treatment targets

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is one of the most malignant forms of human cancer. Despite intensive treatment, the mean survival of GBM patients remains about 1 year. Recent cancer studies revealed that cancer tissues are pathologically heterogeneous and only a small population of cells has the specific ability to reinitiate cancer. This small cell population is called cancer stem cells (CSCs); in brain tumors these are known as brain tumor stem cells (BTSCs). The identification of BTSCs yielded new insights into chemo- and radioresistance, by which BTSCs can survive selectively and initiate recurrence. Research focused on BTSCs as treatment targets may contribute to the discovery of new therapeutic strategies. Clinical and basic research studies gradually led to improved outcomes in patients with brain tumors. Stupp et al. reported a mean survival of 14.6 months in glioblastoma multiforme (GBM) patients treated with radiotherapy plus temozolomide and 12.1 months in those subjected to radiotherapy alone. Earlier cancer therapies primarily targeted rapidly dividing cells but not minor populations of slowly dividing cells that contain BTSCs. Accumulating evidence suggests that BTSCs may represent an excellent tool for discovering new strategies to treat GBM patients. In this review, we present evidence supporting the CSC model of tumor progression, and discuss difficulties encountered in CSC research and experimental and therapeutic implications. (author)

  3. Skull-stripping for Tumor-bearing Brain Images

    CERN Document Server

    Bauer, Stefan; Reyes, Mauricio

    2012-01-01

    Skull-stripping separates the skull region of the head from the soft brain tissues. In many cases of brain image analysis, this is an essential preprocessing step in order to improve the final result. This is true for both registration and segmentation tasks. In fact, skull-stripping of magnetic resonance images (MRI) is a well-studied problem with numerous publications in recent years. Many different algorithms have been proposed, a summary and comparison of which can be found in [Fennema-Notestine, 2006]. Despite the abundance of approaches, we discovered that the algorithms which had been suggested so far, perform poorly when dealing with tumor-bearing brain images. This is mostly due to additional difficulties in separating the brain from the skull in this case, especially when the lesion is located very close to the skull border. Additionally, images acquired according to standard clinical protocols, often exhibit anisotropic resolution and only partial coverage, which further complicates the task. There...

  4. General Information about Childhood Brain and Spinal Cord Tumors

    Science.gov (United States)

    ... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... Contacts Other Funding Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training ...

  5. Current diagnostic approach of bone tumors in childhood; Abordagem diagnostica atual dos tumores osseos na infancia

    Energy Technology Data Exchange (ETDEWEB)

    Torre, Marcia Barbosa; Scatigno Neto, Andre [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Hospital das Clinicas

    1995-09-01

    The authors analyze the magnetic resonance imaging (MRI) as the imaging modality of choice for evaluation of patients with bone tumors or soft tissue tumors. The advent of such a sensitive imaging modality is fortuitous and coincides with a recent change in the therapeutic approach to primary bone tumors. MRI is extremely valuable in monitoring the tumor response to the initial chemotherapy and is accurate defining the margins of tumor, facilitating planning of limb salvage surgical procedures. (author). 5 refs., 8 figs.

  6. Proceedings of the 3. Muenster symposium on late effects after tumor therapy in childhood and adolescence. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Willich, Normann; Boelling, Tobias (eds.) [Univ. Hospital Muenster (Germany). Dept. of Radiotherapy

    2009-08-15

    The volume on the 3rd Muenster Symposion on late effects after tumor therapy in childhood and adolescence contains 7 contributions: Evaluation of side effects after radiotherapy in childhood and adolescence; from retrospective case reports to a perspective, multicentric and transnational approach; late effects surveillance system after childhood cancer in Germany, Austria and parts of Switzerland - update 2009; second malignant neoplasm after childhood cancer in Germany - results from the long-term follow-up of the German childhood cancer registry; secondary neoplasm after Wilm's tumor in Germany; second cancer after total-body irradiation (TBI) in childhood; late toxicity in children undergoing hematopoietic stem cell transplantation with TBI-containing conditioning regimens for hematological malignancies; radiation toxicity following busulfan/melphalan high-dose chemotherapy in the EURO-EWING-99-trials: review of GPOH data.

  7. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  8. Dysembryoplastic neuroepithelial tumor: A rare brain tumor not to be misdiagnosed.

    Science.gov (United States)

    Sukheeja, Deepti; Mehta, Jayanti

    2016-01-01

    Dysembryoplastic neuroepithelial tumor (DNET) is a recently described, morphologically unique, and surgically curable low-grade brain tumor which is included in the latest WHO classification as neuronal and mixed neuronal-glial tumor. It is usually seen in children and young adults. The importance of this particular entity is that it is a surgically curable neuroepithelial neoplasm. When recognized, the need for adjuvant radiotherapy and chemotherapy is obviated. We hereby present a case report of an 8-year-old male child who presented with intractable seizures and parieto-occipital space occupying lesion. Histologically, the tumor exhibited features of WHO grade I dysembryoplastic neuroepithelial tumor which was further confirmed by immunohistochemistry. PMID:27057233

  9. [Preliminary evidence of neurobiological and behavioral consequences of exposure to childhood maltreatment on regional brain development].

    Science.gov (United States)

    Tomoda, Akemi

    2011-09-01

    In recent years, the topic of child abuse as an issue facing Japanese society has gained considerable attention with regard to the field of medicine and education and also in scenarios that relate to child care. The definition of child abuse includes abusing children verbally or psychologically, and is not limited to abusing children physically such as beating, sexual abuse, or neglect. Recent studies have revealed that emotional trauma during childhood development could be much more difficult to treat than physical abuse. Severe abuse during childhood can cause abnormal brain development and have a negative impact later in life. In this review, I will introduce the mechanisms of brain damage due to child abuse with consideration of how and when child abuse can have an impact on the victims' brains. The information presented is based on a collaborative study with the Psychiatry Department at Harvard University on the relationship between brain functions and the human mind.

  10. New Experimental Model of Brain Tumors in Brains of Adult Immunocompetent Rats

    OpenAIRE

    Baklaushev, Vladimir P.; Kavsan, Vadym M.; Balynska, Olena V; Yusubalieva, Gaukhar M.; Abakumov, Maxim A.; Chekhonin, Vladimir P.

    2012-01-01

    Aims: Xenograft models, namely heterotransplantation of human cancer cells or tumor biopsies into immunodeficient rodents are the major preclinical approach for the development of novel cancer therapeutics. However, in these models the animals must be used only after the severe systemic immune suppression in order to ensure graft survival. Thus, additional new human brain tumor models without immune suppression of the recipient rodent may be required. Place and Duration of Study: Laboratory o...

  11. Efficient multilevel brain tumor segmentation with integrated bayesian model classification.

    Science.gov (United States)

    Corso, J J; Sharon, E; Dube, S; El-Saden, S; Sinha, U; Yuille, A

    2008-05-01

    We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor. PMID:18450536

  12. Brain hypothermia therapy for childhood acute encephalopathy based on clinical evidence

    OpenAIRE

    Imataka, George; Arisaka, Osamu

    2015-01-01

    Although previous studies have reported on the effectiveness of brain hypothermia therapy in childhood acute encephalopathy, additional studies in this field are necessary. In this review, we discussed brain hypothermia therapy methods for two clinical conditions for which sufficient evidences are currently available in the literature. The first condition is known as hypoxic-ischemic encephalopathy and occurs in newborns and the second condition is acute encephalopathy which occurs in adults ...

  13. Distribution of cysteinyl leukotriene receptor 2 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    Hua HU; Er-qing WEI; Gao CHEN; Jian-min ZHANG; Wei-ping ZHANG; Lei ZHANG; Qiu-fu GE; Hong-tian YAO; Wei DING; Zhong CHEN

    2005-01-01

    Aim: To determine the distribution of cysteinyl leukotriene receptor 2 (CysLT2),one of the cysteinyl leukotriene receptors, in human brains with traumatic injury and tumors. Methods: Brain specimens were obtained from patients who underwent brain surgery. CysLT2 in brain tissues was examined using immunohistochemical analysis. Results: CysLT2 was expressed in the smooth muscle cells (not in the endothelial cells) of arteries and veins. CysLT2 was also expressed in the granulocytes in both vessels and in the brain parenchyma. In addition, CysLT2 was detected in neuron- and glial-appearing cells in either the late stages of traumatic injury or in the area surrounding the tumors. Microvessels regenerated 8 d after trauma and CysLT2 expression was recorded in their endothelial cells.Conclusion: CysLT2 is distributed in vascular smooth muscle cells and granulocytes, and brain trauma and tumor can induce its expression in vascular endothelial cells and in a number of other cells.

  14. Optimizing brain tumor resection. High-field interventional MR imaging.

    Science.gov (United States)

    Tummala, R P; Chu, R M; Liu, H; Truwit, C L; Hall, W A

    2001-11-01

    High-field strength iMRI guidance is an effective tool for brain tumor resection. Although its use lengthens the average time for a craniotomy, the reward is a more extensive tumor excision compared with conventional neurosurgery without an increased risk to the patient (Table 4). Although intraoperative patient transfer into and out of the magnet is cumbersome, the possibility for complete resection, especially for a low-grade glioma, makes the effort worthwhile. The cost and technical support required for this system presently limits its use to only a few sites worldwide. As with any technology, further refinements will make this system less expensive and more attainable. Practical consideration aside, high-field strength iMRI is presently [table: see text] the most effective tool available for brain tumor resection. Because of its novelty, future studies are necessary to determine if this technology lowers the incidence of and extends the duration to tumor recurrence as the preliminary data in children suggests. These are the ultimate measures of efficacy for any brain tumor treatment. Based on the rapid advancement of technology, will today's high-field strength interventional magnet become tomorrow's low-field system? Very high-field strength designs may improve diagnostic capabilities through higher resolution, but their interventional applications may be hindered by increased sensitivity for clinically insignificant abnormalities and decreased specificity for clinically relevant lesions. As new technology is developed, clinicians must continue to explore and refine the existing high-field strength iMRI to make it cost-effective and widely applicable.

  15. Tumor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008479 Preliminary study of MR elastography in brain tumors. XU Lei(徐磊), et al.Neurosci Imaging Center, Beijing Tiantan Hosp, Capital Med Univ, Beijing 100050.Chin J Radiol 2008;42(6):605-608. Objective To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years)

  16. Childhood emotional maltreatment : impact on cognition and the brain

    NARCIS (Netherlands)

    Harmelen, Anne-Laura van

    2013-01-01

    When a child is often scolded or threatened by his parents (emotional abuse) and /or when a child is structurally ignored or isolated by his parents (emotional neglect) we call this childhood emotional maltreatment (CEM). CEM is the most common form of child abuse, however, CEM is also the most hidd

  17. Enhanced brain signal variability in children with autism spectrum disorder during early childhood.

    Science.gov (United States)

    Takahashi, Tetsuya; Yoshimura, Yuko; Hiraishi, Hirotoshi; Hasegawa, Chiaki; Munesue, Toshio; Higashida, Haruhiro; Minabe, Yoshio; Kikuchi, Mitsuru

    2016-03-01

    Extensive evidence shows that a core neurobiological mechanism of autism spectrum disorder (ASD) involves aberrant neural connectivity. Recent advances in the investigation of brain signal variability have yielded important information about neural network mechanisms. That information has been applied fruitfully to the assessment of aging and mental disorders. Multiscale entropy (MSE) analysis can characterize the complexity inherent in brain signal dynamics over multiple temporal scales in the dynamics of neural networks. For this investigation, we sought to characterize the magnetoencephalography (MEG) signal variability during free watching of videos without sound using MSE in 43 children with ASD and 72 typically developing controls (TD), emphasizing early childhood to older childhood: a critical period of neural network maturation. Results revealed an age-related increase of brain signal variability in a specific timescale in TD children, whereas atypical age-related alteration was observed in the ASD group. Additionally, enhanced brain signal variability was observed in children with ASD, and was confirmed particularly for younger children. In the ASD group, symptom severity was associated region-specifically and timescale-specifically with reduced brain signal variability. These results agree well with a recently reported theory of increased brain signal variability during development and aberrant neural connectivity in ASD, especially during early childhood. Results of this study suggest that MSE analytic method might serve as a useful approach for characterizing neurophysiological mechanisms of typical-developing and its alterations in ASD through the detection of MEG signal variability at multiple timescales. PMID:26859309

  18. Linear-accelerator-based stereotactic irradiation for metastatic brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Mitsuhiro; Katsui, Kuniaki; Yoshida, Atsushi [Okayama Univ. (Japan). School of Medicine] [and others

    2003-05-01

    To assess the safety and availability of stereotactic radiotherapy (SRT) for metastatic brain tumors, we reviewed 54 consecutive cases with a total of 118 brain metastases treated with linear-accelerator-based stereotactic irradiation (STI). Nineteen patients with a total of 27 brain tumors that were larger than 3 cm or close to critical normal tissues were treated with SRT. The marginal dose of SRT was 15-21 Gy (median 21 Gy) in 3 fractions for 3 days. The median marginal dose of stereotactic radiosurgery (SRS) was 20 Gy. Effective rates of imaging studies were 72.7% and 94.4%, and those of clinical symptoms were 46.7% and 55.6% for SRT and SRS, respectively. One-year and two-year survival rates of SRT were 40.9% and 17.6%, respectively, and the median follow-up period was 6.4 months. The one-year survival rate of SRS was 32.7%, with a median follow-up of 4.6 months. Fourteen cases (7 cases each) had recurrent tumors at STI sites. Early complications were observed in one case of SRT and 8 cases of SRS, and late complications occurred in 3 cases of SRS. There were no significant differences among effective rates, survival rates, median follow-up times, recurrence rates, and complications between SRT and SRS. We concluded that SRT is a safe, effective therapy for large or eloquent area metastases. (author)

  19. Heavy metals and epigenetic alterations in brain tumors.

    Science.gov (United States)

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-12-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  20. Social Outcomes in Childhood Brain Disorder: A Heuristic Integration of Social Neuroscience and Developmental Psychology

    Science.gov (United States)

    Yeates, Keith Owen; Bigler, Erin D.; Dennis, Maureen; Gerhardt, Cynthia A.; Rubin, Kenneth H.; Stancin, Terry; Taylor, H. Gerry; Vannatta, Kathryn

    2007-01-01

    The authors propose a heuristic model of the social outcomes of childhood brain disorder that draws on models and methods from both the emerging field of social cognitive neuroscience and the study of social competence in developmental psychology/psychopathology. The heuristic model characterizes the relationships between social adjustment, peer…

  1. Scalp topography of event-related brain potentials and cognitive transitions during childhood.

    NARCIS (Netherlands)

    P.C.M. Molenaar; M.W. van der Molen; J.E.A. Stauder

    1993-01-01

    Examined the relation between cognitive development (CGD) and the ontogenesis of event-related brain potentials (ERPs) during childhood among 48 girls (aged 5-7 yrs). The level of CGD was assessed with a standard Piagetian conservation kit. Ss performed a visual selective attention (oddball) task an

  2. Childhood abuse and deprivation are associated with distinct sex-dependent differences in brain morphology

    NARCIS (Netherlands)

    Everaerd, D.S.; Klumpers, F.; Zwiers, M.P.; Guadalupe, T.; Franke, B.; Oostrom, I.I.H. van; Schene, A.H.; Fernandez, G.S.E.; Tendolkar, I.

    2016-01-01

    Childhood adversity (CA) has been associated with long-term structural brain alterations and an increased risk for psychiatric disorders. Evidence is emerging that subtypes of CA, varying in the dimensions of threat and deprivation, lead to distinct neural and behavioral outcomes. However, these spe

  3. Rebooting the Brain: Using Early Childhood Education to Heal Trauma from Abuse and Neglect

    Science.gov (United States)

    McLintock, Ben

    2011-01-01

    Abused and neglected children live in a world that usually includes some sort of violence, chaos, and tremendous physical and mental stress. This toxic environment wreaks havoc on a child's developing brain. This article discusses how to use early childhood education to heal trauma from abuse and neglect. It shares the story of two children, Bryce…

  4. The Childhood Solid Tumor Network: A new resource for the developmental biology and oncology research communities.

    Science.gov (United States)

    Stewart, Elizabeth; Federico, Sara; Karlstrom, Asa; Shelat, Anang; Sablauer, Andras; Pappo, Alberto; Dyer, Michael A

    2016-03-15

    Significant advances have been made over the past 25 years in our understanding of the most common adult solid tumors such as breast, colon, lung and prostate cancer. Much less is known about childhood solid tumors because they are rare and because they originate in developing organs during fetal development, childhood and adolescence. It can be very difficult to study the cellular origins of pediatric solid tumors in developing organs characterized by rapid proliferative expansion, growth factor signaling, developmental angiogenesis, programmed cell death, tissue reorganization and cell migration. Not only has the etiology of pediatric cancer remained elusive because of their developmental origins, but it also makes it more difficult to treat. Molecular targeted therapeutics that alter developmental pathway signaling may have devastating effects on normal organ development. Therefore, basic research focused on the mechanisms of development provides an essential foundation for pediatric solid tumor translational research. In this article, we describe new resources available for the developmental biology and oncology research communities. In a companion paper, we present the detailed characterization of an orthotopic xenograft of a pediatric solid tumor derived from sympathoadrenal lineage during development. PMID:26068307

  5. Changes in liver mitochondrial plasticity induced by brain tumor

    Directory of Open Access Journals (Sweden)

    Debien Emilie

    2006-10-01

    Full Text Available Abstract Background Accumulating data suggest that liver is a major target organ of systemic effects observed in the presence of a cancer. In this study, we investigated the consequences of the presence of chemically induced brain tumors in rats on biophysical parameters accounting for the dynamics of water in liver mitochondria. Methods Tumors of the central nervous system were induced by intraveinous administration of ethylnitrosourea (ENU to pregnant females on the 19th day of gestation. The mitochondrial crude fraction was isolated from the liver of each animal and the dynamic parameters of total water and its macromolecule-associated fraction (structured water, H2Ost were calculated from Nuclear Magnetic Resonance (NMR measurements. Results The presence of a malignant brain tumor induced a loss of water structural order that implicated changes in the physical properties of the hydration shells of liver mitochondria macromolecules. This feature was linked to an increase in the membrane cholesterol content, a way to limit water penetration into the bilayer and then to reduce membrane permeability. As expected, these alterations in mitochondrial plasticity affected ionic exchanges and led to abnormal features of mitochondrial biogenesis and caspase activation. Conclusion This study enlightens the sensitivity of the structured water phase in the liver mitochondria machinery to external conditions such as tumor development at a distant site. The profound metabolic and functional changes led to abnormal features of ion transport, mitochondrial biogenesis and caspase activation.

  6. Childhood Fibroblastic and Myofibroblastic Tumors: A Multicenter Documentation and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ayper KAÇAR

    2012-01-01

    Full Text Available Objective: In this study, we aimed to give a documentation of 37 cases of childhood fibroblastic/myofibroblastic tumors retrieved from the archives of 6 reference centers in Ankara along with a comprehensive review on the subject.Material and Method: A retrospective archive search was carried out for the period between 2006-2010 in 6 reference centers in Ankara covering patients with ages ranging between 0-18 years. All the tumors categorized under fibroblastic and myofibroblastic group according to World Health Organization criteria were collected.Results: The study comprised 407 soft tissue tumors in total. Fibroblastic/myofibroblastic tumors constituted 9,1 % (37 cases of these tumors. According to histopathology; 16 cases were categorized as fibromatosis, 8 cases as inflammatory myofibroblastic tumor, 6 cases as infantile fibrous hamartoma, 3 cases as nodular fasciitis and 2 cases as infantile myofibroblastic tumor/myofibromatosis and 1 case as cranial fasciitis. The only malignant case was an infantile fibrosarcoma.Conclusion: Infantile fibrosarcoma was lower than reported series and a male predominance was noted. The low incidence of newly described entities as well suggests that these tumors may have been unrecognized.

  7. Childhood CT scans linked to leukemia and brain cancer later in life

    Science.gov (United States)

    Children and young adults scanned multiple times by computed tomography (CT), a commonly used diagnostic tool, have a small increased risk of leukemia and brain tumors in the decade following their first scan.

  8. Two epileptic syndromes, one brain: childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes.

    Science.gov (United States)

    Cerminara, Caterina; Coniglio, Antonella; El-Malhany, Nadia; Casarelli, Livia; Curatolo, Paolo

    2012-01-01

    Childhood absence epilepsy (CAE) and benign childhood epilepsy with centrotemporal spikes (BCECTS), or benign rolandic epilepsy (BRE), are the most common forms of childhood epilepsy. CAE and BCECTS are well-known and clearly defined syndromes; although they are strongly dissimilar in terms of their pathophysiology, these functional epileptic disturbances share many features such as similar age at onset, overall good prognosis, and inheritance factors. Few reports are available on the concomitance of CAE and BCECTS in the same patients or the later occurrence of generalized epilepsy in patients with a history of partial epilepsy. In most cases described in the literature, absence seizures always started after the onset of benign focal epilepsy but the contrary has never occurred yet. We describe two patients affected by idiopathic generalized epileptic syndrome with typical absences, who experienced BCECTS after remission of seizures and normalization of EEG recordings. While the coexistence of different seizure types within an epileptic syndrome is not uncommon, the occurrence of childhood absence and BCECTS in the same child appears to be extremely rare, and this extraordinary event supports the hypothesis that CAE and BCECTS are two distinct epileptic conditions. However, recent interesting observations in animal models suggest that BCECTS and CAE could be pathophysiologically related and that genetic links could play a large role.

  9. Thermal dosimetry studies of ultrasonically induced hyperthermia in normal dog brain and in experimental brain tumors

    International Nuclear Information System (INIS)

    In a series of 16 acute experiments on pentobarbital anesthetized dogs, thermal distributions generated by ultrasonic heating using a 1 MHz PZT transducer were compared with intensity distributions mapped in a test tank. Relatively flat distributions from 1 to 3 cm have been mapped in normal dog brain using ''shaped'' intensity distributions generated from ultrasonic emission patterns which are formed by the interaction between compressional, transverse and flexural modes activated within the crystal. In contrast, these same intensity distributions generated marked temperature variations in 3 malignant brain tumors presumably due to variations in tumor blood flow. The results of this study suggest that a practical clinical system for uniform heating of large tumor volumes with varying volumes and geometries is not an achievable goal. The author's laboratory is developing a scanning ultrasonic rapid hyperthermia treatment system which will be able to sequentially heat small volume of tumor tissue either to temperatures which will sterilize tumor or to a more conventional thermal dose. Time-temperature studies of threshold for thermal damage in normal dog brain are currently in progress

  10. Fetal dose estimates for radiotherapy of brain tumors during pregnancy

    International Nuclear Information System (INIS)

    Purpose: To determine clinically the fetal dose from irradiation of brain tumors during pregnancy and to quantitate the components of fetal dose using phantom measurements. Methods and Materials: Two patients received radiotherapy during pregnancy for malignant brain tumors. Case 1 was treated with opposed lateral blocked 10 x 15 cm fields and case 2 with 6 x 6 cm bicoronal wedged arcs, using 6 MV photons. Fetal dose was measured clinically and confirmed with phantom measurements using thermoluminescent dosimeters (TLDs). Further phantom measurements quantitated the components of scattered dose. Results: For case 1, both clinical and phantom measurements estimated fetal dose to be 0.09% of the tumor dose, corresponding to a total fetal dose of 0.06 Gy for a tumor dose of 68.0 Gy. Phantom measurements estimated that internal scatter contributed 20% of the fetal dose, leakage 20%, collimator scatter 33%, and block scatter 27%. For case 2, clinical and phantom measurements estimated fetal dose to be 0.04% of the tumor dose, corresponding to a total fetal dose of 0.03 Gy for a tumor dose of 78.0 Gy. Leakage contributed 74% of the fetal dose, internal scatter 13%, collimator scatter 9%, and wedge scatter 4%. Conclusions: When indicated, brain tumors may be irradiated to high dose during pregnancy resulting in fetal exposure < 0.10 Gy, conferring an increased but acceptable risk of leukemia in the child, but no other deleterious effects to the fetus after the fourth week of gestation. For our particular field arrangements and linear accelerators, internal scatter contributed a small component of fetal dose compared to leakage and scatter from the collimators and blocks, and 18 MV photons resulted in a higher estimated fetal dose than 6 MV photons due to increased leakage and collimator scatter. These findings are not universal, but clinical and phantom TLD measurements estimate fetal dose accurately for energies < 10 MV and should be taken for each pregnant patient

  11. Assessment of functional status in children with brain tumors

    International Nuclear Information System (INIS)

    Thirty children treated for brain tumors between 1978 - 1985 at Kurume university hospital were evaluated for alternation in intellectual, emotional, and social function. They were 15 males and 15 females, aged 3 to 16 years, on the averaged 1.7 years after treatment. Twenty-eight children had no neurological deficits and 2 children had slight neurological deficits. It was possible for twenty-eight children to be evaluated for intelligence quotient by Wechsler Intelligence Scale for Children-revised and Tanaka-Binet. The median score and standard deviation of intelligence quotient (IQ) test in children with brain tumors were as follows; verbal IQ: 84 ± 16, performance IQ: 77 ± 20, full scale IQ: 80 ± 20. There children with brain tumors obtained significant low IQ scores than children (t-test, P < 0.01). Twenty-one (72 %) children showed subnormal IQ scores (IQ < 90) and 7 children showed normal IQ scores (IQ ≥ 90). Concerning social and emotional function, twelve children (45.7 %) showed abnormal behaviour. The median scores and standard deviation of IQ scores in cranial irradiated patients were as follows; verbal IQ: 79 ± 13, performance IQ: 71 ± 15, full scale IQ: 71 ± 14. Especially, ten of twelve cranial irradiated patients showed subnormal IQ scores. Also, cranial irradiated patients obtained significant low IQ scores than non-cranial irradiated patients (t-test, P < 0.05). Serial evaluation of three cranial irradiated patients revealed further deterioration without recurrence of tumor and hydrocephalus. The results are discussed to: (1) the effects and mechanism of cranial irradiation on cognitive development: (2) the relationship between cognitive dysfunction and irradiation methods. The effects and mechanism of cranial irradiation on cognitive dysfunction is considered to be not only injury of cortex but also injury of fiber tracts. Also, cognitive dysfunction is apt to be related to age of irradiated patients. (J.P.N.)

  12. Simulating ‘structure-function’ patterns of malignant brain tumors

    Science.gov (United States)

    Mansury, Yuri; Deisboeck, Thomas S.

    2004-01-01

    Rapid growth and extensive tissue infiltration are characteristics of highly malignant neuroepithelial brain tumors. Very little is known, however, about the existence of structure-function relationships in these types of neoplasm. Therefore, using a previously developed two-dimensional agent-based model, we have investigated the emergent patterns of multiple tumor cells that proliferate and migrate on an adaptive grid lattice, driven by a local-search mechanism and guided by the presence of distinct environmental conditions. Numerical results indicate a strong correlation between the fractal dimensions of the tumor surface and the average velocity of the tumor's spatial expansion. In particular, when the so called ‘beaten-path advantage’ intensifies, i.e., rising ‘mechanical rewards’ for cells to follow each other along preformed pathways, it results in an increase of the tumor system's fractal dimensions leading to a concomitant acceleration of its spatial expansion. Whereas cell migration is the dominant phenotype responsible for the more extensive branching patterns exhibiting higher fractal dimensions, cell proliferation appears to become more active primarily at lower fracticality associated with stronger mechanical confinements. Implications of these results for experimental and clinical cancer research are discussed.

  13. The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis

    International Nuclear Information System (INIS)

    Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model. Metastatic tumors to the brain were established by direct injection into the striatum or by intracarotid injection of B16F10 mouse melanoma cells in C57Bl mice. The role of plasminogen in the ability of human melanoma cells to cross a human blood-brain barrier model was studied on a transwell system. Wild type mice treated with the plasmin inhibitor epsilon-aminocaproic acid (EACA) and plg-/- mice developed smaller tumors and survived longer than untreated wild type mice. Tumors metastasized to the brain of wild type mice treated with EACA and plg-/- less efficiently than in untreated wild type mice. No difference was observed in the tumor growth in any of the three groups of mice. Human melanoma cells were able to cross the human blood-brain barrier model in a plasmin dependent manner. Plasmin facilitates the development of tumor metastasis to the brain. Inhibition of the fibrinolytic system could be considered as means to prevent tumor metastasis to the brain

  14. Radiosurgery in the management of pediatric brain tumors.

    Science.gov (United States)

    Raco, A; Raimondi, A J; D'Alonzo, A; Esposito, V; Valentino, V

    2000-05-01

    A total of 114 patients with benign and malignant intracranial tumors were treated by Valentino at the Flaminia Radiosurgical Center using a Philips 6-MeV linear accelerator between 1987 and 1995. The tumor locations break down as follows: 36 in the cerebral hemispheres, 14 in the region of the hypothalamus/optic chiasm, 21 in the III ventricle/pineal region, 3 in the basal ganglia, 27 in the posterior fossa, 13 in the brain stem. Seventy-nine patients had multivariate/combined treatment consisting of surgery or biopsy followed by chemotherapy, radiotherapy and/or radiosurgery. Thirty-five were not operated on or biopsied but were treated primarily by radiosurgery, which was associated with chemotherapy and conventional radiotherapy. The short- and long-term results were evaluated separately for each pathology in an attempt to derive guidelines for future treatment. For tumors of the pineal region, we are of the opinion that radiosurgery is the treatment of choice in children and that more than one-third of patients can be cured by this means. The remaining patients require surgery and/or chemotherapy in addition. For medulloblastomas radiosurgery may be useful to control local recurrence if coupled with chemotherapy. In the case of ependymomas, partly because of the extreme malignancy of the lesions in our series, radiosurgery did not succeed in controlling local recurrence. We fear that limiting treatment to radiosurgery, rather than prescribing conventional radiotherapy when indicated, could permit CNS seeding. For craniopharyngiomas radiosurgery proved useful for controlling solid remnants. In glial tumors radiosurgery helped either to "sterilize" the tumor bed after removal or to treat remnants of the lesions in critical areas; for diffuse brain stem gliomas it should be considered the treatment of choice.

  15. Brain Tumor Segmentation Using a Generative Model with an RBM Prior on Tumor Shape

    DEFF Research Database (Denmark)

    Agn, Mikael; Puonti, Oula; Rosenschöld, Per Munck af;

    2016-01-01

    the use of the intensity information in the training images. Experiments on public benchmark data of patients suffering from low- and high-grade gliomas show that the method performs well compared to current state-of-the-art methods, while not being tied to any specific imaging protocol.......In this paper, we present a fully automated generative method for brain tumor segmentation in multi-modal magnetic resonance images. The method is based on the type of generative model often used for segmenting healthy brain tissues, where tissues are modeled by Gaussian mixture models combined...

  16. Exploratory case-control study of brain tumors in adults

    International Nuclear Information System (INIS)

    An exploratory study of brain tumors in adults was carried out using 215 cases diagnosed in Southern Ontario between 1979 and 1982, with an individually matched, hospital control series. Significantly elevated risks were observed for reported use of spring water, drinking of wine, and consumption of pickled fish, together with a significant protective effect for the regular consumption of any of several types of fruit. While these factors are consistent with a role for N-nitroso compounds in the etiology of these tumors, for several other factors related to this hypothesis, no association was observed. Occupation in the rubber industry was associated with a significant relative risk of 9.0, though no other occupational associations were seen. Two previously unreported associations were with smoking nonfilter cigarettes with a significant trend and with the use of hair dyes or sprays. The data do not support an association between physical head trauma requiring medical attention and risk of brain tumors and indicate that exposure to ionizing radiation and vinyl chloride monomer does not contribute any appreciable fraction of attributable risk in the population studied. The findings warrant further detailed investigation in future epidemiologic studies

  17. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  18. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  19. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  20. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Neil V. Klinger

    2016-01-01

    Full Text Available Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin’s ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors.

  1. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Science.gov (United States)

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  2. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Siti Norul Huda Sheikh Abdullah

    2016-01-01

    Full Text Available Brain magnetic resonance imaging (MRI classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.

  3. Pediatric brain tumors in a low/middle income country: does it differ from that in developed world?

    Science.gov (United States)

    Ezzat, Sameera; Kamal, Mohamed; El-Khateeb, Nada; El-Beltagy, Mohamed; Taha, Hala; Refaat, Amal; Awad, Madeha; Abouelnaga, Sherif; Zaghloul, Mohamed Saad

    2016-01-01

    Central nervous system (CNS) tumors are the most frequent solid tumors in children and adolescents. The epidemiology of these tumors differs in areas of the world. However, very little data is available in the low/middle income countries (LMIC). The aim of this study is to describe the characteristics of primary childhood brain tumors treated at a leading LMIC pediatric cancer hospital and its difference from that in other countries. One thousand one hundred fourteen children and adolescent having CNS tumors were treated in the largest pediatric cancer hospital in the Middle East during a period of 5½ years. They were diagnosed histopathologically in 80.2 %, through medical imaging in 19.4 % and via both tumor markers and imaging in the remaining 0.4 % of cases. Through epidemiological analysis was performed using all available patients' data revealed that 96 % of the patients had primary brain tumors, while only 4 % the primary lesion was in the spinal cord. The most common histological type was astrocytic tumor (30.0 %, pilocytic (GI) = 13.2 %, GII = 10.5 % and GIII + IV (high grade) = 6.3 %) followed by embryonal tumor (23.2 %, medulloblastoma = 18.7 %, PNET = 2.8 %, ATRT = 1.5 % and ependymoblastoma = 0.2 %) then ependymoma in 8.7 %, craniopharyngeoma in 5.3 %. The mean age at diagnosis was 7.1 ± 4.2 years which did not differ significantly by gender nor residency but it differed by the pathological subtype. The frequency of each pathological type was different among different age groups. Though the present study was a hospital-based analysis in a low/middle income country, yet it did not differ from the well-established population-based study reports in the high income countries.

  4. Radiological diagnostics of malignant tumors of the musculoskeletal system in childhood and adolescence

    International Nuclear Information System (INIS)

    Rhabdomyosarcoma, osteosarcoma and Ewing's sarcoma are the most common malignant tumors of the musculoskeletal system in childhood and adolescence representing about 10% of newly diagnosed cancers in children and adolescents. In the last two decades the prognosis of patients with such malignancies improved significantly. On the one hand because of the advances in chemotherapy and orthopedic surgery, on the other hand also because of the innovations in radiological diagnostics. The precise pre-therapeutical staging of tumors of the musculoskeletal system provides important prognostic information and has impact on the entire therapy management. During respectively after therapy, imaging is extremely important in the follow-up and in diagnosing a possible recurrent disease. Modern imaging diagnostics of musculoskeletal tumors basically consist of conventional X-ray, of computed tomography (CT) and magnetic resonance imaging (MRI), and of modalities of nuclear medicine such as szintigraphy, positron emission tomography (PET) and PET CT. (orig.)

  5. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  6. Altered MicroRNA Expression Is Associated with Tumor Grade, Molecular Background and Outcome in Childhood Infratentorial Ependymoma.

    Directory of Open Access Journals (Sweden)

    Magdalena Zakrzewska

    Full Text Available Ependymal tumors are the third most common group of brain tumors in children, accounting for about 10% of all primary brain neoplasms. According to the current WHO classification, they comprise four entities with the most frequent ependymoma and anaplastic ependymoma. The most of pediatric tumors are located within the posterior fossa, with a tendency to infiltrate the vital brain structures. This limits surgical resection and poses a considerable clinical problem. Moreover, there are no appropriate outcome prognostic factors besides the extent of surgical resection. Despite definition of molecular subgroups, the majority of childhood ependymomas present a balanced genome, which makes it difficult to establish molecular prognostic factors.The purpose of our study was to explore whether miRNA expression could be used as prognostic markers in pediatric infratentorial ependymomas. We also performed a mRNA expression pattern analysis of NELL2 and LAMA2 genes, with immunohistochemical illustrations of representative cases. The miRNA and mRNA expression was measured in 53 pediatric infratentorial ependymomas using a real-time quantitative PCR.Three miRNAs were shown to efficiently differentiate between grade II and III ependymomas: miR-17-5p, miR-19a-3p, and miR-106b-5p. Survival analysis showed that the probabilities of overall (p = 0.036 and event-free survival (p = 0.002 were reduced with higher than median miRNA expression levels of miR-17-5p. Using multivariate analysis adjusted for patient's age, sex, tumor grade and localization, we showed statistically significant associations with event-free survival (p = 0004 and borderline statistical significance with overall survival (p = 0.057 for miR-17-5p. Correlation analysis of miR-19a, miR-17-5p, miR-106b revealed that their expression levels were significantly correlated with EZH2 expression, suggested marker of PFA ependymomas. Furthermore, lower expression level of LAMA2 mRNA was shown to be

  7. Identifying the needs of brain tumor patients and their caregivers.

    Science.gov (United States)

    Parvataneni, Rupa; Polley, Mei-Yin; Freeman, Teresa; Lamborn, Kathleen; Prados, Michael; Butowski, Nicholas; Liu, Raymond; Clarke, Jennifer; Page, Margaretta; Rabbitt, Jane; Fedoroff, Anne; Clow, Emelia; Hsieh, Emily; Kivett, Valerie; Deboer, Rebecca; Chang, Susan

    2011-09-01

    The purpose of this study is to identify the needs of brain tumor patients and their caregivers to provide improved health services to these populations. Two different questionnaires were designed for patients and caregivers. Both questionnaires contained questions pertaining to three realms: disease symptoms/treatment, health care provider, daily living/finances. The caregivers' questionnaires contained an additional domain on emotional needs. Each question was evaluated for the degree of importance and satisfaction. Exploratory analyses determined whether baseline characteristics affect responder importance or satisfaction. Also, areas of high agreement/disagreement in satisfaction between the participating patient-caregiver pairs were identified. Questions for which >50% of the patients and caregivers thought were "very important" but >30% were dissatisfied include: understanding the cause of brain tumors, dealing with patients' lower energy, identifying healthful foods and activities for patients, telephone access to health care providers, information on medical insurance coverage, and support from their employer. In the emotional realm, caregivers identified 9 out of 10 items as important but need further improvement. Areas of high disagreement in satisfaction between participating patient-caregiver pairs include: getting help with household chores (P value = 0.006) and finding time for personal needs (P value < 0.001). This study provides insights into areas to improve services for brain tumor patients and their caregivers. The caregivers' highest amount of burden is placed on their emotional needs, emphasizing the importance of providing appropriate medical and psychosocial support for caregivers to cope with emotional difficulties they face during the patients' treatment process.

  8. Criteria for the evaluation of brachytherapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Thirty two patients with recurrent or unresectable malignant brain tumors were treated by interstitial brachytherapy with Ir-192 seeds. After-loading catheters were stereotactically implanted under local anesthesia using a Brown-Roberts-wells (BRW) CT guided stereotactic system. The response to the therapy was followed by serial CT and MRI scans and evaluated three months after implantation by the standard criteria for the evaluation of chemotherapy because there is no set of criteria available for radiation therapy. After interstitial brachytherapy, the most commonly observed CT and MRI finding was central low attenuation, that is, the central enhanced tumor replaced by the radiation necrosis. Three months after the treatment, these findings were observed in 23 patients out of 32 patients on the CT and MRI. We observed complete response (CR) in 6 of 32 patients, partial response (PR) in 9, no change (NC) in 7 and progressive disease (PD) in 9. In 6 CR patients, the tumor disappeared by three months after treatment. In 15 patients of 17 NC and PD patients, the central low attenuation was observed and their prognosis was better than those without central necrosis. The results suggested the standard criteria for the evaluation of chemotherapy, such as CR, PR etc, cannot be applicable to our series because the tumor mass replaced by necrotic tissue and remained as a mass lesion in most cases and new criteria in consideration of this low attenuation on CT and MRI will be needed for the evaluation of brachytherapy on neuroimagings. (author)

  9. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

    Science.gov (United States)

    Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2015-10-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

  10. Combined therapy of radiotherapy and chemotherapy on brain tumor

    International Nuclear Information System (INIS)

    The subjects were 52 patients (5-78 years, average 51.4 years) with primary brain tumor treated in 4 institutes in Chugoku and Shikoku districts during 3 years from April 1991. Histopathologically, the subject diseases were glioblastoma in 16, well differentiated glioblastoma in 19, brain primary lymphoma in 9, and malignant meningioma in 5. In the glioblastoma group, 14 received surgery, radiotherapy, and chemotherapy at the first admission. Three patients who survived more than 1 year and 6 patients who died within 1 year were compared. No significant difference was observed in terms of radiotherapy between the both groups. In the astrocytoma and oligodendroglioma groups, 16 patients received radiotherapy and chemotherapy as the initial treatment, and 14 underwent several course of maintenance therapy. In the comparison between 7 patients who died within 3 years from the first treatment and 9 patients surviving more than 3 years, no significant difference was observed in terms of radiation doses. (S.Y.)

  11. Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting

    Energy Technology Data Exchange (ETDEWEB)

    Kharya, Parul; Jain, Ashish; Gulbake, Arvind; Shilpi, Satish; Jain, Ankit; Hurkat, Pooja [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India); Majumdar, Subrata [Bose Institute, Division of Molecular Medicine (India); Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2013-11-15

    The purpose of this study is to investigate the targeting potential of amino acid (phenylalanine)-coupled solid lipid nanoparticles (SLN) loaded with ionically complexed doxorubicin HCl (Dox). Ionic complexation was used to enhance the loading efficiency and release characteristics of water soluble form of Dox. l-Type amino acid transporters (LAT1) are highly expressed on blood brain barrier as well as on many brain cancer cells, thus targeting LAT1 using phenylalanine improved anticancer activity of prepared nanocarrier. The phenylalanine-coupled SLN were characterized by fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, particle size, zeta potential, entrapment efficiency and in vitro release. The particle size of the resulting SLN was found to be in the range of 163.3 ± 5.2 to 113.0 ± 2.6 nm, with a slightly negative surface charge. In ex vivo study on C6 glioma cell lines, the cellular cytotoxicity of the SLN was highly increased when coupled with phenylalanine. In addition, stealthing sheath of PEG present on the surface of the SLN enhanced the cellular uptake of the SLN on C6 glioma cell line. Results of biodistribution and fluorescence studies clearly revealed that phenylalanine-coupled SLN could deliver high amount of drug into the brain tumor cells and showed the brain-targeting potential.

  12. Functional Magnetic Resonance Imaging of Chronic Dysarthric Speech after Childhood Brain Injury: Reliance on a Left-Hemisphere Compensatory Network

    Science.gov (United States)

    Morgan, Angela T.; Masterton, Richard; Pigdon, Lauren; Connelly, Alan; Liegeois, Frederique J.

    2013-01-01

    Severe and persistent speech disorder, dysarthria, may be present for life after brain injury in childhood, yet the neural correlates of this chronic disorder remain elusive. Although abundant literature is available on language reorganization after lesions in childhood, little is known about the capacity of motor speech networks to reorganize…

  13. P03.09PHARMACOLOGICAL MODULATION OF BLOOD-BRAIN BARRIER: FUTURE STRATEGY FOR TREATMENT OF BRAIN TUMORS

    OpenAIRE

    Sardi, I.; Cardellicchio, S.; Iorio, A.L.; da Ros, M.; la Marca, G.; Giunti, L.; Massimino, M.; L. Genitori

    2014-01-01

    A prerequisite for the efficacy of chemotherapy is that it reaches the tumor mass at a therapeutic concentration. In brain tumors this phenomenon is hampered by the presence of the blood brain barrier (BBB) which limits the spread of chemotherapeutic agents within the brain. It is lately emerged as this Multi Drug Resistance (MDR) phenomenon is explained through the cooperation of P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2), two “gatekeeper" transporters th...

  14. Brain and head injury in infancy and childhood

    International Nuclear Information System (INIS)

    This article describes typical head injuries in infants and children. In comparison with adults there are distinct differences in the etiology of trauma and in the kind of reaction of the skull and brain. In infants and children there are three different types of trauma: birth trauma, accidental and non-accidental injury. The typical injuries in these three groups are described. (orig.)

  15. Treatment Option Overview (Childhood Brain Stem Glioma Treatment)

    Science.gov (United States)

    ... tests to check the brain, spinal cord, and nerve function. The exam checks a person’s mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro ...

  16. Comparison of two brain tumor-localizing MRI agent. GD-BOPTA and GD-DTPA. MRI and ICP study of rat brain tumor model

    International Nuclear Information System (INIS)

    In this study, we compared the behavior of Gd-BOPTA as a brain tumor selective contrast agent with Gd-DTPA in a common dose of 0.1 mmol/kg. We performed a MRI study using those two agent as contrast material, and we measured tissue Gd-concentrations by ICP-AES. As a result, Gd-BOPTA showed a better MRI enhancement in brain tumor. ICP showed significantly greater uptake of Gd-BOPTA in tumor samples, at all time course peaked at 5 minutes after administration, Gd being retained for a longer time in brain tumor till 2 hours, without rapid elimination as Gd-DTPA. We conclude that Gd-BOPTA is a new useful contrast material for MR imaging in brain tumor and an effective absorption agent for neutron capture therapy for further research. (author)

  17. The role of Intravenous Levetiracetam in Treatment of Seizures in Brain Tumor Patients

    OpenAIRE

    Ekokobe eFonkem; Paul eBricker; Diana eMungall; Jose eAceves; Eromata eEbwe; Wei eTang; Batool F. Kirmani

    2013-01-01

    Levetiracetam, tradename Keppra, is a new second generation antiepileptic drug that is being used increasingly in brain tumor patients. In patients suffering with brain tumors, seizures are one of the leading neurologic complications seen in more than 30% of patients. Levetiracetam is a pyrollidine-derivative drug, which has a unique mechanism of action. Unlike other antiepileptic drugs, Levetiracetam is proposed to bind to a synaptic vesicle protein inhibiting calcium release. Brain tumor...

  18. [Untoward side effects of chemoradiotherapy in children with malignant brain tumors].

    Science.gov (United States)

    Morozova, S K; Begun, I V; Spivak, L V; Radiuk, K A; Papkevich, I I; Savich, T V; Pershaĭ, E B; Vashkevich, T I; Aleĭnikova, O V

    2002-01-01

    Untoward side-effects of chemoradiotherapy were compared in 48 children treated for brain tumors and those in remission lasting from less than 12 months to 11 years. The investigation concerned disturbances in the neurologic, endocrine, cardiovascular, urinary, hepatobiliary and psychic systems; neurologic ones proved the most frequent. No cases of heart failure were reported among patients with brain tumors during remission. Hormonal study revealed inhibited thyroid function in brain tumor sufferers. PMID:12455363

  19. Treatment-related changes in functional connectivity in brain tumor patients : a magnetoencephalography study

    NARCIS (Netherlands)

    Douw, Linda; Baayen, Hans; Bosma, Ingeborg; Klein, Martin; Vandertop, Peter; Heimans, Jan; Stam, Kees; de Munck, Jan; Reijneveld, Jaap

    2008-01-01

    Widespread disturbances in resting state functional connectivity between remote brain areas have been demonstrated in patients with brain tumors. Functional connectivity has been associated with neurocognitive deficits in these patients. Thus far, it is unknown how (surgical) treatment affects funct

  20. Metastatic Brain Tumors: A Retrospective Review in East Azarbyjan (Tabriz

    Directory of Open Access Journals (Sweden)

    Zinat Miabi

    2011-02-01

    Full Text Available A set of one hundred and twenty nine patients with known primary malignancy and suspected brain metastasis was reviewed in present study. The patients were selected among patients presented to the MRI section of Imam Khomeini Hospital or a private MRI center in Tabriz (Iran. Primary tumor site, clinical manifestations, number and site of lesions were identified in this patient population. The primary tumor site was breast in 55 patients (42.6%, followed by lung (40.3%, kidney (7.7%, colorectal (4.6%, lymphoma (3.1% and melanoma (1.5%. Most patients were presented with features of increased intracranial pressure (headaches and vomiting, seizures and focal neurologic signs. Single brain metastasis occurred in 16.3% of patients, while multiple lesions accounted for 83.7% of patients. Ninety seven patients had supratentorial metastases (75.2%. Twenty cases (15.5% had metastases in both compartments. Infratentorial lesions were observed only in twelve patients (9.3%.

  1. Is outpatient brain tumor surgery feasible in India?

    Science.gov (United States)

    Turel, Mazda K; Bernstein, Mark

    2016-01-01

    The current trend in all fields of surgery is towards less invasive procedures with shorter hospital stays. The reasons for this change include convenience to patients, optimal resource utilization, and cost saving. Technological advances in neurosurgery, aided by improvements in anesthesia, have resulted in surgery that is faster, simpler, and safer with excellent perioperative recovery. As a result of improved outcomes, some centers are performing brain tumor surgery on an outpatient basis, wherein patients arrive at the hospital the morning of their procedure and leave the hospital the same evening, thus avoiding an overnight stay in the hospital. In addition to the medical benefits of the outpatient procedure, its impact on patient satisfaction is substantial. The economic benefits are extremely favorable for the patient, physician, as well as the hospital. In high volume centers, a day surgery program can exist alongside those for elective and emergency surgeries, providing another pathway for patient care. However, due to skepticism surrounding the medicolegal aspects, and how radical the concept at first sounds, these procedures have not gained widespread popularity. We provide an overview of outpatient brain tumor surgery in the western world, discussing the socioeconomic, medicolegal, and ethical issues related to its adaptability in a developing nation. PMID:27625225

  2. Endocrine abnormalities after radiation therapy for brain tumors in children

    Energy Technology Data Exchange (ETDEWEB)

    Aida, Toshimitsu; Sugimoto, Shinji; Abe, Hiroshi; Fujieda, Kenji; Matsuura, Nobuo (Hokkaido Univ., Sapporo (Japan). School of Medicine)

    1990-12-01

    Endocrine evaluations were performed in 5 children, previously treated for brain tumors which did not directly involve the hypothalamic-pituitary axis, who had received cranial irradiation 2 to 4 years earlier. Their rate of growth was considerably reduced during the year following the completion of cranial irradiation. Impaired growth hormone (GH) responses to an insulin tolerance test (ITT) were observed in all 6 and to an arginine tolerance test (ATT) in 5 children. Three children had a prolonged response of thyroid-stimulating hormone (TSH) to thyrotrophin releasing hormone (TRH). The remaining pituitary functions were essentially normal. Four children received human GH therapy. The growth rate of each was improved by GH therapy, but 2 of the 4 were still short with a standing height standard deviation score (SDS) below 2. Close monitoring of the growth and hormonal status of children with brain tumors treated with cranial irradiation is necessary, and the timing of the initiation of GH therapy is very important for partial or complete restoration of the normal growth rate. (author).

  3. Combined local blood–brain barrier opening and systemic methotrexate for the treatment of brain tumors

    OpenAIRE

    Cooper, Itzik; Last, David; Guez, David; Sharabi, Shirley; Elhaik Goldman, Shirin; Lubitz, Irit; Daniels, Dianne; Salomon,Sharona; Tamar, Gregory; Tamir, Tzur; Mardor, Ronni; Fridkin, Mati; Shechter, Yoram; Mardor, Yael

    2015-01-01

    Despite aggressive therapy, existing treatments offer poor prognosis for glioblastoma multiforme patients, in part due to poor penetration of most drugs across the blood–brain barrier (BBB). We propose a minimal-invasive combined treatment approach consisting of local BBB disruption in the tumor in parallel to systemic drug administration. Local BBB disruption is obtained by convection-enhanced delivery of a novel BBB disruption agent, enabling efficient/targeted delivery of the systemically ...

  4. Menace of childhood non-accidental traumatic brain injuries: A single unit report

    OpenAIRE

    Musa Ibrahim; Adamu Ladan Mu′azu; Nura Idris; Musa Uba Rabiu; Binta Wudil Jibir; Kabir Ibrahim Getso; Mohammad Aminu Mohammad; Femi Luqman Owolabi

    2015-01-01

    Background: Childhood traumatic brain injury (TBI) has high rate of mortality and morbidity worldwide. There are dearths of reports from developing countries with large paediatric population on trauma; neurosurgery trauma of nonaccidental origin is not an exemption. This study analysed menace of non-accidental TBI in the paediatric population from our center. Materials and Methods: This is a single unit, retrospective study of the epidemiology of non-accidental TBI in children starting from S...

  5. Fetal brain tumors: Prenatal diagnosis by ultrasound and magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Hérbene; José; Milani; Edward; Araujo; Júnior; Sérgio; Cavalheiro; Patrícia; Soares; Oliveira; Wagner; Jou; Hisaba; Enoch; Quinderé; Sá; Barreto; Maurício; Mendes; Barbosa; Luciano; Marcondes; Nardozza; Antonio; Fernandes; Moron

    2015-01-01

    Congenital central nervous system tumors diagnosed during pregnancy are rare, and often have a poor prognosis. The most frequent type is the teratoma. Use of ultrasound and magnetic resonance image allows the suspicion of brain tumors during pregnancy. However, the definitive diagnosis is only confirmed after birth by histology. The purpose of this mini-review article is to describe the general clinical aspects of intracranial tumors and describe the main fetal brain tumors.

  6. The effects of childhood maltreatment on brain structure, function and connectivity.

    Science.gov (United States)

    Teicher, Martin H; Samson, Jacqueline A; Anderson, Carl M; Ohashi, Kyoko

    2016-09-19

    Maltreatment-related childhood adversity is the leading preventable risk factor for mental illness and substance abuse. Although the association between maltreatment and psychopathology is compelling, there is a pressing need to understand how maltreatment increases the risk of psychiatric disorders. Emerging evidence suggests that maltreatment alters trajectories of brain development to affect sensory systems, network architecture and circuits involved in threat detection, emotional regulation and reward anticipation. This Review explores whether these alterations reflect toxic effects of early-life stress or potentially adaptive modifications, the relationship between psychopathology and brain changes, and the distinction between resilience, susceptibility and compensation. PMID:27640984

  7. Treatment of primary malignant rhabdoid tumor of the brain: report of three cases and review of the literature

    International Nuclear Information System (INIS)

    Purpose: Primary malignant rhabdoid tumor (MRT) of the central nervous system is an extremely aggressive tumor predominantly related to early childhood, with characteristic histopathological findings but unclear histogenesis. Owing to its low incidence, little knowledge exists concerning the best therapeutic strategy. Methods and Materials: Three children of our hospital with MRT of the brain underwent a maximum tumor resection followed by multidrug chemotherapy and radiation therapy to the craniospinal axis. Results: Relapse was disseminated along the spinal subarachnoid spaces in one child and occurred at the primary tumor site in the other two patients. Maximum survival was 15 months from diagnosis. Conclusion: A review of patients reported in the literature and a comparison to our patients reveals a high propensity to early local relapse and meningeal dissemination. In the absence of more effective therapeutic options, we recommend multidisciplinary treatment of patients in good general condition and with resectable disease. In particular, following radiation therapy, tumor remissions and delay of tumor regrowth have been observed

  8. Stereotactic interstitial brachytherapy for the treatment of oligodendroglial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    El Majdoub, Faycal; Neudorfer, Clemens; Maarouf, Mohammad [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University of Witten/Herdecke, Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Cologne-Merheim Medical Center (CMMC), Cologne (Germany); Blau, Tobias; Deckert, Martina [University Hospital of Cologne, Department of Neuropathology, Cologne (Germany); Hellmich, Martin [University Hospital of Cologne, Institute of Statistics, Informatics and Epidemiology, Cologne (Germany); Buehrle, Christian [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); Sturm, Volker [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University Hospital of Wurzburg, Department of Neurosurgery, Wuerzburg (Germany)

    2015-12-15

    We evaluated the treatment of oligodendroglial brain tumors with interstitial brachytherapy (IBT) using {sup 125}iodine seeds ({sup 125}I) and analyzed prognostic factors. Between January 1991 and December 2010, 63 patients (median age 43.3 years, range 20.8-63.4 years) suffering from oligodendroglial brain tumors were treated with {sup 125}I IBT either as primary, adjuvantly after incomplete resection, or as salvage therapy after tumor recurrence. Possible prognostic factors influencing disease progression and survival were retrospectively investigated. The actuarial 2-, 5-, and 10-year overall and progression-free survival rates after IBT for WHO II tumors were 96.9, 96.9, 89.8 % and 96.9, 93.8, 47.3 %; for WHO III tumors 90.3, 77, 54.9 % and 80.6, 58.4, 45.9 %, respectively. Magnetic resonance imaging demonstrated complete remission in 2 patients, partial remission in 13 patients, stable disease in 17 patients and tumor progression in 31 patients. Median time to progression for WHO II tumors was 87.6 months and for WHO III tumors 27.8 months. Neurological status improved in 10 patients and remained stable in 20 patients, while 9 patients deteriorated. There was no treatment-related mortality. Treatment-related morbidity was transient in 11 patients. WHO II, KPS ≥ 90 %, frontal location, and tumor surface dose > 50 Gy were associated with increased overall survival (p ≤ 0.05). Oligodendroglioma and frontal location were associated with a prolonged progression-free survival (p ≤ 0.05). Our study indicates that IBT achieves local control rates comparable to surgery and radio-/chemotherapy treatment, is minimally invasive, and safe. Due to the low rate of side effects, IBT may represent an attractive option as part of a multimodal treatment schedule, being supplementary to microsurgery or as a salvage therapy after chemotherapy and conventional irradiation. (orig.) [German] Die Behandlung oligodendroglialer Hirntumoren durch die interstitielle Brachytherapie

  9. Metamemory Following Childhood Brain Injury: A Consequence of Executive Impairment

    OpenAIRE

    Geurten, Marie; Chevignard, Mathilde; Kerrouche, Bernadette; Tiberghien, Anne; Meulemans, Thierry

    2015-01-01

    In this study, we investigated the influence of children’s level of executive functioning on two types of metamemory knowledge following a traumatic brain injury (TBI). For this purpose, 22 children (aged 7 to 14 years) who had sustained a moderate to severe TBI and 44 typically developing children were recruited. Children with TBI were divided into two groups according to the severity of their executive impairment. Injury severity was determined by the Glasgow Coma Scale (GCS) score on admis...

  10. Development of Brain EEG Connectivity across Early Childhood: Does Sleep Play a Role?

    Directory of Open Access Journals (Sweden)

    Monique K. LeBourgeois

    2013-11-01

    Full Text Available Sleep has beneficial effects on brain function and learning, which are reflected in plastic changes in the cortex. Early childhood is a time of rapid maturation in fundamental skills—e.g., language, cognitive control, working memory—that are predictive of future functioning. Little is currently known about the interactions between sleep and brain maturation during this developmental period. We propose coherent electroencephalogram (EEG activity during sleep may provide unique insight into maturational processes of functional brain connectivity. Longitudinal sleep EEG assessments were performed in eight healthy subjects at ages 2, 3 and 5 years. Sleep EEG coherence increased across development in a region- and frequency-specific manner. Moreover, although connectivity primarily decreased intra-hemispherically across a night of sleep, an inter-hemispheric overnight increase occurred in the frequency range of slow waves (0.8–2 Hz, theta (4.8–7.8 Hz and sleep spindles (10–14 Hz, with connectivity changes of up to 20% across a night of sleep. These findings indicate sleep EEG coherence reflects processes of brain maturation—i.e., programmed unfolding of neuronal networks—and moreover, sleep-related alterations of brain connectivity during the sensitive maturational window of early childhood.

  11. Using Ferumoxytol-Enhanced MRI to Measure Inflammation in Patients With Brain Tumors or Other Conditions of the CNS

    Science.gov (United States)

    2016-07-08

    Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors

  12. Pattern of childhood malignant tumors at a teaching hospital in Kano, Northern Nigeria: A prospective study

    Directory of Open Access Journals (Sweden)

    M Ibrahim

    2014-01-01

    Full Text Available Background: Childhood cancers represent an important global public health problem. Survival is still dismal in most low income countries. Materials and Methods: A prospective study of childhood cancers diagnosed at AKTH, Kano was undertaken from January 2003 to December 2009 to determine the pattern, socio-economic and geographical features. Results: Malignant lymphomas constituted 46.5% of all cases, of which 30.1% were Burkitt′s lymphoma, 9.8% were Non-Hodgkin (non Burkitt′s lymphoma and 6.6% were Hodgkin lymphoma. Retinoblastoma was the second most common malignancy constituting 15.2% of all cases, followed by Nephroblastoma 12.5% and acute leukemia′s accounted for 14.1% of all cases. Others were Neuroblastoma 5.5%, Rhabdomyosarcoma 1.9% and CNS and Hepatissc tumors 4.3%. About 80% of parents of these children are very poor and could not afford the cost of treatment. Fifty one percent of the patients were alive at 12 months and the mortality was 24%. Conclusion: Childhood cancer is common in Kano. Free treatment is what is required since majority of the parents could not afford the cost of treatment.

  13. Pre Operative Brain Mapping with Functional MRI in Patient with Brain Tumors: Preliminary Report

    Directory of Open Access Journals (Sweden)

    Sina Hooshmand

    2010-05-01

    Full Text Available Background/Objective: Functional Magnetic Resonance Imaging (fMRI plays a significant role in pre-neurosurgical planning at present. FMRI is a possible candidate to replace invasive methods for determination of the language dominant hemisphere and cortical areas associated with language and memory. We used this method to explore language and motor functions in healthy volunteers before creating standard paradigms for Persian language. In this study, we used the standard protocol of language and motor brain mapping in patients harboring brain tumors."nPatients and Methods: Ten patients with brain tumor were included in this study. Each subject performed three to five language related tasks during fMRI scan and also one motor related task. These tasks included; "Word Generation" (WG, "Object Naming" (ON, and "Word Reading" (WR, "Word Production" (WP and "Reverse Word Reading" (RWR. They also performed the thumb apposition task for activating primary sensory-motor areas. Fifteen continuous slices were acquired, and data analysis was carried out using FSL 4.1. After evaluating the individual results, the lateralization index (LI for each subject-task was calculated and the dominant hemisphere for language production was reported. Also localization of critical language areas in the cerebral cortex was performed and the coordinates of epicenter for language production in Broca's area was calculated."nResults: We found that WP, RWR, and WG activate language related areas in the dominant hemisphere robustly in patients with brain tumors and can predict the dominant hemisphere along with eloquent language cortices. However, ON and WR fail to delineate these activation areas optimally. In addition, the results reveal that higher activation intensities are obtained by WP in the frontal lobe including Broca's area, whereas RWR leads to the highest LI among all examined tasks. In patients harboring brain tumors, precise lateralization and

  14. Effect of childhood maltreatment on brain structure in adult patients with major depressive disorder and healthy participants.

    LENUS (Irish Health Repository)

    Chaney, Aisling

    2013-07-30

    Background: Childhood maltreatment has been found to play a crucial role in the development of psychiatric disorders. However, whether childhood maltreatment is associated with structural brain changes described for major depressive disorder (MDD) is still a matter of debate. The aim of this study was to investigate whether patients with MDD and a history of childhood maltreatment display more structural changes than patients without childhood maltreatment or healthy controls. Methods: Patients with MDD and healthy controls with and without childhood maltreatment experience were investigated using high-resolution magnetic resonance imaging (MRI), and data were analyzed using voxel-based morphometry. Results: We studied 37 patients with MDD and 46 controls. Grey matter volume was significantly decreased in the hippocampus and significantly increased in the dorsomedial prefrontal cortex (DMPFC) and the orbitofrontal cortex (OFC) in participants who had experienced childhood maltreatment compared with those who had not. Patients displayed smaller left OFC and left DMPFC volumes than controls. No significant difference in hippocampal volume was evident between patients with MDD and healthy controls. In regression analyses, despite effects from depression, age and sex on the DMPFC, OFC and hippocampus, childhood maltreatment was found to independently affect these regions. Limitations: The retrospective assessment of childhood maltreatment; the natural problem that patients experienced more childhood maltreatment than controls; and the restrictions, owing to sample size, to investigating higher order interactions among factors are discussed as limitations. Conclusion: These results suggest that early childhood maltreatment is associated with brain structural changes irrespective of sex, age and a history of depression. Thus, the study highlights the importance of childhood maltreatment when investigating brain structures.

  15. Characteristics of children's brain tumors%儿童颅脑肿瘤的特点

    Institute of Scientific and Technical Information of China (English)

    曹利华

    2013-01-01

    Childrens brain tumors are the common tumors in children, which males are frequently affected than females, and most of patients are children aged 5-14 years old. The incidence rate of infratentorial tumor is higher than that of supratentorial tumor. The cases of infratentorial tumor in children accounted for 60% , and the main part is the fourth ventricle, followed by cerebellar hemisphere and cerebellar vermis, which often occurred in posterior fossa and near the midline. The main part of supratentorial tumor is the cerebral hemispheres, followed by the third ventricle and lateral ventricle. The clinical symptoms of childhood brain tumors are different with the size, characteristics, location and the damage around brain structure. The histopathological types of children's brain tumors are significantly different from that in adults. The benign tumors rarely happen in children, but the incidence rate of glioma in children is greatly higher than that in adults. The mostly pathological types were astrocytoma, medulloblastoma, ependy-moma, germ cell tumor and craniopharyngioma. The diagnosis of brain tumor in children should pay attention to the pediatric clinical characteristics, atypical clinical manifestation and detailed medical history, especially the correct and complete symptoms. Then according to the actual situation, it is urgent to carry out the necessary examination, to confirm the diagnosis and reduce the early misdiagnosis rate. The imaging examination plays a very important role in the diagnosis of children's brain tumors, so CT and MR examinations should be carried out in suspected cases as soon as possible. Surgical resection is the first choice, and reasonable postoperative radiotherapy can consolidate the operation effect and prolong survival duration. The radiotherapy accompanied with chemotherapy can improve the curative effect in malignant tumor patients after surgery.%目的 儿童颅脑肿瘤为常见的儿童肿瘤.以5~ 14岁组患儿居

  16. Metabolomics and proteomics studies of brain tumors : a chemometric bioinformatics approach

    OpenAIRE

    Mörén, Lina

    2015-01-01

    The WHO classification of brain tumors is based on histological features and the aggressiveness of the tumor is classified from grade I to IV, where grade IV is the most aggressive. Today, the correlation between prognosis and tumor grade is the most important component in tumor classification. High grade gliomas, glioblastomas, are associated with poor prognosis and a median survival of 14 months including all available treatments. Low grade meningiomas, usually benign grade I tumors, are in...

  17. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability

    OpenAIRE

    Uematsu, Hidemasa; Maeda, Masayuki

    2006-01-01

    Perfusion-weighted magnetic resonance (MR) imaging using contrast agents plays a key role in characterizing tumors of the brain. We have shown that double-echo perfusion-weighted MR imaging (DEPWI) is potentially useful in assessing brain tumors. Quantitative indices, such as tumor blood volume, are obtained using DEPWI, which allows correction of underestimation of tumor blood volume due to leakage of contrast agents from tumor vessels, in addition to simultaneous acquisition of tumor vessel...

  18. Cognitive dysfunction in children with brain tumors at diagnosis

    Science.gov (United States)

    Studer, Martina; Ritter, Barbara Catherine; Steinlin, Maja; Leibundgut, Kurt; Heinks, Theda

    2015-01-01

    Background Survivors of brain tumors have a high risk for a wide range of cognitive problems. These dysfunctions are caused by the lesion itself and its surgical removal, as well as subsequent treatments (chemo‐ and/or radiation therapy). Multiple recent studies have indicated that children with brain tumors (BT) might already exhibit cognitive problems at diagnosis, i.e., before the start of any medical treatment. The aim of the present study was to investigate the baseline neuropsychological profile in children with BT compared to children with an oncological diagnosis not involving the central nervous system (CNS). Methods Twenty children with BT and 27 children with an oncological disease without involvement of the CNS (age range: 6.1–16.9 years) were evaluated with an extensive battery of neuropsychological tests tailored to the patient's age. Furthermore, the child and his/her parent(s) completed self‐report questionnaires about emotional functioning and quality of life. In both groups, tests were administered before any therapeutic intervention such as surgery, chemotherapy, or irradiation. Groups were comparable with regard to age, gender, and socioeconomic status. Results Compared to the control group, patients with BTs performed significantly worse in tests of working memory, verbal memory, and attention (effect sizes between 0.28 and 0.47). In contrast, the areas of perceptual reasoning, processing speed, and verbal comprehension were preserved at the time of measurement. Conclusion Our results highlight the need for cognitive interventions early in the treatment process in order to minimize or prevent academic difficulties as patients return to school. Pediatr Blood Cancer 2015;62:1805–1812. © 2015 The Authors. Pediatric Blood & Cancer, published by Wiley Periodicals, Inc. PMID:26053691

  19. Brain tumor epilepsy: A reappraisal and six remaining issues to be debated.

    OpenAIRE

    Vercueil, Laurent

    2011-01-01

    International audience Epilepsy associated with brain tumors presents with specific features deserving medical attention. Although commonly reported in patients with brain tumor, either as revealing mode or as a remote complication, limited knowledge is available regarding their epidemiology, clinical evolution, surgical outcome, physiopathology and treatment, providing only clues for clinical management. Seizures appear even more threatening for patients and caregivers, providing seizures...

  20. Childhood abuse and deprivation are associated with distinct sex-dependent differences in brain morphology.

    Science.gov (United States)

    Everaerd, Daphne; Klumpers, Floris; Zwiers, Marcel; Guadalupe, Tulio; Franke, Barbara; van Oostrom, Iris; Schene, Aart; Fernández, Guillén; Tendolkar, Indira

    2016-06-01

    Childhood adversity (CA) has been associated with long-term structural brain alterations and an increased risk for psychiatric disorders. Evidence is emerging that subtypes of CA, varying in the dimensions of threat and deprivation, lead to distinct neural and behavioral outcomes. However, these specific associations have yet to be established without potential confounders such as psychopathology. Moreover, differences in neural development and psychopathology necessitate the exploration of sexual dimorphism. Young healthy adult subjects were selected based on history of CA from a large database to assess gray matter (GM) differences associated with specific subtypes of adversity. We compared voxel-based morphometry data of subjects reporting specific childhood exposure to abuse (n=127) or deprivation (n=126) and a similar sized group of controls (n=129) without reported CA. Subjects were matched on age, gender, and educational level. Differences between CA subtypes were found in the fusiform gyrus and middle occipital gyrus, where subjects with a history of deprivation showed reduced GM compared with subjects with a history of abuse. An interaction between sex and CA subtype was found. Women showed less GM in the visual posterior precuneal region after both subtypes of CA than controls. Men had less GM in the postcentral gyrus after childhood deprivation compared with abuse. Our results suggest that even in a healthy population, CA subtypes are related to specific alterations in brain structure, which are modulated by sex. These findings may help understand neurodevelopmental consequences related to CA. PMID:26576924

  1. Spectrum of pediatric brain tumors in India: A multi-institutional study

    Directory of Open Access Journals (Sweden)

    Ayushi Jain

    2011-01-01

    Full Text Available Background : Till date there is no published multi-institutional data regarding the epidemiological profile of pediatric brain tumors in India. Aim : The present retrospective study analyses the histological spectrum of pediatric age group brain tumors in seven tertiary care hospitals in India. Material and Methods : Data regarding frequencies of various primary brain tumors (diagnosed according to the World Health Organization (WHO classification, in 3936 pediatric patients (<18 yrs of age, was collected from seven tertiary care hospitals in India.Results : The most common primary pediatric brain tumors were astrocytic tumors (34.7%, followed by medulloblastoma and supratentorial primitive neuro-ectodermal tumors (22.4%, craniopharyngiomas (10.2% and ependymal tumors (9.8%. The most common astrocytic tumor was pilocytic astrocytoma. In comparison to adults, oligodendrogliomas and lymphomas were rare in children. Conclusions : Our study is the first such report on the histological spectrum of brain tumors in children in India. Except for a slightly higher frequency of craniopharyngiomas, the histological profile of pediatric brain tumors in India is similar to that reported in the Western literature.

  2. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-03-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10{sup 12}nvt for BMGP and 2x10{sup 13}nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the {alpha}-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author).

  3. (18)F-Fluorodeoxyglucose PET/Computed Tomography for Primary Brain Tumors

    DEFF Research Database (Denmark)

    Antonsen Segtnan, Eivind; Hess, Søren; Grupe, Peter;

    2015-01-01

    Structural imaging with computed tomography (CT) and MR imaging is the mainstay in primary diagnosis of primary brain tumors, but these modalities depend on morphologic appearance and an intact blood-brain barrier, and important aspects of tumor biology are not addressed. Such issues may...... be alleviated by (18)F-fluorodeoxyglucose (FDG)-PET and FDG-PET/CT imaging, which may provide clinically important information with regard to primary differentiation between tumor types, initial staging and risk stratification, therapy planning, response evaluation, and recurrence detection. This article...... describes some of the potential contemporary applications of FDG and PET in primary brain tumors....

  4. Neural Network Based Augmented Reality for Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    P.Mithun

    2013-04-01

    Full Text Available The development in technology opened the door of fiction and reached reality. Major medical applications deals on robot-assisted surgery and image guided surgery. Because of this, substantial research is going on to implement Augmented Reality (AR in instruments which incorporate the surgeon’s intuitive capabilities. Augmented reality is the grouping of virtual entity or 3D stuffs which are overlapped on live camera feed information. The decisive aim of augmented reality is to enhancing the virtual video and a 3D object onto a real world on which it will raise the person’s conceptual understanding of the subject. In this paper we described a solution for initial prediction of tumour cells in MRI images of human brain using image processing technique the output of which will be the 3D slicedimage of the human brain. The sliced image is then virtually embedded on the top of human head during the time of surgery so that the surgeon can exactly locate the spot to be operated. Before augmenting the 3D sliced image Artificial neural network is used to select the appropriate image that contains tumor automatically in order to make the system more efficient.

  5. Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography

    CERN Document Server

    Assayag, Osnath; Devaux, Bertrand; Harms, Fabrice; Pallud, Johan; Chretien, Fabrice; Boccara, Claude; Varlet, Pascale

    2013-01-01

    A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1\\mum resolution in 3D with a typical 200\\mum imaging depth. A 1cm2 specimen is scanned at a single depth and processed in about 5 minutes. This rapid imaging process is non-invasive and 30 requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low- grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a...

  6. 3-D in vivo brain tumor geometry study by scaling analysis

    Science.gov (United States)

    Torres Hoyos, F.; Martín-Landrove, M.

    2012-02-01

    A new method, based on scaling analysis, is used to calculate fractal dimension and local roughness exponents to characterize in vivo 3-D tumor growth in the brain. Image acquisition was made according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1-weighted images, and comprising the brain volume for image registration. Image segmentation was performed by the application of the k-means procedure upon contrasted images. We analyzed glioblastomas, astrocytomas, metastases and benign brain tumors. The results show significant variations of the parameters depending on the tumor stage and histological origin.

  7. EXPRESSION OF IL-13Ra2 GENE IN HUMAN BRAIN TUMORS

    Institute of Scientific and Technical Information of China (English)

    WU An-hua; TIE Xin-xin; WANG Yun-jie; YANG Guo-rui

    2005-01-01

    Objective: To investigate the expression of IL-13Ra2 gene in brain tumors. Methods: Seventy-nine human brain tumors were obtained from the department of Neurosurgery of China Medical University. Human IL-13Ra2 expression was evaluated by reverse transcriptase polymerase chain reaction and immunohistochemical analysis. Results: IL-13Ra2 gene was highly expressed in glioblastoma, medulloblastoma, malignant meningioma and benign meningioma. Conclusion:Human IL-13Ra2 gene is expressed in brain tumors in addition to gliomas, and our result indicates that the IL-13Ra2 gene promoter based gene therapy method can be used to treat brain tumors in addition to gliomas. Further studies involving larger numbers of samples are necessary to fully understand the expression profile of IL-13Ra2 gene in the brain tumors.

  8. Attention remediation following traumatic brain injury in childhood and adolescence.

    Science.gov (United States)

    Galbiati, Susanna; Recla, Monica; Pastore, Valentina; Liscio, Mariarosaria; Bardoni, Alessandra; Castelli, Enrico; Strazzer, Sandra

    2009-01-01

    Traumatic brain injury (TBI) frequently affects both the basic and the superordinate components of attention; deficits vary according to patient age. This study evaluated the efficacy of a specific remediation intervention for attention. Sixty-five TBI patients (aged 6?18 years) with attention deficit were assessed at baseline and at 1-year follow-up: 40 patients received attention-specific neuropsychological training for 6 months, and the control group comprised 25 patients. Cognitive assessment included a Wechsler Intelligence Scale (e.g., A. Orsini, 1993) and the Continuous Performance Test II (CPT II; C. K. Conners, 2000). The Vineland Adaptive Behavior Scales (VABS; S. Sparrow, D. Balla & D. V. Cicchetti, 1984) was administered to assess the treatment's ecological validity. At baseline, all patients presented with a mild intellectual disability and pathological scores on the CPT II. At follow-up, significant differences were found between the 2 groups on the CPT II and VABS: The clinical group improved more than the control group. Specific remediation training for attention, including a combination of a process-specific approach and metacognitive strategies, significantly improved attention performance. Improvement in attention skills also affected adaptive skills positively.

  9. Educational level of patients with germ cell tumor radiated in childhood

    International Nuclear Information System (INIS)

    In order to estimate the influence of radiotherapy on the intellectual development of children with brain tumor, we investigated the educational level of 21 patients with germ cell tumor who had undergone radiotherapy. They were divided into three groups in accordance with their age at the time of radiation; under school age group (under 6 years of age), elementary school age group (from 7 to 12 years of age), and junior high and high school age group (from 13 to 18 years of age). There were 2 cases in the under school age group, one of them graduated from high school and the other is presently a junior high school student. There were 5 cases in the elementary school age group. Three of these graduated from university, 1 is presently a university student and 1 is a high school student. There were 14 cases in the junior high and high school age group. Two of these are university students, 7 graduated from high school, 1 is presently a junior high school student, and 4 died because of tumor progression. The mean period of hospitalization of the patients who have been admitted to university was 63.0 days, and that of patients who have not been admitted university was 135 days. There is a statistical difference (p<0.05). It could be concluded that the period of hospitalization rather than radiotherapy seemed to influence the educational status of children with brain tumor. (author)

  10. MethPed: an R package for the identification of pediatric brain tumor subtypes

    OpenAIRE

    Ahamed, Mohammad Tanvir; Danielsson, Anna; Nemes, Szilárd; Carén, Helena

    2016-01-01

    Background DNA methylation profiling of pediatric brain tumors offers a new way of diagnosing and subgrouping these tumors which improves current clinical diagnostics based on histopathology. We have therefore developed the MethPed classifier, which is a multiclass random forest algorithm, based on DNA methylation profiles from many subgroups of pediatric brain tumors. Results We developed an R package that implements the MethPed classifier, making it easily available and accessible. The pack...

  11. Awake brain tumor resection during pregnancy: Decision making and technical nuances

    OpenAIRE

    Meng, L.; Han, SJ; Rollins, MD; Gelb, AW; Chang, EF

    2016-01-01

    © Published by Elsevier Ltd. The co-occurrence of primary brain tumor and pregnancy poses unique challenges to the treating physician. If a rapidly growing lesion causes life-threatening mass effect, craniotomy for tumor debulking becomes urgent. The choice between awake craniotomy versus general anesthesia becomes complicated if the tumor is encroaching on eloquent brain because considerations pertinent to both patient safety and oncological outcome, in addition to fetal wellbeing, are invol...

  12. Anticancer Activity of β-Elemene and its Synthetic Analogs in Human Malignant Brain Tumor Cells

    OpenAIRE

    Li, Qingdi Quentin; Lee, Rebecca X.; LIANG, HUASHENG; ZHONG, YUHUA

    2013-01-01

    Malignant brain tumors are aggressive in both children and adults. Despite recent improvements in diagnostic techniques, therapeutic approaches remain disappointing and unsuccessful. There is an urgent need for promising anticancer agents to improve overall survival of patients with brain cancer. β-Elemene has been shown to have antiproliferative effects on many types of carcinomas. In this study, we compared the cytotoxic efficacy of β-elemene and its synthetic analogs in the brain tumor cel...

  13. Genetic and modifying factors that determine the risk of brain tumors

    DEFF Research Database (Denmark)

    Montelli, Terezinha de Cresci Braga; Peraçoli, Maria Terezinha Serrão; Rogatto, Silvia Regina;

    2011-01-01

    of tumor escape, CNS tumor immunology, immune defects that impair anti-tumor systemic immunity in brain tumor patients and local immuno-suppressive factors within CNS are also reviewed. New hope to treatment perspectives, as dendritic-cell-based vaccines is summarized too. Concluding, it seems well...... of these treatments, the prognosis for patients is poor. In this review, we highlight general aspects concerning genetic alterations in brain tumors, namely astrocytomas, glioblastomas, oligodendrogliomas, medulloblastomas and ependymomas. The influence of these genetic alterations in patients' prognosis is discussed....... Mutagen sensitivity is associated with cancer risk. The convincing studies that linked DNA damages and DNA repair alterations with brain tumors are also described. Another important modifying factor is immunity. General immune response against cancer, tumor microenvironment and immune response, mechanisms...

  14. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI

    NARCIS (Netherlands)

    Sauwen, Nicolas; Sima, Diana M.; Van Cauter, Sofie; Veraart, Jelle; Leemans, Alexander; Maes, Frederik; Himmelreich, Uwe; Van Huffel, Sabine

    2015-01-01

    Tissue characterization in brain tumors and, in particular, in high-grade gliomas is challenging as a result of the co-existence of several intra-tumoral tissue types within the same region and the high spatial heterogeneity. This study presents a method for the detection of the relevant tumor subst

  15. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  16. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Hidemasa [University of Fukui, Department of Radiology, Faculty of Medical Sciences, Fukui (Japan); Maeda, Masayuki [Mie University School of Medicine, Department of Radiology, Mie (Japan)

    2006-01-01

    Perfusion-weighted magnetic resonance (MR) imaging using contrast agents plays a key role in characterizing tumors of the brain. We have shown that double-echo perfusion-weighted MR imaging (DEPWI) is potentially useful in assessing brain tumors. Quantitative indices, such as tumor blood volume, are obtained using DEPWI, which allows correction of underestimation of tumor blood volume due to leakage of contrast agents from tumor vessels, in addition to simultaneous acquisition of tumor vessel permeability. This article describes basic concepts of DEPWI and demonstrates clinical applications in brain tumors. (orig.)

  17. Biphasic modeling of brain tumor biomechanics and response to radiation treatment.

    Science.gov (United States)

    Angeli, Stelios; Stylianopoulos, Triantafyllos

    2016-06-14

    Biomechanical forces are central in tumor progression and response to treatment. This becomes more important in brain cancers where tumors are surrounded by tissues with different mechanical properties. Existing mathematical models ignore direct mechanical interactions of the tumor with the normal brain. Here, we developed a clinically relevant model, which predicts tumor growth accounting directly for mechanical interactions. A three-dimensional model of the gray and white matter and the cerebrospinal fluid was constructed from magnetic resonance images of a normal brain. Subsequently, a biphasic tissue growth theory for an initial tumor seed was employed, incorporating the effects of radiotherapy. Additionally, three different sets of brain tissue properties taken from the literature were used to investigate their effect on tumor growth. Results show the evolution of solid stress and interstitial fluid pressure within the tumor and the normal brain. Heterogeneous distribution of the solid stress exerted on the tumor resulted in a 35% spatial variation in cancer cell proliferation. Interestingly, the model predicted that distant from the tumor, normal tissues still undergo significant deformations while it was found that intratumoral fluid pressure is elevated. Our predictions relate to clinical symptoms of brain cancers and present useful tools for therapy planning. PMID:27086116

  18. The Role of Surgery, Radiosurgery and Whole Brain Radiation Therapy in the Management of Patients with Metastatic Brain Tumors

    Directory of Open Access Journals (Sweden)

    Thomas L. Ellis

    2012-01-01

    Full Text Available Brain tumors constitute the most common intracranial tumor. Management of brain metastases has become increasingly complex as patients with brain metastases are living longer and more treatment options develop. The goal of this paper is to review the role of stereotactic radiosurgery (SRS, whole brain radiation therapy (WBRT, and surgery, in isolation and in combination, in the contemporary treatment of brain metastases. Surgery and SRS both offer management options that may help to optimize therapy in selected patients. WBRT is another option but can lead to late toxicity and suboptimal local control in longer term survivors. Improved prognostic indices will be critical for selecting the best therapies. Further prospective trials are necessary to continue to elucidate factors that will help triage patients to the proper brain-directed therapy for their cancer.

  19. Tumor necrosis factor receptor superfamily member 9 is upregulated in the endothelium and tumor cells in melanoma brain metastasis

    Directory of Open Access Journals (Sweden)

    Patrick N Harter

    2014-12-01

    Full Text Available Aim: The cytokine receptor tumor necrosis factor receptor superfamily member 9 (TNFRSF9 is mainly considered to be a co-stimulatory activation marker in hematopoietic cells. Several preclinical models have shown a dramatic beneficial effect of treatment approaches targeting TNFRSF9 with agonistic antibodies. However, preliminary clinical phase I/II studies were stopped after the occurrence of several severe deleterious side effects. In a previous study, it was demonstrated that TNFRSF9 was strongly expressed by reactive astrocytes in primary central nervous system (CNS tumors, but was largely absent from tumor or inflammatory cells. The aim of the present study was to address the cellular source of TNFRSF9 expression in the setting of human melanoma brain metastasis, a highly immunogenic tumor with a prominent tropism to the CNS. Methods: Melanoma brain metastasis was analyzed in a cohort of 78 patients by immunohistochemistry for TNFRSF9 and its expression was correlated with clinicopathological parameters including sex, age, survival, tumor size, number of tumor spots, and BRAF V600E expression status. Results: Tumor necrosis factor receptor superfamily member 9 was frequently expressed independently on both melanoma and endothelial cells. In addition, TNFRSF9 was also present on smooth muscle cells of larger vessels and on a subset of lymphomonocytic tumor infiltrates. No association between TNFRSF9 expression and patient survival or other clinicopathological parameters was seen. Of note, several cases showed a gradual increase in TNFRSF9 expression on tumor cells with increasing distance from blood vessels, an observation that might be linked to hypoxia-driven TNFRSF9 expression in tumor cells. Conclusion: The findings indicate that the cellular source of TNFRSF9 in melanoma brain metastasis largely exceeds the lymphomonocytic pool, and therefore further careful (re- assessment of potential TNFRSF9 functions in cell types other than

  20. Awake brain tumor resection during pregnancy: Decision making and technical nuances.

    Science.gov (United States)

    Meng, Lingzhong; Han, Seunggu J; Rollins, Mark D; Gelb, Adrian W; Chang, Edward F

    2016-02-01

    The co-occurrence of primary brain tumor and pregnancy poses unique challenges to the treating physician. If a rapidly growing lesion causes life-threatening mass effect, craniotomy for tumor debulking becomes urgent. The choice between awake craniotomy versus general anesthesia becomes complicated if the tumor is encroaching on eloquent brain because considerations pertinent to both patient safety and oncological outcome, in addition to fetal wellbeing, are involved. A 31-year-old female at 30 weeks gestation with twins presented to our hospital seeking awake craniotomy to resect a 7 × 6 × 5 cm left frontoparietal brain tumor with 7 mm left-to-right subfalcine herniation on imaging that led to word finding difficulty, dysfluency, right upper extremity paralysis, and right lower extremity weakness. She had twice undergone tumor debulking under general anesthesia during the same pregnancy at an outside hospital at 16 weeks and 28 weeks gestation. There were considerations both for and against awake brain tumor resection over surgery under general anesthesia. The decision-making process and the technical nuances related to awake brain tumor resection in this neurologically impaired patient are discussed. Awake craniotomy benefits the patient who harbors a tumor that encroaches on the eloquent brain by allowing a greater extent of resection while preserving the language and sensorimotor function. It can be successfully done in pregnant patients who are neurologically impaired. The patient should be motivated and well informed of the details of the process. A multidisciplinary and collaborative effort is also crucial. PMID:26498092

  1. Numeric Investigation of Brain Tumor Influence on the Current Distributions During Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Song, Bo; Wen, Peng; Ahfock, Tony; Li, Yan

    2016-01-01

    This study constructed a series of high-resolution realistic human-head models with brain tumors, and numerically investigated the influence of brain tumor's location and grade on the current distributions, under different electrode montages during tDCS. The threshold area and the peak current density were also derived and analyzed in the region of interest. The simulation result showed that it is safe to apply tDCS on the patients with brain tumors to treat their neuropsychiatric conditions and cancer pain caused by the tumor; although considerable changes of the current distributions are induced by the presence of a brain tumor. In addition, several observations on the global and local influences of tumor grade and possible edema have been made as well. These findings should be helpful for researchers and clinical doctors to treat patients with brain tumors. This study is also the first numerical study to fill in the gap of tDCS applications on the patients with brain tumors.

  2. Intranasal Delivery of Camptothecin-Loaded Tat-Modified Nanomicells for Treatment of Intracranial Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yuuki Takashima

    2012-10-01

    Full Text Available The blood-brain barrier is a substantial obstacle for delivering anticancer agents to brain tumors, and new strategies for bypassing it are sorely needed for brain tumor therapy. Intranasal delivery provides a practical, noninvasive method for delivering therapeutic agents to the brain. Intranasal application of nano-sized micelles that have been modified with Tat peptide facilitates brain delivery of fluorescent model materials. In this study, we evaluated a nose-to-brain delivery system for brain tumor therapy. We nasally administered the anti-tumor drug camptothecin (CPT in solution and in methoxy poly(ethylene glycol (MPEG/poly(e-caprolactone (PCL amphiphilic block copolymers (MPEG-PCL and cell penetrating peptide, Tat analog-modified MPEG-PCL (MPEG-PCL-Tat MPEG-PCL-Tat to rats bearing intracranial glioma tumors and quantified the cytotoxicity against glioma cells, and the therapeutic effects. CPT-loaded MPEG-PCL-Tat micelles showed higher cytotoxicity than CPT-loaded MPEG-PCL. CPT-free MPEG-PCL-Tat didn’t show any cytotoxicity, even at high concentrations (2 mmol/mL. CPT-loaded MPEG-PCL-Tat micelles significantly prolonged the median survival of rats. These results indicate that intranasal delivery of anti-cancer drugs with cell penetrating peptide-modified nanomicelles might be an effective therapy for brain tumors.

  3. Induction of brain tumors by a newly isolated JC virus (Tokyo-1 strain).

    OpenAIRE

    Nagashima, K.; Yasui, K; Kimura, J; Washizu, M.; Yamaguchi, K.; Mori, W.

    1984-01-01

    A newly isolated virus from a patient with progressive multifocal leukoencephalopathy (PML) (Tokyo-1 strain) was found serologically identical to JC virus (Mad-1 strain) and showed high neurooncogenicity in hamsters. Twenty-one animals inoculated intracerebrally with the virus developed brain tumors during a period that averaged 5 months. The tumors were cerebellar medulloblastoma (n = 20); plexus tumor (n = 2) occurred in 1 animal as a single tumor and in another in combination with a medull...

  4. Evaluation of therapeutic effects of radiosurgery using 99 Tcm-MIBI brain SPECT in patients with brain tumor

    Institute of Scientific and Technical Information of China (English)

    FAN Yi-xiang; SHI Wei-min; PENG Wu-he

    2002-01-01

    Objective: To evaluate the therapeutic effects of radiosurgery on brain tumor using 99Tcm-MIBI brain single-photon emission computed tomography (SPECT). Methods : Fifteen normal volunteers and 49patients with brain tumor underwent 99Tcm-MIBI brain SPECT, and the tumor to non-tumor ratio (T/N)was calculated and compared before and after radiosurgery. The patients were regrouped according to different schedules for postoperative reexamination, and diagnostic sensitivity and specificity of 99Tcm-MIBI SPECT evaluated against that of conventional CT and magnetic resonance imaging. Results: After radiosurgery, the lesions were reduced or even disappeared in 22 cases, and tumor remnants or recurrence were found in 27 cases. The sensitivity, specificity and accuracy of 99Tcm-MIBI brain SPECT were 85.2%, 68. 2% and 77.6%,respectively. The sensitivity of postoperative 99Tcm-MIBI brain SPECT at 5.8 months was 92%, significantly higher than that at 3.1 months (89%, u=2. 2545, P<0. 05), and its accuracy was also higher than those at3. 1 months (u=2. 5927, P<0. 05) and at 9. 4 months (u=2. 1760, P<0. 05). The preoperative T/N ratio averaged 9.5±7. 6, significantly lowered to 2.9±5.1 postoperatively (t=4. 4373, P<0. 001). T/N ratio of recurrence group was remarkably higher than those of tumor remnants group (t=2. 1496, P<0. 05), edema group (t= 9. 2186, P<0. 001) and cicatrization group (t= 6. 3906, P<0. 001). Conclusion: 99Tcm-MIBI brain SPECT is more accurate than CT in distinguishing tumor residuals from benign lesions such as edema and cicatrization. At about 6 months after radiosurgery, 99Tcm-MIBI SPECT can obtain optimal diagnostic effects.

  5. NI-78LABEL-FREE MULTIPHOTON MICROSCOPY: A NOVEL TOOL FOR THE IMAGING OF BRAIN TUMORS

    Science.gov (United States)

    Uckermann, Ortrud; Galli, Roberta; Geiger, Kathrin; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Changes in tissue composition caused by brain tumor growth involve a series of complex biochemical alterations which can be imaged on unstained native tissue using multiphoton microscopy: We used coherent anti-Stokes Raman scattering (CARS) imaging that resonantly excites the symmetric stretching vibration of CH2 groups at 2850 cm−1 and visualizes lipid content in combination with imaging of endogenous two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) to discern different types of tumors from normal tissue in unstained, native brain samples. Experimental brain tumors were induced in nude mice NMRI nu/nu (n = 25) by stereotactic implantation of glioblastoma (U87), melanoma (A375) and breast cancer (MCF-7) cell lines. Label-free multiphoton microscopy of brain cryosections provided exhaustive information of the tumor morphochemistry. The tumor border was defined with cellular resolution by a strong reduction of CARS signal intensity to 61% (glioblastoma), 71% (melanoma) and 68% (breast cancer). This reduction of lipid content within the tumor was confirmed by Raman spectroscopy. Micrometastases infiltrating normal tissue (size 50 - 200 µm) were identified in glioblastoma and melanoma. Additionally, multiphoton microscopy proved a reduction of CARS signal intensity in all human glioblastoma samples analyzed (to 72%, n = 6). Additionally, relevant SHG and TPEF signals were detected in human primary and secondary brain tumor samples and enabled to image variations in tumor associated vasculature, fibrosis, necrosis and nuclear size and density. All primary or secondary brain tumors investigated were characterized by a lower intensity of the CARS signal, therefore offering a simple tool for objective tumor detection and delineation. The combination of techniques allows retrieving a quantity of information on native unstained tissue which is comparable to H&E staining. Therefore, label-free multiphoton microscopy has the potential to become a

  6. Thyroid function after treatment of brain tumors in children.

    Science.gov (United States)

    Ogilvy-Stuart, A L; Shalet, S M; Gattamaneni, H R

    1991-11-01

    In 134 children who had been treated for a brain tumor not involving the hypothalamic-pituitary axis, thyroid function was assessed up to 24 years after treatment with cranial or craniospinal irradiation. In addition, 78 children received up to 2 years of cytotoxic chemotherapy. Of 85 children who received craniospinal irradiation, 30 (35%) had abnormalities of thyroid function, and 10 (20%) of 49 who received cranial irradiation had such abnormalities. Frank hypothyroidism developed in three children and thyrotoxicosis in one. Thirty-six children had an elevated thyroid-stimulating hormone level in the presence of a normal thyroxine level; in 16 of them the thyroid-stimulating hormone level subsequently returned to normal. Twenty-eight children who were treated between 1960 and 1970 were excluded from the analysis. Of 34 children who received cranial irradiation, five had thyroid dysfunction and 24 of 72 who received craniospinal irradiation had such dysfunction (p = 0.013). Thyroid dysfunction was present in 4 of 35 children who received no chemotherapy and in 25 of 71 who received chemotherapy (p = 0.014). Direct irradiation plus chemotherapy was more damaging than irradiation alone. These data confirm the high incidence of thyroid dysfunction when the thyroid gland is included in the radiation field. However, in a high proportion, the thyroid abnormalities are minor and revert to normal with time; life-long replacement therapy with thyroxine may be unnecessary. PMID:1941379

  7. Ex vivo brain tumor analysis using spectroscopic optical coherence tomography

    Science.gov (United States)

    Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2016-03-01

    A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.

  8. Third harmonic generation imaging for fast, label-free pathology of human brain tumors.

    Science.gov (United States)

    Kuzmin, N V; Wesseling, P; Hamer, P C de Witt; Noske, D P; Galgano, G D; Mansvelder, H D; Baayen, J C; Groot, M L

    2016-05-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies.

  9. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model.

    Directory of Open Access Journals (Sweden)

    Jennifer A MacDiarmid

    Full Text Available Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers.EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT and magnetic resonance imaging (MRI. Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973. No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs.Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of

  10. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model

    Science.gov (United States)

    MacDiarmid, Jennifer A.; Langova, Veronika; Bailey, Dale; Pattison, Scott T.; Pattison, Stacey L.; Christensen, Neil; Armstrong, Luke R.; Brahmbhatt, Vatsala N.; Smolarczyk, Katarzyna; Harrison, Matthew T.; Costa, Marylia; Mugridge, Nancy B.; Sedliarou, Ilya; Grimes, Nicholas A.; Kiss, Debra L.; Stillman, Bruce; Hann, Christine L.; Gallia, Gary L.; Graham, Robert M.; Brahmbhatt, Himanshu

    2016-01-01

    Background Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. Methodology/Principle Findings EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Conclusions/Significance Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On

  11. The role of Intravenous Levetiracetam in Treatment of Seizures in Brain Tumor Patients

    Directory of Open Access Journals (Sweden)

    Ekokobe eFonkem

    2013-10-01

    Full Text Available Levetiracetam, tradename Keppra, is a new second generation antiepileptic drug that is being used increasingly in brain tumor patients. In patients suffering with brain tumors, seizures are one of the leading neurologic complications seen in more than 30% of patients. Levetiracetam is a pyrollidine-derivative drug, which has a unique mechanism of action. Unlike other antiepileptic drugs, Levetiracetam is proposed to bind to a synaptic vesicle protein inhibiting calcium release. Brain tumor patients are frequently on chemotherapy or other drugs that induce cytochrome P450, causing significant drug interactions. However, levetiracetam does not induce the P450 system and does not exhibit any relevant drug interactions. Intravenous delivery is as bioavailable as the oral medication allowing it to be used in emergency situations. Levetiracetam is an attractive option for brain tumor patients suffering from seizures, but also can be used prophylactically in patients with brain tumors or patients undergoing neurological surgery. Emerging studies have also demonstrated that levetiracetam can increase the sensitivity of Glioblastoma tumors to the chemotherapy drug Temozolomide. Levetiracetam is a safe alternative to conventional Antiepileptic drugs and an emerging tool for brain tumor patients combating seizures.

  12. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Directory of Open Access Journals (Sweden)

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  13. {sup 18}F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaoyuan; Park, Ryan; Shahinian, Anthony H.; Tohme, Michel; Khankaldyyan, Vazgen; Bozorgzadeh, Mohammed H.; Bading, James R.; Moats, Rex; Laug, Walter E.; Conti, Peter S. E-mail: pconti@usc.edu

    2004-02-01

    Brain tumors are highly angiogenesis dependent. The cell adhesion receptor integrin {alpha}{sub v}{beta}{sub 3} is overexpressed in glioma and activated endothelial cells and plays an important role in brain tumor growth, spread and angiogenesis. Suitably labeled {alpha}{sub v}{beta}{sub 3}-integrin antagonists may therefore be useful for imaging brain tumor associated angiogenesis. Cyclic RGD peptide c(RGDyK) was labeled with {sup 18}F via N-succinimidyl-4-[{sup 18}F]fluorobenzoate through the side-chain {epsilon}-amino group of the lysine residue. The radiotracer was evaluated in vivo for its tumor targeting efficacy and pharmacokinetics in subcutaneously implanted U87MG and orthotopically implanted U251T glioblastoma nude mouse models by means of microPET, quantitative autoradiography and direct tissue sampling. The N-4-[{sup 18}F]fluorobenzoyl-RGD ([{sup 18}F]FB-RGD) was produced in less than 2 h with 20-25% decay-corrected yields and specific activity of 230 GBq/{mu}mol at end of synthesis. The tracer showed very rapid blood clearance and both hepatobiliary and renal excretion. Tumor-to-muscle uptake ratio at 30 min was approximately 5 in the subcutaneous U87MG tumor model. MicroPET imaging with the orthotopic U251T brain tumor model revealed very high tumor-to-brain ratio, with virtually no uptake in the normal brain. Successful blocking of tumor uptake of [{sup 18}F]FB-RGD in the presence of excess amount of c(RGDyK) revealed receptor specific activity accumulation. Hence, N-4-[{sup 18}F]fluorobenzoyl labeled cyclic RGD peptide [{sup 18}F]FB-RGD is a potential tracer for imaging {alpha}{sub v}{beta}{sub 3}-integrin positive tumors in brain and other anatomic locations.

  14. A survey of MRI-based medical image analysis for brain tumor studies

    Science.gov (United States)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  15. What's New in Research and Treatment for Brain Tumors in Children?

    Science.gov (United States)

    ... into the body, where they settle in the bone marrow and start making new blood cells. Although some children with certain brain or spinal cord tumors (such as medulloblastomas) have responded well ...

  16. No Evidence Linking Cell Phone Use to Risk of Brain Tumors

    Science.gov (United States)

    ... Blood & Biologics Articulos en Espanol No Evidence Linking Cell Phone Use to Risk of Brain Tumors Printer-friendly ... Minimizing RF Exposure Do the radio waves that cell phones emit pose a threat to health? Although research ...

  17. Sorafenib Tosylate in Treating Younger Patients With Relapsed or Refractory Rhabdomyosarcoma, Wilms Tumor, Liver Cancer, or Thyroid Cancer

    Science.gov (United States)

    2015-05-14

    Childhood Hepatocellular Carcinoma; Papillary Thyroid Cancer; Previously Treated Childhood Rhabdomyosarcoma; Recurrent Childhood Liver Cancer; Recurrent Childhood Rhabdomyosarcoma; Recurrent Thyroid Cancer; Recurrent Wilms Tumor and Other Childhood Kidney Tumors

  18. Assessment of serum L-fucose in brain tumor cases

    OpenAIRE

    Manjula S; Monteiro Flama; Aroor Annaya; Rao Suryanarayan; Annaswamy Raja; Rao Anjali

    2010-01-01

    Background: Glycosylation of altered tumor cell in relation to cellular heterogeneity in human intracranial tumors remains relatively unexposed. Serum protein-bound carbohydrate, L-Fucose is reported to be overexpressed during tumor progression by many investigators. Therefore, there is a need to determine the diagnostic, prognostic, functional significance of glycoprotein elevations in various cases of tumors. Objective: The objective of the present study was to evaluate the clinical util...

  19. Patent foramen ovale as a preferential mechanism for increasing the likelihood of brain tumor metastasis

    OpenAIRE

    Rigatelli, Gianluca; Rossi, Andrea; Dell'Avvocata, Fabio; Cardaioli, Paolo

    2011-01-01

    Metastases are the most common tumors of the central nervous system which may lie dormant behind the brain blood- barrier sheltering from chemiotherapeutic drugs, and whose presence usually indicates a poor prognosis. Development of brain metastases includes the intravasation of the cancer cells through the tumor blood vessels, their circulation within the venous system, passing through the pulmonary filter thus reaching the systemic circulation. Patent foramen ovale (PFO) is a natural commun...

  20. SPECT quantitation of cobalt-57 bleomycin delivery to human brain tumors

    International Nuclear Information System (INIS)

    A newly developed and validated noninvasive quantitative SPECT method was used to measure the in vivo uptake of [57Co]bleomycin (Co-bleo) in 13 human brain tumors and the uptake of [/sup 99m/Tc]glucoheptonate (GH) in 23 brain tumors. Significant differences in tumor uptake were found. The tumor concentration over time, the tumor to blood radioactivity at 30 min and the tumor cumulative concentration of radioactivity showed marked differences even between tumors with the same histology. Only a weak correlation was found between tumor concentration of Co-bleo and of GH. Therefore, a simple imaging agent such as GH cannot, at the present time, serve as an indicator of individual tumor uptake and further experience with other agents is still necessary. Contrary to the generally held view, no correlation was found between the concentration of drug in the blood and its tumor concentration. It is suggested, therefore, that the level of a drug in the blood cannot be used as a criterion of the amount that will penetrate the tumor. Direct SPECT measurement of the concentration of the drug in the tumor itself should be performed. The bioavailability of a drug is critical in order for it to exert it tumoricidal effect. The results, showing marked differences in uptake between brain tumors, suggest that before chemotherapy is administered, uptake of the chemotherapeutic drug in the individual tumor to be treated should be assessed and comparisons should be made between the uptake of a series of drugs to determine which drug would be most efficacious on the basis of its uptake as well as its tumor cell killing potential

  1. Childhood Cancer

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Childhood Cancer KidsHealth > For Parents > Childhood Cancer Print A A A Text Size What's ... in children, but can happen. The most common childhood cancers are leukemia , lymphoma , and brain cancer . As ...

  2. A correlative study on the functional disturbances and the organic changes in patients with brain tumors

    International Nuclear Information System (INIS)

    In a total of 132 patients with supratentorial tumors, tumor localization, pathology, and the presence of low density area surrounding the tumor were examined in relation to cerebral function, using conventional EEG, topographic EEG, computed tomography (CT), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). For superficial tumors, meningioma had less EEG abnormalities than glioma, regardless of the presence of low density area. Slow wave focus as shown by topographic EEG corresponded well with tumor localization detected on CT. For deep-seated tumors, topographic EEG showed diffuse δ waves and θ waves along the median. In 7 patients with meningioma, there was no uniform cerebral blood flow within the tumor; however, low blood flow surrounding the tumor was detected on CT, regardless of the presence of low density area. In 4 patients with intra-axial tumors, low blood flow was detected both within and surrounding the tumor. Location of tumors, as detected on CT, was well coincident with areas of decreased local cerebral blood flow and slow waves, as detected on topographic EEG. MRI was more reliable than CT in disclosing brain tumors, peritumoral edemas, and involvement of brain stem. (Namekawa, K)

  3. Family history of cancer in benign brain tumor subtypes versus gliomas

    Directory of Open Access Journals (Sweden)

    Quinn eOstrom

    2012-02-01

    Full Text Available Purpose: Family history is associated with gliomas, but this association has not ben established for benign brain tumors. Using information from newly diagnosed primary brain tumor patients, we describe patterns of family cancer histories in patients with benign brain tumors and compare those to patients with gliomas. Methods: Newly diagnosed primary brain tumor patients were identified as part of the Ohio Brain Tumor Study (OBTS. Each patient was asked to participate in a telephone interview about personal medical history, family history of cancer, and other exposures. Information was available from 33 acoustic neuroma (65%, 78 meningioma (65%, 49 pituitary adenoma (73.1% and 152 glioma patients (58.2%. The association between family history of cancer and each subtype was compared with gliomas using unconditional logistic regression models generating odds ratios (ORs and 95% confidence intervals (95% CI. Results: There was no significant difference in family history of cancer between patients with glioma and benign subtypes. Conclusions: The results suggest that benign brain tumor may have an association with family history of cancer. More studies are warranted to disentangle the potential genetic and/or environmental causes for these diseases.

  4. Deregulation of c-myc and SV40Tag causing brain tumor in mice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Deregulated expressions of both c-myc and simian virus 40 large T antigen (SV40Tag) are consistent features of lots of tumors. To investigate whether the expression of c-myc and SV40Tag in mouse might help develop a model of human tumor, we generated c-myc transgenics by inserting human c-myc gene into pTRE2 of Tet-On system. We obtained conditional expression of SV40Tag transgenics by the Tet-On system from Yangzhou University. Crossing the c-myc transgenic mouse with the SV40Tag transgenic mice to generate bitransgenics we got double-transgenic mice expressing c-myc and SV40Tag by the Tet-On system. After being treated with doxycycline continuously, single-transgenic SV40Tag mice developed brain tumor infrequently (3 of 84, 3.6%) with a long onset (185 d on average). In contrast, double-transgenic c-myc/SV40Tag mice developed brain tumor with a short onset (96 days on average) and a 41% brain tumor incidence rate (7 of 17, 41%). This tumor was assumed to be medulloblastoma. Our experiments suggest that deregulated expression of c-myc and SV40Tag in brain might generate a mouse model of human brain tumor that recapitulates some features of human medulloblastoma.

  5. Tc-99m-MIBI brain SPECT in differentiating tumor recurrences from necrosis

    International Nuclear Information System (INIS)

    Brain SPECT using 99m-TC MIBI can distinguish between local tumor recurrence and radio necrosis of the primary brain tumor, whereas CT scan and MRI do not have this ability. 1. Is it possible to search for tumoral cells in the brain by using TC-99m MIBI? 2. How sensitive and specific is the SPECT in distinguishing the presence of active tumor in the brain and differentiating it from post-therapy necrosis? 3. Is it feasible to substitute this diagnostic modality for stereotactic biopsy surgery? Patients who presented to the neurosurgery clinic with the clinical manifestations of brain tumor relapse between 22nd August 1999 and 1.; February 2000 and were candidates for stereotactic biopsy were chosen. A 99m-TC MIBI SPECT was performed before biopsy. The total number of patients was 13. Five patients had the diagnosis of brain tumor by surgery and biopsy and had undergone a course of radiotherapy and chemotherapy. These patients were normal clinically and MIBI SPECT was done for the purpose of follow-up. Clinical manifestations consisted of, Weakness, Vertigo visual disorders, loss of consciousness, headache, aphasia and hemiparesis. The primary tumors were composed of a variety of lei sons including: grade I, II astrocytoma (62.5%), glioblastoma (25%) and medulloblastoma (12.5%). eight patients who had MIBI SPECT firstly and then had biopsy, brain tumor relapse was reported by both biopsy and SPECT in seven patients. This proved a 100% sensitivity and a 100% specificity for MIBI SPECT in differentiating, between tumor relapse and necrosis, a result comparable to stereotactic biopsy. Also in 5 patients with clinical evidence of remission, MIBI SPECT was negative for tumor recurrence in all. Patients who present with the clinical manifestations of brain tumor relapse, usually have a history of surgery, radiotherapy or chemotherapy and any invasive procedures like stereotactic biopsy on these patients carries a high risk for anesthesia and surgery, besides being costly

  6. Coloring brain tumor with multi-potent micellar nanoscale drug delivery system

    Science.gov (United States)

    Chong, Kyuha; Choi, Kyungsun; Kim, EunSoo; Han, Eun Chun; Lee, Jungsul; Cha, Junghwa; Ku, Taeyun; Yoon, Jonghee; Park, Ji Ho; Choi, Chulhee

    2012-10-01

    Brain tumor, especially glioblastoma multiforme (GBM), is one of the most malignant tumors, which not only demands perplexing treatment approaches but also requires potent and effective treatment modality to deal with recurrence of the tumor. Photodynamic therapy (PDT) is a treatment which has been recommended as a third-level treatment. We are trying to investigate possibility of the PDT as an efficient adjuvant therapeutic modality for the treatment of brain tumor. Inhibition of tumor progression with photosensitizer was verified, in vitro. With micellar nanoscale drug delivery system, localization of the tumor was identified, in vivo, which is able to be referred as photodynamic diagnosis. With consequent results, we are suggesting photodynamic diagnosis and therapy is able to be performed simultaneously with our nanoscale drug delivery system.

  7. Detection of brain tumors using fluorescence diffuse optical tomography and nanoparticles as contrast agents

    Science.gov (United States)

    Fortin, Pierre-Yves; Genevois, Coralie; Koenig, Anne; Heinrich, Emilie; Texier, Isabelle; Couillaud, Franck

    2012-12-01

    Near-infrared fluorescence-enhanced diffuse optical tomography (fDOT) is used to localize tumors in mice using fluorescent nanoparticles as a blood pool contrast agent. The infrared dye DiR is loaded in the lipid core of nontargeted nanoparticles (DiR-lipidots) and injected systemically via the tail vein in mice bearing U87 tumors. Distribution and time-course of DiR-lipidots are followed using in vivo fluorescence reflectance imaging and reveal enhanced fluorescent signal within the subcutaneous tumors up to seven days due to the enhanced permeability and retention effect. Tumor growth into the brain is followed using bioluminescent imaging, and tumor localization is further determined by magnetic resonance imaging. The fDOT provides three-dimensional fluorescent maps that allow for consistent localization for both subcutaneous and brain tumors.

  8. Usefulness of three-dimensional MR images of brain tumors for surgical simulation

    International Nuclear Information System (INIS)

    The purpose of this study was to determine the usefulness of three-dimensional (3D) MR imaging of brain tumors for surgical planning. Sixty-nine patients with various tumors of the brain were included in the present study. Using a volume-rendering (VR) method on an independent workstation, 3D-MR images were obtained with the fast-spoiled gradient recalled acquisition in the steady state (SPGR) sequence after Gd-DTPA administration. VR images could show an exact relationship between the surface of the brain and major vessels. However, in patients with deeply located tumors, VR images did not necessarily provide sufficient information as to the relationship between the tumor and vessels. In combination with a surface-rendering method, 3D-MR imaging could demonstrate the exact relationships among the tumors, major vessels, and surface of the brain. In tumors without contrast enhancement, this method was able to show 3D images of tumors with surrounding structures. For neurosurgeons, 3D-MR images were useful for understanding the surface anatomy and surrounding structures of the tumors prior to surgery. These images were also helpful in explaining the condition of the disease to patients and their families. (author)

  9. Rapid Detection of high-level oncogene amplifications in ultrasonic surgical aspirations of brain tumors

    Directory of Open Access Journals (Sweden)

    Truong Long N

    2012-06-01

    Full Text Available Abstract Background Genomic tumor information, such as identification of amplified oncogenes, can be used to plan treatment. The two sources of a brain tumor that are commonly available include formalin-fixed, paraffin-embedded (FFPE sections from the small diagnostic biopsy and the ultrasonic surgical aspiration that contains the bulk of the tumor. In research centers, frozen tissue of a brain tumor may also be available. This study compared ultrasonic surgical aspiration and FFPE specimens from the same brain tumors for retrieval of DNA and molecular assessment of amplified oncogenes. Methods Surgical aspirations were centrifuged to separate erythrocytes from the tumor cells that predominantly formed large, overlying buffy coats. These were sampled to harvest nuclear pellets for DNA purification. Four glioblastomas, 2 lung carcinoma metastases, and an ependymoma were tested. An inexpensive PCR technique, multiplex ligation-dependent probe amplification (MLPA, quantified 79 oncogenes using 3 kits. Copy number (CN results were normalized to DNA from non-neoplastic brain (NB in calculated ratios, [tumor DNA]/[NB DNA]. Bland-Altman and Spearman rank correlative comparisons were determined. Regression analysis identified outliers. Results Purification of DNA from ultrasonic surgical aspirations was rapid ( Conclusions Buffy coats of centrifuged ultrasonic aspirations contained abundant tumor cells whose DNA permitted rapid, multiplex detection of high-level oncogene amplifications that were confirmed in FFPE. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/1883718801686466

  10. The Relationship between Parkinson Disease and Brain Tumor: A Meta-Analysis

    Science.gov (United States)

    Ye, Rong; Shen, Ting; Jiang, Yasi; Xu, Lingjia; Si, Xiaoli; Zhang, Baorong

    2016-01-01

    Objective Epidemiological studies have investigated the association between Parkinson disease (PD) occurrence and the risk of brain tumors, while the results remain controversial. We performed a meta-analysis to clarify the exact relationship between PD and brain tumors. Methods A systematic literature search was conducted using PubMed, Embase, ScienceDirect and CBM (China Biology Medicine Disc) before February 2016. Eligible studies were those that reported risk estimates of brain tumors among patients with PD or vice versa. A random-effects model was used to calculate the pooled odds ratio (OR) of the outcomes. Subgroup analyses and sensitivity analysis were conducted to explore the potential sources of heterogeneity. Results In total, eight studies involving 329,276 participants met our inclusion criteria. The pooled OR was 1.51 (95%CI 1.21–1.89), indicating that PD carried a higher risk of brain tumor. Analyses by temporal relationship found that the occurrence of brain tumor was significantly higher after the diagnosis of PD (OR 1.55, 95% CI 1.18–2.05), but not statistically significant before PD diagnosis (OR 1.21, 95%CI 0.93–1.58). Subgroup analysis showed that gender differences, ethnicity differences and the characteristic of the tumor (benign or malignant) did not make much change in the association between brain tumor and PD. Conclusions Our meta-analysis collecting epidemiological studies suggested a positive association of PD with brain tumors, while the influence of anti-parkinson drugs and ascertainment bias could not be excluded. Further studies with larger sample size and more strict inclusion criteria should be conducted in the future. PMID:27764145

  11. Interstitial Radiofrequency Hyperthermia for Brain Tumors : Preliminary Laboratory Studies and Clinical Application

    OpenAIRE

    Koga, Hiroaki; Mori, Kazuo; Tokunaga, Yoshiharu

    1993-01-01

    An interstitial radiofrequency (RF) hyperthermia system for brain tumor was evaluated in cranial phantoms and cat brains. An intracranial RF applicator and thermocouple microprobes were emplaced in the brain and a headband-type flexible extracranial electrode fixed over the scalp. An 8MHz RF capacitive-type heating machine provided power. The temperature distribution was measured by thermography. In phantom and animal studies, the RF power had good penetration into the tissue and generated un...

  12. Blood interference in fluorescence spectrum : Experiment, analysis and comparison with intraoperativemeasurements on brain tumor

    OpenAIRE

    Lowndes, Shannely

    2010-01-01

    The optical touch pointer (OTP), a fluorescence spectroscopy based system, assists brain surgeons during guided brain tumor resection in patients with glioblastoma multiforme (GBM). After recording and analyzing the autofluorescence spectrum of the tissue, it is possible to distinguish malignant from healthy brain tissue. A challenge during the intraoperative measurements is the interference of blood. If it gets in contact with the laser pointer, the blood blocks the light transmission to and...

  13. Location of brain tumor intersecting white matter tracts predicts patient prognosis.

    Science.gov (United States)

    Mickevicius, Nikolai J; Carle, Alexander B; Bluemel, Trevor; Santarriaga, Stephanie; Schloemer, Fallon; Shumate, Derrick; Connelly, Jennifer; Schmainda, Kathleen M; LaViolette, Peter S

    2015-11-01

    Brain tumor cells invade adjacent normal brain along white matter (WM) bundles of axons. We therefore hypothesized that the location of tumor intersecting WM tracts would be associated with differing survival. This study introduces a method, voxel-wise survival analysis (VSA), to determine the relationship between the location of brain tumor intersecting WM tracts and patient prognosis. 113 primary glioblastoma (GBM) patients were retrospectively analyzed for this study. Patient specific tumor location, defined by contrast-enhancement, was combined with diffusion tensor imaging derived tractography to determine the location of axons intersecting tumor enhancement (AXITEs). VSA was then used to determine the relationship between the AXITE location and patient survival. Tumors intersecting the right anterior thalamic radiation (ATR), right inferior fronto-occipital fasciculus (IFOF), right and left cortico-spinal tract (CST), and corpus callosum (CC) were associated with decreased overall survival. Tumors intersecting the CST, body of the CC, right ATR, posterior IFOF, and inferior longitudinal fasciculus are associated with decreased progression-free survival (PFS), while tumors intersecting the right genu of the CC and anterior IFOF are associated with increased PFS. Patients with tumors intersecting the ATR, IFOF, CST, or CC had significantly improved survival prognosis if they were additionally treated with bevacizumab. This study demonstrates the usefulness of VSA by locating AXITEs associated with poor prognosis in GBM patients. This information should be included in patient-physician conversations, therapeutic strategy, and clinical trial design. PMID:26376654

  14. The use of bone age for bone mineral density interpretation in a cohort of pediatric brain tumor patients

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.B. [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); St. Jude Children' s Research Hospital, Division of Cancer Survivorship, Memphis, TN (United States); Shelso, John [St. Jude Children' s Research Hospital, Department of Endocrinology, Memphis, TN (United States); Smeltzer, Matthew P.; Li, Chin-Shang [St. Jude Children' s Research Hospital, Department of Biostatistics, Memphis, TN (United States); Thomas, Nicole A.; Karimova, E.J.; Merchant, Thomas [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); Gajjar, Amar [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); Kaste, Sue C. [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States)

    2008-12-15

    Skeletal bone accretion occurs throughout childhood. The integrity of this process can influence future adult bone health and the risk of osteoporosis. Although surveillance of children who are at risk of poor bone accretion is important, the most appropriate method to monitor childhood bone health has not been established. Previous investigators have proposed using bone age (BA) rather than chronological age (CA) when interpreting bone mineral density (BMD) values in children. To investigate the value of BA assessment for BMD measurement in a cohort of children at risk of poor accretion. A cohort of 163 children with brain tumors who completed both a BMD assessment (quantitative computed tomography, QCT) and who had a BA within a 6-month interval were identified. The difference in BMD Z-scores determined by CA and BA was determined. The impact of salient clinical features was assessed. No significant difference between CA and BA Z-scores was detected in the overall cohort (P = 0.056). However, the scores in 18 children (all boys between the ages of 11 years and 15 years) were statistically determined to be outliers from the values in the rest of the cohort. Interpretation of BMD with BA measurement might be appropriate and affect treatment decisions in peripubertal males. (orig.)

  15. Improving the accuracy of brain tumor surgery via Raman-based technology

    Science.gov (United States)

    Hollon, Todd; Lewis, Spencer; Freudiger, Christian W.; Xie, X. Sunney; Orringer, Daniel A.

    2016-01-01

    Despite advances in the surgical management of brain tumors, achieving optimal surgical results and identification of tumor remains a challenge. Raman spectroscopy, a laser-based technique that can be used to nondestructively differentiate molecules based on the inelastic scattering of light, is being applied toward improving the accuracy of brain tumor surgery. Here, the authors systematically review the application of Raman spectroscopy for guidance during brain tumor surgery. Raman spectroscopy can differentiate normal brain from necrotic and vital glioma tissue in human specimens based on chemical differences, and has recently been shown to differentiate tumor-infiltrated tissues from noninfiltrated tissues during surgery. Raman spectroscopy also forms the basis for coherent Raman scattering (CRS) microscopy, a technique that amplifies spontaneous Raman signals by 10,000-fold, enabling real-time histological imaging without the need for tissue processing, sectioning, or staining. The authors review the relevant basic and translational studies on CRS microscopy as a means of providing real-time intraoperative guidance. Recent studies have demonstrated how CRS can be used to differentiate tumor-infiltrated tissues from noninfiltrated tissues and that it has excellent agreement with traditional histology. Under simulated operative conditions, CRS has been shown to identify tumor margins that would be undetectable using standard bright-field microscopy. In addition, CRS microscopy has been shown to detect tumor in human surgical specimens with near-perfect agreement to standard H & E microscopy. The authors suggest that as the intraoperative application and instrumentation for Raman spectroscopy and imaging matures, it will become an essential component in the neurosurgical armamentarium for identifying residual tumor and improving the surgical management of brain tumors. PMID:26926067

  16. Cortical Brain Development in Schizophrenia: Insights From Neuroimaging Studies in Childhood-Onset Schizophrenia

    Science.gov (United States)

    Gogtay, Nitin

    2008-01-01

    Childhood-onset schizophrenia (COS; defined as onset by age 12 years) is rare, difficult to diagnose, and represents a severe and chronic phenotype of the adult-onset illness. A study of childhood-onset psychoses has been ongoing at the National Institute of Mental Health (NIMH) since 1990, where children with COS and severe atypical psychoses (provisionally labeled “multidimensionally impaired” or MDI by the NIMH team) are studied prospectively along with all first-degree relatives. COS subjects have robust cortical gray matter (GM) loss during adolescence, which appears to be an exaggeration of the normal cortical GM developmental pattern and eventually mimics the pattern seen in adult-onset cases as the children become young adults. These cortical GM changes in COS are diagnostically specific and seemingly unrelated to the effects of medications. Furthermore, the cortical GM loss is also shared by healthy full siblings of COS probands suggesting a genetic influence on the abnormal brain development. PMID:17906336

  17. Cancer Stem Cells in Brain Tumors and Their Lineage Hierarchy

    OpenAIRE

    Kong, Doo-Sik

    2012-01-01

    Despite recent advances in the development of novel targeted chemotherapies, the prognosis of malignant glioma remains dismal. The chemo-resistance of this tumor is attributed to tumor heterogeneity. To explain this unique chemo- resistance, the concept of cancer stem cells has been evoked. Cancer stem cells, a subpopulation of whole tumor cells, are now regarded as candidate therapeutic targets. Here, the author reviews and discusses the cancer stem cell concept.

  18. Exploring parental factors related to weight management in survivors of childhood central nervous system tumors.

    Science.gov (United States)

    Santa Maria, Diane; Swartz, Maria C; Markham, Christine; Chandra, Joya; McCurdy, Sheryl; Basen-Engquist, Karen

    2014-01-01

    Childhood central nervous system tumor survivors (CCNSTS) are at risk for adverse health issues. Little research has been conducted to explore the role of parental factors in weight management to mitigate adverse health outcomes. We conducted 9 group interviews (n=20) with CCNSTS, their parents, and health care providers to ascertain parental factors that may influence weight management practices in CCNSTS. Three main themes were identified: parenting style, parent-child connectedness, and food and physical activity (PA) environment. Although most parents adopted an authoritative parenting style related to diet and PA practices, some adopted a permissive parenting style. Participants expressed high levels of connection that may hinder the development of peer relationships and described the food and PA environments that promote or hinder weight management through parental modeling of healthy eating and PA and access to healthy food and activities. Weight management interventions for CCNSTS may experience greater benefit from using a family-focused approach, promoting positive food and PA environments, parental modeling of healthy eating and exercise, and partnering with youth to adopt weight management behaviors. PMID:24608701

  19. Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age.

    Science.gov (United States)

    Karama, S; Bastin, M E; Murray, C; Royle, N A; Penke, L; Muñoz Maniega, S; Gow, A J; Corley, J; Valdés Hernández, M del C; Lewis, J D; Rousseau, M-É; Lepage, C; Fonov, V; Collins, D L; Booth, T; Rioux, P; Sherif, T; Adalat, R; Starr, J M; Evans, A C; Wardlaw, J M; Deary, I J

    2014-05-01

    Associations between brain cortical tissue volume and cognitive function in old age are frequently interpreted as suggesting that preservation of cortical tissue is the foundation of successful cognitive aging. However, this association could also, in part, reflect a lifelong association between cognitive ability and cortical tissue. We analyzed data on 588 subjects from the Lothian Birth Cohort 1936 who had intelligence quotient (IQ) scores from the same cognitive test available at both 11 and 70 years of age as well as high-resolution brain magnetic resonance imaging data obtained at approximately 73 years of age. Cortical thickness was estimated at 81 924 sampling points across the cortex for each subject using an automated pipeline. Multiple regression was used to assess associations between cortical thickness and the IQ measures at 11 and 70 years. Childhood IQ accounted for more than two-third of the association between IQ at 70 years and cortical thickness measured at age 73 years. This warns against ascribing a causal interpretation to the association between cognitive ability and cortical tissue in old age based on assumptions about, and exclusive reference to, the aging process and any associated disease. Without early-life measures of cognitive ability, it would have been tempting to conclude that preservation of cortical thickness in old age is a foundation for successful cognitive aging when, instead, it is a lifelong association. This being said, results should not be construed as meaning that all studies on aging require direct measures of childhood IQ, but as suggesting that proxy measures of prior cognitive function can be useful to take into consideration.

  20. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy

    Science.gov (United States)

    Ji, Minbiao; Orringer, Daniel A.; Freudiger, Christian W.; Ramkissoon, Shakti; Liu, Xiaohui; Lau, Darryl; Golby, Alexandra J.; Norton, Isaiah; Hayashi, Marika; Agar, Nathalie Y.R.; Young, Geoffrey S.; Spino, Cathie; Santagata, Sandro; Camelo-Piragua, Sandra; Ligon, Keith L.; Sagher, Oren; Xie, X. Sunney

    2013-01-01

    Surgery is an essential component in the treatment of brain tumors. However, delineating tumor from normal brain remains a major challenge. Here we describe the use of stimulated Raman scattering (SRS) microscopy for differentiating healthy human and mouse brain tissue from tumor-infiltrated brain based on histoarchitectural and biochemical differences. Unlike traditional histopathology, SRS is a label-free technique that can be rapidly performed in situ. SRS microscopy was able to differentiate tumor from non-neoplastic tissue in an infiltrative human glioblastoma xenograft mouse model based on their different Raman spectra. We further demonstrated a correlation between SRS and H&E microscopy for detection of glioma infiltration (κ=0.98). Finally, we applied SRS microscopy in vivo in mice during surgery to reveal tumor margins that were undetectable under standard operative conditions. By providing rapid intraoperative assessment of brain tissue, SRS microscopy may ultimately improve the safety and accuracy of surgeries where tumor boundaries are visually indistinct. PMID:24005159

  1. METASTASIS AND TUMOR RECURRENCE FROM RARE SOX9-POSITIVE CELLS IN MYCN-DRIVEN MEDULLOBLASTOMA

    OpenAIRE

    Swartling, Fredrik J; Savov, Vasil; Čančer, Matko; Bolin, Sara; Fotaki, Grammatiki; Dubuc, Adrian; Remke, Marc; Ramaswamy, Vijay; Weishaupt, Holger; Taylor, Michael D.

    2014-01-01

    BACKGROUND: Tumor recurrence is the main cause of death for children with medulloblastoma, the most common malignant childhood brain tumor. The MYCN oncogene is a poor prognosis marker and is amplified in the molecularly defined SHH and Group 4 subgroups but rarely in WNT and Group 3 subgroups of human medulloblastoma. Recent findings on childhood brain tumor relapse mechanisms suggest spatiotemporal differences within these four subgroups. SOX9 is a transcription factor that is important for...

  2. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    Energy Technology Data Exchange (ETDEWEB)

    Hartford, Alan C., E-mail: Alan.C.Hartford@Hitchcock.org [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Paravati, Anthony J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Spire, William J. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Li, Zhongze [Biostatistics Shared Resource, Norris Cotton Cancer Center, Lebanon, New Hampshire (United States); Jarvis, Lesley A. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Fadul, Camilo E. [Section of Hematology/Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Rhodes, C. Harker [Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Erkmen, Kadir [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Friedman, Jonathan [Department of Surgery, Texas A and M College of Medicine, College Station, Texas (United States); Gladstone, David J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Hug, Eugen B. [ProCure, New York, New York (United States); Roberts, David W.; Simmons, Nathan E. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States)

    2013-03-01

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, for time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for tumors up to

  3. A review of endocrine late effects in children after brain tumor therapy; Endokrinologische Funktionsstoerungen nach Hirntumortherapie im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Marx, M.; Langer, T.; Beck, J.D.; Doerr, H.G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Kinderklinik mit Poliklinik

    1999-07-01

    Background: Advances in the therapy of malignant brain tumors in children have led to a significant improvement in survival rates over the last few decades. As a result, the recognition and treatment of late effects have become more important. In addition to secondary tumors and deficiencies in cognitive and intellectual skills, the resulting endocrine disturbances play an important role. Method: Own data and literature review. Results: Deviations from the normal growth hormone secretion are usually recognized first and are most common, and have already been observed after conventional whole brain irradiation with 18 G. With some delay, other hypothalamopituitary deficiencies may occur, including panhypopituitarism. Puberty may come too early or too late or may not appear at all. Girls in particular, frequently experience an early and rapid pubertal development after brain tumor therapy, which may lead to further reduction in height due to an accelerated bone maturation. Functional disturbances of the thyroid and adrenal glands due to hypothalamic or pituitary deficiency are less common, and usually seen only after a radiation dose of over 40 Gy. Conclusion: Survivors of childhood brain tumors must be considered as long-term survivors, in whom the first therapy-induced long-term side effects appear almost immediately after the end of therapy. Maximum quality of life for the individual patient can only be achieved by long-term care and close cooperation of specialists in the different medical disciplines involved. (orig.) [Deutsch] Hintergrund: Fortschritte in der Therapie maligner Hirntumoren im Kindesalter haben in den letzten Jahrzehnten zu einer deutlichen Verbesserung der Ueberlebensraten gefuehrt. Daher kommt dem Erkennen therapiebedingter Spaetfolgen zunehmend eine Bedeutung zu. Neben Zweittumoren, kognitiven und intellektuellen Einbussen spielen hormonelle Folgestoerungen eine bedeutende Rolle. Methode: Eigene Erfahrungen und Literaturrecherche. Ergebnisse

  4. Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: application to brain tumors.

    Science.gov (United States)

    Miladi, Imen; Duc, Géraldine Le; Kryza, David; Berniard, Aurélie; Mowat, Pierre; Roux, Stéphane; Taleb, Jacqueline; Bonazza, Pauline; Perriat, Pascal; Lux, François; Tillement, Olivier; Billotey, Claire; Janier, Marc

    2013-09-01

    Gadolinium-based nanoparticles are novel objects with interesting physical properties, allowing their use for diagnostic and therapeutic applications. Gadolinium-based nanoparticles were imaged following intravenous injection in healthy rats and rats grafted with 9L gliosarcoma tumors using magnetic resonance imaging and scintigraphic imaging. Quantitative biodistribution using gamma-counting of each sampled organ confirmed that these nanoparticles were rapidly cleared essentially by renal excretion. Accumulation of these nanoparticles in 9L gliosarcoma tumors implanted in the rat brain was quantitated. This passive and long-duration accumulation of gadolinium-based nanoparticles in tumor, which is related to disruption of the blood-brain barrier, is in good agreement with the use of these nanoparticles as radiosensitizers for brain tumors.

  5. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI).

    Science.gov (United States)

    Panigrahy, Ashok; Blüml, Stefan

    2009-11-01

    In this review, the basic magnetic resonance concepts used in the imaging approach of a pediatric brain tumor are described with respect to different factors including understanding the significance of the patient's age. Also discussed are other factors directly related to the magnetic resonance scan itself including evaluating the location of the tumor, determining if the lesion is extra-axial or intra-axial, and evaluating the contrast characteristics of the lesion. Of note, there are key imaging features of pediatric brain tumors, which can give information about the cellularity of the lesion, which can then be confirmed with advanced magnetic resonance imaging (MRI) techniques. The second part of this review will provide an overview of the major advanced MRI techniques used in pediatric imaging, particularly, magnetic resonance diffusion, magnetic resonance spectroscopy, and magnetic resonance perfusion. The last part of the review will provide more specific information about the use of advanced magnetic resonance techniques in the evaluation of pediatric brain tumors.

  6. Stem cell-based therapies for tumors in the brain: are we there yet?

    Science.gov (United States)

    Shah, Khalid

    2016-08-01

    Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation. PMID:27282399

  7. TTF-1 may not be a Reliable Marker for Differentiating Metastasis from Brain Tumors

    Directory of Open Access Journals (Sweden)

    Betül ÜNAL

    2014-09-01

    Full Text Available Objective: TTF-1 is widely used as an immunohistochemical marker of lung and thyroid tumors. However, TTF-1 expression has been described in tumors from other sites. The presence of TTF-1 expression in primary brain tumors is largely unclear and has not been clearly specified yet. We characterized expression of two TTF-1 clones in primary brain tumors with relevance to tumor types and grades. Material and Method: We studied immunohistochemistry with tissue micro-array, using both clones (8G7G3/1 and SPT24 in 45 primary brain tumors of different types and grades. Our cases consisted of 1 grade I, 7 grade II, 4 grade III, 20 grade IV astrocytic tumors; 9 meningiomas, 2 oligodendrogliomas, 1 schwannoma and 1 medulloblastoma. Results: We have found TTF-1 nuclear staining using the SPT24 clone in 4 cases (3 cases were grade IV and 1 was grade III. Focal and weak staining was seen in three cases and moderate-strong and diffuse staining was seen in one case. All the tumors were negative with clone 8G7G3/1. Clone SPT24 was more sensitive but less specific. Conclusion: TTF-1 can also be expressed in primary brain tumors, particularly grade III to IV tumors. TTF-1 expression was a rare finding in previous studies, however strong and diffuse staining was not observed until today. We think that TTF-1 nuclear expression in high-grade astrocytic tumors cannot rule out primaries even when diffuse and strong staining. Clinical and pathological parameters should be evaluated together.

  8. Detection of Hypoxia in Human Brain Tumor Xenografts Using a Modified Comet Assay

    Directory of Open Access Journals (Sweden)

    Jingli Wang

    2003-07-01

    Full Text Available We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U251 MG cells were grown as subcutaneous tumors in athymic mice; U251 MG and U87 MG cells were grown as intracerebral (i.c. tumors in athymic rats. Animals were injected with RSU 1069, irradiated, and euthanized. Tumors and normal brains were removed, and the cells were analyzed using a modified comet assay. Differences in comet tail moment distributions between tumor and contralateral normal brain, using tail moments at either the 25th or 50th percentile in each distribution, were taken as measures of the degree of tumor hypoxia. For U251 MG tumors, there was a positive relationship between tumor size and the degree of hypoxia, whereas preliminary data from U87 MG i.c. tumors showed less hypoxia and no apparent relationship between tumor size and hypoxia.

  9. Pathophysiological aspects of malignant brain tumors studied with positron emission tomography

    International Nuclear Information System (INIS)

    To further understand the control of brain tumor fluid balance and pH, the following studies were undertaken. The transport of a water soluble molecule across the brain and tumor capillary endothelium was studied during glucocorticoid and radiation treatment. The brain and brain-tumor acidity (pH) was evaluated as a single measurement in patients receiving a low maintenance dose of glucocorticoid. Transport changes and pH were measured in 61 patients with cerebral tumors using 82Rubidium (82Rb) and 11C-Dimethyloxa-zolidindione (11C-DMO), respectively, and Positron Emission Tomography (PET). Supplementary studies of tumor and contralateral brain blood flow and blood volume using the C15O2/PET and C15O/PET technique, respectively, were included to validate the 82Rb/PET model and obtain further information. A total of 125 PET scans were performed. Supplementary studies were undertaken to estimate delay of blood registration and form distribution of arterial blood isotope activity curves. Blood-to-tumor barrier transport was outlined at baseline and at 6 and 24 hours after the start of glucocorticoid treatment, finding a significant decrease in the transpfort. Radiation treatment (2-6 gray) did not alter the blood-to-tumor barrier transport when restudied within one hour in patients receiving glucocorticoid. The pH in brain tumors was as high as 6.88-7.26, suggesting that tumors are more alkalotic than the normal brain. The permeability surface area product and the permeability coefficient were determined form the 82Rb/PET transport and C15O2/PET flow studies. Baseline permeability values were comparable to the literature values both for 82Rb and potassium. No difference in tissue blood volume was seen between 82Rb/PET and C15O/PET models and was of the same magnitude in the tumor and the contralateral tissue. Aspects of tumor alkalosis, tumor edema production, glucocorticoid edema clearance, and relationship between the anti-edema effect of glucocorticoid and the

  10. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Joel, D.D. [Brookhaven National Laboratory, Medical Department, Upton, NY (United States); Morris, G.M. [University of Oxford, Research Institute, Oxford (United Kingdom)

    2000-10-01

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED{sub 50}) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  11. A Comparison of Two Human Brain Tumor Segmentation Methods for MRI Data

    CERN Document Server

    Egger, Jan; Bauer, Miriam H A; Kuhnt, Daniela; Carl, Barbara; Freisleben, Bernd; Kolb, Andreas; Nimsky, Christopher

    2011-01-01

    The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the preoperative tumor volume is essential. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming process that can be overcome with the help of computerized segmentation methods. In this contribution, two methods for World Health Organization (WHO) grade IV glioma segmentation in the human brain are compared using magnetic resonance imaging (MRI) patient data from the clinical routine. One method uses balloon inflation forces, and relies on detection of high intensity tumor boundaries that are coupled with the use of contrast agent gadolinium. The other method sets up a directed and weighted graph and performs a min-cut for optimal segmentation results. The ground truth of the tumor boundaries - for evaluating the methods on 27 cases - is manually extracted by neurosurgeons with several years of experience in the resection of glio...

  12. Novel Polyomavirus associated with Brain Tumors in Free-Ranging Raccoons, Western United States

    Science.gov (United States)

    Dela Cruz, Florante N.; Giannitti, Federico; Li, Linlin; Woods, Leslie W.; Del Valle, Luis; Delwart, Eric

    2013-01-01

    Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010–May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons. PMID:23260029

  13. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED50) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  14. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient.

    Directory of Open Access Journals (Sweden)

    Ninette Amariglio

    2009-02-01

    Full Text Available BACKGROUND: Neural stem cells are currently being investigated as potential therapies for neurodegenerative diseases, stroke, and trauma. However, concerns have been raised over the safety of this experimental therapeutic approach, including, for example, whether there is the potential for tumors to develop from transplanted stem cells. METHODS AND FINDINGS: A boy with ataxia telangiectasia (AT was treated with intracerebellar and intrathecal injection of human fetal neural stem cells. Four years after the first treatment he was diagnosed with a multifocal brain tumor. The biopsied tumor was diagnosed as a glioneuronal neoplasm. We compared the tumor cells and the patient's peripheral blood cells by fluorescent in situ hybridization using X and Y chromosome probes, by PCR for the amelogenin gene X- and Y-specific alleles, by MassArray for the ATM patient specific mutation and for several SNPs, by PCR for polymorphic microsatellites, and by human leukocyte antigen (HLA typing. Molecular and cytogenetic studies showed that the tumor was of nonhost origin suggesting it was derived from the transplanted neural stem cells. Microsatellite and HLA analysis demonstrated that the tumor is derived from at least two donors. CONCLUSIONS: This is the first report of a human brain tumor complicating neural stem cell therapy. The findings here suggest that neuronal stem/progenitor cells may be involved in gliomagenesis and provide the first example of a donor-derived brain tumor. Further work is urgently needed to assess the safety of these therapies.

  15. Comparison of brain activation to purposefully activate a tool in healthy subjects and brain tumor patients using fMRI

    International Nuclear Information System (INIS)

    The purpose of this study was to determine the functional organization of the human brain involved in tool-manipulation. Blood Oxygen Level Dependent was measured by functional magnetic resonance imaging in seventeen right-handed healthy volunteers and two brain tumor patients during two tool-manipulation tasks: simulated tightening a bolt with a screwdriver (Simulation), and tightening a bolt with a screwdriver (Real). Subjects performed the experiment without watching the tasks. Bilateral pre-supplementary motor areas, bilateral cerebellar posterior lobes, right ventral premotor area, right calcarine sulcus, and cerebellar vermis were activated during Real but not during Simulation tasks in healthy volunteers. In addition, brain tumor patients activated the prefrontal areas. Our results suggest that the human brain mechanisms for tool-manipulation have a neural-network comprised of presupplementary motor area, ventral premotor area, and bilateral cerebellar posterior lobes. In the patients with brain dusfurction diee to tumors, activation at the prefrontal area provided function compensation without motor paralysis. (author)

  16. Diffusion tensor magnetic resonance imaging of glial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri, E-mail: ferda@fnplzen. [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Kastner, Jan [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Mukensnabl, Petr [Sikl' s Institute of Pathological Anatomy, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Choc, Milan [Department of Neurosurgery, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Horemuzova, Jana; Ferdova, Eva; Kreuzberg, Boris [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic)

    2010-06-15

    Aim: To evaluate the author's experience with the use of diffusion tensor magnetic resonance imaging (DTI) on patients with glial tumors. Methods: A retrospective evaluation of a group of 24 patients with glial tumors was performed. There were eight patients with Grade II, eight patients with Grade III and eight patients with Grade IV tumors with a histologically proven diagnosis. All the patients underwent routine imaging including T2 weighted images, multidirectional diffusion weighted imaging (measured in 60 non-collinear directions) and T1 weighted non-enhanced and contrast enhanced images. The imaging sequence and evaluation software were produced by Massachusetts General Hospital Corporation (Boston, MA, USA). Fractional anisotropy (FA) maps were calculated in all patients. The white matter FA changes were assessed within the tumorous tissue, on the tumorous borderline and in the normally appearing white matter adjacent to the tumor. A three-dimensional model of the white matter tract was created to demonstrate the space relationship of the tumor and the capsula interna or corpus callosum in each case using the following fiber tracing parameters: FA step 0.25 and a tensor declination angle of 45 gr. An additional assessment of the tumorous tissue enhancement was performed. Results: A uniform homogenous structure with sharp demargination of the Grade II tumors and the wide rim of the intermedial FA in all Grade III tumors respectively, were found during the evaluation of the FA maps. In Grade IV tumors a variable demargination was noted on the FA maps. The sensitivity and specificity for the discrimination of low- and high-grade glial tumors using FA maps was revealed to be 81% and 87% respectively. If the evaluation of the contrast enhancement was combined with the evaluation of the FA maps, both sensitivity and specificity were 100%. Conclusion: Although the evaluation of the fractional anisotropy maps is not sufficient for glioma grading, the

  17. Imaging in Pediatric Infratentorial Tumors

    Directory of Open Access Journals (Sweden)

    S. Hajiahmadi

    2008-01-01

    Full Text Available Intracranial tumors are the second cause of malignancies in childhood following leukemia. The overall incidence varies between 1:20000 and 1:100000 in different series. They are the most common solid tumors that occur in childhood .The most important diagnostic feature of an intracranial mass is its location. They can be supratentorial or infratentorial. With the exception of the first year of life, infratentorial brain tumors are more frequent than supratentorial tumors in the first decade of life. In particular, these are cerebellar low-grade astrocytomas, medulloblastomas, brain stem gliomas and ependymomas of the fourth ventricle. .Posterior fossa tumors also are readily identified with both CT and MRI. Spectroscopy in the analysis of brain tumors has recently come on the scene but may be of limited practical value when it comes to differentiating tumors. However, CT and especially MRI are the primary imaging modalities for the investigation of brain tumors. Sonography can be used in the neonates. With modern imaging, it is relatively easy to detect the presence of a tumor in most patients. The purpose of this essay is to illustrate the imaging features of various infratentorial brain tumors to make a clue for differentiation them by these features.

  18. Brain SPECT in childhood; Temp cerebrale chez l'enfant

    Energy Technology Data Exchange (ETDEWEB)

    Tranquart, F.; Saliba, E.; Prunier, C.; Baulieu, F.; Besnard, J.C.; Guilloteau, D.; Baulieu, J.L. [Hopital Bretonneau, Service de Medecine Nucleaire, Unite Inserm 316, 37 - Tours (France)

    2001-04-01

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  19. Application of 3{sup 1P} MR spectroscopy to the brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Dong Ho; Choi, Sun Seob; Oh, Jong Young; Yoon, Seong Kuk; Kang, Myong Jin; Kim, Ki Uk [College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2013-06-15

    To evaluate the clinical feasibility and obtain useful parameters of 3{sup 1P} magnetic resonance spectroscopy (MRS) study for making the differential diagnosis of brain tumors. Twenty-eight patients with brain tumorous lesions (22 cases of brain tumor and 6 cases of abscess) and 11 normal volunteers were included. The patients were classified into the astrocytoma group, lymphoma group, metastasis group and the abscess group. We obtained the intracellular pH and the metabolite ratios of phosphomonoesters/phosophodiesters (PME/PDE), PME/inorganic phosphate (Pi), PDE/Pi, PME/adenosine triphosphate (ATP), PDE/ATP, PME/phosphocreatine (PCr), PDE/PCr, PCr/ATP, PCr/Pi, and ATP/Pi, and evaluated the statistical significances. The brain tumors had a tendency of alkalization (pH = 7.28 ± 0.27, p = 0.090), especially the pH of the lymphoma was significantly increased (pH = 7.45 ± 0.32, p = 0.013). The brain tumor group showed increased PME/PDE ratio compared with that in the normal control group (p 0.012). The ratios of PME/PDE, PDE/Pi, PME/PCr and PDE/PCr showed statistically significant differences between each brain lesion groups (p < 0.05). The astrocytoma showed an increased PME/PDE and PME/PCr ratio. The ratios of PDE/Pi, PME/PCr, and PDE/PCr in lymphoma group were lower than those in the control group and astrocytoma group. The metastasis group showed an increased PME/PDE ratio, compared with that in the normal control group. We have obtained the clinically applicable 3{sup 1}'P MRS, and the pH, PME/PDE, PDE/Pi, PME/PCr, and PDE/PCr ratios are helpful for differentiating among the different types of brain tumors.

  20. Numerical modelling and in vivo analysis of fluorescent and laser light backscattered from glial brain tumors

    Science.gov (United States)

    Savelieva, Tatiana A.; Kalyagina, Nina A.; Kholodtsova, Maria N.; Loschenov, Victor B.; Goryainov, Sergey A.; Potapov, Aleksander A.

    2012-03-01

    Brain glial tumors have peculiar features of the perifocal region extension, characterized by its indistinct area, which complicates determination of the borders for tissue resection. In the present study filter-reduced back-scattered laser light signals, compared to the data from mathematical modeling, were used for description of the brain white matter. The simulations of the scattered light distributions were performed in a Monte Carlo program using scattering and absorption parameters of the different grades of the brain glial tumors. The parameters were obtained by the Mie calculations for three main types of scatterers: myelinated axon fibers, cell nuclei and mitochondria. It was revealed that diffuse-reflected light, measured at the perifocal areas of the glial brain tumors, shows a significant difference relative to the signal, measured at the normal tissue, which signifies the possibility to provide diagnostically useful information on the tissue state, and to determine the borders of the tumor, thus to reduce the recurrence appearance. Differences in the values of ratios of diffuse reflectance from active growth parts of tumors and normal white matter can be useful for determination of the degree of tumor progress during the spectroscopic analysis.

  1. Glioblastoma, brain metastases and soft tissue sarcoma of extremities: Candidate tumors for BNCT

    International Nuclear Information System (INIS)

    10B-concentration ratios between human glioblastoma multiforme (U87MG), sarcoma (S3) and melanoma (MV3) xenografted in nu/nu mice and selected normal tissues were investigated to test for preferential 10B-accumulation. Animals received BSH, BPA or both compounds sequentially. Mean 10B-concentration ratios between tumor and normal tissues above 2 were found indicating therapeutic ratios. In addition to glioblastoma, brain metastases and soft tissue sarcoma appear to be promising targets for future BNCT research. - Highlights: • BSH leads to high 10B concentration ratios between sarcoma, muscle and brain as well as between glioblastoma and brain. • The 10B concentration in tumors is quite low as is the 10B concentration ratio between tumors and blood. • BPA-f leads to 10B accumulation in tumors relative to blood and advantageous absolute 10B concentrations in tumors. • The 10B concentration ratios between tumors and brain and sarcoma and muscle, are modest. • The advantage of the sequential injection of both compounds is an enhanced intratumoral 10B concentration

  2. Visualization of brain tumor using I-123-vascular endothelial growth factor scintigraphy

    International Nuclear Information System (INIS)

    Full text: Aim:Vascular endothelial growth factor (VEGF) is a major angiogenic factor. VEGF receptors have been shown to be overexpressed in a variety of tumor vessels including glioblastoma, which may provide the molecular basis for a successful use of radiolabeled VEGF as tumor angiogenesis tracer. In this study we investigated the usefulness of 1231- VEGF as angiogenesis tracer for imaging brain tumors in vivo. Methods and Results: SPECT examinations were performed 30 minutes and 18 hours after intravenous application of 1231-VEGF (191 ± 15 MBq) in 20 patients with brain tumor. Glioblastomas were visualized in 7 of 8 patients (88 %) shortly after application of 1231- VEGF and were still clearly shown 18 hours post injection. Negative scan results were obtained in one patient with a small glioblastoma size (diameter <2.0 cm) and in 3 patients with benign glioma as well as in 5 patients with glioblastoma after receiving radiotherapy and for chemotherapy. Weak positive results were obtained in 3 patients with brain lymphoma or other tumors. No side effects were observed in patients after administration of 1231- VEG F. Conclusion: Our results indicate that 1231- VEGF scintigraphy may be useful to visualize the angiogenesis of brain tumors and to monitor the treatment response.

  3. Application Of Fuzzy System In Segmentation Of MRI Brain Tumor

    CERN Document Server

    Rajya, Mrigank; Sheoran, Swati

    2010-01-01

    Segmentation of images holds an important position in the area of image processing. It becomes more important whi le typically dealing with medical images where presurgery and post surgery decisions are required for the purpose of initiating and speeding up the recovery process. Segmentation of 3-D tumor structures from magnetic resonance images (MRI) is a very challenging problem due to the variability of tumor geometry and intensity patterns. Level set evolution combining global smoothness with the flexibility of topology changes offers significant advantages over the conventional statistical classification followed by mathematical morphology. Level set evolution with constant propagation needs to be initialized either completely inside or outside the tumor and can leak through weak or missing boundary parts. Replacing the constant propagation term by a statistical force overcomes these limitations and results in a convergence to a stable solution. Using MR images presenting tumors, probabilities for backgr...

  4. Irinotecan in Treating Children With Refractory Solid Tumors

    Science.gov (United States)

    2013-06-13

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Previously Treated Childhood Rhabdomyosarcoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Neuroblastoma; Recurrent Osteosarcoma; Unspecified Childhood Solid Tumor, Protocol Specific

  5. Targeting brain tumor cAMP: the case for sex-specific therapeutics

    Directory of Open Access Journals (Sweden)

    Nicole M Warrington

    2015-07-01

    Full Text Available A relationship between cyclic adenosine 3’, 5’-monophosphate (cAMP levels and brain tumor biology has been evident for nearly as long as cAMP and its synthetase, adenylate cyclase (ADCY have been known. The importance of the pathway in brain tumorigenesis has been demonstrated in vitro and in multiple animal models. Recently, we provided human validation for a cooperating oncogenic role for cAMP in brain tumorigenesis when we found that SNPs in ADCY8 were correlated with glioma (brain tumor risk in individuals with Neurofibromatosis type 1 (NF1. Together, these studies provide a strong rationale for targeting cAMP in brain tumor therapy. However, the cAMP pathway is well known to be sexually dimorphic, and SNPs in ADCY8 affected glioma risk in a sex-specific fashion, elevating the risk for females while protecting males. The cAMP pathway can be targeted at multiple levels in the regulation of its synthesis and degradation. Sex differences in response to drugs that target cAMP regulators indicate that successful targeting of the cAMP pathway for brain tumor patients is likely to require matching specific mechanisms of drug action with patient sex.

  6. Brain Tumor Detection Based on Bilateral Symmetry Information

    OpenAIRE

    Sachin, Narkhede; Shah, Deven; Khairnar, Vaishali; Kadu, Sujata

    2014-01-01

    Advances in computing technology have allowed researchers across many fields of endeavor to collect and maintain vast amounts of observational statistical data such as clinical data,biological patient data,data regarding access of web sites,financial data,and the like.Brain Magnetic Resonance Imaging(MRI)segmentation is a complex problem in the field of medical imaging despite various presented methods.MR image of human brain can be divided into several sub regions especially soft tissues suc...

  7. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future.

    Science.gov (United States)

    Mao, Xiao-Yuan; Dai, Jin-Xiang; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-05-31

    Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors.

  8. Use of in vivo proton MR spectroscopy to monitor the response of brain tumors to radiation therapy

    International Nuclear Information System (INIS)

    This paper compares the differences in proton MR spectra between normal brain and brain tumors as they respond to radiation therapy. The MESA three-dimensional technique was used to acquire proton MR spectra on five volunteers of five brain tumor patients undergoing radiation treatment. The brain tumor patients underwent MR spectroscopy before, twice during, and after treatment. All patients and volunteers underwent MR imaging to localize the spectroscopy voxels. The area of the brain imaged in each patient was matched by a similar area in a volunteer. The spectra were analyzed to determine the peak heights and peak height ratios of the metabolites choline, creatine, lactate, and NAA

  9. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kato, Y.; Holm, David Alberg; Okollie, B.;

    2010-01-01

    MG human brain cancer. Dynamic magnetic resonance imaging (MRI) with the low-molecular-weight contrast agent, gadolinium diethylenetriaminepentaacetic acid (GdDTPA), was used to evaluate tumor vascular parameters. Carbon-13-labeled TMZ ([C-13]TMZ, 99%) was intraperitoneally administered at a dose...... experiments demonstrated slower recovery of MRI signal following an intravenous bolus injection of GdDTPA, higher vascular flow and volume obtained by T-2*-weighted MRI, as well as enhanced uptake of the contrast agent in the brain tumor compared with normal brain detected by T-1-weighted MRI. These data...... detection of drug directly in the tumor can be critically important for accessing, predicting, and eventually improving effectiveness of therapy. In this study, in vivo magnetic resonance spectroscopy (MRS) was used to detect an anticancer agent, temozolomide (TMZ), in vivo in murine xenotransplants of U87...

  10. Detection of Brain Tumor and Extraction of Texture Features using Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Prof. Dilip Kumar Gandhi

    2012-10-01

    Full Text Available Brain Cancer Detection system is designed. Aim of this paper is to locate the tumor and determine the texture features from a Brain Cancer affected MRI. A computer based diagnosis is performed in order to detect the tumors from given Magnetic Resonance Image. Basic image processing techniques are used to locate the tumor region. Basic techniques consist of image enhancement, image bianarization, and image morphological operations. Texture features are computed using the Gray Level Co-occurrence Matrix. Texture features consists of five distinct features. Selective features or the combination of selective features will be used in the future to determine the class of the query image. Astrocytoma type of Brain Cancer affected images are used only for simplicity

  11. Atlas to patient registration with brain tumor based on a mesh-free method.

    Science.gov (United States)

    Diaz, Idanis; Boulanger, Pierre

    2015-08-01

    Brain atlas to patient registration in the presence of tumors is a challenging task because its presence cause brain structure deformations and introduce large intensity variation between the affected areas. This large dissimilarity affects the results of traditional registration methods based on intensity or shape similarities. In order to overcome these problems, we propose a novel method that brings closer the atlas and the patient's image by simulating the mechanical behavior of brain deformation under a tumor pressure. The proposed method use a mesh-free total Lagrangian Explicit Dynamic algorithm for the simulation of atlas deformation and a data driven model of the tumor using multi-modal MRI segmentation. Experimental results look structurally very similar to the patient's image and outperform two of the top ranking algorithms.

  12. Optically enhanced blood-brain-barrier crossing of plasmonic-active nanoparticles in preclinical brain tumor animal models

    Science.gov (United States)

    Yuan, Hsiangkuo; Wilson, Christy M.; Li, Shuqin; Fales, Andrew M.; Liu, Yang; Grant, Gerald; Vo-Dinh, Tuan

    2014-02-01

    Nanotechnology provides tremendous biomedical opportunities for cancer diagnosis, imaging, and therapy. In contrast to conventional chemotherapeutic agents where their actual target delivery cannot be easily imaged, integrating imaging and therapeutic properties into one platform facilitates the understanding of pharmacokinetic profiles, and enables monitoring of the therapeutic process in each individual. Such a concept dubbed "theranostics" potentiates translational research and improves precision medicine. One particular challenging application of theranostics involves imaging and controlled delivery of nanoplatforms across blood-brain-barrier (BBB) into brain tissues. Typically, the BBB hinders paracellular flux of drug molecules into brain parenchyma. BBB disrupting agents (e.g. mannitol, focused ultrasound), however, suffer from poor spatial confinement. It has been a challenge to design a nanoplatform not only acts as a contrast agent but also improves the BBB permeation. In this study, we demonstrated the feasibility of plasmonic gold nanoparticles as both high-resolution optical contrast agent and focalized tumor BBB permeation-inducing agent. We specifically examined the microscopic distribution of nanoparticles in tumor brain animal models. We observed that most nanoparticles accumulated at the tumor periphery or perivascular spaces. Nanoparticles were present in both endothelial cells and interstitial matrices. This study also demonstrated a novel photothermal-induced BBB permeation. Fine-tuning the irradiating energy induced gentle disruption of the vascular integrity, causing short-term extravasation of nanomaterials but without hemorrhage. We conclude that our gold nanoparticles are a powerful biocompatible contrast agent capable of inducing focal BBB permeation, and therefore envision a strong potential of plasmonic gold nanoparticle in future brain tumor imaging and therapy.

  13. The long-term side effects of radiation therapy for benign brain tumors in adults

    Energy Technology Data Exchange (ETDEWEB)

    al-Mefty, O.; Kersh, J.E.; Routh, A.; Smith, R.R. (Univ. of Mississippi Medical Center, Jackson (USA))

    1990-10-01

    Radiation therapy plays an integral part in managing intracranial tumors. While the risk:benefit ratio is considered acceptable for treating malignant tumors, risks of long-term complications of radiotherapy need thorough assessment in adults treated for benign tumors. Many previously reported delayed complications of radiotherapy can be attributed to inappropriate treatment or to the sensitivity of a developing child's brain to radiation. Medical records, radiological studies, autopsy findings, and follow-up information were reviewed for 58 adult patients (31 men and 27 women) treated between 1958 and 1987 with radiotherapy for benign intracranial tumors. Patient ages at the time of irradiation ranged from 21 to 87 years (mean 47.7 years). The pathology included 46 pituitary adenomas, five meningiomas, four glomus jugulare tumors, two pineal area tumors, and one craniopharyngioma. Average radiation dosage was 4984 cGy (range 3100 to 7012 cGy), given in an average of 27.2 fractions (range 15 to 45 fractions), over a period averaging 46.6 days. The follow-up period ranged from 3 to 31 years (mean 8.1 years). Findings related to tumor recurrence or surgery were excluded. Twenty-two patients had complications considered to be delayed side effects of radiotherapy. Two patients had visual deterioration developing 3 and 6 years after treatment; six had pituitary dysfunction; and 17 had varying degrees of parenchymal changes of the brain, occurring mostly in the temporal lobes and relating to the frequent presentation of pituitary tumors. One clival tumor with the radiographic appearance of a meningioma, developed 30 years post-irradiation for acromegaly. This study unveils considerable delayed sequelae of radiotherapy in a series of adult patients receiving what is considered safe treatment for benign brain tumors. 163 refs.

  14. The long-term side effects of radiation therapy for benign brain tumors in adults.

    Science.gov (United States)

    al-Mefty, O; Kersh, J E; Routh, A; Smith, R R

    1990-10-01

    Radiation therapy plays an integral part in managing intracranial tumors. While the risk:benefit ratio is considered acceptable for treating malignant tumors, risks of long-term complications of radiotherapy need thorough assessment in adults treated for benign tumors. Many previously reported delayed complications of radiotherapy can be attributed to inappropriate treatment or to the sensitivity of a developing child's brain to radiation. Medical records, radiological studies, autopsy findings, and follow-up information were reviewed for 58 adult patients (31 men and 27 women) treated between 1958 and 1987 with radiotherapy for benign intracranial tumors. Patient ages at the time of irradiation ranged from 21 to 87 years (mean 47.7 years). The pathology included 46 pituitary adenomas, five meningiomas, four glomus jugulare tumors, two pineal area tumors, and one craniopharyngioma. Average radiation dosage was 4984 cGy (range 3100 to 7012 cGy), given in an average of 27.2 fractions (range 15 to 45 fractions), over a period averaging 46.6 days. The follow-up period ranged from 3 to 31 years (mean 8.1 years). Findings related to tumor recurrence or surgery were excluded. Twenty-two patients had complications considered to be delayed side effects of radiotherapy. Two patients had visual deterioration developing 3 and 6 years after treatment; six had pituitary dysfunction; and 17 had varying degrees of parenchymal changes of the brain, occurring mostly in the temporal lobes and relating to the frequent presentation of pituitary tumors (two of these also had pituitary dysfunction). One clival tumor with the radiographic appearance of a meningioma, developed 30 years post-irradiation for acromegaly. This study unveils considerable delayed sequelae of radiotherapy in a series of adult patients receiving what is considered "safe" treatment for benign brain tumors.

  15. Effects of Irradiation on Brain Vasculature Using an In Situ Tumor Model

    International Nuclear Information System (INIS)

    Purpose: Damage to normal tissue is a limiting factor in clinical radiotherapy (RT). We tested the hypothesis that the presence of tumor alters the response of normal tissues to irradiation using a rat in situ brain tumor model. Methods and Materials: Intravital microscopy was used with a rat cranial window to assess the in situ effect of rat C6 glioma on peritumoral tissue with and without RT. The RT regimen included 40 Gy at 8 Gy/day starting Day 5 after tumor implant. Endpoints included blood–brain barrier permeability, clearance index, leukocyte-endothelial interactions and staining for vascular endothelial growth factor (VEGF) glial fibrillary acidic protein, and apoptosis. To characterize the system response to RT, animal survival and tumor surface area and volume were measured. Sham experiments were performed on similar animals implanted with basement membrane matrix absent of tumor cells. Results: The presence of tumor alone increases permeability but has little effect on leukocyte–endothelial interactions and astrogliosis. Radiation alone increases tissue permeability, leukocyte-endothelial interactions, and astrogliosis. The highest levels of permeability and cell adhesion were seen in the model that combined tumor and irradiation; however, the presence of tumor appeared to reduce the volume of rolling leukocytes. Unirradiated tumor and peritumoral tissue had poor clearance. Irradiated tumor and peritumoral tissue had a similar clearance index to irradiated and unirradiated sham-implanted animals. Radiation reduces the presence of VEGF in peritumoral normal tissues but did not affect the amount of apoptosis in the normal tissue. Apoptosis was identified in the tumor tissue with and without radiation. Conclusions: We developed a novel approach to demonstrate that the presence of the tumor in a rat intracranial model alters the response of normal tissues to irradiation.

  16. Disappearance of enhancement of brain tumor in contrast CT scan after excessively high dosage of dexamethasone

    International Nuclear Information System (INIS)

    The method of steroid administration was studied as suggested by CT findings in 5 cases of brain tumor. In the CT image 72 hours after administration of dexamethasone 96 mg/d, contrast enhancement (CE) disappeared nearly completely in 3 cases of malignant glioma, and the indentification of tumor image on CT became difficult. Two cases of pinealoblastoma and low grade astrocytoma, respectively, showed only a little decrease of CE. From the CT images of 201 cases, the correlation between peritumoral edema and CE was that both were strong in glioblastoma, the former stronger in metastatic brain tumor, the latter stronger in meningioma, and both weak in low grade glioma and medulloblastoma. Steroid administration is indicated in tumors supposed to have little vascular pooling and strong extravascular accumulation of a contrast medium from the mechanism of CE in CT, and marked suppression of permeability with excessively high dosage seems to be noted as the change of CT findings. (J.P.N.)

  17. Multi-fractal texture features for brain tumor and edema segmentation

    Science.gov (United States)

    Reza, S.; Iftekharuddin, K. M.

    2014-03-01

    In this work, we propose a fully automatic brain tumor and edema segmentation technique in brain magnetic resonance (MR) images. Different brain tissues are characterized using the novel texture features such as piece-wise triangular prism surface area (PTPSA), multi-fractional Brownian motion (mBm) and Gabor-like textons, along with regular intensity and intensity difference features. Classical Random Forest (RF) classifier is used to formulate the segmentation task as classification of these features in multi-modal MRIs. The segmentation performance is compared with other state-of-art works using a publicly available dataset known as Brain Tumor Segmentation (BRATS) 2012 [1]. Quantitative evaluation is done using the online evaluation tool from Kitware/MIDAS website [2]. The results show that our segmentation performance is more consistent and, on the average, outperforms other state-of-the art works in both training and challenge cases in the BRATS competition.

  18. Brain Tumors and Brain Tumor Research Progress in Image Classification%脑肿瘤及脑肿瘤图像分类的研究进展

    Institute of Scientific and Technical Information of China (English)

    俞海平; 邬立保

    2011-01-01

    Many methods of brain tumor classification,there is no uniform classification^! A variety of tumors and pathological features of the different tissue, the study of benign and malignant, and things are not the same characteristics. Usually can be classified as histological.-(l) Originated in glial tumors: astrocytoma, less support glial cell tumors, medulloblastoma, etc.(2) Originated in meningeal tumors: meningioma, meningeal sarcoma, arachnoid cyst.(3) Originated in the pituitary tumors: tired color cell adenoma, acidophilic, basophilic cell adenoma.(4) Originated in cranial nerve tumors: acoustic neuroma, trigeminal nerve sheath tumors and other tumors.(S) Originated from residual embryonic tissue: craniopharyngioma, chordoma, dermoid cyst (6) Originated in vascular cells: vascular tumors and vascular reticular cell tumor, etc.(7) Transfer or by other parts of the tumor invasion: a variety of metastatic tumors, and nasopharyn-geal carcinoma, etc.%脑肿瘤分类的方法很多,目前尚无统一的分类方法,并且各种肿瘤的组织发生与病理特征不同,其良性与恶性以及物学特性也不一样.通常按组织学可分类如下:(1)发源于神经胶质的肿瘤:星形细胞瘤、少支胶质细胞瘤、髓母细胞瘤等.(2)发源于脑膜的肿瘤:脑膜瘤、脑膜内瘤、蛛网膜囊肿等.(3)发源于垂体的肿瘤:厌色细胞腺瘤,嗜酸、嗜碱性细胞腺瘤.(4)发源于颅神经的肿瘤:听神经瘤、三叉神经瘤等各种神经鞘瘤.(5)发源于胚胎残余组织:颅咽管瘤、脊索瘤、皮样囊肿等.(6)发源于血管细胞:血管瘤及血管网织细胞瘤等.(7)由其它部位转移或侵入的肿瘤:各种转移瘤及鼻咽癌等.

  19. A New Strategy of Drug Delivery: Electric Field Distribution in Brain Tumor Due to Electroporation

    OpenAIRE

    Shi, Junxing

    2014-01-01

    As the second leading cause of cancer-related deaths in children under 20, and the second leading cause of cancer-related deaths in males aged 20–39, there is a need to seek an effective treatment for brain tumors. While there may be various drugs for brain tumors, the problem is the lack of effective methods of delivery through cell membranes at a very specified and confined region. In order to tackle this specific problem of drug delivery, electroporation is introduced. Electroporation, the...

  20. MR spectroscopy in children: protocols and pitfalls in non-tumorous brain pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Jacques F. [University Children' s Hospital Basel (UKBB), Basel (Switzerland)

    2016-06-15

    Proton nuclear magnetic resonance spectroscopy (MRS) delivers information about cell content and metabolism in a noninvasive manner. The diagnostic strength of MRS lies in its evaluation of pathologies in combination with conventional magnetic resonance imaging (MRI). MRS in children has been most widely used to evaluate brain conditions like tumors, infections, metabolic diseases or learning disabilities and especially in neonates with hypoxic-ischemic encephalopathy. This article reviews some basic theoretical considerations, routine procedures, protocols and pitfalls and will illustrate the range of spectrum alterations occurring in some non-tumorous pediatric brain pathologies. (orig.)

  1. Raman spectroscopic imaging as complementary tool for histopathologic assessment of brain tumors

    Science.gov (United States)

    Krafft, Christoph; Bergner, Norbert; Romeike, Bernd; Reichart, Rupert; Kalff, Rolf; Geiger, Kathrin; Kirsch, Matthias; Schackert, Gabriele; Popp, Jürgen

    2012-02-01

    Raman spectroscopy enables label-free assessment of brain tissues and tumors based on their biochemical composition. Combination of the Raman spectra with the lateral information allows grading of tumors, determining the primary tumor of brain metastases and delineating tumor margins - even during surgery after coupling with fiber optic probes. This contribution presents exemplary Raman spectra and images collected from low grade and high grade regions of astrocytic gliomas and brain metastases. A region of interest in dried tissue sections encompassed slightly increased cell density. Spectral unmixing by vertex component analysis (VCA) and N-FINDR resolved cell nuclei in score plots and revealed the spectral contributions of nucleic acids, cholesterol, cholesterol ester and proteins in endmember signatures. The results correlated with the histopathological analysis after staining the specimens by hematoxylin and eosin. For a region of interest in non-dried, buffer immersed tissue sections image processing was not affected by drying artifacts such as denaturation of biomolecules and crystallization of cholesterol. Consequently, the results correspond better to in vivo situations. Raman spectroscopic imaging of a brain metastases from renal cell carcinoma showed an endmember with spectral contributions of glycogen which can be considered as a marker for this primary tumor.

  2. Magnetic resonance imaging in assessment of treatment response of gamma knife for brain tumors

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao; ZHANG Xue-ning; ZHANG Yun-ting; YU Chun-shui; XU De-sheng

    2011-01-01

    Objective To review the applications of magnetic resonance imaging (MRI) techniques in assessing treatment response to gamma knife radiosurgery for brain tumors.Data sources Published articles about assessing treatment response to gamma knife radiosurgery for brain tumors were selected using PubMed. The search terms were "MRI", "gamma knife" and "brain tumors".Study selection Articles regarding the MRI techniques using for early assessment of treatment response of gamma knife were selected.Results MRI techniques, especially diffusion weighted imaging, perfusion weighted imaging, magnetic resonance spectroscopy, are useful for early assessment of treatment response of gamma knife by detecting the hemodynamic, metabolic, and cellular alterations. Moreover, they can also provide important information on prognosis.Conclusions Diffusion weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy can provide early assessment of treatment response of gamma knife for brain tumors, and also information of tumor progression or recurrence earlier than conventional MRI. But there are still many questions to be answered which should be based on the development and advancement of MRI and related disciplines.

  3. Notching on cancer’s door: Notch signaling in brain tumors

    Directory of Open Access Journals (Sweden)

    Marcin eTeodorczyk

    2015-01-01

    Full Text Available Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4, which are activated by three Delta-like (Dll1/3/4 and two Serrate-like (Jagged1/2 ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.

  4. Memory and attention problems in children with brain tumors at diagnosis

    OpenAIRE

    Margelisch, Katja; Studer, Martina; Steinlin, Maja; Leibundgut, Kurt; Heinks Maldonado, Theda

    2014-01-01

    Purpose: Results from previous studies indicate that children with brain tumors (BT) might present with cognitive problems at diagnosis and thus before the start of any medical treatment. The question remains whether these problems are due to the underlying tumor itself or due to the high level of emotional and physical stress which is involved at diagnosis of a malignant disorder. All children with a de novo oncological diagnosis not involving the central nervous systems (CNS) are usually ex...

  5. Brain tumor classification and segmentation using sparse coding and dictionary learning.

    Science.gov (United States)

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods. PMID:26351901

  6. Brain tumor classification and segmentation using sparse coding and dictionary learning.

    Science.gov (United States)

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.

  7. Boron-10 distributions of borocaptate sodium (BSH) and p-boronophenylalanine (BPA) in the experimental brain tumor in the rats

    Energy Technology Data Exchange (ETDEWEB)

    Nakaichi, Munekazu; Hori, Yuko; Hasegawa, Toshinari; Nakama, Sanenori [Department of Veterinary Surgery, Yamaguchi Univ., Yamaguchi (Japan); Takeuchi, Akira; Nakagawa, Yoshinobu

    1998-12-01

    Biodistributions of {sup 10}B delivered from BSH and BPA were studied in the tumor-bearing rats by the quantitative analysis of {sup 10}B and alpha autoradiography technique. BSH was shown to give tumor-specific distribution, but was rapidly eliminated from the tumor tissues. The peak level of boron concentration in the brain tumor was 28.79 ppm at 1 hour after the injection. On the other hand, BPA achieved higher boron concentration in the brain tumor with a peak level of 42.10 ppm at 4 hours after the injection. However, BPA did not seem to give tumor specific distribution and was shown to accumulate into normal brain and other surrounding organs. Therefore, BPA-basd BNCT for patients suffering from brain tumor should be conducted cautiously. (author)

  8. Segmentation of Tumor Region in MRI Images of Brain using Mathematical Morphology

    OpenAIRE

    Ashwini Gade; Rekha Vig; Vaishali Kulkarni

    2014-01-01

    This paper introduces an efficient detection of brain tumor from cerebral MRI images. The methodology consists of two steps: enhancement and segmentation. To improve the quality of images and limit the risk of distinct regions fusion in the segmentation phase an enhancement process is applied. We applied mathematical morphology to increase the contrast in MRI images and to segment MRI images. Some of experimental results on brain images show the feasibility and the performance of the proposed...

  9. Segmentation of Tumor Region in MRI Images of Brain using Mathematical Morphology

    Directory of Open Access Journals (Sweden)

    Ashwini Gade

    2014-06-01

    Full Text Available This paper introduces an efficient detection of brain tumor from cerebral MRI images. The methodology consists of two steps: enhancement and segmentation. To improve the quality of images and limit the risk of distinct regions fusion in the segmentation phase an enhancement process is applied. We applied mathematical morphology to increase the contrast in MRI images and to segment MRI images. Some of experimental results on brain images show the feasibility and the performance of the proposed approach.

  10. A longitudinal magnetic resonance elastography study of murine brain tumors following radiation therapy

    Science.gov (United States)

    Feng, Y.; Clayton, E. H.; Okamoto, R. J.; Engelbach, J.; Bayly, P. V.; Garbow, J. R.

    2016-08-01

    An accurate and noninvasive method for assessing treatment response following radiotherapy is needed for both treatment monitoring and planning. Measurement of solid tumor volume alone is not sufficient for reliable early detection of therapeutic response, since changes in physiological and/or biomechanical properties can precede tumor volume change following therapy. In this study, we use magnetic resonance elastography to evaluate the treatment effect after radiotherapy in a murine brain tumor model. Shear modulus was calculated and compared between the delineated tumor region of interest (ROI) and its contralateral, mirrored counterpart. We also compared the shear modulus from both the irradiated and non-irradiated tumor and mirror ROIs longitudinally, sampling four time points spanning 9–19 d post tumor implant. Results showed that the tumor ROI had a lower shear modulus than that of the mirror ROI, independent of radiation. The shear modulus of the tumor ROI decreased over time for both the treated and untreated groups. By contrast, the shear modulus of the mirror ROI appeared to be relatively constant for the treated group, while an increasing trend was observed for the untreated group. The results provide insights into the tumor properties after radiation treatment and demonstrate the potential of using the mechanical properties of the tumor as a biomarker. In future studies, more closely spaced time points will be employed for detailed analysis of the radiation effect.

  11. A longitudinal magnetic resonance elastography study of murine brain tumors following radiation therapy

    Science.gov (United States)

    Feng, Y.; Clayton, E. H.; Okamoto, R. J.; Engelbach, J.; Bayly, P. V.; Garbow, J. R.

    2016-08-01

    An accurate and noninvasive method for assessing treatment response following radiotherapy is needed for both treatment monitoring and planning. Measurement of solid tumor volume alone is not sufficient for reliable early detection of therapeutic response, since changes in physiological and/or biomechanical properties can precede tumor volume change following therapy. In this study, we use magnetic resonance elastography to evaluate the treatment effect after radiotherapy in a murine brain tumor model. Shear modulus was calculated and compared between the delineated tumor region of interest (ROI) and its contralateral, mirrored counterpart. We also compared the shear modulus from both the irradiated and non-irradiated tumor and mirror ROIs longitudinally, sampling four time points spanning 9-19 d post tumor implant. Results showed that the tumor ROI had a lower shear modulus than that of the mirror ROI, independent of radiation. The shear modulus of the tumor ROI decreased over time for both the treated and untreated groups. By contrast, the shear modulus of the mirror ROI appeared to be relatively constant for the treated group, while an increasing trend was observed for the untreated group. The results provide insights into the tumor properties after radiation treatment and demonstrate the potential of using the mechanical properties of the tumor as a biomarker. In future studies, more closely spaced time points will be employed for detailed analysis of the radiation effect.

  12. How Are Brain and Spinal Cord Tumors in Children Diagnosed?

    Science.gov (United States)

    ... the body. Unlike a regular x-ray, a CT scan creates detailed images of the soft tissues in the body. For ... line while he or she is in the CT scanner. The scan creates detailed images of the blood vessels in the brain, which ...

  13. Positron emission tomographic measurement of blood-to-brain and blood-to-tumor transport of 82Rb: the effect of dexamethasone and whole-brain radiation therapy

    International Nuclear Information System (INIS)

    Unidirectional blood-to-brain and blood-to-tumor transport rate constants for rubidium 82 were determined using dynamic positron emission tomography in patients with primary or metastatic brain tumors. Regional influx rate constants (K1) and plasma water volume (Vp) were estimated from the time course of blood and brain radioactivity following a bolus injection of tracer. Eight patients were studied before and 24 to 72 hours after treatment using pharmacological doses of dexamethasone, and 6 additional patients with metastatic brain tumors were studied before and within 60 to 90 minutes after 200- to 600-rad whole-brain radiation therapy. Steroid treatment was associated with a 9 to 48% decrease in tumor K1 and a 21% mean decrease in tumor Vp. No consistent changes in K1 or Vp were observed in control brain regions. Tumor K1 and Vp did not increase in patients undergoing whole-brain radiation therapy, all of whom were taking dexamethasone at the time of study. These data suggest that corticosteroids decrease the permeability of tumor capillaries to small hydrophilic molecules (including those of some chemotherapeutic agents) and that steroid pretreatment prevents acute, and potentially dangerous, increases in tumor capillary permeability following cranial irradiation

  14. Neurocognitive Effects of Treatment for Childhood Cancer

    Science.gov (United States)

    Butler, Robert W.; Haser, Jennifer K.

    2006-01-01

    We review research on the neuropsychological effects that central nervous system (CNS) cancer treatments have on the cognitive abilities of children and adolescents. The authors focus on the two most common malignancies of childhood: leukemias and brain tumors. The literature review is structured so as to separate out earlier studies, generally…

  15. Experimental iodine-125 seed irradiation of intracerebral brain tumors in nude mice

    International Nuclear Information System (INIS)

    High-dose radiotherapy is standard treatment for patients with brain cancer. However, in preclinical research external beam radiotherapy is limited to heterotopic murine models– high-dose radiotherapy to the murine head is fatal due to radiation toxicity. Therefore, we developed a stereotactic brachytherapy mouse model for high-dose focal irradiation of experimental intracerebral (orthotopic) brain tumors. Twenty-one nude mice received a hollow guide-screw implanted in the skull. After three weeks, 5 × 105 U251-NG2 human glioblastoma cells were injected. Five days later, a 2 mCi iodine-125 brachytherapy seed was inserted through the guide-screw in 11 randomly selected mice; 10 mice received a sham seed. Mice were euthanized when severe neurological or physical symptoms occurred. The cumulative irradiation dose 5 mm below the active iodine-125 seeds was 23.0 Gy after 13 weeks (BEDtumor = 30.6 Gy). In the sham group, 9/10 animals (90%) showed signs of lethal tumor progression within 6 weeks. In the experimental group, 2/11 mice (18%) died of tumor progression within 13 weeks. Acute side effects in terms of weight loss or neurological symptoms were not observed in the irradiated animals. The intracerebral implantation of an iodine-125 brachytherapy seed through a stereotactic guide-screw in the skull of mice with implanted brain tumors resulted in a significantly prolonged survival, caused by high-dose irradiation of the brain tumor that is biologically comparable to high-dose fractionated radiotherapy– without fatal irradiation toxicity. This is an excellent mouse model for testing orthotopic brain tumor therapies in combination with radiation therapy

  16. Experimental iodine-125 seed irradiation of intracerebral brain tumors in nude mice

    Directory of Open Access Journals (Sweden)

    Haveman Jaap

    2007-09-01

    Full Text Available Abstract Background High-dose radiotherapy is standard treatment for patients with brain cancer. However, in preclinical research external beam radiotherapy is limited to heterotopic murine models– high-dose radiotherapy to the murine head is fatal due to radiation toxicity. Therefore, we developed a stereotactic brachytherapy mouse model for high-dose focal irradiation of experimental intracerebral (orthotopic brain tumors. Methods Twenty-one nude mice received a hollow guide-screw implanted in the skull. After three weeks, 5 × 105 U251-NG2 human glioblastoma cells were injected. Five days later, a 2 mCi iodine-125 brachytherapy seed was inserted through the guide-screw in 11 randomly selected mice; 10 mice received a sham seed. Mice were euthanized when severe neurological or physical symptoms occurred. The cumulative irradiation dose 5 mm below the active iodine-125 seeds was 23.0 Gy after 13 weeks (BEDtumor = 30.6 Gy. Results In the sham group, 9/10 animals (90% showed signs of lethal tumor progression within 6 weeks. In the experimental group, 2/11 mice (18% died of tumor progression within 13 weeks. Acute side effects in terms of weight loss or neurological symptoms were not observed in the irradiated animals. Conclusion The intracerebral implantation of an iodine-125 brachytherapy seed through a stereotactic guide-screw in the skull of mice with implanted brain tumors resulted in a significantly prolonged survival, caused by high-dose irradiation of the brain tumor that is biologically comparable to high-dose fractionated radiotherapy– without fatal irradiation toxicity. This is an excellent mouse model for testing orthotopic brain tumor therapies in combination with radiation therapy.

  17. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry

    Science.gov (United States)

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-01-01

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83–0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments. PMID:27001047

  18. Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain

    Directory of Open Access Journals (Sweden)

    Chiles Thomas C

    2008-05-01

    Full Text Available Abstract Background AMP-activated protein kinase (AMPK is a known physiological cellular energy sensor and becomes phosphorylated at Thr-172 in response to changes in cellular ATP levels. Activated AMPK acts as either an inducer or suppressor of apoptosis depending on the severity of energy stress and the presence or absence of certain functional tumor suppressor genes. Results Here we show that energy stress differentially affects AMPK phosphorylation and cell-death in brain tumor tissue and in tissue from contra-lateral normal brain. We compared TSC2 deficient CT-2A mouse astrocytoma cells with syngeneic normal astrocytes that were grown under identical condition in vitro. Energy stress induced by glucose withdrawal or addition of 2-deoxyglucose caused more ATP depletion, AMPK phosphorylation and apoptosis in CT-2A cells than in the normal astrocytes. Under normal energy conditions pharmacological stimulation of AMPK caused apoptosis in CT-2A cells but not in astrocytes. TSC2 siRNA treated astrocytes are hypersensitive to apoptosis induced by energy stress compared to control cells. AMPK phosphorylation and apoptosis were also greater in the CT-2A tumor tissue than in the normal brain tissue following implementation of dietary energy restriction. Inefficient mTOR and TSC2 signaling, downstream of AMPK, is responsible for CT-2A cell-death, while functional LKB1 may protect normal brain cells under energy stress. Conclusion Together these data demonstrates that AMPK phosphorylation induces apoptosis in mouse astrocytoma but may protect normal brain cells from apoptosis under similar energy stress condition. Therefore, using activator of AMPK along with glycolysis inhibitor could be a potential therapeutic approach for TSC2 deficient human malignant astrocytoma.

  19. Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases.

    Science.gov (United States)

    Thorsen, Frits; Fite, Brett; Mahakian, Lisa M; Seo, Jai W; Qin, Shengping; Harrison, Victoria; Johnson, Sarah; Ingham, Elizabeth; Caskey, Charles; Sundstrøm, Terje; Meade, Thomas J; Harter, Patrick N; Skaftnesmo, Kai Ove; Ferrara, Katherine W

    2013-12-28

    Our goal was to develop strategies to quantify the accumulation of model therapeutics in small brain metastases using multimodal imaging, in order to enhance the potential for successful treatment. Human melanoma cells were injected into the left cardiac ventricle of immunodeficient mice. Bioluminescent, MR and PET imaging were applied to evaluate the limits of detection and potential for contrast agent extravasation in small brain metastases. A pharmacokinetic model was applied to estimate vascular permeability. Bioluminescent imaging after injecting d-luciferin (molecular weight (MW) 320 D) suggested that tumor cell extravasation had already occurred at week 1, which was confirmed by histology. 7T T1w MRI at week 4 was able to detect non-leaky 100 μm sized lesions and leaky tumors with diameters down to 200 μm after contrast injection at week 5. PET imaging showed that (18)F-FLT (MW 244 Da) accumulated in the brain at week 4. Gadolinium-based MRI tracers (MW 559 Da and 2.066 kDa) extravasated after 5 weeks (tumor diameter 600 μm), and the lower MW agent cleared more rapidly from the tumor (mean apparent permeabilities 2.27 × 10(-5)cm/s versus 1.12 × 10(-5)cm/s). PET imaging further demonstrated tumor permeability to (64)Cu-BSA (MW 65.55 kDa) at week 6 (tumor diameter 700 μm). In conclusion, high field T1w MRI without contrast may improve the detection limit of small brain metastases, allowing for earlier diagnosis of patients, although the smallest lesions detected with T1w MRI were permeable only to d-luciferin and the amphipathic small molecule (18)F-FLT. Different-sized MR and PET contrast agents demonstrated the gradual increase in leakiness of the blood tumor barrier during metastatic progression, which could guide clinicians in choosing tailored treatment strategies.

  20. Stereological estimates of nuclear volume and other quantitative variables in supratentorial brain tumors. Practical technique and use in prognostic evaluation

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Braendgaard, H; Chistiansen, A O;

    1991-01-01

    The use of morphometry and modern stereology in malignancy grading of brain tumors is only poorly investigated. The aim of this study was to present these quantitative methods. A retrospective feasibility study of 46 patients with supratentorial brain tumors was carried out to demonstrate the...

  1. EXPRESSION OF SV40 Tag AND FORMATION Tag-p53 AND Tag-Rb COMPLEXES IN CHINESE BRAIN TUMORS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the expression of SV40 Tag andformation of Tag-p53 and Tag-Rb complexes in Chinese brain tumors. Methods: SV40 large tumor antigen (Tag) were investigated by immunoprecipitation, silver staining and Western blot in 65 cases of Chinese brain tumors and 8 cases of normal brain tissues. Tag-p53 and Tag-Rb complexes were screened by the same way in 20 and 15 Tag positive tumor tissues respectively. Results: Tag was found in all of 8 ependymomas and 2 choroid plexus papillomas, 90% (9/10) of pituitary adenomas, 73% (11/15) of astrocytomas, 70% (7/10) of meningiomas, 50% (4/8) of glioblastoma multiform, 33% (2/6) of medulloblastomas, 5 oligodendrogliomas, 1 pineocytoma and 8 normal brain tissues were negative for Tag. Tag-p53 complex was detected in all of 20 Tag positive tumors as well as Tag-Rb complex in all of 15 Tag positive tumors. Conclusion: SV40 Tag is not only expressed in human brain tumors, but also it can form specific complexes with tumor suppressors p53 and Rb. SV40 is correlated to human brain tumorigenesis. The inactivation of p53 and Rb due to the formation of Tag-p53 and Tag-Rb complexes is possibly an important mechanism in the etiopathogenesis of human brain tumors.

  2. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    Science.gov (United States)

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.; Broome, Ann-Marie

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to untargeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging.

  3. Brain Tumor Therapy-Induced Changes in Normal-Appearing Brainstem Measured With Longitudinal Diffusion Tensor Imaging

    International Nuclear Information System (INIS)

    Purpose: To characterize therapy-induced changes in normal-appearing brainstems of childhood brain tumor patients by serial diffusion tensor imaging (DTI). Methods and Materials: We analyzed 109 DTI studies from 20 brain tumor patients, aged 4 to 23 years, with normal-appearing brainstems included in the treatment fields. Those with medulloblastomas, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors (n = 10) received postoperative craniospinal irradiation (23.4–39.6 Gy) and a cumulative dose of 55.8 Gy to the primary site, followed by four cycles of high-dose chemotherapy. Patients with high-grade gliomas (n = 10) received erlotinib during and after irradiation (54–59.4 Gy). Parametric maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed and spatially registered to three-dimensional radiation dose data. Volumes of interest included corticospinal tracts, medial lemnisci, and the pons. Serving as an age-related benchmark for comparison, 37 DTI studies from 20 healthy volunteers, aged 6 to 25 years, were included in the analysis. Results: The median DTI follow-up time was 3.5 years (range, 1.6–5.0 years). The median mean dose to the pons was 56 Gy (range, 7–59 Gy). Three patterns were seen in longitudinal FA and apparent diffusion coefficient changes: (1) a stable or normal developing time trend, (2) initial deviation from normal with subsequent recovery, and (3) progressive deviation without evidence of complete recovery. The maximal decline in FA often occurred 1.5 to 3.5 years after the start of radiation therapy. A full recovery time trend could be observed within 4 years. Patients with incomplete recovery often had a larger decline in FA within the first year. Radiation dose alone did not predict long-term recovery patterns. Conclusions: Variations existed among individual patients after therapy in longitudinal evolution of brainstem white matter injury and recovery. Early response

  4. Retrieval of Brain Tumors by Adaptive Spatial Pooling and Fisher Vector Representation.

    Science.gov (United States)

    Cheng, Jun; Yang, Wei; Huang, Meiyan; Huang, Wei; Jiang, Jun; Zhou, Yujia; Yang, Ru; Zhao, Jie; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-01-01

    Content-based image retrieval (CBIR) techniques have currently gained increasing popularity in the medical field because they can use numerous and valuable archived images to support clinical decisions. In this paper, we concentrate on developing a CBIR system for retrieving brain tumors in T1-weighted contrast-enhanced MRI images. Specifically, when the user roughly outlines the tumor region of a query image, brain tumor images in the database of the same pathological type are expected to be returned. We propose a novel feature extraction framework to improve the retrieval performance. The proposed framework consists of three steps. First, we augment the tumor region and use the augmented tumor region as the region of interest to incorporate informative contextual information. Second, the augmented tumor region is split into subregions by an adaptive spatial division method based on intensity orders; within each subregion, we extract raw image patches as local features. Third, we apply the Fisher kernel framework to aggregate the local features of each subregion into a respective single vector representation and concatenate these per-subregion vector representations to obtain an image-level signature. After feature extraction, a closed-form metric learning algorithm is applied to measure the similarity between the query image and database images. Extensive experiments are conducted on a large dataset of 3604 images with three types of brain tumors, namely, meningiomas, gliomas, and pituitary tumors. The mean average precision can reach 94.68%. Experimental results demonstrate the power of the proposed algorithm against some related state-of-the-art methods on the same dataset. PMID:27273091

  5. Regional cerebral blood flow in various types of brain tumor. Effect of the space-occupying lesion on blood flow in brain tissue close to and remote from tumor site

    DEFF Research Database (Denmark)

    Kuroda, K; Skyhøj Olsen, T; Lassen, N A

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured in 23 patients with brain tumors using the 133Xe intra-carotid injection method and a 254 channel gamma camera. The glioblastomas (4) and astrocytomas (4) all showed hyperemia in the tumor and tumor-near region. This was also seen in several...

  6. Clinicopathological analysis of unusual rosette-forming glioneuronal tumor in brain parenchyma

    Directory of Open Access Journals (Sweden)

    Da-wei LIU

    2014-03-01

    Full Text Available Background Rosette-forming glioneuronal tumor (RGNT is a rare and novel brain tumor. It affects mainly young adults and arises in the midline, primarily involving the cerebellum, and the walls or floor of the fourth ventricle. The tumor is composed of distinctive histological components, uniform neurocytes forming rosettes and (or perivascular pseudorosettes, as well as astrocytic component resembling pilocytic astrocytoma. To our best knowledge, no more than 50 cases of RGNT have been described in the literatures to date and found commonly in association with the ventricular system. Only a few cases have been known to occur at sites outside of its usual location. Herein, we present a rare case of RGNT of brain parenchyma. Due to its rarity and non-specific appearance in radiological examination, it is a diagnostic challenge for radiologists and histopathologists to differentiate RGNT in unusual sites from other intracranial lesions because of its similarities in radiological and histological findings. The aim of this study is to summarize the clinicopathological features of RGNT and discuss the differential diagnosis of histologically similar tumors in brain.  Methods The clinical manifestation of a patient with RGNT occurring in left frontal lobe was presented retrospectively. Resected mass was routinely paraffin-embedded and stained with Hematoxylin and Eosin. Dako EnVision immunohistochemical staining system was used to detect the tumor antigen expressions, including glial fibrillary acidic protein (GFAP, S-100 protein (S-100, cytokeratin (CK, neuronal nuclear antigen (NeuN, synaptophysin (Syn, neuron-specific enolase (NSE, chromogranin A (CgA, oligodendrocytes transcription factor-2 (Olig-2, epithelial membrane antigen (EMA and Ki-67 (MIB-1.  Results A 12-year-old girl presented with 2-year history of twitches and mild headache. MRI revealed a solid well-circumscribed lesion in left frontal lobe with mild heterogeneous enhancement. The

  7. Brain tumors in children and adolescents: cognitive and psychological disorders at different ages.

    Science.gov (United States)

    Poggi, Geraldina; Liscio, Mariarosaria; Galbiati, Susanna; Adduci, Annarita; Massimino, Maura; Gandola, Lorenza; Spreafico, Filippo; Clerici, Carlo Alfredo; Fossati-Bellani, Franca; Sommovigo, Michela; Castelli, Enrico

    2005-05-01

    Cognitive and psychological disorders are among the most frequently observed sequelae in brain tumor survivors. The goal of this work was to verify the presence of these disorders in a group of children and adolescents diagnosed with brain tumor before age 18 years, differentiate these disorders according to age of assessment, identify correlations between the two types of impairments and define possible associations between these impairments and clinical variables. The study involved 76 patients diagnosed with brain tumor before age 18 years. Three age groups were formed, and all the patients received a standardized battery of age-matched cognitive and psychological tests. According to our findings, all three groups present with cognitive and psychological-behavioral disorders. Their frequency varies according to age of onset and is strongly associated to time since diagnosis. The performance intelligence quotient (PIQ) was more impaired than the verbal intelligence quotient (VIQ). Internalizing problems, withdrawal and social problems were the most frequent psychological disorders. Correlations were found between cognitive impairment and the onset of the main psychological and behavioral disorders. These findings are relevant as they point out the long-term outcome of brain tumor survivors. Hence, the recommendation to diversify psychological interventions and rehabilitation plans according to the patients' age.

  8. Deleted in Malignant Brain Tumors 1 is Present in the Vascular Extracellular Matrix and Promotes Angiogenesis

    DEFF Research Database (Denmark)

    Müller-Enbergs, Helmut; Hu, Jiong; Popp, Rüdiger;

    2012-01-01

    OBJECTIVE: Deleted in malignant brain tumors 1 (DMBT1) belongs to the scavenger receptor cysteine-rich superfamily of proteins and is implicated in innate immunity, cell polarity, and differentiation. Here we studied the role of DMBT1 in endothelial cells. METHODS AND RESULTS: DMBT1 was secreted ...

  9. Molecular characterization of the porcine deleted in malignant brain tumors 1 gene (DMBT1)

    DEFF Research Database (Denmark)

    Haase, Bianca; Humphray, Sean J; Lyer, Stefan;

    2006-01-01

    The human gene deleted in malignant brain tumors 1 (DMBT1) is considered to play a role in tumorigenesis and pathogen defense. It encodes a protein with multiple scavenger receptor cysteine-rich (SRCR) domains, which are involved in recognition and binding of a broad spectrum of bacterial pathoge...

  10. Drug and cell encapsulation : Alternative delivery options for the treatment of malignant brain tumors

    NARCIS (Netherlands)

    Bhujbal, Swapnil V.; de Vos, Paul; Niclou, Simone P.

    2014-01-01

    Malignant brain tumors including glioblastoma are incurable cancers. Over the last years a number of promising novel treatment approaches have been investigated including the application of inhibitors of receptor tyrosine kinases and downstream targets, immune-based therapies and anti-angiogenic age

  11. Brain tumor delineation based on CT and MR imaging. Implications for radiotherapy treatment planning

    NARCIS (Netherlands)

    Heesters, M A; Wijrdeman, H K; Struikmans, H; Witkamp, T; Moerland, M A

    1993-01-01

    This paper deals with the impact MRI may have on radiotherapy treatment planning of brain tumors. The authors analyzed differences in size and position of treatment fields as indicated by three observers (two radiotherapists and one neuroradiologist) using CT or MR based radiotherapy planning proced

  12. Adding chemo after radiation treatment improves survival for adults with a type of brain tumor

    Science.gov (United States)

    Adults with low-grade gliomas, a form of brain tumor, who received chemotherapy following completion of radiation therapy lived longer than patients who received radiation therapy alone, according to long-term follow-up results from a NIH-supported random

  13. Caring for the brain tumor patient: Family caregiver burden and unmet needs

    Science.gov (United States)

    Schubart, Jane R.; Kinzie, Mable B.; Farace, Elana

    2008-01-01

    The rapid onset and progression of a brain tumor, cognitive and behavioral changes, and uncertainty surrounding prognosis are issues well known to health practitioners in neuro-oncology. We studied the specific challenges that family caregivers face when caring for patients experiencing the significant neurocognitive and neurobehavioral disorders associated with brain tumors. We selected 25 family caregivers of adult brain tumor patients to represent the brain tumor illness trajectory (crisis, chronic, and terminal phases). Interviews documented caregiving tasks and decision-making and information and support needs. Themes were permitted to emerge from the data in qualitative analysis. We found that the family caregivers in this study provided extraordinary uncompensated care involving significant amounts of time and energy for months or years and requiring the performance of tasks that were often physically, emotionally, socially, or financially demanding. They were constantly challenged to solve problems and make decisions as care needs changed, yet they felt untrained and unprepared as they struggled to adjust to new roles and responsibilities. Because the focus was on the patient, their own needs were neglected. Because caregiver information needs are emergent, they are not always known at the time of a clinic visit. Physicians are frequently unable to address caregiver questions, a situation compounded by time constraints and cultural barriers. We provide specific recommendations for (1) improving the delivery of information; (2) enhancing communication among patients, families, and health care providers; and (3) providing psychosocial support for family caregivers. PMID:17993635

  14. Interstitial laser thermotherapy: developments in the treatment of small deep-seated brain tumors.

    Science.gov (United States)

    Menovsky, T; Beek, J F; Roux, F X; Bown, S G

    1996-12-01

    New technical advances have made feasible the utilization of laser to destroy deep-seated brain tumors under real-time monitoring. Experience with interstitial laser thermotherapy (ILTT) in animal and clinical studies has been obtained. These studies are summarized and the future potential of ILTT in neurosurgery is discussed.

  15. Postoperative mortality after surgery for brain tumors by patient insurance status in the United States

    NARCIS (Netherlands)

    Momin, E.N.; Adams, H.; Shinohara, R.T.; Frangakis, C.; Brem, H.; Quinones-Hinojosa, A.

    2012-01-01

    OBJECTIVE To examine whether being uninsured is associated with higher in-hospital postoperative mortality when undergoing surgery in the United States for a brain tumor. DESIGN Retrospective cohort study using the Nationwide Inpatient Sample, January 1, 1999, through December 31, 2008. SETTING The

  16. Kinome Profiling in Pediatric Brain Tumors as a New Approach for Target Discovery

    NARCIS (Netherlands)

    Sikkema, Arend H.; Diks, Sander H.; den Dunnen, Wilfred F. A.; ter Elst, Arja; Scherpen, Frank J. G.; Hoving, Eelco W.; Ruijtenbeek, Rob; Boender, Piet J.; de Wijn, Rik; Kamps, Willem A.; Peppelenbosch, Maikel P.; de Bont, Eveline S. J. M.

    2009-01-01

    Progression in pediatric brain tumor growth is thought to be the net result of signaling through various protein kinase-mediated networks driving cell proliferation. Defining new targets for treatment of human malignancies, without a priori knowledge on aberrant cell signaling activity, remains exce

  17. Finite element modeling of haptic thermography: A novel approach for brain tumor detection during minimally invasive neurosurgery.

    Science.gov (United States)

    Sadeghi-Goughari, Moslem; Mojra, Afsaneh

    2015-10-01

    Intraoperative Thermal Imaging (ITI) is a novel neuroimaging method that can potentially locate tissue abnormalities and hence improves surgeon's diagnostic ability. In the present study, thermography technique coupled with artificial tactile sensing method called "haptic thermography" is utilized to investigate the presence of an abnormal object as a tumor with an elevated temperature relative to the normal tissue in the brain. The brain tissue is characterized as a hyper-viscoelastic material to be descriptive of mechanical behavior of the brain tissue during tactile palpation. Based on a finite element approach, Magnetic Resonance Imaging (MRI) data of a patient diagnosed to have a brain tumor is utilized to simulate and analyze the capability of haptic thermography in detection and localization of brain tumor. Steady-state thermal results prove that temperature distribution is an appropriate outcome of haptic thermography for the superficial tumors while heat flux distribution can be used as an extra thermal result for deeply located tumors. PMID:26590456

  18. MEK Inhibitors Reverse Growth of Embryonal Brain Tumors Derived from Oligoneural Precursor Cells

    Directory of Open Access Journals (Sweden)

    Katarzyna Modzelewska

    2016-10-01

    Full Text Available Malignant brain tumors are the leading cause of cancer-related deaths in children. Primitive neuroectodermal tumors of the CNS (CNS-PNETs are particularly aggressive embryonal tumors of unknown cellular origin. Recent genomic studies have classified CNS-PNETs into molecularly distinct subgroups that promise to improve diagnosis and treatment; however, the lack of cell- or animal-based models for these subgroups prevents testing of rationally designed therapies. Here, we show that a subset of CNS-PNETs co-express oligoneural precursor cell (OPC markers OLIG2 and SOX10 with coincident activation of the RAS/MAPK (mitogen-activated protein kinase pathway. Modeling NRAS activation in embryonic OPCs generated malignant brain tumors in zebrafish that closely mimic the human oligoneural/NB-FOXR2 CNS-PNET subgroup by histology and comparative oncogenomics. The zebrafish CNS-PNET model was used to show that MEK inhibitors selectively eliminate Olig2+/Sox10+ CNS-PNET tumors in vivo without impacting normal brain development. Thus, MEK inhibitors represent a promising rationally designed therapy for children afflicted with oligoneural/NB-FOXR2 CNS-PNETs.

  19. Brain tumor segmentation in MR slices using improved GrowCut algorithm

    Science.gov (United States)

    Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying

    2015-12-01

    The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.

  20. Effect of dendritic cell vaccine therapy on lymphocyte subpopulation in refractory primary brain tumor

    Directory of Open Access Journals (Sweden)

    J Niu

    2015-01-01

    Full Text Available BACKGROUND: Dendritic cell (DC-based immunotherapy has the potential to induce an antitumor response within the immunologically privileged brain. AIMS: The aim of this study was to evaluate the short-term effect of DC vaccine therapy on lymphocyte subsets in patients with refractory primary brain tumor. MATERIALS AND METHODS: Eighteen cases with refractory primary brain tumor who refused any treatment against tumor within 6 months of the therapy, were referred to one medicine center, from January 2011 to October 2012. All patients received 1 × 107 tumor lysate–pulsed DC vaccinations both intradermal injection and intravenous infusion 3 times/week. RESULTS: There were increases of lymphocytes CD8+ (P = 0.002 and CD56+ (P = 4.207E-10, but no change of lymphocytes CD3+ (P = 0.651. Six patients were positive response of delayed-type hypersensitivity. There were improving of appetite in 14 cases and increasing of physical strength 17 cases. CONCLUSIONS: DC vaccine has the potential for inducing an immune cytotoxic effect directed toward tumor cells.

  1. Magnetic resonance spectroscopy: novel non-invasive technique for diagnosing brain tumors

    International Nuclear Information System (INIS)

    To determine the accuracy of MR Spectroscopy (MRS) in diagnosing brain tumors. Study Design: Analytical study. Place and Duration of Study:Neurosurgery Department, Jinnah Postgraduate Medical Centre, Karachi, from November 2010 to April 2011. Methodology: Fifty cases with brain tumors, who presented to Neurosurgery Department of Jinnah Postgraduate Medical Centre, Karachi, during the study period, were included in the study. All patients underwent MRS and later brain. Those with recurrent disease were excluded. Data was collected with the help of proforma. Data was analyzed using SPSS version 16. Comparison of MRS findings and biopsy diagnosis was done. Sensitivity, specificity, negative and positive predictive values (NPV and PPV) were determined keeping histopathology as the gold standard. Results: Out of the 50 patients, there were 20 (40%) females and 30 (60%) males with mean age of 37 13.24 years. The commonest presenting complaint was headache (76%) followed by weakness (62%) and seizures (30%). MRI had diagnosed 27 (51%) as neoplastic lesion. Spectroscopy reported 44 (88%) as neoplasms, while on histopathology, 42 (84%) were confirmed to have neoplasm. The accuracy of MRS was 94%, with 97.6% sensitivity, 71.42% specificity, 95.45% PPV and 83.3% NPV. Conclusion: Magnetic resonance spectroscopy can readily help in differentiating neoplasm from non-neoplastic brain tumors, thus an invasive brain biopsy procedure can be avoided. (author)

  2. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    Science.gov (United States)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  3. Parcellation of the Healthy Neonatal Brain into 107 Regions Using Atlas Propagation through Intermediate Time Points in Childhood

    Science.gov (United States)

    Blesa, Manuel; Serag, Ahmed; Wilkinson, Alastair G.; Anblagan, Devasuda; Telford, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Macnaught, Gillian; Semple, Scott I.; Bastin, Mark E.; Boardman, James P.

    2016-01-01

    Neuroimage analysis pipelines rely on parcellated atlases generated from healthy individuals to provide anatomic context to structural and diffusion MRI data. Atlases constructed using adult data introduce bias into studies of early brain development. We aimed to create a neonatal brain atlas of healthy subjects that can be applied to multi-modal MRI data. Structural and diffusion 3T MRI scans were acquired soon after birth from 33 typically developing neonates born at term (mean postmenstrual age at birth 39+5 weeks, range 37+2–41+6). An adult brain atlas (SRI24/TZO) was propagated to the neonatal data using temporal registration via childhood templates with dense temporal samples (NIH Pediatric Database), with the final atlas (Edinburgh Neonatal Atlas, ENA33) constructed using the Symmetric Group Normalization (SyGN) method. After this step, the computed final transformations were applied to T2-weighted data, and fractional anisotropy, mean diffusivity, and tissue segmentations to provide a multi-modal atlas with 107 anatomical regions; a symmetric version was also created to facilitate studies of laterality. Volumes of each region of interest were measured to provide reference data from normal subjects. Because this atlas is generated from step-wise propagation of adult labels through intermediate time points in childhood, it may serve as a useful starting point for modeling brain growth during development. PMID:27242423

  4. Parcellation of the healthy neonatal brain into 107 regions using atlas propagation through intermediate time points in childhood

    Directory of Open Access Journals (Sweden)

    Manuel eBlesa Cabez

    2016-05-01

    Full Text Available Neuroimage analysis pipelines rely on parcellated atlases generated from healthy individuals to provide anatomic context to structural and diffusion MRI data. Atlases constructed using adult data introduce bias into studies of early brain development. We aimed to create a neonatal brain atlas of healthy subjects that can be applied to multi-modal MRI data. Structural and diffusion 3T MRI scans were acquired soon after birth from 33 typically developing neonates born at term (mean postmenstrual age at birth 39+5 weeks, range 37+2-41+6. An adult brain atlas (SRI24/TZO was propagated to the neonatal data using temporal registration via childhood templates with dense temporal samples (NIH Pediatric Database, with the final atlas (Edinburgh Neonatal Atlas, ENA33 constructed using the Symmetric Group Normalization method. After this step, the computed final transformations were applied to T2-weighted data, and fractional anisotropy, mean diffusivity, and tissue segmentations to provide a multi-modal atlas with 107 anatomical regions; a symmetric version was also created to facilitate studies of laterality. Volumes of each region of interest were measured to provide reference data from normal subjects. Because this atlas is generated from step-wise propagation of adult labels through intermediate time points in childhood, it may serve as a useful starting point for modelling brain growth during development.

  5. In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy.

    Science.gov (United States)

    Nemoz, Christian; Kibleur, Astrid; Hyacinthe, Jean Noël; Berruyer, Gilles; Brochard, Thierry; Bräuer-Krisch, Elke; Le Duc, Géraldine; Brun, Emmanuel; Elleaume, Hélène; Serduc, Raphaël

    2016-01-01

    A fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler. A graphical user interface has been developed in order to define the irradiation parameters: field width, height, number of angles and X-ray dose. This study is the first reporting an image guided method for soft tissue synchrotron radiotherapy. It allowed microbeam radiation therapy irradiation fields to be reduced by a factor of ∼20 compared with previous studies. It permitted more targeted, more efficient brain tumor microbeam treatments and reduces normal brain toxicity of the radiation treatment. PMID:26698083

  6. High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography.

    Science.gov (United States)

    Pfeiffer, F; Bunk, O; David, C; Bech, M; Le Duc, G; Bravin, A; Cloetens, P

    2007-12-01

    We report on significant advances and new results concerning a recently developed method for grating-based hard x-ray phase tomography. We demonstrate how the soft tissue sensitivity of the technique is increased and show in vitro tomographic images of a tumor bearing rat brain sample, without use of contrast agents. In particular, we observe that the brain tumor and the white and gray brain matter structure in a rat's cerebellum are clearly resolved. The results are potentially interesting from a clinical point of view, since a similar approach using three transmission gratings can be implemented with more readily available x-ray sources, such as standard x-ray tubes. Moreover, the results open the way to in vivo experiments in the near future. PMID:18029984

  7. In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy.

    Science.gov (United States)

    Nemoz, Christian; Kibleur, Astrid; Hyacinthe, Jean Noël; Berruyer, Gilles; Brochard, Thierry; Bräuer-Krisch, Elke; Le Duc, Géraldine; Brun, Emmanuel; Elleaume, Hélène; Serduc, Raphaël

    2016-01-01

    A fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler. A graphical user interface has been developed in order to define the irradiation parameters: field width, height, number of angles and X-ray dose. This study is the first reporting an image guided method for soft tissue synchrotron radiotherapy. It allowed microbeam radiation therapy irradiation fields to be reduced by a factor of ∼20 compared with previous studies. It permitted more targeted, more efficient brain tumor microbeam treatments and reduces normal brain toxicity of the radiation treatment.

  8. Phase II study of irinotecan (CPT-11) in children with high-risk malignant brain tumors: the Duke experience.

    OpenAIRE

    Turner, Christopher D.; Gururangan, Sridharan; Eastwood, James; Bottom, Krystal; Watral, Melody; Beason, Rodney; McLendon, Roger E; Allan H Friedman; Tourt-Uhlig, Sandra; Miller, Langdon L.; Friedman, Henry S.

    2002-01-01

    A phase II study of irinotecan (CPT-11) was conducted at Duke University Medical Center, Durham, NC, to evaluate the activity of this agent in children with high-risk malignant brain tumors. A total of 22 children were enrolled in this study, including 13 with histologically verified recurrent malignant brain tumors (glioblastoma multiforme [GBM] 4, anaplastic astrocytoma 1, ependymoma 5, and medulloblastoma/primitive neuroectodermal tumor 3), 5 with recurrent diffuse pontine glioma, and 4 wi...

  9. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    Science.gov (United States)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  10. In vivo models of brain tumors: roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies.

    Science.gov (United States)

    Simeonova, Iva; Huillard, Emmanuelle

    2014-10-01

    Although our knowledge of the biology of brain tumors has increased tremendously over the past decade, progress in treatment of these deadly diseases remains modest. Developing in vivo models that faithfully mirror human diseases is essential for the validation of new therapeutic approaches. Genetically engineered mouse models (GEMMs) provide elaborate temporally and genetically controlled systems to investigate the cellular origins of brain tumors and gene function in tumorigenesis. Furthermore, they can prove to be valuable tools for testing targeted therapies. In this review, we discuss GEMMs of brain tumors, focusing on gliomas and medulloblastomas. We describe how they provide critical insights into the molecular and cellular events involved in the initiation and maintenance of brain tumors, and illustrate their use in preclinical drug testing.

  11. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor.

    Science.gov (United States)

    Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S; Zhau, Haiyen E; Chung, Leland W K

    2015-10-01

    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic anion-transporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors.

  12. Evaluation of brain tumor using technetium-99m-tetrofosmin SPECT. Initial experience

    International Nuclear Information System (INIS)

    Technetium-99m-Tetrofosmin (TF) is the tracer for single photon emission computed tomography (SPECT). It is commercially available in Japan and covered by Japanese health insurance only for ischemic heart diseases. In other countries, TF has been used for imaging of various brain tumors. We examined TF SPECT in patients with brain tumor and compared the image findings with other radiological image findings. The study population included 11 patients (4 men and 7 women) aged 48-87 years. The histological tumor diagnoses were as follows: glioblastoma multiforme (GBM; n=7), anaplastic oligoastrocytoma (n=1), meningioma (n=1), and metastasis (n=2). SPECT images were acquired using multidetector SPECT camera (E.CAM, Siemens) at 15 min and 3 h after intravenous injection of 740MBq of TF or 74MBq of Thallium chloride (Tl). The tracer uptakes of TF and Tl were almost similar. Both TF and Tl delayed SPECT images showed hot uptake in the tumors of GBM patients. In meningioma patients, both TF and Tl early images showed hot uptake, whereas the tracers were washed out in delayed images. TF SPECT images were clearer than Tl SPECT images. There was physiological uptake of TF in the normal choroid plexus; this finding helps in understanding the spatial correlation between the tumors and ventricles. No side effects with TF injection were observed. TF SPECT is better and more useful than Tl SPECT to diagnose location, extent, malignancy, and viability of tumors as well as the effects of anticancer therapies. (author)

  13. THE ROLE OF GAP JUNCTIONS IN THE DEVELOPMENT OF ASTROCYTIC HUMAN BRAIN TUMOR

    Directory of Open Access Journals (Sweden)

    Grankina A. O.

    2015-01-01

    Full Text Available Recently, much attention is paid to research the role of cell-cell interactions by gap junctions in the process of malignant transformation and mechanisms of antitumor resistance. Meanwhile, the greatest interest is astrocytic tumors. Depending on the degree of malignancy, astrocytomas are divided into: pilocytic astrocytoma (Grade I, subependymal giant cell astrocytoma (Grade I, pleomorphic xanthoastrocytoma (Grade II, diffuse astrocytoma (Grade II, anaplastic astrocytoma (Grade III, glioblastoma (Grade IV gliomatosis cerebri (Grade IV. Information of literature devoted to astrocytic tumors (gliomas - the most common brain tumor in large part obtained in studies in cell cultures and different contradictions. Along with data on the reduction of glial tumors cells communicability through GJ, there is evidence of an opposite character - a functionally active GJ in gliomas and inhibition of tumor growth by reducing intercellular communicability by GJ. However, up to now there have been no studies of the effect and function of hemichannels in cancer cells, which would provide detailed information on: 1 the characteristic of presence and relative abundance of hemichannels in cancer cells; 2 evaluation of absorption / release of hemichannels mediated molecules in tumor cells than in non-tumor cells; 3 functional consequences of activation and blocking of hemichannels in tumor cells and 4 the prognostic value of the expression / activation of hemichannels in human malignancies

  14. A Review of Fully Automated Techniques for Brain Tumor Detection From MR Images

    Directory of Open Access Journals (Sweden)

    Anjum Hayat Gondal

    2013-02-01

    Full Text Available Radiologists use medical images to diagnose diseases precisely. However, identification of brain tumor from medical images is still a critical and complicated job for a radiologist. Brain tumor identification form magnetic resonance imaging (MRI consists of several stages. Segmentation is known to be an essential step in medical imaging classification and analysis. Performing the brain MR images segmentation manually is a difficult task as there are several challenges associated with it. Radiologist and medical experts spend plenty of time for manually segmenting brain MR images, and this is a non-repeatable task. In view of this, an automatic segmentation of brain MR images is needed to correctly segment White Matter (WM, Gray Matter (GM and Cerebrospinal Fluid (CSF tissues of brain in a shorter span of time. The accurate segmentation is crucial as otherwise the wrong identification of disease can lead to severe consequences. Taking into account the aforesaid challenges, this research is focused towards highlighting the strengths and limitations of the earlier proposed segmentation techniques discussed in the contemporary literature. Besides summarizing the literature, the paper also provides a critical evaluation of the surveyed literature which reveals new facets of research. However, articulating a new technique is beyond the scope of this paper.

  15. Hemodynamic response imaging: a potential tool for the assessment of angiogenesis in brain tumors.

    Directory of Open Access Journals (Sweden)

    Dafna Ben Bashat

    Full Text Available Blood oxygenation level dependence (BOLD imaging under either hypercapnia or hyperoxia has been used to study neuronal activation and for assessment of various brain pathologies. We evaluated the benefit of a combined protocol of BOLD imaging during both hyperoxic and hypercapnic challenges (termed hemodynamic response imaging (HRI. Nineteen healthy controls and seven patients with primary brain tumors were included: six with glioblastoma (two newly diagnosed and four with recurrent tumors and one with atypical-meningioma. Maps of percent signal intensity changes (ΔS during hyperoxia (carbogen; 95%O2+5%CO2 and hypercapnia (95%air+5%CO2 challenges and vascular reactivity mismatch maps (VRM; voxels that responded to carbogen with reduced/absent response to CO2 were calculated. VRM values were measured in white matter (WM and gray matter (GM areas of healthy subjects and used as threshold values in patients. Significantly higher response to carbogen was detected in healthy subjects, compared to hypercapnia, with a GM/WM ratio of 3.8 during both challenges. In patients with newly diagnosed/treatment-naive tumors (n = 3, increased response to carbogen was detected with substantially increased VRM response (compared to threshold values within and around the tumors. In patients with recurrent tumors, reduced/absent response during both challenges was demonstrated. An additional finding in 2 of 4 patients with recurrent glioblastoma was a negative response during carbogen, distant from tumor location, which may indicate steal effect. In conclusion, the HRI method enables the assessment of blood vessel functionality and reactivity. Reference values from healthy subjects are presented and preliminary results demonstrate the potential of this method to complement perfusion imaging for the detection and follow up of angiogenesis in patients with brain tumors.

  16. Development of the Japanese version of the Pediatric Quality of Life Inventory™ Brain Tumor Module

    Directory of Open Access Journals (Sweden)

    Terasaki Mizuhiko

    2010-04-01

    Full Text Available Abstract Background The Pediatric Quality of Life Inventory™ (PedsQL™ is a widely-used modular instrument for measuring health-related quality of life in children aged 2 to 18 years. The PedsQL™ Brain Tumor Module is comprised of six scales: Cognitive Problems, Pain and Hurt, Movement and Balance, Procedural Anxiety, Nausea, and Worry. In the present study, we developed the Japanese version of the PedsQL™ Brain Tumor Module and investigated its feasibility, reliability, and validity among Japanese children and their parents. Methods Translation equivalence and content validity were verified using the standard back-translation method and cognitive debriefing tests. Participants were recruited from 6 hospitals in Japan and the Children's Cancer Association of Japan, and questionnaires were completed by 137 children with brain tumors and 166 parents. Feasibility of the questionnaire was determined based on the amount of time required to complete the form and the percentage of missing values. Internal consistency was assessed using Cronbach's coefficient alpha. Test-retest reliability was assessed by retesting 22 children and 27 parents. Factorial validity was verified by exploratory factor analyses. Known-groups validity was described with regard to whole brain irradiation, developmental impairment, infratentorial tumors, paresis, and concurrent chemotherapy. Convergent and discriminant validity were determined using Generic Core Scales and State-Trait Anxiety Inventory for children. Results Internal consistency was relatively high for all scales (Cronbach's coefficient alpha > 0.70 except the Pain and Hurt scale for the child-report, and sufficient test-retest reliability was demonstrated for all scales (intraclass correlation coefficient = 0.45-0.95. Factorial validity was supported through exploratory factor analysis (factor-item correlation = 0.33-0.96 for children, 0.55-1.00 for parents. Evaluation of known-groups validity confirmed

  17. Nanoparticles and synchrotron light for brain tumors therapy

    International Nuclear Information System (INIS)

    Gliomas treatment is still a serious challenge in medicine. Available treatments are mainly palliative and patients' survival is increased by a few months only. An original radiotherapy technique consists in increasing the dose delivered to the tumor by loading it with high Z atoms before an irradiation with low energy X-rays (50-100 keV). Preclinical studies have been conducted using iodine contrast agent (CA) (Z=53) and 50 keV X-rays. The increase of the animals' survival leads today to the beginning of clinical trials (phases I and II) at the medical beamline of the European synchrotron, where the available monochromatic and intense photons beam is well suited for this treatment. The use of intravenously injected CA is however insufficient for curing rat's bearing glioma. Indeed, the contrast agent's accumulation is limited by the presence of the BBB and it remains extracellular. Metallic nanoparticles (NPs) appear interesting for improving the treatment efficacy. During this work, three different types of NPs have been studied: GdNPs (3 nm), AuNPs (13 nm) and PtNPs (6 nm). Their toxicity and internalization have been evaluated in vitro on F98 rodent glioma cells. Cells' survival has also been measured after different irradiation conditions in presence of these NPs and with monochromatic photons beams. Several mechanisms implicated in the treatment have been highlighted by the study of the cells' response dependence to the incident particles energy and to the sub cellular NPs distribution during irradiation. For identical concentrations, NPs were more efficient in cells killing than CA, illustrating their microdosimetric potential. The effect was also preferential for low energy X-rays, indicating that photoactivation of heavy atoms plays a role in the cells' death. GdNPs and PtNPs have also lead to an effect in combination to high energy photons (1.25 MeV), indicating that another mechanism may also increase the cell

  18. Obesity and Risk for Brain/CNS Tumors, Gliomas and Meningiomas: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Theodoros N Sergentanis

    Full Text Available This meta-analysis aims to examine the association between being overweight/obese and risk of meningiomas and gliomas as well as overall brain/central nervous system (CNS tumors.Potentially eligible publications were sought in PubMed up to June 30, 2014. Random-effects meta-analysis and dose-response meta-regression analysis was conducted. Cochran Q statistic, I-squared and tau-squared were used for the assessment of between-study heterogeneity. The analysis was performed using Stata/SE version 13 statistical software.A total of 22 studies were eligible, namely 14 cohort studies (10,219 incident brain/CNS tumor cases, 1,319 meningioma and 2,418 glioma cases in a total cohort size of 10,143,803 subjects and eight case-control studies (1,009 brain/CNS cases, 1,977 meningioma cases, 1,265 glioma cases and 8,316 controls. In females, overweight status/obesity was associated with increased risk for overall brain/CNS tumors (pooled RR = 1.12, 95%CI: 1.03-1.21, 10 study arms, meningiomas (pooled RR = 1.27, 95%CI: 1.13-1.43, 16 study arms and gliomas (pooled RR = 1.17, 95%CI: 1.03-1.32, six arms. Obese (BMI>30 kg/m2 females seemed particularly aggravated in terms of brain/CNS tumor (pooled RR = 1.19, 95%CI: 1.05-1.36, six study arms and meningioma risk (pooled RR = 1.48, 95%CI: 1.28-1.71, seven arms. In males, overweight/obesity status correlated with increased meningioma risk (pooled RR = 1.58, 95%CI: 1.22-2.04, nine study arms, whereas the respective association with overall brain/CNS tumor or glioma risk was not statistically significant. Dose-response meta-regression analysis further validated the findings.Our findings highlight obesity as a risk factor for overall brain/CNS tumors, meningiomas and gliomas among females, as well as for meningiomas among males.

  19. Multimodal magnetic resonance imaging evaluation of primary brain tumors.

    Science.gov (United States)

    Treister, Daniel; Kingston, Sara; Hoque, Kristina E; Law, Meng; Shiroishi, Mark S

    2014-08-01

    Gliomas comprise 80% of primary brain neoplasms, with glioblastoma multiforme being the most commonly diagnosed glioma. The annual incidence is 5.26 per 100,000, or 17,000 newly diagnosed cases per year in the United States. The incidence increases with age, peaking between the 6th and 8th decades. Gliomas are more common among Caucasians and occur more often in men. They can be associated with certain rare hereditary syndromes including Cowden, Turcot, Li-Fraumeni, neurofibromatosis type 1 and type 2, tuberous sclerosis, and familial schwannomatosis. Known risk factors include a history of ionizing radiation, family history of glioma, and certain genetic susceptibility variants that are weakly associated with glioma. Preventative measures have not been shown to decrease the risk of later development. In addition, screening tests are unwarranted since early diagnosis and treatment have not been shown to improve outcome. PMID:25173141

  20. The prognostic value of tumor necrosis in patients undergoing stereotactic radiosurgery of brain metastases

    International Nuclear Information System (INIS)

    This retrospective study investigated the outcome of patients with brain metastases after radiosurgery with special emphasis on prognostic impact of visible intratumoral necrosis on survival and local control. From 1998 through 2008, 149 patients with brain metastases from solid tumors were treated with stereotactic radiotherapy at Luebeck University. Median age was 58.4 years with 11%, 78%, 10% in recursive partitioning analysis (RPA) classes I, II, III, respectively. 70% had 1 metastasis, 29% 2-3 metastases, 2 patients more than 3 metastases, 71% active extracranial disease. Median volume of metastatic lesions was 4.7 cm3, median radiosurgery dose 22 Gy (single fraction). 71% of patients received additional whole-brain irradiation (WBI). All patients were analyzed regarding survival, local, distant failure and prognostic factors, side effects and changes in neurologic symptoms after radiotherapy. The type of contrast-enhancement in MR imaging was also analyzed; metastatic lesions were classified as containing necrosis if they appeared as ring-enhancing with central areas of no or minimal contrast enhancement. Median survival was 7.0 months with 1-year and 5-year survival rates of 33% and 0.4%, respectively. Tumor necrosis (ring-enhancement) was visible on pretreatment MRI scans in 56% of all lesions and lesions with necrosis were larger than non-necrotic lesions (6.7 cm3 vs. 3.2 cm3, p = 0.01). Patients with tumor necrosis had a median survival of 5.4 months, patients without tumor necrosis 7.2 months. Local control rate in the irradiated volume was 70%, median survival without local failure 17.8 months. Control in the brain outside the irradiated volume was 60%, median survival without distant failure 14.0 months. Significant prognostic factors for overall survival were KPS (p = 0.001), presence of tumor necrosis on pretreatment MRI (p = 0.001) with RPA-class and WBI reaching marginal significance (each p = 0.05). Prognostic impact of tumor necrosis remained

  1. Neuroendoscopic Intervention for the Deep Midline Brain Tumors with Secondary Occlusive Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Ulugbek M. Asadullaev

    2015-06-01

    Full Text Available This article analyzes the results of a clinical examination of 102 patients (78/76.47% men and 24/23.53% women with a brain tumor (BT complicated with a secondary obstructive hydrocephalus (SOH. All the patients were divided into 3 groups according to the type of surgery. Group I included 38(37.2% patients who underwent Torkildsen's ventriculocisternostomy. Group II consisted of 34(33.3% patients who underwent endoscopic third ventriculocisternostomy (ETV with simultaneous endoscopic tumor removal. Group III included 30 (29.4% patients who underwent a two-stage intervention: ETV in the first stage, and the endoscopic tumor removal in the second stage. The distinct advantages of EVT with tumor removal in the second stage of the operation were revealed.

  2. Pediatric brain tumors of neuroepithelial tissue; Hirntumoren des neuroepithelialen Gewebes im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Politi, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany); Bergmann, M. [Klinikum Bremen-Mitte, Institut fuer Klinische Neuropathologie, Bremen (Germany); Pekrun, A. [Klinikum Bremen-Mitte, Klinik fuer Kinder- und Jugendmedizin, paed. Haematologie/Onkologie, Neonatologie, Bremen (Germany); Juergens, K.U. [Klinikum Bremen-Mitte, ZEMODI-Zentrum fuer moderne Diagnostik, MRT, Nuklearmedizin und PET-CT, Bremen (Germany)

    2014-08-15

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [German] Tumoren des neuroepithelialen Gewebes stellen die mit Abstand groesste Gruppe der paediatrischen Hirntumoren dar und werden je nach deren Ursprung in diversen Subtypen unterteilt. Das Neuropil beinhaltet diverse Subtypen von Gliazellen: Astrozyten, Oligodendrozyten, ependymale Zellen und modifizierte ependymale Zellen, die den Plexus choroideus formen. In diesem Review werden die bildgebenden Aspekte mittels CT und MRT der haeufigsten Tumoren des neuroepithelialen Gewebes diskutiert. (orig.)

  3. Tumors in murine brains studied by grating-based phase contrast microtomography

    Science.gov (United States)

    Schulz, Georg; Dominietto, Marco; Kovacs, Zsofia; Schmitz, Rüdiger; Hieber, Simone E.; Thalmann, Peter; Beckmann, Felix; Müller, Bert

    2014-09-01

    Angiogenesis, i.e. the formation of vessels, is one of the key processes during tumor development. The newly formed vessels transport oxygen and nutrients from the healthy tissue to the tumor and gives tumor cells the possibility to replicate. The principle of anti-angiogenic therapy is to block angiogenic process in order to stop tumor growth. The aim of the present study is the investigation of murine glioma vascular architecture at early (7 days), intermediate (10 and 15 days) and late (23 days) stage of growth by means of grating-based phase contrast microtomography. We demonstrate that this technique yields premium contrast between healthy and cancerous parts of murine brain tissues.

  4. Menace of childhood non-accidental traumatic brain injuries: A single unit report

    Directory of Open Access Journals (Sweden)

    Musa Ibrahim

    2015-01-01

    Full Text Available Background: Childhood traumatic brain injury (TBI has high rate of mortality and morbidity worldwide. There are dearths of reports from developing countries with large paediatric population on trauma; neurosurgery trauma of nonaccidental origin is not an exemption. This study analysed menace of non-accidental TBI in the paediatric population from our center. Materials and Methods: This is a single unit, retrospective study of the epidemiology of non-accidental TBI in children starting from September, 2008 to March, 2014. The management outcomes of the epidemiology of the non-accidental TBI were analysed. Results: Total of 109 children age range from 0 (intra-natal to 16 years with a mean of 5.8 ± 4.6 years (median, 5 years were enrolled into the study. 34 (31.2% were domestic violence, 26 (23.9% street assaults, 16 (14.7% were due to animal assaults and mishaps, 17 (15.6% fall from heights. Seven (6.4% cases of collapsed buildings were also seen during the period. Four (3.7% industrial accidents and two (1.8% were self-inflicted injuries. There were also three (2.8% cases of iatrogenic TBI out of which two infants (1.8% sustained TBI from cesarean section procedure while one patient (0.9% under general anaesthesia felt from the operation bed resulting to severe TBI. Conclusion: Child abuse, unprotected child labour, parental/care-givers negligence are the main cause of nonaccidental TBI. Human right activists and government agents should be incorporated in curtailing the menace.

  5. Plasticity of cognitive functions before and after awake brain tumor surgery

    Directory of Open Access Journals (Sweden)

    Djaina Satoer

    2015-04-01

    Results: P1 and P2 showed opposite preoperative cognitive profiles. P1 obtained normal cognitive results and P2 had clinically significant impairments in all cognitive domains, (language, memory, attentional and executive deficits (z-score ≥-1.50. P3 and P4 also demonstrate opposite preoperative profiles. P4 obtained intact cognitive results, whereas P3 was impaired in memory and executive functions (z-score ≥-1.50. Intraoperatively, in both P3 and P4 positive language sites were found (left inferior frontal gyrus and left parietal lobe. At 3 months postoperatively, P3 presented language deficits followed by recovery at 12 months, whereas P4 appeared to have recovered at 3 months postoperatively from the observed premorbid impairments in memory and executive functioning (z-score <-1.50. Pathological examination revealed a slow growing brain tumor (low-grade in P1 and P3 and a fast growing brain tumor (high-grade in P2 and P4. Conclusion: In patients with similar brain tumor localizations, we found distinct cognitive profiles, possibly affected by different neural plasticity processes. Preoperatively, a favorable plasticity effect on cognition was found in P1 (temporoparietal area, potentially affected by tumor grade. Preserved cognitive functions was possibly facilitated by the slow growth rate of a low-grade tumor allowing functional reorganization (Mandonnet et al., 2003. However, P2 with a brain tumor in the same area showed preoperative deficits in several domains (language, memory and attention/executive functions. A faster growth rate of a high-grade tumor could have more aggressively affected cognition. In P3 and P4 with the same localization (insula, we found a different effect on the cognitive recovery process; at short term (3 months, improvement of the preoperatively observed cognitive impairments in a low-grade tumor P3, whereas a more gradual functional reorganization was found in language (3-12 months in P4, a high-grade tumor, contrasting Habets

  6. Automated delineation of brain structures in patients undergoing radiotherapy for primary brain tumors: From atlas to dose–volume histograms

    International Nuclear Information System (INIS)

    Purpose: To implement and evaluate a magnetic resonance imaging atlas-based automated segmentation (MRI-ABAS) procedure for cortical and sub-cortical grey matter areas definition, suitable for dose-distribution analyses in brain tumor patients undergoing radiotherapy (RT). Patients and methods: 3T-MRI scans performed before RT in ten brain tumor patients were used. The MRI-ABAS procedure consists of grey matter classification and atlas-based regions of interest definition. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm was applied to structures manually delineated by four experts to generate the standard reference. Performance was assessed comparing multiple geometrical metrics (including Dice Similarity Coefficient – DSC). Dosimetric parameters from dose–volume-histograms were also generated and compared. Results: Compared with manual delineation, MRI-ABAS showed excellent reproducibility [median DSCABAS = 1 (95% CI, 0.97–1.0) vs. DSCMANUAL = 0.90 (0.73–0.98)], acceptable accuracy [DSCABAS = 0.81 (0.68–0.94) vs. DSCMANUAL = 0.90 (0.76–0.98)], and an overall 90% reduction in delineation time. Dosimetric parameters obtained using MRI-ABAS were comparable with those obtained by manual contouring. Conclusions: The speed, reproducibility, and robustness of the process make MRI-ABAS a valuable tool for investigating radiation dose–volume effects in non-target brain structures providing additional standardized data without additional time-consuming procedures

  7. Early Childhood Brain Development and Elementary Music Curricula: Are They in Tune?

    Science.gov (United States)

    Scott, Larissa K.

    2004-01-01

    This article examines elementary music curricula. It presents an overview of research on childhood mental development; the importance of the early experiences of children on childhood development; the impact of environmental factors on language development; children's acquisition of music ability; enhancing elementary music curriculum; and…

  8. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  9. Clinical evaluation of intraoperative radiotherapy using photon radiosurgery system for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Osami; Muragaki, Yoshihiro; Iseki, Hiroshi; Takakura, Kintomo [Tokyo Women`s Medical Coll. (Japan)

    1998-07-01

    The photon radiosurgery system is a miniature X-ray generator that can be placed stereotactically and intraoperatively into intracranial tumors to deliver a single fraction of high-dose interstitial irradiation. This battery-powered device produces low energy X-ray photons in a spherical and symmetrical pattern at the probe tip. Dose rates of up to 200 cGy/Mim are possible, allowing for the administration of 15 Gy to a lesion 3 cm in diameter in less than 1 hr. Background exposure is minimal, and no special shielding of the patient or health care personal is required. Thirty-nine patients with brain tumor were treated in this method. There were no adverse effects. During the follow-up period of 1-30 months, 3 cases with 5 metastatic brain tumors died about 8 months after this treatment. Five recurrent cases of 21 malignant gliomas died about 4 months after treatment. Interstitial radiotherapy using photon the radiosurgery system promises to be a useful treatment for brain tumors. (author)

  10. Utility of resting fMRI and connectivity in patients with brain tumor

    Directory of Open Access Journals (Sweden)

    Sandhya Manglore

    2013-01-01

    Full Text Available Background: Resting state (task independent Functional Magnetic Resonance Imaging (fMRI has opened a new avenue in cognitive studies and has found practical clinical applications. Materials and Methods: Resting fMRI analysis was performed in six patients with brain tumor in the motor cortex. For comparison, task-related mapping of the motor cortex was done. Connectivity analysis to study the connections and strength of the connections between the primary motor cortex, premotor cortex, and primary somatosensory cortex on the affected side was also performed and compared with the contralateral normal side and the controls. Results: Resting fMRI in patients with brain tumor in the motor cortex mapped the motor cortex in a task-free state and the results were comparable to the motor task paradigm. Decreased connectivity on the tumor-affected side was observed, as compared to the unaffected side. Conclusion: Resting fMRI and connectivity analysis are useful in the presurgical evaluation of patients with brain tumors and may help in uncooperative or pediatric patients. They can also prognosticate the postoperative outcome. This method also has significant applications due to the ease of image acquisition.

  11. Tumor necrosis factor α antibody prevents brain damage of rats with acute necrotizing pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yan-Ling Yang; Ji-Peng Li; Kai-Zong Li; Ke-Feng Dou

    2004-01-01

    AIM: To study the protective effects of tumor necrosis factor á (TNFα) antibody on pancreatic encephalopathy in rats.METHODS:One hundred and twenty SD rats were randomly divided into normal control group,acute necrotizing pancreatitis group and TNFα antibody treated group.Acute hemorrhage necrotizing pancreatitis model in rats was induced by retrograde injection of 50 g/L sodium taurocholate into the pancreatobiliary duct.Serum TNFα was detected and animals were killed 12 h after drug administration.Changes in content of brain water,MDA and SOD as well as leucocyte adhesion of brain microvessels were measured.RESULTS:In TNFα antibody treated group,serum TNFálevel was decreased.Content of brain water,MDA and SOD as well as leucocyte adhesion were decreased significantly in comparison with those of acute necrotizing pancreatitis group (P<0.05).CONCLUSION:TNFα antibody can alleviate the brain damage of rats with acute hemorrhage necrotizing pancreatitis.

  12. Brain tumors and CT scan in infants and children, (1). The impact on pediatric neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, S.; Velasco, J.M. (Northwestern Univ., Chicago, IL (USA). Medical School)

    1980-10-01

    The dramatic change in the neuroradiological procedures have been noted after CT scan was introduced in the last several years. Remarkable decreasing numbers of angiographic, pneumoencephalographic and other invasive neuroradiologic studies as well as nuclear brain scan were also found in the pediatric neuroradiology. The authors analyzed the total numbers of these studies performed in the last several years in pediatric neurological/neurosurgical practice in the light of the impact of CT scan especially in the diagnostic procedures and treatments of brain tumor in children. Although the number of these procedures decreased up to 49% in plain skull X-ray, 54% in cerebral angiography, 70% in pneumoencephalography/ventriculography and 79% in nuclear brain scan after CT scan was installed in our results, it is extremely important to renew understanding of those characteristics in each special procedures. Cerebral angiography as well as pneumoencephalography may give the surgeon more precise ideas of the anatomical relationship between the lesion and other normal structures, especially in the posterior fossa tumor in which CT scan occassionally demonstrates only a gross finding. A case with false negative result and another case with a complicated anatomical structure in CT scan were presented. The significance of cerebral angiography and other invasive studies in the diagnosis and follow up of brain tumor in CT scan were discussed.

  13. CADrx for GBM Brain Tumors: Predicting Treatment Response from Changes in Diffusion-Weighted MRI

    Directory of Open Access Journals (Sweden)

    Matthew S. Brown

    2009-11-01

    Full Text Available The goal of this study was to develop a computer-aided therapeutic response (CADrx system for early prediction of drug treatment response for glioblastoma multiforme (GBM brain tumors with diffusion weighted (DW MR images. In conventional Macdonald assessment, tumor response is assessed nine weeks or more post-treatment. However, we will investigate the ability of DW-MRI to assess response earlier, at five weeks post treatment. The apparent diffusion coefficient (ADC map, calculated from DW images, has been shown to reveal changes in the tumor’s microenvironment preceding morphologic tumor changes. ADC values in treated brain tumors could theoretically both increase due to the cell kill (and thus reduced cell density and decrease due to inhibition of edema. In this study, we investigated the effectiveness of features that quantify changes from pre- and post-treatment tumor ADC histograms to detect treatment response. There are three parts to this study: first, tumor regions were segmented on T1w contrast enhanced images by Otsu’s thresholding method, and mapped from T1w images onto ADC images by a 3D region of interest (ROI mapping tool using DICOM header information; second, ADC histograms of the tumor region were extracted from both pre- and five weeks post-treatment scans, and fitted by a two-component Gaussian mixture model (GMM. The GMM features as well as standard histogram-based features were extracted. Finally, supervised machine learning techniques were applied for classification of responders or non-responders. The approach was evaluated with a dataset of 85 patients with GBM under chemotherapy, in which 39 responded and 46 did not, based on tumor volume reduction. We compared adaBoost, random forest and support vector machine classification algorithms, using ten-fold cross validation, resulting in the best accuracy of 69.41% and the corresponding area under the curve (Az of 0.70.

  14. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Butte, Pramod V.; Fang, Qiyin; Jo, Javier A.; Yong, William H.; Pikul, Brian K.; Black, Keith L.; Marcu, Laura

    2010-03-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337 nm, 700 ps), and the intensity decay profiles were recorded in the 360- to 550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390 nm (lifetime=1.8+/-0.3 ns) and 460 nm (lifetime=0.8+/-0.1 ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1 ns) and reduced in high-grade glioma (N=9; lifetime=1.7+/-0.4 ns). The emission characteristics at 460 nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440 to 460 nm lifetime: 0.8 to 1.0 ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens.

  15. Tumor-Like Lesions of the Brain in MRI and CT-scan

    Directory of Open Access Journals (Sweden)

    Gholamreza Bakhshandehpour

    2009-01-01

    Full Text Available "nIntroduction: The objective of this paper is to demonstrate a variety of non-neoplastic pathologies that may present with a mass effect and/or abnormal enhancement, thus simulating neoplasia. "nMaterials and Methods: We collected 77 cases of various tumor mimics from teaching files of three institutions. All patients presented with intra- and/or extra–axial lesions and imaging findings that could, potentially, mimic brain neoplasia. "nResults: Assessment of central nervous system pathology may be very challenging. The usual description of mass effect and abnormal enhancement, typical of brain neoplasia, can also be shared by a variety of non-neoplastic etiologies. Radiologists should be familiar with these tumor mimics, and shold be included as differential diagnoses. We categorized and these non-neoplastic lesions, which could potentially mimic extra-and/or intra- axial brain tumors, into the following groups: "n1 Normal variant (giant (tumefactive perivascular spaces "n2 Infection (tuberculosis, cysticercosis, and fungal lesions "n3 Syndromes (NF1, Rosai-Dorfman Syndrome, Lhermitte-Duclos, Krabbe Disease (adult type. "n4 Vascular lesions (vascular malformations, aneurysms and cerebral venous sinus thrombosis "n5 Autoimmune and inflammatory processes (MS, ADEM, encephalitis, sarcoidosis and PML "n6 Idiopathic (idiopathic hypertrophic pachymeningitis "n7 Congenital brain lesions (cortical dysgenesis and heterotopias "n8 Miscellaneous (postictal brain lesions "nConclusion: In this paper, we present a large collection of non-neoplastic tumor mimics. Awareness, understanding, and recognition of these mimics may permit the radiologist to play a significant role in the prevention of unwanted surgical interventions or extensive diagnostic evaluation procedures.  

  16. Prognosis of efficacy of post-operation treatment of metastatic brain tumors

    Directory of Open Access Journals (Sweden)

    Pyatikop V.A.

    2016-06-01

    Full Text Available Background. Metastatic affection of brain by its prevalence, medical and social importance, economical burden represents a topical medical problem in neurosurgery and adjacent medical specialties. Objective – optimization of prognosis for post-operation metastatic brain tumors treatment efficacy. Methods. An active cohort randomized research with retro- and prospective, cross-sectional and longitude components has been conducted in 176 patients, including 96 males and 80 females aged 56 years with adenocarcinoma (152, melanoblastoma (21 and sarcoma (3, derived from lungs (39, breast (34, skin (25 kidneys (9, digestive tract (11, ovary and uterus (by 4 each, thymus (2, nasopharynx, pronaus (by 1 each. Standard basic diagnostic and treatment procedures have been performed. P-level critical value was 0.05. Results. Discriminant models of post-operation tactics choice, prognostic algorithm of unfavorable outcome evaluation after treatment have been developed. The approbation of the algorithm allowed to state its sensitivity (69.2 %, specificity (95.2 %, positive predicting value (75.0 %, negative predicting value (93.7 %. Conclusion. For the purpose of widening of arsenal of available decision-making means for further treatment tactics in metastatic brain tumors after conducted neurosurgical treatment the use of developed discriminant models is recommended. The risk of unfavorable outcome and efficacy of combined treatment prognosis for patients with metastatic brain tumors are recommended to assess using the developed prognostic algorithm. Citation: Pyatikop VA, Al-Trawneh MA, Buryan AV, Gavryushkin AYu, Marchenko AE, Posokhov NF, Starenkiy VP. [Prognosis of efficacy of post-operation treatment of metastatic brain tumors]. Morphologia. 2016;10(2:69-76. Russian.

  17. Tl-201 and Tc-99m-Sestamibi SPECT for brain tumor detection: Comparison using MRI coregistration

    Energy Technology Data Exchange (ETDEWEB)

    Darcourt, J.; Itti, L.; Chang, L. [UCLA Medical Center, Torrance, CA (United States)] [and others

    1994-05-01

    Tl-201 (Tl) brain SPECT has been validated for the differential diagnosis of high versus low grade gliomas and recurrence versus radiation necrosis. We compared this technique to Tc-99m-Sestamibi (MIBI) SPECT in 9 patients (pts) with brain tumors using MRI coregistration. Pts were injected with 4 mCi of Tl and brain SPECT was performed using a dedicated brain system. This was immediately following by an injection of 20 mCi of MIBI and a brain SPECT using the same camera and with the pt in the same position. Four pts were studied for the diagnosis of radiation necrosis vs. tumor recurrence (2 had biopsy proven recurrence); 5 pts were studied for primary tumor evaluation: 2 meningiomas, 1 oligodendroglioma, 1 low-grade astrocytoma, 1 cysticercosis. Coregistration was performed for every pt by 3D surface fitting of the inner skull MIBI contour to the MRI brain surface extracted automatically. ROIs were drawn on the MRI and applied to the coregistered MIBI and Tl images for tumor to non-tumor ratios T/NT calculations. There was a tight correlation between MIBI and Tl T/NT (r-0.96) and a 1.5 threshold separated radiation necrosis from recurrence and low from high grade primary tumors. Therefore, the data already available on Tl brain tumor imaging can be used with MIBI SPECT with the advantage of a better image quality (2.5 to 4 times more counts).

  18. Positron Emission Tomography Using Fluorine F 18 EF5 to Find Oxygen in Tumor Cells of Patients Who Are Undergoing Surgery or Biopsy for Newly Diagnosed Brain Tumors

    Science.gov (United States)

    2013-01-15

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Meningeal Melanocytoma

  19. Exposure to 3G mobile phone signals does not affect the biological features of brain tumor cells

    OpenAIRE

    Liu, Yu-xiao; Li, Guo-Qing; Fu, Xiang-ping; Xue, Jing-hui; Ji, Shou-Ping; Zhang, Zhi-Wen; Zhang, Yi; Li, An-ming

    2015-01-01

    Background The increase in mobile phone use has generated concerns about possible risks to human health, especially the development of brain tumors. Whether tumor patients should continue to use mobile telephones has remained unclear because of a paucity of information. Herein, we investigated whether electromagnetic fields from mobile phones could alter the biological features of human tumor cells and act as a tumor-promoting agent. Methods Human glioblastoma cell lines, U251-MG and U87-MG, ...

  20. Statistical Validation of Brain Tumor Shape Approximation via Spherical Harmonics for Image-Guided Neurosurgery1

    Science.gov (United States)

    Goldberg-Zimring, Daniel; Talos, Ion-Florin; Bhagwat, Jui G.; Haker, Steven J.; Black, Peter M.; Zou, Kelly H.

    2005-01-01

    Rationale and Objectives Surgical planning now routinely uses both two-dimensional (2D) and three-dimensional (3D) models that integrate data from multiple imaging modalities, each highlighting one or more aspects of morphology or function. We performed a preliminary evaluation of the use of spherical harmonics (SH) in approximating the 3D shape and estimating the volume of brain tumors of varying characteristics. Materials and Methods Magnetic resonance (MR) images from five patients with brain tumors were selected randomly from our MR-guided neurosurgical practice. Standardized mean square reconstruction errors (SMSRE) by tumor volume were measured. Validation metrics for comparing performances of the SH method against segmented contours (SC) were the dice similarity coefficient (DSC) and standardized Euclidean distance (SED) measure. Results Tumor volume range was 22413–85189 mm3, and range of number of vertices in triangulated models was 3674–6544. At SH approximations with degree of at least 30, SMSRE were within 1.66 × 10−5 mm−1. Summary measures yielded a DSC range of 0.89–0.99 (pooled median, 0.97 and significantly >0.7; P < .001) and an SED range of 0.0002–0.0028 (pooled median, 0.0005). Conclusion 3D shapes of tumors may be approximated by using SH for neurosurgical applications. PMID:15831419