WorldWideScience

Sample records for chicken erythrocyte-specific mhc

  1. The chicken erythrocyte-specific MHC antigen. Characterization and purification of the B-G antigen by monoclonal antibodies

    DEFF Research Database (Denmark)

    Salomonsen, J; Skjødt, K; Crone, M

    1987-01-01

    -G to be synthesized as a monomer, with dimerization taking place after 20-30 min. No change in the monomer's molecular mass due to posttranslational modifications was revealed. The antigen was purified from detergent extract of CEM by affinity chromatography with a monoclonal antibody, and then reduced and alkylated......-labeled chicken erythrocyte membranes (CEM) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography. The B-G antigen had an approximate molecular mass of 46-48 kd in reduced samples, depending on the haplotype, and in unreduced samples contained either dimers (85 kd...... of purified B-G antigen with Endoglycosidase-F or trifluoromethanesulfonic acid. Two-way sequential immunoprecipitation studies of erythrocyte membrane extracts with anti-B-G alloantisera and monoclonal antibodies revealed only one population of B-G molecules. Pulse-chase experiments have shown B...

  2. Serological Screening for MHC (B)-Polymorphism in Indigenous Chickens

    NARCIS (Netherlands)

    Baelmans, R.; Parmentier, H.K.; Nieuwland, M.G.B.; Dorny, P.; Demey, F.

    2005-01-01

    As part of a series of studies to characterize innate and specific immune responses of indigenous chicken lines, birds from Bolivia and India were screened serologically for MHC class IV (BG) polymorphism by direct haemagglutination using haplotype-specific antisera (B2, B4, B12, B13, B14, B15, B19,

  3. Efficacy of Marek's disease vaccines in Mhc heterozygous chickens: Mhc congenic x inbred line F1 matings.

    Science.gov (United States)

    Bacon, L D; Witter, R L

    1995-01-01

    The goal of this study is to demonstrate that Mhc (B) heterozygous chickens differ in efficacy of response to several Marek's disease (MD) vaccines. Four types of B2 heterozygotes, in addition to B2B2 homozygotes, were developed by crossing 15.B congenic males to inbred line 7(1) (B2B2) hens. The five types of F1 chicks were intermingled in isolators and vaccinated with one of four types of MD vaccine before inoculation with the very virulent Md5 strain of MD herpesvirus. The F1 chickens differ in development of protective immunity following MD vaccination from two perspectives. First, chickens of a particular Mhc genotype were protected better by some vaccines than others. Second, individual vaccine preparations protected some Mhc genotypes more effectively. We conclude that some MD vaccines are more appropriate than others for certain B-haplotypes when chickens are heterozygous for the Mhc. The value of using Mhc-congenic x inbred line F1 animals for studies concerning the influence of the Mhc on vaccinal immunity is discussed.

  4. [Relationships among immune traits and MHC B-LBII genetic variation in three chicken breeds].

    Science.gov (United States)

    Li, Fuwei; Li, Shuqing; Lu, Yan; Lei, Qiuxia; Han, Haixia; Zhou, Yan; Wu, Bin; Cao, Dingguo

    2013-07-01

    We have assessed the relationships between immune trait (antibody titers of Sheep red blood cell, SRBC; Avian influenza, AI; Newcastle disease, ND) and varieties of MHC B-LBHII Gene in local chicken breeds (Wenshang Barred chicken, LH; Laiwu Black chicken, LWH; and Jining Bairi chicken, BR). We selected 300 chickens randomly from the three indigenous chicken populations. The variations of MHC B-L BII gene were detected by directly DNA sequencing and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). The results indicated that there were about 19-22 nucleotide mutations in the three local breeds, which could affect 16-18 amino acid variations. Another results indicated that there was significantly relationship between seven to eight SNPs of the MHC B-LBII region and some immune traits (P chicken, with SRBC antibody titers (P chicken, and with H9 antibody titers (P chicken. Furthermore, locus T138A was significantly associated with H9 antibody titers in BR and LH chickens (P breeds.

  5. Cross-species association of quail invariant chain with chicken and mouse MHC II molecules.

    Science.gov (United States)

    Chen, Fangfang; Wu, Chao; Pan, Ling; Xu, Fazhi; Liu, Xuelan; Yu, Weiyi

    2013-05-01

    There are different degrees of similarity among vertebrate invariant chains (Ii). The aim of this study was to determine the relationship between quail and other vertebrate Ii MHC class II molecules. The two quail Ii isoforms (qIi-1, qIi-2) were cloned by RACE, and qRT-PCR analysis of different organs showed that their expression levels were positively correlated with MHC II gene (B-LB) transcription levels. Confocal microscopy indicated that quail full-length Ii co-localized with MHC II of quail, chicken or mouse in 293FT cells co-transfected with both genes. Immunoprecipitation and western blotting further indicated that these aggregates corresponded to polymers of Ii and MHC class II molecules. This cross-species molecular association of quail Ii with chicken and mouse MHC II suggests that Ii molecules have a high structural and functional similarity and may thereby be used as potential immune carriers across species.

  6. MHC Expression on Spleen Lymphocyte Subsets in Genetically Resistant and Susceptible Chickens Infected with Marek's Disease Virus

    DEFF Research Database (Denmark)

    Dalgaard, Tina; Bøving, Mette K.; Handberg, Kurt

    2009-01-01

    Resistance and susceptibility to Marek's disease (MD) are strongly influenced by the chicken major histocompatibility complex (MHC). In this study, splenic lymphocytes from MD-resistant and MD-susceptible chickens of three MHC genotypes (B21/B21, B19/B21, and B19/B19) were analyzed by flow...

  7. Ontogenic appearance of MHC class I (B-F) antigens during chicken embryogenesis

    DEFF Research Database (Denmark)

    Dunon, D; Salomonsen, J; Skjødt, K;

    1990-01-01

    Expression of chicken MHC class I (B-F) antigens during ontogeny was determined by binding of anticlass I antibody and appearance of B-F transcripts by Northern blotting in chicken organs during embryogenesis until 2 weeks after hatching. MHC class I transcripts first become detectable in day 6.......5 of embryogenesis. B-F cell-surface expression first becomes detectable in hemopoietic organs by day 10-12 of embryogenesis and somewhat later in nonhemopoietic organs. Flow cytometry analysis of hemopoietic cells throughout embryogenesis revealed B-Fhi and B-Flo cell populations. The percentage of B-F+ cells...... in spleen and bone marrow decreased around hatching, which could reflect either cell flows in these organs during this period or the sensitivity of hemopoietic cells to hatching stress. Udgivelsesdato: 1990-null...

  8. New recombinants within the MHC (B-complex) of the chicken

    DEFF Research Database (Denmark)

    Koch, C; Skjødt, K; Toivanen, A

    1983-01-01

    In a search for genetic recombinations within the major histocompatibility complex (MHC) of the chicken, the B-complex, the offspring from matings between heterozygous B15/B21 and B4/B6 animals were analysed by red cell agglutination. Among the progeny, 8,912 informative typings were performed...... followed B-F/B-L. The mapping distance between the two loci B-F and B-G is in the range of 0.04 centimorgan. The lack of recombinants separating individual B-F loci in this study and in the studies of others might indicate that chicken MHC is less complex than those of mammalian species, but alternative...

  9. New recombinants within the MHC (B-complex) of the chicken

    DEFF Research Database (Denmark)

    Koch, C; Skjødt, K; Toivanen, A

    1983-01-01

    In a search for genetic recombinations within the major histocompatibility complex (MHC) of the chicken, the B-complex, the offspring from matings between heterozygous B15/B21 and B4/B6 animals were analysed by red cell agglutination. Among the progeny, 8,912 informative typings were performed...... followed B-F/B-L. The mapping distance between the two loci B-F and B-G is in the range of 0.04 centimorgan. The lack of recombinants separating individual B-F loci in this study and in the studies of others might indicate that chicken MHC is less complex than those of mammalian species, but alternative...

  10. B-G cDNA clones have multiple small repeats and hybridize to both chicken MHC regions

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K

    1989-01-01

    We used rabbit antisera to the chicken MHC erythrocyte molecule B-G and to the class I alpha chain (B-F) to screen lambda gt11 cDNA expression libraries made with RNA selected by oligo-dT from bone marrow cells of anemic B19 homozygous chickens. Eight clones were found to encode B-G molecules which...

  11. Cloning and Fusion Expression of Chicken MHC Ⅰ Molecule%鸡MHC Ⅰ类分子克隆及其二聚体融合

    Institute of Scientific and Technical Information of China (English)

    戴银; 程宝艳; 胡晓苗; 王骏俊; 陈芳芳; 余为一

    2011-01-01

    To explore MHC mechanism presenting antigen and function as vaccine carrier, we cloned MHC Ⅰ gene from chicken by RT-PCR,and constructed a recombined plasmid containing MHC Ⅰ β2m-α fusion gene and expressed in a prokaryotic system. Chicken MHC Ⅰα and β2m chains were cloned from chicken by RT-PCR, the recombinant gene MHC Ⅰ β2m-α was linked with a DNA sequence coding for short peptide(Gly4 Ser)4, and confirmed by PCR amplification,double restriction digestion and DNA sequencing. The recombinant plasmid was expressed in E. coli BL21 after induction by IPTG. SDS-PAGE and Western blotting were used to detect expression products. The results revealed that the lengths of MHC Ⅰ α and β2m chains were 1014 and 300 bp,respectively, and the recombinant fusion gene was 1194 bp. The fusion protein was about 62.0 ku and had the reactinogenicity with specific antibody.%为进一步研究MHCI类分子作用机制,以及为制备MHCI基因工程疫苗奠定基础,克隆鸡MHCⅠ基因,并构建MHC Ⅰβ2m-a融合基因进行原核表达.运用RT-PCR方法,克隆鸡MHC Ⅰa和β2m链基因,并通过编码连接肽(Gly4 Ser).的基因序列将两者头尾相连,构建了pET-32a-MHC Ⅰβ2m-a重组质粒,经PCR扩增、双酶切和测序鉴定后,重组质粒在E.coliBL2 Ⅰ细胞进行IPTG诱导表达融合蛋白,采用SDS-PAGE和Western blotting方法分别检测表达产物.结果表明,成功克隆了MHCⅠa和β2m链基因,长度分别为1014和300 by;构建的融合基因MHCⅠβ2m-a长度为1194 by,经原核表达,融合蛋白分子质量约为62.0 ku,能与相应的抗体结合,具有一定的免疫学活性.

  12. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens

    DEFF Research Database (Denmark)

    Wallny, Hans-Joachim; Avila, David; Hunt, Lawrence G.

    2006-01-01

    Compared with the MHC of typical mammals, the chicken MHC is smaller and simpler, with only two class I genes found in the B12 haplotype. We make five points to show that there is a single-dominantly expressed class I molecule that can have a strong effect on MHC function. First, we find only one...

  13. MHC haplotype and susceptibility to experimental infections (Salmonella Enteritidis, Pasteurella multocida or Ascaridia galli) in a commercial and an indigenous chicken breed.

    Science.gov (United States)

    Schou, T W; Labouriau, R; Permin, A; Christensen, J P; Sørensen, P; Cu, H P; Nguyen, V K; Juul-Madsen, H R

    2010-05-15

    In three independent experimental infection studies, the susceptibility and course of infection of three pathogens considered of importance in most poultry production systems, Ascaridia galli, Salmonella Enteritidis and Pasteurella multocida were compared in two chicken breeds, the indigenous Vietnamese Ri and the commercial Luong Phuong. Furthermore, the association of the Major Histocompatibility Complex (MHC) with disease-related parameters was evaluated, using alleles of the LEI0258 microsatellite as markers for MHC haplotypes. The Ri chickens were found to be more resistant to A. galli and S. Enteritidis than commercial Luong Phuong chickens. In contrast, the Ri chickens were more susceptible to P. multocida, although production parameters were more affected in the Luong Phuong chickens. Furthermore, it was shown that the individual variations observed in response to the infections were influenced by the MHC. Using marker alleles of the microsatellite LEI0258, which is located within the MHC region, several MHC haplotypes were identified as being associated with infection intensity of A. galli. An association of the MHC with the specific antibody response to S. Enteritidis was also found where four MHC haplotypes were shown to be associated with high specific antibody response. Finally, one MHC haplotype was identified as being associated with pathological lesions and mortality in the P. multocida experiment. Although not statistically significant, our analysis suggested that this haplotype might be associated with resistance. These results demonstrate the presence of local genetic resources in Vietnamese chickens, which could be utilized in breeding programmes aiming at improving disease resistance. Copyright 2009 Elsevier B.V. All rights reserved.

  14. The major histocompatibility complex (Mhc class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken

    Directory of Open Access Journals (Sweden)

    Kulski Jerzy K

    2006-12-01

    Full Text Available Abstract Background The quail and chicken major histocompatibility complex (Mhc genomic regions have a similar overall organization but differ markedly in that the quail has an expanded number of duplicated class I, class IIB, natural killer (NK-receptor-like, lectin-like and BG genes. Therefore, the elucidation of genetic factors that contribute to the greater Mhc diversity in the quail would help to establish it as a model experimental animal in the investigation of avian Mhc associated diseases. Aims and approaches The main aim here was to characterize the genetic and genomic features of the transcribed major quail MhcIIB (CojaIIB region that is located between the Tapasin and BRD2 genes, and to compare our findings to the available information for the chicken MhcIIB (BLB. We used four approaches in the study of the quail MhcIIB region, (1 haplotype analyses with polymorphic loci, (2 cloning and sequencing of the RT-PCR CojaIIB products from individuals with different haplotypes, (3 genomic sequencing of the CojaIIB region from the individuals with the different haplotypes, and (4 phylogenetic and duplication analysis to explain the variability of the region between the quail and the chicken. Results Our results show that the Tapasin-BRD2 segment of the quail Mhc is highly variable in length and in gene transcription intensity and content. Haplotypic sequences were found to vary in length between 4 to 11 kb. Tapasin-BRD2 segments contain one or two major transcribed CojaIIBs that were probably generated by segmental duplications involving c-type lectin-like genes and NK receptor-like genes, gene fusions between two CojaIIBs and transpositions between the major and minor CojaIIB segments. The relative evolutionary speed for generating the MhcIIBs genomic structures from the ancestral BLB2 was estimated to be two times faster in the quail than in the chicken after their separation from a common ancestor. Four types of genomic rearrangement

  15. An in situ hybridization study of the effects of artificial insemination on the localization of cells expressing MHC class II mRNA in the chicken oviduct.

    Science.gov (United States)

    Zheng, W M; Nishibori, M; Isobe, N; Yoshimura, Y

    2001-10-01

    The aim of this study was to determine the effects of artificial insemination on the localization of antigen-presenting cells expressing MHC class II mRNA in chicken oviducts. Laying hens (35 weeks old) were inseminated with fresh semen or sham-inseminated with saline daily for 3 days. In situ hybridization was performed to detect chicken MHC class II (B-LB21 major gene) mRNA on frozen sections of oviductal infundibulum, uterovaginal junction and vagina by using digoxigenin-labelled PCR probes. Cells expressing MHC class II were observed mainly in the oviductal mucosal stroma and occasionally in the mucosal epithelium. After 24 h, the population of cells expressing MHC class II in the infundibulum was significantly higher in laying hens inseminated with fresh semen than in the control hens sham-inseminated with saline (P artificially inseminated and control hens. These results indicate that anti-sperm immune responses, including the influx of cells expressing MHC class II and enhanced MHC class II mRNA expression, probably occur in the infundibulum after artificial insemination.

  16. The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes

    DEFF Research Database (Denmark)

    Walker, Brian A; Hunt, Lawrence G; Sowa, Anna K

    2011-01-01

    In most mammals, the MHC class I molecules are polymorphic and determine the specificity of peptide presentation, whereas the transporter associated with antigen presentation (TAP) heterodimers are functionally monomorphic. In chickens, there are two classical class I genes but only one is expres...

  17. B-G cDNA clones have multiple small repeats and hybridize to both chicken MHC regions

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K

    1989-01-01

    in turn react with authentic B-G proteins. None of the clones represent a complete message, some--if not all--bear introns, and none of them match with any sequences presently stored in the data banks. The following new information did, however, emerge. At least two homologous transcripts are present......We used rabbit antisera to the chicken MHC erythrocyte molecule B-G and to the class I alpha chain (B-F) to screen lambda gt11 cDNA expression libraries made with RNA selected by oligo-dT from bone marrow cells of anemic B19 homozygous chickens. Eight clones were found to encode B-G molecules which...... could explain the bewildering variation in size of B-G proteins within and between haplotypes. Southern blots of genomic chicken DNA gave complex patterns for most probes, with many bands in common using different probes, but few bands in common between haplotypes. The sequences detected are all present...

  18. MHC haplotype and susceptibility to experimental infections (Salmonella Enteritidis, Pasteurella multocida orAscaridia galli) in a commercial and an indigenous chicken breed

    DEFF Research Database (Denmark)

    Schou, T W; Labouriau, R; Permin, A

    2010-01-01

    In three independent experimental infection studies, the susceptibility and course of infection of three pathogens considered of importance in most poultry production systems, Ascaridia galli, Salmonella Enteritidis and Pasteurella multocida was compared in two chicken breeds, the indigenous...... might be associated with resistance. These results demonstrate the presence of local genetic resources in Vietnamese chickens, which could be utilized in breeding programmes aiming at improving disease resistance...... Vietnamese Ri and the commercial Luong Phuong. Furthermore, the association of the Major Histocompatibility Complex (MHC) with disease-related parameters was evaluated, using alleles of the LEI0258 microsatellite as markers for MHC haplotypes. The Ri chickens were found to be more resistant to A. galli and S...

  19. Variations in the cytoplasmic region account for the heterogeneity of the chicken MHC class I (B-F) molecules

    DEFF Research Database (Denmark)

    Møller, L B; Kaufman, J; Verland, S;

    1991-01-01

    Molecular variation among major histocompatibility complex (MHC) class I (B-F) proteins from B-homozygous chickens is apparently caused by C-terminal variation. Analysis of the total B-F protein pool revealed substantial heterogeneity with two or three molecular mass constituents, each being...... comprised by several isoelectric focusing variants. This heterogeneity could not be reduced by enzymatic deglycosylation. By contrast, proteolytic removal of a small (Mr 1000-4000) fragment from the alpha chain resulted in the generation of a Mr 36,000 fragment, common to all the molecular mass variants...... properties of fragments obtained by gradual proteolytic digestion, indicated that the small peptide responsible for the major B-F heterogeneity was situated in the intracellular, C-terminal part. Udgivelsesdato: 1991-null...

  20. Analysis of chickens for recombination within the MHC (B-complex)

    DEFF Research Database (Denmark)

    Skjødt, K; Koch, C; Crone, M

    1985-01-01

    confirmed the original serological typing of the two recombinant B haplotypes. No recombination between B-F (class I) and B-L (class II) loci was found. This very low frequency of recombination within the B complex as compared with recombination frequencies found in mammalian MHC's is discussed...

  1. The structural basis of chicken, swine and bovine CD8αα dimers provides insight into the co-evolution with MHC I in endotherm species

    Science.gov (United States)

    Liu, Yanjie; Li, Xin; Qi, Jianxun; Zhang, Nianzhi; Xia, Chun

    2016-01-01

    It is unclear how the pivotal molecules of the adaptive immune system (AIS) maintain their inherent characteristics and relationships with their co-receptors over the course of co-evolution. CD8α, a fundamental but simple AIS component with only one immunoglobulin variable (IgV) domain, is a good example with which to explore this question because it can fold correctly to form homodimers (CD8αα) and interact with peptide-MHC I (p/MHC I) with low sequence identities between different species. Hereby, we resolved the crystal structures of chicken, swine and bovine CD8αα. They are typical homodimers consisting of two symmetric IgV domains with distinct species specificities. The CD8αα structures indicated that a few highly conserved residues are important in CD8 dimerization and in interacting with p/MHC I. The dimerization of CD8αα mainly depends on the pivotal residues on the dimer interface; in particular, four aromatic residues provide many intermolecular forces and contact areas. Three residues on the surface of CD8α connecting cavities that formed most of the hydrogen bonds with p/MHC I were also completely conserved. Our data propose that a few key conserved residues are able to ensure the CD8α own structural characteristics despite the great sequence variation that occurs during evolution in endotherms. PMID:27122108

  2. Polymorphism and molecular phylogenetic analysis of MHC B -G locus in 9 indigenous chicken breeds%9个地方鸡种MHCB-G座位多态性及其分子系统进化分析

    Institute of Scientific and Technical Information of China (English)

    屠云洁; 苏一军; 王克华; 张学余; 李国辉; 殷建玫

    2012-01-01

    以我国9个地方鸡为研究对象,对其MHC B-G座位全基因序列进行测序,以揭示这9个地方鸡种MHC B -G基因的遗传多样性,并构建其系统进化树.结果表明,9个地方鸡种MHC B-G基因序列具有较高的遗传多样性,在9个地方鸡种中共存在666个突变位点,其中单一位点突变554个,简约信息112个,共缺失782 bp.核苷酸多样度(Pi)为0.03079±0.004 39,平均核昔酸差异(K)为182.639.9个地方鸡品种为9个单倍型,单倍型多样度为1.00±0.052.9个鸡种MHC B-G基因Kiumura双参数遗传距离范围为0.010~0.070,鹿苑鸡与新狼山鸡的遗传距离最小,为0.010;茶花鸡与东乡绿壳蛋鸡遗传距离最大,为0.070.根据9个鸡品种MHC B-G基因全序列构建的NJ树和ME树,茶花鸡单独聚为1类,其他8个品种被聚为2大类.Tajima's D值为-1.5546,且差异不显著(0.10>P>0.05),说明MHC B -G基因为负向选择,不遵循中性进化理论,MHC B -G基因多态性不是遗传漂变的结果,而是自然选择和人工选择的结果.%The MHC B - G locus in nine indigenous chicken breeds was sequenced to explore genetic diversity in these nine chicken breeds and to construct their phylogenetic tree. The study revealed that the genetic diversity of the MHC B - G locus in these breeds was relatively high, where there were 666 polymophic sites, among of which singleton variable sites were 554, parsimony informative sites were 112. Sites with alignment gaps or missing data were 782 bp. Nucleotide diversity ( P,) was 0. 030 79 ± 0. 004 39. Average number of nucleotide differences (K) was 182. 639. There was nine haplotypes in nine chicken breeds. The haplotype diversity was 1. 00 ±0. 052. Kimura 2 - parameter distance between nine chicken breeds was 0.010 -0.070, where the minimum was 0.010 between Luyuan and Newlangshan, while the maximum was 0.070 between Chahua and Dongxiang blue. Neighbor - Joining (NJ) tree and Minimum -Evolution (ME) tree based on MHC B - G DNA

  3. New chicken Rfp-Y haplotypes on the basis of MHC class II RFLP and MLC analyses

    DEFF Research Database (Denmark)

    Juul-Madsen, H R; Zoorob, R; Auffray, C;

    1997-01-01

    New chicken Rfp-Y haplotypes were determined by the use of restriction fragment length polymorphism (RFLP) and mixed lymphocyte culture (MLC) in four different chicken haplotypes, B15, B19, B21, B201. The RFLP polymorphism was mapped to the Rfp-Y system by the use of a subclone (18.1) which maps...... near a polymorphic lectin gene located in the Rfp-Y system and DNA from families with known segregation of the implicated RFLP polymorphism. For the first time it is shown that major histocompatibility complex class II genes in the Rfp-Y system have functional implications. Sequence information...

  4. The properties of the single chicken MHC classical class II alpha chain ( B-LA) gene indicate an ancient origin for the DR/E-like isotype of class II molecules

    DEFF Research Database (Denmark)

    Salomonsen, Jan; Marston, Denise; Avila, David;

    2003-01-01

    for the cloning and sequencing of the cDNA. We found only one class II alpha chain transcript, which bears the major features of a classical class II alpha sequence, including the critical peptide-binding residues. The chicken sequence is more similar to human DR than to the DQ, DP, DO or DM isotypes, most......In mammals, there are MHC class II molecules with distinctive sequence features, such as the classical isotypes DR, DQ and DP. These particular isotypes have not been reported in non-mammalian vertebrates. We have isolated the class II (B-L) alpha chain from outbred chickens as the basis...... significantly in the peptide-binding alpha(1) domain. The cDNA and genomic DNA sequences from chickens of diverse origins show few alleles, which differ in only four nucleotides and one amino acid. In contrast, significant restriction fragment length polymorphism is detected by Southern blot analysis of genomic...

  5. Different features of the MHC class I heterodimer have evolved at different rates. Chicken B-F and beta 2-microglobulin sequences reveal invariant surface residues

    DEFF Research Database (Denmark)

    Kaufman, J; Andersen, R; Avila, D;

    1992-01-01

    of small exons in the cytoplasmic region. The cDNA sequences were compared to turkey beta 2m, the apparent allele B-F12 alpha and other vertebrate homologs, using the 2.6 A structure of the human HLA-A2 molecule as a model. Both chicken alpha 1 and alpha 2 domains resemble mammalian classical class I...

  6. Prokaryotic Expression and Polyclonal Antibody Preparation of Chicken MHC Ⅰα andβ2m Genes%鸡MHCⅠα和β2m的原核表达与多克隆抗体的制备

    Institute of Scientific and Technical Information of China (English)

    戴银; 王承志; 刘生杰; 沈学怀; 赵瑞宏; 胡晓苗; 张丹俊

    2016-01-01

    为制备 MHCⅠ基因工程疫苗的基础材料,构建了鸡 MHCⅠ分子重组质粒并进行原核表达,进而制备鸡 MHCⅠ分子的多克隆抗体。应用 PCR 方法,克隆鸡 MHCⅠα和β2m 基因,构建重组载体 pET-MHCⅠα和 pET-MHCⅠβ2m,经 PCR、双酶切和测序鉴定后,将重组质粒在大肠埃希菌 Rosetta 中进行诱导表达,融合蛋白纯化后,接种昆明小鼠制备多克隆抗体,血清稀释后用免疫印迹法(Western blot)分析。结果表明,鸡 MHCⅠα和β2m 基因在大肠埃希菌中成功表达,融合蛋白分子质量分别约为52.1 ku 和33.0 ku;制备的鼠抗鸡 MHCⅠα和β2m 链多克隆抗体,经 Western blot 检测证实抗体特异性较强,可进一步用于鸡 MHCⅠ分子的研究。%To explore MHC Ⅰ function as DNA vaccine,chicken MHC Ⅰ genes were expressed by using Escherichia coli prokaryotic expression system,and polyclonal antibodies against the recombinant protein MHCⅠwere prepared.Chicken MHCⅠαandβ2m genes were cloned,the recombinant plasmid pET-MHCⅠα,pET-MHCⅠβ2m were constructed,and confirmed by PCR amplification,double enzyme digestion and DNA sequencing.Next,the recombinant plasmids were expressed in E.coli Rosetta induced by using IPTG.After purification of the recombinant protein,the polyclonal antibodies against the recombinant pro-tein were prepared in Kunming mice.The reactivity of the prepared polyclonal antibodies were determined by Western blot.The results revealed that the MHCⅠαandβ2m genes were successfully expressed in E. coli,and the fusion proteins were about 52.1 ku and 33.0 ku,respectively.The polyclonal antibodies had the specific reactinogenicity,it was proved by Western blot.All this made it possible to do further studies on chicken MHCⅠmolecule.

  7. Cryopreservation of MHC multimers

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline;

    2015-01-01

    and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented...

  8. The MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets...

  9. A genome-wide survey of Major Histocompatibility Complex (MHC genes and their paralogues in zebrafish

    Directory of Open Access Journals (Sweden)

    Figueroa Felipe

    2005-11-01

    Full Text Available Abstract Background The genomic organisation of the Major Histocompatibility Complex (MHC varies greatly between different vertebrates. In mammals, the classical MHC consists of a large number of linked genes (e.g. greater than 200 in humans with predominantly immune function. In some birds, it consists of only a small number of linked MHC core genes (e.g. smaller than 20 in chickens forming a minimal essential MHC and, in fish, the MHC consists of a so far unknown number of genes including non-linked MHC core genes. Here we report a survey of MHC genes and their paralogues in the zebrafish genome. Results Using sequence similarity searches against the zebrafish draft genome assembly (Zv4, September 2004, 149 putative MHC gene loci and their paralogues have been identified. Of these, 41 map to chromosome 19 while the remaining loci are spread across essentially all chromosomes. Despite the fragmentation, a set of MHC core genes involved in peptide transport, loading and presentation are still found in a single linkage group. Conclusion The results extend the linkage information of MHC core genes on zebrafish chromosome 19 and show the distribution of the remaining MHC genes and their paralogues to be genome-wide. Although based on a draft genome assembly, this survey demonstrates an essentially fragmented MHC in zebrafish.

  10. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    . Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif...... viewer, that allows the display of the likely binding motif for all human class I proteins of the loci HLA A, B, C, and E and for MHC class I molecules from chimpanzee (Pan troglodytes), rhesus monkey (Macaca mulatta), and mouse (Mus musculus). Furthermore, it covers all HLA-DR protein sequences...

  11. Molecular Genotype Identification of Different Chickens: Major Histocompatibility Complex

    Directory of Open Access Journals (Sweden)

    Hongzhi Wang

    2014-09-01

    Full Text Available Chicken is a main poultry in China. Molecular breeding for disease resistance plays an important role in the control of diseases, especially infectious diseases. Choice of genes for disease resistance is the key technology of molecular breeding. The major histocompatibility complex (MHC is of great interest to poultry breeding scientists for its extraordinary polymorphism and close relation with traits of resistance against infectious diseases. The MHC-B haplotype plays an important role in the study of disease resistance in chicken. The traditional chicken MHC-B haplotype is commonly defined by serologic reactions of erythrocytes and the majority of studies have been conducted in Leghorn and broiler but study about other chicken breeds is little. In this study, firstly, the microsatellite marker LEI0258 which is located within the MHC was sequenced by using target sequence capture assay in different chicken breeds, and then according to the number of repeated structures and polymorphic sequences in microsatellite, sequence information for the region defined by LEI0258 was obtained for different haplotypes. Afterwards, we identified the relation between MHC-B haplotypes and disease resistance. Collectively, these observed results provided the reference data for disease-resistant breeding association with blood type and for further study of MHC gene function in poultry.

  12. Organizing MHC Class II Presentation

    Directory of Open Access Journals (Sweden)

    David R Fooksman

    2014-04-01

    Full Text Available Major histocompatibility complex (MHC class II molecules are ligands for CD4+ T cells and are critical for initiating the adaptive immune response. This review is focused on what is currently known about MHC class II organization at the plasma membrane of antigen presenting cells and how this affects antigen presentation to T cells. The organization and diffusion of class II molecules have been measured by a variety of biochemical and microscopic techniques. Membrane lipids and other proteins have been implicated in MHC class II organization and function. However, when compared with the organization of MHC class I or TCR complexes, much less is known about MHC class II. Since clustering of T cell receptors occurs during activation, the organization of MHC molecules prior to recognition and during synapse formation may be critical for antigen presentation.

  13. Targeted capture enrichment and sequencing identifies extensive nucleotide variation in the turkey MHC-B.

    Science.gov (United States)

    Reed, Kent M; Mendoza, Kristelle M; Settlage, Robert E

    2016-03-01

    Variation in the major histocompatibility complex (MHC) is increasingly associated with disease susceptibility and resistance in avian species of agricultural importance. This variation includes sequence polymorphisms but also structural differences (gene rearrangement) and copy number variation (CNV). The MHC has now been described for multiple galliform species including the best defined assemblies of the chicken (Gallus gallus) and domestic turkey (Meleagris gallopavo). Using this sequence resource, this study applied high-throughput sequencing to investigate MHC variation in turkeys of North America (NA turkeys). An MHC-specific SureSelect (Agilent) capture array was developed, and libraries were created for 14 turkeys representing domestic (commercial bred), heritage breed, and wild turkeys. In addition, a representative of the Ocellated turkey (M. ocellata) and chicken (G. gallus) was included to test cross-species applicability of the capture array allowing for identification of new species-specific polymorphisms. Libraries were hybridized to ∼12 K cRNA baits and the resulting pools were sequenced. On average, 98% of processed reads mapped to the turkey whole genome sequence and 53% to the MHC target. In addition to the MHC, capture hybridization recovered sequences corresponding to other MHC regions. Sequence alignment and de novo assembly indicated the presence of several additional BG genes in the turkey with evidence for CNV. Variant detection identified an average of 2245 polymorphisms per individual for the NA turkeys, 3012 for the Ocellated turkey, and 462 variants in the chicken (RJF-256). This study provides an extensive sequence resource for examining MHC variation and its relation to health of this agriculturally important group of birds.

  14. The major histocompatibility complex in the chicken

    DEFF Research Database (Denmark)

    Guillemot, F; Kaufman, J F; Skjoedt, K

    1989-01-01

    The chicken B complex is the first non-mammalian MHC characterized at the molecular level. It differs from the human HLA and murine H-2 complexes in the small size of the class I (B-F) and class II (B-L) genes and their close proximity. This proximity accounts for the absence of recombination...

  15. The major histocompatibility complex in the chicken

    DEFF Research Database (Denmark)

    Guillemot, F; Kaufman, J F; Skjoedt, K

    1989-01-01

    The chicken B complex is the first non-mammalian MHC characterized at the molecular level. It differs from the human HLA and murine H-2 complexes in the small size of the class I (B-F) and class II (B-L) genes and their close proximity. This proximity accounts for the absence of recombination...

  16. Correlation in chicken between the marker LEI0258 alleles and Major Histocompatibility Complex sequences

    DEFF Research Database (Denmark)

    Chazara, Olympe; Juul-Madsen, Helle Risdahl; Chang, Chi-Seng

    Background The LEI0258 marker is located within the B region of the chicken Major Histocompatibility Complex (MHC), and is surprisingly well associated with serology. Therefore, the correlation between the LEI0258 alleles and the MHC class I and the class II alleles at the level of sequences is w...

  17. MHC-like molecules in some nonmammalian vertebrates can be detected by some cross-reactive xenoantisera

    DEFF Research Database (Denmark)

    Kaufman, J; Skjoedt, K; Salomonsen, J

    1990-01-01

    Rabbit antisera raised to human and chicken MHC molecules were used to immunoprecipitate cross-reactive molecules from biosynthetically and cell surface-labeled spleen and/or blood cells of representative vertebrate species. Five major points emerged: 1) There were many nonspecific cross-reaction......Rabbit antisera raised to human and chicken MHC molecules were used to immunoprecipitate cross-reactive molecules from biosynthetically and cell surface-labeled spleen and/or blood cells of representative vertebrate species. Five major points emerged: 1) There were many nonspecific cross...

  18. Protein tyrosine kinases p53/56lyn and p72syk in MHC class I-mediated signal transduction in B lymphoma cells

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Skov, S

    1998-01-01

    Crosslinking of major histocompatibility complex class I (MHC-I) molecules on the surface of human B lymphoma cells was shown to induce protein tyrosine phosphorylation and mobilization of intracellular free calcium. Immunoprecipitations indicated that the protein tyrosine kinases p53/56lyn and p72...... and the results indicate that these two kinases have different substrate specificity and regulate intracellular free calcium differently in response to MHC-I crosslinking. In addition MHC-I crosslinking of a sIgM-negative DT40 chicken B cell variant results in less activity of tyrosine kinases and less...... mobilization of intracellular free calcium compared with MHC-I crosslinking of wild-type DT40 cells. Thus, expression of BCR at the cell surface is likely to be important for the signal cascade initiated by MHC-I crosslinking. Our data suggest that signal transduction initiated through ligation of the MHC...

  19. Amino acid sequences and structures of chicken and turkey beta 2-microglobulin

    DEFF Research Database (Denmark)

    Welinder, K G; Jespersen, H M; Walther-Rasmussen, J;

    1991-01-01

    The complete amino acid sequences of chicken and turkey beta 2-microglobulins have been determined by analyses of tryptic, V8-proteolytic and cyanogen bromide fragments, and by N-terminal sequencing. Mass spectrometric analysis of chicken beta 2-microglobulin supports the sequence-derived Mr of 11......,048. The higher apparent Mr obtained for the avian beta 2-microglobulins as compared to human beta 2-microglobulin by SDS-PAGE is not understood. Chicken and turkey beta 2-microglobulin consist of 98 residues and deviate at seven positions: 60, 66, 74-76, 78 and 82. The chicken and turkey sequences are identical...... suggest that the seven chicken to turkey differences are exposed to solvent in the avian MHC class I complex. The key residues of beta 2-microglobulin involved in alpha chain contacts within the MHC class I molecule are highly conserved between chicken and man. This explains that heterologous human beta 2...

  20. Patterns of MHC-G-Like and MHC-B Diversification in New World Monkeys.

    Directory of Open Access Journals (Sweden)

    Juan S Lugo

    Full Text Available The MHC class I (MHC-I region in New World monkeys (Platyrrhini has remained relatively understudied. To evaluate the diversification patterns and transcription behavior of MHC-I in Platyrrhini, we first analyzed public genomic sequences from the MHC-G-like subregion in Saimiri boliviensis, Ateles geoffroyi and Callicebus moloch, and from the MHC-B subregion in Saimiri boliviensis. While S. boliviensis showed multiple copies of both MHC-G-like (10 and -B (15 loci, A. geoffroyi and C. moloch had only three and four MHC-G-like genes, respectively, indicating that not all Platyrrhini species have expanded their MHC-I loci. We then sequenced MHC-G-like and -B cDNAs from nine Platyrrhini species, recovering two to five unique cDNAs per individual for both loci classes. In two Saguinus species, however, no MHC-B cDNAs were found. In phylogenetic trees, MHC-G-like cDNAs formed genus-specific clusters whereas the MHC-B cDNAs grouped by Platyrrhini families, suggesting a more rapid diversification of the former. Furthermore, cDNA sequencing in 12 capuchin monkeys showed that they transcribe at least four MHC-G-like and five MHC-B polymorphic genes, showing haplotypic diversity for gene copy number and signatures of positive natural selection at the peptide binding region. Finally, a quantitative index for MHC:KIR affinity was proposed and tested to predict putative interacting pairs. Altogether, our data indicate that i MHC-I genes has expanded differentially among Platyrrhini species, ii Callitrichinae (tamarins and marmosets MHC-B loci have limited or tissue-specific expression, iii MHC-G-like genes have diversified more rapidly than MHC-B genes, and iv the MHC-I diversity is generated mainly by genetic polymorphism and gene copy number variation, likely promoted by natural selection for ligand binding.

  1. MHC polymorphism under host-pathogen coevolution.

    Science.gov (United States)

    Borghans, José A M; Beltman, Joost B; De Boer, Rob J

    2004-02-01

    The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change.

  2. Characterization, polymorphism and selection of major histocompatibility complex (MHC DAB genes in vulnerable Chinese egret (Egretta eulophotes.

    Directory of Open Access Journals (Sweden)

    Zeng Wang

    Full Text Available The major histocompatibility complex (MHC is an excellent molecular marker for the studies of evolutionary ecology and conservation genetics because it is a family of highly polymorphic genes that play a key role in vertebrate immune response. In this study, the functional genes of MHC Class II B (DAB were isolated for the first time in a vulnerable species, the Chinese egret (Egrettaeulophotes. Using a full length DNA and cDNA produced by PCR and RACE methods, four potential MHC DAB loci were characterized in the genome of this egret and all four were expressed in liver and blood. At least four copies of the MHC gene complex were similar to two copies of the minimal essential MHC complex of chicken, but are less complex than the multiple copies expressed in passerine species. In MHC polymorphism, 19 alleles of exon 2 were isolated from 48 individuals using PCR. No stop codons or frameshift mutations were found in any of the coding regions. The signatures of positive selection detected in potential peptide-binding regions by Bayesian analysis, suggesting that all of these genes were functional. These data will provide the fundamental basis for further studies to elucidate the mechanisms and significance of MHC molecular adaptation in vulnerable Chinese egret and other ardeids.

  3. Major histocompatibility complex-linked immune response of young chickens vaccinated with an attenuated live infectious bursal disease virus vaccine followed by an infection

    DEFF Research Database (Denmark)

    Juul-Madsen, Helle; Nielsen, O.L.; Krogh-Maibom, T.

    2002-01-01

    The influence of the MHC on infectious bursal disease virus (IBDV) vaccine response in chickens was investigated in three different chicken lines containing four different MHC haplotypes. Two MHC haplotypes were present in all three lines with one haplotype (1319) shared between the lines. Line I...... further contains the BW1 haplotype isolated from a Red jungle Fowl. Line 131 further contains the B131 haplotype isolated from a meat-type chicken, Finally, Line 21 further contains the international B21 haplotype. The chickens were vaccinated with live attenuated commercial IBDV vaccine at 3 wk of age...... (mean 5,243), B21 (5,570), and B131 (5,333) at 8 d postinfection, How-ever, a virus-neutralizing antibody test did not reflect this result. Nevertheless, the MHC haplotype-associated protective immunity was further supported by the bursa of Fabricius (bursa) recovery from the disease, as measured...

  4. A new polymorphic and multicopy MHC gene family related to nonmammalian class I

    Energy Technology Data Exchange (ETDEWEB)

    Leelayuwat, C.; Degli-Esposti, M.A.; Abraham, L.J. [Univ. of Western Australia, Perth (Australia); Townend, D.C. [Sir Charles Gairdner Hospital, Perth (Australia); Dawkins, R.L. [Royal Perth Hospital, Perth (Australia)]|[Univ. of Western Australia, Perth (Australia)]|[Sir Charles Gairdner Hospital, Perth (Australia)

    1994-12-31

    The authors have used genomic analysis to characterize a region of the central major histocompatibility complex (MHC) spanning {approximately} 300 kilobases (kb) between TNF and HLA-B. This region has been suggested to carry genetic factors relevant to the development of autoimmune diseases such as myasthenia gravis (MG) and insulin dependent diabetes mellitus (IDDM). Genomic sequence was analyzed for coding potential, using two neural network programs, GRAIL and GeneParser. A genomic probe, JAB, containing putative coding sequences (PERB11) located 60 kb centromeric of HLA-B, was used for northern analysis of human tissues. Multiple transcripts were detected. Southern analysis of genomic DNA and overlapping YAC clones, covering the region from BAT1 to HLA-F, indicated that there are at least five copies of PERB11, four of which are located within this region of the MHC. The partial cDNA sequence of PERB11 was obtained from poly-A RNA derived from skeletal muscle. The putative amino acid sequence of PERB11 shares {approximately} 30% identity to MHC class I molecules from various species, including reptiles, chickens, and frogs, as well as to other MHC class I-like molecules, such as the IgG FcR of the mouse and rat and the human Zn-{alpha}2-glycoprotein. From direct comparison of amino acid sequences, it is concluded that PERB11 is a distinct molecule more closely related to nonmammalian than known mammalian MHC class I molecules. Genomic sequence analysis of PERB11 from five MHC ancestral haplotypes (AH) indicated that the gene is polymorphic at both DNA and protein level. The results suggest that the authors have identified a novel polymorphic gene family with multiple copies within the MHC. 48 refs., 10 figs., 2 tabs.

  5. Gastrointestinal helminths in indigenous and exotic chickens in Vietnam: association of the intensity of infection with the Major Histocompatibility Complex.

    Science.gov (United States)

    Schou, T W; Permin, A; Juul-Madsen, H R; Sørensen, P; Labouriau, R; Nguyên, T L H; Fink, M; Pham, S L

    2007-04-01

    This study compared the prevalence and intensity of infections of helminths in 2 chicken breeds in Vietnam, the indigenous Ri and the exotic Luong Phuong. Also, possible correlations with the Major Histocompatibility Complex (MHC) were tested. The most prevalent helminths were Ascaridia galli, Heterakis beramporia, Tetrameres mothedai, Capillaria obsignata, Raillietina echinobothrida and Raillietina tetragona. Differences in prevalence and intensity of infection were found between the 2 breeds. Comparing the 2 groups of adult birds, Ri chickens were observed to have higher prevalence and infection intensities of several species of helminths, as well as a higher mean number of helminth species. In contrast, A. galli and C. obsignata were shown to be more prevalent in Luong Phuong chickens. Furthermore, an age-dependent difference was indicated in the group of Ri chickens in which the prevalence and the intensity of infection was higher for the adult than the young chickens for most helminths. The most notable exception was the significantly lower prevalence and intensities of A. galli in the group of adult chickens. In contrast, the prevalence and intensity were very similar in both age groups of Luong Phuong chickens. Using a genetic marker located in the MHC, a statistically significant correlation between several MHC haplotypes and the infection intensity of different helminth species was inferred. This is the first report of an association of MHC haplotype with the intensity of parasite infections in chickens.

  6. Chicken Art

    Science.gov (United States)

    Bickett, Marianne

    2009-01-01

    In this article, the author describes how a visit from a flock of chickens provided inspiration for the children's chicken art. The gentle clucking of the hens, the rooster crowing, and the softness of the feathers all provided rich aural, tactile, visual, and emotional experiences. The experience affirms the importance and value of direct…

  7. Chicken Toast

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Ingredients: 200 grams chicken breast; 50 grams sliced bread; 5 grams vegetable oil; one egg; minced ginger root and scallions; 25 grams Shredded radish; vinegar; sugar; salt and pepper to taste. Method: First chop the chicken and mix it with the vegetable oil, a beaten egg, ginger, scallions, Salt

  8. Chicken Art

    Science.gov (United States)

    Bickett, Marianne

    2009-01-01

    In this article, the author describes how a visit from a flock of chickens provided inspiration for the children's chicken art. The gentle clucking of the hens, the rooster crowing, and the softness of the feathers all provided rich aural, tactile, visual, and emotional experiences. The experience affirms the importance and value of direct…

  9. In Ovo Vaccination with Turkey Herpesvirus Hastens Maturation of Chicken Embryo Immune Responses in Specific-Pathogen-Free Chickens.

    Science.gov (United States)

    Gimeno, Isabel M; Faiz, Nik M; Cortes, Aneg L; Barbosa, Taylor; Villalobos, Tarsicio; Pandiri, Arun R

    2015-09-01

    Administration of Marek's disease (MD) vaccines in ovo has become a common practice for the poultry industry. Efficacy of MD vaccines is very high, even though they are administered to chicken embryos that are immunologically immature. We have recently demonstrated that in ovo vaccination with turkey herpesvirus (HVT) results in increased activation of T cells at hatch. Our previous results suggested that in ovo vaccination with HVT might have a positive impact not only on MD protection but also on the overall maturity of the developing immune system of the chicken (Gallus gallus domesticus). The objective of this study was to evaluate the effect of administration of HVT at 18 days of embryonation (ED) on the maturation of the embryo immune system. Four experiments were conducted in Specific-Pathogen-Free Avian Supplies (SPAFAS) chickens to evaluate the effect of administration of HVT at 18 ED on the splenic cell phenotypes at day of age (experiment 1) and on the ability of 1-day-old chickens to respond to various antigens compared with older birds (experiments 2 and 3). In addition, a fourth experiment was conducted to elucidate whether administration of other serotype's MD vaccines (CVI988 and SB-1) at 18 ED had the same effect as HVT on the spleen cell phenotypes at day of age. Our results demonstrated that 1-day-old chickens that had received HVT in ovo (1-day HVT) had higher percentages of CD45+, MHC-I+, CD45+MHC-I+, CD3+, MHC-II+, CD3+MHC-II+, CD4+, CD8+, and CD4+CD8+ cells in the spleen than 1-day-old sham-inoculated chickens (1-day sham). Moreover, spleens of 1-day HVT chickens had greater percentages of CD45+MHC-I+ cells and equal or greater numbers of CD4+CD8- and CD4-CD8+ cells than older unvaccinated chickens. In addition, administration of HVT at 18 ED rendered chicks at hatch more responsive to unrelated antigens such as concavalin A, phytohemagglutinin-L, and keyhole limpet hemocyanin. Administration of MD vaccines of other serotypes had an effect

  10. The MHC molecules of nonmammalian vertebrates

    DEFF Research Database (Denmark)

    Kaufman, J; Skjoedt, K; Salomonsen, J

    1990-01-01

    There is very little known about the long-term evolution of the MHC and MHC-like molecules. This is because both the theory (the evolutionary questions and models) and the practice (the animals systems, functional assays and reagents to identify and characterize these molecules) have been difficu...

  11. Antigen presentation by MHC-dressed cells

    Directory of Open Access Journals (Sweden)

    Masafumi eNakayama

    2015-01-01

    Full Text Available Professional antigen presenting cells (APCs such as conventional dendritic cells (DCs process protein antigens to MHC-bound peptides and then present the peptide-MHC complexes to T cells. In addition to this canonical antigen presentation pathway, recent studies have revealed that DCs and non-APCs can acquire MHC class I (MHCI and/or MHC class II (MHCII from neighboring cells through a process of cell-cell contact-dependent membrane transfer called trogocytosis. These MHC-dressed cells subsequently activate or regulate T cells via the preformed antigen peptide-MHC complexes without requiring any further processing. In addition to trogocytosis, intercellular transfer of MHCI and MHCII can be mediated by secretion of membrane vesicles such as exosomes from APCs, generating MHC-dressed cells. This review focuses on the physiological role of antigen presentation by MHCI- or MHCII-dressed cells, and also discusses differences and similarities between trogocytosis and exosome-mediated transfer of MHC.

  12. Isolation of a 97-kb minimal essential MHC B locus from a new reverse-4D BAC library of the golden pheasant.

    Directory of Open Access Journals (Sweden)

    Qing Ye

    Full Text Available The bacterial artificial chromosome (BAC system is widely used in isolation of large genomic fragments of interest. Construction of a routine BAC library requires several months for picking clones and arraying BACs into superpools in order to employ 4D-PCR to screen positive BACs, which might be time-consuming and laborious. The major histocompatibility complex (MHC is a cluster of genes involved in the vertebrate immune system, and the classical avian MHC-B locus is a minimal essential one, occupying a 100-kb genomic region. In this study, we constructed a more effective reverse-4D BAC library for the golden pheasant, which first creates sub-libraries and then only picks clones of positive sub-libraries, and identified several MHC clones within thirty days. The full sequencing of a 97-kb reverse-4D BAC demonstrated that the golden pheasant MHC-B locus contained 20 genes and showed good synteny with that of the chicken. The notable differences between these two species were the numbers of class II B loci and NK genes and the inversions of the TAPBP gene and the TAP1-TAP2 region. Furthermore, the inverse TAP2-TAP1 was unique in the golden pheasant in comparison with that of chicken, turkey, and quail. The newly defined genomic structure of the golden pheasant MHC will give an insight into the evolutionary history of the avian MHC.

  13. Structural Properties of MHC Class II Ligands, Implications for the Prediction of MHC Class II Epitopes

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Winther; Buus, Søren; Nielsen, Morten

    2010-01-01

    properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure......Major Histocompatibility class II (MHC-II) molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule...... of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC...

  14. Prairie Chicken

    Data.gov (United States)

    Kansas Data Access and Support Center — An outline of the general range occupied by greayter and lesser prairie chickens. The range was delineated by expert opinion, then varified by local wildlife...

  15. Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding

    Science.gov (United States)

    Chappell, Paul E; Meziane, El Kahina; Harrison, Michael; Magiera, Łukasz; Hermann, Clemens; Mears, Laura; Wrobel, Antoni G; Durant, Charlotte; Nielsen, Lise Lotte; Buus, Søren; Ternette, Nicola; Mwangi, William; Butter, Colin; Nair, Venugopal; Ahyee, Trudy; Duggleby, Richard; Madrigal, Alejandro; Roversi, Pietro; Lea, Susan M; Kaufman, Jim

    2015-01-01

    Highly polymorphic major histocompatibility complex (MHC) molecules are at the heart of adaptive immune responses, playing crucial roles in many kinds of disease and in vaccination. We report that breadth of peptide presentation and level of cell surface expression of class I molecules are inversely correlated in both chickens and humans. This relationship correlates with protective responses against infectious pathogens including Marek's disease virus leading to lethal tumours in chickens and human immunodeficiency virus infection progressing to AIDS in humans. We propose that differences in peptide binding repertoire define two groups of MHC class I molecules strategically evolved as generalists and specialists for different modes of pathogen resistance. We suggest that differences in cell surface expression level ensure the development of optimal peripheral T cell responses. The inverse relationship of peptide repertoire and expression is evidently a fundamental property of MHC molecules, with ramifications extending beyond immunology and medicine to evolutionary biology and conservation. DOI: http://dx.doi.org/10.7554/eLife.05345.001 PMID:25860507

  16. Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae)

    Science.gov (United States)

    Jarvi, S.I.; Tarr, C.L.; Mcintosh, C.E.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II ?? chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > d S and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II ?? chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.

  17. The MHC class I genes of zebrafish.

    Science.gov (United States)

    Dirscherl, Hayley; McConnell, Sean C; Yoder, Jeffrey A; de Jong, Jill L O

    2014-09-01

    Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.

  18. Innate lymphoid cells and the MHC.

    Science.gov (United States)

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible.

  19. NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner.

    Science.gov (United States)

    Neerincx, Andreas; Rodriguez, Galaxia M; Steimle, Viktor; Kufer, Thomas A

    2012-05-15

    Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play important roles in innate immune responses as pattern-recognition receptors. Although most NLR proteins act in cell autonomous immune pathways, some do not function as classical pattern-recognition receptors. One such NLR protein is the MHC class II transactivator, the master regulator of MHC class II gene transcription. In this article, we report that human NLRC5, which we recently showed to be involved in viral-mediated type I IFN responses, shuttles to the nucleus and activates MHC class I gene expression. Knockdown of NLRC5 in different human cell lines and primary dermal fibroblasts leads to reduced MHC class I expression, whereas introduction of NLRC5 into cell types with very low expression of MHC class I augments MHC class I expression to levels comparable to those found in lymphocytes. Expression of NLRC5 positively correlates with MHC class I expression in human tissues. Functionally, we show that both the N-terminal effector domain of NLRC5 and its C-terminal leucine-rich repeat domain are needed for activation of MHC class I expression. Moreover, nuclear shuttling and function depend on a functional Walker A motif. Finally, we identified a promoter sequence in the MHC class I promoter, the X1 box, to be involved in NLRC5-mediated MHC class I gene activation. Taken together, this suggested that NLRC5 acts in a manner similar to class II transactivator to drive MHC expression and revealed NLRC5 as an important regulator of basal MHC class I expression.

  20. MHC Region and Its Related Disease Study

    DEFF Research Database (Denmark)

    Cao, Hongzhi

    The major histocompatibility complex (MHC) is one of the most gene dense regions in the human genome and many disorders, including primary immune deficiencies, autoimmune conditions, infections, cancers and mental disorder have been found to be associated with this region. However, due to a high...... detection as well as HLA gene typing and large structural variation detection using optical mapping technic, to provide comprehensive and accurate information of the MHC region and apply them into disease causal mutation’s fine-mapping....

  1. Analysis of the sequence variations in the Mhc DRB1-like gene of the endangered Humboldt penguin (Spheniscus humboldti).

    Science.gov (United States)

    Kikkawa, Eri F; Tsuda, Tomi T; Naruse, Taeko K; Sumiyama, Daisuke; Fukuda, Michio; Kurita, Masanori; Murata, Koichi; Wilson, Rory P; LeMaho, Yvon; Tsuda, Michio; Kulski, Jerzy K; Inoko, Hidetoshi

    2005-04-01

    The Major Histocompatibility Complex (Mhc) genomic region of many vertebrates is known to contain at least one highly polymorphic class II gene that is homologous in sequence to one or other of the human Mhc DRB1 class II genes. The diversity of the avian Mhc class II gene sequences have been extensively studied in chickens, quails, and some songbirds, but have been largely ignored in the oceanic birds, including the flightless penguins. We have previously reported that several penguin species have a high degree of polymorphism on exon 2 of the Mhc class II DRB1-like gene. In this study, we present for the first time the complete nucleotide sequences of exon 2, intron 2, and exon 3 of the DRB1-like gene of 20 Humboldt penguins, a species that is presently vulnerable to the dangers of extinction. The Humboldt DRB1-like nucleotide and amino acid sequences reveal at least eight unique alleles. Phylogenetic analysis of all the available avian DRB-like sequences showed that, of five penguin species and nine other bird species, the sequences of the Humboldt penguins grouped most closely to the Little penguin and the mallard, respectively. The present analysis confirms that the sequence variations of the Mhc class II gene, DRB1, are useful for discriminating among individuals within the same penguin population as well those within different penguin population groups and species.

  2. Allelic complementation between MHC haplotypes B(Q) and B17 increases regression of Rous sarcomas.

    Science.gov (United States)

    Senseney, H L; Briles, W E; Abplanalp, H; Taylor, R L

    2000-12-01

    Major histocompatibility (B) complex haplotypes B(Q) and B17 were examined for their effect on Rous sarcoma outcome. Pedigree matings of B(Q)B17 chickens from the second backcross generation (BC2) of Line UCD 001 (B(Q)B(Q)) mated to Line UCD 003 (B17B17) produced progeny with genotypes B(Q)B(Q), B(Q)B17, and B17B17. Six-week-old chickens were injected with subgroup A Rous sarcoma virus (RSV). The tumors were scored for size at 2, 3, 4, 6, 8, and 10 weeks postinoculation. A tumor profile index (TPI) was assigned to each bird based on the six tumor scores. Two experiments with two trials each were conducted. In Experiment 1, chickens (n = 84) were inoculated with 30 pock-forming units (pfu) RSV. There was no significant B genotype effect on tumor growth over time or TPI among the 70 chickens that developed tumors. Chickens (n = 141) were injected with 15 PFU RSV in Experiment 2. The B genotype significantly affected tumor growth pattern over time in the 79 chickens with sarcomas. The B(Q)B17 chickens had the lowest TPI, which was significantly different from B17B17 but not B(Q)B(Q). The data indicate complementation because more tumor regression occurs in the B(Q)B17 heterozygote than in either B(Q)B(Q) or B17B17 genotypes at a 15 pfu RSV dose and significantly so compared to B17B17. By contrast, the 30 pfu RSV dose utilized in the first experiment overwhelmed all genotypic combinations of the B(Q) and B17 haplotypes, suggesting that certain MHC genotypes affect the immune response under modest levels of viral challenge.

  3. Towards the MHC-peptide combinatorics.

    Science.gov (United States)

    Kangueane, P; Sakharkar, M K; Kolatkar, P R; Ren, E C

    2001-05-01

    The exponentially increased sequence information on major histocompatibility complex (MHC) alleles points to the existence of a high degree of polymorphism within them. To understand the functional consequences of MHC alleles, 36 nonredundant MHC-peptide complexes in the protein data bank (PDB) were examined. Induced fit molecular recognition patterns such as those in MHC-peptide complexes are governed by numerous rules. The 36 complexes were clustered into 19 subgroups based on allele specificity and peptide length. The subgroups were further analyzed for identifying common features in MHC-peptide binding pattern. The four major observations made during the investigation were: (1) the positional preference of peptide residues defined by percentage burial upon complex formation is shown for all the 19 subgroups and the burial profiles within entries in a given subgroup are found to be similar; (2) in class I specific 8- and 9-mer peptides, the fourth residue is consistently solvent exposed, however this observation is not consistent in class I specific 10-mer peptides; (3) an anchor-shift in positional preference is observed towards the C terminal as the peptide length increases in class II specific peptides; and (4) peptide backbone atoms are proportionately dominant at the MHC-peptide interface.

  4. LEI0258 microsatellite variability and its relationship to B-F haplotypes in Brazilian (blue-egg Caipira chickens

    Directory of Open Access Journals (Sweden)

    Lima-Rosa Carlos André da Veiga

    2005-01-01

    Full Text Available A total of 149 chickens from two different sources (one non-commercial, the other commercial was tested for variability of the LEI0258 microsatellite. Fifty- three genotypes, explainable by 15 alleles, were found. There are clear allele and heterozygosity differences between the two samples. One of them was simultaneously studied for the MHC B-F haplotypes. Strong genetic disequilibrium was observed between the variants of the two systems, therefore providing a cheap alternative for MHC genotyping.

  5. Description and prediction of peptide-MHC binding: the 'human MHC project'

    DEFF Research Database (Denmark)

    Buus, S

    1999-01-01

    MHC molecules are crucially involved in controlling the specific immune system. They are highly polymorphic receptors sampling peptides from the cellular environment and presenting these peptides for scrutiny by immune cells. Recent advances in combinatorial peptide chemistry have improved the de...... the description and prediction of peptide-MHC binding. It is envisioned that a complete mapping of human immune reactivities will be possible....

  6. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets...

  7. The chicken beta 2-microglobulin gene is located on a non-major histocompatibility complex microchromosome: a small, G+C-rich gene with X and Y boxes in the promoter

    DEFF Research Database (Denmark)

    Riegert, P; Andersen, R; Bumstead, N

    1996-01-01

    a similar genomic organization but smaller introns and higher G+C content than mammalian beta 2-microglobulin genes. The promoter region is particularly G+C-rich and contains, in addition to interferon regulatory elements, potential S/W, X, and Y boxes that were originally described for mammalian class II...... but not class I alpha or beta 2-microglobulin genes. There is a single chicken beta 2-microglobulin gene that has little polymorphism in the coding region. Restriction fragment length polymorphisms from Mhc homozygous lines, Mhc congenic lines, and backcross families, as well as in situ hybridization, show...... that the beta 2-microglobulin gene is located on a microchromosome different from the one that contains the chicken Mhc. We propose that the structural similarities between the beta 2-microglobulin and Mhc genes in the chicken are due to their presence on microchromosomes and suggest that these features...

  8. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    of peptides, and knowledge of their binding specificities is important for understanding differences in the immune response between individuals. Algorithms predicting which peptides bind a given MHC molecule have recently been developed with high prediction accuracy. The utility of these algorithms...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  9. IMGT unique numbering for MHC groove G-DOMAIN and MHC superfamily (MhcSF) G-LIKE-DOMAIN

    DEFF Research Database (Denmark)

    Lefranc, Marie-Paule; Duprat, E.; Kaas, Quentin

    2005-01-01

    IMGT, the international ImMunoGeneTics information system® (http://imgt.cines.fr) provides a common access to expertly annotated data on the genome, proteome, genetics and structure of immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC), and related proteins...

  10. Chicken Breast Paste

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Ingredients: 50 grams of chicken breast, 150 grams of egg white, ham, cucumber and water chestnuts, 50 grams of starch, 50 grams of oil, salt and MSG. Directions: 1. Chop up the chicken breast and water chestnuts. Mix with egg white and starch into chicken breast paste. 2. Heat the oil for a moment and then place chicken paste in pot.

  11. My Chicken Adventure

    Institute of Scientific and Technical Information of China (English)

    DOROTHY; TECKLENBURG

    2006-01-01

    I am suffering from chicken envy. I'm determined to cook a chicken like the golden brown ones you buy in any Washington grocery store, those beautiful roasted chickens done on a revolving spit. Those chickens you take for granted because you can just waltz in at 6 p.m. and buy one for dinner.

  12. Integrative mapping analysis of chicken microchromosome 16 organization

    Directory of Open Access Journals (Sweden)

    Bed'hom Bertrand

    2010-11-01

    Full Text Available Abstract Background The chicken karyotype is composed of 39 chromosome pairs, of which 9 still remain totally absent from the current genome sequence assembly, despite international efforts towards complete coverage. Some others are only very partially sequenced, amongst which microchromosome 16 (GGA16, particularly under-represented, with only 433 kb assembled for a full estimated size of 9 to 11 Mb. Besides the obvious need of full genome coverage with genetic markers for QTL (Quantitative Trait Loci mapping and major genes identification studies, there is a major interest in the detailed study of this chromosome because it carries the two genetically independent MHC complexes B and Y. In addition, GGA16 carries the ribosomal RNA (rRNA genes cluster, also known as the NOR (nucleolus organizer region. The purpose of the present study is to construct and present high resolution integrated maps of GGA16 to refine its organization and improve its coverage with genetic markers. Results We developed 79 STS (Sequence Tagged Site markers to build a physical RH (radiation hybrid map and 34 genetic markers to extend the genetic map of GGA16. We screened a BAC (Bacterial Artificial Chromosome library with markers for the MHC-B, MHC-Y and rRNA complexes. Selected clones were used to perform high resolution FISH (Fluorescent In Situ Hybridization mapping on giant meiotic lampbrush chromosomes, allowing meiotic mapping in addition to the confirmation of the order of the three clusters along the chromosome. A region with high recombination rates and containing PO41 repeated elements separates the two MHC complexes. Conclusions The three complementary mapping strategies used refine greatly our knowledge of chicken microchromosome 16 organisation. The characterisation of the recombination hotspots separating the two MHC complexes demonstrates the presence of PO41 repetitive sequences both in tandem and inverted orientation. However, this region still needs to

  13. MHC Class II epitope predictive algorithms

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole; Buus, S

    2010-01-01

    in the predictions. All attempts to make ab initio predictions based on protein structure have failed to reach predictive performances similar to those that can be obtained by data-driven methods. Thousands of different MHC-II alleles exist in humans. Recently developed pan-specific methods have been able to make...

  14. The MHC molecules of nonmammalian vertebrates

    DEFF Research Database (Denmark)

    Kaufman, J; Skjoedt, K; Salomonsen, J

    1990-01-01

    to develop. There is no molecular evidence yet to decide whether vertebrate immune systems (and particularly the MHC molecules) are evolutionarily related to invertebrate allorecognition systems, and the functional evidence can be interpreted either way. Even among the vertebrates, there is great...

  15. MHC Genes Linked to Autoimmune Disease.

    Science.gov (United States)

    Deitiker, Philip; Atassi, M Zouhair

    2015-01-01

    Autoimmune diseases (ADs), or autoinflammatoiy diseases, are growing in complexity as diagnoses improve and many factors escalate disease risk. Considerable genetic similarity is found among ADs, and they are frequently associated with major histocompatibility complex (MHC) genes. However, a given disease may be associated with more than one human leukocyte antigen (HLA) allotype, and a given HLA may be associated with more than one AD. The associations of non-MHC genes with AD present an additional problem, and the situation is further complicated by the role that other factors, such as age, diet, therapeutic drugs, and regional influences, play in disease. This review discusses some of the genetics and biochemistry of HLA-linked AD and inflammation, covering some of the best-studied examples and summarizing indicators for class I- and II-mediated disease. However, the scope of this review limits a detailed discussion of all known ADs.

  16. Prediction of MHC class I binding peptides, using SVMHC

    Directory of Open Access Journals (Sweden)

    Elofsson Arne

    2002-09-01

    Full Text Available Abstract Background T-cells are key players in regulating a specific immune response. Activation of cytotoxic T-cells requires recognition of specific peptides bound to Major Histocompatibility Complex (MHC class I molecules. MHC-peptide complexes are potential tools for diagnosis and treatment of pathogens and cancer, as well as for the development of peptide vaccines. Only one in 100 to 200 potential binders actually binds to a certain MHC molecule, therefore a good prediction method for MHC class I binding peptides can reduce the number of candidate binders that need to be synthesized and tested. Results Here, we present a novel approach, SVMHC, based on support vector machines to predict the binding of peptides to MHC class I molecules. This method seems to perform slightly better than two profile based methods, SYFPEITHI and HLA_BIND. The implementation of SVMHC is quite simple and does not involve any manual steps, therefore as more data become available it is trivial to provide prediction for more MHC types. SVMHC currently contains prediction for 26 MHC class I types from the MHCPEP database or alternatively 6 MHC class I types from the higher quality SYFPEITHI database. The prediction models for these MHC types are implemented in a public web service available at http://www.sbc.su.se/svmhc/. Conclusions Prediction of MHC class I binding peptides using Support Vector Machines, shows high performance and is easy to apply to a large number of MHC class I types. As more peptide data are put into MHC databases, SVMHC can easily be updated to give prediction for additional MHC class I types. We suggest that the number of binding peptides needed for SVM training is at least 20 sequences.

  17. Type I strain of Toxoplasma gondii from chicken induced different immune responses with that from human, cat and swine in chicken

    Institute of Scientific and Technical Information of China (English)

    Zhao Guang-wei; Xu Li-xin; LI Xiang-rui; WanG Shuai; WanG Wang; ZhanG Zhen-chao; XIe Qing; ZhanG Meng; I a hassan; Yan Ruo-feng; SonG Xiao-kai

    2015-01-01

    In this study, four strains of Toxoplasma gondi with the same genetic type (Type I) originated from chicken, human, cat and swine were used to compare the immune responses in resistant chicken host to investigate the relationships between the parasite origins and the pathogenicity in certain host. A total of 300, 10-day-old chickens were al ocated randomly into ifve groups which named JS (from chicken), CAT (from cat), CN (from swine), RH (from human) and a negative control group (–Ve) with 60 birds in each group. Tachyzoites of four different T. gondi strains (JS, CAT, CN and RH) were inocu-lated intraperitoneal y with the dose of 1×107 in the four designed groups, respectively. The negative control (–Ve) group was mockly inoculated with phosphate-buffered saline (PBS) alone. Blood and spleen samples were obtained on the day of inoculation (day 0) and at days 4, 11, 25, 39 and 53 post-infection to screen the immunopathological changes. The results demonstrated some different immune characters of T. gondi infected chickens with that of mice or swine previous reported. These differences included up-regulation of major histocompatibility complex class II (MHC II) molecules in the early stage of infection, early peak expressions of interleukin (IL)-12 (IL-12) and-10 (IL-10) and long keep of IL-17. These might partial y contribute to the resistance of chicken to T. gondi infection. Comparisons to chickens infected with strains from human, cat and swine, chickens infected with strain from chicken showed signiifcant high levels of CD4+and CD8+T cel s, interferon gamma (IFN-γ), IL-12 and IL-10. It suggested that the strain from chicken had different ability to stimulate cel ular immunity in chicken.

  18. Effect of Dietary Antimicrobials on Immune Status in Broiler Chickens

    Science.gov (United States)

    Lee, K. W.; Lillehoj, H. S.; Lee, S. H.; Jang, S. I.; Park, M. S.; Bautista, D. A.; Ritter, G. D.; Hong, Y. H.; Siragusa, G. R.; Lillehoj, E. P.

    2012-01-01

    This study evaluated the effects of dietary anticoccidial drugs plus antibiotic growth promoters (AGPs) on parameters of immunity in commercial broiler chickens. Day-old chicks were raised on used litter from a farm with endemic gangrenous dermatitis to simulate natural pathogen exposure and provided with diets containing decoquinate (DECX) or monensin (COBN) as anticoccidials plus bacitracin methylene disalicylate and roxarsone as AGPs. As a negative control, the chickens were fed with a non-supplemented diet. Immune parameters examined were concanavalin A (ConA)-stimulated spleen cell proliferation, intestine intraepithelial lymphocyte (IEL) and spleen cell subpopulations, and cytokine/chemokine mRNA levels in IELs and spleen cells. ConA-induced proliferation was decreased at 14 d post-hatch in DECX-treated chickens, and increased at 25 and 43 d in COBN-treated animals, compared with untreated controls. In DECX-treated birds, increased percentages of MHC2+ and CD4+ IELS were detected at 14 d, but decreased percentages of these cells were seen at 43 d, compared with untreated controls, while increased TCR2+ IELs were evident at the latter time. Dietary COBN was associated with decreased fractions of MHC2+ and CD4+ IELs and reduced percentages of MHC2+, BU1+, and TCR1+ spleen cells compared with controls. The levels of transcripts for interleukin-4 (IL-4), IL-6, IL-17F, IL-13, CXCLi2, interferon-γ (IFN-γ), and transforming growth factorβ4 were elevated in IELs, and those for IL-13, IL-17D, CXCLi2, and IFN-γ were increased in spleen cells, of DECX- and/or COBN-treated chickens compared with untreated controls. By contrast, IL-2 and IL-12 mRNAs in IELs, and IL-4, IL-12, and IL-17F transcripts in spleen cells, were decreased in DECX- and/or COBN-treated chickens compared with controls. These results suggest that DECX or COBN, in combination with bacitracin and roxarsone, modulate the development of the chicken post-hatch immune system. PMID:25049577

  19. Effect of Dietary Antimicrobials on Immune Status in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    K. W. Lee

    2012-03-01

    Full Text Available This study evaluated the effects of dietary anticoccidial drugs plus antibiotic growth promoters (AGPs on parameters of immunity in commercial broiler chickens. Day-old chicks were raised on used litter from a farm with endemic gangrenous dermatitis to simulate natural pathogen exposure and provided with diets containing decoquinate (DECX or monensin (COBN as anticoccidials plus bacitracin methylene disalicylate and roxarsone as AGPs. As a negative control, the chickens were fed with a non-supplemented diet. Immune parameters examined were concanavalin A (ConA-stimulated spleen cell proliferation, intestine intraepithelial lymphocyte (IEL and spleen cell subpopulations, and cytokine/chemokine mRNA levels in IELs and spleen cells. ConA-induced proliferation was decreased at 14 d post-hatch in DECX-treated chickens, and increased at 25 and 43 d in COBN-treated animals, compared with untreated controls. In DECX-treated birds, increased percentages of MHC2+ and CD4+ IELS were detected at 14 d, but decreased percentages of these cells were seen at 43 d, compared with untreated controls, while increased TCR2+ IELs were evident at the latter time. Dietary COBN was associated with decreased fractions of MHC2+ and CD4+ IELs and reduced percentages of MHC2+, BU1+, and TCR1+ spleen cells compared with controls. The levels of transcripts for interleukin-4 (IL-4, IL-6, IL-17F, IL-13, CXCLi2, interferon-γ (IFN-γ, and transforming growth factorβ4 were elevated in IELs, and those for IL-13, IL-17D, CXCLi2, and IFN-γ were increased in spleen cells, of DECX- and/or COBN-treated chickens compared with untreated controls. By contrast, IL-2 and IL-12 mRNAs in IELs, and IL-4, IL-12, and IL-17F transcripts in spleen cells, were decreased in DECX- and/or COBN-treated chickens compared with controls. These results suggest that DECX or COBN, in combination with bacitracin and roxarsone, modulate the development of the chicken post-hatch immune system.

  20. Genetic basis for MHC-dependent mate choice.

    Science.gov (United States)

    Yamazaki, Kunio; Beauchamp, Gary K

    2007-01-01

    Genes in the major histocompatibility complex (MHC), best known for their role in immune recognition and transplantation success, are also involved in modulating mate choice in mice. Early studies with inbred, congenic mouse lines showed that mate choice tended to favor nonself MHC types. A similar phenomenon was demonstrated with semi-wild mice as well. Subsequent studies showed that, rather than nonself choices, it was more accurate to say that mice chose nonparental MHC types for mates since preferences for nonself could be reversed if mice were fostered from birth on parents with nonself MHC types. Other studies have demonstrated that parent-offspring recognition is also regulated by MHC-determined signals suggesting that this system is one of general importance for mouse behavior. Many studies have now demonstrated that volatile mouse body odors are regulated by MHC genes and it is presumably these odor differences that underlie mate choice and familial recognition. Recent studies have shown that many odorants are controlled by the MHC but the mechanism by which MHC genes exert their influence has not been identified. Surprisingly, not only are volatile body odors influenced by MHC genes but so too are nonvolatile signals. Peptides bound to the MHC protein may also function in individual recognition. The extent to which this system is involved in mate choice of other species is unclear although there are some suggestive studies. Indeed, there is tentative evidence that MHC differences, presumably acting via odor changes, may influence human partner selection. Further studies should clarify both the mechanism underlying MHC influence on body odors as well as the generality of their importance in mate selection.

  1. Sequence polymorphism and evolution of three cetacean MHC genes.

    Science.gov (United States)

    Xu, Shi Xia; Ren, Wen Hua; Li, Shu Zhen; Wei, Fu Wen; Zhou, Kai Ya; Yang, Guang

    2009-09-01

    Sequence variability at three major histocompatibility complex (MHC) genes (DQB, DRA, and MHC-I) of cetaceans was investigated in order to get an overall understanding of cetacean MHC evolution. Little sequence variation was detected at the DRA locus, while extensive and considerable variability were found at the MHC-I and DQB loci. Phylogenetic reconstruction and sequence comparison revealed extensive sharing of identical MHC alleles among different species at the three MHC loci examined. Comparisons of phylogenetic trees for these MHC loci with the trees reconstructed only based on non-PBR sites revealed that allelic similarity/identity possibly reflected common ancestry and were not due to adaptive convergence. At the same time, trans-species evolution was also evidenced that the allelic diversity of the three MHC loci clearly pre-dated species divergence events according to the relaxed molecular clock. It may be the forces of balancing selection acting to maintain the high sequence variability and identical alleles in trans-specific manner at the MHC-I and DQB loci.

  2. Extensive diversification of MHC in Chinese giant salamanders Andrias davidianus (Anda-MHC) reveals novel splice variants.

    Science.gov (United States)

    Zhu, Rong; Chen, Zhong-yuan; Wang, Jun; Yuan, Jiang-di; Liao, Xiang-yong; Gui, Jian-Fang; Zhang, Qi-Ya

    2014-02-01

    A series of MHC alleles (including 26 class IA, 27 class IIA, and 17 class IIB) were identified from Chinese giant salamander Andrias davidianus (Anda-MHC). These genes are similar to classical MHC molecules in terms of characteristic domains, functional residues, deduced tertiary structures and genetic diversity. The majority of variation between alleles is found in the putative peptide-binding region (PBR), which is driven by positive Darwinian selection. The coexistence of two isoforms in MHC IA, IIA, and IIB alleles are shown: one full-length transcript and one novel splice variant. Despite lake of the external domains, these variants exhibit similar subcellular localization with the full-length transcripts. Moreover, the expression of MHC isoforms are up-regulated upon in vivo and in vitro stimulation with Andrias davidianus ranavirus (ADRV), suggesting their potential roles in the immune response. The results provide insights into understanding MHC variation and function in this ancient and endangered urodele amphibian.

  3. The chicken beta 2-microglobulin gene is located on a non-major histocompatibility complex microchromosome: a small, G+C-rich gene with X and Y boxes in the promoter

    DEFF Research Database (Denmark)

    Riegert, P; Andersen, R; Bumstead, N

    1996-01-01

    a similar genomic organization but smaller introns and higher G+C content than mammalian beta 2-microglobulin genes. The promoter region is particularly G+C-rich and contains, in addition to interferon regulatory elements, potential S/W, X, and Y boxes that were originally described for mammalian class II......beta 2-Microglobulin is an essential subunit of major histocompatibility complex (Mhc) class I molecules, which present antigenic peptides to T lymphocytes. We sequenced a number of cDNAs and two genomic clones corresponding to chicken beta 2-microglobulin. The chicken beta 2-microglobulin gene has...... but not class I alpha or beta 2-microglobulin genes. There is a single chicken beta 2-microglobulin gene that has little polymorphism in the coding region. Restriction fragment length polymorphisms from Mhc homozygous lines, Mhc congenic lines, and backcross families, as well as in situ hybridization, show...

  4. MPID-T2: a database for sequence-structure-function analyses of pMHC and TR/pMHC structures.

    Science.gov (United States)

    Khan, Javed Mohammed; Cheruku, Harish Reddy; Tong, Joo Chuan; Ranganathan, Shoba

    2011-04-15

    Sequence-structure-function information is critical in understanding the mechanism of pMHC and TR/pMHC binding and recognition. A database for sequence-structure-function information on pMHC and TR/pMHC interactions, MHC-Peptide Interaction Database-TR version 2 (MPID-T2), is now available augmented with the latest PDB and IMGT/3Dstructure-DB data, advanced features and new parameters for the analysis of pMHC and TR/pMHC structures. http://biolinfo.org/mpid-t2. shoba.ranganathan@mq.edu.au Supplementary data are available at Bioinformatics online.

  5. MHCcluster, a method for functional clustering of MHC molecules

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Lundegaard, Claus; Buus, Søren;

    2013-01-01

    binding specificity. The method has a flexible web interface that allows the user to include any MHC of interest in the analysis. The output consists of a static heat map and graphical tree-based visualizations of the functional relationship between MHC variants and a dynamic TreeViewer interface where...

  6. The systems biology of MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra

    2012-01-01

    Major histocompatibility class II molecules (MHC class II) are one of the key regulators of adaptive immunity because of their specific expression by professional antigen presenting cells (APC). They present peptides derived from endocytosed material to T helper lymphocytes. Consequently, MHC class

  7. Size polymorphism of chicken major histocompatibility complex-encoded B-G molecules is due to length variation in the cytoplasmic heptad repeat region

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K

    1990-01-01

    B-G antigens are cell-surface molecules encoded by a highly polymorphic multigene family located in the chicken major histocompatibility complex (MHC). Rabbit antisera to B-G molecules immunoprecipitate 3-6 bands from iodinated erythrocytes by sodium dodecyl sulfate (SDS) gels under reducing...

  8. Correlation in chicken between the marker LEI0258 alleles and Major Histocompatibility Complex sequences

    DEFF Research Database (Denmark)

    Chazara, Olympe; Juul-Madsen, Helle Risdahl; Chang, Chi-Seng

    is worth investigating in chickens. Here we describe to which extent the LEI0258 alleles are associated with alleles of classical class I genes and non-classical class II genes, in reference animals as well as local breeds with unknown MHC haplotypes. Methods For the class I region, in an exploratory...... project, we studied 10 animals from 3 breeds: Rhode Island Red, White Leghorn and Fayoumi chickens, by cloning and sequencing B-F1 and B-F2 cDNA from exon 1 to 3’UTR. For the class II region, we reconstructed haplotypes of the 8.8 kb genomic region encompassing three non-classical class II genes: B-DMA, B......Background The LEI0258 marker is located within the B region of the chicken Major Histocompatibility Complex (MHC), and is surprisingly well associated with serology. Therefore, the correlation between the LEI0258 alleles and the MHC class I and the class II alleles at the level of sequences...

  9. MHC-linked susceptibility to a bacterial infection, but no MHC-linked cryptic female choice in whitefish.

    Science.gov (United States)

    Wedekind, C; Walker, M; Portmann, J; Cenni, B; Müller, R; Binz, T

    2004-01-01

    Non-random gamete fusion is one of several potential cryptic female choice mechanisms that have been postulated and that may enhance the survival probability of the offspring. Previous studies have found that gamete fusion in mice is influenced by genes of the major histocompatibility complex (MHC) region. Here we test (i) whether there is MHC-dependent gamete fusion in whitefish (Coregonus sp.) and (ii) whether there is a link between the MHC and embryo susceptibility to an infection by the bacterium Pseudomonas fuorescens. We experimentally bred whitefish and reared sibships in several batches that either experienced or did not experience strong selection by P. fluorescens. We then determined the MHC class II B1 genotype of 1016 surviving larvae of several full sibships. We found no evidence for MHC-linked gamete fusion. However, in one of seven sibships we found a strong connection between the MHC class II genotype and embryo susceptibility to P. fluorescens. This connection was still significant after correcting for multiple testing. Hence, the MHC class II genotype can considerably influence embryo survival in whitefish, but gamete fusion seems to be random with respect to the MHC.

  10. Effect of Serum from Chickens Treated with Clenbuterol on Myosin Accumulation, Beta-Adrenergic Receptor Population, and Cyclic AM Synthesis in Embryonic Chicken Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, R. B.; Bridge, K. Y.; Wuethrich, A. J.; Hancock, D. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Broiler chickens at 35 days of age were fed 1 ppm clenbuterol for 14 days. This level of dietary clenbuterol led to 5-7% increases in weights of leg and breast muscle tissue. At the end of the 14-day period, serum was prepared from both control and clenbuterol-treated chickens and was then employed as a component of cell culture media at a final concentration of 20% (v/v). Muscle cell cultures were prepared from both the leg and breast muscle groups of twelve-day chick embryos. Treatment groups included control chicken serum to which 10 nM, 50 nM, and 1 micron clenbuterol had been added, as well as cells grown in media containing 10% horse serum. Cultures were subjected to each treatment for 3 days beginning on the seventh day in culture. Neither the percent fusion nor the number of nuclei in myotubes were significantly affected by any of the treatments. The quantity of MHC was not increased by serum from clenbuterol-treated chickens in either breast and leg muscle cultures; however, MHC quantity was 50- 100% higher in cultures grown in control chicken serum to which 10 nM and 50 nM clenbuterol had also been added. The Beta-AR population was 4,000-7,000 Beta-AR per cell in cultures grown in chicken serum, with leg muscle cultures having approximately 25-30% more receptors than breast muscle cultures. Receptor population was not significantly affected by the presence of clenbuterol or by the presence of serum from clenbuterol-treated chickens. In contrast, the Beta-AR population in leg and breast muscle cultures grown in the presence of 10% horse serum was 18,000-20,000 Beta-AR per cell. Basal concentration of cAMP was not significantly affected by any of the treatments. When cultures grown in chicken serum were stimulated for 10 min with 1 micron isoproterenol, limited increases of 12-20% in cAMP concentration above basal levels were observed. However, when cultures grown in the presence of horse serum were stimulated with 1 micron isoproterenol, increases of 600

  11. Mhc-linked survival and lifetime reproductive success in a wild population of great tits.

    Science.gov (United States)

    Sepil, Irem; Lachish, Shelly; Sheldon, Ben C

    2013-01-01

    Major histocompatibility complex (Mhc) genes are frequently used as a model for adaptive genetic diversity. Although associations between Mhc and disease resistance are frequently documented, little is known about the fitness consequences of Mhc variation in wild populations. Further, most work to date has involved testing associations between Mhc genotypes and fitness components. However, the functional diversity of the Mhc, and hence the mechanism by which selection on Mhc acts, depends on how genotypes map to the functional properties of Mhc molecules. Here, we test three hypotheses that relate Mhc diversity to fitness: (i) the maximal diversity hypothesis, (ii) the optimal diversity hypothesis and (iii) effect of specific Mhc types. We combine mark-recapture methods with analysis of long-term breeding data to investigate the effects of Mhc class I functional diversity (Mhc supertypes) on individual fitness in a wild great tit (Parus major) population. We found that the presence of three different Mhc supertypes was associated with three different components of individual fitness: survival, annual recruitment and lifetime reproductive success (LRS). Great tits possessing Mhc supertype 3 experienced higher survival rates than those that did not, whereas individuals with Mhc supertype 6 experienced higher LRS and were more likely to recruit offspring each year. Conversely, great tits that possessed Mhc supertype 5 had reduced LRS. We found no evidence for a selective advantage of Mhc diversity, in terms of either maximal or optimal supertype diversity. Our results support the suggestion that specific Mhc types are an important determinant of individual fitness.

  12. Cryopreservation of specialized chicken lines using cultured primordial germ cells.

    Science.gov (United States)

    Nandi, S; Whyte, J; Taylor, L; Sherman, A; Nair, V; Kaiser, P; McGrew, M J

    2016-08-01

    Biosecurity and sustainability in poultry production requires reliable germplasm conservation. Germplasm conservation in poultry is more challenging in comparison to other livestock species. Embryo cryopreservation is not feasible for egg-laying animals, and chicken semen conservation has variable success for different chicken breeds. A potential solution is the cryopreservation of the committed diploid stem cell precursors to the gametes, the primordial germ cells ( PGCS: ). Primordial germ cells are the lineage-restricted cells found at early embryonic stages in birds and form the sperm and eggs. We demonstrate here, using flocks of partially inbred, lower-fertility, major histocompatibility complex- ( MHC-: ) restricted lines of chicken, that we can easily derive and cryopreserve a sufficient number of independent lines of male and female PGCs that would be sufficient to reconstitute a poultry breed. We demonstrate that germ-line transmission can be attained from these PGCs using a commercial layer line of chickens as a surrogate host. This research is a major step in developing and demonstrating that cryopreserved PGCs could be used for the biobanking of specialized flocks of birds used in research settings. The prospective application of this technology to poultry production will further increase sustainability to meet current and future production needs. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  13. Sequencing and comparative analysis of the gorilla MHC genomic sequence.

    Science.gov (United States)

    Wilming, Laurens G; Hart, Elizabeth A; Coggill, Penny C; Horton, Roger; Gilbert, James G R; Clee, Chris; Jones, Matt; Lloyd, Christine; Palmer, Sophie; Sims, Sarah; Whitehead, Siobhan; Wiley, David; Beck, Stephan; Harrow, Jennifer L

    2013-01-01

    Major histocompatibility complex (MHC) genes play a critical role in vertebrate immune response and because the MHC is linked to a significant number of auto-immune and other diseases it is of great medical interest. Here we describe the clone-based sequencing and subsequent annotation of the MHC region of the gorilla genome. Because the MHC is subject to extensive variation, both structural and sequence-wise, it is not readily amenable to study in whole genome shotgun sequence such as the recently published gorilla genome. The variation of the MHC also makes it of evolutionary interest and therefore we analyse the sequence in the context of human and chimpanzee. In our comparisons with human and re-annotated chimpanzee MHC sequence we find that gorilla has a trimodular RCCX cluster, versus the reference human bimodular cluster, and additional copies of Class I (pseudo)genes between Gogo-K and Gogo-A (the orthologues of HLA-K and -A). We also find that Gogo-H (and Patr-H) is coding versus the HLA-H pseudogene and, conversely, there is a Gogo-DQB2 pseudogene versus the HLA-DQB2 coding gene. Our analysis, which is freely available through the VEGA genome browser, provides the research community with a comprehensive dataset for comparative and evolutionary research of the MHC.

  14. Chicken's Genome Decoded

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ After completing the work on mapping chicken genome sequence and chicken genome variation in early March, 2004, two international research consortiums have made significant progress in reading the maps, shedding new light on the studies into the first bird as well as the first agricultural animal that has its genome sequenced and analyzed in the world.

  15. Transcriptomics Research in Chicken

    NARCIS (Netherlands)

    Yang, D.Y.; Gao, C.; Zhu, L.Q.; Tang, L.G.; Liu, J.; Nie, H.

    2012-01-01

    The chicken (Gallus gallus) is an important model organism in genetics, developmental biology, immunology and evolutionary research. Moreover, besides being an important model organism the chicken is also a very important agricultural species and an important source of food (eggs and meat). The avai

  16. Manipulation of MHC-I/TCR Interaction for Immune Therapy

    Institute of Scientific and Technical Information of China (English)

    Qingjun Liu; Bin Gao

    2008-01-01

    Adoptive immunotherapy involving the transfer of autologous tumor or virus-reactive T lymphocytes has been demonstrated to he effective in the eradication of cancer and vitally infected cells. Identification of MHC-restricted antigens and progress in generation of adaptive immune responses have provided new direction for such treatment for severe pathologies such as cancer and autoimmune diseases. Here we review the latest development about the molecular basis of MHC-I/TCR interaction, and it's manipulation including enhanced MHC-I expression, modification of peptide and engineered TCR for clinical applications such as vaccine design, tumor therapy and autoimmune diseases. Cellular & Molecular Immunology. 2008;5(3):171-182.

  17. Regulation of MHC Class II-Peptide Complex Expression by Ubiquitination

    Directory of Open Access Journals (Sweden)

    Kyung Jin eCho

    2013-11-01

    Full Text Available MHC class II (MHC-II molecules are present on antigen presenting cells (APCs and these molecules function by binding antigenic peptides and presenting these peptides to antigen-specific CD4+ T cells. APCs continuously generate and degrade MHC-II molecules, and ubiquitination of MHC-II has recently been shown to be a key regulator of MHC-II expression in dendritic cells (DCs. In this mini-review we will examine the mechanism by which the E3 ubiquitin ligase March-I regulates MHC-II expression on APCs and will discuss the functional consequences of altering MHC-II ubiquitination.

  18. The chicken SLAM family.

    Science.gov (United States)

    Straub, Christian; Viertlboeck, Birgit C; Göbel, Thomas W

    2013-01-01

    The signaling lymphocytic activation molecule (SLAM) family of receptors is critically involved in the immune regulation of lymphocytes but has only been detected in mammals, with one member being present in Xenopus. Here, we describe the identification, cloning, and analysis of the chicken homologues to the mammalian SLAMF1 (CD150), SLAMF2 (CD48), and SLAMF4 (CD244, 2B4). Two additional chicken SLAM genes were identified and designated SLAMF3like and SLAM5like in order to stress that those two receptors have no clear mammalian counterpart but share some features with mammalian SLAMF3 and SLAMF5, respectively. Three of the chicken SLAM genes are located on chromosome 25, whereas two are currently not yet assigned. The mammalian and chicken receptors share a common structure with a V-like domain that lacks conserved cysteine residues and a C2-type Ig domain with four cysteines forming two disulfide bonds. Chicken SLAMF2, like its mammalian counterpart, lacks a transmembrane and cytoplasmic domain and thus represents a glycosyl-phosphatidyl-inositol-anchored protein. The cytoplasmic tails of SLAMF1 and SLAMF4 display two and four conserved immunoreceptor tyrosine-based switch motifs (ITSMs), respectively, whereas both chicken SLAMF3like and SLAMF5like have only a single ITSM. We have also identified the chicken homologues of the SLAM-associated protein family of adaptors (SAP), SAP and EAT-2. Chicken SAP shares about 70 % identity with mammalian SAP, and chicken EAT-2 is homologous to mouse EAT-2, whereas human EAT-2 is much shorter. The characterization of the chicken SLAM family of receptors and the SAP adaptors demonstrates the phylogenetic conservation of this family, in particular, its signaling capacities.

  19. Evolution of nonclassical MHC-dependent invariant T cells.

    Science.gov (United States)

    Edholm, Eva-Stina; Grayfer, Leon; Robert, Jacques

    2014-12-01

    TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets.

  20. MHC-correlated mate choice in humans: a review.

    Science.gov (United States)

    Havlicek, Jan; Roberts, S Craig

    2009-05-01

    Extremely high variability in genes of the major histocompatibility complex (MHC) in vertebrates is assumed to be a consequence of frequency-dependent parasite-driven selection and mate preferences based on promotion of offspring heterozygosity at MHC, or potentially, genome-wide inbreeding avoidance. Where effects have been found, mate choice studies on rodents and other species usually find preference for MHC-dissimilarity in potential partners. Here we critically review studies on MHC-associated mate choice in humans. These are based on three broadly different aspects: (1) odor preferences, (2) facial preferences and (3) actual mate choice surveys. As in animal studies, most odor-based studies demonstrate disassortative preferences, although there is variation in the strength and nature of the effects. In contrast, facial attractiveness research indicates a preference for MHC-similar individuals. Results concerning MHC in actual couples show a bias towards similarity in one study, dissimilarity in two studies and random distribution in several other studies. These vary greatly in sample size and heterogeneity of the sample population, both of which may significantly bias the results. This pattern of mixed results across studies may reflect context-dependent and/or life history sensitive preference expression, in addition to higher level effects arising out of population differences in genetic heterogeneity or cultural and ethnic restrictions on random mating patterns. Factors of special relevance in terms of individual preferences are reproductive status and long- vs. short-term mating context. We discuss the idea that olfactory and visual channels may work in a complementary way (i.e. odor preference for MHC-dissimilarity and visual preference for MHC-similarity) to achieve an optimal level of genetic variability, methodological issues and interesting avenues for further research.

  1. Female rose bitterling prefer MHC-dissimilar males: experimental evidence.

    Directory of Open Access Journals (Sweden)

    Martin Reichard

    Full Text Available The role of genetic benefits in female mate choice remains a controversial aspect of sexual selection theory. In contrast to "good allele" models of sexual selection, "compatible allele" models of mate choice predict that females prefer mates with alleles complementary to their own rather than conferring additive effects. While correlative results suggest complementary genetic effects to be plausible, direct experimental evidence is scarce. A previous study on the Chinese rose bitterling (Rhodeus ocellatus demonstrated a positive correlation between female mate choice, offspring growth and survival, and the functional dissimilarity between the Major Histocompatibility Complex (MHC alleles of males and females. Here we directly tested whether females used cues associated with MHC genes to select genetically compatible males in an experimental framework. By sequentially pairing females with MHC similar and dissimilar males, based on a priori known MHC profiles, we showed that females discriminated between similar and dissimilar males and deposited significantly more eggs with MHC dissimilar males. Notably, the degree of dissimilarity was an important factor for female decision to mate, possibly indicating a potential threshold value of dissimilarity for decision making, or of an indirect effect of the MHC.

  2. Viral immune evasion: Lessons in MHC class I antigen presentation.

    Science.gov (United States)

    van de Weijer, Michael L; Luteijn, Rutger D; Wiertz, Emmanuel J H J

    2015-03-01

    The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.

  3. Evolution of MHC class I in the order Crocodylia.

    Science.gov (United States)

    Jaratlerdsiri, Weerachai; Isberg, Sally R; Higgins, Damien P; Ho, Simon Y W; Salomonsen, Jan; Skjodt, Karsten; Miles, Lee G; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genomic region with an essential role in the adaptive immunity of jawed vertebrates. The evolution of the MHC has been dominated by gene duplication and gene loss, commonly known as the birth-and-death process. Evolutionary studies of the MHC have mostly focused on model species. However, the investigation of this region in non-avian reptiles is still in its infancy. To provide insights into the evolutionary mechanisms that have shaped the diversity of this region in the Order Crocodylia, we investigated MHC class I exon 3, intron 3, and exon 4 across 20 species of the families Alligatoridae and Crocodilidae. We generated 124 DNA sequences and identified 31 putative functional variants as well as 14 null variants. Phylogenetic analyses revealed three gene groups, all of which were present in Crocodilidae but only one in Alligatoridae. Within these groups, variants generally appear to cluster at the genus or family level rather than in species-specific groups. In addition, we found variation in gene copy number and some indication of interlocus recombination. These results suggest that MHC class I in Crocodylia underwent independent events of gene duplication, particularly in Crocodilidae. These findings enhance our understanding of MHC class I evolution and provide a preliminary framework for comparative studies of other non-avian reptiles as well as diversity assessment within Crocodylia.

  4. MHC class II polymorphisms, autoreactive T-cells and autoimmunity

    Directory of Open Access Journals (Sweden)

    Sue eTsai

    2013-10-01

    Full Text Available Major histocompatibility complex (MHC genes, also known as human leukocyte antigen genes (HLA in humans, are the prevailing contributors of genetic susceptibility to autoimmune diseases such as Type 1 Diabetes (T1D, Multiple Sclerosis (MS, and Rheumatoid arthritis (RA, among others (Todd and Wicker, 2001;MacKay et al., 2002;Hafler et al., 2007. Although the pathways through which MHC molecules afford autoimmune risk or resistance remain to be fully mapped out, it is generally accepted that they do so by shaping the central and peripheral T cell repertoires of the host towards autoimmune proclivity or resistance, respectively. Disease-predisposing MHC alleles would both spare autoreactive thymocytes from central tolerance and bias their development towards a pathogenic phenotype. Protective MHC alleles, on the other hand, would promote central deletion of autoreactive thymocytes and skew their development towards non-pathogenic phenotypes. This interpretation of the data is at odds with two other observations: that in MHC-heterozygous individuals, resistance is dominant over susceptibility; and that it is difficult to understand how deletion of one or a few clonal autoreactive T cell types would suffice to curb autoimmune responses driven by hundreds if not thousands of autoreactive T cell specificities. This review provides an update on current advances in our understanding of the mechanisms underlying MHC class II-associated autoimmune disease susceptibility and/or resistance and attempts to reconcile these seemingly opposing concepts.

  5. Analysis of porcine MHC expression profile

    Institute of Scientific and Technical Information of China (English)

    JIANG Fanbo; CHEN Chen; DENG Yajun; YU Jun; HU Songnian

    2005-01-01

    The porcine major histocompatibility complex (MHC, also named swine leukocyte antigen, SLA) is associated not only with immune responsibility and disease susceptibility, but also with some reproductive and productive traits such as growth rate and carcass composition. As yet systematical research on SLA expression profile is not reported. In order to illustrate SLA expression comprehensively and deepen our understanding of its function, we outlined the expression profile of SLA in 51 tissues of Landrace by analyzing a large amount of ESTs produced by "Sino-Danish Porcine Genome Project". In addition, we also compared the expression profile of SLA in several tissues from different development stages and from another breed (Erhualian). The result shows: (i) classical SLA genes are highly expressed in immune tissues and middle part of intestine; (ii) although SLA-3 is an SLA Ia gene, its expression abundance and pattern are quite different from those of the other two SLA Ia genes. The same phenomenon is seen in HLA-C expression, suggesting that the two genes may function similarly and undergo convergent evolution; (iii) except in jejunum, the antigen presenting genes are more highly expressed in breed Erhualian than in Landrace. The difference might associate with the higher resistance to bad conditions (including pathogens) of Erhualian and higher growth rates of Landrace.

  6. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment

    DEFF Research Database (Denmark)

    Carrasco Pro, S.; Zimic, M.; Nielsen, Morten

    2014-01-01

    of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train...

  7. Sequence Comparison of MHC Class Ⅱβ (Exon 2) and Phylogenetic Relationship Between Poultry and Mammalian

    Institute of Scientific and Technical Information of China (English)

    XU Ri-fu; LI Kui; CHEN Guo-hong; QIANG Ba-yang-zong; MO De-lin; LI Chang-chun; FAN Bin; LIU Bang

    2005-01-01

    A fragment spanning over exon 2 and intron 2 of major histocompatibility complex B-LB Ⅱ genes was amplified using PCR,cloned and sequenced in 13 individuals from eight Chinese indigenous chicken breeds and one introduced breed. Another 41 sequences of MHC class Ⅱβ from ten vertebrate species were cited from the NCBI GenBank. Thirteen new B-LB Ⅱ alleles were found in the chicken breeds sampled. Alignment of the exon 2 sequences revealed 91.1-97.8% similarity to each other within the chickens sampled, and the chickens shared 84.1-87.0% homology to Phasianus colchicus, 78.5-81.5% similarity to Coturnixjaponica. The sequences in poultry showed 62.6-68.1% identity to HLA-DRBl, 50-61.5% similarity to DQB (HLA-, SLA- and H2-BB), 53.7-60% to HLA-DPB and 53.3-57.8% similarity to HLA-DOB. The frequency of nonsynonymous substitutions of nucleotide was higher than that of synonymous substitutions, and the frequencies of nonsynonymous and synonymous substitutions in poultry B-LB Ⅱ genes were lower than those observed in mammalian DRB1 and DQB1 genes. The deduced amino acid sequences of MHC class Ⅱβ1 domain exhibited extreme difference in conversed region and variable region patterns among the various species, but the two conserved cysteines forming disulfide-bond were shown consistent in poultry with that in mammalian species; and the carbohydrate attachment site was found more conserved in chicken, Homo sapiens, Bos taurus, Ovis aries and Capra hircus than in Sus scrofa and rodent animals. Compared with exon 2 of DQB1 genes of Homo sapiens, ruminant species and Sus scrofa, the differentia that the deletion of six nucleotides at position195 to 200 of exon 2 of DQB1 genes, and insertion of three nucleotides at position 247 to 249 of the exon 2 existed in rodent species were found, which led to the absence of three AA residues at position 65, 66,and 67 within β1 domain of DQB1 chain, and the insertion of one AA residue at position 85. The difference of the deletion

  8. Bioactivities of chicken essence.

    Science.gov (United States)

    Li, Y F; He, R R; Tsoi, B; Kurihara, H

    2012-04-01

    The special flavor and health effects of chicken essence are being widely accepted by people. Scientific researches are revealing its truth as a tonic food in traditional health preservation. Chicken essence has been found to possess many bioactivities including relief of stress and fatigue, amelioration of anxiety, promotion of metabolisms and post-partum lactation, improvement on hyperglycemia and hypertension, enhancement of immune, and so on. These activities of chicken essence are suggested to be related with its active components, including proteins, dipeptides (such as carnosine and anserine), polypeptides, minerals, trace elements, and multiple amino acids, and so on. Underlying mechanisms responsible for the bioactivities of chicken essence are mainly related with anti-stress, anti-oxidant, and neural regulation effects. However, the mechanisms are complicated and may be mediated via the combined actions of many active components, more than the action of 1 or 2 components alone. © 2012 Institute of Food Technologists®

  9. Eggcited about Chickens

    Science.gov (United States)

    Jones, Carolyn; Brown, Paul

    2012-01-01

    In this article, the authors describe St Peter's Primary School's and Honiton Primary School's experiences of keeping chickens. The authors also describe the benefits they bring and the reactions of the children. (Contains 5 figures.)

  10. The Chicken Problem.

    Science.gov (United States)

    Reeves, Charles A.

    2000-01-01

    Uses the chicken problem for sixth grade students to scratch the surface of systems of equations using intuitive approaches. Provides students responses to the problem and suggests similar problems for extensions. (ASK)

  11. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression.

    Science.gov (United States)

    Downs, Isaac; Vijayan, Saptha; Sidiq, Tabasum; Kobayashi, Koichi S

    2016-07-08

    Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016.

  12. Assessment of Newcastle Disease specific T cell proliferation in different inbred MHC chicken lines

    DEFF Research Database (Denmark)

    Norup, Liselotte Rothmann; Dalgaard, Tina Sørensen; Pedersen, Asger Roer;

    2011-01-01

    In this study we have described the establishment of an antigen-specific T cell proliferation assay based on recall stimulation with Newcastle disease (ND) antigen; further, we have described the results obtained after recall stimulation of animals containing different Major Histocompatibility...

  13. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins.

    Science.gov (United States)

    Sallaberry-Pincheira, Nicole; González-Acuña, Daniel; Padilla, Pamela; Dantas, Gisele P M; Luna-Jorquera, Guillermo; Frere, Esteban; Valdés-Velásquez, Armando; Vianna, Juliana A

    2016-10-01

    The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.

  14. Major Histocompatibility Complex (MHC Markers in Conservation Biology

    Directory of Open Access Journals (Sweden)

    Katherine Belov

    2011-08-01

    Full Text Available Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC. MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity.

  15. Ligation of MHC class I molecules on peripheral blood T lymphocytes induces new phenotypes and functions

    DEFF Research Database (Denmark)

    Bregenholt, S; Röpke, M; Skov, S;

    1996-01-01

    Microgram concentrations of immobilized anti-MHC class I (MHC-I) Ab induced proliferation of resting CD3+ T cells from peripheral blood. In contrast, soluble Ab did not activate T cells. Exposure of T cells to immobilized anti-MHC-I Ab for only 24 h was followed by proliferation and development....... These data clearly demonstrate that ligation of the MHC-I complex on T cells may induce both positive and negative signals. Since the physiologic ligands for MHC-I molecules are TCR and the CD8 molecules, our data may suggest that MHC-I molecules are instrumental in cellular interactions between T cells....

  16. Prediction and identification of T cell epitopes in the H5N1 influenza virus nucleoprotein in chicken.

    Directory of Open Access Journals (Sweden)

    Yanxia Hou

    Full Text Available T cell epitopes can be used for the accurate monitoring of avian influenza virus (AIV immune responses and the rational design of vaccines. No T cell epitopes have been previously identified in the H5N1 AIV virus nucleoprotein (NP in chickens. For the first time, this study used homology modelling techniques to construct three-dimensional structures of the peptide-binding domains of chicken MHC class Ι molecules for four commonly encountered unique haplotypes, i.e., B4, B12, B15, and B19. H5N1 AIV NP was computationally parsed into octapeptides or nonapeptides according to the peptide-binding motifs of MHC class I molecules of the B4, B12, B15 and B19 haplotypes. Seventy-five peptide sequences were modelled and their MHC class I molecule-binding abilities were analysed by molecular docking. Twenty-five peptides (Ten for B4, six for B12, two for B15, and seven for B19 were predicted to be potential T cell epitopes in chicken. Nine of these peptides and one unrelated peptide were manually synthesized and their T cell responses were tested in vitro. Spleen lymphocytes were collected from SPF chickens that had been immunised with a NP-expression plasmid, pCAGGS-NP, and they were stimulated using the synthesized peptides. The secretion of chicken IFN-γ and the proliferation of CD8(+ T cells were tested using an ELISA kit and flow cytometry, respectively. The significant secretion of chicken IFN-γ and proliferation of CD8(+ T lymphocytes increased by 13.7% and 11.9% were monitored in cells stimulated with peptides NP(89-97 and NP(198-206, respectively. The results indicate that peptides NP(89-97 (PKKTGGPIY and NP(198-206 (KRGINDRNF are NP T cell epitopes in chicken of certain haplotypes. The method used in this investigation is applicable to predicting T cell epitopes for other antigens in chicken, while this study also extends our understanding of the mechanisms of the immune response to AIV in chicken.

  17. Pathogenicity of Shigella in chickens.

    Science.gov (United States)

    Shi, Run; Yang, Xia; Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing

    2014-01-01

    Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.

  18. Proofreading of Peptide-MHC Complexes through Dynamic Multivalent Interactions.

    Science.gov (United States)

    Thomas, Christoph; Tampé, Robert

    2017-01-01

    The adaptive immune system is able to detect and destroy cells that are malignantly transformed or infected by intracellular pathogens. Specific immune responses against these cells are elicited by antigenic peptides that are presented on major histocompatibility complex class I (MHC I) molecules and recognized by cytotoxic T lymphocytes at the cell surface. Since these MHC I-presented peptides are generated in the cytosol by proteasomal protein degradation, they can be metaphorically described as a window providing immune cells with insights into the state of the cellular proteome. A crucial element of MHC I antigen presentation is the peptide-loading complex (PLC), a multisubunit machinery, which contains as key constituents the transporter associated with antigen processing (TAP) and the MHC I-specific chaperone tapasin (Tsn). While TAP recognizes and shuttles the cytosolic antigenic peptides into the endoplasmic reticulum (ER), Tsn samples peptides in the ER for their ability to form stable complexes with MHC I, a process called peptide proofreading or peptide editing. Through its selection of peptides that improve MHC I stability, Tsn contributes to the hierarchy of immunodominant peptide epitopes. Despite the fact that it concerns a key event in adaptive immunity, insights into the catalytic mechanism of peptide proofreading carried out by Tsn have only lately been gained via biochemical, biophysical, and structural studies. Furthermore, a Tsn homolog called TAP-binding protein-related (TAPBPR) has only recently been demonstrated to function as a second MHC I-specific chaperone and peptide proofreader. Although TAPBPR is PLC-independent and has a distinct allomorph specificity, it is likely to share a common catalytic mechanism with Tsn. This review focuses on the current knowledge of the multivalent protein-protein interactions and the concomitant dynamic molecular processes underlying peptide-proofreading catalysis. We do not only derive a model that

  19. Proofreading of Peptide—MHC Complexes through Dynamic Multivalent Interactions

    Science.gov (United States)

    Thomas, Christoph; Tampé, Robert

    2017-01-01

    The adaptive immune system is able to detect and destroy cells that are malignantly transformed or infected by intracellular pathogens. Specific immune responses against these cells are elicited by antigenic peptides that are presented on major histocompatibility complex class I (MHC I) molecules and recognized by cytotoxic T lymphocytes at the cell surface. Since these MHC I-presented peptides are generated in the cytosol by proteasomal protein degradation, they can be metaphorically described as a window providing immune cells with insights into the state of the cellular proteome. A crucial element of MHC I antigen presentation is the peptide-loading complex (PLC), a multisubunit machinery, which contains as key constituents the transporter associated with antigen processing (TAP) and the MHC I-specific chaperone tapasin (Tsn). While TAP recognizes and shuttles the cytosolic antigenic peptides into the endoplasmic reticulum (ER), Tsn samples peptides in the ER for their ability to form stable complexes with MHC I, a process called peptide proofreading or peptide editing. Through its selection of peptides that improve MHC I stability, Tsn contributes to the hierarchy of immunodominant peptide epitopes. Despite the fact that it concerns a key event in adaptive immunity, insights into the catalytic mechanism of peptide proofreading carried out by Tsn have only lately been gained via biochemical, biophysical, and structural studies. Furthermore, a Tsn homolog called TAP-binding protein-related (TAPBPR) has only recently been demonstrated to function as a second MHC I-specific chaperone and peptide proofreader. Although TAPBPR is PLC-independent and has a distinct allomorph specificity, it is likely to share a common catalytic mechanism with Tsn. This review focuses on the current knowledge of the multivalent protein–protein interactions and the concomitant dynamic molecular processes underlying peptide-proofreading catalysis. We do not only derive a model that

  20. Understanding TR binding to pMHC complexes: how does a TR scan many pMHC complexes yet preferentially bind to one.

    Directory of Open Access Journals (Sweden)

    Javed Mohammed Khan

    Full Text Available Understanding the basis of the binding of a T cell receptor (TR to the peptide-MHC (pMHC complex is essential due to the vital role it plays in adaptive immune response. We describe the use of computed binding (free energy (BE, TR paratope, pMHC epitope, molecular surface electrostatic potential (MSEP and calculated TR docking angle (θ to analyse 61 TR/pMHC crystallographic structures to comprehend TR/pMHC interaction. In doing so, we have successfully demonstrated a novel/rational approach for θ calculation, obtained a linear correlation between BE and θ without any "codon" or amino acid preference, provided an explanation for TR ability to scan many pMHC ligands yet specifically bind one, proposed a mechanism for pMHC recognition by TR leading to T cell activation and illustrated the importance of the peptide in determining TR specificity, challenging the "germline bias" theory.

  1. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    Science.gov (United States)

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M; Shan, Xueyan; Peterson, Daniel G; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M; Isberg, Sally R; Higgins, Damien P; Chong, Amanda Y; John, John St; Glenn, Travis C; Ray, David A; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.

  2. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    Directory of Open Access Journals (Sweden)

    Weerachai Jaratlerdsiri

    Full Text Available The major histocompatibility complex (MHC is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.

  3. Selection of Proteins for Human MHC Class Ⅱ Presentation

    Institute of Scientific and Technical Information of China (English)

    Li Jiang; Ole Lund; Jinquan Tan

    2005-01-01

    We investigated the predicted function of proteins eluded from human MHC class Ⅱ molecules. Peptides that are presented by MHC class Ⅱ were obtained from the SYFPEITHI database and the corresponding proteins were found in the SWISSPROT database. The functions of these proteins were predicted using the protfun server. Our analysis showed that human proteins presented by MHC class Ⅱ molecules are likely to be in the cell envelope, be a receptor or involved in immune responses. Presented proteins from bacteria and virus, on the other hand, are more likely to be involved in regulatory functions, translation, transcription as well as replication. These results can lead to better understanding the autoimmunity and the response to infections.

  4. Selection of Proteins for Human MHC Class Ⅱ Presentation

    Institute of Scientific and Technical Information of China (English)

    LiJiang; OleLund; JinquanTan

    2005-01-01

    We investigated the predicted function of proteins eluded from human MHC class Ⅱ molecules. Peptides that are presented by MHC class Ⅱ were obtained from the SYFPEITH! database and the corresponding proteins were found in the SWISSPROT database. The functions of these proteins were predicted using the protfun server. Our analysis showed that human proteins presented by MHC class Ⅱ molecules are likely to be in the cell envelope, be a receptor or involved in immune responses. Presented proteins from bacteria and virus, on the other hand, are more likely to be involved in regulatory functions, translation, transcription as well as replication. These results can lead to better understanding the autoimmunity and the response to infections. Cellular & Molecular Immunology. 2005; 2(1):49-56.

  5. Evolution of MHC class I in the Order Crocodylia

    DEFF Research Database (Denmark)

    Jaratlerdsiri, Weerachai; Isberg, Sally R; Higgins, Damien P

    2014-01-01

    have mostly focused on model species. However, the investigation of this region in non-avian reptiles is still in its infancy. To provide insights into the evolutionary mechanisms that have shaped the diversity of this region in the Order Crocodylia, we investigated MHC class I exon 3, intron 3...... events of gene duplication, particularly in Crocodilidae. These findings enhance our understanding of MHC class I evolution and provide a preliminary framework for comparative studies of other non-avian reptiles as well as diversity assessment within Crocodylia....

  6. Chicken NK cell receptors.

    Science.gov (United States)

    Straub, Christian; Neulen, Marie-Luise; Sperling, Beatrice; Windau, Katharina; Zechmann, Maria; Jansen, Christine A; Viertlboeck, Birgit C; Göbel, Thomas W

    2013-11-01

    Natural killer cells are innate immune cells that destroy virally infected or transformed cells. They recognize these altered cells by a plethora of diverse receptors and thereby differ from other lymphocytes that use clonally distributed antigen receptors. To date, several receptor families that play a role in either activating or inhibiting NK cells have been identified in mammals. In the chicken, NK cells have been functionally and morphologically defined, however, a conclusive analysis of receptors involved in NK cell mediated functions has not been available. This is partly due to the low frequencies of NK cells in blood or spleen that has hampered their intensive characterization. Here we will review recent progress regarding the diverse NK cell receptor families, with special emphasis on novel families identified in the chicken genome with potential as chicken NK cell receptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A Novel Therapeutic Vaccine for Metastatic Mammary Carcinoma: Focusing MHC/Peptide Complexes to Lipid Rafts

    Science.gov (United States)

    2006-11-01

    CSF and IL-4. see below c. Measure MHC class I and II transfer by flow cytometry using fluorescent antibodies to both CD11c and either donor MHC...by ELISA . Attempts to transfect and screen 4T1 cells with the model antigens ova and HA were unsuccessful. Because of this, task 6 can not be...tetramethylindodicarbocynanine DTR, diphtheria toxin receptor DTx, diphtheria toxin HEL, hen egg lysozyme pMHC, peptide-MHC Abstract Tumor cells that

  8. Pepper and Sesame Chicken

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Ingredients: 250 grams of chicken breast, 50 grams of water chestnut, thick pieces of white bread or steamed bun. Supplementary Ingredients: Sesame, lard, MSG, salt, whites of three eggs, starch. Directions: Chop up the chicken breast into mash, cut the water chestnuts into small pieces and put them in a bowl. Mix in the supplementary ingredients. Spread the mixed mash onto the bread pieces and roll them in sesame. Heat 250 grams of oil. When hot, put in the pieces one by one. When the pieces turn

  9. MHC class II antigen presentation by B cells in health and disease

    NARCIS (Netherlands)

    Souwer, Yuri

    2009-01-01

    MHC class II antigen presentation by B cells is important to activate CD4+ T cells that stimulate the B cell to produce antibodies. Besides this, disruption of MHC class II antigen presentation could play a role in immune escape by tumor cells. This thesis describes MHC class II antigen presentation

  10. Social pairing of Seychelles warblers under reduced constraints : MHC, neutral heterozygosity, and age

    NARCIS (Netherlands)

    Wright, David J.; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan; Richardson, David S.

    2016-01-01

    The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain

  11. NetMHCpan, a method for MHC class I binding prediction beyond humans

    DEFF Research Database (Denmark)

    Hoof, Ilka; Peters, B; Sidney, J;

    2009-01-01

    .0, a method that generates quantitative predictions of the affinity of any peptide-MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I...

  12. Heterozygote advantage fails to explain the high degree of polymorphism of the MHC

    DEFF Research Database (Denmark)

    de Boer, R.J.; Borghans, J.A.M.; Boven, M.;

    2004-01-01

    Major histocompatibility (MHC) molecules are encoded by extremely polymorphic genes and play a crucial role in vertebrate immunity. Natural selection favors MHC heterozygous hosts because individuals heterozygous at the MHC can present a larger diversity of peptides from infectious pathogens than...

  13. MHC class II B diversity in blue tits : A preliminary study

    NARCIS (Netherlands)

    Rivero-de Aguilar, Juan; Schut, Elske; Merino, Santiago; Martinez, Javier; Komdeur, Jan; Westerdahl, Helena

    2013-01-01

    In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigate

  14. Protective influences on experimental autoimmune encephalomyelitis by MHC class I and class II alleles

    DEFF Research Database (Denmark)

    Mustafa, M; Vingsbo, C; Olsson, T;

    1994-01-01

    Experimental autoimmune encephalomyelitis (EAE) is influenced by polymorphism of the MHC. We have previously found that Lewis rats with certain MHC haplotypes are susceptible to disease induced with the myelin basic protein (MBP) peptide 63-88, whereas Lewis rats with other MHC haplotypes...

  15. Strategy for Developing Local Chicken

    Directory of Open Access Journals (Sweden)

    Sofjan Iskandar

    2006-12-01

    Full Text Available Chicken industry in Indonesia offer jobs for people in the village areas . The balance in development industry of selected and local chicken has to be anticipated as there has been threat of reducing importation of grand parent stock of selected chicken due to global avian influenza . In the mean time, high appreciation to the local chicken has been shown by the existence of local chicken farms in the size of business scale . For local chicken business, the government has been built programs, projects, and infrastructures, although the programs and projects were dropped scattered in to several institutions, which were end up with less significant impact to the people. Therefore, it is the time that the government should put more efforts to integrate various sources . focusing in enhancing local chicken industry .

  16. TCR/pMHC Optimized Protein crystallization Screen

    Science.gov (United States)

    Bulek, Anna M.; Madura, Florian; Fuller, Anna; Holland, Christopher J.; Schauenburg, Andrea J.A.; Sewell, Andrew K.; Rizkallah, Pierre J.; Cole, David K.

    2012-01-01

    The interaction between the clonotypic αβ T cell receptor (TCR), expressed on the T cell surface, and peptide-major histocompatibility complex (pMHC) molecules, expressed on the target cell surface, governs T cell mediated autoimmunity and immunity against pathogens and cancer. Structural investigations of this interaction have been limited because of the challenges inherent in the production of good quality TCR/pMHC protein crystals. Here, we report the development of an ‘intelligently designed’ crystallization screen that reproducibly generates high quality TCR/pMHC complex crystals suitable for X-ray crystallographic studies, thereby reducing protein consumption. Over the last 2 years, we have implemented this screen to produce 32 T cell related protein structures at high resolution, substantially contributing to the current immune protein database. Protein crystallography, used to study this interaction, has already extended our understanding of the molecular rules that govern T cell immunity. Subsequently, these data may help to guide the intelligent design of T cell based therapies that target human diseases, underlining the importance of developing optimized approaches for crystallizing novel TCR/pMHC complexes. PMID:22705983

  17. Colonizing the world in spite of reduced MHC variation

    DEFF Research Database (Denmark)

    Gangoso, Laura; Alcaide, Miguel; Grande, Juan M;

    2012-01-01

    the genus) is very high, falcons exhibit ancestrally low intra- and interspecific MHC variability. This pattern is not due to the inadvertent survey of paralogous genes or pseudogenes. Further, patterns of variation in mitochondrial or other nuclear genes do not indicate a generalized low level of genome-wide...

  18. Peptide Immunization Elicits Polyomavirus-Specific MHC Class Ib-Restricted CD8 T Cells in MHC Class Ia Allogeneic Mice

    Science.gov (United States)

    Hofstetter, Amelia R.; Evavold, Brian D.

    2013-01-01

    Abstract Unlike the polymorphic MHC class Ia molecules, MHC class Ib molecules are oligomorphic or nonpolymorphic. We recently discovered a protective CD8 T cell response to mouse polyomavirus (MPyV) in H-2b haplotype mice that is restricted by H2-Q9, a member of the Qa-2 MHC class Ib family. Here, we demonstrate that immunization with a peptide corresponding to a virus capsid-derived peptide presented by Q9 also elicits MHC class Ib-restricted MPyV-specific CD8 T cells in mice of H-2s and H-2g7 strains. These findings support the concept that immunization with a single MHC class Ib-restricted peptide can expand CD8 T cells in MHC class Ia allogeneic hosts. PMID:23374150

  19. Differential expression of Toll-like receptor pathway genes in chicken embryo fibroblasts from chickens resistant and susceptible to Marek's disease.

    Science.gov (United States)

    Haunshi, Santosh; Cheng, Hans H

    2014-03-01

    The Toll-like receptor (TLR) signaling pathway is one of the innate immune defense mechanisms against pathogens in vertebrates and invertebrates. However, the role of TLR in non-MHC genetic resistance or susceptibility to Marek's disease (MD) in the chicken is yet to be elucidated. Chicken embryo fibroblast (CEF) cells from MD susceptible and resistant lines were infected either with Marek's disease virus (MDV) or treated with polyionosinic-polycytidylic acid, a synthetic analog of dsRNA, and the expression of TLR and pro-inflammatory cytokines was studied at 8 and 36 h posttreatment by quantitative reverse transcriptase PCR. Findings of the present study reveal that MDV infection and polyionosinic-polycytidylic acid treatment significantly elevated the mRNA expression of TLR3, IL6, and IL8 in both susceptible and resistant lines. Furthermore, basal expression levels in uninfected CEF for TLR3, TLR7, and IL8 genes were significantly higher in resistant chickens compared with those of susceptible chickens. Our results suggest that TLR3 together with pro-inflammatory cytokines may play a significant role in genetic resistance to MD.

  20. Three-Cup Chicken

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ingredents:500 grams chicken legs,100 grams(about one tea cup)rice wine,50 grams(a small tea cup)sesame oil,50grams refined soy sauce,25 grams white sugar,10grams oyster sauce,chopped scallions,ginger root,garlic,and some hot chili peppers

  1. Twin Flavor Chicken Wings

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ingredients:1000g chicken wings,about,100g Shredded rape-seedleaves,100g black sesame seeds,7g salt,5g sugar,3gMSG,10g cooking wine,5g cassia bark,1000g cookingoil(actual consumption only 100 grams),one egg,anoptional amount of scallion,ginger root,starch and

  2. Immunomodulating Lactobacilli in Chicken

    NARCIS (Netherlands)

    M.E. Koenen (Marjorie)

    2004-01-01

    markdownabstract__Abstract__ The gastro-intestinal (GI) tract of a chicken starts with the beak, followed by the esophagus and crop, proventriculus (glandular stomach), gizzard (muscular stomach), duodenum, ileum, a pair of blind elongated caeca, colon and ending in the cloaca. The GI-tract

  3. Screening for genes involved in antibody response to sheep red blood cells in the chicken, Gallus gallus.

    Science.gov (United States)

    Geng, Tuoyu; Guan, Xiaojing; Smith, Edward J

    2015-09-01

    Antibody response, an important trait in both agriculture and biomedicine, plays a part in protecting animals from infection. Dissecting molecular basis of antibody response may improve artificial selection for natural disease resistance in livestock and poultry. A number of genetic markers associated with antibody response have been identified in the chicken and mouse by linkage-based association studies, which only define genomic regions by genetic markers but do not pinpoint genes for antibody response. In contrast, global expression profiling has been applied to define the molecular bases of a variety of biological traits through identification of differentially expressed genes (DEGs). Here, we employed Affimetrix GeneChip Chicken Genome Arrays to identify differentially expressed genes for antibody response to sheep red blood cells (SRBC) using chickens challenged with and without SRBC or chickens with high and low anti-SRBC titers. The DEGs include those with known (i.e., MHC class I and IgH genes) or unknown function in antibody response. Classification test of these genes suggested that the response of the chicken to intravenous injection of SRBC involved multiple biological processes, including response to stress or other different stimuli, sugar, carbohydrate or protein binding, and cell or soluble fraction, in addition to antibody response. This preliminary study thus provides an insight into molecular basis of antibody response to SRBC in the chicken.

  4. Predicting MHC class I epitopes in large datasets

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2010-02-01

    Full Text Available Abstract Background Experimental screening of large sets of peptides with respect to their MHC binding capabilities is still very demanding due to the large number of possible peptide sequences and the extensive polymorphism of the MHC proteins. Therefore, there is significant interest in the development of computational methods for predicting the binding capability of peptides to MHC molecules, as a first step towards selecting peptides for actual screening. Results We have examined the performance of four diverse MHC Class I prediction methods on comparatively large HLA-A and HLA-B allele peptide binding datasets extracted from the Immune Epitope Database and Analysis resource (IEDB. The chosen methods span a representative cross-section of available methodology for MHC binding predictions. Until the development of IEDB, such an analysis was not possible, as the available peptide sequence datasets were small and spread out over many separate efforts. We tested three datasets which differ in the IC50 cutoff criteria used to select the binders and non-binders. The best performance was achieved when predictions were performed on the dataset consisting only of strong binders (IC50 less than 10 nM and clear non-binders (IC50 greater than 10,000 nM. In addition, robustness of the predictions was only achieved for alleles that were represented with a sufficiently large (greater than 200, balanced set of binders and non-binders. Conclusions All four methods show good to excellent performance on the comprehensive datasets, with the artificial neural networks based method outperforming the other methods. However, all methods show pronounced difficulties in correctly categorizing intermediate binders.

  5. MHC class Jb-restricted cell responses to Listeria monocytogenes infection.

    Science.gov (United States)

    Kerksiek, K M; Pamer, E G

    1999-12-01

    Murine infection with Listeria monocytogenes induces CD8+ T cell responses specific for bacterial peptides that are presented on the infected cell surface by MHC class Ia and MHC class Ib molecules. We have used MHC tetramers to demonstrate that CD8+ T cells restricted by the H2-M3 MHC class Ib molecules constitute a substantial portion of the T cell response to L. monocytogenes infection. The in vivo size and kinetics of MHC class Ib-restricted T cell populations suggests that they play a prominent role in bacterial clearance following primary L. monocytogenes infection.

  6. Measurement of peptide-MHC interactions in solution using the spin column filtration assay

    DEFF Research Database (Denmark)

    Buus, Soren; Lise Lauemøller, S; Stryhn, A

    2001-01-01

    This unit describes how peptide-MHC complexes can be generated in vitro using affinity-purified MHC and synthetic peptide. The unit first describes how the interaction between peptide and MHC interaction can be measured in an accurate, quantitative biochemical assay. This procedure has been...... optimized for efficient separation of free peptide and MHC-bound peptide through a novel principle, termed "gradient centrifugation." The first two support protocols describe how to set up a biochemical fluid-phase binding reaction between peptide and MHC class I and class II, respectively. Also...

  7. Welfare of broiler chickens

    Directory of Open Access Journals (Sweden)

    Federico Sirri

    2010-01-01

    Full Text Available Broiler chickens have been selected for their rapid growth rate as well as for high carcass yields, with particular regard to the breast, and reared in intensive systems at high stocking density ranging from 30 to 40 kg live weight/m2. These conditions lead to a worsening of the welfare status of birds. In Europe a specific directive for the protection of broiler chickens has been recently approved whereas in Italy there is not yet any regulation. The EU directive lays down minimum rules for the protection of chickens kept for meat production and gives indications on management practices with particular focus on stocking density, light regimen and air quality, training and guidance for people dealing with chickens, as well as monitoring plans for holding and slaughterhouse. In this review the rearing factors influencing the welfare conditions of birds are described and detailed information on the effects of stocking density, light regimen, litter characteristic and air quality (ammonia, carbon dioxide, humidity, dust are provided. Moreover, the main health implications of poor welfare conditions of the birds, such as contact dermatitis, metabolic, skeletal and muscular disorders are considered. The behavioural repertoire, including scratching, dust bathing, ground pecking, wing flapping, locomotor activity, along with factors that might impair these aspects, are discussed. Lastly, farm animal welfare assessment through physiological and behavioural indicators is described with particular emphasis on the “Unitary Welfare Index,” a tool that considers a wide range of indicators, including productive traits, in order to audit and compare the welfare status of chickens kept in different farms.

  8. MHC and non-MHC genes regulate elimination of lymphocytic choriomeningitis virus and antiviral cytotoxic T lymphocyte and delayed-type hypersensitivity mediating T lymphocyte activity in parallel

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Marker, O

    1989-01-01

    The course of systemic infection with lymphocytic choriomeningitis virus was studied in mouse strains differing in the MHC or non-MHC background. Virus clearance rates differed significantly between H-2 identical strains as well as between congenic strains differing in the H-2L subregion, indicat......The course of systemic infection with lymphocytic choriomeningitis virus was studied in mouse strains differing in the MHC or non-MHC background. Virus clearance rates differed significantly between H-2 identical strains as well as between congenic strains differing in the H-2L subregion...

  9. MHC Class II and Non-MHC Class II Genes Differentially Influence Humoral Immunity to Bacillus anthracis Lethal Factor and Protective Antigen

    Directory of Open Access Journals (Sweden)

    Judith A. James

    2012-12-01

    Full Text Available Anthrax Lethal Toxin consists of Protective Antigen (PA and Lethal Factor (LF, and current vaccination strategies focus on eliciting antibodies to PA. In human vaccination, the response to PA can vary greatly, and the response is often directed toward non-neutralizing epitopes. Variable vaccine responses have been shown to be due in part to genetic differences in individuals, with both MHC class II and other genes playing roles. Here, we investigated the relative contribution of MHC class II versus non-MHC class II genes in the humoral response to PA and LF immunization using three immunized strains of inbred mice: A/J (H-2k at the MHC class II locus, B6 (H-2b, and B6.H2k (H-2k. IgG antibody titers to LF were controlled primarily by the MHC class II locus, whereas IgG titers to PA were strongly influenced by the non-MHC class II genetic background. Conversely, the humoral fine specificity of reactivity to LF appeared to be controlled primarily through non-MHC class II genes, while the specificity of reactivity to PA was more dependent on MHC class II. Common epitopes, reactive in all strains, occurred in both LF and PA responses. These results demonstrate that MHC class II differentially influences humoral immune responses to LF and PA.

  10. Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns.

    Directory of Open Access Journals (Sweden)

    Jan Salomonsen

    2014-06-01

    Full Text Available Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC, and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region, and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells, correlating with two different kinds of promoters and 5' untranslated regions (5'UTR. However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood.

  11. Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

    Science.gov (United States)

    Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo G; Parham, Peter

    2015-09-01

    Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.

  12. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    Science.gov (United States)

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; Boyd, Lisa F.; Jiang, Jiansheng; Dolan, Michael A.; Venna, Ramesh; Norcross, Michael A.; McMurtrey, Curtis P.; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H.

    2016-01-01

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8+ T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing. PMID:26869717

  13. One-pot, mix-and-read peptide-MHC tetramers

    DEFF Research Database (Denmark)

    Leisner, Christian Valdemar Vinge; Loeth, Nina; Lamberth, Kasper

    2008-01-01

    biochemical steps such as chromatographic purification, concentration etc. Such cumbersome production protocols have limited dissemination and restricted availability of peptide-MHC tetramers effectively precluding large-scale screening strategies involving many different peptide-MHC tetramers. METHODOLOGY...... molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps. CONCLUSIONS/SIGNIFICANCE: We have developed an efficient "one-pot, mix-and-read" strategy for peptide-MHC tetramer generation......, and demonstrated specific T cell straining comparable to a commercially available MHC-tetramer. Here, seven peptide-MHC tetramers representing four different human MHC (HLA) class I proteins have been generated. The technique should be readily extendable to any binding peptide and pre-biotinylated MHC (at...

  14. One-pot, mix-and-read peptide-MHC tetramers.

    Directory of Open Access Journals (Sweden)

    Christian Leisner

    Full Text Available BACKGROUND: Cytotoxic T Lymphocytes (CTL recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC class I molecules presented at the surface of Antigen Presenting Cells (APC. Detection and isolation of CTL's are of importance for research on CTL immunity, and development of vaccines and adoptive immune therapy. Peptide-MHC tetramers have become important reagents for detection and enumeration of specific CTL's. Conventional peptide-MHC-tetramer production involves recombinant MHC production, in vitro refolding, biotinylation and tetramerization; each step followed by various biochemical steps such as chromatographic purification, concentration etc. Such cumbersome production protocols have limited dissemination and restricted availability of peptide-MHC tetramers effectively precluding large-scale screening strategies involving many different peptide-MHC tetramers. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an approach whereby any given tetramer specificity can be produced within 2 days with very limited effort and hands-on time. The strategy is based on the isolation of correctly oxidized, in vivo biotinylated recombinant MHC I heavy chain (HC. Such biotinylated MHC I HC molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps. CONCLUSIONS/SIGNIFICANCE: We have developed an efficient "one-pot, mix-and-read" strategy for peptide-MHC tetramer generation, and demonstrated specific T cell straining comparable to a commercially available MHC-tetramer. Here, seven peptide-MHC tetramers representing four different human MHC (HLA class I proteins have been generated. The technique should be readily extendable to any binding peptide and pre-biotinylated MHC (at this time we have over 40 different pre-biotinylated HLA proteins. It is simple, robust, and versatile technique with a very broad application

  15. Riemerella Anatipestifer Infection in Chickens

    Directory of Open Access Journals (Sweden)

    J. X. Li*, Y. Tang, J. Y. Gao, C. H. Huang1 and M. J. Ding

    2011-01-01

    Full Text Available Riemerella anatipestifer (RA is the causative agent of septicemic and exudative disease for a variety of bird species. Although RA had been isolated from chickens, whether can bring damages to them is not unrevealed yet. In this study, we report a flock of SanHuang chickens infected by RA with 15% morbidity and less than 8% mortality. The infection is further substantiated by case duplicate. The tested chickens demonstrate typical signs of pericarditis, air sacculitis and perihepatitis that are completely consistent with the field outbreak. The results suggest that RA is pathogenic to SanHuang chickens, which can then be theoretically and practicably incorporated into its infection spectrum.

  16. Preparation of Polyclonal Antibodies Against MHC Ⅱα and MHC Ⅱβ of Mangrove Red Snapper (Lutjanus argentimaculatus)%紫红笛鲷MHC Ⅱα和MHC Ⅱβ多克隆抗体的制备

    Institute of Scientific and Technical Information of China (English)

    王天燕; 常虹; 余时琛; 陈璐; 蔡中华

    2013-01-01

    目的:制备紫红笛鲷主要组织相溶性复合体MHC Ⅱα和MHC Ⅱβ多克隆抗体,为蛋白水平研究紫红笛鲷MHCⅡ分子提供理论和实践依据.方法:从已有的紫红笛鲷cDNA文库菌中分别克隆其MHC Ⅱα和MHC Ⅱ3分子的部分开放阅读框,与PQE-30构建表达载体,转入大肠杆菌E.coli M15以IPTG诱导表达;纯化得到的重组蛋白与弗氏佐剂混合乳化后注射新西兰大白兔制备多克隆抗体,再以酶联免疫吸附(ELISA)和免疫印迹(Western blot)检测所获抗血清的效价及效果.结果:①重组表达和纯化得到紫红笛鲷MHC Ⅱα和MHC Ⅱβ部分肽链.②制备的紫红笛鲷MHC Ⅱα和MHC Ⅱβ兔抗血清效价都大于1:25600,达到预期水平.③以获得的紫红笛鲷MHC Hα和MHC Ⅱβ兔抗血清分别与紫红笛鲷头肾巨噬细胞蛋白进行免疫印迹,显示两种抗血清能分别杂合出各自的目标蛋白,说明制备的多克隆抗体实际应用效果良好.结论:紫红笛鲷MHC Ⅱα和MHC Ⅱβ多克隆抗血清制备成功.%Objective: To prepare the polyclonal antibodies against MHC Ⅱα and MHC Ⅱβ of mangrove red snapper. Methods: A partial of MHC Ⅱα and MHC Up chain was cloned from the cDNA library of mangrove red snapper, respectively. The PCR products were inserted into the expression vectors pQE30 and transformed into the E. coli M15. By inducing of IPTG, the recombinant proteins of MHC Ⅱα and MHC Ⅱβ fragments were purified, respectively. The proteins were thoroughly mixed with Freund's adjuvant, and injected rabbit. The antiserums were detected by ELISA and Western blot. Results: ① The recombinant proteins of MHC Ⅱα and MHC Ⅱβ fragments were purified successfully. ② The antiserums against MHC Ⅱα and MHC Ⅱβ both had a high titer above 1:25600. ③The western blot of head kidney macrophages showed the specification of MHC Ⅱα and MHC Ⅱβ antiserums, respectively. Conclusions: The high titer and specific polyclonal

  17. Origin and plasticity of MHC I-associated self peptides.

    Science.gov (United States)

    de Verteuil, Danielle; Granados, Diana Paola; Thibault, Pierre; Perreault, Claude

    2012-07-01

    Endogenous peptides presented by MHC I molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) regulate all key events that occur during the lifetime of CD8 T cells. CD8 T cells are selected on self-MIPs, sustained by self-MIPs, and activated in the presence of self-MIPs. Recently, large-scale mass spectrometry studies have revealed that the self-MIP repertoire is more complex and plastic than previously anticipated. The composition of the self-MIP repertoire varies from one cell type to another and can be perturbed by cell-intrinsic and -extrinsic factors including dysregulation of cellular metabolism and infection. The complexity and plasticity of the self-MIP repertoire represent a major challenge for the maintenance of self tolerance and can have pervasive effects on the global functioning of the immune system.

  18. MHC I Stabilizing Potential of Computer-Designed Octapeptides

    Directory of Open Access Journals (Sweden)

    Joanna M. Wisniewska

    2010-01-01

    Full Text Available Experimental results are presented for 180 in silico designed octapeptide sequences and their stabilizing effects on the major histocompatibility class I molecule H-2Kb. Peptide sequence design was accomplished by a combination of an ant colony optimization algorithm with artificial neural network classifiers. Experimental tests yielded nine H-2Kb stabilizing and 171 nonstabilizing peptides. 28 among the nonstabilizing octapeptides contain canonical motif residues known to be favorable for MHC I stabilization. For characterization of the area covered by stabilizing and non-stabilizing octapeptides in sequence space, we visualized the distribution of 100,603 octapeptides using a self-organizing map. The experimental results present evidence that the canonical sequence motives of the SYFPEITHI database on their own are insufficient for predicting MHC I protein stabilization.

  19. Assembly of MHC class I molecules within the endoplasmic reticulum.

    Science.gov (United States)

    Zhang, Yinan; Williams, David B

    2006-01-01

    MHC class I molecules bind cytosolically derived peptides within the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T cells. A major focus of our laboratory has been to understand the functions of the diverse proteins involved in the intracellular assembly of MHC class I molecules. These include the molecular chaperones calnexin and calreticulin, which enhance the proper folding and subunit assembly of class I molecules and also retain assembly intermediates within the ER; ERp57, a thiol oxidoreductase that promotes heavy chain disulfide formation and proper assembly of the peptide loading complex; tapasin, which recruits class I molecules to the TAP peptide transporter and enhances the loading of high affinity peptide ligands; and Bap31, which is involved in clustering assembled class I molecules at ER exit sites for export along the secretory pathway. This review describes our contributions to elucidating the functions of these proteins; the combined effort of many dedicated students and postdoctoral fellows.

  20. MHC Class I Antigen Presentation- Recently Trimmed and Well Presented

    Institute of Scientific and Technical Information of China (English)

    BarryFlutter; BinGao

    2004-01-01

    Presentation of antigenic peptide to T cells by major histocompatibility complex (MHC) class I molecules is the key to the cellular immune response. Non-self intracellular proteins are processed into short peptides and transported into endoplasmic reticulum (ER) where they are assembled with class I molecules assisted by several chaperone proteins to form trimeric complex. MHC class I complex loaded with optimised peptides travels to the cell surface of antigen presentation cells to be recognised by T cells. The cells presenting non-self peptides are cleared by CD8 positive T cells. In order to ensure that T cells detect an infection or mutation within the target cells the process of peptide loading and class I expression must be carefully regulated. Many of the cellular components involved in antigen processing and class I presentation are known and their various functions are now becoming clearer. Cellular & Molecular Immunology. 2004;1(1):22-30.

  1. MHC Class Ⅰ Antigen Presentation- Recently Trimmed and Well Presented

    Institute of Scientific and Technical Information of China (English)

    Barry Flutter; Bin Gao

    2004-01-01

    Presentation of antigenic peptide to T cells by major histocompatibility complex (MHC) class Ⅰ molecules is the key to the cellular immune response. Non-self intracellular proteins are processed into short peptides and transported into endoplasmic reticulum (ER) where they are assembled with class Ⅰ molecules assisted by several chaperone proteins to form trimeric complex. MHC class Ⅰ complex loaded with optimised peptides travels to the cell surface of antigen presentation cells to be recognised by T cells. The cells presenting non-self peptides are cleared by CD8 positive T cells. In order to ensure that T cells detect an infection or mutation within the target cells the process of peptide loading and class Ⅰ expression must be carefully regulated. Many of the cellular components involved in antigen processing and class Ⅰ presentation are known and their various functions are now becoming clearer. Cellular & Molecular Immunology. 2004;1(1):22-30.

  2. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lamberth, K; Harndahl, M

    2008-01-01

    been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75–80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non...

  3. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  4. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications.

    Science.gov (United States)

    Afridi, Saifullah; Hoessli, Daniel C; Hameed, Muhammad Waqar

    2016-07-01

    Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.

  5. Unconventional T lymphocytes - recombinant MHC molecules pave the way

    OpenAIRE

    Walter, Steffen

    2005-01-01

    T cells are central orchestrators and effectors of the adaptive immune system. CD8+ T cells that recognize peptide antigens presented on MHC class I molecules are believed to play a central role in fighting viral infections, intracellular pathogens and cancer. The use of recombinant peptide-HLA class I complexes that mimic the natural ligands of human CD8+ T cells should greatly facilitate the manipulation and analysis of such cells, allowing further insight in their biology and opening thera...

  6. Population-specific recombination sites within the human MHC region

    OpenAIRE

    2013-01-01

    Genetic rearrangement by recombination is one of the major driving forces for genome evolution, and recombination is known to occur in non-random, discreet recombination sites within the genome. Mapping of recombination sites has proved to be difficult, particularly, in the human MHC region that is complicated by both population variation and highly polymorphic HLA genes. To overcome these problems, HLA-typed individuals from three representative populations: Asian, European an...

  7. Transcriptional profiling of host gene expression in chicken embryo lung cells infected with laryngotracheitis virus

    Directory of Open Access Journals (Sweden)

    Li Xianyao

    2010-07-01

    Full Text Available Abstract Background Infection by infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1 causes acute respiratory diseases in chickens often with high mortality. To better understand host-ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 × 44 K Agilent chicken custom oligo microarrays. Results Microarrays were hybridized using the two color hybridization method with total RNA extracted from ILTV infected chicken embryo lung cells at 0, 1, 3, 5, and 7 days post infection (dpi. Results showed that 789 genes were differentially expressed in response to ILTV infection that include genes involved in the immune system (cytokines, chemokines, MHC, and NF-κB, cell cycle regulation (cyclin B2, CDK1, and CKI3, matrix metalloproteinases (MMPs and cellular metabolism. Differential expression for 20 out of 789 genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR. A bioinformatics tool (Ingenuity Pathway Analysis used to analyze biological functions and pathways on the group of 789 differentially expressed genes revealed that 21 possible gene networks with intermolecular connections among 275 functionally identified genes. These 275 genes were classified into a number of functional groups that included cancer, genetic disorder, cellular growth and proliferation, and cell death. Conclusion The results of this study provide comprehensive knowledge on global gene expression, and biological functionalities of differentially expressed genes in chicken embryo lung cells in response to ILTV infections.

  8. Can selective MHC downregulation explain the specificity and genetic diversity of NK cell receptors?

    Directory of Open Access Journals (Sweden)

    Paola eCarrillo-Bustamante

    2015-06-01

    Full Text Available Natural killer (NK cells express inhibiting receptors (iNKRs s which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs s lose inhibiting signals and the infected cells become target for NK cell activation (missing-self detection. Although the detection of MHC-I deficient cells can be achieved by conserved receptor-ligand interactions, several iNKRs are encoded by gene families with a remarkable genetic diversity, containing many haplotypes varying in gene content and allelic polymorphism. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. Here, we investigate whether the evolution of diverse iNKRs genes can be driven by a specific viral immunoevasive mechanism: selective MHC downregulation. Several viruses, including EBV, CMV, and HIV, decrease the expression of MHC-I to escape from T cell responses. This downregulation does not always affect all MHC loci in the same way, as viruses target particular MHC molecules. To study the selection pressure of selective MHC downregulation on iNKRs, we have developed an agent-based model simulating an evolutionary scenario of hosts infected with herpes-like viruses that are able to selectively downregulate the expression of MHC-I molecules on the cell surface. We show that iNKRs evolve specificity and, depending on the similarity of MHC alleles within each locus and the differences between the loci, they can specialize to a particular MHC-I locus. The easier it is to classify an MHC allele to its locus, the lower the required diversity of the NKRs. Thus, the diversification of the iNKR cluster depends on the locus specific MHC structure.

  9. A female signal reflects MHC genotype in a social primate

    Directory of Open Access Journals (Sweden)

    Benavides Julio

    2010-04-01

    Full Text Available Abstract Background Males from many species are believed to advertise their genetic quality through striking ornaments that attract mates. Yet the connections between signal expression, body condition and the genes associated with individual quality are rarely elucidated. This is particularly problematic for the signals of females in species with conventional sex roles, whose evolutionary significance has received little attention and is poorly understood. Here we explore these questions in the sexual swellings of female primates, which are among the most conspicuous of mammalian sexual signals and highly variable in size, shape and colour. We investigated the relationships between two components of sexual swellings (size and shape, body condition, and genes of the Major Histocompatibility Complex (MHC in a wild baboon population (Papio ursinus where males prefer large swellings. Results Although there was no effect of MHC diversity on the sexual swelling components, one specific MHC supertype (S1 was associated with poor body condition together with swellings of small size and a particular shape. The variation in swelling characteristics linked with the possession of supertype S1 appeared to be partially mediated by body condition and remained detectable when taking into account the possession of other supertypes. Conclusions These findings suggest a pathway from immunity genes to sexual signals via physical condition for the first time in females. They further indicate that mechanisms of sexual selection traditionally assigned to males can also operate in females.

  10. MHC adaptive divergence between closely related and sympatric African cichlids.

    Directory of Open Access Journals (Sweden)

    Jonatan Blais

    Full Text Available BACKGROUND: The haplochromine cichlid species assemblages of Lake Malawi and Victoria represent some of the most important study systems in evolutionary biology. Identifying adaptive divergence between closely-related species can provide important insights into the processes that may have contributed to these spectacular radiations. Here, we studied a pair of sympatric Lake Malawi species, Pseudotropheus fainzilberi and P. emmiltos, whose reproductive isolation depends on olfactory communication. We tested the hypothesis that these species have undergone divergent selection at MHC class II genes, which are known to contribute to olfactory-based mate choice in other taxa. METHODOLOGY/PRINCIPAL FINDINGS: Divergent selection on functional alleles was inferred from the higher genetic divergence at putative antigen binding sites (ABS amino acid sequences than at putatively neutrally evolving sites at intron 1, exon 2 synonymous sequences and exon 2 amino acid residues outside the putative ABS. In addition, sympatric populations of these fish species differed significantly in communities of eukaryotic parasites. CONCLUSIONS/SIGNIFICANCE: We propose that local host-parasite coevolutionary dynamics may have driven adaptive divergence in MHC alleles, influencing odor-mediated mate choice and leading to reproductive isolation. These results provide the first evidence for a novel mechanism of adaptive speciation and the first evidence of adaptive divergence at the MHC in closely related African cichlid fishes.

  11. Properties of MHC class I presented peptides that enhance immunogenicity.

    Directory of Open Access Journals (Sweden)

    Jorg J A Calis

    2013-10-01

    Full Text Available T-cells have to recognize peptides presented on MHC molecules to be activated and elicit their effector functions. Several studies demonstrate that some peptides are more immunogenic than others and therefore more likely to be T-cell epitopes. We set out to determine which properties cause such differences in immunogenicity. To this end, we collected and analyzed a large set of data describing the immunogenicity of peptides presented on various MHC-I molecules. Two main conclusions could be drawn from this analysis: First, in line with previous observations, we showed that positions P4-6 of a presented peptide are more important for immunogenicity. Second, some amino acids, especially those with large and aromatic side chains, are associated with immunogenicity. This information was combined into a simple model that was used to demonstrate that immunogenicity is, to a certain extent, predictable. This model (made available at http://tools.iedb.org/immunogenicity/ was validated with data from two independent epitope discovery studies. Interestingly, with this model we could show that T-cells are equipped to better recognize viral than human (self peptides. After the past successful elucidation of different steps in the MHC-I presentation pathway, the identification of variables that influence immunogenicity will be an important next step in the investigation of T-cell epitopes and our understanding of cellular immune responses.

  12. MHC associations with clinical and autoantibody manifestations in European SLE.

    Science.gov (United States)

    Morris, D L; Fernando, M M A; Taylor, K E; Chung, S A; Nititham, J; Alarcón-Riquelme, M E; Barcellos, L F; Behrens, T W; Cotsapas, C; Gaffney, P M; Graham, R R; Pons-Estel, B A; Gregersen, P K; Harley, J B; Hauser, S L; Hom, G; Langefeld, C D; Noble, J A; Rioux, J D; Seldin, M F; Vyse, T J; Criswell, L A

    2014-04-01

    Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease affecting multiple organ systems and characterized by autoantibody formation to nuclear components. Although genetic variation within the major histocompatibility complex (MHC) is associated with SLE, its role in the development of clinical manifestations and autoantibody production is not well defined. We conducted a meta-analysis of four independent European SLE case collections for associations between SLE sub-phenotypes and MHC single-nucleotide polymorphism genotypes, human leukocyte antigen (HLA) alleles and variant HLA amino acids. Of the 11 American College of Rheumatology criteria and 7 autoantibody sub-phenotypes examined, anti-Ro/SSA and anti-La/SSB antibody subsets exhibited the highest number and most statistically significant associations. HLA-DRB1*03:01 was significantly associated with both sub-phenotypes. We found evidence of associations independent of MHC class II variants in the anti-Ro subset alone. Conditional analyses showed that anti-Ro and anti-La subsets are independently associated with HLA-DRB1*0301, and that the HLA-DRB1*03:01 association with SLE is largely but not completely driven by the association of this allele with these sub-phenotypes. Our results provide strong evidence for a multilevel risk model for HLA-DRB1*03:01 in SLE, where the association with anti-Ro and anti-La antibody-positive SLE is much stronger than SLE without these autoantibodies.

  13. Strong Selection at MHC in Mexicans since Admixture.

    Directory of Open Access Journals (Sweden)

    Quan Zhou

    2016-02-01

    Full Text Available Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive African ancestral alleles compared to the rest of the genome, which is the hallmark of recent selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for two datasets, which put our finding among the strongest known selections observed in humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans. Using inaccurate Amerindian training samples was a major concern for the credibility of previously reported selection signals in Latinos. Taking advantage of the flexibility of our statistical model, we devised a model fitting technique that can learn Amerindian ancestral haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans using only European and African training samples. The strong selection signal at the MHC remains without Amerindian training samples. Finally, we note that medical history studies suggest such a strong selection at MHC is plausible in Mexicans.

  14. MHC Class II haplotypes of Colombian Amerindian tribes.

    Science.gov (United States)

    Yunis, Juan J; Yunis, Edmond J; Yunis, Emilio

    2013-07-01

    We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family), Embera, Waunana (Choco linguistic family), Puinave and Nukak (Maku-Puinave linguistic families), Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family), Guahibo and Guayabero (Guayabero Linguistic Family), Curripaco and Piapoco (Arawak linguistic family) and Yucpa (Karib linguistic family). for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1). Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America.

  15. MHC Class II haplotypes of Colombian Amerindian tribes

    Directory of Open Access Journals (Sweden)

    Juan J. Yunis

    2013-01-01

    Full Text Available We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family, Embera, Waunana (Choco linguistic family, Puinave and Nukak (Maku-Puinave linguistic families, Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family, Guahibo and Guayabero (Guayabero Linguistic Family, Curripaco and Piapoco (Arawak linguistic family and Yucpa (Karib linguistic family. for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1. Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America.

  16. Molecular characterization of major histocompatibility complex class I (B-F) mRNA variants from chickens differing in resistance to Marek's disease.

    Science.gov (United States)

    Dalgaard, T S; Vitved, L; Skjødt, K; Thomsen, B; Labouriau, R; Jensen, K H; Juul-Madsen, H R

    2005-09-01

    In this study, the relative distributions of two alternatively polyadenylated chicken major histocompatibility complex (MHC) mRNA isoforms of approximately 1.5 and 1.9 kb were analysed in spleen cells from chickens homozygous for the MHC haplotypes B21 and B19v1 as well as in heterozygous B19v1/B21 birds. Both isoforms are likely to encode classical MHC class I (B-F) alpha chains. The B19v1 and B21 MHC haplotypes confer different levels of protection against Marek's disease (MD), which is caused by infection with MD virus (MDV). In spleen cells, MD-resistant B21 birds were shown to have the highest percentage of the 1.5 kb variant relative to the total MHC class I expression, MD-susceptible B19v1 birds the lowest and B19v1/B21 birds an intermediate percentage. Infection of 4-week-old chickens with the GA strain of MDV was shown to cause a significant increase in the relative amount of 1.5 kb transcripts in B21 birds 32 days postinfection (dpi). Alternatively polyadenylated mRNA isoforms may encode identical proteins, but differences in the 3' untranslated region (UTR) can influence polyadenylation, mRNA stability, intracellular localization and translation efficiency. It was shown that the increased 1.5 kb percentage in B21 birds 32 days postinfection may be a result of a change in the choice of poly(A) site rather than a locus-specific upregulated transcription of the BF1 gene that preferentially expresses the 1.5 kb variant. Furthermore, the 3' end of the 1.5 kb mRNA variants deriving from B19v1 and B21 chickens was characterized by Rapid Amplification of cDNA Ends (RACE) and sequencing. No potentially functional elements were identified in the 3' UTR of the RACE products corresponding to this short isoform. However, variation in polyadenylation site was observed between the BF1 and BF2 mRNA transcripts and alternative splicing-out of the sequence (exon 7) encoding the second segment of the cytoplasmic part of the mature BF2*19 molecules. This alternative exon 7

  17. Chicken Porridge with Sea Cucumber

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Main ingredients: 50 grams of chicken breast, 200 grams of gray sea cucumbers Supplementary ingredients: 100 grams of water chestnut, the whites of four eggs, MSG, salt, wine, meat soup, starch, sugar, scallions, ginger, soy sauce Directions: Chop up the chicken breast and water chestnut into small

  18. Cordyceps militaris Enhances MHC-restricted Antigen Presentation via the Induced Expression of MHC Molecules and Production of Cytokines

    Science.gov (United States)

    Shin, Seulmee; Park, Yoonhee; Kim, Seulah; Oh, Hee-Eun; Ko, Young-Wook; Han, Shinha; Lee, Seungjeong; Lee, Chong-Kil; Cho, Kyunghae

    2010-01-01

    Background Cordyceps militarys water extract (CME) has been reported to exert antitumor and immunomodulatory activities in vivo and in vitro. However, the therapeutic mechanism has not yet been elucidated. In this study, we examined the effects of CME on the antigen presenting function of antigen presenting cells (APCs). Methods Dendritic cells (DCs) were cultured in the presence of CME, and then allowed to phagocytose microspheres containing ovalbumin (OVA). After washing and fixing the efficacy of OVA, peptide presentation by DCs were evaluated using CD8 and CD4 T cells. Also, we confirmed the protein levels of proinflammatory cytokines through western blot analysis. Results CME enhanced both MHC class I and class II-restricted presentation of OVA in DCs. In addition, the expression of both MHC class I and II molecules was enhanced, but there was no changes in the phagocytic activity of exogenous OVA. Furthermore, CME induced the protein levels of iNOS, COX-2, proinflammatory cytokines, and nuclear p65 in a concentration-dependent manner, as determined by western blot. Conclusion These results provide an understanding of the mechanism of the immuno-enhancing activity of CME on the induction of MHC-restricted antigen presentation in relation to their actions on APCs. PMID:20844738

  19. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution.

    Science.gov (United States)

    Parham, Peter; Moffett, Ashley

    2013-02-01

    Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.

  20. MHC class I loci of the Bar-Headed goose (Anser indicus

    Directory of Open Access Journals (Sweden)

    Qinglong Liang

    2010-01-01

    Full Text Available MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade.

  1. Effects of feed supplementation with glycine chelate and iron sulfate on selected parameters of cell-mediated immune response in broiler chickens.

    Science.gov (United States)

    Jarosz, Łukasz; Kwiecień, Małgorzata; Marek, Agnieszka; Grądzki, Zbigniew; Winiarska-Mieczan, Anna; Kalinowski, Marcin; Laskowska, Ewa

    2016-08-01

    Because little is known about the impact of chelated (Fe-Gly, Fe-Gly+F) and inorganic (FeSO4, FeSO4+F) iron products on immune response parameters in broiler chickens, the objective of the study was to determine the effects of inorganic and organic forms of iron on selected parameters of the cell-mediated immune response in broiler chickens by assessing the percentage of CD3(+)CD4(+), CD3(+)CD8(+), CD25(+), and MHC Class II lymphocytes, as well as the CD4(+)/CD8(+) ratio and IL-2 concentration in the peripheral blood. The experiments were conducted using 50day-old Ross 308 roosters. The test material was peripheral blood. Flow cytometry was used to determine selected cell-mediated immune response parameters. The results obtained indicate that the use of iron chelates in the diet of broiler chickens may stimulate cellular defense mechanisms. As a result of the experiment an increase was observed in the percentage of Th1, mainly T CD4(+) and T CD8(+). It was also noted that application of chelated iron can increase production of T CD8(+) cytotoxic cells and IL-2, which promotes the body's natural response to developing inflammation. There were no changes in T CD4(+), T CD8(+), T CD25(+) or MHC II lymphocyte subpopulations in the chickens following application of the inorganic form of iron.

  2. Antigen-specific tumor vaccine efficacy in vivo against prostate cancer with low class I MHC requires competent class II MHC.

    Science.gov (United States)

    Neeley, Yilin C; McDonagh, Kevin T; Overwijk, Willem W; Restifo, Nicholas P; Sanda, Martin G

    2002-11-01

    Cancers can escape immune recognition by means of evading class I major histocompatibility complex (MHC) -mediated recognition by cytotoxic T lymphocytes. However, immunization strategies targeting defined tumor-associated antigens have not been extensively characterized in murine prostate cancer models. Therefore, we evaluated antigen-specific, antitumor immunity after antigen-encoding vaccinia immunization against mouse prostate cancer cells expressing a model tumor-associated antigen (beta-galactosidase) and exhibiting partially deficient class I MHC. Low class I MHC expression in beta-galactosidase-expressing D7RM-1 prostate cancer cells was shown by fluorescence activated cell sorting, and deficient class I MHC-mediated antigen presentation was shown in resistance of D7RM-1 to cytolysis by beta-galactosidase-specific cytotoxic T lymphocytes (CTL). Despite partially deficient class I MHC presenting function, immunization with vaccinia encoding beta-galactosidase conferred antigen-specific protection against D7RM-1 cancer. Antigen-specific immunity was recapitulated in beta(2)m knockout mice (with deficient class I MHC and CTL function), confirming that class I MHC antigen presentation was not required for immunity against tumor partially deficient in class I MHC. Conversely, antigen-specific antitumor immunity was abrogated in A(b)beta knockout mice (with deficient class II MHC and helper T cell function), demonstrating a requirement for functional class II MHC. Resistant tumors from the otherwise effectively immunized beta(2)m knockout mice (among which tumor progression had been reduced or delayed) showed reduced target antigen expression, corroborating antigen-specificity (and showing an alternative immune escape mechanism), whereas antigen expression (like tumor growth) was unaffected among A(b)beta knockout mice. Our results demonstrate that class I MHC-restricted antigen presentation and CTL activity is neither necessary nor sufficient for antigen

  3. 7 CFR 65.120 - Chicken.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Chicken. 65.120 Section 65.120 Agriculture Regulations..., PORK, LAMB, CHICKEN, GOAT MEAT, PERISHABLE AGRICULTURAL COMMODITIES, MACADAMIA NUTS, PECANS, PEANUTS, AND GINSENG General Provisions Definitions § 65.120 Chicken. Chicken has the meaning given the term...

  4. 7 CFR 65.160 - Ground chicken.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Ground chicken. 65.160 Section 65.160 Agriculture... OF BEEF, PORK, LAMB, CHICKEN, GOAT MEAT, PERISHABLE AGRICULTURAL COMMODITIES, MACADAMIA NUTS, PECANS, PEANUTS, AND GINSENG General Provisions Definitions § 65.160 Ground chicken. Ground chicken...

  5. Systematic Characterisation of Cellular Localisation and Expression Profiles of Proteins Containing MHC Ligands

    DEFF Research Database (Denmark)

    Juncker, Agnieszka; Larsen, Mette Voldby; Weinhold, Nils

    2009-01-01

    that most proteins containing MHC class I ligands were localised to the intracellular parts of the cell including the cytoplasm and nucleus. MHC class II ligand donors were, on the other hand, mostly membrane proteins. Conclusions/Significance: The results contribute to the ongoing debate concerning...... the nature of MHC ligand-containing proteins and can be used to extend the existing methods for MHC ligand predictions by including the source protein's localisation and expression profile. Improving the current methods is important in the growing quest for epitopes that can be used for vaccine or diagnostic...

  6. A Case of Probable MHC Class II Deficiency with Disseminated BCGitis.

    Science.gov (United States)

    Alyasin, Soheyla; Abolnezhadian, Farhad; Khoshkhui, Maryam

    2015-09-01

    Major histocompatibility complex (MHC) class II deficiency is a primary immunodeficiency disease characterized by abnormality of MHC class II molecules surface expression on peripheral blood lymphocytes and monocytes. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections but the immunodeficiency is not as severe as SCID (severe combined immunodeficiency), as evidenced by failure to develop disseminated infection after BCG vaccination. Therefore, MHC II deficiency with BCGosis, that is disseminated BCGitis, is not reported commonly. We report an interesting case of BCGosis after vaccination that was diagnosed to have probable MHC II deficiency.

  7. Structure of a pheromone receptor-associated MHC molecule with an open and empty groove.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Neurons in the murine vomeronasal organ (VNO express a family of class Ib major histocompatibility complex (MHC proteins (M10s that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.

  8. Structure of a Pheromone Receptor-Associated Mhc Molecule With An Open And Empty Groove

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.; Huey-Tubman, K.E.; Dulac, C.; Bjorkman, P.J.; /Caltech /Harvard U.

    2006-10-06

    Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.

  9. HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling.

    Science.gov (United States)

    Dirk, Brennan S; Pawlak, Emily N; Johnson, Aaron L; Van Nynatten, Logan R; Jacob, Rajesh A; Heit, Bryan; Dikeakos, Jimmy D

    2016-11-14

    A defining characteristic of HIV-1 infection is the ability of the virus to persist within the host. Specifically, MHC-I downregulation by the HIV-1 accessory protein Nef is of critical importance in preventing infected cells from cytotoxic T-cell mediated killing. Nef downregulates MHC-I by modulating the host membrane trafficking machinery, resulting in the endocytosis and eventual sequestration of MHC-I within the cell. In the current report, we utilized the intracellular protein-protein interaction reporter system, bimolecular fluorescence complementation (BiFC), in combination with super-resolution microscopy, to track the Nef/MHC-I interaction and determine its subcellular localization in cells. We demonstrate that this interaction occurs upon Nef binding the MHC-I cytoplasmic tail early during endocytosis in a Rab5-positive endosome. Disruption of early endosome regulation inhibited Nef-dependent MHC-I downregulation, demonstrating that Nef hijacks the early endosome to sequester MHC-I within the cell. Furthermore, super-resolution imaging identified that the Nef:MHC-I BiFC complex transits through both early and late endosomes before ultimately residing at the trans-Golgi network. Together we demonstrate the importance of the early stages of the endocytic network in the removal of MHC-I from the cell surface and its re-localization within the cell, which allows HIV-1 to optimally evade host immune responses.

  10. Establishment of a quantitative ELISA capable of determining peptide - MHC class I interaction

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C; Kristensen, N; Blicher, T;

    2002-01-01

    Many different assays for measuring peptide-MHC interactions have been suggested over the years. Yet, there is no generally accepted standard method available. We have recently generated preoxidized recombinant MHC class I molecules (MHC-I) which can be purified to homogeneity under denaturing...... dependent manner. Here, we exploit the availability of these molecules to generate a quantitative ELISA-based assay capable of measuring the affinity of the interaction between peptide and MHC-I. This assay is simple and sensitive, and one can easily envisage that the necessary reagents, standards...

  11. Parasite load and MHC diversity in undisturbed and agriculturally modified habitats of the ornate dragon lizard.

    Science.gov (United States)

    Radwan, Jacek; Kuduk, Katarzyna; Levy, Esther; LeBas, Natasha; Babik, Wiesław

    2014-12-01

    Major histocompatibility complex (MHC) gene polymorphism is thought to be driven by host-parasite co-evolution, but the evidence for an association between the selective pressure from parasites and the number of MHC alleles segregating in a population is scarce and inconsistent. Here, we characterized MHC class I polymorphism in a lizard whose habitat preferences (rock outcrops) lead to the formation of well-defined and stable populations. We investigated the association between the load of ticks, which were used as a proxy for the load of pathogens they transmit, and MHC class I polymorphism across populations in two types of habitat: undisturbed reserves and agricultural land. We hypothesized that the association would be positive across undisturbed reserve populations, but across fragmented agricultural land populations, the relationship would be distorted by the loss of MHC variation due to drift. After controlling for habitat, MHC diversity was not associated with tick number, and the habitats did not differ in this respect. Neither did we detect a difference between habitats in the relationship between MHC and neutral diversity, which was positive across all populations. However, there was extensive variation in the number of MHC alleles per individual, and we found that tick number was positively associated with the average number of alleles carried by lizards across reserve populations, but not across populations from disturbed agricultural land. Our results thus indicate that local differences in selection from parasites may contribute to MHC copy number variation within species, but habitat degradation can distort this relationship.

  12. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.

    Science.gov (United States)

    Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten

    2008-07-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.

  13. Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens.

    Science.gov (United States)

    Molee, A; Kongroi, K; Kuadsantia, P; Poompramun, C; Likitdecharote, B

    2016-01-01

    The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study.

  14. Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds.

    Science.gov (United States)

    Matsuu, Aya; Kobayashi, Tomoko; Patchimasiri, Tuangthong; Shiina, Takashi; Suzuki, Shingo; Chaichoune, Kridsada; Ratanakorn, Parntep; Hiromoto, Yasuaki; Abe, Haruka; Parchariyanon, Sujira; Saito, Takehiko

    2016-01-01

    Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV.

  15. Verification of specific selection SNPs between broiler and layer chicken in Chinese indigenous chicken breeds.

    Science.gov (United States)

    Lan, D; Hu, Y D; Zhu, Q; Li, D Y; Liu, Y P

    2015-07-28

    The direction of production for indigenous chicken breeds is currently unknown and this knowledge, combined with the development of chicken genome-wide association studies, led us to investigate differences in specific loci between broiler and layer chicken using bioinformatic methods. In addition, we analyzed the distribution of these seven identified loci in four Chinese indigenous chicken breeds, Caoke chicken, Jiuyuan chicken, Sichuan mountain chicken, and Tibetan chicken, using DNA direct sequencing methods, and analyzed the data using bioinformatic methods. Based on the results, we suggest that Caoke chicken could be developed for meat production, while Jiuyuan chicken could be developed for egg production. As Sichuan mountain chicken and Tibetan chicken exhibited large polymorphisms, these breeds could be improved by changing their living environment.

  16. Automated benchmarking of peptide-MHC class I binding predictions

    DEFF Research Database (Denmark)

    Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason;

    2015-01-01

    Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given...... the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding...

  17. Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population.

    Science.gov (United States)

    Castro-Prieto, Aines; Wachter, Bettina; Sommer, Simone

    2011-04-01

    For more than two decades, the cheetah (Acinonyx jubatus) has been considered a paradigm of disease vulnerability associated with low genetic diversity, particularly at the immune genes of the major histocompatibility complex (MHC). Cheetahs have been used as a classic example in numerous conservation genetics textbooks as well as in many related scientific publications. However, earlier studies used methods with low resolution to quantify MHC diversity and/or small sample sizes. Furthermore, high disease susceptibility was reported only for captive cheetahs, whereas free-ranging cheetahs show no signs of infectious diseases and a good general health status. We examined whether the diversity at MHC class I and class II-DRB loci in 149 Namibian cheetahs was higher than previously reported using single-strand conformation polymorphism analysis, cloning, and sequencing. MHC genes were examined at the genomic and transcriptomic levels. We detected ten MHC class I and four class II-DRB alleles, of which nine MHC class I and all class II-DRB alleles were expressed. Phylogenetic analyses and individual genotypes suggested that the alleles belong to four MHC class I and three class II-DRB putative loci. Evidence of positive selection was detected in both MHC loci. Our study indicated that the low number of MHC class I alleles previously observed in cheetahs was due to a smaller sample size examined. On the other hand, the low number of MHC class II-DRB alleles previously observed in cheetahs was further confirmed. Compared with other mammalian species including felids, cheetahs showed low levels of MHC diversity, but this does not seem to influence the immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease vulnerability.

  18. Polymorphism at expressed DQ and DR loci in five common equine MHC haplotypes.

    Science.gov (United States)

    Miller, Donald; Tallmadge, Rebecca L; Binns, Matthew; Zhu, Baoli; Mohamoud, Yasmin Ali; Ahmed, Ayeda; Brooks, Samantha A; Antczak, Douglas F

    2017-03-01

    The polymorphism of major histocompatibility complex (MHC) class II DQ and DR genes in five common equine leukocyte antigen (ELA) haplotypes was determined through sequencing of mRNA transcripts isolated from lymphocytes of eight ELA homozygous horses. Ten expressed MHC class II genes were detected in horses of the ELA-A3 haplotype carried by the donor horses of the equine bacterial artificial chromosome (BAC) library and the reference genome sequence: four DR genes and six DQ genes. The other four ELA haplotypes contained at least eight expressed polymorphic MHC class II loci. Next generation sequencing (NGS) of genomic DNA of these four MHC haplotypes revealed stop codons in the DQA3 gene in the ELA-A2, ELA-A5, and ELA-A9 haplotypes. Few NGS reads were obtained for the other MHC class II genes that were not amplified in these horses. The amino acid sequences across haplotypes contained locus-specific residues, and the locus clusters produced by phylogenetic analysis were well supported. The MHC class II alleles within the five tested haplotypes were largely non-overlapping between haplotypes. The complement of equine MHC class II DQ and DR genes appears to be well conserved between haplotypes, in contrast to the recently described variation in class I gene loci between equine MHC haplotypes. The identification of allelic series of equine MHC class II loci will aid comparative studies of mammalian MHC conservation and evolution and may also help to interpret associations between the equine MHC class II region and diseases of the horse.

  19. No evidence for MHC class I-based disassortative mating in a wild population of great tits.

    Science.gov (United States)

    Sepil, I; Radersma, R; Santure, A W; De Cauwer, I; Slate, J; Sheldon, B C

    2015-03-01

    Genes of the major histocompatibility complex (MHC) are regarded as a potentially important target of mate choice due to the fitness benefits that may be conferred to the offspring. According to the complementary genes hypothesis, females mate with MHC dissimilar males to enhance the immunocompetence of their offspring or to avoid inbreeding depression. Here, we investigate whether selection favours a preference for maximally dissimilar or optimally dissimilar MHC class I types, based on MHC genotypes, average amino acid distances and the functional properties of the antigen-binding sites (MHC supertypes); and whether MHC type dissimilarity predicts relatedness between mates in a wild great tit population. In particular, we explore the role that MHC class I plays in female mate choice decisions while controlling for relatedness and spatial population structure, and examine the reproductive fitness consequences of MHC compatibility between mates. We find no evidence for the hypotheses that females select mates on the basis of either maximal or optimal MHC class I dissimilarity. A weak correlation between MHC supertype sharing and relatedness suggests that MHC dissimilarity at functional variants may not provide an effective index of relatedness. Moreover, the reproductive success of pairs did not vary with MHC dissimilarity. Our results provide no support for the suggestion that selection favours, or that mate choice realizes, a preference for complimentary MHC types.

  20. Chicken and Fish Maw Gruel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mince the chicken breast, add egg white and chicken broth, and cook until the mixture thickens.Slice the soaked fish maw, and cleanse in lukewarm water. Slice the cooked ham and then shred. Put green soya beans in a wok and scald. Rinse in cold water to retain the original color.Heat some lard in a wok, add spring onion sections, stir-fry until their fragrance exudes, and remove the onion. Add chicken broth, salt, the Shaoxing wine, spring onion and ginger mixture, and fish maw slices. Bring to the boil, turn down the heat

  1. Identification of MHC class II restricted T‐cell‐mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides

    DEFF Research Database (Denmark)

    Wang, Mingjun; Tang, Sheila Tuyet; Stryhn, Anette

    2011-01-01

    Major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTL) are known to play an important role in the control of Mycobacterium tuberculosis infection so identification of CTL epitopes from M. tuberculosis is of importance for the development of effective peptide...... blocking with HLA class I and II subtype antibodies in the ELISPOT assay culture, none of the eight antigenic peptides induced HLA class I restricted CD8+ T‐cell responses. Instead all responses were blocked by pan‐HLA class II and anti‐HLA‐DR antibodies. In addition, CD4+ T‐cell depletion before the 10...

  2. Molecular characterization of chicken syndecan-2 proteoglycan

    DEFF Research Database (Denmark)

    Chen, Ligong; Couchman, John R; Smith, Jacqueline

    2002-01-01

    A partial syndecan-2 sequence (147 bp) was obtained from chicken embryonic fibroblast poly(A)+ RNA by reverse transcription-PCR. This partial sequence was used to produce a 5'-end-labelled probe. A chicken liver cDNA library was screened with this probe, and overlapping clones were obtained......Da. Western blotting of chicken embryonic fibroblast cell lysates with species-specific monoclonal antibody mAb 8.1 showed that chicken syndecan-2 is substituted with heparan sulphate, and that the major form of chicken syndecan-2 isolated from chicken fibroblasts is consistent with the formation of SDS......-resistant dimers, which is common for syndecans. A 5'-end-labelled probe hybridized to two mRNA species in chicken embryonic fibroblasts, while Northern analysis with poly(A)+ RNAs from different tissues of chicken embryos showed wide and distinct distributions of chicken syndecan-2 during embryonic development...

  3. Strict major histocompatibility complex (MHC molecule class-specific binding by co-receptors enforces MHC-restricted αβTCR recognition during T lineage subset commitment

    Directory of Open Access Journals (Sweden)

    Xiao-long eLi

    2013-11-01

    Full Text Available Since the discovery of co-receptor dependent αβTCR recognition, considerable effort has been spent on elucidating the basis of CD4 and CD8 lineage commitment in the thymus. The latter is responsible for generating mature CD4 helper and CD8αβ cytotoxic T cell subsets. Although CD4+ and CD8+ T cell recognition of peptide antigens is known to be MHC class I- and MHC class II-restricted, respectively, the mechanism of single positive (SP thymocyte lineage commitment from bipotential double positive (DP progenitors is not fully elucidated. Classical models to explain thymic CD4 versus CD8 fate determination have included a stochastic selection model or instructional models. The latter are based either on strength of signal or duration of signal impacting fate. More recently, differential co-receptor gene imprinting has been shown to be involved in expression of transcription factors impacting cytotoxic T cell development. Here, we address commitment from a structural perspective, focusing on the nature of co-receptor binding to MHC molecules. By surveying 58 MHC class II and 224 MHC class I crystal structures in the Protein Data Bank (PDB, it becomes clear that CD4 cannot bind to MHC I molecules, nor can CD8αβ or CD8αα bind to MHC II molecules. Given that the co-receptor delivers Lck to phosphorylate exposed CD3 ITAMs within a peptide/MHC (pMHC-ligated TCR complex to initiate cell signaling, this strict co-receptor recognition fosters MHC class-restricted SP thymocyte lineage commitment at the DP stage even though both co-receptors are expressed on a single cell. In short, the binding preference of an αβTCR for a peptide complexed with an MHC molecule dictates which co-receptor subsequently binds, thereby supporting development of that subset lineage. How function within the lineage is linked further to biopotential fate determination is discussed.

  4. αβ T cell receptor germline CDR regions moderate contact with MHC ligands and regulate peptide cross-reactivity.

    Science.gov (United States)

    Attaf, Meriem; Holland, Stephan J; Bartok, Istvan; Dyson, Julian

    2016-10-24

    αβ T cells respond to peptide epitopes presented by major histocompatibility complex (MHC) molecules. The role of T cell receptor (TCR) germline complementarity determining regions (CDR1 and 2) in MHC restriction is not well understood. Here, we examine T cell development, MHC restriction and antigen recognition where germline CDR loop structure has been modified by multiple glycine/alanine substitutions. Surprisingly, loss of germline structure increases TCR engagement with MHC ligands leading to excessive loss of immature thymocytes. MHC restriction is, however, strictly maintained. The peripheral T cell repertoire is affected similarly, exhibiting elevated cross-reactivity to foreign peptides. Our findings are consistent with germline TCR structure optimising T cell cross-reactivity and immunity by moderating engagement with MHC ligands. This strategy may operate alongside co-receptor imposed MHC restriction, freeing germline TCR structure to adopt this novel role in the TCR-MHC interface.

  5. Rheumatoid Rescue of Misfolded Cellular Proteins by MHC Class II Molecules: A New Hypothesis for Autoimmune Diseases.

    Science.gov (United States)

    Arase, Hisashi

    2016-01-01

    Misfolded proteins localized in the endoplasmic reticulum are degraded promptly and thus are not transported outside cells. However, misfolded proteins in the endoplasmic reticulum are rescued from protein degradation upon association with major histocompatibility complex (MHC) class II molecules and are transported to the cell surface by MHC class II molecules without being processed to peptides. Studies on the misfolded proteins rescued by MHC class II molecules have revealed that misfolded proteins associated with MHC class II molecules are specific targets for autoantibodies produced in autoimmune diseases. Furthermore, a strong correlation has been observed between autoantibody binding to misfolded proteins associated with MHC class II molecules and the autoimmune disease susceptibility conferred by each MHC class II allele. These new insights into MHC class II molecules suggest that misfolded proteins rescued from protein degradation by MHC class II molecules are recognized as "neo-self" antigens by immune system and are involved in autoimmune diseases as autoantibody targets.

  6. Machine Learning Reveals a Non-Canonical Mode of Peptide Binding to MHC class II Molecules

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Jurtz, Vanessa Isabell; Kaever, Thomas

    2017-01-01

    MHC class II molecules play a fundamental role in the cellular immune system: they load short peptide fragments derived from extracellular proteins and present them on the cell surface. It is currently thought that the peptide binds lying more or less flat in the MHC groove, with a fixed distance...

  7. Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Harndahl, Mikkel; Rasmussen, Michael;

    2011-01-01

    In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules. These are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating CTLs. The polymorphism of the MHC...

  8. Identification of MHC class I associated peptides. Development of sensitive mass spectrometric sequence analysis techniques

    NARCIS (Netherlands)

    de Jong APJM; van der Heeft E; ten Hove GJ; van Gaans-van den Brink JAM; van Els CACM; LOC; LVM

    1996-01-01

    Betreft de ontwikkeling van gevoelige microkolom HPLC-ESI/MS methoden en technieken voor de analyse van MHC klasse I geassocieerde antigeenpeptiden. De analyse bestaat uit de identificatie van T-cel stimulerende peptiden in MHC elutiemengsels van geinfecteerde celkweekculturen gevolgd door de bepal

  9. The Intensity of Human Body Odors and the MHC: Should We Expect a Link?

    Directory of Open Access Journals (Sweden)

    Claus Wedekind

    2006-01-01

    Full Text Available It is now well established that genes within the major histocompatibility complex (MHC somehow affect the production of body odors in several vertebrates, including humans. Here we discuss whether variation in the intensity of body odors may be influenced by the MHC. In order to examine this question, we have to control for MHC-linked odor perception on the smeller's side. Such a control is necessary because the perception of pleasantness and intensity seem to be confounded, and the causalities are still unsolved. It has previously been found that intense odors are scored as less pleasant if the signaler and the receiver are of MHC-dissimilar type, but not if they are of MHC similar type. We argue, and first data suggest, that an effect of the degree of MHC-heterozygosity and odor intensity is likely (MHC-homozygotes may normally smell more intense, while there is currently no strong argument for other possible links between the MHC and body odor intensity.

  10. Evolution of MHC class I genes in the European badger (Meles meles)

    NARCIS (Netherlands)

    Sin, Yung Wa; Dugdale, Hannah L.; Newman, Chris; Macdonald, David W.; Burke, Terry

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian

  11. Modes of salmonid MHC class I and II evolution differ from the primate paradigm

    NARCIS (Netherlands)

    Shum, B.P.; Guethlein, L.; Flodin, L.R.; Adkison, M.A.; Hedrick, R.P.; Nehring, R.B.; Stet, R.J.M.; Secombes, C.; Parham, P.

    2001-01-01

    Rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) represent two salmonid genera separated for 15-20 million years. cDNA sequences were determined for the classical MHC class I heavy chain gene UBA and the MHC class II β-chain gene DAB from 15 rainbow and 10 brown trout. Both genes a

  12. Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway

    DEFF Research Database (Denmark)

    Boyle, Louise H; Hermann, Clemens; Boname, Jessica M

    2013-01-01

    Tapasin is an integral component of the peptide-loading complex (PLC) important for efficient peptide loading onto MHC class I molecules. We investigated the function of the tapasin-related protein, TAPBPR. Like tapasin, TAPBPR is widely expressed, IFN-γ-inducible, and binds to MHC class I couple...

  13. Antigen loading of MHC class I molecules in the endocytic tract

    NARCIS (Netherlands)

    M.J. Kleijmeer (Monique); J.M. Escola; F.G.C.M. Uytdehaag (Fons); E. Jakobson (Eva); J.M. Griffith (Janice); A.D.M.E. Osterhaus (Albert); W. Stoorvogel (Willem); C.J.M. Melief (Cornelis); C. Rabouille (Catherine); H.J. Geuze (Hans)

    2001-01-01

    textabstractMajor histocompatibility complex (MHC) class I molecules bind antigenic peptides that are translocated from the cytosol into the endoplasmic reticulum by the transporter associated with antigen processing. MHC class I loading independent of this transporter also exists and involves

  14. Evolution of MHC class I genes in the European badger (Meles meles)

    NARCIS (Netherlands)

    Sin, Yung Wa; Dugdale, Hannah L.; Newman, Chris; Macdonald, David W.; Burke, Terry

    2012-01-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian M

  15. TLR-induced activation of Btk- Role for endosomal MHC class Ⅱ molecules revealed

    Institute of Scientific and Technical Information of China (English)

    Joan Ni Gabhann; Caroline A Jefferies

    2011-01-01

    @@ MHC molecules have been shown to play key roles in the immune system including regulating T-cell repertoire development through the process of positive and negative selection.MHC molecules also function to bridge the innate and adaptive immune system through the presentation of processed antigenic peptides to T-cells.

  16. Population genetic segmentation of MHC-correlated perfume preferences.

    Science.gov (United States)

    Hämmerli, A; Schweisgut, C; Kaegi, M

    2012-04-01

    It has become difficult to find a matching perfume. An overwhelming number of 300 new perfumes launch each year, and marketing campaigns target pre-defined groups based on gender, age or income rather than on individual preferences. Recent evidence for a genetic basis of perfume preferences, however, could be the starting point for a novel population genetic approach to better match perfumes with people's preferences. With a total of 116 participants genotyped for alleles of three loci of the major histocompatibility complex (MHC), the aim of this study was to test whether common MHC alleles could be used as genetic markers to segment a given population into preference types. Significant deviations from random expectations for a set of 10 common perfume ingredients indicate how such segmentation could be achieved. In addition, preference patterns of participants confronted with images that contained a sexual communication context significantly differed in their ratings for some of the scents compared with participants confronted with images of perfume bottles. This strongly supports the assumption that genetically correlated perfume preferences evolved in the context of sexual communication. The results are discussed in the light of perfume customization. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Chicken from Farm to Table

    Science.gov (United States)

    ... Chickens are graded according to the USDA Agricultural Marketing Service 's regulations and standards for meatiness, appearance, and ... ahead of time and refrigerated. However, do not mix wet and dry ingredients until just before spooning ...

  18. Towards the simplification of MHC typing protocols: targeting classical MHC class II genes in a passerine, the pied flycatcher Ficedula hypoleuca

    Directory of Open Access Journals (Sweden)

    Canal David

    2010-09-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC has drawn the attention of evolutionary biologists due to its importance in crucial biological processes, such as sexual selection and immune response in jawed vertebrates. However, the characterization of classical MHC genes subjected to the effects of natural selection still remains elusive in many vertebrate groups. Here, we have tested the suitability of flanking intron sequences to guide the selective exploration of classical MHC genes driving the co-evolutionary dynamics between pathogens and their passerine (Aves, Order Passeriformes hosts. Findings Intronic sequences flanking the usually polymorphic exon 2 were isolated from different species using primers sitting on conserved coding regions of MHC class II genes (β chain. Taking the pied flycatcher Ficedula hypoleuca as an example, we demonstrate that careful primer design can evade non-classical MHC gene and pseudogene amplification. At least four polymorphic and expressed loci were co-replicated using a single pair of primers in five non-related individuals (N = 28 alleles. The cross-amplification and preliminary inspection of similar MHC fragments in eight unrelated songbird taxa suggests that similar approaches can also be applied to other species. Conclusions Intron sequences flanking the usually polymorphic exon 2 may assist the specific investigation of classical MHC class II B genes in species characterized by extensive gene duplication and pseudogenization. Importantly, the evasion of non-classical MHC genes with a more specific function and non-functional pseudogenes may accelerate data collection and diminish lab costs. Comprehensive knowledge of gene structure, polymorphism and expression profiles may be useful not only for the selective examination of evolutionarily relevant genes but also to restrict chimera formation by minimizing the number of co-amplifying loci.

  19. Effect of Serum from Chickens Treated with Clenbuterol on Myosin Accumulation, Beta-Adrenergic Receptor Population, and Cyclic AMP Synthesis in Embryonic Chicken Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, Ronald B.; Bridge, Kristin Y.; Wuethrich, Andrew J.; Hancock, Deana L.

    2002-01-01

    Broiler chickens at 35 d of age were fed 1 ppm clenbuterol for 14 d. This level of dietary clenbuterol led to 5-7% increases in the weights of leg and breast muscle tissue. At the end of the 14-d period, serum was prepared from both control and clenbuterol-treated chickens, and was then employed as a component of cell culture media at a final concentration of 20% (v/v). Muscle cell cultures were prepared from both the leg and the breast muscle groups of 12-d chick embryos. Treatment groups included control chicken serum to which 10 nM, 50 nM, and 1 uM clenbuterol had been added, as well as cells grown in media containing 10% horse serum. Cultures were subjected to each treatment for 3 d, beginning on the seventh d in culture. Neither the percent fusion nor the number of nuclei in myotubes was significantly affected by any of the treatments. The quantity of myosin heavy chains (MHCs) was not increased by serum from clenbuterol-treated chickens in either breast or leg muscle cultures; however, the MHC quantity was 50-150% higher in cultures grown in control chicken serum to which 10 and 50 nM clenbuterol had also been added. The B-adrenergic receptor (betaAR) population was 4000-7000 betaARs per cell in cultures grown in chicken serum with leg muscle cultures having approximately 25-30% more receptors than breast muscle Culture. Receptor population was not significantly affected by the presence of clenbuterol or by the presence of serum from clenbuterol-treated chickens. In contrast, the betaAR Population in leg and breast muscle cultures grown in the presence of 10% horse serum was 16,000-18,000 betaARs per cell. Basal concentration of cyclic adenosine 3':5'monophosphate (cAMP) was not significantly affected by the treatments. When cultures grown in chicken serum were stimulated for 10 min with 1 uM isoproterenol, limited increases of 12-20% in cAMP Concentration above the. basal levels were observed. However, when cultures grown in the presence of horse serum were

  20. Selective export of MHC class I molecules from the ER after their dissociation from TAP.

    Science.gov (United States)

    Spiliotis, E T; Manley, H; Osorio, M; Zúñiga, M C; Edidin, M

    2000-12-01

    It has been assumed that upon dissociation from TAP, MHC class I molecules exit the ER by nonselective bulk flow. We now show that exit must occur by association with cargo receptors. Inconsistent with exit by bulk flow, loading of MHC class I molecules with high-affinity peptides triggers dissociation from TAP but has no effect on rates of ER-to-Golgi transport. Moreover, peptide-loaded MHC class I molecules accumulate at ER exit sites from which TAP molecules are excluded. Consistent with receptor-mediated exit, ER-to-Golgi transport of MHC class I molecules is independent of their cytoplasmic tails, which themselves lack ER export motifs. In addition, we show that MHC class I molecules associate with the putative cargo receptor BAP31.

  1. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays

    DEFF Research Database (Denmark)

    Justesen, Sune; Harndahl, Mikkel; Lamberth, Kasper

    2009-01-01

    of peptide-binding assay were developed including a homogeneous, non-radioactive, high-throughput (HTS) binding assay. Binding isotherms were generated allowing the affinities of interaction to be determined. The affinities of the best binders were found to be in the low nanomolar range. Recombinant MHC...... in the generation of MHC-II molecules as reagents to study and manipulate specific T helper cell responses. Methods to generate functional MHC-II molecules recombinantly, and measure their interaction with peptides, would be highly desirable; however, no consensus methodology has yet emerged. RESULTS: We generated....... CONCLUSION: We have successfully developed versatile MHC-II resources, which may assist in the generation of MHC class II -wide reagents, data, and tools....

  2. High-throughput engineering and analysis of peptide binding to class II MHC.

    Science.gov (United States)

    Jiang, Wei; Boder, Eric T

    2010-07-27

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity.

  3. Structural allele-specific patterns adopted by epitopes in the MHC-I cleft and reconstruction of MHC:peptide complexes to cross-reactivity assessment.

    Directory of Open Access Journals (Sweden)

    Dinler A Antunes

    Full Text Available The immune system is engaged in a constant antigenic surveillance through the Major Histocompatibility Complex (MHC class I antigen presentation pathway. This is an efficient mechanism for detection of intracellular infections, especially viral ones. In this work we describe conformational patterns shared by epitopes presented by a given MHC allele and use these features to develop a docking approach that simulates the peptide loading into the MHC cleft. Our strategy, to construct in silico MHC:peptide complexes, was successfully tested by reproducing four different crystal structures of MHC-I molecules available at the Protein Data Bank (PDB. An in silico study of cross-reactivity potential was also performed between the wild-type complex HLA-A2-NS31073 and nine MHC:peptide complexes presenting alanine exchange peptides. This indicates that structural similarities among the complexes can give us important clues about cross reactivity. The approach used in this work allows the selection of epitopes with potential to induce cross-reactive immune responses, providing useful tools for studies in autoimmunity and to the development of more comprehensive vaccines.

  4. ER stress affects processing of MHC class I-associated peptides

    Directory of Open Access Journals (Sweden)

    Meloche Sylvain

    2009-02-01

    Full Text Available Abstract Background Viral infection and neoplastic transformation trigger endoplasmic reticulum (ER stress. Thus, a large proportion of the cells that must be recognized by the immune system are stressed cells. Cells respond to ER stress by launching the unfolded protein response (UPR. The UPR regulates the two key processes that control major histocompatibility complex class I (MHC I-peptide presentation: protein synthesis and degradation. We therefore asked whether and how the UPR impinges on MHC I-peptide presentation. Results We evaluated the impact of the UPR on global MHC I expression and on presentation of the H2Kb-associated SIINFEKL peptide. EL4 cells stably transfected with vectors coding hen egg lysozyme (HEL-SIINFEKL protein variants were stressed with palmitate or exposed to glucose deprivation. UPR decreased surface expression of MHC I but did not affect MHC I mRNA level nor the total amount of intracellular MHC I proteins. Impaired MHC I-peptide presentation was due mainly to reduced supply of peptides owing to an inhibition of overall protein synthesis. Consequently, generation of H2Kb-SIINFEKL complexes was curtailed during ER stress, illustrating how generation of MHC I peptide ligands is tightly coupled to ongoing protein synthesis. Notably, the UPR-induced decline of MHC I-peptide presentation was more severe when the protein source of peptides was localized in the cytosol than in the ER. This difference was not due to changes in the translation rates of the precursor proteins but to increased stability of the cytosolic protein during ER stress. Conclusion Our results demonstrate that ER stress impairs MHC I-peptide presentation, and that it differentially regulates expression of ER- vs. cytosol-derived peptides. Furthermore, this work illustrates how ER stress, a typical feature of infected and malignant cells, can impinge on cues for adaptive immune recognition.

  5. H pylori receptor MHC class Ⅱ contributes to the dynamic gastric epithelial apoptotic response

    Institute of Scientific and Technical Information of China (English)

    David A Bland; Giovanni Suarez; Ellen J Beswick; Johanna C Sierra; Victor E Reyes

    2006-01-01

    AIM: To investigate the role of MHC class Ⅱ in the modulation of gastric epithelial cell apoptosis induced by H pylori infection.METHODS: After stimulating a human gastric epithelial cell line with bacteria or agonist antibodies specific for MHC class Ⅱ and CD95, the quantitation of apoptotic and anti-apoptotic events, including caspase activation,BCL-2 activation, and FADD recruitment, was performed with a fluorometric assay, a cytometric bead array, and confocal microscopy, respectively.RESULTS: Pretreatment of N87 cells with the anti-MHC class Ⅱ IgM antibody RFD1 resulted in a reduction in global caspase activation at 24 h of H pylori infection.When caspase 3 activation was specifically measured,crosslinking of MHC class Ⅱ resulted in a marked reduced caspase activation, while simple ligation of MHC class Ⅱ did not. Crosslinking of MHC class Ⅱ also resulted in an increased activation of the anti-apoptosis molecule BCL-2 compared to simple ligation. Confocal microscope analysis demonstrated that the pretreatment of gastric epithelial cells with a crosslinking anti-MHC class Ⅱ IgM blocked the recruitment of FADD to the cell surface.CONCLUSION: The results presented here demonstrate that the ability of MHC class Ⅱ to modulate gastric epithelial apoptosis is at least partially dependent on its crosslinking. Furthermore, while previous research has demonstrated that MHC class Ⅱ signaling can be proapoptotic during extended ligation, we have shown that the crosslinking of this molecule has anti-apoptotic effects during the earlier time points of H pylori infection.This effect is possibly mediated by the ability of MHC class Ⅱ to modulate the activation of the pro-apoptotic receptor Fas by blocking the recruitment of the accessory molecule FADD, and this delay in apoptosis induction could allow for prolonged cytokine secretion by H pyloriinfected gastric epithelial cells.

  6. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes

    Indian Academy of Sciences (India)

    Manoj Bhasin; G P S Raghava

    2007-01-01

    In the present study, a systematic attempt has been made to develop an accurate method for predicting MHC class I restricted T cell epitopes for a large number of MHC class I alleles. Initially, a quantitative matrix (QM)-based method was developed for 47 MHC class I alleles having at least 15 binders. A secondary artificial neural network (ANN)-based method was developed for 30 out of 47 MHC alleles having a minimum of 40 binders. Combination of these ANN- and QM-based prediction methods for 30 alleles improved the accuracy of prediction by 6% compared to each individual method. Average accuracy of hybrid method for 30 MHC alleles is 92.8%. This method also allows prediction of binders for 20 additional alleles using QM that has been reported in the literature, thus allowing prediction for 67 MHC class I alleles. The performance of the method was evaluated using jack-knife validation test. The performance of the methods was also evaluated on blind or independent data. Comparison of our method with existing MHC binder prediction methods for alleles studied by both methods shows that our method is superior to other existing methods. This method also identifies proteasomal cleavage sites in antigen sequences by implementing the matrices described earlier. Thus, the method that we discover allows the identification of MHC class I binders (peptides binding with many MHC alleles) having proteasomal cleavage site at C-terminus. The user-friendly result display format (HTML-II) can assist in locating the promiscuous MHC binding regions from antigen sequence. The method is available on the web at www.imtech.res.in/raghava/nhlapred and its mirror site is available at http://bioinformatics.uams.edu/mirror/nhlapred/.

  7. Astrocyte cytolysis by MHC class II-specific mouse T cell clones.

    Science.gov (United States)

    Reder, A T; Lascola, C D; Flanders, S A; Maimone, D; Jensen, M A; Skias, D D; Lancki, D W

    1993-08-01

    The brain is "immunologically privileged," in part because class I and II MHC antigens are not normally present on glia or neurons. However, under certain conditions such as transplantation, glial cells express MHC proteins at levels sufficient for glia to become targets of immune responses. Cultured astrocytes expressing very low levels of MHC class I protein are killed efficiently by MHC class I antigen-specific CTL. Mouse brain allografts, however, are rejected by CD4+ T cells that are likely to be class II MHC-specific. The level of expression of MHC class II antigen needed to trigger specific killing of astrocytes by CD4+ T cells, independent of exogenous antigen, has not been studied. We examined the role of glial class II MHC in the lysis of cultured neonatal mouse astrocytes by an alloreactive murine CD4+ CTL alone. IFN-gamma induced functionally relevant increases in MHC class II antigen on target cells. Astrocytes were lysed by the CD4+ clone only when class II MHC antigens reached levels readily detectable by flow cytometry. MHC class II expression and lysis increased when astrocytes were coincubated with IFN-gamma and TNF-alpha. Conversely, lysis decreased when class II expression was downregulated by IFN-alpha/beta or dbcAMP. Cytolysis by CD4+ clones was blocked by antibodies to CD4 and LFA-1 on T cells, and to ICAM-1 and class II molecules on astrocytes. The role of LFA-1 in CD4+ cell-mediated lysis was greater than that of LFA-1/ICAM-1 in CD8+ T cell-mediated lysis. CD4+ cells may lyse activated astrocytes when the immune privilege of the brain is compromised as in transplantation, tumors, and inflammatory diseases.

  8. Selection at the MHC class IIB locus across guppy (Poecilia reticulata) populations.

    Science.gov (United States)

    Fraser, B A; Ramnarine, I W; Neff, B D

    2010-02-01

    The highly diverse genes of the major histocompatibility complex (MHC) are important in the adaptive immune system and are expected to be under selection from pathogens. Thus, the MHC genes provide an exceptional opportunity to investigate patterns of selection within and across populations. In this study, we analyzed genetic variation at the MHC class IIB gene and six microsatellite loci across 10 populations of guppies (Poecilia reticulata) in the northern range of Trinidad. We found a high level of diversity at the MHC, with a total of 43 alleles in 142 individuals. At the population level, we found that neutral evolution could not fully account for the variability found at the MHC. Instead, we found that MHC F(ST) statistics were lower than F(ST) derived from the microsatellite loci; 33 of 45 population pairwise estimates for the MHC were significantly lower than those for the microsatellite loci, and MHC F(ST) estimates were consistently lower than those predicted by a coalescent model of neutral evolution. These results suggest a similar selection acting across populations, and we discuss the potential roles of directional and balancing selection. At the sequence level, we found evidence for both positive and purifying selection. Furthermore, positive selection was detected within and adjacent to the putative peptide-binding region (PBR) of the MHC. Surprisingly, we also found a purifying selection at two sites within the putative PBR. Overall, our data provide evidence for selection for functional diversity at the MHC class IIB gene at both the population and nucleotide levels of guppy populations.

  9. Antibody Stabilization of Peptide–MHC Multimers Reveals Functional T Cells Bearing Extremely Low-Affinity TCRs

    DEFF Research Database (Denmark)

    Tungatt, Katie; Bianchi, Valentina; Crowther, Michael D;

    2015-01-01

    Fluorochrome-conjugated peptide-MHC (pMHC) multimers are commonly used in combination with flow cytometry for direct ex vivo visualization and characterization of Ag-specific T cells, but these reagents can fail to stain cells when TCR affinity and/or TCR cell-surface density are low. pMHC multim...

  10. In vivo macrophage activation in chickens with Acemannan, a complex carbohydrate extracted from Aloe vera.

    Science.gov (United States)

    Djeraba, A; Quere, P

    2000-05-01

    Acemannan (ACM 1), a beta-(1,4) -acetylated mannan isolated from Aloe vera, can be used as an effective adjuvant in vaccination against some avian viral diseases. Our results demonstrate a quick and lasting in vivo priming effect of ACM 1 on macrophage response after intramuscular inoculation in chickens (500 microg per 2-month-old bird). In response to IFN-gamma in vitro, monocytes from ACM 1-treated chickens exhibited a strong enhancement of NO production from 3 to 9 days p.i., but a weaker effect on MHC II cell surface antigen expression on day 3 p.i. A stimulating effect of ACM 1 treatment was also observed on spontaneous and inducible NO production for splenocytes only on day 3 p.i. By that time, splenocytes exhibited a strong higher capacity to proliferate in response to the T cell-mitogen PHA. At the same time, the in vivo capacity to produce NO, measured by the (NO(-)(2)+NO(-)(3)) serum level after intravenous LPS injection, increased greatly from 3 to 9 days p.i. In conclusion, ACM 1 was able efficiently and durably to increase the activation capacity of macrophages from the systemic immune compartment (in particular from the blood and spleen after an intramuscular injection) in chickens, especially for NO production. These findings provide a better understanding of the adjuvant activity of ACM 1 for viral and tumoral diseases.

  11. Effect of Increased Cyclic AMP Concentration on Muscle Protein Synthesis and Beta-Adrenergic Receptor Expression in Chicken Skeletal Muscle Cells in Culture

    Science.gov (United States)

    Young, R. B.; Vaughn, J. R.; Bridge, K. Y.; Smith, C. K.

    1998-01-01

    Analogies of epinephrine are known to cause hypertrophy of skeletal muscle when fed to animals. These compounds presumably exert their physiological action through interaction with the P-adrenergic receptor. Since the intracellular signal generated by the Beta-adrenergic receptor is cyclic AMP (cAMP), experiments were initiated in cell culture to determine if artificial elevation of cAMP by treatment with forskolin would alter muscle protein metabolism and P-adrenergic receptor expression. Chicken skeletal muscle cells after 7 days in culture were treated with 0.2-30 micrometers forskolin for a total of three days. At the end of the treatment period, both the concentration of cAMP and the quantity of myosin heavy chain (MHC) were measured. Concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. In contrast, the quantity of MHC was increased approximately 50% above control cells at 0.2 micrometers forskolin, but exhibited a gradual decline at higher levels of forskolin so that the quantity of MHC in cells treated with 30 micrometers forskolin was not significantly different from controls. Curiously, the intracellular concentration of cAMP which elicited the maximum increase in the quantity of MHC was only 40% higher than cAMP concentration in control cells.

  12. presence of cryptococcus species in domestic chicken

    African Journals Online (AJOL)

    2009-05-25

    May 25, 2009 ... Conclusion: Domestic chicken (Gallus gallus) harbor Pathogenic ... diseases from domestic Chickens for example avian ... emerged as the major cause of death in HIV/AIDS .... The mechanism by which the birds' excreta get.

  13. Preliminary Survey of Ectoparasites Infesting Chickens (Gallus ...

    African Journals Online (AJOL)

    Preliminary Survey of Ectoparasites Infesting Chickens (Gallus domesticus) in. Four Areas of ... were identified with the following prevalences: the shaft louse, Menopon gallinae (8.1%), the chicken ..... Canis lupus familiaris in Mueang district ...

  14. Sequencing and alignment of mitochondrial genomes of Tibetan chicken and two lowland chicken breeds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Tibetan chicken lives in high-altitude area and has adapted well to hypoxia genetically. Shouguang chicken and Silky chicken are both lowland chicken breeds. In the present study, the complete mito-chondrial genome sequences of the three chicken breeds were all sequenced. The results showed that the mitochondrial DNAs (mtDNAs) of Shouguang chicken and Silky chicken consist of 16784 bp and 16785 bp respectively, and Tibetan chicken mitochondrial genome varies from 16784 bp to 16786 bp. After sequence analysis, 120 mutations, including 4 single nucleotide polymorphisms (SNPs) in tRNA genes, 9 SNPs and 1 insertion in rRNA genes, 38 SNPs and 1 deletion in D-LOOP, 66 SNPs in pro-tein-coding genes, were found. This work will provide clues for the future study on the association between mitochondrial genes and the adaptation to hypoxia.Tibetan chicken, lowland chicken, mitochondrial genome, hypoxia.

  15. MHC class II molecules regulate growth in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Odum, Niels; Bendtzen, K;

    1994-01-01

    lines tested. Only one of three CD4+, CD45RAhigh, ROhigh T cells responded to class II costimulation. There was no correlation between T cell responsiveness to class II and the cytokine production profile of the T cell in question. Thus, T cell lines producing interferon (IFN)-gamma but not IL-4 (TH1......MHC-class-II-positive T cells are found in tissues involved in autoimmune disorders. Stimulation of class II molecules by monoclonal antibodies (mAbs) or bacterial superantigens induces protein tyrosine phosphorylation through activation of protein tyrosine kinases in T cells, and class II signals...... modulate several T cell responses. Here, we studied further the role of class II molecules in the regulation of T cell growth. Costimulation of class II molecules by immobilized HLA-DR mAb significantly enhanced interleukin (IL)-2-supported T cell growth of the majority of CD4+, CD45RAlow, ROhigh T cell...

  16. A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes.

    Science.gov (United States)

    Dijkstra, Johannes Martinus; Katagiri, Takayuki; Hosomichi, Kazuyoshi; Yanagiya, Kazuyo; Inoko, Hidetoshi; Ototake, Mitsuru; Aoki, Takashi; Hashimoto, Keiichiro; Shiina, Takashi

    2007-04-01

    Most of the previously studied teleost MHC class I molecules can be classified into two broad lineages: "U" and "Z/ZE." However, database reports on genes in cyprinid and salmonid fishes show that there is a third major lineage, which lacks detailed analysis so far. We designated this lineage "L" because of an intriguing linkage characteristic. Namely, one zebrafish L locus is closely linked with MHC class II loci, despite the extensively documented nonlinkage of teleost class I with class II. The L lineage consists of highly variable, nonclassical MHC class I genes, and has no apparent orthologues outside teleost fishes. Characteristics that distinguish the L lineage from most other MHC class I are (1) absence of two otherwise highly conserved tryptophan residues W51 and W60 in the alpha1 domain, (2) a low GC content of the alpha1 and alpha2 exons, and (3) an HINLTL motif including a possible glycosylation site in the alpha3 domain. In rainbow trout (Oncorhynchus mykiss) we analyzed several intact L genes in detail, including their genomic organization and transcription pattern. The gene Onmy-LAA is quite different from the genes Onmy-LBA, Onmy-LCA, Onmy-LDA, and Onmy-LEA, while the latter four are similar and categorized as "Onmy-LBA-like." Whereas the Onmy-LAA gene is organized like a canonical MHC class I gene, the Onmy-LBA-like genes are processed and lack all introns except intron 1. Onmy-LAA is predominantly expressed in the intestine, while the Onmy-LBA-like transcripts display a rather homogeneous tissue distribution. To our knowledge, this is the first description of an MHC class I lineage with multiple copies of processed genes, which are intact and transcribed. The present study significantly improves the knowledge of MHC class I variation in teleosts.

  17. Genetic variation at the MHC in a population of introduced wild turkeys.

    Science.gov (United States)

    Bauer, Miranda M; Miller, Marcia M; Briles, W Elwood; Reed, Kent M

    2013-01-01

    Genetic variation in the major histocompatibility complex (MHC) is known to affect disease resistance in many species. Investigations of MHC diversity in populations of wild species have focused on the antigen presenting class IIβ molecules due to the known polymorphic nature of these genes and the role these molecules play in pathogen recognition. Studies of MHC haplotype variation in the turkey ( Meleagris gallopavo ) are limited. This study was designed to examine MHC diversity in a group of Eastern wild turkeys ( Meleagris gallopavo silvestris ) collected during population expansion following reintroduction of the species in southern Wisconsin, USA. Southern blotting with BG and class IIβ probes and single nucleotide polymorphism (SNP) genotyping was used to measure MHC variation. SNP analysis focused on single copy MHC genes flanking the highly polymorphic class IIβ genes. Southern blotting identified 27 class IIβ phenotypes, whereas SNP analysis identified 13 SNP haplotypes occurring in 28 combined genotypes. Results show that genetic diversity estimates based on RFLP (Southern blot) analysis underestimate the level of variation detected by SNP analysis. Sequence analysis of the mitochondrial D-loop identified 7 mitochondrial haplotypes (mitotypes) in the sampled birds. Results show that wild turkeys located in southern Wisconsin have a genetically diverse MHC and originate from several maternal lineages.

  18. Recipients with In Utero Induction of Tolerance Upregulated MHC Class I in the Engrafted Donor Skin

    Directory of Open Access Journals (Sweden)

    Jeng-Chang Chen

    2014-01-01

    Full Text Available The alterations in MHC class I expression play a crucial step in immune evasion of cancer or virus-infected cells. This study aimed to examine whether tolerized grafts modified MHC class I expression. FVB/N mice were rendered tolerant of C57BL/6 alloantigens by in utero transplantation of C57BL/6 marrows. Postnatally, engrafted donor skins and leukocytes were examined for their MHC expression by quantitative real-time PCR and flow cytometry. Engrafted donor skins upregulated their MHC class I related gene transcripts after short-term (1~2 weeks or long-term (>1 month engraftment. This biological phenomenon was simultaneously associated with upregulation of TAP1 gene transcripts, suggesting an important role of TAP1 in the regulation of MHC class I pathway. The surface MHC class I molecules of H-2Kb in engrafted donor leukocytes consistently showed overexpression. Conclusively, the induction of allograft tolerance involved biological modifications of donor transplants. The overexpression of MHC class I within engrafted transplants of tolerant mice might be used as the tolerance biomarkers for identifying a state of graft tolerance.

  19. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings

    Directory of Open Access Journals (Sweden)

    Cory M. Ayres

    2017-08-01

    Full Text Available Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.

  20. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes.

    Science.gov (United States)

    Sutton, Jolene T; Nakagawa, Shinichi; Robertson, Bruce C; Jamieson, Ian G

    2011-11-01

    The major histocompatibility complex (MHC) forms an integral component of the vertebrate immune response and, due to strong selection pressures, is one of the most polymorphic regions of the entire genome. Despite over 15 years of research, empirical studies offer highly contradictory explanations of the relative roles of different evolutionary forces, selection and genetic drift, acting on MHC genes during population bottlenecks. Here, we take a meta-analytical approach to quantify the results of studies into the effects of bottlenecks on MHC polymorphism. We show that the consequences of selection acting on MHC loci prior to a bottleneck event, combined with drift during the bottleneck, will result in overall loss of MHC polymorphism that is ∼15% greater than loss of neutral genetic diversity. These results are counter to general expectations that selection should maintain MHC polymorphism, but do agree with the results of recent simulation models and at least two empirical studies. Notably, our results suggest that negative frequency-dependent selection could be more important than overdominance for maintaining high MHC polymorphism in pre-bottlenecked populations. © 2011 Blackwell Publishing Ltd.

  1. Compatibility counts: MHC-associated mate choice in a wild promiscuous primate.

    Science.gov (United States)

    Schwensow, Nina; Eberle, Manfred; Sommer, Simone

    2008-03-07

    The mechanisms and temporal aspects of mate choice according to genetic constitution are still puzzling. Recent studies indicate that fitness is positively related to diversity in immune genes (MHC). Both sexes should therefore choose mates of high genetic quality and/or compatibility. However, studies addressing the role of MHC diversity in pre- and post-copulatory mate choice decisions in wild-living animals are few. We investigated the impact of MHC constitution and of neutral microsatellite variability on pre- and post-copulatory mate choice in both sexes in a wild population of a promiscuous primate, the grey mouse lemur (Microcebus murinus). There was no support for pre-copulatory male or female mate choice, but our data indicate post-copulatory mate choice that is associated with genetic constitution. Fathers had a higher number of MHC supertypes different from those of the mother than randomly assigned males. Fathers also had a higher amino acid distance to the females' MHC as well as a higher total number of MHC supertypes and a higher degree of microsatellite heterozygosity than randomly assigned males. Female cryptic choice may be the underlying mechanism that operates towards an optimization of the genetic constitution of offspring. This is the first study that provides support for the importance of the MHC constitution in post-copulatory mate choice in non-human primates.

  2. Choosy Wolves? Heterozygote Advantage But No Evidence of MHC-Based Disassortative Mating.

    Science.gov (United States)

    Galaverni, Marco; Caniglia, Romolo; Milanesi, Pietro; Lapalombella, Silvana; Fabbri, Elena; Randi, Ettore

    2016-03-01

    A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Orf virus interferes with MHC class I surface expression by targeting vesicular transport and Golgi

    Directory of Open Access Journals (Sweden)

    Rohde Jörg

    2012-07-01

    Full Text Available Abstract Background The Orf virus (ORFV, a zoonotic Parapoxvirus, causes pustular skin lesions in small ruminants (goat and sheep. Intriguingly, ORFV can repeatedly infect its host, despite the induction of a specific immunity. These immune modulating and immune evading properties are still unexplained. Results Here, we describe that ORFV infection of permissive cells impairs the intracellular transport of MHC class I molecules (MHC I as a result of structural disruption and fragmentation of the Golgi apparatus. Depending on the duration of infection, we observed a pronounced co-localization of MHC I and COP-I vesicular structures as well as a reduction of MHC I surface expression of up to 50%. These subversion processes are associated with early ORFV gene expression and are accompanied by disturbed carbohydrate trimming of post-ER MHC I. The MHC I population remaining on the cell surface shows an extended half-life, an effect that might be partially controlled also by late ORFV genes. Conclusions The presented data demonstrate that ORFV down-regulates MHC I surface expression in infected cells by targeting the late vesicular export machinery and the structure and function of the Golgi apparatus, which might aid to escape cellular immune recognition.

  4. Peptide-independent stabilization of MHC class I molecules breaches cellular quality control.

    Science.gov (United States)

    Hein, Zeynep; Uchtenhagen, Hannes; Abualrous, Esam Tolba; Saini, Sunil Kumar; Janßen, Linda; Van Hateren, Andy; Wiek, Constanze; Hanenberg, Helmut; Momburg, Frank; Achour, Adnane; Elliott, Tim; Springer, Sebastian; Boulanger, Denise

    2014-07-01

    The intracellular trafficking of major histocompatibility complex class I (MHC-I) proteins is directed by three quality control mechanisms that test for their structural integrity, which is correlated to the binding of high-affinity antigenic peptide ligands. To investigate which molecular features of MHC-I these quality control mechanisms detect, we have followed the hypothesis that suboptimally loaded MHC-I molecules are characterized by their conformational mobility in the F-pocket region of the peptide-binding site. We have created a novel variant of an MHC-I protein, K(b)-Y84C, in which two α-helices in this region are linked by a disulfide bond that mimics the conformational and dynamic effects of bound high-affinity peptide. K(b)-Y84C shows a remarkable increase in the binding affinity to its light chain, beta-2 microglobulin (β2m), and bypasses all three cellular quality control steps. Our data demonstrate (1) that coupling between peptide and β2m binding to the MHC-I heavy chain is mediated by conformational dynamics; (2) that the folded conformation of MHC-I, supported by β2m, plays a decisive role in passing the ER-to-cell-surface transport quality controls; and (3) that β2m association is also tested by the cell surface quality control that leads to MHC-I endocytosis.

  5. MHC class II expression in human basophils: induction and lack of functional significance.

    Directory of Open Access Journals (Sweden)

    Astrid L Voskamp

    Full Text Available The antigen-presenting abilities of basophils and their role in initiating a Th2 phenotype is a topic of current controversy. We aimed to determine whether human basophils can be induced to express MHC Class II and act as antigen presenting cells for T cell stimulation. Isolated human basophils were exposed to a panel of cytokines and TLR-ligands and assessed for MHC Class II expression. MHC Class II was expressed in up to 17% of isolated basophils following incubation with a combination of IL-3, IFN-γ and GM-CSF for 72 hours. Costimulatory molecules (CD80 and CD86 were expressed at very low levels after stimulation. Gene expression analysis of MHC Class II-positive basophils confirmed up-regulation of HLA-DR, HLA-DM, CD74 and Cathepsin S. However, MHC Class II expressing basophils were incapable of inducing antigen-specific T cell activation or proliferation. This is the first report of significant cytokine-induced MHC Class II up-regulation, at both RNA and protein level, in isolated human basophils. By testing stimulation with relevant T cell epitope peptide as well as whole antigen, the failure of MHC Class II expressing basophils to induce T cell response was shown not to be solely due to inefficient antigen uptake and/or processing.

  6. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    Science.gov (United States)

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  7. Virus encoded MHC-like decoys diversify the inhibitory KIR repertoire.

    Directory of Open Access Journals (Sweden)

    Paola Carrillo-Bustamante

    Full Text Available Natural killer (NK cells are circulating lymphocytes that play an important role in the control of viral infections and tumors. Their functions are regulated by several activating and inhibitory receptors. A subset of these receptors in human NK cells are the killer immunoglobulin-like receptors (KIRs, which interact with the highly polymorphic MHC class I molecules. One important function of NK cells is to detect cells that have down-regulated MHC expression (missing-self. Because MHC molecules have non polymorphic regions, their expression could have been monitored with a limited set of monomorphic receptors. Surprisingly, the KIR family has a remarkable genetic diversity, the function of which remains poorly understood. The mouse cytomegalovirus (MCMV is able to evade NK cell responses by coding "decoy" molecules that mimic MHC class I. This interaction was suggested to have driven the evolution of novel NK cell receptors. Inspired by the MCMV system, we develop an agent-based model of a host population infected with viruses that are able to evolve MHC down-regulation and decoy molecules. Our simulations show that specific recognition of MHC class I molecules by inhibitory KIRs provides excellent protection against viruses evolving decoys, and that the diversity of inhibitory KIRs will subsequently evolve as a result of the required discrimination between host MHC molecules and decoy molecules.

  8. Temporal variation at the MHC class IIb in wild populations of the guppy (Poecilia reticulata).

    Science.gov (United States)

    Fraser, Bonnie A; Ramnarine, Indar W; Neff, Bryan D

    2010-07-01

    Understanding genetic diversity in natural populations is a fundamental objective of evolutionary biology. The immune genes of the major histocompatibility complex (MHC) are excellent candidates to study such diversity because they are highly polymorphic in populations. Although balancing selection may be responsible for maintaining diversity at these functionally important loci, temporal variation in selection pressure has rarely been examined. We examine temporal variation in MHC class IIB diversity in nine guppy (Poecilia reticulata) populations over two years. We found that five of the populations changed significantly more at the MHC than at neutral (microsatellite) loci as measured by F(ST), which suggests that the change at the MHC was due to selection and not neutral processes. Additionally, pairwise population differentiation measures at the MHC were higher in 2007 than in 2006, with the signature of selection changing from homogenizing to diversifying selection or neutral evolution. Interestingly, within the populations the magnitude of the change at the MHC between years was related to the change in the proportion of individuals infected by a common parasite, indicating a link between genetic structure and the parasite. Our data thereby implicate temporal variation in selective pressure as an important mechanism maintaining diversity at the MHC in wild populations.

  9. Olfactory signals and the MHC: a review and a case study in Lemur catta.

    Science.gov (United States)

    Knapp, Leslie A; Robson, Julie; Waterhouse, John S

    2006-06-01

    The major histocompatibility complex (MHC) is the most polymorphic genetic system known in vertebrates. Decades of research demonstrate that it plays a critical role in immune response and disease resistance. It has also been suggested that MHC genes influence social behavior and reproductive phenomena. Studies in laboratory mice and rats report that kin recognition and mate choice are influenced by olfactory cues determined at least in part by an individual's MHC genes. This issue has stimulated intense but controversial research. However, work in this field has only been carried out in rodents and humans. Thus far, no study has directly investigated the relationship between olfactory cues and MHC genotype in nonhuman primates. Furthermore, other genetic loci, including those linked to the MHC, have not been ruled out as the primary influence on odor profiles. To explore the relationship between individual odor profiles and MHC alleles, we are studying ring-tailed lemurs (Lemur catta). These animals are an ideal model species because they are extremely scent-oriented and their behaviors suggest that olfactory signals form an important part of their intra- and intergroup communication systems. Individual odor profiles from tail and scent gland samples were generated for six males using gas chromatography mass spectrometry (GC-MS). MHC genotypes were identified using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). The GC-MS analyses demonstrated a difference between profiles obtained from tail and scent gland samples. Although our sample size is relatively small and statistical significance could not be obtained, our analyses suggest a relationship between MHC and concentrations of volatile compounds. While these results are preliminary, they support the need for further studies of the MHC and olfactory signals in lemurs and other primates. Copyright 2006 Wiley-Liss, Inc.

  10. Non-Invasive Monitoring of CNS MHC-I Molecules in Ischemic Stroke Mice.

    Science.gov (United States)

    Xia, Jing; Zhang, Ying; Zhao, Huanhuan; Wang, Jie; Gao, Xueren; Chen, Jinpeng; Fu, Bo; Shen, Yuqing; Miao, Fengqin; Zhang, Jianqiong; Teng, Gaojun

    2017-01-01

    Ischemic stroke is one of the leading causes of morbidity and mortality worldwide. The expression of major histocompatibility complex class I (MHC-I) molecules in the central nervous system, which are silenced under normal physiological conditions, have been reported to be induced by injury stimulation. The purpose of this study was to determine whether MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke and to assess whether a high-affinity peptide specific for MHC-I molecules could be applied in the near-infrared imaging of cerebral ischemic mice. Quantitative real-time PCR and Western blotting were used to detect the expression of MHC-I molecules in two mouse models of cerebral ischemic stroke and an in vitro model of ischemia. The NetMHC 4.0 server was used to screen a high-affinity peptide specific for mouse MHC-I molecules. The Rosetta program was used to identify the specificity and affinity of the screened peptide (histocompatibility-2 binding peptide, H2BP). The results demonstrated that MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke. Cy5.5-H2BP molecular probes could be applied in the near-infrared imaging of cerebral ischemic mice. Research on the expression of MHC-I molecules in the acute phase after ischemia and MHC-I-targeted imaging may not only be helpful for understanding the mechanism of ischemic and hypoxic brain injury and repair but also has potential application value in the imaging of ischemic stroke.

  11. Leukocyte Ig-Like Receptors – a model for MHC class I disease associations

    Directory of Open Access Journals (Sweden)

    Rachel Louise Allen

    2016-07-01

    Full Text Available MHC class I (MHC-I polymorphisms are associated with the outcome of some viral infections and autoimmune diseases. MHC-I proteins present antigenic peptides and are recognised by receptors on Natural Killer cells and Cytotoxic T lymphocytes, thus enabling the immune system to detect self-antigens and eliminate targets lacking self or expressing foreign antigens. Recognition of MHC-I, however, extends beyond receptors on cytotoxic leukocytes. Members of the Leukocyte Ig-like receptor (LILR family are expressed on monocytic cells and can recognise both classical and non-classical MHC-I alleles. Despite their relatively broad specificity when compared to the T Cell Receptor or Killer Ig-like Receptors, variations in the strength of LILR binding between different MHC-I alleles have recently been shown to correlate with control of HIV infection. We suggest that LILR recognition may mediate MHC-I disease association in a manner that does not depend on a binary discrimination of self/non-self by cytotoxic cells. Instead, the effects of LILR activity following engagement by MHC-I may represent a degrees of self model, whereby strength of binding to different alleles determines the degree of influence exerted by these receptors on immune cell functions. LILR are expressed by myelomonocytic cells and lymphocytes, extending their influence across antigen presenting cell subsets including dendritic cells, macrophages and B cells. They have been identified as important players in the response to infection, inflammatory diseases and cancer, with recent literature to indicate that MHC-I recognition by these receptors and consequent allelic effects could extend an influence beyond the immune system.

  12. The cytoplasmic and the transmembrane domains are not sufficient for class I MHC signal transduction.

    Science.gov (United States)

    Gur, H; Geppert, T D; Wacholtz, M C; Lipsky, P E

    1999-02-01

    Class I MHC molecules deliver activation signals to T cells. To analyze the role of the cytoplasmic and the transmembrane (TM) domains of class I MHC molecules in T cell activation, Jurkat cells were transfected with genes for truncated class I MHC molecules which had only four intracytoplasmic amino acids and no potential phosphorylation sites or native molecules or both. Cross-linking either the native or the truncated molecules induced IL-2 production even under limiting stimulation conditions of low engagement of the stimulating mAb. Moreover, direct comparison of transfected truncated and native class I MHC molecules expressed on the same cell revealed significant stimulation induced by cross-linking the truncated molecules, despite low expression. In addition, truncated class I MHC molecules were as able to synergize with CD3, CD2, or CD28 initiated IL-2 production as native molecules. In further experiments, hybrid constructs made of the extracellular portion of the murine CD8 alpha chain and of the TM and the intracytoplasmic domains of H-2Kk class I MHC molecule were transfected into Jurkat T cells. The expression of the transfected hybrid molecules was comparable to that of the native HLA-B7 molecules. Cross-linking the intact monomorphic HLA-A,B,C epitope or the polymorphic HLA-B7 epitope induced IL-2 production upon costimulation with PMA. In contrast, cross-linking the hybrid molecules generated neither an increase in intracellular calcium concentration ([Ca2+]i) nor stimulated IL-2 production. By contrast, cross-linking intact murine class I MHC molecules induced [Ca2+]i, signal and IL-2 production in transfected Jurkat cells. The data therefore indicate that unlike many other signaling molecules, signaling via class I MHC molecules does not involve the cytoplasmic and the TM portions of the molecule, but rather class I MHC signal transduction is likely to be mediated by the extracellular domain of the molecule.

  13. Gene expression changes in chicken NLRC5 signal pathway associated with in vitro avian leukosis virus subgroup J infection.

    Science.gov (United States)

    Qiu, L L; Xu, L; Guo, X M; Li, Z T; Wan, F; Liu, X P; Chen, G H; Chang, G B

    2016-03-18

    Nucleotide-binding oligomerization domain-like receptors (NLRs) play a key role in the innate immune response as pattern-recognition receptors. However, the role of NLRC5, which is a member of the NLR family, in NF-κB activation and MHC-I expression remains debatable. Infection with the J group avian leukosis virus (ALV-J) can result in immunosuppression and a subsequent increase in susceptibility to secondary infection. This results in huge economic losses to the poultry industry worldwide. Using quantitative real-time polymerase chain reaction (qRT-PCR), we investigated the mRNA expression levels of NLRC5 signal pathway-related genes in secondary chicken embryo fibroblasts 7 days after infection with ALV-J. The results indicated that, compared with the control groups, the expression levels of TLR7, MHC-I, and IL-18 increased significantly in the infected groups at 7 days post-infection (d.p.i.). The expression levels of NLRC5 and IL-6 were conspicuously downregulated at 7 d.p.i., but the expression levels of NF-κB, STAT1, and STAT3 were not significantly altered. These results suggest that NLRC5 and some genes involved in the NLRC5 pathway play a key role in antiviral immunity, typically the response to ALV-J infection. Moreover, MHC-I expression levels vary between different cell types.

  14. Nunukan Chicken: Genetic Characteristics, Phenotype and Utilization

    Directory of Open Access Journals (Sweden)

    Tike Sartika

    2006-12-01

    Full Text Available Nunukan chicken is a local chicken from East Kalimantan which spreads out in Tarakan and Nunukan Islands . The chicken has a specific buff color and Columbian type feather and also has very late feathering (VLF trait . The Nunukan cocks and hens have no wing and tail primary feather; the tail feathers are short and fragile . The VLF trait is known to have association with a K gene on the Z chromosome. The chicken is efficient in protein metabolism . Sulfur amino acids (cystine and methionine that needed for feather growth, could be utilized for meat and egg production . The egg production of Nunukan chicken was better than the Kampung chicken . The average of hen day, hen house and peak production of Nunukan chicken was 45 . 39.1 and 62%, respectively, while the Kampung chicken was 35 .9, 30 .9 and 48%, respectively . Based on genetic analysis, the external genotype characteristic of the Nunukan chicken is ii ce ss Idld pp. It means that the phenotype appearance of the Nunukan chicken was columbian and gold feathering type, yellow and white shank color and single comb type. This phenotype is similar to Merawang Chicken . The genetic introgression of the Nunukan chicken is affected by the Rhode Island Red with the genetic introgression value of 0.964 .

  15. Acute paretic syndrome in juvenile White Leghorn chickens resembles late stages of acute inflammatory demyelinating polyneuropathies in humans

    Directory of Open Access Journals (Sweden)

    Preisinger Rudolf

    2010-01-01

    Full Text Available Abstract Background Sudden limb paresis is a common problem in White Leghorn flocks, affecting about 1% of the chicken population before achievement of sexual maturity. Previously, a similar clinical syndrome has been reported as being caused by inflammatory demyelination of peripheral nerve fibres. Here, we investigated in detail the immunopathology of this paretic syndrome and its possible resemblance to human neuropathies. Methods Neurologically affected chickens and control animals from one single flock underwent clinical and neuropathological examination. Peripheral nervous system (PNS alterations were characterised using standard morphological techniques, including nerve fibre teasing and transmission electron microscopy. Infiltrating cells were phenotyped immunohistologically and quantified by flow cytometry. The cytokine expression pattern was assessed by quantitative real-time PCR (qRT-PCR. These investigations were accomplished by MHC genotyping and a PCR screen for Marek's disease virus (MDV. Results Spontaneous paresis of White Leghorns is caused by cell-mediated, inflammatory demyelination affecting multiple cranial and spinal nerves and nerve roots with a proximodistal tapering. Clinical manifestation coincides with the employment of humoral immune mechanisms, enrolling plasma cell recruitment, deposition of myelin-bound IgG and antibody-dependent macrophageal myelin-stripping. Disease development was significantly linked to a 539 bp microsatellite in MHC locus LEI0258. An aetiological role for MDV was excluded. Conclusions The paretic phase of avian inflammatory demyelinating polyradiculoneuritis immunobiologically resembles the late-acute disease stages of human acute inflammatory demyelinating polyneuropathy, and is characterised by a Th1-to-Th2 shift.

  16. Cellular misfolded proteins rescued from degradation by MHC class II molecules are possible targets for autoimmune diseases.

    Science.gov (United States)

    Arase, Noriko; Arase, Hisashi

    2015-11-01

    The major function of major histocompatibility complex (MHC) class II molecules is the presentation of peptide antigens to helper T cells. However, when misfolded proteins are associated with MHC class II molecules in the endoplasmic reticulum, they are transported to the cell surface by MHC class II molecules without processing to peptides. Of note, misfolded proteins complexed with MHC class II molecules are specifically recognized by autoantibodies produced in patients with autoimmune diseases such as rheumatoid arthritis and antiphospholipid syndrome. Furthermore, autoantibody binding to misfolded proteins complexed with MHC class II molecules is associated with the susceptibility to autoimmune diseases conferred by each MHC class II allele. Therefore, misfolded proteins rescued from degradation by MHC class II molecules may be recognized as 'neo-self' antigens by the immune system and be involved in the pathogenicity of autoimmune diseases.

  17. Gapped sequence alignment using artificial neural networks: application to the MHC class I system

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2016-01-01

    . On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. Results: We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods...... the length profile of different MHC molecules, and quantified the reduction of the experimental effort required to identify potential epitopes using our prediction algorithm. Availability and implementation: The NetMHC-4.0 method for the prediction of peptide-MHC class I binding affinity using gapped...

  18. NETMHCSTAB - predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery

    DEFF Research Database (Denmark)

    Jørgensen, Kasper W.; Rasmussen, Michael; Buus, Søren

    2013-01-01

    demonstrated that pMHC-I complex stability was a better correlate of CTL immunogenicity than peptide-MHC-I affinity. We here extended this study and analysed a total of 5509 distinct peptide stability measurements covering 10 different HLA class I molecules. Artificial neural networks were used to construct...... that anchor positions in the N-terminal of the binding motif (primarily P2 and P3) play a critical role for the formation of stable pMHC-I complexes. A webserver implementing the method is available at www.cbs.dtu.dk/services/NetMHCstab....

  19. Infection-dependent MHC expression in the three-spined stickleback, Gasterosteus aculeatus

    OpenAIRE

    Hibbeler, S.

    2006-01-01

    The study focused on two main topics. On the one hand primers and a PCR protocol were developed to find a suitable housekeeping gene for quantitative real-time PCR. On the other hand this study explored the expression of genes related to an immune response in cell cultures and organs of living fish. The main focus lay on the genes of the major histocompatibility complex (MHC). The MHC has been studied for several years. This is mainly because of the central role of MHC molecules in the adapti...

  20. Evolutionary conservation of alternative splicing in chicken

    Science.gov (United States)

    Katyal, S.; Gao, Z.; Liu, R.-Z.; Godbout, R.

    2013-01-01

    Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternatively-spliced genes and 50 frequently accessed genes. Our results support a high frequency of splicing events in chicken, similar to that observed in mammals. PMID:17675855

  1. Native Darag Chicken Menu Variations: Its Acceptability

    Directory of Open Access Journals (Sweden)

    Dr. Rosario Clarabel C. Contreras

    2014-06-01

    Full Text Available Traditional native chicken delicacies like lechon and adobo are very common dishes in a rural Filipino folks’ dining table. As the family economic standing improves, meat becomes a main item in a family diet, dishes like fried chicken and chicken nuggets have also become part of the family choices of chicken dishes in their meal. Intensification of the production of native Darag chicken would lead to optimization of food technological output for the university which will hopefully be a potential one town-one product (OTOP of the municipality.

  2. Sequence and phylogenetic analysis of chicken anaemia virus obtained from backyard and commercial chickens in Nigeria.

    Science.gov (United States)

    Oluwayelu, D O; Todd, D; Olaleye, O D

    2008-12-01

    This work reports the first molecular analysis study of chicken anaemia virus (CAV) in backyard chickens in Africa using molecular cloning and sequence analysis to characterize CAV strains obtained from commercial chickens and Nigerian backyard chickens. Partial VP1 gene sequences were determined for three CAVs from commercial chickens and for six CAV variants present in samples from a backyard chicken. Multiple alignment analysis revealed that the 6% and 4% nucleotide diversity obtained respectively for the commercial and backyard chicken strains translated to only 2% amino acid diversity for each breed. Overall, the amino acid composition of Nigerian CAVs was found to be highly conserved. Since the partial VP1 gene sequence of two backyard chicken cloned CAV strains (NGR/CI-8 and NGR/CI-9) were almost identical and evolutionarily closely related to the commercial chicken strains NGR-1, and NGR-4 and NGR-5, respectively, we concluded that CAV infections had crossed the farm boundary.

  3. Oriented coupling of major histocompatibility complex (MHC) to sensor surfaces using light assisted immobilisation technology

    DEFF Research Database (Denmark)

    Snabe, Torben; Røder, Gustav Andreas; Neves-Petersen, Maria Teresa;

    2005-01-01

    histocompatibility complex (MHC class I) to a sensor surface is presented. The coupling was performed using light assisted immobilisation--a novel immobilisation technology which allows specific opening of particular disulphide bridges in proteins which then is used for covalent bonding to thiol-derivatised surfaces...... via a new disulphide bond. Light assisted immobilisation specifically targets the disulphide bridge in the MHC-I molecule alpha(3)-domain which ensures oriented linking of the complex with the peptide binding site exposed away from the sensor surface. Structural analysis reveals that a similar...... procedure can be used for covalent immobilisation of MHC class II complexes. The results open for the development of efficient T cell sensors, sensors for recognition of peptides of pathogenic origin, as well as other applications that may benefit from oriented immobilisation of MHC proteins....

  4. pH dependence of MHC class I-restricted peptide presentation

    DEFF Research Database (Denmark)

    Stryhn, A; Pedersen, L O; Romme, T

    1996-01-01

    The function of MHC class I molecules is to bind and present antigenic peptides to cytotoxic T cells. Here, we report that class I-restricted peptide presentation is strongly pH dependent. The presentation of some peptides was enhanced at acidic pH, whereas the presentation of others was inhibited....... Biochemical peptide-MHC class I binding assays demonstrated that peptide-MHC class I complexes are more stable at neutral pH than at acidic pH. We suggest that acid-dependent peptide dissociation can generate empty class I molecules and that the resulting binding potential can be exploited by a subset...... from class I during passage of the acidic trans-Golgi network, and therefore may not be presented. Finally, our results may in part explain how endocytosed proteins can be presented by MHC class I molecules to cytotoxic T cells....

  5. Absence of evidence for MHC-dependent mate selection within HapMap populations.

    Directory of Open Access Journals (Sweden)

    Adnan Derti

    2010-04-01

    Full Text Available The major histocompatibility complex (MHC of immunity genes has been reported to influence mate choice in vertebrates, and a recent study presented genetic evidence for this effect in humans. Specifically, greater dissimilarity at the MHC locus was reported for European-American mates (parents in HapMap Phase 2 trios than for non-mates. Here we show that the results depend on a few extreme data points, are not robust to conservative changes in the analysis procedure, and cannot be reproduced in an equivalent but independent set of European-American mates. Although some evidence suggests an avoidance of extreme MHC similarity between mates, rather than a preference for dissimilarity, limited sample sizes preclude a rigorous investigation. In summary, fine-scale molecular-genetic data do not conclusively support the hypothesis that mate selection in humans is influenced by the MHC locus.

  6. Semi-empirical quantum evaluation of peptide - MHC class II binding

    Science.gov (United States)

    González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2017-01-01

    Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.

  7. Molecular characterization of major histocompatibility complex class 1 (MHC-I) from squirrel monkeys (Saimiri sciureus).

    Science.gov (United States)

    Pascalis, Hervé; Heraud, Jean-Michel; Fendel, Rolf; Lavergne, Anne; Kazanji, Mirdad

    2003-12-01

    Little is known about the major histocompatibility complex (MHC) class 1 in squirrel monkeys ( Saimiri sciureus). We cloned, sequenced and characterized two alleles and the cDNA of the coding region of MHC class 1 in these New World monkeys. Phylogenetic analyses showed that these sequences are related to HLA class 1 genes ( HLA-A and HLA-G). The structure and organization of one of the two identified clones was similar to that of a class 1 MHC gene ( HLA-A2). All the exon/intron splice acceptor/donor sites are conserved and their locations correspond to the HLA-A2 gene. The sequences of the newly described cDNAs reveal that they code for the characteristic class 1 MHC proteins, with all the features thought necessary for cell surface expression. Typical sequences for the leader peptide, alpha(1), alpha(2), alpha(3), transmembrane and cytoplasmic domains were found.

  8. Diagnostic value of MHC class I staining in idiopathic inflammatory myopathies.

    NARCIS (Netherlands)

    Pas, J. van der; Hengstman, G.J.D.; Laak, H.J. ter; Borm, G.F.; Engelen, B.G.M. van

    2004-01-01

    BACKGROUND: Identification of mononuclear cellular infiltrates in skeletal muscle tissue is the histological cornerstone of the diagnosis of idiopathic inflammatory myopathy (IIM). However, these infiltrates are not always present. OBJECTIVE: To determine whether MHC class I antigen expression on th

  9. Characterization of structural features controlling the receptiveness of empty class II MHC molecules

    DEFF Research Database (Denmark)

    Rupp, Bernd; Günther, Sebastian; Makhmoor, Talat;

    2011-01-01

    MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC...... known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues aQ9 and ßN82. Mutagenesis experiments confirmed that replacement of either one of the two......-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting from the structural knowledge provided by this study....

  10. Activation of MyD88 Signaling upon Staphylococcal Enterotoxin Binding to MHC Class II Molecules

    Science.gov (United States)

    2011-01-20

    Activation of MyD88 Signaling upon Staphylococcal Enterotoxin Binding to MHC Class II Molecules Teri L. Kissner, Gordon Ruthel, Shahabuddin Alam...mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which...upon Staphylococcal Enterotoxin Binding to MHC Class II Molecules. PLoS ONE 6(1): e15985. doi:10.1371/journal.pone.0015985 Editor: Jacques Zimmer

  11. Influenza Virus Targets Class I MHC-Educated NK Cells for Immunoevasion.

    Directory of Open Access Journals (Sweden)

    Ahmad Bakur Mahmoud

    2016-02-01

    Full Text Available The immune response to influenza virus infection comprises both innate and adaptive defenses. NK cells play an early role in the destruction of tumors and virally-infected cells. NK cells express a variety of inhibitory receptors, including those of the Ly49 family, which are functional homologs of human killer-cell immunoglobulin-like receptors (KIR. Like human KIR, Ly49 receptors inhibit NK cell-mediated lysis by binding to major histocompatibility complex class I (MHC-I molecules that are expressed on normal cells. During NK cell maturation, the interaction of NK cell inhibitory Ly49 receptors with their MHC-I ligands results in two types of NK cells: licensed ("functional", or unlicensed ("hypofunctional". Despite being completely dysfunctional with regard to rejecting MHC-I-deficient cells, unlicensed NK cells represent up to half of the mature NK cell pool in rodents and humans, suggesting an alternative role for these cells in host defense. Here, we demonstrate that after influenza infection, MHC-I expression on lung epithelial cells is upregulated, and mice bearing unlicensed NK cells (Ly49-deficient NKCKD and MHC-I-deficient B2m-/- mice survive the infection better than WT mice. Importantly, transgenic expression of an inhibitory self-MHC-I-specific Ly49 receptor in NKCKD mice restores WT influenza susceptibility, confirming a direct role for Ly49. Conversely, F(ab'2-mediated blockade of self-MHC-I-specific Ly49 inhibitory receptors protects WT mice from influenza virus infection. Mechanistically, perforin-deficient NKCKD mice succumb to influenza infection rapidly, indicating that direct cytotoxicity is necessary for unlicensed NK cell-mediated protection. Our findings demonstrate that Ly49:MHC-I interactions play a critical role in influenza virus pathogenesis. We suggest a similar role may be conserved in human KIR, and their blockade may be protective in humans.

  12. IRF-4-mediated CIITA transcription is blocked by KSHV encoded LANA to inhibit MHC II presentation.

    Directory of Open Access Journals (Sweden)

    Qiliang Cai

    2013-10-01

    Full Text Available Peptides presentation to T cells by MHC class II molecules is of importance in initiation of immune response to a pathogen. The level of MHC II expression directly influences T lymphocyte activation and is often targeted by various viruses. Kaposi's sarcoma-associated herpesvirus (KSHV encoded LANA is known to evade MHC class I peptide processing, however, the effect of LANA on MHC class II remains unclear. Here, we report that LANA down-regulates MHC II expression and presentation by inhibiting the transcription of MHC II transactivator (CIITA promoter pIII and pIV in a dose-dependent manner. Strikingly, although LANA knockdown efficiently disrupts the inhibition of CIITA transcripts from its pIII and pIV promoter region, the expression of HLA-DQβ but no other MHC II molecules was significantly restored. Moreover, we revealed that the presentation of HLA-DQβ enhanced by LANA knockdown did not help LANA-specific CD4+ T cell recognition of PEL cells, and the inhibition of CIITA by LANA is independent of IL-4 or IFN-γ signaling but dependent on the direct interaction of LANA with IRF-4 (an activator of both the pIII and pIV CIITA promoters. This interaction dramatically blocked the DNA-binding ability of IRF-4 on both pIII and pIV promoters. Thus, our data implies that LANA can evade MHC II presentation and suppress CIITA transcription to provide a unique strategy of KSHV escape from immune surveillance by cytotoxic T cells.

  13. MHC class I expression dependent on bacterial infection and parental factors in whitefish embryos (Salmonidae).

    Science.gov (United States)

    Clark, Emily S; Wilkins, Laetitia G E; Wedekind, Claus

    2013-10-01

    Ecological conditions can influence not only the expression of a phenotype, but also the heritability of a trait. As such, heritable variation for a trait needs to be studied across environments. We have investigated how pathogen challenge affects the expression of MHC genes in embryos of the lake whitefish Coregonus palaea. In order to experimentally separate paternal (i.e. genetic) from maternal and environmental effects, and determine whether and how stress affects the heritable variation for MHC expression, embryos were produced in full-factorial in vitro fertilizations, reared singly, and exposed at 208 degree days (late-eyed stage) to either one of two strains of Pseudomonas fluorescens that differ in their virulence characteristics (one increased mortality, while both delayed hatching time). Gene expression was assessed 48 h postinoculation, and virulence effects of the bacterial infection were monitored until hatching. We found no evidence of MHC class II expression at this stage of development. MHC class I expression was markedly down-regulated in reaction to both pseudomonads. While MHC expression could not be linked to embryo survival, the less the gene was expressed, the earlier the embryos hatched within each treatment group, possibly due to trade-offs between immune function and developmental rate or further factors that affect both hatching timing and MHC expression. We found significant additive genetic variance for MHC class I expression in some treatments. That is, changes in pathogen pressures could induce rapid evolution in MHC class I expression. However, we found no additive genetic variance in reaction norms in our study population.

  14. The biogenesis of the MHC class II compartment in human I-cell disease B lymphoblasts

    OpenAIRE

    1996-01-01

    The localization and intracellular transport of major histocompatibility complex (MHC) class II molecules nd lysosomal hydrolases were studied in I-Cell Disease (ICD) B lymphoblasts, which possess a mannose 6-phosphate (Man-6-P)-independent targeting pathway for lysosomal enzymes. In the trans-Golgi network (TGN), MHC class II- invariant chain complexes colocalized with the lysosomal hydrolase cathepsin D in buds and vesicles that lacked markers of clathrin-coated vesicle-mediated transport. ...

  15. New insights into the role of MHC diversity in devil facial tumour disease.

    Directory of Open Access Journals (Sweden)

    Amanda Lane

    Full Text Available BACKGROUND: Devil facial tumour disease (DFTD is a fatal contagious cancer that has decimated Tasmanian devil populations. The tumour has spread without invoking immune responses, possibly due to low levels of Major Histocompatibility Complex (MHC diversity in Tasmanian devils. Animals from a region in north-western Tasmania have lower infection rates than those in the east of the state. This area is a genetic transition zone between sub-populations, with individuals from north-western Tasmania displaying greater diversity than eastern devils at MHC genes, primarily through MHC class I gene copy number variation. Here we test the hypothesis that animals that remain healthy and tumour free show predictable differences at MHC loci compared to animals that develop the disease. METHODOLOGY/PRINCIPAL FINDINGS: We compared MHC class I sequences in 29 healthy and 22 diseased Tasmanian devils from West Pencil Pine, a population in north-western Tasmania exhibiting reduced disease impacts of DFTD. Amplified alleles were assigned to four loci, Saha-UA, Saha-UB, Saha-UC and Saha-UD based on recently obtained genomic sequence data. Copy number variation (caused by a deletion at Saha-UA was confirmed using a PCR assay. No association between the frequency of this deletion and disease status was identified. All individuals had alleles at Saha-UD, disproving theories of disease susceptibility relating to copy number variation at this locus. Genetic variation between the two sub-groups (healthy and diseased was also compared using eight MHC-linked microsatellite markers. No significant differences were identified in allele frequency, however differences were noted in the genotype frequencies of two microsatellites located near non-antigen presenting genes within the MHC. CONCLUSIONS/SIGNIFICANCE: We did not find predictable differences in MHC class I copy number variation to account for differences in susceptibility to DFTD. Genotypic data was equivocal but

  16. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    Science.gov (United States)

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction.

  17. Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus.

    Science.gov (United States)

    Powers, Colin J; Früh, Klaus

    2008-10-03

    The US2-11 region of human and rhesus cytomegalovirus encodes a conserved family of glycoproteins that inhibit MHC-I assembly with viral peptides, thus preventing cytotoxic T cell recognition. Since HCMV lacking US2-11 is no longer able to block assembly and transport of MHC-I, we examined whether this is also observed for RhCMV lacking the corresponding region. Unexpectedly, recombinant RhCMV lacking US2-11 was still able to inhibit MHC-I expression in infected fibroblasts, suggesting the presence of an additional MHC-I evasion mechanism. Progressive deletion analysis of RhCMV-specific genomic regions revealed that MHC-I expression is fully restored upon additional deletion of rh178. The protein encoded by this RhCMV-specific open reading frame is anchored in the endoplasmic reticulum membrane. In the presence of rh178, RhCMV prevented MHC-I heavy chain (HC) expression, but did not inhibit mRNA transcription or association of HC mRNA with translating ribosomes. Proteasome inhibitors stabilized a HC degradation intermediate in the absence of rh178, but not in its presence, suggesting that rh178 prevents completion of HC translation. This interference was signal sequence-dependent since replacing the signal peptide with that of CD4 or murine HC rendered human HCs resistant to rh178. We have identified an inhibitor of antigen presentation encoded by rhesus cytomegalovirus unique in both its lack of homology to any other known protein and in its mechanism of action. By preventing signal sequence-dependent HC translocation, rh178 acts prior to US2, US3 and US11 which attack MHC-I proteins after protein synthesis is completed. Rh178 is the first viral protein known to interfere at this step of the MHC-I pathway, thus taking advantage of the conserved nature of HC leader peptides, and represents a new mechanism of translational interference.

  18. The Effect of Photodynamic Therapy on Tumor Cell Expression of Major Histocompatibility Complex (MHC) Class I and MHC Class I-Related Molecules

    Science.gov (United States)

    Belicha-Villanueva, Alan; Riddell, Jonah; Bangia, Naveen; Gollnick, Sandra O.

    2013-01-01

    Background and Objective Photodynamic therapy (PDT) is FDA-approved anti-cancer modality for elimination of early disease and palliation in advanced disease. PDT efficacy depends in part on elicitation of a tumor-specific immune response that is dependent on cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. The cytolytic potential of CTLs and NK cells is mediated by the ability of these cells to recognize major histocompatibility complex (MHC) class I and MHC class I-related molecules. The MHC class I-related molecules MICA and MICB are induced by oxidative stress and have been reported to activate NK cells and co-stimulate CD8+ T cells. The purpose of this study was to examine the effect of PDT on tumor cell expression of MHC classes I and II-related molecules in vivo and in vitro. Study Design/Materials and Methods Human colon carcinoma Colo205 cells and murine CT26 tumors were treated with 2-[1-hexyloxyethyl]-2-devinyl pyropheophor-bide-a (HPPH)-PDT at various doses. MHC classes I and I-related molecule expression following treatment of Colo205 cells was temporally examined by flow cytometry using antibodies specific for components of MHC class I molecules and by quantitative PCR using specific primers. Expression of MHC class I-related molecules following HPPH-based PDT (HPPH-PDT) of murine tumors was monitored using a chimeric NKG2D receptor. Results In vitro HPPH-PDT significantly induces MICA in Colo205 cells, but had no effect on MHC class I molecule expression. PDT also induced expression of NKG2D ligands (NKG2DL) following in vivo HPPH-PDT of a murine tumor. Induction of MICA corresponded to increased NK killing of PDT-treated tumor cells. Conclusions PDT induction of MICA on human tumor cells and increased expression of NKG2DL by murine tumors following PDT may play a role in PDT induction of anti-tumor immunity. This conclusion is supported by our results demonstrating that tumor cells have increased sensitivity to NK cell lysis following

  19. Rfp-Y region polymorphism and Marek's disease resistance in multitrait immunocompetence-selected chicken lines.

    Science.gov (United States)

    Lakshmanan, N; Lamont, S J

    1998-04-01

    Although the influence of the chicken classical MHC in resistance to many diseases is well established, the role of the recently identified, genetically independent, MHC-like region known as Rfp-Y is unclear. The objectives of this study were to analyze the frequencies of DNA polymorphisms of the Rfp-Y region in White Leghorn lines, which were divergently selected in replicate for multitrait immunocompetence, and to determine the association of these polymorphisms with Marek's disease (MD) resistance. Chicks, either with or without herpes virus of turkey (HVT) vaccination, were challenged with 500 ffu of a very virulent Marek's disease virus (Md5) at 2 d of age. The MD-related data were collected for 10 wk. PvuII-digested genomic DNA was hybridized with an Rfp-Y region-specific probe, 18.1. Three Rfp-Y polymorphisms were observed. The frequency of one Rfp-Y polymorphism was significantly different between divergently selected multitrait immunocompetence lines in one replicate only; therefore, the impact of multitrait immunocompetence selection on Rfp-Y polymorphisms is inconclusive. The PvuII defined Rfp-Y region polymorphisms had no association with either innate or vaccine-induced MD resistance to Md5 virus challenge.

  20. Characterisation of class II B MHC genes from a ratite bird, the little spotted kiwi (Apteryx owenii).

    Science.gov (United States)

    Miller, Hilary C; Bowker-Wright, Gemma; Kharkrang, Marie; Ramstad, Kristina

    2011-04-01

    Major histocompatibility complex (MHC) genes are important for vertebrate immune response and typically display high levels of diversity due to balancing selection from exposure to diverse pathogens. An understanding of the structure of the MHC region and diversity among functional MHC genes is critical to understanding the evolution of the MHC and species resilience to disease exposure. In this study, we characterise the structure and diversity of class II MHC genes in little spotted kiwi Apteryx owenii, a ratite bird representing the basal avian lineage (paleognaths). Results indicate that little spotted kiwi have a more complex MHC structure than that of other non-passerine birds, with at least five class II MHC genes, three of which are expressed and likely to be functional. Levels of MHC variation among little spotted kiwi are extremely low, with 13 birds assayed having nearly identical MHC genotypes (only two genotypes containing four alleles, three of which are fixed). These results suggest that recent genetic drift due to a species-wide bottleneck of at most seven birds has overwhelmed past selection for high MHC diversity in little spotted kiwi, potentially leaving the species highly susceptible to disease.

  1. Selective pressures on MHC class II genes in the guppy (Poecilia reticulata) as inferred by hierarchical analysis of population structure.

    Science.gov (United States)

    Herdegen, M; Babik, W; Radwan, J

    2014-11-01

    Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre-eminent system for the study of selective pressures that arise from host-pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population-genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.

  2. MHC-IIB filament assembly and cellular localization are governed by the rod net charge.

    Directory of Open Access Journals (Sweden)

    Michael Rosenberg

    Full Text Available BACKGROUND: Actin-dependent myosin II molecular motors form an integral part of the cell cytoskeleton. Myosin II molecules contain a long coiled-coil rod that mediates filament assembly required for myosin II to exert its full activity. The exact mechanisms orchestrating filament assembly are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we examine mechanisms controlling filament assembly of non-muscle myosin IIB heavy chain (MHC-IIB. We show that in vitro the entire C-terminus region of net positive charge, found in myosin II rods, is important for self-assembly of MHC-IIB fragments. In contrast, no particular sequences in the rod region with net negative charge were identified as important for self-assembly, yet a minimal area from this region is necessary. Proper paracrystal formation by MHC-IIB fragments requires the 196aa charge periodicity along the entire coiled-coil region. In vivo, in contrast to self-assembly in vitro, negatively-charged regions of the coiled-coil were found to play an important role by controlling the intracellular localization of native MHC-IIB. The entire positively-charged region is also important for intracellular localization of native MHC-IIB. CONCLUSIONS/SIGNIFICANCE: A correct distribution of positive and negative charges along myosin II rod is a necessary component in proper filament assembly and intracellular localization of MHC-IIB.

  3. Analysis of relationships between peptide/MHC structural features and naive T cell frequency in humans.

    Science.gov (United States)

    Reiser, Jean-Baptiste; Legoux, François; Gras, Stéphanie; Trudel, Eric; Chouquet, Anne; Léger, Alexandra; Le Gorrec, Madalen; Machillot, Paul; Bonneville, Marc; Saulquin, Xavier; Housset, Dominique

    2014-12-15

    The structural rules governing peptide/MHC (pMHC) recognition by T cells remain unclear. To address this question, we performed a structural characterization of several HLA-A2/peptide complexes and assessed in parallel their antigenicity, by analyzing the frequency of the corresponding Ag-specific naive T cells in A2(+) and A2(-) individuals, as well as within CD4(+) and CD8(+) subsets. We were able to find a correlation between specific naive T cell frequency and peptide solvent accessibility and/or mobility for a subset of moderately prominent peptides. However, one single structural parameter of the pMHC complexes could not be identified to explain each peptide antigenicity. Enhanced pMHC antigenicity was associated with both highly biased TRAV usage, possibly reflecting favored interaction between particular pMHC complexes and germline TRAV loops, and peptide structural features allowing interactions with a broad range of permissive CDR3 loops. In this context of constrained TCR docking mode, an optimal peptide solvent exposed surface leading to an optimal complementarity with TCR interface may constitute one of the key features leading to high frequency of specific T cells. Altogether our results suggest that frequency of specific T cells depends on the fine-tuning of several parameters, the structural determinants governing TCR-pMHC interaction being just one of them. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Intracellular transport routes for MHC class I and their relevance for antigen cross-presentation

    Directory of Open Access Journals (Sweden)

    Cézaire Aimé Adiko

    2015-07-01

    Full Text Available Cross-presentation, in which exogenous antigens are presented via MHC I complexes, is involved both in the generation of anti-infectious and anti-tumoral cytotoxic CD8+ T cells and in the maintenance of immune tolerance. While cross-presentation was described almost four decades ago and while it is now established that some dendritic cell subsets are better than others in processing and cross-presenting internalized antigens, the involved molecular mechanisms remain only partially understood. Some of the least explored molecular mechanisms in cross-presentation concern the origin of cross-presenting MHC I molecules and the cellular compartments where antigenic peptide loading occurs. This review focuses on MHC I molecules and their intracellular trafficking. We discuss the source of cross-presenting MHC I in dendritic cells as well as the role of the endocytic pathway in their recycling from the cell surface. Next, we describe the importance of the TAP peptide transporter for delivering peptides to MHC I during cross-presentation. Finally, we highlight the impact of innate immunity mechanisms on specific antigen cross-presentation mechanisms in which TLR activation modulates MHC I trafficking and TAP localization.

  5. No evidence for the effect of MHC on male mating success in the brown bear.

    Directory of Open Access Journals (Sweden)

    Katarzyna Kuduk

    Full Text Available Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear.

  6. Chicken Soup for the Portfolio.

    Science.gov (United States)

    Dwyer, Edward J.

    The popular "Chicken Soup for the Soul" series of books demonstrates the tremendous desire of people in all walks of life to tell their stories. A professor of reading/language arts methods for students in a program leading to teacher certification reads to his classes every day from a wide variety of materials, including stories from…

  7. Visuospatial selective attention in chickens.

    Science.gov (United States)

    Sridharan, Devarajan; Ramamurthy, Deepa L; Schwarz, Jason S; Knudsen, Eric I

    2014-05-13

    Voluntary control of attention promotes intelligent, adaptive behaviors by enabling the selective processing of information that is most relevant for making decisions. Despite extensive research on attention in primates, the capacity for selective attention in nonprimate species has never been quantified. Here we demonstrate selective attention in chickens by applying protocols that have been used to characterize visual spatial attention in primates. Chickens were trained to localize and report the vertical position of a target in the presence of task-relevant distracters. A spatial cue, the location of which varied across individual trials, indicated the horizontal, but not vertical, position of the upcoming target. Spatial cueing improved localization performance: accuracy (d') increased and reaction times decreased in a space-specific manner. Distracters severely impaired perceptual performance, and this impairment was greatly reduced by spatial cueing. Signal detection analysis with an "indecision" model demonstrated that spatial cueing significantly increased choice certainty in localizing targets. By contrast, error-aversion certainty (certainty of not making an error) remained essentially constant across cueing protocols, target contrasts, and individuals. The results show that chickens shift spatial attention rapidly and dynamically, following principles of stimulus selection that closely parallel those documented in primates. The findings suggest that the mechanisms that control attention have been conserved through evolution, and establish chickens--a highly visual species that is easily trained and amenable to cutting-edge experimental technologies--as an attractive model for linking behavior to neural mechanisms of selective attention.

  8. The Chicken and Egg Project

    Science.gov (United States)

    Alkon, Ivette

    2004-01-01

    This article describes a project on chickens and eggs undertaken by 5-year-old children in a bilingual school in Mexico City. It describes the three phases of the project and includes photographs and other documentation of the children's work.

  9. Serotonin and Aggressiveness in Chickens

    Science.gov (United States)

    Serotonin (5-HT) regulates aggressive behavior in animals. This study examined if 5-HT regulation of aggressiveness is gene-dependent. Chickens from two divergently selected lines KGB and MBB (Kind Gentle Birds and Mean Bad Birds displaying low and high aggressiveness, respectively) and DXL (Dekalb ...

  10. Embryonic Development: Chicken and Zebrafish

    Directory of Open Access Journals (Sweden)

    Veerle M. Darras

    2011-01-01

    Full Text Available Chicken and zebrafish are two model species regularly used to study the role of thyroid hormones in vertebrate development. Similar to mammals, chickens have one thyroid hormone receptor α (TRα and one TRβ gene, giving rise to three TR isoforms: TRα, TRβ2, and TRβ0, the latter with a very short amino-terminal domain. Zebrafish also have one TRβ gene, providing two TRβ1 variants. The zebrafish TRα gene has been duplicated, and at least three TRα isoforms are expressed: TRαA1-2 and TRαB are very similar, while TRαA1 has a longer carboxy-terminal ligand-binding domain. All these TR isoforms appear to be functional, ligand-binding receptors. As in other vertebrates, the different chicken and zebrafish TR isoforms have a divergent spatiotemporal expression pattern, suggesting that they also have distinct functions. Several isoforms are expressed from the very first stages of embryonic development and early chicken and zebrafish embryos respond to thyroid hormone treatment with changes in gene expression. Future studies in knockdown and mutant animals should allow us to link the different TR isoforms to specific processes in embryonic development.

  11. Molecular typing for the MHC with PCR-SSP.

    Science.gov (United States)

    Welsh, K; Bunce, M

    1999-01-01

    Sequence-specific amplification (SSP) is simply a form of polymerase chain reaction (PCR) which involves designing one or both primers so that they will or will not allow amplification (the 3'-mismatch principle). Its origins are probably legion, i.e. many people probably thought of it at the same time. For example, in 1988 a group from Guy's Hospital, London, described a form of SSP for HLA-DR4 detection and in the same year a group from Upjohn described its use at the American Society of Histocompatibility and Immunogenetics (ASHI). Both are published in abstract form (British Society of Rheumatology and ASHI). The 3'-mismatch principle can be used to identify virtually any single nucleotide point mutation (SNP) within one or two PCR-SSP reactions and the first peer-reviewed statements of this came in 1989 (1, 2). Thus, although the use of SSP probably began around 1990, it was 5 years before its popularity erupted, mainly due to the work of Olerup & Zetterquist (3, 4), who defined its potential for solid organ transplantation. It is now the method of choice for high resolution HLA typing in many laboratories. In addition, over a thousand applications for genes outside the MHC are in the literature.

  12. Comparison of the effects of human and chicken ghrelin on chicken ovarian hormone release.

    Science.gov (United States)

    Sirotkin, Alexander V; Harrath, Abdel Halim; Grossmann, Roland

    2016-11-01

    The aim of the present experiments was to examine the species-specific and cell-specific effects of ghrelin on chicken ovarian hormone release. For this purpose, we compared the effects of chicken and human ghrelin on the release of estradiol (E), testosterone (T), progesterone (P) and arginine-vasotocin (AVT) by cultured fragments of chicken ovarian follicles and on the release of T and AVT by cultured ovarian granulosa cells. In cultured chicken ovarian fragments, both human and chicken ghrelin promoted E release. T output was stimulated by chicken ghrelin but not by human ghrelin. No effect of either human or chicken ghrelin on P release was observed. Human ghrelin promoted but chicken ghrelin suppressed AVT release by chicken ovarian fragments. In cultured ovarian granulosa cells, human ghrelin inhibited while chicken ghrelin stimulated T release. Both human and chicken ghrelin suppressed AVT output by chicken granulosa cells. These data confirm the involvement of ghrelin in the control of ovarian secretory activity and demonstrate that the effect of ghrelin is species-specific. The similarity of avian ghrelin on avian ovarian granulosa cells and ovarian fragments (containing both granulosa and theca cells) suggests that ghrelin can influence chicken ovarian hormones primarily by acting on granulosa cells.

  13. Native Chicken Production in Indonesia: A Review

    Directory of Open Access Journals (Sweden)

    C. Hidayat

    2015-02-01

    Full Text Available Indonesia is a country rich in native chicken genetic resources. There are 31 native chicken breed in Indonesia. Native chicken farming was developed for decades. In early period of 1907’s, mostly farmers reared their native chicken by traditional system (about 80%. In 1980s until now, the number of native chicken farmers which rear native chicken by semi intensive and intensive system have been increasing. These rearing system changing have significantly increased the native chicken productivity. The major constraints for the development of native chicken i.e. low growth rate, risks of high mortality, low egg production. Many research results stated that improving in breeding, feeding and management aspect will increase native chicken production. The information and data contained in this paper is the result of study literature for scientific papers, either in the form of journals, books, or proceedings, and livestock statistics books. This paper is made to support the development of native chickens in Indonesia.

  14. Quantitative predictions of peptide binding to MHC class I molecules using specificity matrices and anchor-stratified calibrations

    DEFF Research Database (Denmark)

    Lauemøller, S L; Holm, A; Hilden, J;

    2001-01-01

    predictions, we have measured the MHC class I binding of a large number of peptides. In an attempt to further improve predictions and to include sequence dependency, we subdivided the panel of peptides according to whether the peptides had zero, one or two primary anchor residues. This allowed us to define......Peptides are key immune targets. They are generated by fragmentation of antigenic proteins, selected by major histocompatibility complex (MHC) molecules and subsequently presented to T cells. One of the most selective requirements is that of peptide binding to MHC. Accurate descriptions...... and predictions of peptide-MHC interactions are therefore important. Quantitative matrices representing MHC class I specificity can be used to search any query protein for the presence of MHC binding peptides. Assuming that each peptide residue contributes to binding in an additive and sequence independent manner...

  15. Sequencing and alignment of mitochondrial genomes of Tibetan chicken and two lowland chicken breeds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Tibetan chicken lives in high-altitude area and has adapted well to hypoxia genetically. Shouguang chicken and Silky chicken are both lowland chicken breeds. In the present study, the complete mitochondrial genome sequences of the three chicken breeds were all sequenced. The results showed that the mitochondrial DNAs (mtDNAs) of Shouguang chicken and Silky chicken consist of 16784 bp and 16785 bp respectively, and Tibetan chicken mitochondrial genome varies from 16784 bp to 16786 bp. After sequence analysis, 120 mutations, including 4 single nucleotide polymorphisms (SNPs) in tRNA genes, 9 SNPs and 1 insertion in rRNA genes, 38 SNPs and 1 deletion in D-LOOP, 66 SNPs in protein-coding genes, were found. This work will provide clues for the future study on the association between mitochondrial genes and the adaptation to hypoxia.

  16. Genomic characterization of recent chicken anemia virus isolates in China

    Science.gov (United States)

    Chicken infectious anemiavirus (CIAV) causes diseases in young chickens, which include increased pathogenicity of secondary infectious agents, generalized lymphoid depletion, and immune-repression. In the present study, we have identified 22 CIAV strains isolated from several commercial chicken farm...

  17. Peripheral nerve injury causes transient expression of MHC class I antigens in rat motor neurons and skeletal muscles

    DEFF Research Database (Denmark)

    Maehlen, J; Nennesmo, I; Olsson, A B

    1989-01-01

    After a peripheral nerve lesion (rat facial and sciatic) an induction of major histocompatibility complex (MHC) antigens class I was detected immunohistochemically in skeletal muscle fibers and motor neurons. This MHC expression was transient after a nerve crush, when regeneration occurred......, but persisted after a nerve cut, when regeneration was prevented. Since the time course of MHC class I expression correlates to that of regeneration a role for this cell surface molecule in regeneration may be considered....

  18. Allelic Polymorphism, Gene Duplication and Balancing Selection of MHC Class IIB Genes in the Omei Treefrog (Rhacophorus omeimontis)

    Institute of Scientific and Technical Information of China (English)

    Li HUANG; Mian ZHAO; Zhenhua LUO; Hua WU

    2016-01-01

    The worldwide declines in amphibian populations have largely been caused by infectious fungi and bacteria. Given that vertebrate immunity against these extracellular pathogens is primarily functioned by the major histocompatibility complex (MHC) class II molecules, the characterization and the evolution of amphibian MHC class II genes have attracted increasing attention. The polymorphism of MHC class II genes was found to be correlated with susceptibility to fungal pathogens in many amphibian species, suggesting the importance of studies on MHC class II genes for amphibians. However, such studies on MHC class II gene evolution have rarely been conducted on amphibians in China. In this study, we chose Omei treefrog (Rhacophorus omeimontis), which lived moist environments easy for breeding bacteria, to study the polymorphism of its MHC class II genes and the underlying evolutionary mechanisms. We amplified the entire MHC class IIB exon 2 sequence in the R. omeimontis using newly designed primers. We detected 102 putative alleles in 146 individuals. The number of alleles per individual ranged from one to seven, indicating that there are at least four loci containing MHC class IIB genes in R. omeimontis. The allelic polymorphism estimated from the 102 alleles in R. omeimontis was not high compared to that estimated in other anuran species. No significant gene recombination was detected in the 102 MHC class IIB exon 2 sequences. In contrast, both gene duplication and balancing selection greatly contributed to the variability in MHC class IIB exon 2 sequences of R. omeimontis. This study lays the groundwork for the future researches to comprehensively analyze the evolution of amphibian MHC genes and to assess the role of MHC gene polymorphisms in resistance against extracellular pathogens for amphibians in China.

  19. Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology.

    Directory of Open Access Journals (Sweden)

    William E Stutz

    Full Text Available Genes of the vertebrate major histocompatibility complex (MHC are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms. Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1 a "gray zone" where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2 a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci--Stepwise Threshold Clustering (STC--that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.

  20. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    Directory of Open Access Journals (Sweden)

    Mittelmann Hans D

    2010-01-01

    Full Text Available Abstract Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/.

  1. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse

    Science.gov (United States)

    Minias, Piotr; Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A; Oyler-McCance, Sara J.; Dunn, Peter O

    2017-01-01

    Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.

  2. Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus).

    Science.gov (United States)

    Bollmer, Jennifer L; Vargas, F Hernán; Parker, Patricia G

    2007-07-01

    The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC.

  3. Quantitative analysis of mouse urine volatiles: in search of MHC-dependent differences.

    Directory of Open Access Journals (Sweden)

    Frank Röck

    Full Text Available Genes of the major histocompatibility complex (MHC, which play a critical role in immune recognition, influence mating preference and other social behaviors in mice. Training experiments using urine scent from mice differing only in the MHC complex, from MHC class I mutants or from knock-out mice lacking functional MHC class I molecules (beta2m-deficient, suggest that these behavioral effects are mediated by differences in MHC-dependent volatile components. In search for the physical basis of these behavioral studies, we have conducted a comparison of urinary volatiles in three sub-strains of C57BL/6 mice, a beta2m-deficient mutant lacking functional MHC class I expression and two unrelated inbred strains, using the technique of sorptive extraction with polydimethylsiloxan and subsequent analysis by gas chromatography/mass spectrometry. We show (i that qualitative differences occur between different inbred strains but not in mice with the C57BL/6 background, (ii that the individual variability in abundance in the same mouse strain is strongly component-dependent, (iii that C57BL/6 sub-strains obtained from different provenance show a higher fraction of quantitative differences than a sub-strain and its beta2m-mutant obtained from the same source and (iv that comparison of the spectra of beta2m mice and the corresponding wild type reveals no qualitative differences in close to 200 major and minor components and only minimal differences in a few substances from an ensemble of 69 selected for quantitative analysis. Our data suggest that odor is shaped by ontogenetic, environmental and genetic factors, and the gestalt of this scent may identify a mouse on the individual and population level; but, within the limits of the ensemble of components analysed, the results do not support the notion that functional MHC class I molecules influence the urinary volatile composition.

  4. Computational prediction of cleavage using proteasomal in vitro digestion and MHC I ligand data

    Institute of Scientific and Technical Information of China (English)

    Yu-feng LU; Hao SHENG; Yi ZHANG; Zhi-yang LI

    2013-01-01

    Proteasomes are responsible for the production of the majority of cytotoxic T lymphocyte (CTL) epitopes.Hence,it is important to identify correctly which peptides will be generated by proteasomes from an unknown protein.However,the pool of proteasome cleavage data used in the prediction algorithms,whether from major histocompatibility complex (MHC) I ligand or in vitro digestion data,is not identical to in vivo proteasomal digestion products.Therefore,the accuracy and reliability of these models still need to be improved.In this paper,three types of proteasomal cleavage data,constitutive proteasome (cCP),immunoproteasome (iCP) in vitro cleavage,and MHC I ligandv data,were used for training cleave-site predictive methods based on the kernel-function stabilized matrix method (KSMM).The predictive accuracies of the KSMM+pair coefficients were 75.0%,72.3%,and 83.1% for cCP,iCP,and MHC I ligand data,respectively,which were comparable to the results from support vector machine (SVM).The three proteasomal cleavage methods were combined in turn with MHC I-peptide binding predictions to model MHC I-peptide processing and the presentation pathway.These integrations markedly improved MHC I peptide identification,increasing area under the receiver operator characteristics (ROC) curve (AUC) values from 0.82 to 0.91.The results suggested that both MHC I ligand and proteasomal in vitro degradation data can give an exact simulation of in vivo processed digestion.The information extracted from cCP and iCP in vitro cleavage data demonstrated that both cCP and iCP are selective in their usage of peptide bonds for cleavage.

  5. Enteric disease in broiler chickens following experimental infection with chicken parvovirus

    Science.gov (United States)

    Day-old broiler chickens were inoculated orally with the chicken parvovirus strain, chicken parvovirus-P1. In four independent experiments, characteristic clinical signs of enteric disease including watery, mustard color diarrhea and growth retardation were observed following infection. The virus wa...

  6. The separate and combined effects of MHC genotype, parasite clone, and host gender on the course of malaria in mice

    Directory of Open Access Journals (Sweden)

    Walker Mirjam

    2006-11-01

    Full Text Available Abstract Background The link between host MHC (major histocompatibility complex genotype and malaria is largely based on correlative data with little or no experimental control of potential confounding factors. We used an experimental mouse model to test for main effects of MHC-haplotypes, MHC heterozygosity, and MHC × parasite clone interactions. We experimentally infected MHC-congenic mice (F2 segregants, homo- and heterozygotes, males and females with one of two clones of Plasmodium chabaudi and recorded disease progression. Results We found that MHC haplotype and parasite clone each have a significant influence on the course of the disease, but there was no significant host genotype by parasite genotype interaction. We found no evidence for overdominance nor any other sort of heterozygote advantage or disadvantage. Conclusion When tested under experimental conditions, variation in the MHC can significantly influence the course of malaria. However, MHC heterozygote advantage through overdominance or dominance of resistance cannot be assumed in the case of single-strain infections. Future studies might focus on the interaction between MHC heterozygosity and multiple-clone infections.

  7. MHC-dependent mate choice is linked to a trace-amine-associated receptor gene in a mammal.

    Science.gov (United States)

    Santos, Pablo S C; Courtiol, Alexandre; Heidel, Andrew J; Höner, Oliver P; Heckmann, Ilja; Nagy, Martina; Mayer, Frieder; Platzer, Matthias; Voigt, Christian C; Sommer, Simone

    2016-12-12

    Major histocompatibility complex (MHC) genes play a pivotal role in vertebrate self/nonself recognition, parasite resistance and life history decisions. In evolutionary terms, the MHC's exceptional diversity is likely maintained by sexual and pathogen-driven selection. Even though MHC-dependent mating preferences have been confirmed for many species, the sensory and genetic mechanisms underlying mate recognition remain cryptic. Since olfaction is crucial for social communication in vertebrates, variation in chemosensory receptor genes could explain MHC-dependent mating patterns. Here, we investigated whether female mate choice is based on MHC alleles and linked to variation in chemosensory trace amine-associated receptors (TAARs) in the greater sac-winged bat (Saccopteryx bilineata). We sequenced several MHC and TAAR genes and related their variation to mating and paternity data. We found strong evidence for MHC class I-dependent female choice for genetically diverse and dissimilar males. We also detected a significant interaction between mate choice and the female TAAR3 genotype, with TAAR3-heterozygous females being more likely to choose MHC-diverse males. These results suggest that TAARs and olfactory cues may be key mediators in mammalian MHC-dependent mate choice. Our study may help identify the ligands involved in the chemical communication between potential mates.

  8. Phosphorylation of chicken growth hormone

    Energy Technology Data Exchange (ETDEWEB)

    Aramburo, C.; Montiel, J.L. (Universidad Nacional Autonoma de Mexico (Mexico)); Donoghue, D.; Scanes, C.G. (Rutgers Univ., New Brunswick, NJ (USA)); Berghman, L.R. (Laboratory for Neuroendocrinology and Immunological Biotechnology, Louvain (Belgium))

    1990-01-01

    The possibility that chicken growth hormone (cGH) can be phosphorylated has been examined. Both native and biosynthetic cGH were phosphorylated by cAMP-dependent protein kinase (and {gamma}-{sup 32}P-ATP). The extent of phosphorylation was however less than that observed with ovine prolactin. Under the conditions employed, glycosylated cGH was not phosphorylated. Chicken anterior pituitary cells in primary culture were incubated in the presence of {sup 32}P-phosphate. Radioactive phosphate was incorporated in vitro into the fraction immunoprecipitable with antisera against cGH. Incorporation was increased with cell number and time of incubation. The presence of GH releasing factor (GRF) increased the release of {sup 32}P-phosphate labeled immunoprecipitable GH into the incubation media but not content of immunoprecipitable GH in the cells. The molecular weight of the phosphorylated immunoreactive cGH in the cells corresponded to cGH dimer.

  9. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Suárez-Alvarez

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM components and NKG2D ligands (NKG2D-L in hESCs, induced pluripotent stem cells (iPSCs and NTera2 (NT2 teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1 and tapasin (TPN components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of beta2-microglobulin (beta2m light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and beta2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs. Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. CONCLUSIONS/SIGNIFICANCE: Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell

  10. Characterization of structural features controlling the receptiveness of empty class II MHC molecules.

    Directory of Open Access Journals (Sweden)

    Bernd Rupp

    Full Text Available MHC class II molecules (MHC II play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC molecule. Non-receptiveness hinders the efficient loading of new antigens onto the empty MHC II. However, the mechanisms driving the formation of the peptide inaccessible state are not well understood. Here, a combined approach of experimental site-directed mutagenesis and computational modeling is used to reveal structural features underlying "non-receptiveness." Molecular dynamics simulations of the human MHC II HLA-DR1 suggest a straightening of the α-helix of the β1 domain during the transition from the open to the non-receptive state. The movement is mostly confined to a hinge region conserved in all known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues αQ9 and βN82. Mutagenesis experiments confirmed that replacement of either one of the two residues by alanine renders the protein highly susceptible. Notably, loading enhancement was also observed when the mutated MHC II molecules were expressed on the surface of fibroblast cells. Altogether, structural features underlying the non-receptive state of empty HLA-DR1 identified by theoretical means and experiments revealed highly conserved residues critically involved in the receptiveness of MHC II. The atomic details of rearrangements of the peptide-binding groove upon peptide loss provide insight into structure and dynamics of empty MHC II molecules and may foster rational approaches to interfere with non-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting

  11. Very high MHC Class IIB diversity without spatial differentiation in the mediterranean population of greater Flamingos.

    Science.gov (United States)

    Gillingham, Mark A F; Béchet, Arnaud; Courtiol, Alexandre; Rendón-Martos, Manuel; Amat, Juan A; Samraoui, Boudjéma; Onmuş, Ortaç; Sommer, Simone; Cézilly, Frank

    2017-02-20

    Selective pressure from pathogens is thought to shape the allelic diversity of major histocompatibility complex (MHC) genes in vertebrates. In particular, both local adaptation to pathogens and gene flow are thought to explain a large part of the intraspecific variation observed in MHC allelic diversity. To date, however, evidence that adaptation to locally prevalent pathogens maintains MHC variation is limited to species with limited dispersal and, hence, reduced gene flow. On the one hand high gene flow can disrupt local adaptation in species with high dispersal rates, on the other hand such species are much more likely to experience spatial variation in pathogen pressure, suggesting that there may be intense pathogen mediated selection pressure operating across breeding sites in panmictic species. Such pathogen mediated selection pressure operating across breeding sites should therefore be sufficient to maintain high MHC diversity in high dispersing species in the absence of local adaptation mechanisms. We used the Greater Flamingo, Phoenicopterus roseus, a long-lived colonial bird showing a homogeneous genetic structure of neutral markers at the scale of the Mediterranean region, to test the prediction that higher MHC allelic diversity with no population structure should occur in large panmictic populations of long-distance dispersing birds than in other resident species. We assessed the level of allelic diversity at the MHC Class IIB exon 2 from 116 individuals born in four different breeding colonies of Greater Flamingo in the Mediterranean region. We found one of the highest allelic diversity (109 alleles, 2 loci) of any non-passerine avian species investigated so far relative to the number of individuals and loci genotyped. There was no evidence of population structure between the four major Mediterranean breeding colonies. Our results suggest that local adaptation at MHC Class IIB in Greater Flamingos is constrained by high gene flow and high MHC diversity

  12. Chicken Porridge with Sea Cucumber

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Chicken Porridge with Sea Cucumber is a dish created according to a well-known story about Jia Chang, who raised cocks during the Tang Dynasty. Cockfighting was popular among commonfolk during the Tang Dynasty. Emperor Xuanzong selected 5,000 cocks in Chang’an, and 500 children to feed them and train them to fight. Jia Chang was one of the children. Sent to the

  13. MHC-unrestricted lysis of MUC1-expressing cells by human peripheral blood mononuclear cells.

    Science.gov (United States)

    Wright, Stephen E; Rewers-Felkins, Kathleen A; Quinlin, Imelda S; Fogler, William E; Phillips, Catherine A; Townsend, Mary; Robinson, William; Philip, Ramila

    2008-01-01

    Many human adenocarcinomas can be killed in vitro by targeted cytotoxic T-lymphocytes (CTL); however, major histocompatibility complex (MHC)-restrictions are typically required. The MUC1 antigen is common in many human adenocarcinomas, and is associated with a variable number of tandem repeats. It has been proposed that antigens with such repeated epitopes may be vulnerable to cytotoxic T-lymphocyte killing without MHC-restriction. Therefore, it is possible that MUC1-expressing malignant cells may be killed by targeted cytotoxic T-lymphocyte in the absence of MHC-restriction. In this study, a human MUC1-expressing murine mammary carcinoma cell line was used to determine if cytotoxic T-lymphocyte killing of MUC1-expressing adenocarcinoma cells requires MHC-restriction. Specifically, MUC1-stimulated human mononuclear cells (M1SMC) were observed to kill human MUC1-transfected, MUC1-expressing murine mammary carcinoma cells, but not the mock-transfected, non-MUC1-expressing murine mammary carcinoma cells. Furthermore, the killing was blocked by antibody to MUC1, indicating MUC1-specific killing. In conclusion, cytotoxic T-lymphocyte killing of MUC1-expressing adenocarcinoma cells can be MHC-unrestricted.

  14. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation.

    Science.gov (United States)

    Bataille, Arnaud; Cashins, Scott D; Grogan, Laura; Skerratt, Lee F; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A; Macris, Amy; Harlow, Peter S; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-04-22

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.

  15. No major role for insulin-degrading enzyme in antigen presentation by MHC molecules.

    Directory of Open Access Journals (Sweden)

    Slobodan Culina

    Full Text Available Antigen presentation by MHC class I molecules requires degradation of epitope source proteins in the cytosol. Although the preeminent role of the proteasome is clearly established, evidence suggesting a significant role for proteasome-independent generation of class I ligands has been reported repeatedly. However, an enzyme responsible for such a role has not been identified. Recently insulin-degrading enzyme (IDE was shown to produce an antigenic peptide derived from the tumor antigen MAGE-A3 in an entirely proteasome-independent manner, raising the question of the global impact of IDE in MHC class I antigen processing. Here we report that IDE knockdown in human cell lines, or knockout in two different mouse strains, has no effect on cell surface expression of various MHC class I molecules, including allomorphs such as HLA-A3 and HLA-B27 suggested to be loaded in an at least a partly proteasome-independent manner. Moreover, reduced or absent IDE expression does not affect presentation of five epitopes including epitopes derived from beta amyloid and proinsulin, two preferred IDE substrates. Thus, IDE does not play a major role in MHC class I antigen processing, confirming the dominant and almost exclusive role of the proteasome in cytosolic production of MHC class I ligands.

  16. No major role for insulin-degrading enzyme in antigen presentation by MHC molecules.

    Science.gov (United States)

    Culina, Slobodan; Mauvais, François-Xavier; Hsu, Hsiang-Ting; Burgevin, Anne; Guénette, Suzanne; Moser, Anna; van Endert, Peter

    2014-01-01

    Antigen presentation by MHC class I molecules requires degradation of epitope source proteins in the cytosol. Although the preeminent role of the proteasome is clearly established, evidence suggesting a significant role for proteasome-independent generation of class I ligands has been reported repeatedly. However, an enzyme responsible for such a role has not been identified. Recently insulin-degrading enzyme (IDE) was shown to produce an antigenic peptide derived from the tumor antigen MAGE-A3 in an entirely proteasome-independent manner, raising the question of the global impact of IDE in MHC class I antigen processing. Here we report that IDE knockdown in human cell lines, or knockout in two different mouse strains, has no effect on cell surface expression of various MHC class I molecules, including allomorphs such as HLA-A3 and HLA-B27 suggested to be loaded in an at least a partly proteasome-independent manner. Moreover, reduced or absent IDE expression does not affect presentation of five epitopes including epitopes derived from beta amyloid and proinsulin, two preferred IDE substrates. Thus, IDE does not play a major role in MHC class I antigen processing, confirming the dominant and almost exclusive role of the proteasome in cytosolic production of MHC class I ligands.

  17. Regulation of MHC II and CD1 antigen presentation: from ubiquity to security.

    Science.gov (United States)

    Gelin, Catherine; Sloma, Ivan; Charron, Dominique; Mooney, Nuala

    2009-02-01

    MHC class II and CD1-mediated antigen presentation on various APCs [B cells, monocytes, and dendritic cells (DC)] are subject to at least three distinct levels of regulation. The first one concerns the expression and structure of the antigen-presenting molecules; the second is based on the extracellular environment and signals of danger detected. However, a third level of regulation, which has been largely overlooked, is determined by lateral associations between antigen-presenting molecules and other proteins, their localization in specialized microdomains within the plasma membrane, and their trafficking pathways. This review focuses on features common to MHC II and CD1 molecules in their ability to activate specific T lymphocytes with the objective of addressing one basic question: What are the mechanisms regulating antigen presentation by MHC II and CD1 molecules within the same cell? Recent studies in immature DC, where MHC II and CD1 are coexpressed, suggest that the invariant chain (Ii) regulates antigen presentation by either protein. Ii could therefore favor MHC II or CD1 antigen presentation and thereby discriminate between antigens.

  18. MHC2TA and FCRL3 genes are not associated with rheumatoid arthritis in Mexican patients.

    Science.gov (United States)

    Mendoza Rincón, J F; Rodríguez Elias, A K; Fragoso, J M; Vargas Alarcón, G; Maldonado Murillo, K; Rivas Jiménez, M L; Barbosa Cobos, R E; Jimenez Morales, S; Lugo Zamudio, G; Tovilla Zárate, C; Ramírez Bello, J

    2016-02-01

    Rheumatoid arthritis (RA) is a multifactorial disease. A combination of genetic and environmental risk factors contributes to its etiology. Several genes have been reported to be associated with susceptibility to the development of RA. The MHC2TA and FCRL3 genes have been associated previously with RA in Swedish and Japanese populations, respectively. In two recent reports, we show an association between FCRL3 and juvenile rheumatoid arthritis (JRA), and MHC2TA and acute coronary syndrome (ACS) in Mexican population. We assessed the association between three single nucleotide polymorphisms (SNPs) of the MHC2TA (-168G/A; rs3087456, and +16G/C; rs4774) and FCRL3 (-169T/C; rs7528684) genes and rheumatoid arthritis in Mexican population through a genotyping method using allelic discrimination assays with TaqMan probes. Our case-control study included 249 patients with RA and 314 controls. We found no evidence of an association between the MHC2TA -168G/A and +1614G/C or FCRL3 -169T/C polymorphisms and RA in this Mexican population. In this cohort of Mexican patients with RA, we observed no association between the MHC2TA or FCRL3 genes and this autoimmune disease.

  19. Hepatitis B virus down-regulates expressions of MHC class I molecules on hepatoplastoma cell line.

    Science.gov (United States)

    Chen, Yongyan; Cheng, Min; Tian, Zhigang

    2006-10-01

    Chronic HBV infection is associated with a 100-fold high risk of developing hepatocellular carcinoma. Tumor recognition is of the most importance during the immune surveillance process that prevents cancer development in humans. In the present study, the expressions of MHC class I molecules on hepatoplastoma cell line HepG2.2.15 were investigated to indicate the possible effects of HBV on the immune recognition during HBV-associated hepatocellular carcinoma. It was found that the expressions of MHC class I molecules HLA-ABC, HLA-E and MICA were much lower in HepG2.2.15 cells compared with HepG2 cells. The expressing HBV in human hepatoplastoma cell line significantly down-regulated the expressions of MHC class I molecules. Additionally, it was observed that in murine chronic HBsAg carriers the expression of classical MHC-I molecule on hepatocytes was down-regulated. These results demonstrated that HBV might affect the immune recognition during HBV-associated hepatocellular carcinoma such as the recognition of CD8+ T, NK-CTL and NK cells and prevent the immune surveillance against tumors. However, the effects of HBV down-regulation of MHC class I molecules on the target cells in vivo should be further studied.

  20. Coloniality and migration are related to selection on MHC genes in birds.

    Science.gov (United States)

    Minias, Piotr; Whittingham, Linda A; Dunn, Peter O

    2017-02-01

    The major histocompatibility complex (MHC) plays a key role in pathogen recognition as a part of the vertebrate adaptive immune system. The great diversity of MHC genes in natural populations is maintained by different forms of balancing selection and its strength should correlate with the diversity of pathogens to which a population is exposed and the rate of exposure. Despite this prediction, little is known about how life-history characteristics affect selection at the MHC. Here, we examined whether the strength of balancing selection on MHC class II genes in birds (as measured with nonsynonymous nucleotide substitutions, dN) was related to their social or migratory behavior, two life-history characteristics correlated with pathogen exposure. Our comparative analysis indicated that the rate of nonsynonymous substitutions was higher in colonial and migratory species than solitary and resident species, suggesting that the strength of balancing selection increases with coloniality and migratory status. These patterns could be attributed to: (1) elevated transmission rates of pathogens in species that breed in dense aggregations, or (2) exposure to a more diverse fauna of pathogens and parasites in migratory species. Our study suggests that differences in social structure and basic ecological traits influence MHC diversity in natural vertebrate populations. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  1. Mimotopes for alloreactive and conventional T cells in a peptide-MHC display library.

    Directory of Open Access Journals (Sweden)

    Frances Crawford

    2004-04-01

    Full Text Available The use of peptide libraries for the identification and characterization of T cell antigen peptide epitopes and mimotopes has been hampered by the need to form complexes between the peptides and an appropriate MHC molecule in order to construct a complete T cell ligand. We have developed a baculovirus-based peptide library method in which the sequence encoding the peptide is embedded within the genes for the MHC molecule in the viral DNA, such that insect cells infected with virus encoding a library of different peptides each displays a unique peptide-MHC complex on its surface. We have fished in such a library with two different fluorescent soluble T cell receptors (TCRs, one highly peptide specific and the other broadly allo-MHC specific and hypothesized to be much less focused on the peptide portion of the ligand. A single peptide sequence was selected by the former alphabetaTCR that, not unexpectedly, was highly related to the immunizing peptide. As hypothesized, the other alphabetaTCR selected a large family of peptides, related only by a similarity to the immunizing peptide at the p5 position. These findings have implications for the relative importance of peptide and MHC in TCR ligand recognition. This display method has broad applications in T cell epitope identification and manipulation and should be useful in general in studying interactions between complex proteins.

  2. Diversity of MHC DQB and DRB Genes in the Endangered Australian Sea Lion (Neophoca cinerea).

    Science.gov (United States)

    Lau, Quintin; Chow, Natalie; Gray, Rachael; Gongora, Jaime; Higgins, Damien P

    2015-01-01

    Major histocompatibility complex (MHC) class II molecules have an important role in vertebrate adaptive immunity, being responsible for recognizing, binding, and presenting specific antigenic peptides to T lymphocytes. Here, we study the MHC class II DQB and DRB exon 2 genes of the Australian sea lion (Neophoca cinerea), an endangered pinniped species that experiences high pup mortality. Following characterization of N. cinerea DQB and DRB by molecular cloning, and evaluation of diversity in pups across 2 colonies using variant screening (n = 47), 3 DQB alleles and 10 DRB variants (including 1 pseudogene allele) were identified. The higher diversity at DRB relative to DQB is consistent with other studies in marine mammals. Despite overall lower MHC class II allelic diversity relative to some other pinniped species, we observed similar levels of nucleotide diversity and selection in N. cinerea. In addition, we provide support for recent divergence of MHC class II alleles. The characterization of MHC class II diversity in the Australian sea lion establishes a baseline for further investigation of associations with disease, including endemic hookworm infection, and contributes to the conservation management of this species.

  3. Abundance of IFN-alpha and IFN-gamma mRNA in blood of resistant and susceptible chickens infected with Marek's disease virus (MDV) or vaccinated with turkey herpesvirus; and MDV inhibition of subsequent induction of IFN gene transcription.

    Science.gov (United States)

    Quéré, P; Rivas, C; Ester, K; Novak, R; Ragland, W L

    2005-03-01

    The effects of the very virulent RB-1B strain of Marek's disease virus (MDV) and turkey herpesvirus (HVT), a vaccinal strain, on abundance of IFN mRNA in the blood were investigated. MDV and HVT infection did not change the circulating level of IFN-gamma mRNA 1 and 7 days p.i., but they increased IFN-alpha mRNA levels slightly in genetically susceptible (to tumour development) B(13)/B(13) chickens. The total number of circulating leukocytes was unchanged and increase in message was accompanied by an increase in circulating CD8alpha(+) and MHC Class II(+) cells. On the contrary, both viruses slightly increased IFN-gamma transcripts and decreased IFN-alpha transcripts in genetically resistant B(21)/B(21) chickens. Further, oncogenic MDV was able to block the response to inactivated Newcastle disease virus, a potent inducer of IFN, in both chicken lines. The inhibiting effect on transcription was present for both IFN at days 1 and 7 p.i. in susceptible B(13)/B(13) chickens, but only at day 7 p.i. in resistant B(21)/B(21) chickens. By contrast, non-oncogenic HVT did not interfere with induction of either message at one day p.i. and MDV had a more suppressive effect than HVT on IFN gene transcription 7 days p.i. in B(21)/B(21) chickens. Thus, the strong ability of MDV to block induction of IFN gene transcription detected in the blood as soon as one day after infection in susceptible chickens, as opposed to resistant chickens, not only causes immunosuppression but also may be related to the virus's oncogenicity.

  4. Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides.

    Science.gov (United States)

    Wang, Mingjun; Tang, Sheila T; Stryhn, Anette; Justesen, Sune; Larsen, Mette V; Dziegiel, Morten H; Lewinsohn, David M; Buus, Søren; Lund, Ole; Claesson, Mogens H

    2011-04-01

    Major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTL) are known to play an important role in the control of Mycobacterium tuberculosis infection so identification of CTL epitopes from M. tuberculosis is of importance for the development of effective peptide-based vaccines. In the present work, bioinformatics technology was employed to predict binding motifs of 9mer peptides derived from M. tuberculosis for the 12 HLA-I supertypes. Subsequently, the predicted peptides were synthesized and assayed for binding to HLA-I molecules in a biochemically based system. The antigenicity of a total of 157 peptides with measured affinity for HLA-I molecules of K(D) ≤ 500 nM were evaluated using peripheral blood T cells from strongly purified protein derivative reactive healthy donors. Of the 157 peptides, eight peptides (5%) were found to induce T-cell responses. As judged from blocking with HLA class I and II subtype antibodies in the ELISPOT assay culture, none of the eight antigenic peptides induced HLA class I restricted CD8(+) T-cell responses. Instead all responses were blocked by pan-HLA class II and anti-HLA-DR antibodies. In addition, CD4(+) T-cell depletion before the 10 days of expansion, resulted in total loss of reactivity in the ELISPOT culture for most peptide specificities. FACS analyses with intracellular interferon-γ staining of T cells expanded in the presence of M. tuberculosis peptides confirmed that the responsive cells were indeed CD4(+). In conclusion, T-cell immunity against HLA-I binding 9mer M. tuberculosis-derived peptides might in many cases turn out to be mediated by CD4(+) T cells and restricted by HLA-II molecules. The use of 9mer peptides recognized by both CD8(+) and CD4(+) T cells might be of importance for the development of future M. tuberculosis peptide-based vaccines.

  5. Crowing Sound Analysis of Gaga' Chicken; Local Chicken from South Sulawesi Indonesia

    OpenAIRE

    Aprilita Bugiwati, Sri Rachma; Ashari, Fachri

    2008-01-01

    Gaga??? chicken was known as a local chicken at South Sulawesi Indonesia which has unique, specific, and different crowing sound, especially at the ending of crowing sound which is like the voice character of human laughing, comparing with the other types of singing chicken in the world. 287 birds of Gaga??? chicken at 3 districts at the centre habitat of Gaga??? chicken were separated into 2 groups (163 birds of Dangdut type and 124 birds of Slow type) which is based on the speed...

  6. Flavour Chemistry of Chicken Meat: A Review

    Directory of Open Access Journals (Sweden)

    Dinesh D. Jayasena

    2013-05-01

    Full Text Available Flavour comprises mainly of taste and aroma and is involved in consumers’ meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for

  7. Flavour Chemistry of Chicken Meat: A Review

    Science.gov (United States)

    Jayasena, Dinesh D.; Ahn, Dong Uk; Nam, Ki Chang; Jo, Cheorun

    2013-01-01

    Flavour comprises mainly of taste and aroma and is involved in consumers’ meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration

  8. Zoonotic chicken toxoplasmosis in some Egyptians governorates.

    Science.gov (United States)

    Barakat, Ashraf Mohamed; Salem, Lobna Mohamed Ali; El-Newishy, Adel M Abdel-Aziz; Shaapan, Raafat Mohamed; El-Mahllawy, Ehab Kotb

    2012-09-01

    Toxoplasmosis is one of the most common diseases prevalent in the world, caused by a coccidian parasite Toxoplasma gondii which infects humans, animals and birds. Poultry consider reliable human source of food in addition it is considered an intermediate host in transmission of the disease to humans. Trails of isolation of local T. gondii chicken strain through bioassay of the suspected infected chicken tissues in mice was carried out and the isolated strain was confirmed as being T. gondii using Polymerase Chain Reaction (PCR). Seroprevalence of antibodies against T. gondii in chicken sera in six Egyptian governorates were conducted by enzyme linked immune-sorbent assay (ELISA) using the isolated chicken strain antigen. Moreover, comparison between the prevalence rates in different regions of the Egyptian governorates were been estimated. Isolation of local T. gondii chicken strain was accomplished from chicken tissues and confirmed by PCR technique. The total prevalence rate was 68.8% comprised of 59.5, 82.3, 67.1, 62.2, 75 and 50% in El Sharkia, El Gharbia, Kafr El sheikh, Cairo, Quena and Sohag governorates, respectively. The prevalence rates were higher among Free Range (FR) (69.5%) than commercial farm Chickens (C) (68.5%); while, the prevalence rate was less in Upper Egypt than Lower Egypt governorates and Cairo. This study is the first was used antigen from locally isolated T. gondii chicken strain for the diagnosis of chicken toxoplasmosis. The higher seroprevalence particularly in free range chickens (house-reared) refers to the public health importance of chickens as source of zoonotic toxoplasmosis to human.

  9. Identification of a dual-specific T cell epitope of the hemagglutinin antigen of an h5 avian influenza virus in chickens.

    Directory of Open Access Journals (Sweden)

    Hamid R Haghighi

    Full Text Available Avian influenza viruses (AIV of the H5N1 subtype have caused morbidity and mortality in humans. Although some migratory birds constitute the natural reservoir for this virus, chickens may play a role in transmission of the virus to humans. Despite the importance of avian species in transmission of AIV H5N1 to humans, very little is known about host immune system interactions with this virus in these species. The objective of the present study was to identify putative T cell epitopes of the hemagglutinin (HA antigen of an H5 AIV in chickens. Using an overlapping peptide library covering the HA protein, we identified a 15-mer peptide, H5(246-260, within the HA1 domain which induced activation of T cells in chickens immunized against the HA antigen of an H5 virus. Furthermore, H5(246-260 epitope was found to be presented by both major histocompatibility complex (MHC class I and II molecules, leading to activation of CD4+ and CD8+ T cell subsets, marked by proliferation and expression of interferon (IFN-gamma by both of these cell subsets as well as the expression of granzyme A by CD8+ T cells. This is the first report of a T cell epitope of AIV recognized by chicken T cells. Furthermore, this study extends the previous finding of the existence of dual-specific epitopes in other species to chickens. Taken together, these results elucidate some of the mechanisms of immune response to AIV in chickens and provide a platform for creation of rational vaccines against AIV in this species.

  10. Chicken leukemia inhibitory factor maintains chicken embryonic stem cells in the undifferentiated state.

    Science.gov (United States)

    Horiuchi, Hiroyuki; Tategaki, Airo; Yamashita, Yusuke; Hisamatsu, Hikaru; Ogawa, Mari; Noguchi, Takashi; Aosasa, Masayoshi; Kawashima, Tsuyoshi; Akita, Sachiko; Nishimichi, Norihisa; Mitsui, Naoko; Furusawa, Shuichi; Matsuda, Haruo

    2004-06-04

    Mouse embryonic stem (ES) cells can be maintained in an undifferentiated state in the presence of leukemia inhibitory factor (LIF), a member of the interleukin-6 cytokine family. In other mammals, this is not possible with LIF alone. Chicken ES-like cells (blastodermal cells) have only been cultured with mouse LIF because chicken LIF was not available. However the culture system is imperfect and chicken ES-like cells equivalent to mouse ES cells were not observed. In the present study, we cloned the cDNA-encoding chicken LIF using mRNA subtraction and RACE methodology. The chicken LIF cDNA encodes a protein with approximately 40% sequence identity to mouse LIF. It has 211 amino acids including a putative N-terminal signal peptide of 24 residues. Chicken blastodermal cells were cultured in the presence of bacterially expressed chicken LIF or mouse LIF. The expression of alkaline phosphatase and embryonal carcinoma cell monoclonal antibody-1 and stage-specific embryonic antigen-1 and the activation of STAT3 were examined, all of which are indices of the undifferentiated state. Exposure in the blastodermal cells to recombinant chicken LIF but not to mouse LIF maintained the expression of these various markers. After 9 days of incubation, the blastodermal cells formed cystic embryoid bodies in the presence of mouse LIF but not in the presence of recombinant chicken LIF. We conclude that chicken LIF is able to maintain chicken ES cell cultures in the undifferentiated state.

  11. Production of crispy bread snacks containing chicken meat and chicken meat powder

    Directory of Open Access Journals (Sweden)

    HULYA CAKMAK

    Full Text Available ABSTRACT Chicken meat in two different forms (chicken meat and chicken meat powder were added into white flour and whole wheat blend baguette bread formulations for protein enrichment and finally developing new and healthy snacks. The chicken meat and powder levels were 10% for white flour baguette, and 15% for whole wheat blend. The dried baguette samples were packaged under 100% N2, and physical, chemical, microbiological and sensorial properties were evaluated during 3 months of storage. Protein content of chicken meat powder added samples were found statistically higher than chicken meat added samples. Hardness of the snacks was significantly affected from type of chicken meat, such as values were higher for chicken meat added samples than chicken meat powder added samples. Lipid oxidation of the snacks was determined by TBA analysis, and TBA value for whole wheat mixture snack with 15% of chicken meat was the highest among all during storage. The highest overall acceptance score was obtained from white flour snack with 10% chicken meat. There was no coliform bacteria detected during storage and the results of yeast-mold count and aerobic plate count of snacks remained between the quantitative ranges.

  12. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ

    DEFF Research Database (Denmark)

    Karosiene, Edita; Rasmussen, Michael; Blicher, Thomas;

    2013-01-01

    importance for understanding the nature of immune responses and identifying T cell epitopes for the design of new vaccines and immunotherapies. Given the large number of MHC variants, and the costly experimental procedures needed to evaluate individual peptide–MHC interactions, computational predictions have...

  13. A New Chicken Genome Assembly Provides Insight into Avian Genome Structure

    Directory of Open Access Journals (Sweden)

    Wesley C. Warren

    2017-01-01

    Full Text Available The importance of the Gallus gallus (chicken as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3, built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts.

  14. Characterization of duck (Anas platyrhynchos) MHC class I gene in two duck lines

    Indian Academy of Sciences (India)

    LIN ZHANG; WEI-JIE LIU; JIA-QIANG WU; MIN-LI XU; ZHENG-JIE KONG; YAN-YAN HUANG; SHAO-HUA YANG

    2017-06-01

    To enrich gene polymorphism ofDuMHCI and provide data for further studies on disease resistance, 14DuMHCI genes from Weishan Ma duck and Cherry Valley duck were cloned, and their characterization were investigated. The overallconservation of the 14 alleles could be observed within the sequences, and relative conservation were also displayed in the peptide-binding domain and CD8 interaction sites. Based on full-length amino acid homology, MHC class I fromdifferent duck lines could be divided into 13 gene groups and three novel gene groups existed.Moreover, 14 key variable residues corresponding to gene groups division were exhibited on the homology modelling constructed based on theresolved protein structure of DuMHC I. This study explicit the characteristics of DuMHC I in the two duck lines and could contribute to design effective diagnostics and vaccines for the species against various infections.

  15. Force measurements of TCR/pMHC recognition at T cell surface.

    Directory of Open Access Journals (Sweden)

    Pierre-Henri Puech

    Full Text Available The rupture forces and adhesion frequencies of single recognition complexes between an affinity selected peptide/MHC complex and a TCR at a murine hybridoma surface were measured using Atomic Force Microscopy. When the CD8 coreceptor is absent, the adhesion frequency depends on the nature of the peptide but the rupture force does not. When CD8 is present, no effect of the nature of the peptide is observed. CD8 is proposed to act as a time and distance lock, enabling the shorter TCR molecule to bridge the pMHC and have time to finely read the peptide. Ultimately, such experiments could help the dissection of the sequential steps by which the TCR reads the peptide/MHC complex in order to control T cell activation.

  16. NetCTLpan: pan-specific MHC class I pathway epitope predictions

    DEFF Research Database (Denmark)

    Stranzl, Thomas; Larsen, Mette Voldby; Lundegaard, Claus;

    2010-01-01

    molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I......Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates...... cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying...

  17. Epitope flexibility and dynamic footprint revealed by molecular dynamics of a pMHC-TCR complex.

    Science.gov (United States)

    Reboul, Cyril F; Meyer, Grischa R; Porebski, Benjamin T; Borg, Natalie A; Buckle, Ashley M

    2012-01-01

    The crystal structures of unliganded and liganded pMHC molecules provide a structural basis for TCR recognition yet they represent 'snapshots' and offer limited insight into dynamics that may be important for interaction and T cell activation. MHC molecules HLA-B*3501 and HLA-B*3508 both bind a 13 mer viral peptide (LPEP) yet only HLA-B*3508-LPEP induces a CTL response characterised by the dominant TCR clonetype SB27. HLA-B*3508-LPEP forms a tight and long-lived complex with SB27, but the relatively weak interaction between HLA-B*3501-LPEP and SB27 fails to trigger an immune response. HLA-B*3501 and HLA-B*3508 differ by only one amino acid (L/R156) located on α2-helix, but this does not alter the MHC or peptide structure nor does this polymorphic residue interact with the peptide or SB27. In the absence of a structural rationalisation for the differences in TCR engagement we performed a molecular dynamics study of both pMHC complexes and HLA-B*3508-LPEP in complex with SB27. This reveals that the high flexibility of the peptide in HLA-B*3501 compared to HLA-B*3508, which was not apparent in the crystal structure alone, may have an under-appreciated role in SB27 recognition. The TCR pivots atop peptide residues 6-9 and makes transient MHC contacts that extend those observed in the crystal structure. Thus MD offers an insight into 'scanning' mechanism of SB27 that extends the role of the germline encoded CDR2α and CDR2β loops. Our data are consistent with the vast body of experimental observations for the pMHC-LPEP-SB27 interaction and provide additional insights not accessible using crystallography.

  18. Epitope flexibility and dynamic footprint revealed by molecular dynamics of a pMHC-TCR complex.

    Directory of Open Access Journals (Sweden)

    Cyril F Reboul

    Full Text Available The crystal structures of unliganded and liganded pMHC molecules provide a structural basis for TCR recognition yet they represent 'snapshots' and offer limited insight into dynamics that may be important for interaction and T cell activation. MHC molecules HLA-B*3501 and HLA-B*3508 both bind a 13 mer viral peptide (LPEP yet only HLA-B*3508-LPEP induces a CTL response characterised by the dominant TCR clonetype SB27. HLA-B*3508-LPEP forms a tight and long-lived complex with SB27, but the relatively weak interaction between HLA-B*3501-LPEP and SB27 fails to trigger an immune response. HLA-B*3501 and HLA-B*3508 differ by only one amino acid (L/R156 located on α2-helix, but this does not alter the MHC or peptide structure nor does this polymorphic residue interact with the peptide or SB27. In the absence of a structural rationalisation for the differences in TCR engagement we performed a molecular dynamics study of both pMHC complexes and HLA-B*3508-LPEP in complex with SB27. This reveals that the high flexibility of the peptide in HLA-B*3501 compared to HLA-B*3508, which was not apparent in the crystal structure alone, may have an under-appreciated role in SB27 recognition. The TCR pivots atop peptide residues 6-9 and makes transient MHC contacts that extend those observed in the crystal structure. Thus MD offers an insight into 'scanning' mechanism of SB27 that extends the role of the germline encoded CDR2α and CDR2β loops. Our data are consistent with the vast body of experimental observations for the pMHC-LPEP-SB27 interaction and provide additional insights not accessible using crystallography.

  19. Refinement of the MHC risk map in a scandinavian primary sclerosing cholangitis population.

    Directory of Open Access Journals (Sweden)

    Sigrid Næss

    Full Text Available Genetic variants within the major histocompatibility complex (MHC represent the strongest genetic susceptibility factors for primary sclerosing cholangitis (PSC. Identifying the causal variants within this genetic complex represents a major challenge due to strong linkage disequilibrium and an overall high physical density of candidate variants. We aimed to refine the MHC association in a geographically restricted PSC patient panel.A total of 365 PSC cases and 368 healthy controls of Scandinavian ancestry were included in the study. We incorporated data from HLA typing (HLA-A, -B, -C, -DRB3, -DRB1, -DQB1 and single nucleotide polymorphisms across the MHC (n = 18,644; genotyped and imputed alongside previously suggested PSC risk determinants in the MHC, i.e. amino acid variation of DRβ, a MICA microsatellite polymorphism and HLA-C and HLA-B according to their ligand properties for killer immunoglobulin-like receptors. Breakdowns of the association signal by unconditional and conditional logistic regression analyses demarcated multiple PSC associated MHC haplotypes, and for eight of these classical HLA class I and II alleles represented the strongest association. A novel independent risk locus was detected near NOTCH4 in the HLA class III region, tagged by rs116212904 (odds ratio [95% confidence interval] = 2.32 [1.80, 3.00], P = 1.35×10-11.Our study shows that classical HLA class I and II alleles, predominantly at HLA-B and HLA-DRB1, are the main risk factors for PSC in the MHC. In addition, the present assessments demonstrated for the first time an association near NOTCH4 in the HLA class III region.

  20. MHC allele frequency distributions under parasite-driven selection: A simulation model

    Directory of Open Access Journals (Sweden)

    Radwan Jacek

    2010-10-01

    Full Text Available Abstract Background The extreme polymorphism that is observed in major histocompatibility complex (MHC genes, which code for proteins involved in recognition of non-self oligopeptides, is thought to result from a pressure exerted by parasites because parasite antigens are more likely to be recognized by MHC heterozygotes (heterozygote advantage and/or by rare MHC alleles (negative frequency-dependent selection. The Ewens-Watterson test (EW is often used to detect selection acting on MHC genes over the recent history of a population. EW is based on the expectation that allele frequencies under balancing selection should be more even than under neutrality. We used computer simulations to investigate whether this expectation holds for selection exerted by parasites on host MHC genes under conditions of heterozygote advantage and negative frequency-dependent selection acting either simultaneously or separately. Results In agreement with simple models of symmetrical overdominance, we found that heterozygote advantage acting alone in populations does, indeed, result in more even allele frequency distributions than expected under neutrality, and this is easily detectable by EW. However, under negative frequency-dependent selection, or under the joint action of negative frequency-dependent selection and heterozygote advantage, distributions of allele frequencies were less predictable: the majority of distributions were indistinguishable from neutral expectations, while the remaining runs resulted in either more even or more skewed distributions than under neutrality. Conclusions Our results indicate that, as long as negative frequency-dependent selection is an important force maintaining MHC variation, the EW test has limited utility in detecting selection acting on these genes.

  1. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL

    Science.gov (United States)

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4+ T cells. ldlr−/− syk−/− mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr−/− mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis. PMID:25946330

  2. Diversification of porcine MHC class II genes: evidence for selective advantage.

    Science.gov (United States)

    Luetkemeier, Erin S; Malhi, Ripan S; Beever, Jonathan E; Schook, Lawrence B

    2009-02-01

    The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene PsiDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (PsiDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (PsiDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (PsiDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d (N) (DQB 1.476, DRB1 1.724, and PsiDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred.

  3. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL.

    Science.gov (United States)

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.

  4. Structural features of the αβTCR mechanotransduction apparatus that promote pMHC discrimination

    Directory of Open Access Journals (Sweden)

    Kristine N Brazin

    2015-09-01

    Full Text Available The αβTCR was recently revealed to function as a mechanoreceptor. That is, it leverages mechanical energy generated during immune surveillance and at the immunological synapse to drive biochemical signaling following ligation by a specific foreign peptide-MHC complex (pMHC. Here we review the structural features that optimize this transmembrane receptor for mechanotransduction. Specialized adaptations include: 1 the CβFG loop region positioned between Vβ and Cβ domains that allosterically gates both dynamic TCR-pMHC bond formation and lifetime; 2 the rigid super β-sheet amalgams of heterodimeric CD3εγ as well as CD3εδ ectodomain components of the αβTCR complex; 3 the αβTCR subunit connecting peptides (CP linking the extracellular and transmembrane (TM segments, particularly the oxidized CxxC motif in each CD3 heterodimeric subunit that facilitates force transfer through the TM segments and surrounding lipid, impacting cytoplasmic tail conformation; and 4 quaternary changes in the αβTCR complex that accompany pMHC ligation under load. How bioforces foster specific αβTCR-based pMHC discrimination and why dynamic bond formation is a primary basis for kinetic proofreading are discussed. We suggest that the details of the molecular rearrangements of individual αβTCR subunit components can be analyzed utilizing a combination of structural biology, single molecule FRET, optical tweezers and nanobiology, guided by insightful atomistic molecular dynamic studies. Finally, we review very recent data showing that the preTCR complex employs a similar mechanobiology to that of the αβTCR to interact with self-pMHC ligands, impacting early thymic repertoire selection prior to the CD4+CD8+ double positive thymocyte stage of development.

  5. MHC class I of saltwater crocodiles (Crocodylus porosus): polymorphism and balancing selection.

    Science.gov (United States)

    Jaratlerdsiri, Weerachai; Isberg, Sally R; Higgins, Damien P; Gongora, Jaime

    2012-11-01

    Saltwater crocodiles are in high demand for the production of luxury fashion items. However, their susceptibility to disease incurs substantial losses and it is hoped to be able to genetically select these animals for disease resistance. So far, this has only been enabled by phenotypic selection. Investigating the major histocompatibility complex (MHC) could provide insight into the ability of an individual to respond to pathogens acting as a selective pressure on the host. Here, we assessed genetic diversity and a role of selection in shaping the diversity of MHC class I exon 3 among 42 saltwater crocodiles from nine river basins in the Northern Territory, Australia. We generated 640 sequences using cloning and sequencing methods and identified 43 MHC variants among them. Phylogenetic analyses clustered these variants into two major clades, which may suggest two gene lineages. We found the number of variants within an individual varying between one and seven, indicating that there are at least four gene loci in this species. Selection detection analyses revealed an elevated ratio of nonsynonymous to synonymous substitutions (mean = 1.152 per codon), suggesting balancing selection. Population differentiation analyses revealed that the MHC did not show structuring among the river basins, and there were some shared variants among them. This may be a result of possible gene flow and/or similar selection pressures among populations. These findings provide background knowledge to identify potential MHC markers, which could be used for selecting genetically variable individuals for future disease associations. All MHC class I exon 3 sequences reported in this paper were submitted to the GenBank database with following accession numbers: HQ008785-HQ008789, HQ008791-HQ008798, HQ008808-HQ008815, HQ008824, HQ008826-HQ008830, HQ008835, HQ008839, HQ008842-HQ008850, and JX023536-JX023540.

  6. Inhibition of MHC class I is a virulence factor in herpes simplex virus infection of mice.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    2005-09-01

    Full Text Available Herpes simplex virus (HSV has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.

  7. Enteric parvovirus infections of chickens and turkeys

    Science.gov (United States)

    Chicken and turkey parvoviruses are members of the Parvovirus family. Comparative sequence analysis of their genome structure revealed that they should form a new genus within the vertebrate Parvovirinae subfamily. The first chicken and turkey parvoviruses were identified by electron microscopy duri...

  8. Nano-nutrition of chicken embryos

    DEFF Research Database (Denmark)

    Grodzik, Marta; Sawosz, Filip; Sawosz, Ewa

    2013-01-01

    factors of chicken embryo pectoral muscles. ND, Gln, and Gln/ND solutions (50 mg/L) were injected into fertilized broiler chicken eggs at the beginning of embryogenesis. Muscle tissue was dissected at day 20 of incubation and analysed for gene expression of FGF2, VEGF-A, and MyoD1. ND and especially Gln...

  9. Autoimmune hemolytic anemia secondary to chicken pox

    Directory of Open Access Journals (Sweden)

    Abraham M Ittyachen

    2013-01-01

    Full Text Available Autoimmune hemolytic anemia (AIHA is a rare complication of chicken pox. It is described mainly in children. Even in children it is a rare complication and the long-term prognosis remains to be elucidated. Herein we report an adult, a 23-year-old male who developed AIHA secondary to chicken pox.

  10. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    Science.gov (United States)

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  11. MHC class II tetramers made from isolated recombinant α and β chains refolded with affinity-tagged peptides

    DEFF Research Database (Denmark)

    Braendstrup, Peter; Justesen, Sune Frederik Lamdahl; Osterbye, Thomas

    2013-01-01

    Targeting CD4+ T cells through their unique antigen-specific, MHC class II-restricted T cell receptor makes MHC class II tetramers an attractive strategy to identify, validate and manipulate these cells at the single cell level. Currently, generating class II tetramers is a specialized undertaking...

  12. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance...

  13. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation.

    Science.gov (United States)

    Blander, J Magarian

    2016-07-01

    MHC class I (MHC-I) molecules are the centerpieces of cross-presentation. They are loaded with peptides derived from exogenous sources and displayed on the plasma membrane to communicate with CD8 T cells, relaying a message of tolerance or attack. The study of cross-presentation has been focused on the relative contributions of the vacuolar versus cytosolic pathways of antigen processing and the location where MHC-I molecules are loaded. While vacuolar processing generates peptides loaded onto vacuolar MHC-I molecules, how and where exogenous peptides generated by the proteasome and transported by TAP meet MHC-I molecules for loading has been a matter of debate. The source and trafficking of MHC-I molecules in dendritic cells have largely been ignored under the expectation that these molecules came from the Endoplasmic reticulum (ER) or the plasma membrane. New studies reveal a concentrated pool of MHC-I molecules in the endocytic recycling compartment (ERC). These pools are rapidly mobilized to phagosomes carrying microbial antigens, and in a signal-dependent manner under the control of Toll-like receptors. The phagosome becomes a dynamic hub receiving traffic from multiple sources, the ER-Golgi intermediate compartment for delivering the peptide-loading machinery and the ERC for deploying MHC-I molecules that alert CD8 T cells of infection.

  14. Deleterious impact of feto-maternal MHC compatibility on the success of pregnancy in a macaque model.

    Science.gov (United States)

    Aarnink, Alice; Mee, Edward T; Savy, Nicolas; Congy-Jolivet, Nicolas; Rose, Nicola J; Blancher, Antoine

    2014-02-01

    The impact of feto-maternal histocompatibility on reproduction has inspired long-lasting debates. However, after the review of numerous articles, the impact of HLA allele sharing within couples on fecundity remains questionable. We decided to explore the impact of major histocompatibility complex (MHC) feto-maternal compatibility on reproduction in a cynomolgus macaque facility composed of animals of Mauritian descent. The Mauritian-derived macaque population presents a very restricted MHC polymorphism (only seven founding haplotypes) due to a strong founding bottleneck effect. The MHC polymorphism was investigated in 237 trios (male, female and offspring) using 17 microsatellite markers distributed across the MHC. Haplotypes were confirmed by segregation analysis. We evaluated the relative frequencies of MHC-compatible and MHC-semi-compatible offspring with the mothers. Among the 237 trios, we selected 42 trios for which the identity of the father is certain and for which the theoretical probabilities of fully compatible and semi-compatible offspring were equal. We found 11 offspring fully compatible and 31 offspring semi-compatible with their respective mother. The observed proportions were clearly outside the interval of confidence of 99 % and therefore most probably resulted from a selection of the semi-compatible offspring during pregnancy. We concluded that MHC fully compatible cynomolgus macaque offspring have a selective survival disadvantage in comparison with offspring inheriting a paternal MHC haplotype differing from maternal haplotypes.

  15. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis.

    Science.gov (United States)

    Buschow, Sonja I; van Balkom, Bas W M; Aalberts, Marian; Heck, Albert J R; Wauben, Marca; Stoorvogel, Willem

    2010-01-01

    Professional antigen-presenting cells secrete major histocompatibility complex class II (MHC II) carrying exosomes with unclear physiological function(s). Exosomes are first generated as the intraluminal vesicles (ILVs) of a specific type of multivesicular body, and are then secreted by fusion of this compartment with the plasma membrane. We have previously shown that in contrast to the sorting of MHC II at lysosomally targeted multivesicular bodies, sorting of MHC II into exosomes does not rely on MHC II ubiquitination. In search for proteins that drive the incorporation of MHC II into exosomes or functionally discriminate exosomal from plasma membrane MHC II, we first analyzed the total proteome of highly purified B cell-derived exosomes using sensitive and accurate mass spectrometry (MS), and identified 539 proteins, including known and not previously identified constituents. Using quantitative MS, we then identified a small subset of proteins that were specifically co-immunoprecipitated with MHC II from detergent-solubilized exosomes. These include HSC71, HSP90, 14-3-3ɛ, CD20 and pyruvate kinase type M2 (PKM2), and we speculate on the functionality of their interaction with exosomal MHC II.

  16. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2009-09-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC molecule plays a central role in controlling the adaptive immune response to infections. MHC class I molecules present peptides derived from intracellular proteins to cytotoxic T cells, whereas MHC class II molecules stimulate cellular and humoral immunity through presentation of extracellularly derived peptides to helper T cells. Identification of which peptides will bind a given MHC molecule is thus of great importance for the understanding of host-pathogen interactions, and large efforts have been placed in developing algorithms capable of predicting this binding event. Results Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data due to redundant binding core representation. Incorporation of information about the residues flanking the peptide-binding core is shown to significantly improve the prediction accuracy. The method is evaluated on a large-scale benchmark consisting of six independent data sets covering 14 human MHC class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. Conclusion The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCII-2.0.

  17. Generation of a genomic tiling array of the human Major Histocompatibility Complex (MHC and its application for DNA methylation analysis

    Directory of Open Access Journals (Sweden)

    Ottaviani Diego

    2008-05-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC is essential for human immunity and is highly associated with common diseases, including cancer. While the genetics of the MHC has been studied intensively for many decades, very little is known about the epigenetics of this most polymorphic and disease-associated region of the genome. Methods To facilitate comprehensive epigenetic analyses of this region, we have generated a genomic tiling array of 2 Kb resolution covering the entire 4 Mb MHC region. The array has been designed to be compatible with chromatin immunoprecipitation (ChIP, methylated DNA immunoprecipitation (MeDIP, array comparative genomic hybridization (aCGH and expression profiling, including of non-coding RNAs. The array comprises 7832 features, consisting of two replicates of both forward and reverse strands of MHC amplicons and appropriate controls. Results Using MeDIP, we demonstrate the application of the MHC array for DNA methylation profiling and the identification of tissue-specific differentially methylated regions (tDMRs. Based on the analysis of two tissues and two cell types, we identified 90 tDMRs within the MHC and describe their characterisation. Conclusion A tiling array covering the MHC region was developed and validated. Its successful application for DNA methylation profiling indicates that this array represents a useful tool for molecular analyses of the MHC in the context of medical genomics.

  18. A community resource benchmarking predictions of peptide binding to MHC-I molecules

    DEFF Research Database (Denmark)

    Peters, B; Bui, HH; Pletscher-Frankild, Sune

    2006-01-01

    of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, and chimpanzee MHC class I alleles. We use this data to establish a set of benchmark predictions with one...... practice of tool developers having to generate reference predictions themselves, which can lead to underestimating the performance of prediction methods they are not as familiar with as their own. The overall goal of this effort is to provide a transparent prediction evaluation allowing bioinformaticians...

  19. Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy.

    Science.gov (United States)

    Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Lapointe, Réjean

    2012-09-01

    The success of immunotherapy relies on the participation of all arms of the immune system and the role of CD4+ T lymphocytes in preventing tumor growth is now well established. Understanding how tumors evade immune responses holds the key to the development of cancer immunotherapies. In this review, we discuss how MHC Class II expression varies in cancer cells and how this influences antitumor immune responses. We also discuss the means that are currently available for harnessing the MHC Class II antigen presentation pathway for the development of efficient vaccines to activate the immune system against cancer.

  20. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms

    Directory of Open Access Journals (Sweden)

    Feng Lin

    2007-11-01

    Full Text Available Abstract Background Peptides binding to Major Histocompatibility Complex (MHC class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule – a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1 an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2 quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion We present two MOEA-based algorithms for finding motifs

  1. Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Colin J Powers

    Full Text Available The US2-11 region of human and rhesus cytomegalovirus encodes a conserved family of glycoproteins that inhibit MHC-I assembly with viral peptides, thus preventing cytotoxic T cell recognition. Since HCMV lacking US2-11 is no longer able to block assembly and transport of MHC-I, we examined whether this is also observed for RhCMV lacking the corresponding region. Unexpectedly, recombinant RhCMV lacking US2-11 was still able to inhibit MHC-I expression in infected fibroblasts, suggesting the presence of an additional MHC-I evasion mechanism. Progressive deletion analysis of RhCMV-specific genomic regions revealed that MHC-I expression is fully restored upon additional deletion of rh178. The protein encoded by this RhCMV-specific open reading frame is anchored in the endoplasmic reticulum membrane. In the presence of rh178, RhCMV prevented MHC-I heavy chain (HC expression, but did not inhibit mRNA transcription or association of HC mRNA with translating ribosomes. Proteasome inhibitors stabilized a HC degradation intermediate in the absence of rh178, but not in its presence, suggesting that rh178 prevents completion of HC translation. This interference was signal sequence-dependent since replacing the signal peptide with that of CD4 or murine HC rendered human HCs resistant to rh178. We have identified an inhibitor of antigen presentation encoded by rhesus cytomegalovirus unique in both its lack of homology to any other known protein and in its mechanism of action. By preventing signal sequence-dependent HC translocation, rh178 acts prior to US2, US3 and US11 which attack MHC-I proteins after protein synthesis is completed. Rh178 is the first viral protein known to interfere at this step of the MHC-I pathway, thus taking advantage of the conserved nature of HC leader peptides, and represents a new mechanism of translational interference.

  2. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2011-01-01

    response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection...... against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute...

  3. Is the Framework of Cohn's 'Tritope Model' for How T Cell Receptors Recognize Peptide/Self-MHC Complexes and Allo-MHC Plausible?

    Science.gov (United States)

    Bretscher, Peter A

    2016-05-01

    Cohn has developed the tritope model to describe how distinct domains of the T cell receptor (TcR) recognize peptide/self-MHC complexes and allo-MHC. He has over the years employed this model as a framework for considering how the TcR might mediate various signals [1-5]. In a recent publication [5], Cohn employs the Tritope Model to propose a detailed mechanism for the T cell receptor's involvement in positive thymic selection [5]. During a review of this proposal, I became uneasy over the plausibility of the underlying framework of the Tritope Model. I outline here the evolutionary considerations making me question this framework. I also suggest that the proposed framework underlying the Tritope Model makes strong predictions whose validity can most probably be assessed by considering observations reported in the literature.

  4. Updating parameters of the chicken processing line model

    DEFF Research Database (Denmark)

    Kurowicka, Dorota; Nauta, Maarten; Jozwiak, Katarzyna

    2010-01-01

    A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows...... of the chicken processing line model....

  5. Pan-specific MHC class I predictors: A benchmark of HLA class I pan-specific prediction methods

    DEFF Research Database (Denmark)

    Zhang, Hao; Lundegaard, Claus; Nielsen, Morten

    2009-01-01

    emerging pathogens. Methods have recently been published that are able to predict peptide binding to any human MHC class I molecule. In contrast to conventional allele-specific methods, these methods do allow for extrapolation to un-characterized MHC molecules. These pan-specific HLA predictors have...... not previously been compared using independent evaluation sets. Results: A diverse set of quantitative peptide binding affinity measurements was collected from IEDB, together with a large set of HLA class I ligands from the SYFPEITHI database. Based on these data sets, three different pan-specific HLA web......-accessible predictors NetMHCpan, Adaptive-Double-Threading (ADT), and KISS were evaluated. The performance of the pan-specific predictors was also compared to a well performing allele-specific MHC class I predictor, NetMHC, as well as a consensus approach integrating the predictions from the NetMHC and Net...

  6. Characterization and expression of MHC class II alpha and II beta genes in mangrove red snapper (Lutjanus argentimaculatus).

    Science.gov (United States)

    Wang, Tianyan; Tan, Shangjin; Cai, Zhonghua

    2015-12-01

    The major histocompatibility complex (MHC) class II plays a key role in adaptive immunity by presenting foreign peptides to CD4(+) T cells and by triggering the adaptive immune response. While the structure and function of MHC class II have been well characterized in mammalian, limited research has been done on fishes. In this study, we characterized the gene structure and expression of MHC class II α (Lunar-DAA) and II β (Lunar-DAB) of mangrove red snapper (Lutjanus argentimaculatus). Both genes shared, respectively, a high similarity and typical features with other vertebrate MHC class II α and II β. The phylogenetic analysis of the deduced peptides revealed that both Lunar-DAA and Lunar-DAB were located in the teleost subclass. Western blotting analyses indicated that both MHC class II α and II β were expressed ubiquitously in immune-related cells, tissues and organs, and that MHC class II α and II β chains existed mainly as heterodimers. While it was highly expressed in gills, thymus, head kidney (HK), spleen, head kidney macrophage and spleen leucocytes, MHC class II β chain was expressed with a low abundance in skin, intestine, stomach and heart. The highest expression of MHC class II β in thymus confirmed the conclusion that thymus is one of the primary lymphoid organs in fishes. The detection of MHC class II αβ dimers in HK macrophages and spleen leucocytes indicated that HK macrophages and spleen leucocytes play a critical role in the adaptive immunity in fishes. All these results provide valuable information for understanding the structure of MHC class II α and II β and their function in immune responses.

  7. "Chickens Are a Lot Smarter than I Originally Thought": Changes in Student Attitudes to Chickens Following a Chicken Training Class.

    Science.gov (United States)

    Hazel, Susan J; O'Dwyer, Lisel; Ryan, Terry

    2015-01-01

    A practical class using clicker training of chickens to apply knowledge of how animals learn and practice skills in animal training was added to an undergraduate course. Since attitudes to animals are related to their perceived intelligence, surveys of student attitudes were completed pre- and post- the practical class, to determine if (1) the practical class changed students' attitudes to chickens and their ability to experience affective states, and (2) any changes were related to previous contact with chickens, training experience or gender. In the post- versus pre-surveys, students agreed more that chickens are easy to teach tricks to, are intelligent, and have individual personalities and disagreed more that they are difficult to train and are slow learners. Following the class, they were more likely to believe chickens experience boredom, frustration and happiness. Females rated the intelligence and ability to experience affective states in chickens more highly than males, although there were shifts in attitude in both genders. This study demonstrated shifts in attitudes following a practical class teaching clicker training in chickens. Similar practical classes may provide an effective method of teaching animal training skills and promoting more positive attitudes to animals.

  8. 78 FR 49283 - Chicken Ranch Rancheria-Chicken Ranch Liquor Licensing Ordinance, Ordinance No. 12-10-03

    Science.gov (United States)

    2013-08-13

    ... Bureau of Indian Affairs Chicken Ranch Rancheria--Chicken Ranch Liquor Licensing Ordinance, Ordinance No... the Chicken Ranch Liquor Licensing Ordinance, Ordinance No. 12-10-03. The Ordinance regulates and controls the possession, sale and consumption of liquor within the Indian Country of the Chicken Ranch...

  9. High-throughput identification of potential minor histocompatibility antigens by MHC tetramer-based screening

    DEFF Research Database (Denmark)

    Hombrink, Pleun; Hadrup, Sine R; Bakker, Arne;

    2011-01-01

    MHC-tetramer-based enrichment and multi-color flow cytometry. Using this approach, 71 peptide-reactive T-cell populations were generated. The isolation of a T-cell line specifically recognizing target cells expressing the MAP4K1(IMA) antigen demonstrates that identification of MiHA through this approach is in principle...

  10. Axotomy induces MHC class I antigen expression on rat nerve cells

    DEFF Research Database (Denmark)

    Maehlen, J; Schröder, H D; Klareskog, L;

    1988-01-01

    Immunomorphological staining demonstrates that class I major histocompatibility complex (MHC)-coded antigen expression can be selectively induced on otherwise class I-negative rat nerve cells by peripheral axotomy. Induction of class I as well as class II antigen expression was simultaneously see...

  11. Differential scanning fluorimetry based assessments of the thermal and kinetic stability of peptide-MHC complexes.

    Science.gov (United States)

    Hellman, Lance M; Yin, Liusong; Wang, Yuan; Blevins, Sydney J; Riley, Timothy P; Belden, Orrin S; Spear, Timothy T; Nishimura, Michael I; Stern, Lawrence J; Baker, Brian M

    2016-05-01

    Measurements of thermal stability by circular dichroism (CD) spectroscopy have been widely used to assess the binding of peptides to MHC proteins, particularly within the structural immunology community. Although thermal stability assays offer advantages over other approaches such as IC50 measurements, CD-based stability measurements are hindered by large sample requirements and low throughput. Here we demonstrate that an alternative approach based on differential scanning fluorimetry (DSF) yields results comparable to those based on CD for both class I and class II complexes. As they require much less sample, DSF-based measurements reduce demands on protein production strategies and are amenable for high throughput studies. DSF can thus not only replace CD as a means to assess peptide/MHC thermal stability, but can complement other peptide-MHC binding assays used in screening, epitope discovery, and vaccine design. Due to the physical process probed, DSF can also uncover complexities not observed with other techniques. Lastly, we show that DSF can also be used to assess peptide/MHC kinetic stability, allowing for a single experimental setup to probe both binding equilibria and kinetics.

  12. Induction of Erythropoiesis by MHC-Mediated Cognate Interactions between B- and T-Cells.

    Science.gov (United States)

    Guha, A; Tuck, D P; Cone, R E; Dainiak, N

    1997-01-01

    We have previously shown that the expression of membrane burst-promoting activity (mBPA), an erythropoietic cytokine, by B-lymphocytes is augmented by the addition of allogeneic effector cells to the B-cells. Here, we have examined immune mechanisms involved in the induction/promotion of erythropoiesis as assessed by the capacity of autologous and allogeneic peripheral blood lymphocytes to augment burst-forming unit-erythroid (BFU-E) in normal human bone marrow cells in vitro. Preincubation of mBPA-expressing human B-cells with monoclonal antibodies to major histocompatibility complex (MHC) antigens, abrogated erythropoietic activity of both autologous and allogeneic lymphocytes, suggesting that MHC antigens play a role in regulating the expression of the erythroid growth factor. Inhibition of BFU-E proliferation was also evident when antibodies to MHC class-I or class-II antigens were added directly to marrow culture. Furthermore, addition of anti-CD4 antibody to the cultures of PBL and autologous target BM cells markedly reduced erythroid proliferation induced by PBL. By contrast, anti-CD8 and control (UPC-10) monoclonal antibodies had no effect. These results provide evidence that MHC-mediated cognate interactions between T- and B-lymphocytes may participate in the control of erythropoiesis, either directly or by modulating mBPA function.

  13. NetMHCpan, a method for MHC class I binding prediction beyond humans

    DEFF Research Database (Denmark)

    Hoof, Ilka; Peters, B; Sidney, J

    2009-01-01

    immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 n...

  14. Peptide-MHC class I stability is a stronger predictor of CTL immunogenicity than peptide affinity

    DEFF Research Database (Denmark)

    Harndahl, Mikkel Nors; Rasmussen, Michael; Nielsen, Morten

    2012-01-01

    Peptide-MHC class I stability is a stronger predictor of CTL immunogenicity than peptide affinity Mikkel Harndahla, Michael Rasmussena, Morten Nielsenb, Soren Buusa,∗ a Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Denmark b Center for Biological Seq...... al., 2007. J. Immunol. 178, 7890–7901. doi:10.1016/j.molimm.2012.02.025...

  15. MHC class II-assortative mate choice in European badgers (Meles meles)

    NARCIS (Netherlands)

    Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina D.; Burke, Terry; Macdonald, David W.; Dugdale, Hannah

    2015-01-01

    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are

  16. Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC Genes.

    Directory of Open Access Journals (Sweden)

    Maciej Jan Ejsmond

    2015-11-01

    Full Text Available Major Histocompatibility Complex (MHC genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process. Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation.

  17. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Worning, Peder;

    2004-01-01

    to the MHC class II complex HLA-DR4(B1*0401). Prior identification of information-rich (anchor) positions in the binding motif is shown to improve the predictive performance of the Gibbs sampler. Similarly, a consensus solution obtained from an ensemble average over suboptimal solutions is shown...

  18. Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

    DEFF Research Database (Denmark)

    Zhang, Hao; Lund, Ole; Nielsen, Morten

    2010-01-01

    potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data...

  19. Scrutinizing MHC-I binding peptides and their limits of variation.

    Directory of Open Access Journals (Sweden)

    Christian P Koch

    Full Text Available Designed peptides that bind to major histocompatibility protein I (MHC-I allomorphs bear the promise of representing epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in peptides that bind to the mouse MHC-I allomorph H-2K(b is presented. We exemplify and validate these motif findings by systematically dissecting the epitope SIINFEKL and analyzing the resulting fragments for their binding potential to H-2K(b in a thermal denaturation assay. The results demonstrate that only fragments exclusively retaining the carboxy- or amino-terminus of the reference peptide exhibit significant binding potential, with the N-terminal pentapeptide SIINF as shortest ligand. This study demonstrates that sophisticated machine-learning algorithms excel at extracting fine-grained patterns from peptide sequence data and predicting MHC-I binding peptides, thereby considerably extending existing linear prediction models and providing a fresh view on the computer-based molecular design of future synthetic vaccines. The server for prediction is available at http://modlab-cadd.ethz.ch (SLiDER tool, MHC-I version 2012.

  20. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.; Collins, Edward J.; Lee, Ha Youn

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.

  1. Evolution of MHC-based technologies used for detection of antigen-responsive T cells

    DEFF Research Database (Denmark)

    Bentzen, Amalie Kai; Hadrup, Sine Reker

    2017-01-01

    T cell-mediated recognition of peptide-major histocompatibility complex (pMHC) class I and II molecules is crucial for the control of intracellular pathogens and cancer, as well as for stimulation and maintenance of efficient cytotoxic responses. Such interactions may also play a role in the deve...

  2. Further observations on the role of the MHC genes and certain hearing disorders

    NARCIS (Netherlands)

    Bernstein, JM; Shanahan, TC; Schaffer, FM

    1996-01-01

    The pathogenetic mechanism of many hearing disorders have not been fully defined. Studies of certain hearing disorders in man have suggested a role for the major histocompatibility complex (MHC)-encoded genes in disease pathogenesis, In a cohort of unrelated patients with Meniere's Disease, otoscler

  3. 454 screening of individual MHC variation in an endemic island passerine

    NARCIS (Netherlands)

    Gonzalez-Quevedo, Catalina; Phillips, Karl P.; Spurgin, Lewis G.; Richardson, David S.

    Genes of the major histocompatibility complex (MHC) code for receptors that are central to the adaptive immune response of vertebrates. These genes are therefore important genetic markers with which to study adaptive genetic variation in the wild. Next-generation sequencing (NGS) has increasingly

  4. [MHC class I antigens, CD4 and CD8 expressions in polymyositis and dermatomyositis].

    Science.gov (United States)

    Graça, Carla Renata; Kouyoumdjian, João Aris

    2015-01-01

    To analyze the frequencies of the expression of major histocompatibility complex class I (MHC-I) antigens, and CD4 and CD8 cells in skeletal muscle in polymyositis (PM) and dermatomyositis (DM). This was a retrospective study of 34 PM cases, 8 DM cases, and 29 control patients with non-inflammatory myopathies. MHC-I antigens were expressed in the sarcolemma and/or sarcoplasm in 79.4% of PM cases, 62.5% of DM cases, and 27.6% of controls (CD4 expression was observed in 76.5%, 75%, and 13.8%, respectively). There was a high suspicion of PM/DM (mainly PM) in patients in whom MHC-I antigens and CD4 were co-expressed. In 14.3% of PM/DM cases, we observed MHC-I antigens expression alone, without inflammatory cells. MCH-I antigens expression and CD4 positivity might add to strong diagnostic suspicion of PM/DM. No cellular infiltration was observed in 14.3% of such cases. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  5. Effect of Replacing Beef Fat with Chicken Skin on Some Properties of Model System Chicken Emulsions

    Directory of Open Access Journals (Sweden)

    Aslı Zungur

    2015-12-01

    Full Text Available Model system chicken emulsions were prepared by replacing 5, 10, 15 and 20 % beef fat with chicken skin. Moisture, protein, fat, ash and pH were determined in raw and heat processed emulsions. Emulsion samples were evaluated for cooking characteristics, TBA values and colour parameters (L*, a*, b*. Addition of chicken skin decreased fat content and increased moisture and protein content of emulsion samples. Chicken skin replacement significantly increased water holding capacity and cooking yield and decreased fluid release. Increasing chicken skin in formulation increased a* and b* values of emulsion samples. Therefore, adding of chicken skin instead of beef fat is useful in improving technological quality and producing low fat formulation.

  6. Oral DNA Vaccine in Chickens

    Directory of Open Access Journals (Sweden)

    Seyed Davoud Jazayeri

    2012-01-01

    Full Text Available Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2% and MCF-10A (0.5% human breast cancer cells. Newly hatched specific-pathogen-free (SPF chicks were inoculated once by oral gavage with 109 colony-forming unit (CFU of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH and polymerase chain reaction (PCR were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.

  7. Patterns of evolution of MHC class II genes of crows (Corvus suggest trans-species polymorphism

    Directory of Open Access Journals (Sweden)

    John A. Eimes

    2015-03-01

    Full Text Available A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP, in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis American crows (C. brachyrhynchos and carrion crows (C. corone orientalis. Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While

  8. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus

    Directory of Open Access Journals (Sweden)

    Yasukochi Yoshiki

    2012-11-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus. Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other

  9. Potentiation of T Cell Stimulatory Activity by Chemical Fixation of a Weak Peptide-MHC Complex

    Science.gov (United States)

    Hwang, Inkyu; Kim, Kwangmi; Choi, Sojin; Lomunova, Maria

    2017-01-01

    The stability of peptide-MHC complex (pMHC) is an important factor to shape the fate of peptide-specific T cell immune response, but how it influences on T cell activation process is poorly understood. To better understand that, we investigated various T cell activation events driven by Ld MHCI loaded with graded concentrations of P2Ca and QL9 peptides, respectively, with 2C TCR Tg T cells; the binding strength of P2Ca for Ld is measurably weaker than that of QL9, but either peptides in the context of Ld interact with 2C TCR with a similar strength. When their concentrations required for early T cell activation events, which occur within several minutes to an hour, were concerned, EC50s of QL9 were about 100 folds lower than those of P2Ca, which was expected from their association constants for Ld. When EC50s for late activation events, which takes over several hours to occur, were concerned, the differences grew even larger (> 300 folds), suggesting that, due to weak binding, Ld/P2Ca dissociate from each other more easily to lose its antigenicity in a short time. Accordingly, fixation of Ld/P2Ca with paraformaldehyde resulted in a significant improvement in its immunogenicity. These results imply that binding strength of a peptide for a MHC is a critical factor to determine the duration of pMHC-mediated T cell activation and thus the attainment of productive T cell activation. It is also suggested that paraformaldehyde fixation should be an effective tool to ameliorate the immunogenicity of pMHC with a poor stability. PMID:28152301

  10. MHC Universal Cells Survive in an Allogeneic Environment after Incompatible Transplantation

    Directory of Open Access Journals (Sweden)

    Constança Figueiredo

    2013-01-01

    Full Text Available Cell, tissue, and organ transplants are commonly performed for the treatment of different diseases. However, major histocompatibility complex (MHC diversity often prevents complete donor-recipient matching, resulting in graft rejection. This study evaluates in a preclinical model the capacity of MHC class I-silenced cells to engraft and grow upon allogeneic transplantation. Short hairpin RNA targeting β2-microglobulin (RN_shβ2m was delivered into fibroblasts derived from LEW/Ztm (RT1l (RT1-Al rats using a lentiviral-based vector. MHC class I (RT1-A- expressing and -silenced cells were injected subcutaneously in LEW rats (RT1l and MHC-congenic LEW.1W rats (RT1u, respectively. Cell engraftment and the status of the immune response were monitored for eight weeks after transplantation. In contrast to RT1-A-expressing cells, RT1-A-silenced fibroblasts became engrafted and were still detectable eight weeks after allogeneic transplantation. Plasma levels of proinflammatory cytokines IL-1α, IL-1β, IL-6, TNF-α, and IFN-γ were significantly higher in animals transplanted with RT1-A-expressing cells than in those receiving RT1-A-silenced cells. Furthermore, alloantigen-specific T-cell proliferation rates derived from rats receiving RT1-A-expressing cells were higher than those in rats transplanted with RT1-A-silenced cells. These data suggest that silencing MHC class I expression might overcome the histocompatibility barrier, potentially opening up new avenues in the field of cell transplantation and regenerative medicine.

  11. MHC Universal Cells Survive in an Allogeneic Environment after Incompatible Transplantation

    Science.gov (United States)

    Figueiredo, Constança; Wedekind, Dirk; Müller, Thomas; Vahlsing, Stefanie; Horn, Peter A.; Seltsam, Axel; Blasczyk, Rainer

    2013-01-01

    Cell, tissue, and organ transplants are commonly performed for the treatment of different diseases. However, major histocompatibility complex (MHC) diversity often prevents complete donor-recipient matching, resulting in graft rejection. This study evaluates in a preclinical model the capacity of MHC class I-silenced cells to engraft and grow upon allogeneic transplantation. Short hairpin RNA targeting β2-microglobulin (RN_shβ2m) was delivered into fibroblasts derived from LEW/Ztm (RT1l) (RT1-Al) rats using a lentiviral-based vector. MHC class I (RT1-A-) expressing and -silenced cells were injected subcutaneously in LEW rats (RT1l) and MHC-congenic LEW.1W rats (RT1u), respectively. Cell engraftment and the status of the immune response were monitored for eight weeks after transplantation. In contrast to RT1-A-expressing cells, RT1-A-silenced fibroblasts became engrafted and were still detectable eight weeks after allogeneic transplantation. Plasma levels of proinflammatory cytokines IL-1α, IL-1β, IL-6, TNF-α, and IFN-γ were significantly higher in animals transplanted with RT1-A-expressing cells than in those receiving RT1-A-silenced cells. Furthermore, alloantigen-specific T-cell proliferation rates derived from rats receiving RT1-A-expressing cells were higher than those in rats transplanted with RT1-A-silenced cells. These data suggest that silencing MHC class I expression might overcome the histocompatibility barrier, potentially opening up new avenues in the field of cell transplantation and regenerative medicine. PMID:24350288

  12. Newcastle disease virus infection in chicken embryonic fibroblasts but not duck embryonic fibroblasts is associated with elevated host innate immune response.

    Science.gov (United States)

    Kang, Yinfeng; Feng, Minsha; Zhao, Xiaqiong; Dai, Xu; Xiang, Bin; Gao, Pei; Li, Yulian; Li, Yanling; Ren, Tao

    2016-03-15

    Chickens and ducks are major hosts of Newcastle disease virus (NDV) with distinct responses to infection. However, whereas ducks are generally asymptomatic or exhibit only mild symptoms following NDV infection and are thus regarded as potential long-term reservoirs of the virus, chickens exhibit severe clinical lesions, transient infections and even death due to NDV infection. These differences may in part result from the host innate immune response to NDV infection. To better understand the host innate immune response to NDV infection in avian species, by using the quantitative real-time polymerase chain reaction method we examined the messenger RNA expression levels of immune-related genes in chicken embryonic fibroblasts (CEFs) and duck embryonic fibroblasts (DEFs) when infected with NDV of different pathogenicities. Gene expression profiles showed that the expression of IL-1beta, TNF-α-like factor (LITAF) and interferon (IFN)-beta was upregulated in both CEFs and DEFs infected with SS-10 and NH-10 viruses or treated with polyinosinic:polycytidylic acid [poly(I:C)], as well as that expression levels were greater in CEFs than in DEFs. The expression of TLR3, TLR7, IL-6, IFN-alpha, IFN-gamma, MHC-I and MHC-II, except for IL-8, were also greater in CEFs than in DEFs in response to infection to both viruses or treatment with poly(I:C). However, unlike moderate virulent NH-10, highly virulent SS-10 induced greater pattern recognition receptors and cytokines, except for IFNs, in CEFs and DEFs. Results show distinct expression patterns of cytokines, Toll-like receptors and IFNs associated with inflammatory immune responses to NDV between species and by virulence.

  13. Assessment of 188Re marked anti MHC class Ⅱ antibody by peripheral blood mononuclear cells stimulated by donor alloantigen

    Institute of Scientific and Technical Information of China (English)

    DING Guo-ping; CAO Li-ping; LIU Jie; LIU Da-ren; QUE Ri-sheng; ZHU Lin-hua; ZHOU Yi-ming; MAO Ke-jie; HU Jun-an

    2011-01-01

    Background Previous studies showed that anti MHC-Ⅱ monoclone antibody (MAb) only had partial inhibiting effect of alloreactive mixed lymphocyte reaction (MLR) in vitro and it was unsteady and non-persistent. The aim of this research was to determine whether radioactive isotope 188Re marked MHC-Ⅱ antibody could benefit the allograft acceptance in transplantation as compared to normal MHC-Ⅱ antibody.Methods 188Re was incorporated to 2E9/13F(ab')2 which is against swine MHC class Ⅱ antigen (MAb-188Re). Porcine peripheral blood mononuclear (PBMC) cells were examined for proliferation and cytokine mRNA expression after stimulation with MHC-Ⅱ MAb or MAb-188Re.Results The proliferative response of recipient PBMCs in mixed lymphocyte reaction (MLR) to donor alloantigen showed that the stimulation index of MAb-188Re group was significantly lower than the MHC-Ⅱ MAb group and control (P<0.05). mRNA expression of interleukin 2, interferon Y and tumor necrosis factor α (type 1 cytokines) was lower in MAb-188Re group than the MHC-Ⅱ MAb group, while interleukin 10 (type 2 cytokines) was higher in MAb-188Re group in the first 24 hours.Conclusion MAb-188Re could help the graft acceptance by inhibiting T cell proliferation, lowering the expression of type 1 cytokines and elevating the type 2 cytokines produced by PBMC.

  14. Negative relationships between cellular immune response, Mhc class II heterozygosity and secondary sexual trait in the montane water vole.

    Science.gov (United States)

    Charbonnel, Nathalie; Bryja, Josef; Galan, Maxime; Deter, Julie; Tollenaere, Charlotte; Chaval, Yannick; Morand, Serge; Cosson, Jean-François

    2010-05-01

    Heterogeneities in immune responsiveness may affect key epidemiological parameters and the dynamics of pathogens. The roles of immunogenetics in these variations remain poorly explored. We analysed the influence of Major histocompatibility complex (Mhc) genes and epigamic traits on the response to phytohaemagglutinin in males from cyclic populations of the montane water vole (Arvicola scherman). Besides, we tested the relevance of lateral scent glands as honest signals of male quality. Our results did not corroborate neither the hypotheses of genome-wide heterozygosity-fitness correlation nor the Mhc heterozygote advantage. We found a negative relationship between Mhc hetetozygosity and response to phytohaemagglutinin, mediated by a specific Mhc homozygous genotype. Our results therefore support the hypothesis of the Arte-Dqa-05 homozygous genotype being a 'good' Mhc variant in terms of immunogenetic quality. The development of the scent glands seems to be an honest signal for mate choice as it is negatively correlated with helminth load. The 'good gene' hypothesis was not validated as Arte-Dqa-05 homozygous males did not exhibit larger glands. Besides, the negative relationship observed between the size of these glands and the response to phytohaemagglutinin, mainly for Mhc homozygotes, corroborates the immunocompetence handicap hypothesis. The Mhc variants associated with larger glands remain yet to be determined.

  15. MHC class IIB additive and non-additive effects on fitness measures in the guppy Poecilia reticulata.

    Science.gov (United States)

    Fraser, B A; Neff, B D

    2009-12-01

    The genetic architecture of fitness at the class IIB gene of the major histocompatibility complex (MHC) in the guppy Poecilia reticulata was analysed. Diversity at the MHC is thought to be maintained by some form of balancing selection; heterozygote advantage, frequency-dependent selection or spatially and temporally fluctuating selection. Here these hypotheses are evaluated by using an algorithm that partitions the effect of specific MHC allele and genotypes on fitness measures. The effect of MHC genotype on surrogate measures of fitness was tested, including growth rate (at high and low bulk food diets), parasite load following a parasite challenge and survival. The number of copies of the Pore_a132 MHC allele was inversely related to infection by Gyrodactylus flukes and it appeared to be positively related to faster growth. Also, genotypes combining the Pore_a132 or other relatively common alleles paired with rare MHC alleles produced both advantageous and detrimental non-additive effects. Thus, the genetic architecture underlying fitness at the MHC is complex in the P. reticulata.

  16. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A [Maryland

    2012-07-11

    Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explains how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.

  17. Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials

    Directory of Open Access Journals (Sweden)

    Otten Celine

    2008-06-01

    Full Text Available Abstract Background Research on the genetic architecture and diversity of the MHC has focused mainly on eutherian mammals, birds and fish. So far, studies on model marsupials used in laboratory investigations indicated very little or even no variation in MHC class II genes. However, natural levels of diversity and selection are unknown in marsupials as studies on wild populations are virtually absent. We used two endemic South American mouse opossums, Gracilinanus microtarsus and Marmosops incanus, to investigate characteristic features of MHC selection. This study is the first investigation of MHC selection in free-ranging Neotropical marsupials. In addition, the evolutionary history of MHC lineages within the group of marsupials was examined. Results G. microtarsus showed extensive levels of MHC diversity within and among individuals as 47 MHC-DAB alleles and high levels of sequence divergence were detected at a minimum of four loci. Positively selected codon sites were identified, of which most were congruent with human antigen binding sites. The diversity in M. incanus was rather low with only eight observed alleles at presumably two loci. However, these alleles also revealed high sequence divergence. Again, positive selection was identified on specific codon sites, all congruent with human ABS and with positively selected sites observed in G. microtarsus. In a phylogenetic comparison alleles of M. incanus interspersed widely within alleles of G. microtarsus with four alleles being present in both species. Conclusion Our investigations revealed extensive MHC class II polymorphism in a natural marsupial population, contrary to previous assumptions. Furthermore, our study confirms for the first time in marsupials the presence of three characteristic features common at MHC loci of eutherian mammals, birds and fish: large allelic sequence divergence, positive selection on specific sites and trans-specific polymorphism.

  18. MHC class II compartment, endocytosis and phagocytic activity of macrophages and putative dendritic cells isolated from normal tissues rich in synovium.

    Science.gov (United States)

    Moghaddami, Mahin; Mayrhofer, Graham; Cleland, Leslie G

    2005-08-01

    The endocytic and phagocytic activities of a population of MHC IIhi CD11c+ dendritic cell (DC)-like cells in synovium-rich tissues (SRTs) of normal rat paws were compared with CD163+ cells (putative macrophages) from the same tissues and pseudo-afferent lymph DCs, peritoneal macrophages and blood monocytes. Fifty percent of CD11c+ cells and 75% of CD163+ cells isolated from SRT internalized fluorescein-conjugated dextran (FITC-DX). Of these endocytic cells, half of those expressing CD11c, but only 30% of those expressing CD163, were surface MHC class II+ (sMHC II+). CD11c+ cells were more endocytic than monocytes or pseudo-afferent lymph DC, but some CD163+ cells (type A synoviocytes) were found to be highly endocytic. CD163+ cells from SRT were more phagocytic (25%) than the general MHC class II+ population (16%). Of phagocytic cells, 40% of CD163+ cells were sMHC II(variable) and they constituted 60% of all MHC class II+ phagocytic cells. Only 18% of phagocytic MHC II+ cells expressed CD11c and the most of these were MHC IIhi. In comparison, 60% of CD163+ peritoneal macrophages were phagocytic, while blood monocytes were poorly phagocytic. Intracellular MHC class II-rich compartments (MIIC) were prominent in sMHC IIhi cells in SRT but rare in CD163+ cells. Most MHC IIhi CD11c+ cells did not have a detectable MIIC.

  19. Population structure of four Thai indigenous chicken breeds.

    Science.gov (United States)

    Mekchay, Supamit; Supakankul, Pantaporn; Assawamakin, Anunchai; Wilantho, Alisa; Chareanchim, Wanwisa; Tongsima, Sissades

    2014-03-27

    In recent years, Thai indigenous chickens have increasingly been bred as an alternative in Thailand poultry market. Due to their popularity, there is a clear need to improve the underlying quality and productivity of these chickens. Studying chicken genetic variation can improve the chicken meat quality as well as conserving rare chicken species. To begin with, a minimal set of molecular markers that can characterize the Thai indigenous chicken breeds is required. Using AFLP-PCR, 30 single nucleotide polymorphisms (SNPs) from Thai indigenous chickens were obtained by DNA sequencing. From these SNPs, we genotyped 465 chickens from 7 chicken breeds, comprising four Thai indigenous chicken breeds--Pradhuhangdum (PD), Luenghangkhao (LK), Dang (DA) and Chee (CH), one wild chicken--the red jungle fowls (RJF), and two commercial chicken breeds--the brown egg layer (BL) and commercial broiler (CB). The chicken genotypes reveal unique genetic structures of the four Thai indigenous chicken breeds. The average expected heterozygosities of PD=0.341, LK=0.357, DA=0.349 and CH=0.373, while the references RJF= 0.327, CB=0.324 and BL= 0.285. The F(ST) values among Thai indigenous chicken breeds vary from 0.051 to 0.096. The F(ST) values between the pairs of Thai indigenous chickens and RJF vary from 0.083 to 0.105 and the FST values between the Thai indigenous chickens and the two commercial chicken breeds vary from 0.116 to 0.221. A neighbour-joining tree of all individual chickens showed that the Thai indigenous chickens were clustered into four groups which were closely related to the wild RJF but far from the commercial breeds. Such commercial breeds were split into two closely groups. Using genetic admixture analysis, we observed that the Thai indigenous chicken breeds are likely to share common ancestors with the RJF, while both commercial chicken breeds share the same admixture pattern. These results indicated that the Thai indigenous chicken breeds may descend from the

  20. Interaction of Bap31 and MHC class I molecules and their traffic out of the endoplasmic reticulum1

    OpenAIRE

    ABE, FUMIYOSHI; Van Prooyen, Nancy; Ladasky, John J.; Edidin, Michael

    2009-01-01

    The endoplasmic reticulum (ER) protein Bap31 associates with nascent class I MHC molecules. It appears to mediate the export of class I MHC molecules from the ER and may also be involved in their quality control. Here we use Förster resonance energy transfer (FRET) and quantitative fluorescence imaging to show that in human, HeLa, cells Bap31 clusters with MHC class I (HLA-A2) molecules in the ER, and traffics via export vesicles to the ER/Golgi intermediate compartment, ERGIC. FRET between B...

  1. Insight into the Mechanism of Human Herpesvirus 7 U21-mediated Diversion of Class I MHC Molecules to Lysosomes*

    Science.gov (United States)

    Glosson, Nicole L.; Gonyo, Patrick; May, Nathan A.; Schneider, Christine L.; Ristow, Laura C.; Wang, Qiuhong; Hudson, Amy W.

    2010-01-01

    The U21 open reading frame from human herpesvirus-7 encodes a membrane protein that associates with and redirects class I MHC molecules to the lysosomal compartment. The mechanism by which U21 accomplishes this trafficking excursion is unknown. Here we have examined the contribution of localization, glycosylation, domain structure, and the absence of substrate class I MHC molecules on the ability of U21 to traffic to lysosomes. Our results suggest the existence of a cellular protein necessary for U21-mediated rerouting of class I MHC molecules. PMID:20833720

  2. Genetic improvement in indigenous chicken of Ethiopia

    NARCIS (Netherlands)

    Woldegiorgiss, W.E.

    2015-01-01

    Abstract Wondmeneh Esatu Woldegiorgiss (2015). Genetic improvement in indigenous chicken of Ethiopia. PhD thesis, Wageningen University, the Netherlands This thesis considered various approaches to study the potential for improvement of village poultry production system using

  3. Prairie chicken lek survey 2012 : performance report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Performance report for the 2012 spring prairie chicken lek surveys in Kansas state. This survey was initiated in 1963, and is preformed on established survey routes....

  4. Selection of lactobacilli for chicken probiotic adjuncts

    National Research Council Canada - National Science Library

    Garriga; Pascual; Monfort; Hugas

    1998-01-01

    ...: their ability to inhibit all the indicator strains; a high adhesion efficiency to the epithelial cells of chickens and also their resistance to a number of antibiotics, monensin, bile salts and pH 3·0...

  5. Heterologous expression of biologically active chicken granulocyte ...

    African Journals Online (AJOL)

    user

    2012-02-07

    Feb 7, 2012 ... 1College of Animal Science and Technology, Beijing University of ... After being screened by yeast peptone dextrose (YPD) containing high concentrations of Zeocin ... nucleic acid vaccine of the chicken infectious bronchial.

  6. Effects of chicken anemia virus and infectious bursal disease virus in commercial chickens.

    Science.gov (United States)

    Toro, H; van Santen, V L; Hoerr, F J; Breedlove, C

    2009-03-01

    The effects of chicken anemia virus (CAV) and infectious bursal disease virus (IBDV) coinfection in commercial layer-type and meat-type (broiler) chickens with specific maternal immunity were evaluated. In addition, the broiler progeny used had been vaccinated in ovo against IBDV. Layer chickens were inoculated intramuscularly on day 3 of age with CAV and orally on day 7 of age with an IBDV standard strain (APHIS). Broiler chickens were exposed to CAV and/or an IBDV variant strain (AL2) via the drinking water on days 3 and 14 of age. Following CAV and IBDV inoculation neither mortality nor overt clinical disease was observed in any layer or broiler group. In spite of maternal immunity against both IBDV and CAV, mean hematocrits of all layer groups inoculated with CAV (CAV, CAV + APHIS) were lower than uninfected chickens. IBDV APHIS alone or in combination with CAV did not affect the layer weight gain. However, on day 30 of age and concomitantly with maternal antibody decay, bursa lymphocyte depletion became evident in CAV + APHIS-infected layer chickens. These birds (CAV + APHIS) also seroconverted to IBDV on day 35 of age. CAV persisted at low levels in the layer chickens throughout the experimental period in CAV- and CAV+APHIS-infected chickens. Similarly, infected broiler chickens did not show changes in weight gain. Compared to CAV-infected or uninfected controls, CAV+AL2- and AL2-infected broiler chickens showed significant lymphocyte depletion in the bursa as assessed both by bursal indices and histomorphometry. Broilers also seroconverted to IBDV after day 30 of age confirming that bursal lymphocyte depletion was due to IBDV resuming replication. Thymus histomorphometry revealed significant lymphocyte depletion in all infected broiler groups at 30 days of age, but only in CAV+AL2-infected broiler chickens at 41 days of age, suggesting that IBDV infection delayed repopulation of the thymus.

  7. Production of Biodiesel from Chicken Frying Oil

    OpenAIRE

    Emaad T. Bakir; Abdelrahman B. Fadhil

    2011-01-01

    Chicken fried oil was converted into different biodiesels through single step transesterification and two step transesterification, namely acid-base and base–base catalyzed transesterification. Hydrochloric acid and potassium hydroxide with methanol were used for this purpose. The results showed that two step base catalyzed transesterification was better compared to other methods. It resulted in higher yield and better fuel properties. Transesterification of fried chicken oil was monitored by...

  8. Persistence of avian oncoviruses in chicken macrophages.

    Science.gov (United States)

    Gazzolo, L; Moscovici, C; Moscovici, M G

    1979-01-01

    Inoculation of avian oncoviruses into 1- to 2-month old chickens led to a rapid production of antiviral humoral antibodies. Under these conditions it was found that avian leukosis viruses are sequestered in macrophages of peripheral blood, in which they can persist for a long period of time (up to about 3 years). In contrast, avian sarcoma viruses were never found in macrophages from chickens during the progression of sarcomas or after regression of the tumors. PMID:217827

  9. Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies.

    Science.gov (United States)

    Lee, Warren; Syed Atif, Ali; Tan, Soo Choon; Leow, Chiuan Herng

    2017-08-01

    The advantages of chicken (Gallus gallus domesticus) antibodies as immunodiagnostic and immunotherapeutic biomolecules has only been recently recognized. Even so, chicken antibodies remain less-well characterized than their mammalian counterparts. This review aims at providing a current overview of the structure, function, development and generation of chicken antibodies. Additionally, brief but comprehensive insights into current knowledge pertaining to the immunogenetic framework and diversity-generation of the chicken immunoglobulin repertoire which have contributed to the establishment of recombinant chicken mAb-generating methods are discussed. Focus is provided on the current methods used to generate antibodies from chickens with added emphasis on the generation of recombinant chicken mAbs and its derivative formats. The advantages and limitations of established protocols for the generation of chicken mAbs are highlighted. The various applications of recombinant chicken mAbs and its derivative formats in immunodiagnostics and immunotherapy are further detailed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sequence and phylogenetic analysis of chicken anaemia virus obtained from backyard and commercial chickens in Nigeria : research communication

    Directory of Open Access Journals (Sweden)

    D.O. Oluwayelu

    2008-09-01

    Full Text Available This work reports the first molecular analysis study of chicken anaemia virus (CAV in backyard chickens in Africa using molecular cloning and sequence analysis to characterize CAV strains obtained from commercial chickens and Nigerian backyard chickens. Partial VP1 gene sequences were determined for three CAVs from commercial chickens and for six CAV variants present in samples from a backyard chicken. Multiple alignment analysis revealed that the 6 % and 4 % nucleotide diversity obtained respectively for the commercial and backyard chicken strains translated to only 2 % amino acid diversity for each breed. Overall, the amino acid composition of Nigerian CAVs was found to be highly conserved. Since the partial VP1 gene sequence of two backyard chicken cloned CAV strains (NGR/Cl-8 and NGR/Cl-9 were almost identical and evolutionarily closely related to the commercial chicken strains NGR-1, and NGR-4 and NGR-5, respectively, we concluded that CAV infections had crossed the farm boundary.

  11. Beta-Adrenergic Receptor Population is Up-Regulated in Chicken Skeletal Muscle Cells Treated with Forskolin

    Science.gov (United States)

    Bridge, K. Y.; Young, R. B.; Vaughn, J. R.

    1998-01-01

    Skeletal muscle hypertrophy is promoted by in vivo administration of beta-adrenergic receptor (betaAR) agonists. These compounds presumably exert their physiological action through the betaAR, and alterations in the population of betaAR could potentially change the ability of the cell to respond to the betaAR agonists. Since the intracellular chemical signal generated by the betaAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of functional betaAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 microM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the betaAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 microM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in betaAR population, with a maximum increase of approximately 50% at 10 microM. This increase in PAR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of betaAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc

  12. Early Holocene chicken domestication in northern China.

    Science.gov (United States)

    Xiang, Hai; Gao, Jianqiang; Yu, Baoquan; Zhou, Hui; Cai, Dawei; Zhang, Youwen; Chen, Xiaoyong; Wang, Xi; Hofreiter, Michael; Zhao, Xingbo

    2014-12-01

    Chickens represent by far the most important poultry species, yet the number, locations, and timings of their domestication have remained controversial for more than a century. Here we report ancient mitochondrial DNA sequences from the earliest archaeological chicken bones from China, dating back to ∼ 10,000 B.P. The results clearly show that all investigated bones, including the oldest from the Nanzhuangtou site, are derived from the genus Gallus, rather than any other related genus, such as Phasianus. Our analyses also suggest that northern China represents one region of the earliest chicken domestication, possibly dating as early as 10,000 y B.P. Similar to the evidence from pig domestication, our results suggest that these early domesticated chickens contributed to the gene pool of modern chicken populations. Moreover, our results support the idea that multiple members of the genus Gallus, specifically Gallus gallus and Gallus sonneratii contributed to the gene pool of the modern domestic chicken. Our results provide further support for the growing evidence of an early mixed agricultural complex in northern China.

  13. Campylobacter jejuni strains of human and chicken origin are invasive in chickens after oral challenge

    DEFF Research Database (Denmark)

    Knudsen, Katrine Nørrelund; Bang, Dang Duong; Andresen, Lars Ole

    2006-01-01

    to be associated with the Guillain Barre Syndrome (GBS) in humans. The minimum dose for establishing colonization in the clay-old chickens was approximately 2 cfu, whereas two- to threefold higher doses were required for establishing colonization in the 14-day-old chickens. Two of the C jejuni strains were shown...

  14. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review

    Directory of Open Access Journals (Sweden)

    Zhao Chen

    2014-01-01

    Full Text Available Chicken litter or chicken litter-based organic fertilizers are usually recycled into the soil to improve the structure and fertility of agricultural land. As an important source of nutrients for crop production, chicken litter may also contain a variety of human pathogens that can threaten humans who consume the contaminated food or water. Composting can inactivate pathogens while creating a soil amendment beneficial for application to arable agricultural land. Some foodborne pathogens may have the potential to survive for long periods of time in raw chicken litter or its composted products after land application, and a small population of pathogenic cells may even regrow to high levels when the conditions are favorable for growth. Thermal processing is a good choice for inactivating pathogens in chicken litter or chicken litter-based organic fertilizers prior to land application. However, some populations may become acclimatized to a hostile environment during build-up or composting and develop heat resistance through cross-protection during subsequent high temperature treatment. Therefore, this paper reviews currently available information on the microbiological safety of chicken litter or chicken litter-based organic fertilizers, and discusses about further research on developing novel and effective disinfection techniques, including physical, chemical, and biological treatments, as an alternative to current methods.

  15. Breaking confinement: unconventional peptide presentation by major histocompatibility (MHC) class I allele HLA-A*02:01

    DEFF Research Database (Denmark)

    Remesh, Soumya G.; Andreatta, Massimo; Ying, Ge

    2017-01-01

    Peptide antigen-presentation by Major Histocompatibility Class (MHC) I proteins initiates CD8+ T cell mediated immunity against pathogens and cancers. MHC I molecules typically bind peptides with nine amino acids in length with both ends tucked inside the major A and F binding pocket. It has been...... known for a while that longer peptides can also bind by either bulging out of the groove in the middle of the peptide or by binding in a zig-zag fashion inside the groove. In a recent study, we identified an alternative binding conformation of naturally occurring peptides from Toxoplasma gondii bound...... binding modes have properties that fit very poorly to the conventional MHC class I pathway, and suggest they are presented via alternative means, potentially including cross-presentation via the MHC class II pathway....

  16. Expression and characterization of recombinant single-chain salmon class I MHC fused with beta2-microglobulin with biological activity

    DEFF Research Database (Denmark)

    Zhao, Heng; Stet, René J M; Skjødt, Karsten

    2008-01-01

    antibodies were successfully produced against both the MHC class I heavy chain and beta(2)m, and showed binding to the recombinant molecule. The recombinant complex Sasabeta2mUBA*0301 was expressed and isolated; the production was scaled up by adjusting to its optimal conditions. Subsequently......, the recombinant proteins were purified by affinity chromatography using mAb against beta2m and alpha3. Eluates were analyzed by Western blot and refolded by the removal of denaturant. The correct folding was confirmed by measuring its binding capacity against mAb produced to recognize the native form of MHC...... molecules by biosensor analysis. This production of sufficient amounts of class I MHC proteins may represent a useful tool to study the peptide-binding specificity of MHC class I molecules, in order to design a peptide vaccine against viral pathogens....

  17. How did variable NK-cell receptors and MHC class I ligands influence immunity, reproduction and human evolution?

    Science.gov (United States)

    Parham, Peter; Moffett, Ashley

    2014-01-01

    Preface Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, where they have progressively co-evolved with MHC class I molecules. The emergence of MHC-C in hominids drove the evolution of a system of MHC-C receptors that is most elaborate in chimpanzees. In contrast, the human system appears to have been subject to different and competing selection pressures that have acted on its immunological and reproductive functions. We suggest that this compromise facilitated development of the bigger brains that enabled archaic and modern humans to migrate out-of-Africa and populate other continents. PMID:23334245

  18. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole

    2009-01-01

    through presentation of extracellularly derived peptides to helper T cells. Identification of which peptides will bind a given MHC molecule is thus of great importance for the understanding of host-pathogen interactions, and large efforts have been placed in developing algorithms capable of predicting...... this binding event. RESULTS: Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data...... class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. CONCLUSION: The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http...

  19. The MHC class II ligand lymphocyte activation gene-3 is co-distributed with CD8 and CD3-TCR molecules after their engagement by mAb or peptide-MHC class I complexes.

    Science.gov (United States)

    Hannier, S; Triebel, F

    1999-11-01

    Previous studies indicated that signaling through lymphocyte activation gene-3 (LAG-3), a MHC class II ligand, induced by multivalent anti-receptor antibodies led to unresponsiveness to TCR stimulation. Here, lateral distribution of the LAG-3 molecules and its topological relationship (mutual proximity) to the TCR, CD8, CD4, and MHC class I and II molecules were studied in the plasma membrane of activated human T cells in co-capping experiments and conventional fluorescence microscopy. Following TCR engagement by either TCR-specific mAb or MHC-peptide complex recognition in T-B cell conjugates, LAG-3 was found to be specifically associated with the CD3-TCR complex. Similarly, following CD8 engagement LAG-3 and CD8 were co-distributed on the cell surface while only a low percentage of CD4-capped cells displayed LAG-3 co-caps. In addition, LAG-3 was found to be associated with MHC class II (i.e. DR, DP and DQ) and partially with MHC class I molecules. The supramolecular assemblies described here between LAG-3, CD3, CD8 and MHC class II molecules may result from an organization in raft microdomains, a phenomenon known to regulate early events of T cell activation.

  20. Metagenomic Analysis of Chicken Gut Microbiota for Improving Metabolism and Health of Chickens - A Review.

    Science.gov (United States)

    Choi, Ki Young; Lee, Tae Kwon; Sul, Woo Jun

    2015-09-01

    Chicken is a major food source for humans, hence it is important to understand the mechanisms involved in nutrient absorption in chicken. In the gastrointestinal tract (GIT), the microbiota plays a central role in enhancing nutrient absorption and strengthening the immune system, thereby affecting both growth and health of chicken. There is little information on the diversity and functions of chicken GIT microbiota, its impact on the host, and the interactions between the microbiota and host. Here, we review the recent metagenomic strategies to analyze the chicken GIT microbiota composition and its functions related to improving metabolism and health. We summarize methodology of metagenomics in order to obtain bacterial taxonomy and functional inferences of the GIT microbiota and suggest a set of indicator genes for monitoring and manipulating the microbiota to promote host health in future.

  1. Derivation of an amino acid similarity matrix for peptide:MHC binding and its application as a Bayesian prior

    Directory of Open Access Journals (Sweden)

    Sette Alessandro

    2009-11-01

    Full Text Available Abstract Background Experts in peptide:MHC binding studies are often able to estimate the impact of a single residue substitution based on a heuristic understanding of amino acid similarity in an experimental context. Our aim is to quantify this measure of similarity to improve peptide:MHC binding prediction methods. This should help compensate for holes and bias in the sequence space coverage of existing peptide binding datasets. Results Here, a novel amino acid similarity matrix (PMBEC is directly derived from the binding affinity data of combinatorial peptide mixtures. Like BLOSUM62, this matrix captures well-known physicochemical properties of amino acid residues. However, PMBEC differs markedly from existing matrices in cases where residue substitution involves a reversal of electrostatic charge. To demonstrate its usefulness, we have developed a new peptide:MHC class I binding prediction method, using the matrix as a Bayesian prior. We show that the new method can compensate for missing information on specific residues in the training data. We also carried out a large-scale benchmark, and its results indicate that prediction performance of the new method is comparable to that of the best neural network based approaches for peptide:MHC class I binding. Conclusion A novel amino acid similarity matrix has been derived for peptide:MHC binding interactions. One prominent feature of the matrix is that it disfavors substitution of residues with opposite charges. Given that the matrix was derived from experimentally determined peptide:MHC binding affinity measurements, this feature is likely shared by all peptide:protein interactions. In addition, we have demonstrated the usefulness of the matrix as a Bayesian prior in an improved scoring-matrix based peptide:MHC class I prediction method. A software implementation of the method is available at: http://www.mhc-pathway.net/smmpmbec.

  2. Coalescence of B cell receptor and invariant chain MHC II in a raft-like membrane domain.

    Science.gov (United States)

    Hauser, Julian T; Lindner, Robert

    2014-11-01

    The BCR binds antigen for processing and subsequent presentation on MHC II molecules. Polyvalent antigen induces BCR clustering and targeting to endocytic processing compartments, which are also accessed by Ii-MHC II. Here, we report that clustered BCR is able to team up with Ii-MHC II already at the plasma membrane of mouse B-lymphocytes. Colocalization of BCR and Ii-MHC II on the cell surface required clustering of both types of molecules. The clustering of only one type did not trigger the recruitment of the other. Ii-bound MIF (a ligand of Ii) also colocalized with clustered BCR upon oligomerization of MIF on the surface of the B cell. Abundant surface molecules, such as B220 or TfnR, did not cocluster with the BCR. Some membrane raft-associated molecules, such as peptide-loaded MHC II, coclustered with the BCR, whereas others, such as GM1, did not. The formation of a BCR- and Ii-MHC II-containing membrane domain by antibody-mediated clustering was independent of F-actin and led to the coendocytosis of its constituents. With a rapid Brij 98 extraction method, it was possible to capture this membrane domain biochemically as a DRM. Ii and clustered BCR were present on the same DRM, as shown by immunoisolation. The coalescence of BCR and Ii-MHC II increased tyrosine phosphorylation, indicative of enhanced BCR signaling. Our work suggests a novel role for MIF and Ii-MHC II in BCR-mediated antigen processing.

  3. Genomic sequence analysis of the MHC class I G/F segment in common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Kono, Azumi; Brameier, Markus; Roos, Christian; Suzuki, Shingo; Shigenari, Atsuko; Kametani, Yoshie; Kitaura, Kazutaka; Matsutani, Takaji; Suzuki, Ryuji; Inoko, Hidetoshi; Walter, Lutz; Shiina, Takashi

    2014-04-01

    The common marmoset (Callithrix jacchus) is a New World monkey that is used frequently as a model for various human diseases. However, detailed knowledge about the MHC is still lacking. In this study, we sequenced and annotated a total of 854 kb of the common marmoset MHC region that corresponds to the HLA-A/G/F segment (Caja-G/F) between the Caja-G1 and RNF39 genes. The sequenced region contains 19 MHC class I genes, of which 14 are of the MHC-G (Caja-G) type, and 5 are of the MHC-F (Caja-F) type. Six putatively functional Caja-G and Caja-F genes (Caja-G1, Caja-G3, Caja-G7, Caja-G12, Caja-G13, and Caja-F4), 13 pseudogenes related either to Caja-G or Caja-F, three non-MHC genes (ZNRD1, PPPIR11, and RNF39), two miscRNA genes (ZNRD1-AS1 and HCG8), and one non-MHC pseudogene (ETF1P1) were identified. Phylogenetic analysis suggests segmental duplications of units consisting of basically five (four Caja-G and one Caja-F) MHC class I genes, with subsequent expansion/deletion of genes. A similar genomic organization of the Caja-G/F segment has not been observed in catarrhine primates, indicating that this genomic segment was formed in New World monkeys after the split of New World and Old World monkeys.

  4. Does variability matter? Major histocompatibility complex (MHC) variation and its associations to parasitism in natural small mammal populations

    OpenAIRE

    Meyer-Lucht, Yvonne

    2009-01-01

    The adaptive evolutionary potential of a species or population to cope with omnipresent environmental challenges is based on its genetic variation. Variability at immune genes, such as the major histocompatibility complex (MHC) genes, is assumed to be a very powerful and effective tool to keep pace with diverse and rapidly evolving pathogens. In my thesis, I studied natural levels of variation at the MHC genes, which have a key role in immune defence, and parasite burden in different small ma...

  5. Probing natural killer cell education by Ly49 receptor expression analysis and computational modelling in single MHC class I mice.

    Directory of Open Access Journals (Sweden)

    Sofia Johansson

    Full Text Available Murine natural killer (NK cells express inhibitory Ly49 receptors for MHC class I molecules, which allows for "missing self" recognition of cells that downregulate MHC class I expression. During murine NK cell development, host MHC class I molecules impose an "educating impact" on the NK cell pool. As a result, mice with different MHC class I expression display different frequency distributions of Ly49 receptor combinations on NK cells. Two models have been put forward to explain this impact. The two-step selection model proposes a stochastic Ly49 receptor expression followed by selection for NK cells expressing appropriate receptor combinations. The sequential model, on the other hand, proposes that each NK cell sequentially expresses Ly49 receptors until an interaction of sufficient magnitude with self-class I MHC is reached for the NK cell to mature. With the aim to clarify which one of these models is most likely to reflect the actual biological process, we simulated the two educational schemes by mathematical modelling, and fitted the results to Ly49 expression patterns, which were analyzed in mice expressing single MHC class I molecules. Our results favour the two-step selection model over the sequential model. Furthermore, the MHC class I environment favoured maturation of NK cells expressing one or a few self receptors, suggesting a possible step of positive selection in NK cell education. Based on the predicted Ly49 binding preferences revealed by the model, we also propose, that Ly49 receptors are more promiscuous than previously thought in their interactions with MHC class I molecules, which was supported by functional studies of NK cell subsets expressing individual Ly49 receptors.

  6. TCR triggering by pMHC ligands tethered on surfaces via poly(ethylene glycol depends on polymer length.

    Directory of Open Access Journals (Sweden)

    Zhengyu Ma

    Full Text Available Antigen recognition by T cells relies on the interaction between T cell receptor (TCR and peptide-major histocompatibility complex (pMHC at the interface between the T cell and the antigen presenting cell (APC. The pMHC-TCR interaction is two-dimensional (2D, in that both the ligand and receptor are membrane-anchored and their movement is limited to 2D diffusion. The 2D nature of the interaction is critical for the ability of pMHC ligands to trigger TCR. The exact properties of the 2D pMHC-TCR interaction that enable TCR triggering, however, are not fully understood. Here, we altered the 2D pMHC-TCR interaction by tethering pMHC ligands to a rigid plastic surface with flexible poly(ethylene glycol (PEG polymers of different lengths, thereby gradually increasing the ligands' range of motion in the third dimension. We found that pMHC ligands tethered by PEG linkers with long contour length were capable of activating T cells. Shorter PEG linkers, however, triggered TCR more efficiently. Molecular dynamics simulation suggested that shorter PEGs exhibit faster TCR binding on-rates and off-rates. Our findings indicate that TCR signaling can be triggered by surface-tethered pMHC ligands within a defined 3D range of motion, and that fast binding rates lead to higher TCR triggering efficiency. These observations are consistent with a model of TCR triggering that incorporates the dynamic interaction between T cell and antigen-presenting cell.

  7. Role of non-classical MHC class I molecules in cancer immunosuppression

    Science.gov (United States)

    Kochan, Grazyna; Escors, David; Breckpot, Karine; Guerrero-Setas, David

    2013-01-01

    Growing neoplasms employ various mechanisms to evade immunosurveillance. The expression of non-classical MHC class I molecules by both immune and malignant cells in the tumor microenvironment constitute of the strategies used by tumors to circumvent the cytotoxic activity of effector cells of the immune system. The overexpression of HLA-G, -E, and -F is a common finding across a variety of malignancies. However, while the presence of HLA-G and HLA-E has been recently correlated with poor clinical outcome, information on the clinicopathological significance of HLA-F is limited. In the present review, we summarize studies on non-classical MHC class I molecules with special emphasis on their role in the modulation of anticancer immune responses. PMID:24482746

  8. The roles of MHC class II genes and post-translational modification in celiac disease.

    Science.gov (United States)

    Sollid, Ludvig M

    2017-08-01

    Our increasing understanding of the etiology of celiac disease, previously considered a simple food hypersensitivity disorder caused by an immune response to cereal gluten proteins, challenges established concepts of autoimmunity. HLA is a chief genetic determinant, and certain HLA-DQ allotypes predispose to the disease by presenting posttranslationally modified (deamidated) gluten peptides to CD4(+) T cells. The deamidation of gluten peptides is mediated by transglutaminase 2. Strikingly, celiac disease patients generate highly disease-specific autoantibodies to the transglutaminase 2 enzyme. The dual role of transglutaminase 2 in celiac disease is hardly coincidental. This paper reviews the genetic mapping and involvement of MHC class II genes in disease pathogenesis, and discusses the evidence that MHC class II genes, via the involvement of transglutaminase 2, influence the generation of celiac disease-specific autoantibodies.

  9. Simvastatin inhibits interferon-γ-induced MHC class II up-regulation in cultured astrocytes

    Directory of Open Access Journals (Sweden)

    Glazenburg Lisa

    2006-07-01

    Full Text Available Abstract Based on their potent anti-inflammatory properties and a preliminary clinical trial, statins (HMG-CoA reductase inhibitors are being studied as possible candidates for multiple sclerosis (MS therapy. The pathogenesis of MS is unclear. One theory suggests that the development of autoimmune lesions in the central nervous system may be due to a failure of endogenous inhibitory control of MHC class II expression on astrocytes, allowing these cells to adapt an interferon (IFN-γ-induced antigen presenting phenotype. By using immunocytochemistry in cultured astrocytes derived from newborn Wistar rats we found that simvastatin at nanomolar concentrations inhibited, in a dose-response fashion, up to 70% of IFN-γ-induced MHC class II expression. This effect was reversed by the HMG-CoA reductase product mevalonate. Suppression of the antigen presenting function of astrocytes might contribute to the beneficial effects of statins in MS.

  10. Pivotal molecules of MHC I pathway in human primary hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Wei Chen; Mei-Ying Cai; Da-Peng Wei; Xia Wang

    2005-01-01

    AIM: To investigate the expression of several important molecules involved in major histocompatibility complex (MHC) class I presentation pathway in primary hepatocellular carcinoma (HCC), and to determine whether cytotoxic T lymphocyte (CTL) vaccine therapy was suitable for HCC. METHODS: Labeled streptavidin biotin (LSAB) method of immunohisto-chemistry was used to study 33 HCC tissue specimens.RESULTS: Most HCC tissues and adjacent histologicalnormal hepatocytes expressed HLA-I antigens,TAP, andB7, expression of B7 was especially strong, and therewas no significant difference between them (P>0.05).CONCLUSION: The MHC class I presentation pathway in primary hepatocellular carcinoma may not be abnormal or dysfunctional, and CTL could kill these tumor cells.Thus, it is suitable and practicable to design and construct CTL vaccine against HCC.

  11. Expression of class Ⅰ MHC molecule, HSP70 and TAP in human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ling Deng; Wei Chen; Mei-Ying Cai; Da-Peng Wei

    2003-01-01

    AIM: To demonstrate whether class Ⅰ MHC molecule,transporter associated with antigen processing (TAP), and heat-shock proteion70 (HSP70) expressed in liver cancer cells before the design and construction of CTL vaccine against hepatocellular carcinoma (HCC).METHODS: We studied 30 HCC specimens by labeled streptavidin biotin (LSAB) method of immunohistochemistry.RESULTS: The results showed that the majority of HCC cells investigated naturally expressed class Ⅰ MHC and TAP,which were different from other tumor cells. Furthermore,we found that HSP70 expressed not only in cellular cytoplasm, but also on the cell surface in HCC.CONCLUSION: Our findings indicate that our understanding about immune escape mechanisms employed by HCC cells may be further improved. It is important to design and construct CTL vaccine against HCC.

  12. De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus).

    Science.gov (United States)

    Migalska, M; Sebastian, A; Konczal, M; Kotlík, P; Radwan, J

    2017-04-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune response and is the most polymorphic gene family in vertebrates. Although high-throughput sequencing has increasingly been used for genotyping families of co-amplifying MHC genes, its potential to facilitate early steps in the characterisation of MHC variation in nonmodel organism has not been fully explored. In this study we evaluated the usefulness of de novo transcriptome assembly in characterisation of MHC sequence diversity. We found that although de novo transcriptome assembly of MHC I genes does not reconstruct sequences of individual alleles, it does allow the identification of conserved regions for PCR primer design. Using the newly designed primers, we characterised MHC I sequences in the bank vole. Phylogenetic analysis of the partial MHC I coding sequence (2-4 exons) of the bank vole revealed a lack of orthology to MHC I of other Cricetidae, consistent with the high gene turnover of this region. The diversity of expressed alleles was characterised using ultra-deep sequencing of the third exon that codes for the peptide-binding region of the MHC molecule. High allelic diversity was demonstrated, with 72 alleles found in 29 individuals. Interindividual variation in the number of expressed loci was found, with the number of alleles per individual ranging from 5 to 14. Strong signatures of positive selection were found for 8 amino acid sites, most of which are inferred to bind antigens in human MHC, indicating conservation of structure despite rapid sequence evolution.

  13. Immunhistologische Untersuchung zur MHC II-Expression bei Dermatitiden von Hunden und Katzen

    OpenAIRE

    Huisinga, Maike

    2008-01-01

    1. Ziel dieser Arbeit war es, eine Methode zu etablieren, die eine genauere Charakterisierung und Differenzierung von Dermatitiden von Hunden und Katzen ermöglicht, um neue Erkenntnisse über den Zusammenhang von verschiedenen Hautentzündungen, deren Pathogenese und deren Ursachen zu erhalten. Weiterhin sollte ein Vergleich der Ergebnisse mit jenen der Humanmedizin erfolgen, um speziesspezifische Unterschiede zu dokumentieren. Da die MHC II-Antigene eine zentrale Rolle in der Immunantwort s...

  14. Exposing the specific roles of the invariant chain isoforms in shaping the MHC class II peptidome

    OpenAIRE

    Jean-Simon eFortin; Maryse eCloutier; Jacques eThibodeau

    2013-01-01

    The peptide repertoire (peptidome) associated with MHC class II molecules (MHCIIs) is influenced by the polymorphic nature of the peptide binding groove but also by cell-intrinsic factors. The invariant chain (Ii) chaperones MHCIIs, affecting their folding and trafficking. Recent discoveries relating to Ii functions have provided insights as to how it edits the MHCII peptidome. In humans, the Ii gene encodes four different isoforms for which structure-function analyses have highlighted common...

  15. MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus).

    Science.gov (United States)

    Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J

    2011-02-01

    In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.

  16. Evolution and comparative analysis of the MHC Class III inflammatory region

    OpenAIRE

    Speed Terence P; Sims Sarah; Palmer Sophie; Coggill Penny; Cross Joseph GR; Belov Katherine; Papenfuss Anthony T; Deakin Janine E; Beck Stephan; Graves Jennifer

    2006-01-01

    Abstract Background The Major Histocompatibility Complex (MHC) is essential for immune function. Historically, it has been subdivided into three regions (Class I, II, and III), but a cluster of functionally related genes within the Class III region has also been referred to as the Class IV region or "inflammatory region". This group of genes is involved in the inflammatory response, and includes members of the tumour necrosis family. Here we report the sequencing, annotation and comparative a...

  17. A community resource benchmarking predictions of peptide binding to MHC-I molecules.

    Directory of Open Access Journals (Sweden)

    Bjoern Peters

    2006-06-01

    Full Text Available Recognition of peptides bound to major histocompatibility complex (MHC class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, and chimpanzee MHC class I alleles. We use this data to establish a set of benchmark predictions with one neural network method and two matrix-based prediction methods extensively utilized in our groups. In general, the neural network outperforms the matrix-based predictions mainly due to its ability to generalize even on a small amount of data. We also retrieved predictions from tools publicly available on the internet. While differences in the data used to generate these predictions hamper direct comparisons, we do conclude that tools based on combinatorial peptide libraries perform remarkably well. The transparent prediction evaluation on this dataset provides tool developers with a benchmark for comparison of newly developed prediction methods. In addition, to generate and evaluate our own prediction methods, we have established an easily extensible web-based prediction framework that allows automated side-by-side comparisons of prediction methods implemented by experts. This is an advance over the current practice of tool developers having to generate reference predictions themselves, which can lead to underestimating the performance of prediction methods they are not as familiar with as their own. The overall goal of this effort is to provide a transparent prediction evaluation allowing bioinformaticians to identify promising features of prediction methods and providing guidance to immunologists regarding the reliability of prediction tools.

  18. Targeting tumor-associated antigens to the MHC class I presentation pathway.

    Science.gov (United States)

    Gross, G; Margalit, A

    2007-06-01

    There is little doubt that cytotoxic T lymphocytes (CTLs) can kill tumor cells in-vivo. However, most CTL-inducing immunization protocols examined so far in cancer patients have yielded only limited clinical benefits, underscoring the urge to improve current approaches for the effective induction of tumor-reactive CTLs. The tumor side of the immunological frontline is armed with large masses, high mutability and an arsenal of immune evasion and suppression mechanisms. Accordingly, the confronting CTLs should come in large numbers, recognize an assortment of MHC class I (MHC-I) bound tumor-associated peptides and be brought into action under effective immunostimulatory conditions. Naïve CTLs are activated to become effector cells in secondary lymphoid organs, following their productive encounter with MHC-I-bound peptides at the surface of dendritic cells (DCs). Therefore, many cancer vaccines under development focus on the optimization of peptide presentation by DCs at this critical stage. The elucidation of discrete steps and the subsequent identification of inherent bottlenecks in the MHC-I antigen presentation pathway have fueled elaborate efforts to enhance vaccine efficacy by the rational targeting of proteins or peptides, formulated into these vaccines, to this pathway. Protein- and gene-based strategies are accordingly devised to deliver tumor-associated peptides to selected cellular compartments, which are essential for the generation of functional CTL ligands. Many of these strategies target the conventional, endogenous route, while others harness the unique pathways that enable DCs to present exogenous antigens, known as cross-presentation. Here we dissect the intricate machinery that produces CTL ligands and examine how knowledge-based cancer vaccines can target the sequence of workstations, biochemical utensils and molecular intermediates comprising this production line.

  19. Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC

    Directory of Open Access Journals (Sweden)

    Cheng Yuanyuan

    2012-03-01

    Full Text Available Abstract Background The Tasmanian devil (Sarcophilus harrisii is currently under threat of extinction due to an unusual fatal contagious cancer called Devil Facial Tumour Disease (DFTD. DFTD is caused by a clonal tumour cell line that is transmitted between unrelated individuals as an allograft without triggering immune rejection due to low levels of Major Histocompatibility Complex (MHC diversity in Tasmanian devils. Results Here we report the characterization of the genomic regions encompassing MHC Class I and Class II genes in the Tasmanian devil. Four genomic regions approximately 960 kb in length were assembled and annotated using BAC contigs and physically mapped to devil Chromosome 4q. 34 genes and pseudogenes were identified, including five Class I and four Class II loci. Interestingly, when two haplotypes from two individuals were compared, three genomic copy number variants with sizes ranging from 1.6 to 17 kb were observed within the classical Class I gene region. One deletion is particularly important as it turns a Class Ia gene into a pseudogene in one of the haplotypes. This deletion explains the previously observed variation in the Class I allelic number between individuals. The frequency of this deletion is highest in the northwestern devil population and lowest in southeastern areas. Conclusions The third sequenced marsupial MHC provides insights into the evolution of this dynamic genomic region among the diverse marsupial species. The two sequenced devil MHC haplotypes revealed three copy number variations that are likely to significantly affect immune response and suggest that future work should focus on the role of copy number variations in disease susceptibility in this species.

  20. Interactions within the MHC contribute to the genetic architecture of celiac disease

    Science.gov (United States)

    Abraham, Gad; Kikianty, Eder; Wang, Qiao; Rawlinson, Dave; Shi, Fan; Haviv, Izhak; Stern, Linda

    2017-01-01

    Interaction analysis of GWAS can detect signal that would be ignored by single variant analysis, yet few robust interactions in humans have been detected. Recent work has highlighted interactions in the MHC region between known HLA risk haplotypes for various autoimmune diseases. To better understand the genetic interactions underlying celiac disease (CD), we have conducted exhaustive genome-wide scans for pairwise interactions in five independent CD case-control studies, using a rapid model-free approach to examine over 500 billion SNP pairs in total. We found 14 independent interaction signals within the MHC region that achieved stringent replication criteria across multiple studies and were independent of known CD risk HLA haplotypes. The strongest independent CD interaction signal corresponded to genes in the HLA class III region, in particular PRRC2A and GPANK1/C6orf47, which are known to contain variants for non-Hodgkin's lymphoma and early menopause, co-morbidities of celiac disease. Replicable evidence for statistical interaction outside the MHC was not observed. Both within and between European populations, we observed striking consistency of two-locus models and model distribution. Within the UK population, models of CD based on both interactions and additive single-SNP effects increased explained CD variance by approximately 1% over those of single SNPs. The interactions signal detected across the five cohorts indicates the presence of novel associations in the MHC region that cannot be detected using additive models. Our findings have implications for the determination of genetic architecture and, by extension, the use of human genetics for validation of therapeutic targets. PMID:28282431

  1. Effect of antibiotic, Lacto-lase and probiotic addition in chicken feed on protein and fat content of chicken meat

    Science.gov (United States)

    Azhar, Noor Amiza; Abdullah, Aminah

    2015-09-01

    This research was conducted to investigate the effect of chicken feed additives (antibiotic, Lacto-lase® and probiotic) on protein and fat content of chicken meat. Chicken fed with control diet (corn-soy based diet) served as a control. The treated diets were added with zinc bacitracin (antibiotic), different amount of Lacto-lase® (a mixture of probiotic and enzyme) and probiotic. Chicken were slaughtered at the age of 43-48 days. Each chicken was divided into thigh, breast, drumstick, drumette and wing. Protein content in chicken meat was determined by using macro-Kjeldahl method meanwhile Soxhlet method was used to analyse fat content. The result of the study showed that the protein content of chicken breast was significantly higher (p≤0.05) while thigh had the lowest protein content (p≤0.05). Antibiotic fed chicken was found to have the highest protein content among the treated chickens but there was no significant different with 2g/kg Lacto-lase® fed chicken (p>0.05). All thighs were significantly higher (p≤0.05) in fat content except for drumette of control chicken while breast contained the lowest fat content compared to other chicken parts studied. The control chicken meat contained significantly higher (p≤0.05) amount of fat compared to the other treated chickens. Chicken fed with 2g/kg Lacto-lase® had the lowest (p≤0.05) fat content. The result of this study indicated that the addition of Lacto-lase® as a replacement of antibiotic in chicken feed will not affect the content of protein and fat of chicken meat.

  2. MCU-Based Solar Powered Chicken Feeder

    Directory of Open Access Journals (Sweden)

    Elenor M. Reyes

    2015-12-01

    Full Text Available Poultry is a great potential industry particularly in Batangas Province. The method of feeding chicken needs to be considered as chicken must be fed regularly to be more productive. The conventional method of feeding chicken is the need to continuously provide the food, be alert and conscious on the food remaining in cages and to feed the chickens in a correct period of time to avoid the decline of the production. Growers also find it difficult to manage their businesses effectively because they need to be around the cages every now and then to monitor the poultry. Timing and exactness are the key to provide a uniform time in feeding the chickens. This will benefit the owner of the business in terms of time and effort. Another advantage of this project is in terms of savings to the owner of the poultry business. This technology was designed to automatically feed chickens at a given period of time and to give alarm when the feeds are running out of supply. The power to be supplied to this prototype will be drawn from the sun by means of solar panels and will be stored in typical car battery. The feeds will be stored in a container and evenly distributed by using a conveyor to the feeding basin of the poultry. It will be more efficient than manual conventional way of feeding because less effort will be needed in feeding the chickens and less feeds will be wasted. In addition to that, the stored power can also be used for lighting purposes for the growers to save energy and energy bills.

  3. Contrasting evolutionary histories of MHC class I and class II loci in grouse—Effects of selection and gene conversion

    Science.gov (United States)

    Minias, Piotr; Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  4. Distinct functions for the glycans of tapasin and heavy chains in the assembly of MHC class I molecules.

    Science.gov (United States)

    Rizvi, Syed Monem; Del Cid, Natasha; Lybarger, Lonnie; Raghavan, Malini

    2011-02-15

    Complexes of specific assembly factors and generic endoplasmic reticulum (ER) chaperones, collectively called the MHC class I peptide-loading complex (PLC), function in the folding and assembly of MHC class I molecules. The glycan-binding chaperone calreticulin (CRT) and partner oxidoreductase ERp57 are important in MHC class I assembly, but the sequence of assembly events and specific interactions involved remain incompletely understood. We show that the recruitments of CRT and ERp57 to the PLC are codependent and also dependent upon the ERp57 binding site and the glycan of the assembly factor tapasin. Furthermore, the ERp57 binding site and the glycan of tapasin enhance β(2)m and MHC class I heavy (H) chain recruitment to the PLC, with the ERp57 binding site having the dominant effect. In contrast, the conserved MHC class I H chain glycan played a minor role in CRT recruitment into the PLC, but impacted the recruitment of H chains into the PLC, and glycan-deficient H chains were impaired for tapasin-independent and tapasin-assisted assembly. The conserved MHC class I glycan and tapasin facilitated an early step in the assembly of H chain-β(2)m heterodimers, for which tapasin-ERp57 or tapasin-CRT complexes were not required. Together, these studies provide insights into how PLCs are constructed, demonstrate two distinct mechanisms by which PLCs can be stabilized, and suggest the presence of intermediate H chain-deficient PLCs.

  5. MHC class II up-regulation and co-localization with Fas in experimental models of immune-mediated bone marrow failure

    Science.gov (United States)

    Erie, Andrew J.; Samsel, Leigh; Takaku, Tomoiku; Desierto, Marie J.; Keyvanfar, Keyvan; McCoy, J. Philip; Young, Neal S.; Chen, Jichun

    2011-01-01

    Objective To test the hypothesis that gamma interferon (IFN-γ) promotes MHC class II expression on bone marrow (BM) cell targets that facilitates T cell-mediated BM destruction in immune-mediated BM failure. Materials and Methods Allogeneic lymph node (LN) cells were infused into MHC or minor histocompatibility antigen (minor-H) mismatched hosts to induce BM failure. MHC class II and Fas expression and cell apoptosis were analyzed by flow cytometry. MHC class II-Fas co-localization was detected by ImageStream Imaging Flow Cytometry and other cell-cell associations were visualized by confocal microscopy. T cell-mediated BM cell apoptosis and effects of IFN-γ on MHC class II-Fas co-localization on normal BM cells were studied using cell culture in vitro followed by conventional and imaging flow cytometry. Results BM failure animals had significantly up-regulated MHC class II expression on CD4−CD8−CD11b−CD45R− residual BM cells and significantly increased MHC class II-Fas co-localization on BM CD150+ and CD34+ hematopoietic cells. MHC class II+Fas+ BM cells were closely associated with CD4+ T cells in the BM of affected animals, and they were significantly more responsive to T-cell mediated cell apoptosis relative to MHC class II−Fas− BM cells. Infusion of IFN-γ-deficient LN cells into minor-H mismatched recipients resulted in no MHC class II-Fas up-regulation and no clinically overt BM failure. Treatment with recombinant IFN-γ significantly increased both MHC class II-Fas co-expression and co-localization on normal BM cells. Conclusion Elevation of the inflammatory cytokine IFN-γ stimulated MHC class II expression and MHC class II-Fas co-localization, which may facilitate T-cell mediated cell destruction. PMID:21635935

  6. Development of Local Chicken Production Based on Local Feed Ingredients

    Directory of Open Access Journals (Sweden)

    Cecep Hidayat

    2012-06-01

    Full Text Available Development of local chicken production based on local feed ingredient is in line with the vision of Indonesian goverment to fulfill meat and egg national requirement based on local resources. There are two big problem which become stumblingblock in developing local chicken production. The first problem is the difficulty to get day old chick of local chicken. This problem can be solved by integrating breeder institutions belong to goverment with research institution and with local chicken producer association. The second problem is the low performance of local chicken. To improve local chicken performance, it can be done by improving the breed, feed and management. Several research results show that good performance of local chicken were obtained by inclusion of local feed ingredients in the ration. Therefore, development of local chicken production based an local feed resources can be applied.

  7. Acceptability of chicken powder in home prepared complementary ...

    African Journals Online (AJOL)

    Acceptability of chicken powder in home prepared complementary foods for ... on weight basis according to predetermined proportions of the raw ingredients. ... the chicken powder (an animal source quality protein) in their children's diet, if not ...

  8. Potential probiotic of Lactobacillus johnsonii LT171 for chicken ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-11-02

    Nov 2, 2009 ... ISSN 1684–5315 © 2009 Academic Journals. Full Length ... chicken nutrition. Hamidreza ... probiotic properties of L. johnsonii LT171 for chicken nutrition. Hence this ..... resistance to pathogens and performance in animals.

  9. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices

    Science.gov (United States)

    Singha, Santiswarup; Shao, Kun; Yang, Yang; Clemente-Casares, Xavier; Solé, Patricia; Clemente, Antonio; Blanco, Jesús; Dai, Qin; Song, Fayi; Liu, Shang Wan; Yamanouchi, Jun; Umeshappa, Channakeshava Sokke; Nanjundappa, Roopa Hebbandi; Detampel, Pascal; Amrein, Matthias; Fandos, César; Tanguay, Robert; Newbigging, Susan; Serra, Pau; Khadra, Anmar; Chan, Warren C. W.; Santamaria, Pere

    2017-07-01

    We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.

  10. Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE

    Directory of Open Access Journals (Sweden)

    Nieves Marín

    2014-01-01

    Full Text Available Background and Objectives. Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE, an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. Methods. For EAE induction, female C57BL/6 (susceptible strain and CD1 (resistant outbred strain showing heterogeneous MHC antigens mice were immunized with the 35–55 peptide of myelin oligodendrocyte glycoprotein (MOG35−55. We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Results. Upon immunization with MOG35−55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35−55. Accordingly, resistant mice experienced a rise in regulatory B cells (P=0.001 and, to a lower extent, in regulatory T cells (P=0.02 compared with C57BL/6 susceptible mice. As a consequence, MOG35−55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P=0.02 and IL-17 (P=0.009 and higher serum levels of IL-17 (P=0.04 than resistant mice. Conclusions. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism.

  11. NLRC5 regulates MHC class Ⅰ antigen presentation in host defense against intracellular pathogens

    Institute of Scientific and Technical Information of China (English)

    Yikun Yao; Yalong Wang; Fuxiang Chen; Yin Huang; Shu Zhu; Qibin Leng; Hongyan Wang; Yufang Shi; Youcun Qian

    2012-01-01

    NOD-like receptors (NLRs) are a family of intracellular proteins that play critical roles in innate immunity against microbial infection.NLRC5,the largest member of the NLR family,has recently attracted much attention.However,in vitro studies have reported inconsistent results about the roles of NLRC5 in host defense and in regulating immune signaling pathways.The in vivo function of NLRC5 remains unknown.Here,we report that NLRC5 is a critical regulator of host defense against intraeellular pathogens in vivo.NLRC5 was specifically required for the expression of genes involved in MHC class Ⅰ antigen presentation.NLRC5-deficient mice showed a profound defect in the expression of MHC class Ⅰ genes and a concomitant failure to activate L.monocytogenes-specific CD8+ T cell responses,including activation,proliferation and cytotoxicity,and the mutant mice were more susceptible to the pathogen infection.NLRP3-mediated inflammasome activation was also partially impaired in NLRC5-deficient mice.However,NLRC5 was dispensable for pathogen-induced expression of NF-KB-dependent pro-inflammatory genes as well as type I interferon genes.Thus,NLRC5 critically regulates MHC class Ⅰ antigen presentation to control intracellular pathogen infection.

  12. Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE

    Science.gov (United States)

    Marín, Nieves; Mecha, Miriam; Espejo, Carmen; Mestre, Leyre; Eixarch, Herena; Montalban, Xavier; Álvarez-Cermeño, José C.; Guaza, Carmen; Villar, Luisa M.

    2014-01-01

    Background and Objectives. Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE), an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. Methods. For EAE induction, female C57BL/6 (susceptible strain) and CD1 (resistant outbred strain showing heterogeneous MHC antigens) mice were immunized with the 35–55 peptide of myelin oligodendrocyte glycoprotein (MOG35−55). We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Results. Upon immunization with MOG35−55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35−55. Accordingly, resistant mice experienced a rise in regulatory B cells (P = 0.001) and, to a lower extent, in regulatory T cells (P = 0.02) compared with C57BL/6 susceptible mice. As a consequence, MOG35−55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P = 0.02) and IL-17 (P = 0.009) and higher serum levels of IL-17 (P = 0.04) than resistant mice. Conclusions. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism. PMID:24868560

  13. Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells.

    Science.gov (United States)

    Herouet, C; Cottin, M; LeClaire, J; Enk, A; Rousset, F

    2000-01-01

    Contact sensitivity is a T-cell-mediated immune disease that can occur when low-molecular-weight chemicals penetrate the skin. In vivo topical application of chemical sensitizers results in morphological modification of Langerhans cells (LC). Moreover, within 18 h, LC increase their major histocompatibility complex (MHC) class II antigens expression and migrate to lymph nodes where they present the sensitizer to T lymphocytes. We wanted to determine if such an effect could also be observed in vitro. However, because of the high genetic diversity encountered in humans, assays were performed with dendritic cells (DC) obtained from a Balb/c mouse strain. The capacity of a strong sensitizer, DNBS (2,4-dinitrobenzene sulfonic acid), to modulate the phenotype of bone marrow-derived DC in vitro, was investigated. A specific and marked increase of MHC class II molecules expression was observed within 18 h. To eliminate the use of animals in sensitization studies, the XS52 DC line was tested at an immature stage. A 30-min contact with the strong sensitizers DNBS and oxazolone, or the moderate mercaptobenzothiazole, resulted in upregulation of MHC class II molecules expression, analyzed after 18-h incubation. This effect was not observed with irritants (dimethyl sulfoxide and sodium lauryl sulfate) nor with a neutral molecule (sodium chloride). These data suggested the possibility of developing an in vitro model for the identification of the sensitizing potential of chemicals, using a constant and non animal-consuming material.

  14. MARCH1 down-regulation in IL-10-activated B cells increases MHC class II expression.

    Science.gov (United States)

    Galbas, Tristan; Steimle, Viktor; Lapointe, Réjean; Ishido, Satoshi; Thibodeau, Jacques

    2012-07-01

    IL-10 is vastly studied for its anti-inflammatory properties on most immune cells. However, it has been reported that IL-10 activates B cells, up-regulates their MHC class II molecules and prevents apoptosis. As MARCH1 was shown to be responsible for the intracellular sequestration of MHC class II molecules in dendritic cells and monocytes in response to IL-10, we set out to clarify the role of this ubiquitin ligase in B cells. Here, we demonstrate in mice that splenic follicular B cells represent the major cell population that up-regulate MHC II molecules in the presence of IL-10. Activation of these cells through TLR4, CD40 or the IL-10 receptor caused the down-regulation of MARCH1 mRNA. Accordingly, B cells from MARCH1-deficient mice do not up-regulate I-A(b) in response to IL-10. In all, our results demonstrate that IL-10 can have opposite effects on MARCH1 regulation in different cell types.

  15. MHC mismatch inhibits neurogenesis and neuron maturation in stem cell allografts.

    Directory of Open Access Journals (Sweden)

    Zhiguo Chen

    Full Text Available BACKGROUND: The role of histocompatibility and immune recognition in stem cell transplant therapy has been controversial, with many reports arguing that undifferentiated stem cells are protected from immune recognition due to the absence of major histocompatibility complex (MHC markers. This argument is even more persuasive in transplantation into the central nervous system (CNS where the graft rejection response is minimal. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we evaluate graft survival and neuron production in perfectly matched vs. strongly mismatched neural stem cells transplanted into the hippocampus in mice. Although allogeneic cells survive, we observe that MHC-mismatch decreases surviving cell numbers and strongly inhibits the differentiation and retention of graft-derived as well as endogenously produced new neurons. Immune suppression with cyclosporine-A did not improve outcome but non-steroidal anti-inflammatory drugs, indomethacin or rosiglitazone, were able to restore allogeneic neuron production, integration and retention to the level of syngeneic grafts. CONCLUSIONS/SIGNIFICANCE: These results suggest an important but unsuspected role for innate, rather than adaptive, immunity in the survival and function of MHC-mismatched cellular grafts in the CNS.

  16. Detection and characterization of cellular immune responses using peptide-MHC microarrays.

    Directory of Open Access Journals (Sweden)

    Yoav Soen

    2003-12-01

    Full Text Available The detection and characterization of antigen-specific T cell populations is critical for understanding the development and physiology of the immune system and its responses in health and disease. We have developed and tested a method that uses arrays of peptide-MHC complexes for the rapid identification, isolation, activation, and characterization of multiple antigen-specific populations of T cells. CD4(+ or CD8(+ lymphocytes can be captured in accordance with their ligand specificity using an array of peptide-MHC complexes printed on a film-coated glass surface. We have characterized the specificity and sensitivity of a peptide-MHC array using labeled lymphocytes from T cell receptor transgenic mice. In addition, we were able to use the array to detect a rare population of antigen-specific T cells following vaccination of a normal mouse. This approach should be useful for epitope discovery, as well as for characterization and analysis of multiple epitope-specific T cell populations during immune responses associated with viral and bacterial infection, cancer, autoimmunity, and vaccination.

  17. Psoriasis regression analysis of MHC loci identifies shared genetic variants with vitiligo.

    Directory of Open Access Journals (Sweden)

    Kun-Ju Zhu

    Full Text Available Psoriasis is a common inflammatory skin disease with genetic components of both immune system and the epidermis. PSOR1 locus (6q21 has been strongly associated with psoriasis; however, it is difficult to identify additional independent association due to strong linkage disequilibrium in the MHC region. We performed stepwise regression analyses of more than 3,000 SNPs in the MHC region genotyped using Human 610-Quad (Illumina in 1,139 cases with psoriasis and 1,132 controls of Han Chinese population to search for additional independent association. With four regression models obtained, two SNPs rs9468925 in HLA-C/HLA-B and rs2858881 in HLA-DQA2 were repeatedly selected in all models, suggesting that multiple loci outside PSOR1 locus were associated with psoriasis. More importantly we find that rs9468925 in HLA-C/HLA-B is associated with both psoriasis and vitiligo, providing first important evidence that two major skin diseases share a common genetic locus in the MHC, and a basis for elucidating the molecular mechanism of skin disorders.

  18. Clustering of diverse replicated sequences in the MHC: Evidence for en bloc duplication

    Energy Technology Data Exchange (ETDEWEB)

    Leelayuwat, C.; Pinelli, M. [Univ. Western Australia, Perth (Australia); Dawkins, R.L. [Royal Perth Hospital (Australia)

    1995-07-15

    The MHC contains clusters of polymorphic duplicated genes and gene sequences. It has been thought that these duplicated genes and sequences have arisen from single gene duplications. We compared the cloned region between TNF and HLA-B with the region in close proximity to HLA-A using sequence analysis and DNA hybridization. The results indicate that several sequences existing in the region centromeric of HLA-B are also present in close proximity to HLA-A. These include sequences belonging to the P5, BAT1, and PERB11 gene families as well as HLA class I gene sequences. Interestingly, when the two regions of approximately 200 kilobases are compared, the replicated sequences are organized similarly but in an inverted fashion suggesting the existence of an historical inverted en bloc duplication. Thus, we propose that the origin of these MHC gene clusters involves several mechanisms. In addition to single gene replication, a long-range duplication of a genomic block must have occurred. It is possible that a block at the telomeric end of the MHC represents a basic functional genomic unit conserved and duplicated en bloc. 49 refs., 3 figs., 3 tabs.

  19. Association of polymorphisms in non-classic MHC genes with susceptibility to autoimmune hepatitis

    Institute of Scientific and Technical Information of China (English)

    JieTang; ChengZhou; Zhi-JunZhang; Shu-SenZheng

    2012-01-01

    BACKGROUND: Autoimmune hepatitis is a chronic, generally progressive inflammatory disorder of the liver, of which the cause is unclear. It was demonstrated that genetic factors are involved in its pathogenesis. Previous studies showed that human leukocyte antigen in the major histocompatibility complex (MHC) is associated with susceptibility to autoimmune hepatitis. Current genome scanning studies suggest that genes outside the MHC also play a critical role in autoimmune disorders. This article focuses on our current understanding of the polymorphisms of these genes and their roles in the pathogenesis of autoimmune hepatitis. DATA  SOURCES: Studies were identified by searching MEDLINE and PubMed for articles using the keywords autoimmune hepatitis, polymorphism, CTLA-4, Fas, TNF-α, TGF-β1, TBX21 and VDR up to May 2011. Additional papers were identified by a manual search of the references from key articles. RESULTS:  According to the case-control studies on genetic polymorphisms, at least six genes (CTLA-4, Fas, TNF-α, TGF-β1, TBX21 and VDR) are involved in autoimmune hepatitis besides HLA. So far, there has been no agreement about gene susceptibility and the actual clinical significance of these genes is still controversial. CONCLUSION: Studies on gene polymorphisms outside the MHC and knowledge of genetic predispositions for autoimmune hepatitis may not only elucidate pathogenic mechanisms, but also provide new targets for therapy in the future.

  20. MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans

    Directory of Open Access Journals (Sweden)

    Cunha-Neto E.

    1999-01-01

    Full Text Available The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.

  1. Probiotic and Acetic Acid Effect on Broiler Chickens Performance

    OpenAIRE

    Martin Král; Mária Angelovičová; Ľubica Mrázová; Jana Tkáčová; Martin Kliment

    2011-01-01

    Probiotics and organic acids are widely accepted as an alternative to in-feed antibiotics in poultry production. We carried the experiment with broiler chickens. In experiment we research effect of probiotic and acetic acids on the performance of broiler chickens. A total number of 200 one day old broiler chickens were distributed to two dietary groups. Broiler chickens in control group were fed with standard feed mixture and experimental group 1% vinegar contained 5% acetic acid used in drin...

  2. Chicken sperm transcriptome profiling by microarray analysis.

    Science.gov (United States)

    Singh, R P; Shafeeque, C M; Sharma, S K; Singh, R; Mohan, J; Sastry, K V H; Saxena, V K; Azeez, P A

    2016-03-01

    It has been confirmed that mammalian sperm contain thousands of functional RNAs, and some of them have vital roles in fertilization and early embryonic development. Therefore, we attempted to characterize transcriptome of the sperm of fertile chickens using microarray analysis. Spermatozoal RNA was pooled from 10 fertile males and used for RNA preparation. Prior to performing the microarray, RNA quality was assessed using a bioanalyzer, and gDNA and somatic cell RNA contamination was assessed by CD4 and PTPRC gene amplification. The chicken sperm transcriptome was cross-examined by analysing sperm and testes RNA on a 4 × 44K chicken array, and results were verified by RT-PCR. Microarray analysis identified 21,639 predominantly nuclear-encoded transcripts in chicken sperm. The majority (66.55%) of the sperm transcripts were shared with the testes, while surprisingly, 33.45% transcripts were detected (raw signal intensity greater than 50) only in the sperm and not in the testes. The greatest proportion of up-regulated transcripts were responsible for signal transduction (63.20%) followed by embryonic development (56.76%) and cell structure (56.25%). Of the 20 most abundant transcripts, 18 remain uncharacterized, whereas the least abundant genes were mostly associated with the ribosome. These findings lay a foundation for more detailed investigations on sperm RNAs in chickens to identify sperm-based biomarkers for fertility.

  3. Price Transmission Analysis in Iran Chicken Market

    Directory of Open Access Journals (Sweden)

    Seyed Safdar Hosseini

    2012-12-01

    Full Text Available Over the past three decades vertical price transmissionanalysis has been the subject of considerable attention inapplied agricultural economics. It has been argued that theexistence of asymmetric price transmission generates rents formarketing and processing agents. Retail prices allegedly movefaster upwards than downwards in response to farm level pricemovements. This is an important issue for many agriculturalmarkets, including the Iranian chicken market. Chicken is animportant source of nutrition in Iranian society and many ruralhouseholds depend on this commodity market as a source of income.The purpose of this paper is to analyze the extent, if any,of asymmetric price transmission in Iran chicken market usingthe Houck, Error Correction and Threshold models. The analysisis based on weekly chicken price data at farm and retail levelsover the period October 2002 to March 2006. The results oftests on all three models show that price transmission in Iranianchicken market is long-run symmetric, but short-run asymmetric.Increases in the farm price transmit immediately to the retaillevel, while decreases in farm price transmit relatively moreslowly to the retail level. We conjecture the asymmetric pricetransmission in this market is the result of high inflation ratesthat lead the consumers to expect continual price increases anda different adjustment costs in the upwards direction comparedto the downwards direction for the marketing agents and a noncompetitiveslaughtering industry and that looking for ways tomake this sector of the chicken supply chain more competitivewill foster greater price transmission symmetry and lead towelfare gains for both consumers and agricultural producers.

  4. Induction of antigen-presenting capacity in tumor cells upon infection with non-replicating recombinant vaccinia virus encoding murine MHC class II and costimulatory molecules.

    Science.gov (United States)

    Marti, W R; Oertli, D; Meko, J B; Norton, J A; Tsung, K

    1997-01-15

    The possibility of inducing antigen-presenting capacity in cells normally lacking such capacity, currently represents a major goal in vaccine research. To address this issue we attempted to generate 'artificial' APC able to stimulate CD4+ T cell responses when tumor cells were infected with a single, recombinant, vaccinia virus (rVV) containing the two genes encoding murine MHC class II I-Ak and a third gene encoding the murine B7-1 (mB7-1) costimulatory molecule. To minimize the cytopathic effect and to improve safety, in view of possible in vivo applications, we made this rVV replication incompetent by Psoralen and long wave UV treatment. Tumor cells infected with rVV encoding I-Ak alone, pulsed with hen egg white lysozyme peptide (HEL46-61), induced IL-2 secretion by an antigen-specific T hybridoma. Tumor cells infected with the rVV encoding mB7-1 provided costimulation for activating resting CD4+ T cells in the presence of ConA. Tumor cells infected with the rVV encoding I-Ak and mB7-1, and pulsed with chicken ovotransferrin peptide (conalbumin133-145), induced a significantly higher response in a specific Th2 cell clone (D10.G4.1) as compared to cells infected with rVV encoding I-Ak molecules only. Thus, this replication incompetent rVV represents a safe, multiple gene, vector system able to confer in one single infection step effective APC capacity to non-professional APCs.

  5. Relationship between chicken cellular immunity and endotoxin levels in dust from chicken housing environments.

    Science.gov (United States)

    Roque, Katharine; Shin, Kyung-Min; Jo, Ji-Hoon; Kim, Hyoung-Ah; Heo, Yong

    2015-01-01

    Hazardous biochemical agents in animal husbandry indoor environments are known to promote the occurrence of various illnesses among workers and animals. The relationship between endotoxin levels in dust collected from chicken farms and various immunological markers was investigated. Peripheral blood was obtained from 20 broiler chickens and 20 laying hens from four different chicken farms in Korea. Concentrations of total or respirable dust in the inside the chicken farm buildings were measured using a polyvinyl chloride membrane filter and mini volume sampler. Endotoxin levels in the dust were determined by the Limulus Amebocyte Lysate Kinetic method. Interferon-γ production by peripheral blood mononuclear cells stimulated with concanavalin A was significantly lower in broilers or layers from the farms with higher endotoxin concentrations than the chickens from the farms with lower endotoxin levels. An opposite pattern was observed for plasma cortisol concentrations with higher cortisol levels found in chickens from the farms with higher endotoxin levels. When peripheral lymphocytes were examined, the percentage of CD3(-)Ia(+) B cells was lower in layers from farms with higher endotoxin levels than those from locations with lower endotoxin levels. Overall, these results suggest a probable negative association between dust endotoxin levels and cell-mediated immunity in chickens.

  6. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2007-07-01

    Full Text Available Abstract Background Antigen presenting cells (APCs sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR, we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion

  7. Identification of chicken eNOS gene and differential expression in highland versus lowland chicken breeds.

    Science.gov (United States)

    Peng, J F; Ling, Y; Gou, W Y; Zhang, H; Wu, C X

    2012-09-01

    Nitric oxide (NO), an endothelium-derived relaxing factor, is synthesized from l-arginine by endothelial nitric oxide synthase (eNOS) in the endothelium. The objective of the present study was to preliminarily illuminate the expression of the eNOS gene in hypoxic adaptation of chicken embryonic development. The eNOS expression profiles between the Tibet and Shouguang chickens incubated under both normoxic and hypoxic conditions were detected by TaqMan real-time PCR. In this study, the chicken eNOS gene was found by both in silico cloning and RACE approaches. From the eNOS gene, we obtained a 3,310-bp mRNA sequence and a 10,666-bp DNA sequence and discovered that it was located on chicken chromosome 2 and had 7 unique transcripts. eNOS mRNA was detected in abundant amounts in some chick embryo organs (i.e., heart, liver, chorio-allantoic membrane, and lung), and expressed stably with the lowest levels in the brain. We observed that when exposed to hypoxia (13% O(2)) different embryo organ tissues had various sensitivities to hypoxia as determined by their eNOS expression profiles. Compared with the Shouguang chicken, the eNOS expression in the Tibet chicken was higher in the lung and liver, lower in the heart, and similar in the brain. In chorio-allantoic membranes, eNOS expression was higher in the Shouguang chicken than the Tibet chicken under hypoxic conditions, but not markedly different under normoxic conditions. The differences of eNOS expression between the 2 breeds may be relative to the hypoxic adaptation ability in Tibet chickens during embryonic development. This work will provide reference for future studies on the role of eNOS in hypoxic adaptation and response.

  8. Correlated evolution of nucleotide substitution rates and allelic variation in Mhc-DRB lineages of primates

    Directory of Open Access Journals (Sweden)

    de Groot Natasja G

    2009-04-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC is a key model of genetic polymorphism. Selection pressure by pathogens or other microevolutionary forces may result in a high rate of non-synonymous substitutions at the codons specifying the contact residues of the antigen binding sites (ABS, and the maintenance of extreme MHC allelic variation at the population/species level. Therefore, selection forces favouring MHC variability for any reason should cause a correlated evolution between substitution rates and allelic polymorphism. To investigate this prediction, we characterised nucleotide substitution rates and allelic polymorphism (i.e. the number of alleles detected in relation to the number of animals screened of several Mhc class II DRB lineages in 46 primate species, and tested for a correlation between them. Results First, we demonstrate that species-specific and lineage-specific evolutionary constraints favour species- and lineage-dependent substitution rate at the codons specifying the ABS contact residues (i.e. certain species and lineages can be characterised by high substitution rate, while others have low rate. Second, we show that although the degree of the non-synonymous substitution rate at the ABS contact residues was systematically higher than the degree of the synonymous substitution rate, these estimates were strongly correlated when we controlled for species-specific and lineage-specific effects, and also for the fact that different studies relied on different sample size. Such relationships between substitution rates of different types could even be extended to the non-contact residues of the molecule. Third, we provide statistical evidence that increased substitution rate along a MHC gene may lead to allelic variation, as a high substitution rate can be observed in those lineages in which many alleles are maintained. Fourth, we show that the detected patterns were independent of phylogenetic constraints. When

  9. Molecular requirements for MHC class II alpha-chain engagement and allelic discrimination by the bacterial superantigen streptococcal pyrogenic exotoxin C.

    Science.gov (United States)

    Kasper, Katherine J; Xi, Wang; Rahman, A K M Nur-Ur; Nooh, Mohammed M; Kotb, Malak; Sundberg, Eric J; Madrenas, Joaquín; McCormick, John K

    2008-09-01

    Superantigens (SAgs) are microbial toxins that bind to both TCR beta-chain variable domains (Vbetas) and MHC class II molecules, resulting in the activation of T cells in a Vbeta-specific manner. It is now well established that different isoforms of MHC II molecules can play a significant role in the immune response to bacterial SAgs. In this work, using directed mutational studies in conjunction with functional analyses, we provide a complete functional map of the low-affinity MHC II alpha-chain binding interface of the SAg streptococcal pyrogenic exotoxin C (SpeC) and identify a functional epitope in the beta-barrel domain that is required for the activation of T cells. Using cell lines that exclusively express individual MHC II isoforms, our studies provide a molecular basis for the selectivity of SpeC-MHC II recognition, and provide one mechanism by how SAgs are capable of distinguishing between different MHC II alleles.

  10. The microbiome of the chicken gastrointestinal tract.

    Science.gov (United States)

    Yeoman, Carl J; Chia, Nicholas; Jeraldo, Patricio; Sipos, Maksim; Goldenfeld, Nigel D; White, Bryan A

    2012-06-01

    The modern molecular biology movement was developed in the 1960s with the conglomeration of biology, chemistry, and physics. Today, molecular biology is an integral part of studies aimed at understanding the evolution and ecology of gastrointestinal microbial communities. Molecular techniques have led to significant gains in our understanding of the chicken gastrointestinal microbiome. New advances, primarily in DNA sequencing technologies, have equipped researchers with the ability to explore these communities at an unprecedented level. A reinvigorated movement in systems biology offers a renewed promise in obtaining a more complete understanding of chicken gastrointestinal microbiome dynamics and their contributions to increasing productivity, food value, security, and safety as well as reducing the public health impact of raising production animals. Here, we contextualize the contributions molecular biology has already made to our understanding of the chicken gastrointestinal microbiome and propose targeted research directions that could further exploit molecular technologies to improve the economy of the poultry industry.

  11. Endogenous retroviruses of the chicken genome

    Directory of Open Access Journals (Sweden)

    Jordan I King

    2008-03-01

    Full Text Available Abstract We analyzed the chicken (Gallus gallus genome sequence to search for previously uncharacterized endogenous retrovirus (ERV sequences using ab initio and combined evidence approaches. We discovered 11 novel families of ERVs that occupy more than 21 million base pairs, approximately 2%, of the chicken genome. These novel families include a number of recently active full-length elements possessing identical long terminal repeats (LTRs as well as intact gag and pol open reading frames. The abundance and diversity of chicken ERVs we discovered underscore the utility of an approach that combines multiple methods for the identification of interspersed repeats in vertebrate genomes. Reviewers This article was reviewed by Igor Zhulin and Itai Yanai.

  12. Changes of host DNA methylation in domestic chickens infected with Salmonella enterica

    Indian Academy of Sciences (India)

    FEI WANG; JIANCHAO LI; QINGHE LI; RANRAN LIU; MAIQING ZHENG; QIAO WANG; JIE WEN; GUIPING ZHAO

    2017-09-01

    Cytosine methylation is an effectiveway to modulate gene transcription.However, very little is knownabout the epigenetic changes in the host that is infected with Salmonella enterica. In this study, we usedmethylatedDNA immunoprecipitation sequencing to analyse the genomewide DNA methylation changes in domestic chickens after infected with Salmonella. The level of DNA methylation was slightly higher in the genomic regions around the transcription start termination sites in a Salmonella-infected group compared to the controls. Overall, 879 peaks were differentially methylated between Salmonella-infected and control groups, amongwhich 135 were located in the gene promoter regions. Genes including MHC class IV antigen, GABARAPL1, MR1 and KDM1B were shown to be methylated more heavily after infected with Salmonella, whereas DYNLRB2, SEC14L3 and ANKIB1 tended to have fewer methylated cytosine residues in the promoter regions.Gene interaction network analysis of differentiallymethylated genesin the promoter regions revealed extensive connections with immune-related genes, indicating the possible impact of infection with Salmonella on the epigenetic status of the host.

  13. Comparative genome analysis of the major histocompatibility complex (MHC) class I B/C segments in primates elucidated by genomic sequencing in common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Shiina, Takashi; Kono, Azumi; Westphal, Nico; Suzuki, Shingo; Hosomichi, Kazuyoshi; Kita, Yuki F; Roos, Christian; Inoko, Hidetoshi; Walter, Lutz

    2011-08-01

    Common marmoset monkeys (Callithrix jacchus) have emerged as important animal models for biomedical research, necessitating a more extensive characterization of their major histocompatibility complex (MHC) region. However, the genomic information of the marmoset MHC (Caja) is still lacking. The MHC-B/C segment represents the most diverse MHC region among primates. Therefore, in this paper, to elucidate the detailed gene organization and evolutionary processes of the Caja class I B (Caja-B) segment, we determined two parts of the Caja-B sequences with 1,079 kb in total, ranging from H6orf15 to BAT1 and compared the structure and phylogeny with that of other primates. This segment contains 54 genes in total, nine Caja-B genes (Caja-B1 to Caja-B9), two MIC genes (MIC1 and MIC2), eight non-MHC genes, two non-coding genes, and 33 non-MHC pseudogenes that have not been observed in other primate MHC-B/C segments. Caja-B3, Caja-B4, and Caja-B7 encode proper MHC class I proteins according to amino acid structural characteristics. Phylogenetic relationships based on 48 MHC-I nucleotide sequences in primates suggested (1) species-specific divergence for Caja, Mamu, and HLA/Patr/Gogo lineages, (2) independent generation of the "seven coding exon" type MHC-B genes in Mamu and HLA/Patr/Gogo lineages from an ancestral "eight coding exon" type MHC-I gene, (3) parallel correlation with the long and short segmental duplication unit length in Caja and Mamu lineages. These findings indicate that the MHC-B/C segment has been under permanent selective pressure in the evolution of primates.

  14. Facilitating functional annotation of chicken microarray data

    Directory of Open Access Journals (Sweden)

    Gresham Cathy R

    2009-10-01

    Full Text Available Abstract Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO. However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and

  15. Quantitative TCR:pMHC Dissociation Rate Assessment by NTAmers Reveals Antimelanoma T Cell Repertoires Enriched for High Functional Competence.

    Science.gov (United States)

    Gannon, Philippe O; Wieckowski, Sébastien; Baumgaertner, Petra; Hebeisen, Michaël; Allard, Mathilde; Speiser, Daniel E; Rufer, Nathalie

    2015-07-01

    Experimental models demonstrated that therapeutic induction of CD8 T cell responses may offer protection against tumors or infectious diseases providing that T cells have sufficiently high TCR/CD8:pMHC avidity for efficient Ag recognition and consequently strong immune functions. However, comprehensive characterization of TCR/CD8:pMHC avidity in clinically relevant situations has remained elusive. In this study, using the novel NTA-His tag-containing multimer technology, we quantified the TCR:pMHC dissociation rates (koff) of tumor-specific vaccine-induced CD8 T cell clones (n = 139) derived from seven melanoma patients vaccinated with IFA, CpG, and the native/EAA or analog/ELA Melan-A(MART-1)(26-35) peptide, binding with low or high affinity to MHC, respectively. We observed substantial correlations between koff and Ca(2+) mobilization (p = 0.016) and target cell recognition (p tumor-reactive T cell clones derived from patients vaccinated with the low-affinity (native) peptide expressed slower koff rates than those derived from patients vaccinated with the high-affinity (analog) peptide (p tumor-specific T cells bearing TCRs with high TCR/CD8:pMHC avidity (p < 0.0001). Altogether, TCR:pMHC interaction kinetics correlated strongly with T cell functions. Our study demonstrates the feasibility and usefulness of TCR/CD8:pMHC avidity assessment by NTA-His tag-containing multimers of naturally occurring polyclonal T cell responses, which represents a strong asset for the development of immunotherapy. Copyright © 2015 by The American Association of Immunologists, Inc.

  16. KIR polymorphisms modulate peptide-dependent binding to an MHC class I ligand with a Bw6 motif.

    Directory of Open Access Journals (Sweden)

    Arnaud D Colantonio

    2011-03-01

    Full Text Available Molecular interactions between killer immunoglobulin-like receptors (KIRs and their MHC class I ligands play a central role in the regulation of natural killer (NK cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201 (Mamu-A*02, a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1 domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05(+ macaques with target cells expressing Mamu-A1*00201 suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory KIRs to prevent the activation of specific NK cell subsets.

  17. T-cell receptors binding orientation over peptide/MHC class I is driven by long-range interactions.

    Directory of Open Access Journals (Sweden)

    Mathias Ferber

    Full Text Available Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.

  18. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits.

    Directory of Open Access Journals (Sweden)

    Helena Westerdahl

    Full Text Available Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load and infection status (infected or not. It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.

  19. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits.

    Science.gov (United States)

    Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke

    2013-01-01

    Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.

  20. Characterization of a nonclassical class I MHC gene in a reptile, the Galapagos marine iguana (Amblyrhynchus cristatus.

    Directory of Open Access Journals (Sweden)

    Scott Glaberman

    Full Text Available Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification.

  1. Composition of MHC class II-enriched lipid microdomains is modified during maturation of primary dendritic cells.

    Science.gov (United States)

    Setterblad, Niclas; Roucard, Corinne; Bocaccio, Claire; Abastado, Jean-Pierre; Charron, Dominique; Mooney, Nuala

    2003-07-01

    Dendritic cells (DCs) are the most potent antigen presenting cells. Major histocompatibility complex (MHC) class II molecule expression changes with maturation; immature DCs concentrate MHC class II molecules intracellularly, whereas maturation increases surface expression of MHC class II and costimulatory molecules to optimize antigen presentation. Signal transduction via MHC class II molecules localized in lipid microdomains has been described in B lymphocytes and in the THP-1 monocyte cell line. We have characterized MHC class II molecules throughout human DC maturation with particular attention to their localization in lipid-rich microdomains. Only immature DCs expressed empty MHC class II molecules, and maturation increased the level of peptide-bound heterodimers. Ligand binding to surface human leukocyte antigen (HLA)-DR induced rapid internalization in immature DCs. The proportion of cell-surface detergent-insoluble glycosphingolipid-enriched microdomain-clustered HLA-DR was higher in immature DCs despite the higher surface expression of HLA-DR in mature DCs. Constituents of HLA-DR containing microdomains included the src kinase Lyn and the cytoskeletal protein tubulin in immature DCs. Maturation modified the composition of the HLA-DR-containing microdomains to include protein kinase C (PKC)-delta, Lyn, and the cytoskeletal protein actin, accompanied by the loss of tubulin. Signaling via HLA-DR redistributed HLA-DR and -DM and PKC-delta as well as enriching the actin content of mature DC microdomains. The increased expression of HLA-DR as a result of DC maturation was therefore accompanied by modification of the spatial organization of HLA-DR. Such regulation could contribute to the distinct responses induced by ligand binding to MHC class II molecules in immature versus mature DCs.

  2. Nano-nutrition of chicken embryos

    DEFF Research Database (Denmark)

    Sawosz, Filip; Pineda, Lane Manalili; Hotowy, Anna

    2013-01-01

    It has been suggested that the quantity and quality of nutrients stored in the egg might not be optimal for the fast rate of chicken embryo development in modern broilers, and embryos could be supplemented with nutrients by in ovo injection. Recent experiments showed that in ovo feeding reduces...... broiler eggs was randomly divided into a Control group without injection and injected groups with hydrocolloids of Nano-Ag, ATP or a complex of Nano-Ag and ATP (Nano-Ag/ATP). The embryos were evaluated on day 20 of incubation. The results indicate that the application of ATP to chicken embryos increases...

  3. ESR dose assessment in irradiated chicken legs

    Energy Technology Data Exchange (ETDEWEB)

    Bordi, F. [II Universita, Rome (Italy). Dipartimento di Medicina Interna; Fattibene, P.; Onori, S.; Pantaloni, M. [Istituto Superiore di Santia, Rome (Italy)]|[Istituto Nazionale di Fisica Nucleare, Rome (Italy). Sezione Sanita

    1994-05-01

    The electron spin resonance technique has received a wide consensus for dose assessment in irradiated chicken bone. Nevertheless, some practical problems are still open like the most suitable mathematical expression to be used for dose evaluation with the re-irradiation method. In the present paper the linear and exponential approximations were analyzed using 40 bone chicken samples and a reproducible readout procedure. The results suggested the use of the exponential dose-effect relationship and gave some indications on the procedure to be practically adopted. (author).

  4. Myosin heavy chain expression pattern as a marker for anabolic potency: desoxymethyltestosterone (madol), norandrostenedione and testosterone repress MHC-IIb expression and stimulate MHC-IId/x expression in orchiectomized rat gastrocnemius muscle.

    Science.gov (United States)

    Frese, S; Velders, M; Schleipen, B; Schänzer, W; Bloch, W; Diel, P

    2011-06-01

    Both 19-norandrostenedione (estr-4-ene-3,17-dione, NOR) and desoxymethyltestosterone (17alpha-methyl-5alpha-androst-2-en-17beta-ol, DMT or "madol") are 'designer steroids' misused for doping purposes in the bodybuilding scene. We have previously characterized the pharmacological profile of madol and identified potential adverse side effects. The aim of this study was to investigate the anabolic potency of NOR, madol and the reference substance testosterone propionate (TP). Besides wet weight of the M.levator ani (LA), we examined the effects on muscle fiber type composition and myosin heavy chain (MHC) expression in the M.gastrocnemius (Gas) muscle as additional markers for anabolic potency. A Hershberger assay was performed, where orchiectomized (orchi) male Wistar rats were treated subcutaneously with NOR, madol, TP or vehicle control (all 1 mg/kg BW/day) for 12 days. Wet weights of the Gas, LA, prostate and seminal vesicle were examined to determine anabolic and androgenic effects. Fiber type composition of the Gas muscle was analyzed using ATPase staining, and MHC protein profiles were determined by silver stain and Western blot analysis. NOR and madol exhibited strong anabolic and weak androgenic potency by stimulating growth of the LA but not the prostate and seminal vesicle. Skeletal muscle fiber type composition characterized by ATPase staining was not significantly altered between the treatment groups, although there was a tendency toward lower levels of type IIB and increased type IIA fibers in all treatment groups relative to orchi. MHC protein expression determined by Western blot and silver stain analysis revealed that MHC IId/x was significantly up-regulated, while MHC IIb was significantly down-regulated in NOR, madol and TP groups relative to orchi. There were no significant differences for MHC IIa and MHC I expression between groups. Results suggest that the observed MHC expression shift could serve as a molecular marker to determine anabolic

  5. The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding

    DEFF Research Database (Denmark)

    Zhang, H.; Lund, Ole; Nielsen, M.

    2009-01-01

    of the specificities of MHC molecules in this library weighted by the similarity of their pocket-residues to the query. This PickPocket method is demonstrated to accurately predict MHC-peptide binding for a broad range of MHC alleles, including human and non-human species. In contrast to neural network-based pan......-specific methods, PickPocket was shown to be robust both when data is scarce and when the similarity to MHC molecules with characterized binding specificity is low. A consensus method combining the PickPocket and NetMHCpan methods was shown to achieve superior predictive performance. This study demonstrates how...

  6. Caracterización molecular y análisis evolutivo del complejo mayor de histocompatibilidad clase I (MHC-I) en primates del nuevo mundo (Platyrrhini)

    OpenAIRE

    Lugo Ramos, Juan Sebastian

    2014-01-01

    El complejo mayor de histocompatibilidad clase I (MHC-I) codifica para proteínas de membrana que presentan péptidos antigénicos a los linfocitos T citotóxicos que inician la respuesta inmune celular [1]. El MHC-I se ha conservado en primates catarrinos, compartiendo los clásicos MHC-A, y B, y los no-clásicos-E, F y G. Por su parte, los primates platirrinos expresan un complemento diferente de loci clásicos, llamado MHC-G-Like [2], aunque también hay evidencia genómica de varios loci relaciona...

  7. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets

    DEFF Research Database (Denmark)

    Nielsen, Morten; Andreatta, Massimo

    2016-01-01

    this model, we demonstrate that percentile ranks in contrast to affinity-based thresholds are optimal for ligand identification due to uniform sampling of the MHC space.Conclusions: We have developed a neural network-based machine-learning algorithm leveraging information across multiple receptor......Background: Binding of peptides to MHC class I molecules (MHC-I) is essential for antigen presentation to cytotoxic T-cells.Results: Here, we demonstrate how a simple alignment step allowing insertions and deletions in a pan-specific MHC-I binding machine-learning model enables combining...

  8. Re-Directing CD4(+) T Cell Responses with the Flanking Residues of MHC Class II-Bound Peptides: The Core is Not Enough.

    Science.gov (United States)

    Holland, Christopher J; Cole, David K; Godkin, Andrew

    2013-01-01

    Recombinant αβ T cell receptors, expressed on T cell membranes, recognize short peptides presented at the cell surface in complex with MHC molecules. There are two main subsets of αβ T cells: CD8(+) T cells that recognize mainly cytosol-derived peptides in the context of MHC class I (pMHC-I), and CD4(+) T cells that recognize peptides usually derived from exogenous proteins presented by MHC class II (pMHC-II). Unlike the more uniform peptide lengths (usually 8-13mers) bound in the MHC-I closed groove, MHC-II presented peptides are of a highly variable length. The bound peptides consist of a core bound 9mer (reflecting the binding motif for the particular MHC-II type) but with variable peptide flanking residues (PFRs) that can extend from both the N- and C-terminus of the MHC-II binding groove. Although pMHC-I and pMHC-II play a virtually identical role during T cell responses (T cell antigen presentation) and are very similar in overall conformation, there exist a number of subtle but important differences that may govern the functional dichotomy observed between CD8(+) and CD4(+) T cells. Here, we provide an overview of the impact of structural differences between pMHC-I and pMHC-II and the molecular interactions with the T cell receptor including the functional importance of MHC-II PFRs. We consider how factors such as anatomical location, inflammatory milieu, and particular types of antigen presenting cell might, in theory, contribute to the quantitative (i.e., pMHC ligand frequency) as well as qualitative (i.e., variable PFR) nature of peptide epitopes, and hence offer a means of control and influence of a CD4(+) T cell response. Lastly, we review our recent findings showing how modifications to MHC-II PFRs can modify CD4(+) T cell antigen recognition. These findings may have novel applications for the development of CD4(+) T cell peptide vaccines and diagnostics.

  9. Chlamydia Psittaci Strains from Broiler Chickens Induce Histopathological Lesions and Mortality in SPF Chickens

    Directory of Open Access Journals (Sweden)

    Yin Lizi

    2015-04-01

    Full Text Available A detailed study on histopathological lesions induced by two C. psittaci outer membrane protein A (ompA genotype B strains (10/423 and 10/525 and one genotype D strain (10/298 in experimentally infected (aerosol specific pathogen free (SPF chickens was performed. The strains were derived from Belgian and French commercially raised broilers with pneumonia. Both genotype B and D strains induced conjunctivitis, rhinitis, sinusitis, tracheitis, bronchitis, pneumonitis, airsacculitis, splenitis, hepatitis, nephritis, and enteritis in sequentially (days 2 to 34 post infection euthanized chickens. Inflammation of the ovaries was only observed in genotype D infected chickens. Overall, the genotype D strain caused more severe gross and histopathological lesions and mortality (54.5% early upon infection. The genotype D strain seemed to replicate faster as severity of the lesions increased more quickly. C. psittaci is a primary pathogen in chickens, and efficient monitoring and control of this emerging zoonotic pathogen is urgently needed.

  10. Campylobacter jejuni strains of human and chicken origin are invasive in chickens after oral challenge

    DEFF Research Database (Denmark)

    Knudsen, Katrine Nørrelund; Bang, Dang Duong; Andresen, Lars Ole

    2006-01-01

    The aim of the study was to evaluate the colonizing ability and the invasive capacity of selected Campylobacter jejuni strains of importance for the epidemiology of C jejuni in Danish broiler chickens. Four C jejuni strains were selected for experimental colonization Studies in day-old and 14-day......-old chickens hatched from specific pathogen free (SPF) eggs. Of the four C jejuni strains tested, three were Penner heat-stable serotype 2,flaA type 1/1, the most common type found among broilers and human cases in Denmark. The fourth strain was Penner heat-stable serotype 19, which has been shown...... to be associated with the Guillain Barre Syndrome (GBS) in humans. The minimum dose for establishing colonization in the clay-old chickens was approximately 2 cfu, whereas two- to threefold higher doses were required for establishing colonization in the 14-day-old chickens. Two of the C jejuni strains were shown...

  11. Genotypes and oxacillin resistance of Staphylococcus aureus from chicken and chicken meat in Poland.

    Science.gov (United States)

    Krupa, P; Bystroń, J; Bania, J; Podkowik, M; Empel, J; Mroczkowska, A

    2014-12-01

    The genotypes and oxacillin resistance of 263 Staphylococcus aureus isolates cultured from chicken cloacae (n = 138) and chicken meat (n = 125) was analyzed. Fifteen spa types were determined in the studied S. aureus population. Among 5 staphylococcal protein A gene (spa) types detected in S. aureus from chicken, t002, t3478, and t13620 were the most frequent. Staphylococcus aureus isolates from meat were assigned to 14 spa types. Among them, the genotypes t002, t056, t091, t3478, and t13620 were dominant. Except for 4 chicken S. aureus isolates belonging to CC398, the remaining 134 isolates were clustered into multilocus sequence clonal complex (CC) 5. Most of meat-derived isolates were assigned to CC5, CC7, and CC15, and to the newly described spa-CC12954 complex belonging to CC1. Except for t011 (CC398), all other spa types found among chicken isolates were also present in isolates from meat. Four S. aureus isolated from chicken and one from meat were identified as methicillin-resistant S. aureus (MRSA) with oxacillin minimum inhibitory concentrations from 16 to 64 μg/mL. All MRSA were assigned to spa types belonging to ST398, and included 4 animal spa t011 SCCmecV isolates and 1 meat-derived spa t899, SCCmecIV isolate. Borderline oxacillin-resistant S. aureus (BORSA) isolates, shown to grow on plates containing 2 to 3 μg/mL of oxacillin, were found within S. aureus isolates from chicken (3 isolates) and from meat (19 isolates). The spa t091 and t084 dominated among BORSA from chicken meat, whereas t548 and t002 were found within animal BORSA. We report for the first time the presence of MRSA in chicken in Poland. We demonstrate that MRSA CC398 could be found in chicken meat indicating potential of introduction of animal-associated genotypes into the food chain. We also report for the first time the possibility of transmission of BORSA isolates from chicken to meat. ©2014 Poultry Science Association Inc.

  12. Chicken IL-17F: Identification and comparative expression analysis in Eimeria-Infected chickens

    Science.gov (United States)

    Interleukin-17F (IL-17F), belonging to the IL-17 family, is a proinflammatory cytokine and plays an important role in gut homeostasis. A full-length chicken IL-17F (chIL-17F) cDNA with a 510-bp coding region was first identified from ConA-activated splenic lymphocytes of chickens. The chIL-17F share...

  13. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens.

    Science.gov (United States)

    Harvey, S; Gineste, C; Gaylinn, B D

    2014-08-01

    Two peptides with sequence similarities to growth hormone releasing hormone (GHRH) have been identified by analysis of the chicken genome. One of these peptides, chicken (c) GHRH-LP (like peptide) was previously found to poorly bind to chicken pituitary membranes or to cloned and expressed chicken GHRH receptors and had little, if any, growth hormone (GH)-releasing activity in vivo or in vitro. In contrast, a second more recently discovered peptide, cGHRH, does bind to cloned and expressed cGHRH receptors and increases cAMP activity in transfected cells. The possibility that this peptide may have in vivo GH-releasing activity was therefore assessed. The intravenous (i.v.) administration of cGHRH to immature chickens, at doses of 3-100 μg/kg, significantly increased circulating GH concentrations within 10 min of injection and the plasma GH levels remained elevated for at least 30 min after the injection of maximally effective doses. The plasma GH responses to cGHRH were comparable with those induced by human (h) or porcine (p) GHRH preparations and to that induced by thyrotropin releasing hormone (TRH). In marked contrast, the i.v. injection of cGHRH-LP had no significant effect on circulating GH concentrations in immature chicks. GH release was also increased from slaughterhouse chicken pituitary glands perifused for 5 min with cGHRH at doses of 0.1 μg/ml or 1.0 μg/ml, comparable with GH responses to hGHRH1-44. In contrast, the perifusion of chicken pituitary glands with cGHRH-LP had no significant effect on GH release. In summary, these results demonstrate that cGHRH has GH-releasing activity in chickens and support the possibility that it is the endogenous ligand of the cGHRH receptor.

  14. Beta-Adrenergic Receptor Population is Up-Regulated by Increased Cyclic Amp Concentration in Chicken Skeletal Muscle Cells in Culture

    Science.gov (United States)

    Young, Ronald B.; Bridge, Kristin Y.; Vaughn, Jeffrey R.

    1999-01-01

    Skeletal muscle hypertrophy is promoted in vivo by administration of beta-drenergic receptor (bAR) agonists. Chicken skeletal muscle cells were treated with 1 (mu)M isoproterenol, a strong bAR agonist, between days 7 and 10 in culture. bAR population increased by approximately 40% during this treatment; however, the ability of the cells to synthesize cyclic AMP (cAMP) was diminished by two-fold. The quantity of myosin heavy chain (MHC) was not affected. To understand further the relationship between intracellular cAMP levels, bAR population, and muscle protein accumulation, intracellular cAMP levels were artificially elevated by treatment with 0-10 uM forskolin for up to three days. The basal concentration of CAMP in forskolin-treated cells increased up to 7-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in bAR population, with a maximum increase of approximately 40-60% at 10 uM forskolin. A maximum increase of 40-50% in the quantity of MHC was observed at 0.2 uM forskolin, but higher concentrations of forskolin reduced the quantity of MHC back to control levels. At 0.2 uM forskolin, intracellular levels of cAMP were higher by approximately 35%, and the (beta)AR population was higher by approximately 30%. Neither the number of muscle nuclei fused into myotubes nor the percentage of nuclei in myotubes were affected by forskolin at any of the concentrations studied.

  15. Interaction of Bap31 and MHC class I molecules and their traffic out of the endoplasmic reticulum.

    Science.gov (United States)

    Abe, Fumiyoshi; Van Prooyen, Nancy; Ladasky, John J; Edidin, Michael

    2009-04-15

    The endoplasmic reticulum (ER) protein Bap31 associates with nascent class I MHC molecules. It appears to mediate the export of class I MHC molecules from the ER and may also be involved in their quality control. In this study, we use Förster resonance energy transfer and quantitative fluorescence imaging to show that in human, HeLa cells, Bap31 clusters with MHC class I (HLA-A2) molecules in the ER, and traffics via export vesicles to the ER/Golgi intermediate compartment. Förster resonance energy transfer between Bap31 and HLA-A2 and forward traffic increases when MHC class I molecules are loaded with a pulse of peptide. The increased forward traffic is blocked by overexpression of Bap29, a partner protein for Bap31, which localizes to the ER. Thus, in HeLa cells, Bap31 is involved in the exit of peptide-loaded MHC class I from the ER, and its function is regulated by its interaction with its homologue, Bap29.

  16. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC Class II-dependent manner.

    Science.gov (United States)

    Kasper, Katherine J; Zeppa, Joseph J; Wakabayashi, Adrienne T; Xu, Stacey X; Mazzuca, Delfina M; Welch, Ian; Baroja, Miren L; Kotb, Malak; Cairns, Ewa; Cleary, P Patrick; Haeryfar, S M Mansour; McCormick, John K

    2014-05-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.

  17. Characterization of major histocompatibility complex class I loci of the lark sparrow (Chondestes grammacus) and insights into avian MHC evolution.

    Science.gov (United States)

    Lyons, Amanda C; Hoostal, Matthew J; Bouzat, Juan L

    2015-08-01

    The major histocompatibilty complex (MHC) has become increasingly important in the study of the immunocapabilities of non-model vertebrates due to its direct involvement in the immune response. The characterization of MHC class I loci in the lark sparrow (Chondestes grammacus) revealed multiple MHC class I loci with elevated genetic diversity at exon 3, evidence of differential selection between the peptide binding region (PBR) and non-PBR, and the presence of multiple pseudogenes with limited divergence. The minimum number of functional MHC class I loci was estimated at four. Sequence analysis revealed d N /d S ratios significantly less than one at non-PBR sites, indicative of negative selection, whereas PBR sites associated with antigen recognition showed ratios greater than 1 but non-significant. GenBank surveys and phylogenetic analyses of previously reported avian MHC class I sequences revealed variable signatures of evolutionary processes acting upon this gene family, including gene duplication and potential concerted evolution. An increase in the number of class I loci across species coincided with an increase in pseudogene prevalence, revealing the importance of gene duplication in the expansion of multigene families and the creation of pseudogenes.

  18. EpsinR, a target for pyrenocine B, role in endogenous MHC-II-restricted antigen presentation.

    Science.gov (United States)

    Shishido, Tatsuya; Hachisuka, Masami; Ryuzaki, Kai; Miura, Yuko; Tanabe, Atsushi; Tamura, Yasuaki; Kusayanagi, Tomoe; Takeuchi, Toshifumi; Kamisuki, Shinji; Sugawara, Fumio; Sahara, Hiroeki

    2014-11-01

    While the presentation mechanism of antigenic peptides derived from exogenous proteins by MHC class II molecules is well understood, relatively little is known about the presentation mechanism of endogenous MHC class II-restricted antigens. We therefore screened a chemical library of 200 compounds derived from natural products to identify inhibitors of the presentation of endogenous MHC class II-restricted antigens. We found that pyrenocine B, a compound derived from the fungus Pyrenochaeta terrestris, inhibits presentation of endogenous MHC class II-restricted minor histocompatibility antigen IL-4 inducible gene 1 (IL4I1) by primary dendritic cells (DCs). Phage display screening and surface plasmon resonance (SPR) analysis were used to investigate the mechanism of suppressive action by pyrenocine B. EpsinR, a target molecule for pyrenocine B, mediates endosomal trafficking through binding of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Lentiviral-mediated short hairpin (sh) RNA downregulation of EpsinR expression in DCs resulted in a decrease in the responsiveness of CD4+ T cells. Our data thus suggest that EpsinR plays a role in antigen presentation, which provides insight into the mechanism of presentation pathway of endogenous MHC class II-restricted antigen.

  19. Rab22a controls MHC-I intracellular trafficking and antigen cross-presentation by dendritic cells.

    Science.gov (United States)

    Cebrian, Ignacio; Croce, Cristina; Guerrero, Néstor A; Blanchard, Nicolas; Mayorga, Luis S

    2016-12-01

    Cross-presentation by MHC class I molecules allows the detection of exogenous antigens by CD8(+) T lymphocytes. This process is crucial to initiate cytotoxic immune responses against many pathogens (i.e., Toxoplasma gondii) and tumors. To achieve efficient cross-presentation, dendritic cells (DCs) have specialized endocytic pathways; however, the molecular effectors involved are poorly understood. In this work, we identify the small GTPase Rab22a as a key regulator of MHC-I trafficking and antigen cross-presentation by DCs. Our results demonstrate that Rab22a is recruited to DC endosomes and phagosomes, as well as to the vacuole containing T. gondii parasites. The silencing of Rab22a expression did not affect the uptake of exogenous antigens or parasite invasion, but it drastically reduced the intracellular pool and the recycling of MHC-I molecules. The knockdown of Rab22a also hampered the cross-presentation of soluble, particulate and T. gondii-associated antigens, but not the endogenous MHC-I antigen presentation through the classical secretory pathway. Our findings provide compelling evidence that Rab22a plays a central role in the MHC-I endocytic trafficking, which is crucial for efficient cross-presentation by DCs.

  20. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Jonathan Harton

    2016-03-01

    Full Text Available Major histocompatibility complex (MHC class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease.