WorldWideScience

Sample records for chicken embryonic development

  1. Endolymphatic potassium of the chicken vestibule during embryonic development.

    Science.gov (United States)

    Masetto, Sergio; Zucca, Giampiero; Bottà, Luisa; Valli, Paolo

    2005-08-01

    The endolymph fills the lumen of the inner ear membranous labyrinth. Its ionic composition is unique in vertebrates as an extracellular fluid for its high-K(+)/low-Na(+) concentration. The endolymph is actively secreted by specialized cells located in the vestibular and cochlear epithelia. We have investigated the early phases of endolymph secretion by measuring the endolymphatic K(+) concentration in the chicken vestibular system during pre-hatching development. Measurements were done by inserting K(+)-selective microelectrodes in chicken embryo ampullae dissected at different developmental stages from embryonic day 9 up to embryonic day 21 (day of hatching). We found that the K(+) concentration is low (<10mM/L) up to embryonic day 11, afterward it increases steeply to reach a plateau level of about 140 mM/L at embryonic day 19--21. We have developed a short-term in vitro model of endolymph secretion by culturing vestibular ampullae dissected from embryonic day 11 chicken embryos for a few days. The preparation reproduced a double compartment system where the luminal K(+) concentration increased along with the days of culturing. This model could be important for (1) investigating the development of cellular mechanisms contributing to endolymph homeostasis and (2) testing compounds that influence those mechanisms.

  2. Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development

    Directory of Open Access Journals (Sweden)

    Hongjia Ouyang

    2017-05-01

    Full Text Available Embryonic growth and development of skeletal muscle is a major determinant of muscle mass, and has a significant effect on meat production in chicken. To assess the protein expression profiles during embryonic skeletal muscle development, we performed a proteomics analysis using isobaric tags for relative and absolute quantification (iTRAQ in leg muscle tissues of female Xinghua chicken at embryonic age (E 11, E16, and 1-day post hatch (D1. We identified 3,240 proteins in chicken embryonic muscle and 491 of them were differentially expressed (fold change ≥ 1.5 or ≤ 0.666 and p < 0.05. There were 19 up- and 32 down-regulated proteins in E11 vs. E16 group, 238 up- and 227 down-regulated proteins in E11 vs. D1 group, and 13 up- and 5 down-regulated proteins in E16 vs. D1 group. Protein interaction network analyses indicated that these differentially expressed proteins were mainly involved in the pathway of protein synthesis, muscle contraction, and oxidative phosphorylation. Integrative analysis of proteome and our previous transcriptome data found 189 differentially expressed proteins that correlated with their mRNA level. The interactions between these proteins were also involved in muscle contraction and oxidative phosphorylation pathways. The lncRNA-protein interaction network found four proteins DMD, MYL3, TNNI2, and TNNT3 that are all involved in muscle contraction and may be lncRNA regulated. These results provide several candidate genes for further investigation into the molecular mechanisms of chicken embryonic muscle development, and enable us to better understanding their regulation networks and biochemical pathways.

  3. The local expression of adult chicken heart myosins during development. I. The three days embryonic chicken heart

    NARCIS (Netherlands)

    Sanders, E.; Moorman, A. F.; Los, J. A.

    1984-01-01

    Immunofluorescence studies were performed on serial sections of three days embryonic chicken hearts using antibodies specific for adult atrial and ventricular myosin heavy chains respectively. The anti-ventricular myosin serum reacted with the entire myocardium showing a decreasing intensity going

  4. Characterizing early embryonic development of Brown Tsaiya Ducks (Anas platyrhynchos in comparison with Taiwan Country Chicken (Gallus gallus domestics.

    Directory of Open Access Journals (Sweden)

    Chompunut Lumsangkul

    Full Text Available Avian embryos are among the most convenient and the primary representatives for the study of classical embryology. It is well-known that the hatching time of duck embryos is approximately one week longer than that of chicken embryos. However, the key features associated with the slower embryonic development in ducks have not been adequately described. This study aimed to characterize the pattern and the speed of early embryogenesis in Brown Tsaiya Ducks (BTD compared with those in Taiwan Country Chicken (TCC by using growth parameters including embryonic crown-tail length (ECTL, primitive streak formation, somitogenesis, and other development-related parameters, during the first 72 h of incubation. Three hundred and sixty eggs from BTD and TCC, respectively, were incubated at 37.2°C, and were then dissected hourly to evaluate their developmental stages. We found that morphological changes of TCC embryos shared a major similarity with that of the Hamburger and Hamilton staging system during early chick embryogenesis. The initial primitive streak in TCC emerged between 6 and 7 h post-incubation, but its emergence was delayed until 10 to 13 h post-incubation in BTD. Similarly, the limb primordia (wing and limb buds were observed at 51 h post-incubation in TCC embryos compared to 64 h post-incubation in BTD embryos. The allantois first appeared around 65 to 68 h in TCC embryos, but it was not observed in BTD embryos. At the 72 h post-incubation, 40 somites were clearly formed in TCC embryos while only 32 somites in BTD embryos. Overall, the BTD embryos developed approximately 16 h slower than the chicken embryo during the first 72 h of development. To our best knowledge, this is the first study to describe two distinct developmental time courses between TCC and BTD, which would facilitate future embryogenesis-related studies of the two important avian species in Taiwan.

  5. Characterizing early embryonic development of Brown Tsaiya Ducks (Anas platyrhynchos) in comparison with Taiwan Country Chicken (Gallus gallus domestics)

    Science.gov (United States)

    Lumsangkul, Chompunut; Fan, Yang-Kwang; Chang, Shen-Chang; Ju, Jyh-Cherng

    2018-01-01

    Avian embryos are among the most convenient and the primary representatives for the study of classical embryology. It is well-known that the hatching time of duck embryos is approximately one week longer than that of chicken embryos. However, the key features associated with the slower embryonic development in ducks have not been adequately described. This study aimed to characterize the pattern and the speed of early embryogenesis in Brown Tsaiya Ducks (BTD) compared with those in Taiwan Country Chicken (TCC) by using growth parameters including embryonic crown-tail length (ECTL), primitive streak formation, somitogenesis, and other development-related parameters, during the first 72 h of incubation. Three hundred and sixty eggs from BTD and TCC, respectively, were incubated at 37.2°C, and were then dissected hourly to evaluate their developmental stages. We found that morphological changes of TCC embryos shared a major similarity with that of the Hamburger and Hamilton staging system during early chick embryogenesis. The initial primitive streak in TCC emerged between 6 and 7 h post-incubation, but its emergence was delayed until 10 to 13 h post-incubation in BTD. Similarly, the limb primordia (wing and limb buds) were observed at 51 h post-incubation in TCC embryos compared to 64 h post-incubation in BTD embryos. The allantois first appeared around 65 to 68 h in TCC embryos, but it was not observed in BTD embryos. At the 72 h post-incubation, 40 somites were clearly formed in TCC embryos while only 32 somites in BTD embryos. Overall, the BTD embryos developed approximately 16 h slower than the chicken embryo during the first 72 h of development. To our best knowledge, this is the first study to describe two distinct developmental time courses between TCC and BTD, which would facilitate future embryogenesis-related studies of the two important avian species in Taiwan. PMID:29742160

  6. Identification of microRNAs controlling hepatic mRNA levels for metabolic genes during the metabolic transition from embryonic to posthatch development in the chicken.

    Science.gov (United States)

    Hicks, Julie A; Porter, Tom E; Liu, Hsiao-Ching

    2017-09-05

    The transition from embryonic to posthatch development in the chicken represents a massive metabolic switch from primarily lipolytic to primarily lipogenic metabolism. This metabolic switch is essential for the chick to successfully transition from the metabolism of stored egg yolk to the utilization of carbohydrate-based feed. However, regulation of this metabolic switch is not well understood. We hypothesized that microRNAs (miRNAs) play an important role in the metabolic switch that is essential to efficient growth of chickens. We used high-throughput RNA sequencing to characterize expression profiles of mRNA and miRNA in liver during late embryonic and early posthatch development of the chicken. This extensive data set was used to define the contributions of microRNAs to the metabolic switch during development that is critical to growth and nutrient utilization in chickens. We found that expression of over 800 mRNAs and 30 miRNAs was altered in the embryonic liver between embryonic day 18 and posthatch day 3, and many of these differentially expressed mRNAs and miRNAs are associated with metabolic processes. We confirmed the regulation of some of these mRNAs by miRNAs expressed in a reciprocal pattern using luciferase reporter assays. Finally, through the use of yeast one-hybrid screens, we identified several proteins that likely regulate expression of one of these important miRNAs. Integration of the upstream regulatory mechanisms governing miRNA expression along with monitoring the downstream effects of this expression will ultimately allow for the construction of complete miRNA regulatory networks associated with the hepatic metabolic switch in chickens. Our findings support a key role for miRNAs in controlling the metabolic switch that occurs between embryonic and posthatch development in the chicken.

  7. Restricted intra-embryonic origin of bona fide hematopoietic stem cells in the chicken

    NARCIS (Netherlands)

    Yvernogeau, Laurent; Robin, Catherine

    2017-01-01

    Hematopoietic stem cells (HSCs), which are responsible for blood cell production, are generated during embryonic development. Human and chicken embryos share features that position the chicken as a reliable and accessible alternative model to study developmental hematopoiesis. However, the existence

  8. Isoform-specific proteasomal degradation of Rbfox3 during chicken embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kee K.; Adelstein, Robert S.; Kawamoto, Sachiyo, E-mail: kawamots@mail.nih.gov

    2014-08-08

    Highlights: • Protein stability of Rbfox3 splice isoforms is differentially regulated. • Rbfox3-d31, an Rbfox3 isoform lacking the RRM, is highly susceptible to degradation. • The protein stability of Rbfox3-d31 is regulated by the ubiquitin–proteasome pathway. • Rbfox3-d31 inhibits the nuclear localization of Rbfox2. • Rbfox3-d31 inhibits the splicing activity of Rbfox2. - Abstract: Rbfox3, a neuron-specific RNA-binding protein, plays an important role in neuronal differentiation during development. An isoform Rbfox3-d31, which excludes the 93-nucleotide cassette exon within the RNA recognition motif of chicken Rbfox3, has been previously identified. However, the cellular functions of Rbfox3-d31 remain largely unknown. Here we find that Rbfox3-d31 mRNA is highly expressed during the early developmental stages of the chicken embryo, while Rbfox3-d31 protein is barely detected during the same stage due to its rapid degradation mediated by the ubiquitin–proteasome pathway. Importantly, this degradation is specific to the Rbfox3-d31 isoform and it does not occur with full-length Rbfox3. Furthermore, suppression of Rbfox3-d31 protein degradation with the proteasome inhibitor MG132 attenuates the splicing activity of another Rbfox family member Rbfox2 by altering the subcellular localization of Rbfox2. These results suggest that Rbfox3-d31 functions as a repressor for the splicing activity of the Rbfox family and its protein level is regulated in an isoform-specific manner in vivo.

  9. Comparative immunolocalization of the plasma membrane calcium pump and calbindin D28K in chicken retina during embryonic development

    Directory of Open Access Journals (Sweden)

    N. Tolosa de Talamoni

    2010-05-01

    Full Text Available The immunolocalization of the plasma membrane calcium pump (PMCA was studied in 4-week-old chick retina in comparison with calbindin D28K (CaBP immunostaining. We have demonstrated that the monoclonal anti-PMCA antibody 5F10 from human erythrocyte plasma membrane crossreacts with a Ca2+ pump epitope of the cells from the neural retina. The immunolocalization of both proteins was also studied during the embryonic development of the chicken retina. At age 4.5 days, the cells of the retina were faintly immunoreactive to PMCA and CaBP antibodies, but the lack of cellular aggregation and differentiation did not allow discrimination between the two proteins. A clear difference in the localization was seen from the tenth day of development through post-hatching with slight variation. PMCA localized mainly in the outer and inner plexiform layers, in some cells in the ganglion layer, in the nerve fiber layer and slightly in the photoreceptor cells. CaBP was intensely stained in cones, cone pedicles and some amacrine cells. The number of CaBP positive amacrine cells declined after hatching. A few ganglion cells and several nerve fibers were CaBP 333 immunoreactive. The role of these proteins in the early stages of retinal development is unknown, but the results suggest that Ca2+ homeostasis in the retina is well regulated, probably to avoid excessive accumulation of Ca2+, which often leads to neurodegeneration.

  10. Directional differentiation of chicken embryonic stem cells into ...

    African Journals Online (AJOL)

    Chicken embryonic stem (ES) cells are useful for producing transgenic chickens and preserving genetic material in avian species. In this study, the differentiation potential of chicken ES cells was investigated in vitro. Chicken ES cells were differentiated into osteoblasts cultured for 15 to 21 days in the induction media ...

  11. Directional differentiation of chicken embryonic stem cells into ...

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... In this study, the differentiation potential of chicken ES cells was investigated ... Key words: Chicken embryonic stem cells, in vitro, directional differentiation, .... synthesized by using the Revert Aid first strand cDNA synthesis kit.

  12. Storage of Hatching Eggs : Effects of storage and early incubation conditions on egg characteristics, embryonic development, hatchability, and chicken quality

    NARCIS (Netherlands)

    Reijrink, I.A.M.

    2010-01-01

    Key words: egg storage, embryonic development, albumen quality, hatchability, chick quality

    It is well known that an increase in the storage duration increases incubation duration and decreases hatchability and chick quality. The negative effects of prolonged egg storage (> 7 days)

  13. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Egloff, Caroline [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  14. Long-term culture of chicken primordial germ cells isolated from embryonic blood and production of germline chimaeric chickens.

    Science.gov (United States)

    Naito, Mitsuru; Harumi, Takashi; Kuwana, Takashi

    2015-02-01

    Production of germline chimaeric chickens by the transfer of cultured primordial germ cells (PGC) is a useful system for germline manipulation. A novel culture system was developed for chicken PGC isolated from embryonic blood. The isolated PGC were cultured on feeder cells derived from chicken embryonic fibroblast. The cultured PGC formed colonies and they proliferated about 300-times during the first 30 days. The cultured PGC retained the ability to migrate to recipient gonads and were also chicken VASA homologue (CVH)-positive. Female PGC were present in the mixed-sex PGC populations cultured for more than 90 days and gave rise to viable offspring efficiently via germline chimaeric chickens. Male cultured PGC were transferred to recipient embryos and produced putative chimaeric chickens. The DNA derived from the cultured PGC was detected in the sperm samples of male putative chimaeric chickens, but no donor derived offspring were obtained. Donor-derived offspring were also obtained from germline chimaeric chickens by the transfer of frozen-thawed cultured PGC. The culture method for PGC developed in the present study is useful for manipulation of the germline in chickens, such as preservation of genetic resources and gene transfer. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Temperature during the last week of incubation. I. Effects on hatching pattern and broiler chicken embryonic organ development

    NARCIS (Netherlands)

    Maatjens, C.M.; Roovert-Reijrink, van I.A.M.; Engel, B.; Pol, van der C.W.; Kemp, B.; Brand, van den H.

    2016-01-01

    We investigated the effects of an eggshell temperature (EST) of 35.6, 36.7, 37.8, and 38.9°C applied from d of incubation (E) 15, E17, and E19 on hatching pattern and embryonic organ development. A total of 2,850 first-grade eggs of a 43-week-old Ross 308 broiler breeder flock were incubated at an

  16. Characterization of glycolipid galactosyltransferases from embryonic chicken brain

    International Nuclear Information System (INIS)

    Kyle, J.W.

    1985-01-01

    Glycolipid galactosyltransferases (GalT-3 and GalT-4) were solubilized from a membrane fraction isolated from embryonic chicken brain. The profiles of specific activity and total units per brain of GalT-3 and GalT-4 varied with embryonic age. GalT-4 had the highest specific activity at 9 days of embryonic development and showed a steady decrease until hatching. GalT-3 showed a gradual increase in specific activity. Both GalT3 and GalT-4 showed a steady increase in total units per brain throughout embryonic development. The solubilized enzymes could be separated using gel filtration, ion exchange chromatography or affinity chromatography on α-lactalbumin-agarose. Data obtained in the study imply that GalT-4 is involved in both glycoprotein and glycolipid biosynthesis. Glycosphingolipid products from GalT-3 and GalT-4 catalyzed reactions labeled with [ 14 C]galactose comigrated with authentic GMI and nLcOse 4 Cer, when examined by thin layer chromatography and autoradiography. Studies with galactosidases revealed that all of the enzyme products formed by GalT-3 and GalT-4 contained a [ 14 C]-galactose in a β anomeric linkage. Periodate oxidation studies of Gal-[ 14 C]GlcNAc, formed by purified GalT-4 using [ 14 C]GlcNAc as the acceptor, demonstrated that approximately 70% of the linkage formed was Galβ1-4GlcNAc and 30% was Galβ1-3GlcNAc. Studies on the susceptibility of [ 14 C]Gal-GlcNAc to base catalyzed β-elimination also suggested the presence of approximately 30% Galβ1-3GlcNAc

  17. Quantitation of two endogenous lactose-inhibitable lectins in embryonic and adult chicken tissues

    International Nuclear Information System (INIS)

    Beyer, E.C.; Barondes, S.H.

    1982-01-01

    Two lactose-binding lectins from chicken tissues, chicken-lactose-lectin-I (CLL-I) and chicken-lactose-lectin-II (CLL-II) were quantified with a radioimmunoassay in extracts of a number of developing and adult chicken tissues. Both lectins could be measured in the same extract without separation, because they showed no significant immunological cross- reactivity. Many embryonic and adult tissues, including brain, heart, intestine, kidney, liver, lung, muscle, pancreas, and spleen, contained one or both lectins, although their concentrations differed markedly. For example, embryonic muscle, the richest source of CLL-I contained only traces of CLL-II whereas embryonic kidney, a very rich source of CLL-II contained substantial CLL-I. In both muscle and kidney, lectin levels in adulthood were much lower than in the embryonic state. In contrast, CLL-I in liver and CLL-II in intestine were 10-fold to 30-fold more concentrated in the adult than in the 15-d embryo. CLL-I and CLL-II from several tissues were purified by affinity chromatography and their identity in the various tissues was confirmed by polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping. The results suggest that these lectins might have different functions in the many developing and adult tissues in which they are found

  18. Embryonic chicken transplantation is a promising model for studying the invasive behaviour of melanoma cells.

    Directory of Open Access Journals (Sweden)

    Aparna eJayachandran

    2015-02-01

    Full Text Available Epithelial-to-mesenchymal transition is a hallmark event in the metastatic cascade conferring invasive ability to tumor cells. There are ongoing efforts to replicate the physiological events occurring during mobilization of tumor cells in model systems. However, few systems are able to capture these complex in vivo events. The embryonic chicken transplantation model has emerged as a useful system to assess melanoma cells including functions that are relevant to the metastatic process, namely invasion and plasticity. The chicken embryo represents an accessible and economical 3-dimensional in vivo model for investigating melanoma cell invasion as it exploits the ancestral relationship between melanoma and its precursor neural crest cells. We describe a methodology which enables the interrogation of melanoma cell motility within the developing avian embryo. This model involves the injection of melanoma cells into the neural tube of chicken embryos. Melanoma cells are labelled using fluorescent tracker dye, Vybrant DiO, then cultured as hanging drops for 24 hours to aggregate the cells. Groups of approximately 700 cells are placed into the neural tube of chicken embryos prior to the onset of neural crest migration at the hindbrain level (embryonic day 1.5 or trunk level (embryonic day 2.5. Chick embryos are reincubated and analysed after 48 hours for the location of melanoma cells using fluorescent microscopy on whole mounts and cross-sections of the embryos. Using this system, we compared the in vivo invasive behavior of epithelial-like and mesenchymal-like melanoma cells. We report that the developing embryonic microenvironment confers motile abilities to both types of melanoma cells. Hence the embryonic chicken transplantation model has potential to become a valuable tool for in vivo melanoma invasion studies. Importantly, it may provide novel insights into and reveal previously unknown mediators of the metastatic steps of invasion and

  19. Isolation of chicken embryonic stem cell and preparation of chicken chimeric model.

    Science.gov (United States)

    Zhang, Yani; Yang, Haiyan; Zhang, Zhentao; Shi, Qingqing; Wang, Dan; Zheng, Mengmeng; Li, Bichun; Song, Jiuzhou

    2013-03-01

    Chicken embryonic stem cells (ESCs) were separated from blastoderms at stage-X and cultured in vitro. Alkaline phosphatase activity and stage-specific embryonic antigen-1 staining was conducted to detect ESCs. Then, chicken ESCs were transfected with linearized plasmid pEGFP-N1 in order to produce chimeric chicken. Firstly, the optimal electrotransfection condition was compared; the results showed the highest transfection efficiency was obtained when the field strength and pulse duration was 280 V and 75 μs, respectively. Secondly, the hatchability of shedding methods, drilling a window at the blunt end of egg and drilling a window at the lateral shell of egg was compared, the results showed that the hatchability was the highest for drilling a window at the lateral shell of egg. Thirdly, the hatchability of microinjection (ESCs was microinjected into chick embryo cavity) was compared too, the results showed there were significant difference between the injection group transfected with ESCs and that of other two groups. In addition, five chimeric chickens were obtained in this study and EGFP gene was expressed in some organs, but only two chimeric chicken expressed EGFP gene in the gonad, indicating that the chimeric chicken could be obtained through chick embryo cavity injection by drilling a window at the lateral shell of egg.

  20. Embryonated chicken eggs as an alternative model for mixed Clostridium perfringens and Eimeria tenella infection in chickens.

    Science.gov (United States)

    Alnassan, Alaa Aldin; Shehata, Awad Ali; Kotsch, Marianne; Lendner, Matthias; Daugschies, Arwid; Bangoura, Berit

    2013-06-01

    The chorioallantoic membrane (CAM) of chicken embryo eggs is a suitable model for viral and bacterial infections. In the present study, a new approach for testing the pathogenesis and virulence of Clostridium perfringens and Eimeria tenella dual infections as a model using the CAM of embryonated chicken eggs was developed. For this purpose, 24 specific pathogen-free (SPF) embryonated chicken eggs were divided into four groups (n = 6) and designated group E, group CP, group CPE, and NC. Sporozoites of E. tenella (20,000 sporozoites) were inoculated into 10-day-old embryonated SPF chicken eggs (groups E and CPE) via allantoic sac route. At 15-day-old, eggs of groups CP and CPE were infected with 10 (4)  cfu C. perfringens via the same route. Assessment of pathogenicity was assessed using gross and histopathological lesions. Embryo mortality reached 17 % after mono-infection with C. perfringens and/or E. tenella and 50 % in the mixed-infected group. Lesions in the CAMs were most numerous and most severe in co-infected eggs (group CPE), reaching the maximum score of 3 in 50 % of the inoculated eggs (P < 0.01). In Eimeria spp.-infected eggs (group E), lesions of score were between 1 and 2. Mono-infection with C. perfringens did not lead to a significant occurrence of lesions. Histopathological investigations of the CAM revealed clusters of Gram-positive bacteria, infiltration with leukocytes, lymphocytes, and developmental stages of E. tenella in the co-infected group. These data suggest that embryonated eggs could be an in ovo model for studying the pathogenesis of mixed infection with Eimeria and C. perfringens.

  1. Chicken primordial germ cells use the anterior vitelline veins to enter the embryonic circulation

    Directory of Open Access Journals (Sweden)

    Ana De Melo Bernardo

    2012-09-01

    During gastrulation, chicken primordial germ cells (PGCs are present in an extraembryonic region of the embryo from where they migrate towards the genital ridges. This is also observed in mammals, but in chicken the vehicle used by the migratory PGCs is the vascular system. We have analysed the migratory pathway of chicken PGCs, focusing on the period of transition from the extraembryonic region to the intraembryonic vascular system. Our findings show that at Hamburger and Hamilton developmental stage HH12–HH14 the majority of PGCs concentrate axially in the sinus terminalis and favour transport axially via the anterior vitelline veins into the embryonic circulation. Moreover, directly blocking the blood flow through the anterior vitelline veins resulted in an accumulation of PGCs in the anterior region and a decreased number of PGCs in the genital ridges. We further confirmed the key role for the anterior vitelline veins in the correct migration of PGCs using an ex ovo culture method that resulted in defective morphogenetic development of the anterior vitelline veins. We propose a novel model for the migratory pathway of chicken PGCs whereby the anterior vitelline veins play a central role at the extraembryonic and embryonic interface. The chicken model of PGC migration through the vasculature may be a powerful tool to study the process of homing (inflammation and metastasis due to the striking similarities in regulatory signaling pathways (SDF1–CXCR4 and the transient role of the vasculature.

  2. Detection of bluetongue virus by using bovine endothelial cells and embryonated chicken eggs.

    OpenAIRE

    Wechsler, S J; Luedke, A J

    1991-01-01

    Two systems, inoculation of bovine endothelial cells and of embryonated chicken eggs, were compared for detection of bluetongue virus (BTV) in blood specimens from experimentally inoculated sheep. For all BTV serotypes tested, embryonated chicken eggs detected longer periods of viremia than did bovine endothelial cells, primarily by detecting BTV in samples containing lower virus concentrations.

  3. Isomyosin expression in developing chicken atria: a marker for the development of conductive tissue?

    NARCIS (Netherlands)

    de Groot, I. J.; Sanders, E.; Visser, S. D.; Lamers, W. H.; de Jong, F.; Los, J. A.; Moorman, A. F.

    1987-01-01

    Isomyosin expression patterns in embryonic chicken atria during the first two weeks of development were analyzed immunohistochemically. In the 3-days embryonic chicken heart (HH19-20), strong coexpression of both isomyosins can be found as band-like zones at the lateral sides of the sinoatrial

  4. Multidisciplinary Inquiry-Based Investigation Learning Using an Ex Ovo Chicken Culture Platform: Role of Vitamin A on Embryonic Morphogenesis

    Science.gov (United States)

    Buskohl, Philip R.; Gould, Russell A.; Curran, Susan; Archer, Shivaun D.; Butcher, Jonathan T.

    2012-01-01

    Embryonic development offers a unique perspective on the function of many biological processes because of embryos' heightened sensitivity to environmental factors. This hands-on lesson investigates the effects of elevated vitamin A on the morphogenesis of chicken embryos. The active form of vitamin A (retinoic acid) is applied to shell-less (ex…

  5. Creatine kinase isozyme expression in embryonic chicken heart

    NARCIS (Netherlands)

    Lamers, W. H.; Geerts, W. J.; Moorman, A. F.; Dottin, R. P.

    1989-01-01

    The distribution pattern of creatine kinase (EC 2.7.3.2) isozymes in developing chicken heart was studied by immunohistochemistry. Creatine kinase M, which is absent from adult heart, is transiently expressed between 4 and 11 days of incubation. During that period, numerous muscular cells in the

  6. Embryonic exposure to lead: comparison of immune and cellular responses in unchallenged and virally stressed chickens

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Eun; Kao, Elizabeth; Dietert, Rodney R. [Institute for Comparative and Environmental Toxicology, College of Veterinary Medicine, Cornell University, Ithaca, NY (United States); Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (United States); Naqi, Syed A. [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (United States)

    2002-01-01

    Lead, a ubiquitous environmental contaminant, has been shown to modulate various functions of the immune system and decrease host resistance to infectious disease. However, limited information is available concerning the direct effects of lead on the host immune response to an infectious agent after developmental exposure. The current study utilized chickens to examine the effect of embryonic lead exposure on immune and cellular responses during viral challenge. Sublethal doses of lead were introduced into fertilized Cornell K Strain White Leghorn chicken eggs via the air sac at day 5 or day 12 of embryonic development (designated as E5 and E12, respectively). Four-week-old female chickens were inoculated with infectious bronchitis virus (IBV) strain M41. Antibody titer to IBV, delayed-type hypersensitivity (DTH) response against bovine serum albumin (BSA), the absolute number and percentage of leukocyte subpopulations, and interferon-{gamma} (IFN-{gamma})-like cytokine production by splenocytes were evaluated at 5-6 weeks of age. While antibody response to IBV in juvenile chicks was unaffected by the in ovo lead exposure, IFN-{gamma}-like cytokine production by splenocytes was significantly depressed following lead exposure at both developmental stages. In contrast with this pattern, the DTH response against BSA was unaffected following E5 exposure, but was significantly decreased after E12 exposure to lead. These changes were similar to those previously reported in chickens not exposed to IBV. While lead exposure at E5 induced significant changes in the percentage of circulating heterophils at 1 day postinfection (dpi), lead did not cause any change in relative leukocyte counts after E12 exposure. At 7 dpi, E5 lead exposure resulted in decreased absolute number and percentage of circulating lymphocytes, while total leukocyte counts, and the absolute number and percentage of circulating monocytes and heterophils were significantly reduced in E12 lead

  7. Embryonic chicken cornea and cartilage synthesize type IX collagen molecules with different amino-terminal domains.

    OpenAIRE

    Svoboda, K K; Nishimura, I; Sugrue, S P; Ninomiya, Y; Olsen, B R

    1988-01-01

    We have analyzed embryonic chicken cornea for the presence of type IX collagen mRNA and protein. Using RNA transfer blot analysis, we demonstrate that alpha 1(IX) and alpha 2(IX) mRNAs are expressed by corneal epithelial cells at the time that the primary stromal components are synthesized. The levels of the mRNAs decrease with increasing developmental age and are barely detectable at day 11 of development. In contrast, type IX collagen protein is detectable by immunofluorescence at days 5 an...

  8. Strategy for Developing Local Chicken

    Directory of Open Access Journals (Sweden)

    Sofjan Iskandar

    2006-12-01

    Full Text Available Chicken industry in Indonesia offer jobs for people in the village areas . The balance in development industry of selected and local chicken has to be anticipated as there has been threat of reducing importation of grand parent stock of selected chicken due to global avian influenza . In the mean time, high appreciation to the local chicken has been shown by the existence of local chicken farms in the size of business scale . For local chicken business, the government has been built programs, projects, and infrastructures, although the programs and projects were dropped scattered in to several institutions, which were end up with less significant impact to the people. Therefore, it is the time that the government should put more efforts to integrate various sources . focusing in enhancing local chicken industry .

  9. Mechanobiology of embryonic limb development.

    Science.gov (United States)

    Nowlan, Niamh C; Murphy, Paula; Prendergast, Patrick J

    2007-04-01

    Considerable evidence exists to support the hypothesis that mechanical forces have an essential role in healthy embryonic skeletal development. Clinical observations and experimental data indicate the importance of muscle contractions for limb development. However, the influence of these forces is seldom referred to in biological descriptions of bone development, and perhaps this is due to the fact that the hypothesis that mechanical forces are essential for normal embryonic skeletal development is difficult to test and elaborate experimentally in vivo, particularly in humans. Computational modeling has the potential to address this issue by simulating embryonic growth under a range of loading conditions but the potential of such models has yet to be fully exploited. In this article, we review the literature on mechanobiology of limb development in three main sections: (a) experimental alteration of the mechanical environment, (b) mechanical properties of embryonic tissues, and (c) the use of computational models. Then we analyze the main issues, and suggest how experimental and computational fields could work closer together to enhance our understanding of mechanobiology of the embryonic skeleton.

  10. Partial albumen removal early during embryonic development of layer-type chickens has negative consequences on laying performance in adult life.

    Science.gov (United States)

    Willems, E; Wang, Y; Willemsen, H; Lesuisse, J; Franssens, L; Guo, X; Koppenol, A; Buyse, J; Decuypere, E; Everaert, N

    2013-07-01

    To examine the importance of albumen as a protein source during embryonic development on the posthatch performance of laying hens, 3 mL of the albumen was removed. At hatch, no difference in BW could be observed. Chicks from the albumen-deprived group had a lower residual yolk weight due to higher yolk utilization. During the rearing phase (hatch to 17 wk of age), the BW of the albumen-deprived pullets was lower compared with the control and sham pullets. The feed intake of the albumen-deprived pullets was also lower than the control pullets. However, during the laying phase (18 to 55 wk of age) these hens exceeded the control and sham hens in BW, although this was not accompanied by a higher feed intake. The albumen-deprived hens exhibited a lower egg production capacity as demonstrated by the reduced egg weight, laying rate, and egg mass and increased number of second grade eggs. In addition, the eggs laid by the albumen-deprived hens had a higher proportional yolk and lower proportional albumen weight. In conclusion, prenatal protein deprivation by albumen removal caused a long-lasting programming effect, possibly by differences in energy allocation, in favor of growth and maintenance and impairing reproductive performance.

  11. Derivation of keratinocytes from chicken embryonic stem cells: Establishment and characterization of differentiated proliferative cell populations

    Directory of Open Access Journals (Sweden)

    Mathilde Couteaudier

    2015-03-01

    Full Text Available A common challenge in avian cell biology is the generation of differentiated cell-lines, especially in the keratinocyte lineage. Only a few avian cell-lines are available and very few of them show an interesting differentiation profile. During the last decade, mammalian embryonic stem cell-lines were shown to differentiate into almost all lineages, including keratinocytes. Although chicken embryonic stem cells had been obtained in the 1990s, few differentiation studies toward the ectodermal lineage were reported. Consequently, we explored the differentiation of chicken embryonic stem cells toward the keratinocyte lineage by using a combination of stromal induction, ascorbic acid, BMP4 and chicken serum. During the induction period, we observed a downregulation of pluripotency markers and an upregulation of epidermal markers. Three homogenous cell populations were derived, which were morphologically similar to chicken primary keratinocytes, displaying intracellular lipid droplets in almost every pavimentous cell. These cells could be serially passaged without alteration of their morphology and showed gene and protein expression profiles of epidermal markers similar to chicken primary keratinocytes. These cells represent an alternative to the isolation of chicken primary keratinocytes, being less cumbersome to handle and reducing the number of experimental animals used for the preparation of primary cells.

  12. Avian influenza virus isolation, propagation and titration in embryonated chicken eggs

    Science.gov (United States)

    Avian influenza (AI) virus is usually isolated, propagated, and titrated in embryonated chickens eggs (ECE). Most any sample type can be accommodated for culture with appropriate processing. Isolation may also be accomplished in cell culture particularly if mammalian lineage isolates are suspected, ...

  13. Artificial induction of Sox21 regulates sensory cell formation in the embryonic chicken inner ear.

    Directory of Open Access Journals (Sweden)

    Stephen D Freeman

    Full Text Available During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner.

  14. Mallard or chicken? Comparing the isolation of avian influenza A viruses in embryonated Mallard and chicken eggs

    Directory of Open Access Journals (Sweden)

    Josef D. Järhult

    2015-09-01

    Full Text Available Background: To date, the most efficient and robust method for isolating avian influenza A viruses (IAVs is using embryonated chicken eggs (ECEs. It is known that low-pathogenic avian IAVs undergo rapid genetic changes when introduced to poultry holdings, but the factors driving mutagenesis are not well understood. Despite this, there is limited data on the effects of the standard method of virus isolation of avian-derived viruses, that is, whether isolation in ECEs causes adaptive changes in avian IAVs. Eggs from a homologous species could potentially offer an isolation vessel less prone to induce adaptive changes. Methods: We performed eight serial passages of two avian IAVs isolated from fecal samples of wild Mallards in both ECEs and embryonated Mallard eggs, and hemagglutination assay titers and hemagglutinin sequences were compared. Results: There was no obvious difference in titers between ECEs and embryonated Mallard eggs. Sequence analyses of the isolates showed no apparent difference in the rate of introduction of amino acid substitutions in the hemagglutinin gene (three substitutions in total in embryonated Mallard eggs and two substitutions in ECEs. Conclusion: Embryonated Mallard eggs seem to be good isolation vessels for avian IAVs but carry some practical problems such as limited availability and short egg-laying season of Mallards. Our study finds isolation of Mallard-derived avian IAVs in ECEs non-inferior to isolation in embryonated Mallard eggs, but more research in the area may be warranted as this is a small-scale study.

  15. The cellular distribution of histone H5 in embryonic and adult tissues of Xenopus laevis and chicken

    NARCIS (Netherlands)

    Moorman, A. F.; de Boer, P. A.; Lamers, W. H.; Charles, R.

    1986-01-01

    The cellular distribution of histone H5 in embryonic and adult tissues of Xenopus laevis and chicken has been established with monoclonal antibodies to histone H5. Both in Xenopus and in chicken, the protein has presumably a more widespread cellular distribution than hitherto expected but is absent

  16. Examination the expression pattern of HSP70 heat shock protein in chicken PGCs and developing genital ridge

    OpenAIRE

    Mahek Anand; Roland Tóth; Alayu Kidane; Alexandra Nagy; Bence Lázár; Eszter Patakiné Várkonyi; Krisztina Liptói; Elen Gocza

    2016-01-01

    Chicken Primordial Germ cells (PGCs) are emerging pioneers in the field of applied embryology and stem cell technology. Now-a-days transgenic chickens are promising models to study human disease pathophysiology and drug designing. However, most of the molecular mechanism, which govern the stemness and pluripotency of chicken PGCs, not known in details. Recent studies have indicated the role of HSP70 in early embryonic development in many vertebrate species. Exposure of chicken to heat...

  17. Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts

    International Nuclear Information System (INIS)

    Michailidis, Georgios; Saretzki, Gabriele; Hall, Judith

    2005-01-01

    In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of the TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian

  18. Extraction of total RNA in the developing chicken forebrain

    Directory of Open Access Journals (Sweden)

    Sayed Rasoul Zaker

    2014-01-01

    Full Text Available Background: Gene expression of Gama-Aminobutyric acid (GABA A receptor subunits may change during development. Procedures in molecular biology are required to understand the gene expression profile GABA A R in chicken. The outcome of the results depends on good-quality high-molecular-weight RNA. Several procedures can be used to isolate RNA from the brain of chicken; however, most of them are time-consuming and require disruption of cells or freeze and thaw in the presence of RNase inhibitors. The aim of this experiment was isolation of RNA from chicken embryonic brain tissues using appropriate RNA extraction kit. Materials and Methods: Fertilized eggs from Ross breed (Gallus gallus were incubated at 38°C and 60% relative humidity in a forced-draft incubator and were turned every 3 h. After 3, 7, 14 and 20 days of incubation, eggs were cooled on ice to induce deep anesthesia. Then whole brains were dissected out. As brains could not be excised in a reproducible way from earlier embryos (embryonic days 4 and 6, whole heads were collected. Chicken embryos between day 7 to 20 and 1 day after birth were decapitated, and their brains removed. Samples were immediately inserted into lysis buffer and stored at −70°C. Total RNA was isolated and a contaminating genomic deoxyribonucleic acid (DNA was digested. RNA quality was checked using gel electrophoresis. Results: We obtained 52 mg/ml to 745 mg/ml with A260/280 1.7-2.2. Only high-quality RNA, with no signs of degradation, was used for further experiments. Conclusion: In conclusion, protocol was found to be suitable for the isolation of total RNA from embryonic chicken cells.

  19. Hypophyseal corticosteroids stimulate somatotrope differentiation in the embryonic chicken pituitary gland.

    Science.gov (United States)

    Zheng, Jun; Takagi, Hiroyasu; Tsutsui, Chihiro; Adachi, Akihito; Sakai, Takafumi

    2008-03-01

    Although it is known that glucocorticoids induce differentiation of growth hormone (GH)-producing cells in rodents and birds, the effect of mineralocorticoids on GH mRNA expression and the origin of corticosteroids affecting somatotrope differentiation have not been elucidated. In this study, we therefore carried out experiments to determine the effect of mineralocorticoids on GH mRNA expression in the chicken anterior pituitary gland in vitro and to determine whether corticosteroids are synthesized in the chicken embryonic pituitary gland. In a pituitary culture experiment with E11 embryos, both corticosterone and aldosterone stimulated GH mRNA expression and increased the number of GH cells in both lobes of the pituitary gland in a dose-dependent manner. These effects of the corticosteroids were significantly reversed by pretreatment with mifepristone, a glucocorticoid receptor (GR) antagonist, or spironolactone, a mineralocorticoid receptor (MR) antagonist. Interestingly, an in vitro serum-free culture experiment with an E11 pituitary gland showed that the GH mRNA level spontaneously increased during cultivation for 2 days without any extra stimulation, and this increase in GH mRNA level was completely suppressed by metyrapone, a corticosterone-producing enzyme P450C11 inhibitor. Moreover, progesterone, the corticosterone precursor, also stimulated GH mRNA expression in the cultured chicken pituitary gland, and this effect was blocked by pretreatment with metyrapone. We also detected mRNA expression of enzymes of cytochrome P450 cholesterol side chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase1 (3beta-HSD1) in the developmental chicken pituitary gland from E14 and E18, respectively. These results suggest that mineralocorticoids as well as glucocorticoids can stimulate GH mRNA expression and that corticosteroids generated in the embryonic pituitary gland by intrinsic steroidogenic enzymes stimulate somatotrope differentiation.

  20. A study of inoculation route and dosage levels on embryonated chicken eggs as media for testing tea mistlestoe (Scurrula oortiana extract activity

    Directory of Open Access Journals (Sweden)

    Sri Murtini

    2006-06-01

    Full Text Available Tea mistlestoe extract (Scurrula oortiana has cytotoxic activity which is potential to be used in preventing viral induced-chicken tumor. The following study was designed to evaluate the effects of different inoculation routes, dosage levels, and strains of embryonated chicken eggs as media for testing the tea mistlestoe extract (Scurrula oortiana antiviral activity. Proper inoculation route was examined by inoculation of the extract at dose level of 0,2 mg/egg into embryonated layer eggs via allantoic cavity, chorio-allantoic membrane, and yolk sac. Effect of dose level of tea mistlestoe extract on embryo development was examined in groups of embryonated broiler eggs inoculated with the extract at 0.02, 0.2, 2, 20, or 200 mg/egg. Inoculation of tea mistlestoe extract into allantoic cavity was the safest procedure as indicated by the absence of embryos mortality, and faster embryo growth compared to those of chorio-allantoic membrane and yolk sac-inoculated eggs. The extract induced different growth effects when inoculated into embryonated layer or broiler eggs. Administration of the extract at dose levels between 0,02–200 mg/egg reduced significantly the weight of broiler embryoes, but not the relative weights of liver, heart and spleen. Administration of similar dosage in layer embryoes did not cause any significant difference in the embryoes weight. This study suggests that the study of antiviral activity of tea mistlestoe extract in embryonated chicken eggs should be carried out on embryonated eggs of layer breeds and the extract should be inoculated via allantoic cavity.

  1. The Effects of in ovo Nanocurcumin Administration on Oxidative Stress and Histology of Embryonic Chicken Heart

    Directory of Open Access Journals (Sweden)

    Araghi A

    2017-10-01

    Full Text Available This study was designed to evaluate the effects of nanocurcumin (NC on oxidative stress and histology of embryonic chicken heart. NC was injected into the yolk of 4-day-old embryonic eggs at one of three doses: 10 ppm (NC10 group, 100 ppm (NC100 group, and 1000 ppm (NC1000 group. The control group received normal saline. Oxidative stress in heart tissue was evaluated by measuring malondialdehyde (MDA concentration, glutathione (GSH content, and ferric reducing antioxidant power (FRAP. Serum lipids and cardio-histolopathogy were also measured. There were no significant differences in GSH, FRAP, and MDA levels between the control and treatment groups (P > 0.05. The serum lipid profile was altered in the NC100 group, with reduced levels of triglyceride (TG (P < 0.01 but higher levels of HDL-c (P < 0.01 compared to the control. Heart histology was similar between NC10 and NC100 treatments compared to the control group. However, heart sections in NC1000 revealed focal areas of disrupted cardiac muscles and mild infiltration of mononuclear inflammatory cells between muscle fibers. It was concluded that NC at a concentration of 100 ppm did not damage heart tissues in chicken embryo and could be used as a valuable molecule for cardiovascular disease prevention.

  2. Insulin stimulates choline acetyltransferase activity in cultured embryonic chicken retina neurons

    International Nuclear Information System (INIS)

    Kyriakis, J.M.; Hausman, R.E.; Peterson, S.W.

    1987-01-01

    The effect of insulin on the appearance of the enzyme choline acetyltransferase in embryonic chicken retina neurons cultured in defined medium was studied. In the presence of a minimal level of insulin (1 ng/ml), ChoAcT activity increased with time in culture. A correspondence between the insulin concentration in the defined medium (1-100 ng/ml) and both the rate of increase and maximum attained level of ChoAcT activity was observed. Maximal ChoAcT activity was 2- to 3-fold greater in cells cultured in the presence of 100 ng of insulin per ml than in cells cultured in the presence of 1 ng of insulin per ml. To elicit maximum ChoAcT activity, insulin at 100 ng/ml was required in the medium for only the first 4 days of the culture period, at which time insulin could be reduced to maintenance levels (10 ng/ml) without affecting ChoAcT activity. Insulin binding assays performed during a 7-day culture period revealed that irrespective of the 125 I-insulin concentration in the medium during culture, cell-surface insulin receptors decreased by ≅ 90% between 4 and 7 days in culture. This decrease in insulin binding corresponded to the observed decrease in the sensitivity of ChoAcT activity to insulin. The findings suggest that insulin plays a role in mediating cholinergic differentiation in the embryonic chicken retina

  3. Regional differences in actomyosin contraction shape the primary vesicles in the embryonic chicken brain

    International Nuclear Information System (INIS)

    Filas, Benjamen A; Oltean, Alina; Majidi, Shabnam; Bayly, Philip V; Taber, Larry A; Beebe, David C

    2012-01-01

    In the early embryo, the brain initially forms as a relatively straight, cylindrical epithelial tube composed of neural stem cells. The brain tube then divides into three primary vesicles (forebrain, midbrain, hindbrain), as well as a series of bulges (rhombomeres) in the hindbrain. The boundaries between these subdivisions have been well studied as regions of differential gene expression, but the morphogenetic mechanisms that generate these constrictions are not well understood. Here, we show that regional variations in actomyosin-based contractility play a major role in vesicle formation in the embryonic chicken brain. In particular, boundaries did not form in brains exposed to the nonmuscle myosin II inhibitor blebbistatin, whereas increasing contractile force using calyculin or ATP deepened boundaries considerably. Tissue staining showed that contraction likely occurs at the inner part of the wall, as F-actin and phosphorylated myosin are concentrated at the apical side. However, relatively little actin and myosin was found in rhombomere boundaries. To determine the specific physical mechanisms that drive vesicle formation, we developed a finite-element model for the brain tube. Regional apical contraction was simulated in the model, with contractile anisotropy and strength estimated from contractile protein distributions and measurements of cell shapes. The model shows that a combination of circumferential contraction in the boundary regions and relatively isotropic contraction between boundaries can generate realistic morphologies for the primary vesicles. In contrast, rhombomere formation likely involves longitudinal contraction between boundaries. Further simulations suggest that these different mechanisms are dictated by regional differences in initial morphology and the need to withstand cerebrospinal fluid pressure. This study provides a new understanding of early brain morphogenesis. (paper)

  4. Molecular characterization of chicken syndecan-2 proteoglycan

    DEFF Research Database (Denmark)

    Chen, Ligong; Couchman, John R; Smith, Jacqueline

    2002-01-01

    A partial syndecan-2 sequence (147 bp) was obtained from chicken embryonic fibroblast poly(A)+ RNA by reverse transcription-PCR. This partial sequence was used to produce a 5'-end-labelled probe. A chicken liver cDNA library was screened with this probe, and overlapping clones were obtained......Da. Western blotting of chicken embryonic fibroblast cell lysates with species-specific monoclonal antibody mAb 8.1 showed that chicken syndecan-2 is substituted with heparan sulphate, and that the major form of chicken syndecan-2 isolated from chicken fibroblasts is consistent with the formation of SDS......-resistant dimers, which is common for syndecans. A 5'-end-labelled probe hybridized to two mRNA species in chicken embryonic fibroblasts, while Northern analysis with poly(A)+ RNAs from different tissues of chicken embryos showed wide and distinct distributions of chicken syndecan-2 during embryonic development...

  5. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken.

    Science.gov (United States)

    Cooley, James R; Yatskievych, Tatiana A; Antin, Parker B

    2014-03-01

    Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Copyright © 2013 Wiley Periodicals, Inc.

  6. DIFFERENTIATION OF EMBRYONIC STEM CELLS: LESSONS FROM EMBRYONIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    EMOKE PALL

    2008-05-01

    Full Text Available Embryonic stem (ES cells, the undifferentiated cells of early embryos are established as permanent lines and are characterised by their self-renewal capacity and the ability to retain their developmental capacity in vivo and in vitro. The pluripotent properties of ES cells are the basis of gene targeting technologies used to create mutant mouse strains with inactivated genes by homologous recombination. There are several methods to induce the formation of EBs. One of them the formation by aggregating ES cells in hanging drops, using gravity as an aggregation force. This method presents the advantage of obtaining well-calibrated EBs almost identical in size. We used at our experiment the mouse ES cell line KA1/11/C3/C8 with a normal karyotype, at 14th passages. Immunohistochemical examination was aimed to identify tissue-restricted proteins for the two differentiated lineages: titin as a cell-specific antigen for cardiac and skeletal muscle, betaIII-tubulin for the neuronal differentiation, cytokeratin Endo-A (TROMA for the presence of mesenchymal progenitor cells, Oct-4 for the presence of the undifferentiated ES cells. The beating cardiac muscle clumps showed more synchronous rhythm than those seen in EBs obtained from suspension culture method, where the beating cardiac muscle clumps appeared later, had a lower frequency and were uneven. The synaptic networks of neuronal cells were best developed in EBs from suspension, compared to those observed in EBs from hanging-drop method.

  7. The local expression of adult chicken heart myosins during development. II. Ventricular conducting tissue

    NARCIS (Netherlands)

    Sanders, E.; de Groot, I. J.; Geerts, W. J.; de Jong, F.; van Horssen, A. A.; Los, J. A.; Moorman, A. F.

    1986-01-01

    The development of the ventricular conducting tissue of the embryonic chicken heart has been studied using a previous finding that morphologically recognizable atrial conducting tissue coexpresses the atrial and the ventricular myosin isoforms. It is found that, by these criteria, at 9 days part of

  8. Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts.

    Science.gov (United States)

    Oztürk, Nilgün; Korkmaz, Seval; Oztürk, Yusuf; Başer, K Hüsnü Can

    2006-03-01

    Wound healing properties of Gentian (Gentiana lutea ssp. symphyandra) extract and its main constituents, gentiopicroside, sweroside and swertiamarine (compounds 1-3, respectively) were evaluated by comparison with dexpanthenol on cultured chicken embryonic fibroblasts. The extract was also analyzed by HPLC to quantify its constituents. Chicken embryonic fibroblasts from fertilized eggs were incubated with the plant extract and its constituents, compounds 1-3. Using microscopy, mitotic ability, morphological changes and collagen production in the cultured fibroblasts were evaluated as parameters. Wound healing activity of Gentian seems to be mainly due to the increase in the stimulation of collagen production and the mitotic activity by compounds 2 and 3, respectively (p < 0.005 in all cases). All three compounds also exhibited cytoprotective effects, which may cause a synergism in terms of wound healing activity of Gentian. The findings demonstrated the wound healing activity of Gentian, which has previously been based only on ethnomedical data.

  9. Examination the expression pattern of HSP70 heat shock protein in chicken PGCs and developing genital ridge

    Directory of Open Access Journals (Sweden)

    Mahek Anand

    2016-05-01

    Full Text Available Chicken Primordial Germ cells (PGCs are emerging pioneers in the field of applied embryology and stem cell technology. Now-a-days transgenic chickens are promising models to study human disease pathophysiology and drug designing. However, most of the molecular mechanism, which govern the stemness and pluripotency of chicken PGCs, not known in details. Recent studies have indicated the role of HSP70 in early embryonic development in many vertebrate species. Exposure of chicken to heat stress result in activation of heat shock factors which activate the transcription of HSP70. Exposure chicken eggs to acute heat stress effects HSP70 expression in PGCs and gonads. HSP70 helps in maintaining the integrity of chicken PGCs. A new emerging role of HSP70 in apoptosis has emerged. In our lab, we aim to characterize the expression of cHsp70 in chicken PGCs and gonads during embryonic development by subjecting the parents to acute levels of heat stress. Chickens whose parents subjected to heat stress showed varied expression of cHsp70 and also improved thermo tolerance. In the future we plan to study other factors and miRNAs, which is characterized as an emerging player in regulating heat shock protein response in chicken and also plays an important role in apoptosis.

  10. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus

    Directory of Open Access Journals (Sweden)

    Kong Xiangang

    2011-03-01

    Full Text Available Abstract Background Avian infectious bronchitis (IB is one of the most serious diseases of economic importance in chickens; it is caused by the avian infectious coronavirus (IBV. Information remains limited about the comparative protein expression profiles of chicken embryonic tissues in response to IBV infection in ovo. In this study, we analyzed the changes of protein expression in trachea and kidney tissues from chicken embryos, following IBV infection in ovo, using two-dimensional gel electrophoresis (2-DE coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS. Results 17 differentially expressed proteins from tracheal tissues and 19 differentially expressed proteins from kidney tissues were identified. These proteins mostly related to the cytoskeleton, binding of calcium ions, the stress response, anti-oxidative, and macromolecular metabolism. Some of these altered proteins were confirmed further at the mRNA level using real-time RT-PCR. Moreover, western blotting analysis further confirmed the changes of annexin A5 and HSPB1 during IBV infection. Conclusions To the best of our knowledge, we have performed the first analysis of the proteomic changes in chicken embryonic trachea and kidney tissues during IBV infection in ovo. The data obtained should facilitate a better understanding of the pathogenesis of IBV infection.

  11. A comparison of anterior-posterior development in the porcine versus the chicken embryo, using goosecoid expression as a marker

    NARCIS (Netherlands)

    Pavert, van de S.A.; Schipper, H.; Wit, de A.A.C.; Soede, N.M.; Hurk, van den R.; Taverne, M.A.M.; Boerjan, M.L.; Stroband, H.W.J.

    2001-01-01

    During early embryonic development, pig and chicken embryos share striking morphological similarities. In the present study, the timing and location of expression of mRNA for goosecoid (gsc), a gene classically expressed in the nodal region of developing embryos, was examined and compared in

  12. Study on differentiation during embryonic development across selective and ancestral breeds.

    Science.gov (United States)

    An, Fengli; Wang, Jianlin

    2017-06-01

    In order to explore the effect of strain on diverging post-hatch muscle properties, muscle regulation during embryo development was investigated in selected and unselected breeds. Four broiler strains were used: JingNing (JN) chicken (a Chinese native chicken), HuangYu (HY) broiler, BaiYu (BY) broiler and Hyline layer (commercial crossbred chickens). Results showed that the four breeds had almost the same characteristic during different incubation periods. BY broilers moved more than JN and Hyline layers from Hamburger & Hamilton stage (HH)24 to HH31 (P layers from HH27 to HH31 (P layers (P > 0.05); broilers presented smaller fiber diameter than JN chickens before HH31 (P > 0.05). From then on, JN chicken exhibited smaller fiber diameter compared to the broilers (P > 0.05). Western blotting indicated all the breeds had continuous insulin-like growth factor-I (IGF-I) expression, with the highest expression level in broilers from HH19 to HH24 and highest expression level in JN chicks from HH27 to HH31. The results indicated that the diverging growth among breeds was already shown in embryonic stages; the different expression patterns of IGF-I may be involved in cell proliferation and differentiation. © 2016 Japanese Society of Animal Science.

  13. Retinol improves bovine embryonic development in vitro

    Directory of Open Access Journals (Sweden)

    Edwards J Lannett

    2004-12-01

    Full Text Available Abstract Retinoids are recognized as important regulators of vertebrate development, cell differentiation, and tissue function. Previous studies, performed both in vivo and in vitro, indicate that retinoids influence several reproductive events, including follicular development, oocyte maturation and early embryonic development. The present study evaluated in vitro effects of retinol addition to media containing maturing bovine oocytes and developing embryos in both a low oxygen atmosphere (7% and under atmospheric oxygen conditions (20%. In the first experiment, abbatoir collected bovine oocytes were matured in the presence or absence of varying concentrations of retinol. After a 22–24 hour maturation period the oocytes were fertilized, denuded 18 hours later and cultured in a modified synthetic oviductal fluid (mSOF in a humidified atmosphere at 38.5 degrees C, 5% CO2, 7% O2 and 88% N2. Cleavage rates did not differ among control and retinol-treated oocytes in all three experiments. Addition of 5 micromolar retinol to the maturation medium (IVM tended (p

  14. Simple explant culture of the embryonic chicken retina with long-term preservation of photoreceptors.

    Science.gov (United States)

    Thangaraj, Gopenath; Greif, Alexander; Layer, Paul G

    2011-10-01

    Structurally stable in vitro-model systems are indispensible to analyse neural development during embryogenesis, follow cellular differentiation and evaluate neurotoxicological or growth factor effects. Here we describe a three-dimensional, long-term in vitro-culture system of the embryonic chick retina which supports photoreceptor development. Retinal tissue was isolated from E6 chick eye, and cultured as explants by continuous orbital rotation to allow free floatation without any supporting materials. Young stage (E6) immature retinas were cultured for various time periods in order to follow the differentiation of cell types and plexiform layers by immunocytochemical methods. These explants could be cultured for at least 2-3 weeks with remarkable retention of retinal architecture. Interestingly, photoreceptors developed in the absence of pigment epithelium. Electron microscopic studies revealed formation of structures resembling photoreceptor outer segments, a feature not reported previously. Thus, the verification of photoreceptors, Müller cells, inner retinal cells and the inner plexiform layer described in our study establishes this explant culture as a valuable in vivo-like model system. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Function of JARID2 in bovines during early embryonic development

    Directory of Open Access Journals (Sweden)

    Yao Fu

    2017-12-01

    Full Text Available Histone lysine modifications are important epigenetic modifications in early embryonic development. JARID2, which is a member of the jumonji demethylase protein family, is a regulator of early embryonic development and can regulate mouse development and embryonic stem cell (ESC differentiation by modifying histone lysines. JARID2 can affect early embryonic development by regulating the methylation level of H3K27me3, which is closely related to normal early embryonic development. To investigate the expression pattern of JARID2 and the effect of JARID2-induced H3K27 methylation in bovine oocytes and early embryonic stages, JARID2 mRNA expression and localization were detected in bovine oocytes and early embryos via qRT-PCR and immunofluorescence in the present study. The results showed that JARID2 is highly expressed in the germinal vesicle (GV, MII, 2-cell, 4-cell, 8-cell, 16-cell and blastocyst stages, but the relative expression level of JARID2 in bovine GV oocytes is significantly lower than that at other oocyte/embryonic stages (p < 0.05, and JARID2 is expressed primarily in the nucleus. We next detected the mRNA expression levels of embryonic development-related genes (OCT4, SOX2 and c-myc after JARID2 knockdown through JARID2-2830-siRNA microinjection to investigate the molecularpathwayunderlying the regulation of H3K27me3 by JARID2 during early embryonic development. The results showed that the relative expression levels of these genes in 2-cell embryos weresignificantly higher than those in the blastocyst stage, and expression levels were significantly increased after JARID2 knockdown. In summary, the present study identified the expression pattern of JARID2 in bovine oocytes and at each early embryonic stage, and the results suggest that JARID2 plays a key role in early embryonic development by regulating the expression of OCT4, SOX2 and c-myc via modification of H3K27me3 expression. This work provides new data for improvements in the

  16. Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs

    International Nuclear Information System (INIS)

    Mochalova, Larisa; Gambaryan, Alexandra; Romanova, Julia; Tuzikov, Alexander; Chinarev, Alexander; Katinger, Dietmar; Katinger, Herman; Egorov, Andrej; Bovin, Nicolai

    2003-01-01

    To study the receptor specificity of modern human influenza H1N1 and H3N2 viruses, the analogs of natural receptors, namely sialyloligosaccharides conjugated with high molecular weight (about 1500 kDa) polyacrylamide as biotinylated and label-free probes, have been used. Viruses isolated from clinical specimens were grown in African green monkey kidney (Vero) or Madin-Darby canine kidney (MDCK) cells and chicken embryonated eggs. All Vero-derived viruses had hemagglutinin (HA) sequences indistinguishable from original viruses present in clinical samples, but HAs of three of seven tested MDCK-derived isolates had one or two amino acid substitutions. Despite these host-dependent mutations and differences in the structure of HA molecules of individual strains, all studied Vero- and MDCK-isolated viruses bound to Neu5Ac α2-6Galβ1-4GlcNAc (6'SLN) essentially stronger than to Neu5Acα2-6Galβ1-4Glc (6'SL). Such receptor-binding specificity has been typical for earlier isolated H1N1 human influenza viruses, but there is a new property of H3N2 viruses that has been circulating in the human population during recent years. Propagation of human viruses in chicken embryonated eggs resulted in a selection of variants with amino acid substitutions near the HA receptor-binding site, namely Gln226Arg or Asp225Gly for H1N1 viruses and Leu194Ile and Arg220Ser for H3N2 viruses. These HA mutations disturb the observed strict 6'SLN specificity of recent human influenza viruses

  17. Optimization of incubation temperature in embryonated chicken eggs inoculated with H9N2 vaccinal subtype of avian influenza virus

    Directory of Open Access Journals (Sweden)

    Saeed Sedigh-Eteghad

    2013-09-01

    Full Text Available There are little information about growth properties of low pathogenic (LP avian influenza virus (AIV in embryonated chicken eggs (ECEs at different incubation temperatures. Knowledge of this information increases the quantity and quality of antigen in vaccine production process. For this purpose, 10-5 dilution of AIV (A/Chicken/Iran/99/H9N2 was inoculated (Intra-allantoic into 400, 11-day old specific pathogen free (SPF ECEs in the 0.1 mL per ECE rate and incubated in 32, 33, 34, 35, 36, 37.5, 38, 39 ̊C for 72 hr in 65% humidity. Early death embryos in first 24 hr were removed. Amnio-allantoic fluid was withdrawn into the measuring cylinder, and tested for hemagglutination (HA activity and egg infective dose 50 (EID50. The utilizable ECEs and amnio-allantoic fluid volume was significantly increased in 35 ̊C, (p < 0.05. Significant difference in HA and EID50 titers, were seen only in 39 ̊C group. Therefore, 35°C is an optimum temperature for incubation of inoculated ECEs.

  18. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  19. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection

    Science.gov (United States)

    Schilling, Megan A.; Katani, Robab; Memari, Sahar; Cavanaugh, Meredith; Buza, Joram; Radzio-Basu, Jessica; Mpenda, Fulgence N.; Deist, Melissa S.; Lamont, Susan J.; Kapur, Vivek

    2018-01-01

    Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens. PMID:29535762

  20. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection

    Directory of Open Access Journals (Sweden)

    Megan A. Schilling

    2018-02-01

    Full Text Available Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2 and Leghorn (Ghs6 and Ghs13 sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens.

  1. ALTERATIONS IN THE DEVELOPING TESTIS TRANSCRIPTOME FOLLOWING EMBRYONIC VINCLOZOLIN EXPOSURE

    OpenAIRE

    Clement, Tracy M.; Savenkova, Marina I.; Settles, Matthew; Anway, Matthew D.; Skinner, Michael K.

    2010-01-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic day 13, 14 and 16. A total of 576 di...

  2. Survival and development of chicken ascarid eggs in temperate pastures

    DEFF Research Database (Denmark)

    Thapa, Sundar; Thamsborg, Stig Milan; Meyling, Nicolai Vitt

    2017-01-01

    Eggs of chicken ascarids (Ascaridia galli and Heterakis spp.) are believed to be hardy and survive for long periods. However, this has not been evaluated quantitatively and our study therefore aimed to determine development and recovery of chicken ascarid eggs after burying in pasture soil...

  3. Genetic and nutrition development of indigenous chicken in Africa

    DEFF Research Database (Denmark)

    Khobondo, J O; Muasya, T K; Miyumo, S

    2015-01-01

    This review gives insights into genetic and feeding regime development for indigenous chicken genetic resources. We highlight and combine confirming evidence of genetic diversity and variability using morphological and molecular techniques. We further discuss previous past and current genetic...... requirement for indigenous chicken and report nutritive contents of various local feedstuffs under various production systems. Various conservation strategies for sustainable utilization are hereby reviewed...

  4. Identification of Histone Deacetylase 2 as a Functional Gene for Skeletal Muscle Development in Chickens

    Directory of Open Access Journals (Sweden)

    Md. Shahjahan

    2016-04-01

    Full Text Available A previous genome-wide association study (GWAS exposed histone deacetylase 2 (HDAC2 as a possible candidate gene for breast muscle weight in chickens. The present research has examined the possible role of HDAC2 in skeletal muscle development in chickens. Gene expression was measured by quantitative polymerase chain reaction in breast and thigh muscles during both embryonic (four ages and post-hatch (five ages development and in cultures of primary myoblasts during both proliferation and differentiation. The expression of HDAC2 increased significantly across embryonic days (ED in breast (ED 14, 16, 18, and 21 and thigh (ED 14 and 18, and ED 14 and 21 muscles suggesting that it possibly plays a role in myoblast hyperplasia in both breast and thigh muscles. Transcript abundance of HDAC2 identified significantly higher in fast growing muscle than slow growing in chickens at d 90 of age. Expression of HDAC2 during myoblast proliferation in vitro declined between 24 h and 48 h when expression of the marker gene paired box 7 (PAX7 increased and cell numbers increased throughout 72 h of culture. During induced differentiation of myoblasts to myotubes, the abundance of HDAC2 and the marker gene myogenic differentiation 1 (MYOD1, both increased significantly. Taken together, it is suggested that HDAC2 is most likely involved in a suppressive fashion in myoblast proliferation and may play a positive role in myoblast differentiation. The present results confirm the suggestion that HDAC2 is a functional gene for pre-hatch and post-hatch (fast growing muscle development of chicken skeletal muscle.

  5. Hair cell regeneration or the expression of related factors that regulate the fate specification of supporting cells in the cochlear ducts of embryonic and posthatch chickens.

    Science.gov (United States)

    Jiang, Lingling; Jin, Ran; Xu, Jincao; Ji, Yubin; Zhang, Meiguang; Zhang, Xuebo; Zhang, Xinwen; Han, Zhongming; Zeng, Shaoju

    2016-02-01

    Hair cells in posthatch chickens regenerate spontaneously through mitosis or the transdifferentiation of supporting cells in response to antibiotic injury. However, how embryonic chicken cochleae respond to antibiotic treatment remains unknown. This study is the first to indicate that unlike hair cells in posthatch chickens, the auditory epithelium was free from antibiotic injury (25-250 mg gentamicin/kg) in embryonic chickens, although FITC-conjugated gentamicin actually reached embryonic hair cells. Next, we examined and counted the cells and performed labeling for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) (triple or double labeling) in the injured cochlea ducts after gentamicin treatment at 2 h (h), 15 h, 24 h, 2 days (d), 3 d and 7 d after BrdU treatment in posthatch chickens. Our results indicated that following gentamicin administration, proliferating cells (BrdU+) were labeled for Atoh1/Math1 in the damaged areas 3d after gentamicin administration, whereas hair cells (PV+) renewed through mitosis (BrdU+) or direct transdifferentiation (BrdU-) were evident only after 5 d of gentamicin administration. In addition, Sox2 expression was up-regulated in triggered supporting cells at an early stage of regeneration, but stopped at the advent of mature hair cells. Our study also indicated that p27(kip1) was expressed in both hair cells and supporting cells but was down-regulated in a subgroup of the supporting cells that gave rise to hair cells. These data and the obtained dynamic changes of the cells labeled for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) are useful for understanding supporting cell behaviors and their fate specification during hair cell regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Are there factors preventing cancer development during embryonic life

    International Nuclear Information System (INIS)

    Einhorn, L.

    1983-01-01

    On the basis of the following literature observations, a hypothesis is advanced that the development of cancer is actively inhibited during embryonic life. Although the processes of cell differentiation and proliferation are - without comparison - most pronounced during embryonic life, cancer is rarely found in the newborn and is seldom a cause of neonatal death or spontaneous abortion. Attempts to induce cancer in early-stage animal embryos by irradiation or by transplacental chemical carcinogenesis have been unsuccessful, even when exposed animals have been observed throughout their lifetime. After the period of major organogenesis, however, the embryos become susceptible to carcinogenesis. In humans, the most common embryonic tumors arise in tissues which have an unusually late ongoing development and are still partly immature at or shortly before birth. For many human embryonic tumors the survival rates are higher, and spontaneous regression more frequent, in younger children, i.e. prognosis is age-dependent. Thus, although cancer generally appears in tissues capable of proliferation and differentiation, induction of malignancy in the developmentally most active tissues seems to be beset with difficulty. One possible explanation for this paradox could be that cancer is controlled by the regulators influencing development, regulators that are most active during embryonic life. (Auth.)

  7. PTBP1 is required for embryonic development before gastrulation.

    Science.gov (United States)

    Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A Francis; Solimena, Michele

    2011-02-17

    Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.

  8. Overexpression of aromatase alone is sufficient for ovarian development in genetically male chicken embryos.

    Directory of Open Access Journals (Sweden)

    Luke S Lambeth

    Full Text Available Estrogens play a key role in sexual differentiation of both the gonads and external traits in birds. The production of estrogen occurs via a well-characterised steroidogenic pathway, which is a multi-step process involving several enzymes, including cytochrome P450 aromatase. In chicken embryos, the aromatase gene (CYP19A1 is expressed female-specifically from the time of gonadal sex differentiation. To further explore the role of aromatase in sex determination, we ectopically delivered this enzyme using the retroviral vector RCASBP in ovo. Aromatase overexpression in male chicken embryos induced gonadal sex-reversal characterised by an enlargement of the left gonad and development of ovarian structures such as a thickened outer cortex and medulla with lacunae. In addition, the expression of key male gonad developmental genes (DMRT1, SOX9 and Anti-Müllerian hormone (AMH was suppressed, and the distribution of germ cells in sex-reversed males followed the female pattern. The detection of SCP3 protein in late stage sex-reversed male embryonic gonads indicated that these genetically male germ cells had entered meiosis, a process that normally only occurs in female embryonic germ cells. This work shows for the first time that the addition of aromatase into a developing male embryo is sufficient to direct ovarian development, suggesting that male gonads have the complete capacity to develop as ovaries if provided with aromatase.

  9. Ovarian activity and early embryonic development in the rusty bat ...

    African Journals Online (AJOL)

    The reproductive pattern of the female rusty bat, Pipistrellus rusticus, was investigated by means of a histological examination of the ovarian follicles as well as early embryonic development. Bats were collected from two localities in Limpopo Province. Female rusty bats are seasonal monestrous breeders, initiating ...

  10. Ultrastructure, development, and homology of insect embryonic cuticles

    Czech Academy of Sciences Publication Activity Database

    Konopová, Barbora; Zrzavý, Jan

    2005-01-01

    Roč. 264, č. 3 (2005), s. 339-362 ISSN 0362-2525 R&D Projects: GA ČR(CZ) GD206/03/H034 Institutional research plan: CEZ:AV0Z50070508 Keywords : embryonic development * cuticle * metamorphosis Subject RIV: EA - Cell Biology Impact factor: 1.421, year: 2005

  11. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage.

    Science.gov (United States)

    Balic, Adam; Garcia-Morales, Carla; Vervelde, Lonneke; Gilhooley, Hazel; Sherman, Adrian; Garceau, Valerie; Gutowska, Maria W; Burt, David W; Kaiser, Pete; Hume, David A; Sang, Helen M

    2014-08-01

    We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens. © 2014. Published by The Company of Biologists Ltd.

  12. FA composition of heart and skeletal muscle during embryonic development of the king penguin.

    Science.gov (United States)

    Decrock, Frederic; Groscolas, Rene; Speake, Brian K

    2002-04-01

    Since the yolk lipids of the king penguin (Aptenodytes patagonicus) naturally contain the highest concentrations of DHA and EPA yet reported for the eggs of any avian species, the effects of this (n-3)-rich yolk on the FA profiles of the embryonic heart and skeletal muscle were investigated. The concentrations (mg/g wet tissue) of phospholipid (PL) in the developing heart and leg muscle of the penguin doubled between days 27 and 55 from the beginning of egg incubation (i.e., from the halfway stage of embryonic development to 2 d posthatch), whereas no net increase occurred in pectoral muscle. During this period, the concentration of TAG in heart decreased by half but increased two- and sixfold in leg and pectoral muscle, respectively. The most notable change in cholesteryl ester concentration occurred in pectoral muscle, increasing ninefold between days 27 and 55. Arachidonic acid (ARA) was the major polyunsaturate in PL of the penguin's heart, where it formed about 20% (w/w) of FA at day 55. At the equivalent developmental stage, the heart PL of the chicken contained a 1.3-fold greater proportion of ARA, contained a fifth less DHA, and was almost devoid of EPA, whereas the latter FA was a significant component (7% of FA) of penguin heart PL. Similarly, in PL of leg and pectoral muscle, the chicken displayed about 1.4-fold more ARA, up to 50% less DHA, and far less EPA in comparison with the penguin. Thus, although ARA-rich PL profiles are achieved in the heart and muscle of the penguin embryo, these profiles are significantly affected by the high n-3 content of the yolk.

  13. The spatiotemporal development of innervation in spinal ligaments of chickens.

    OpenAIRE

    Jiang, H; Moreau, M; Greidanus, N; Bilo, J; Russell, G; Raso, J; Bagnall, K

    1996-01-01

    The development of the innervation of both central and lateral (intertransverse) spinal ligaments was investigated in chickens between the time of hatching and 13 wk of age. A total of 36 White Leghorn chickens in 4 groups of 9 at ages 0, 2, 7, and 13 wk were used. The spinal ligaments were dissected, serially sectioned and labelled with a monoclonal antibody against neurofilament protein and observed using either conventional fluorescence or confocal microscopy. Only a few nerve elements wer...

  14. World chicken meat market – its development and current status

    Directory of Open Access Journals (Sweden)

    Anna Vladimirovna Belova

    2012-01-01

    Full Text Available The global meat market and primarily the chicken meat market represents a very dynamically developing area. The objective of the present article is the analysis of the chicken meat market in the world in order to identify the basic development trends associated with the development of production of and trade in chicken meat, and also in order to identify the individual entities controlling the global chicken meat market. In methodological terms, the article analyzes the development of production of, consumption of and trade (export and import in chicken meat in the years 1961–2009. The main sources of data necessary for the processing of the individual analyses are the FAOSTAT and UN COMTRADE databases. The results of the conducted analysis show the following findings. World production of poultry meat increased from 7.5 million tons to more than 86 million tons. The global market reacted in a flexible manner, in which there was an increase in volumes of executed trade from 271 thousand tons/year in the year 1961 to more than 10.7 million tons/year in the year 2010. Further, the value of world trade in chicken meat within the analyzed period increased from approximately USD 169 million to approximately USD 16 billion. If we analyze the global chicken meat market, it may be stated that it is very concentrated. The analysis of the global market further shows that Brazil, the USA and China represent, in terms of global production, consumption and trade, the main driving force on the chicken meat market. These three countries have a share in global production of approximately 46%, their share in global consumption ranges at a level of over 40%. The share of these countries in global export ranges at a level exceeding 50%.

  15. Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves.

    Directory of Open Access Journals (Sweden)

    Yin Liu

    Full Text Available Nitric oxide synthase-3 (NOS3 has recently been shown to promote endothelial-to-mesenchymal transition (EndMT in the developing atrioventricular (AV canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT and NOS3(-/- mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3(-/- compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3(-/- mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1(+ cells in the AV cushion were decreased in NOS3(-/- compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ, bone morphogenetic protein (BMP2 and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3(-/- compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency.

  16. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure.

    Science.gov (United States)

    Clement, Tracy M; Savenkova, Marina I; Settles, Matthew; Anway, Matthew D; Skinner, Michael K

    2010-11-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic days 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Factors that regulate embryonic gustatory development

    Directory of Open Access Journals (Sweden)

    Krimm Robin F

    2007-09-01

    Full Text Available Abstract Numerous molecular factors orchestrate the development of the peripheral taste system. The unique anatomy/function of the taste system makes this system ideal for understanding the mechanisms by which these factors function; yet the taste system is underutilized for this role. This review focuses on some of the many factors that are known to regulate gustatory development, and discusses a few topics where more work is needed. Some attention is given to factors that regulate epibranchial placode formation, since gustatory neurons are thought to be primarily derived from this region. Epibranchial placodes appear to arise from a pan-placodal region and a number of regulatory factors control the differentiation of individual placodes. Gustatory neuron differentiation is regulated by a series of transcription factors and perhaps bone morphongenic proteins (BMP. As neurons differentiate, they also proliferate such that their numbers exceed those in the adult, and this is followed by developmental death. Some of these cell-cycling events are regulated by neurotrophins. After gustatory neurons become post-mitotic, axon outgrowth occurs. Axons are guided by multiple chemoattractive and chemorepulsive factors, including semaphorins, to the tongue epithelium. Brain derived neurotrophic factor (BDNF, functions as a targeting factor in the final stages of axon guidance and is required for gustatory axons to find and innervate taste epithelium. Numerous factors are involved in the development of gustatory papillae including Sox-2, Sonic hedge hog and Wnt-β-catenin signaling. It is likely that just as many factors regulate taste bud differentiation; however, these factors have not yet been identified. Studies examining the molecular factors that regulate terminal field formation in the nucleus of the solitary tract are also lacking. However, it is possible that some of the factors that regulate geniculate ganglion development, outgrowth, guidance and

  18. Cadmium affects retinogenesis during zebrafish embryonic development

    International Nuclear Information System (INIS)

    Hen Chow, Elly Suk; Yu Hui, Michelle Nga; Cheng, Chi Wa; Cheng, Shuk Han

    2009-01-01

    Ocular malformations are commonly observed in embryos of aquatic species after exposure to toxicants. Using zebrafish embryos as the model organism, we showed that cadmium exposure from sphere stage (4 hpf) to end of segmentation stage (24 hpf) induced microphthalmia in cadmium-treated embryos. Embryos with eye defects were then assessed for visual abilities. Cadmium-exposed embryos were behaviorally blind, showing hyperpigmentation and loss of camouflage response to light. We investigated the cellular basis of the formation of the small eyes phenotype and the induction of blindness by studying retina development and retinotectal projections. Retinal progenitors were found in cadmium-treated embryos albeit in smaller numbers. The number of retinal ganglion cells (RGC), the first class of retinal cells to differentiate during retinogenesis, was reduced, while photoreceptor cells, the last batch of retinal neurons to differentiate, were absent. Cadmium also affected the propagation of neurons in neurogenic waves. The neurons remained in the ventronasal area and failed to spread across the retina. Drastically reduced RGC axons and disrupted optic stalk showed that the optic nerves did not extend from the retina beyond the chiasm into the tectum. Our data suggested that impairment in neuronal differentiation of the retina, disruption in RGC axon formation and absence of cone photoreceptors were the causes of microphthalmia and visual impairment in cadmium-treated embryos

  19. Role of adiponectin in delayed embryonic development of the short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Anuradha; Krishna, Amitabh

    2014-12-01

    The aim of this study was to evaluate the role of adiponectin in the delayed embryonic development of Cynopterus sphinx. Adiponectin receptor (ADIPOR1) abundance was first observed to be lower during the delayed versus non-delayed periods of utero-embryonic unit development. The effects of adiponectin treatment on embryonic development were then evaluated during the period of delayed development. Exogenous treatment increased the in vivo rate of embryonic development, as indicated by an increase in weight, ADIPOR1 levels in the utero-embryonic unit, and histological changes in embryonic development. Treatment with adiponectin during embryonic diapause showed a significant increase in circulating progesterone and estradiol concentrations, and in production of their receptors in the utero-embryonic unit. The adiponectin-induced increase in estradiol synthesis was correlated with increased cell survival (BCL2 protein levels) and cell proliferation (PCNA protein levels) in the utero-embryonic unit, suggesting an indirect effect of adiponectin via estradiol synthesis by the ovary. An in vitro study further confirmed the in vivo findings that adiponectin treatment increases PCNA levels together with increased uptake of glucose by increasing the abundance of glucose transporter 8 (GLUT8) in the utero-embryonic unit. The in vitro study also revealed that adiponectin, together with estradiol but not alone, significantly increased ADIPOR1 protein levels. Thus, adiponectin works in concert with estradiol to increase glucose transport to the utero-embryonic unit and promote cell proliferation, which together accelerate embryonic development. © 2014 Wiley Periodicals, Inc.

  20. Identification of high- and low-affinity NGF receptors during development of the chicken central nervous system

    International Nuclear Information System (INIS)

    Escandon, E.; Chao, M.V.

    1990-01-01

    In order to study regulation of the nerve growth factor (NGF) receptor during embryogenesis in chick brain, we have used affinity crosslinking of tissues with 125 I-NGF. NGF interacts with high- and low-affinity receptors; high-affinity receptors are required for the majority of NGF's actions. Most measurements of receptor levels do not distinguish between high- and low-affinity forms of the receptor. We have used the lipophilic crosslinking agent HSAB to identify the high-affinity, functional receptor during development of the chicken central nervous system. A peak of expression during Embryonic Days 5-10 was detected in all regions of the chicken central nervous system, but, shortly after birth, only the cerebellar region displays significant levels of NGF receptor protein. The time course of expression confirms the dramatic regulation of the NGF receptor gene during defined embryonic periods. The detection of high-affinity NGF receptors in brain and neural retina provides strong evidence that NGF is involved in essential ontogenetic events in the development of the chicken central nervous system

  1. Mouse oocytes nucleoli rescue embryonic development of porcine enucleolated oocytes.

    Science.gov (United States)

    Morovic, Martin; Strejcek, Frantisek; Nakagawa, Shoma; Deshmukh, Rahul S; Murin, Matej; Benc, Michal; Fulka, Helena; Kyogoku, Hirohisa; Pendovski, Lazo; Fulka, Josef; Laurincik, Jozef

    2017-12-01

    It is well known that nucleoli of fully grown mammalian oocytes are indispensable for embryonic development. Therefore, the embryos originated from previously enucleolated (ENL) oocytes undergo only one or two cleavages and then their development ceases. In our study the interspecies (mouse/pig) nucleolus transferred embryos (NuTE) were produced and their embryonic development was analyzed by autoradiography, transmission electron microscopy (TEM) and immunofluorescence (C23 and upstream binding factor (UBF)). Our results show that the re-injection of isolated oocyte nucleoli, either from the pig (P + P) or mouse (P + M), into previously enucleolated and subsequently matured porcine oocytes rescues their development after parthenogenetic activation and some of these develop up to the blastocyst stage (P + P, 11.8%; P + M, 13.5%). In nucleolus re-injected 8-cell and blastocyst stage embryos the number of nucleoli labeled with C23 in P + P and P + M groups was lower than in control (non-manipulated) group. UBF was localized in small foci within the nucleoli of blastocysts in control and P + P embryos, however, in P + M embryos the labeling was evenly distributed in the nucleoplasm. The TEM and autoradiographic evaluations showed the formation of functional nucleoli and de novo rRNA synthesis at the 8-cell stage in both, control and P + P group. In the P + M group the formation of comparable nucleoli was delayed. In conclusion, our results indicate that the mouse nucleolus can rescue embryonic development of enucleolated porcine oocytes, but the localization of selected nucleolar proteins, the timing of transcription activation and the formation of the functional nucleoli in NuTE compared with control group show evident aberrations.

  2. The 'ventral organs' of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development.

    Science.gov (United States)

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior

  3. The 'ventral organs' of Pycnogonida (Arthropoda are neurogenic niches of late embryonic and post-embryonic nervous system development.

    Directory of Open Access Journals (Sweden)

    Georg Brenneis

    Full Text Available Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i immunolabeling, (ii histology and (iii scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida, the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two

  4. Can physics help to explain embryonic development? An overview.

    Science.gov (United States)

    Fleury, V

    2013-10-01

    Recent technical advances including digital imaging and particle image velocimetry can be used to extract the full range of embryonic movements that constitute the instantaneous 'morphogenetic fields' of a developing animal. The final shape of the animal results from the sum over time (integral) of the movements that make up the velocity fields of all the tissue constituents. In vivo microscopy can be used to capture the details of vertebrate development at the earliest embryonic stages. The movements thus observed can be quantitatively compared to physical models that provide velocity fields based on simple hypotheses about the nature of living matter (a visco-elastic gel). This approach has cast new light on the interpretation of embryonic movement, folding, and organisation. It has established that several major discontinuities in development are simple physical changes in boundary conditions. In other words, with no change in biology, the physical consequences of collisions between folds largely explain the morphogenesis of the major structures (such as the head). Other discontinuities result from changes in physical conditions, such as bifurcations (changes in physical behaviour beyond specific yield points). For instance, beyond a certain level of stress, a tissue folds, without any new gene being involved. An understanding of the physical features of movement provides insights into the levers that drive evolution; the origin of animals is seen more clearly when viewed under the light of the fundamental physical laws (Newton's principle, action-reaction law, changes in symmetry breaking scale). This article describes the genesis of a vertebrate embryo from the shapeless stage (round mass of tissue) to the development of a small, elongated, bilaterally symmetric structure containing vertebral precursors, hip and shoulder enlarges, and a head. Copyright © 2013. Published by Elsevier Masson SAS.

  5. Retinoic acid synthesis and functions in early embryonic development

    Directory of Open Access Journals (Sweden)

    Kam Richard Kin Ting

    2012-03-01

    Full Text Available Abstract Retinoic acid (RA is a morphogen derived from retinol (vitamin A that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR and retinoic acid X receptor (RXR which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.

  6. Gas exchange and energy expenditure in chicken embryos

    DEFF Research Database (Denmark)

    Chwalibog, André; Tauson, Anne-Helene; Ali, Abdalla

    ) in this phase may be a crucial parameter predicting metabolic rate and consquently, growth performance of post-hatched chickens. The aim of this investigation was to determine EE in embryos of slow and fast growing lines of chickens. Taking advantage of the indirect calorimetry technique it was also possible....... It is remarkable that the differences between chickens from fast and slow growing lines were already manifested furing their embryonic development....

  7. Embryonic and larval development of Brycon amazonicus (SPIX & AGASSIZ, 1829

    Directory of Open Access Journals (Sweden)

    A. C. S. Sampaio Nakauth

    Full Text Available Abstract The objective of this study was to describe the embryonic and larval development of Brycon amazonicus, featuring the main events up to 50 hours after fertilization (AF. The material was provided by the Aquaculture Training, Technology and Production Center, Presidente Figueiredo (AM. The characterization was based on stereomicroscopic examination of the morphology of eggs, embryos and larvae and comparison with the literature. Matrinxã eggs are free, transparent, and spherical, with a perivitelline space of 0.56 ± 0.3 mm. The successive divisions give rise to cells with 64 blastomeres during the first hour AF. The gastrula stage, beginning 02 h 40 min AF, was characterized by progressive regression cells and the formation of the embryonic axis, leading to differentiation of the head and tail 05 h 30 min AF. From 06 to 09 h AF the somites, notochord, otic and optic vesicles and otoliths were observed, in addition to heart rate and the release of the tail. The larvae hatched at 10 h 30 min AF (29.9 °C, with a total length of 3.56 ± 0.46 mm. Between 19 and 30 h AF, we observed 1 pigmentation and gut formation, 2 branchial arches, 3 pectoral fins, 4 a mouth opening and 5 teeth. Cannibalism was initiated earlier (34 h AF which was associated with rapid yolk absorption (more than 90% until 50 h AF, signaling the need for an exogenous nutritional source. The environmental conditions (especially temperature influenced the time course of some events throughout the embryonic and larval development, suggesting the need for further studies on this subject.

  8. Peculiarities of Embryonic and Post-Embryonic Development of Оesophagostomum dentatum (Nematoda, Strongylidae Larvae Cultured in Vitro

    Directory of Open Access Journals (Sweden)

    Yevstafieva V. А.

    2017-02-01

    Full Text Available Morphometric peculiarities of the development of Оesophagostomum dentatum Rudolphi, 1803 from egg to infective larva were studied under laboratory conditions at various temperatures. The determined optimum temperature for embryonic and post-embryonic development of О. dentatum larvae from domestic pig (Sus scrofa domesticus Linnaeus, 1758 is 22 °С. At this temperature, 81 % of larvae develop to the third stage (L3 on the 10th day. Temperatures of 24 °С and 20 °С are less favorable for the development of the nematode, at those temperatures only 67 and 63 % of larvae, respectively, reached infective stage by the 10th day of cultivation. Embryonic development of О. dentatum eggs is characterized by their lengthening (by 8.87-9.50 %, р < 0.01 and widening (by 6.77-9.35 %, р < 0.05-0.01, and post-embryonic larval development is associated with lengthening (by 4.59-17.33 %, р < 0.01-0.001.

  9. Emergence of differentially regulated pathways associated with the development of regional specificity in chicken skin.

    Science.gov (United States)

    Chang, Kai-Wei; Huang, Nancy A; Liu, I-Hsuan; Wang, Yi-Hui; Wu, Ping; Tseng, Yen-Tzu; Hughes, Michael W; Jiang, Ting Xin; Tsai, Mong-Hsun; Chen, Chien-Yu; Oyang, Yen-Jen; Lin, En-Chung; Chuong, Cheng-Ming; Lin, Shau-Ping

    2015-01-23

    Regional specificity allows different skin regions to exhibit different characteristics, enabling complementary functions to make effective use of the integumentary surface. Chickens exhibit a high degree of regional specificity in the skin and can serve as a good model for when and how these regional differences begin to emerge. We used developing feather and scale regions in embryonic chickens as a model to gauge the differences in their molecular pathways. We employed cosine similarity analysis to identify the differentially regulated and co-regulated genes. We applied low cell techniques for expression validation and chromatin immunoprecipitation (ChIP)-based enhancer identification to overcome limited cell availabilities from embryonic chicken skin. We identified a specific set of genes demonstrating a high correlation as being differentially expressed during feather and scale development and maturation. Some members of the WNT, TGF-beta/BMP, and Notch family known to be involved in feathering skin differentiation were found to be differentially regulated. Interestingly, we also found genes along calcium channel pathways that are differentially regulated. From the analysis of differentially regulated pathways, we used calcium signaling pathways as an example for further verification. Some voltage-gated calcium channel subunits, particularly CACNA1D, are expressed spatio-temporally in the skin epithelium. These calcium signaling pathway members may be involved in developmental decisions, morphogenesis, or epithelial maturation. We further characterized enhancers associated with histone modifications, including H3K4me1, H3K27ac, and H3K27me3, near calcium channel-related genes and identified signature intensive hotspots that may be correlated with certain voltage-gated calcium channel genes. We demonstrated the applicability of cosine similarity analysis for identifying novel regulatory pathways that are differentially regulated during development. Our study

  10. Dual effects of fluoxetine on mouse early embryonic development

    International Nuclear Information System (INIS)

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-01-01

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K + channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from CaMKII activation

  11. Dual effects of fluoxetine on mouse early embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Woon [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723 (Korea, Republic of); Choe, Changyong [National Institute of Animal Science, RDA, Cheonan 330-801 (Korea, Republic of); Kim, Eun-Jin [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Lee, Jae-Ik [Department of Obstetrics and Gynecology, Gyeongsang National University Hospital, Jinju 660-702 (Korea, Republic of); Yoon, Sook-Young [Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081 (Korea, Republic of); Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Kang, Dawon, E-mail: dawon@gnu.ac.kr [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of)

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  12. Gas-permeable ethylene bags for the small scale cultivation of highly pathogenic avian influenza H5N1 and other viruses in embryonated chicken eggs

    Directory of Open Access Journals (Sweden)

    McCurdy Kimberly S

    2010-01-01

    Full Text Available Abstract Background Embryonated chicken eggs (ECE are sometimes used for the primary isolation or passage of influenza viruses, other viruses, and certain bacteria. For small-scale experiments with pathogens that must be studied in biosafety level three (BSL3 facilities, inoculated ECE are sometimes manipulated and maintained in small egg incubators within a biosafety cabinet (BSC. To simplify the clean up and decontamination of an egg incubator in case of egg breakage, we explored whether ethylene breather bags could be used to encase ECE inoculated with pathogens. This concept was tested by determining embryo survival and examining virus yields in bagged ECE. Results Virus yields acceptable for many applications were attained when influenza-, alpha-, flavi-, canine distemper-, and mousepox viruses were propagated in ECE sealed within ethylene breather bags. Conclusions For many small-scale applications, ethylene breather bags can be used to encase ECE inoculated with various viruses.

  13. Specialized mouse embryonic stem cells for studying vascular development.

    Science.gov (United States)

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  14. Melatonin regulates delayed embryonic development in the short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Banerjee, Arnab; Meenakumari, K J; Udin, S; Krishna, A

    2009-12-01

    The aim of the present study was to evaluate the seasonal variation in serum melatonin levels and their relationship to the changes in the serum progesterone level, ovarian steroidogenesis, and embryonic development during two successive pregnancies of Cynopterus sphinx. Circulating melatonin concentrations showed two peaks; one coincided with the period of low progesterone synthesis and delayed embryonic development, whereas the second peak coincided with regressing corpus luteum. This finding suggests that increased serum melatonin level during November-December may be responsible for delayed embryonic development by suppressing progesterone synthesis. The study showed increased melatonin receptors (MTNR1A and MTNR1B) in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed that a high dose of melatonin suppressed progesterone synthesis, whereas a lower dose of melatonin increased progesterone synthesis by the ovary. The effects of melatonin on ovarian steroidogenesis are mediated through changes in the expression of peripheral-type benzodiazepine receptor, P450 side chain cleavage enzyme, and LH receptor proteins. This study further showed a suppressive impact of melatonin on the progesterone receptor (PGR) in the utero-embryonic unit; this effect might contribute to delayed embryonic development in C. sphinx. The results of the present study thus suggest that a high circulating melatonin level has a dual contribution in retarding embryonic development in C. sphinx by impairing progesterone synthesis as well as by inhibiting progesterone action by reducing expression of PGR in the utero-embryonic unit.

  15. Regulation of bone morphogenetic proteins in early embryonic development

    Science.gov (United States)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  16. CRISPR/Cas9-Mediated Deletion of C1EIS Inhibits Chicken Embryonic Stem Cell Differentiation Into Male Germ Cells (Gallus gallus).

    Science.gov (United States)

    Zuo, Qisheng; Jin, Kai; Wang, Yingjie; Song, Jiuzhou; Zhang, Yani; Li, Bichun

    2017-08-01

    We previously found that C1EIS is preferentially expressed in Chicken spermatogonial stem cells (SSCs) by RNA sequencing (RNA-seq), so our current study focused on C1EIS's role in Chicken embryonic stem cells (ESCs) differentiation into male germ cells. We constructed a CRISPR/Cas9 vector targeting C1EIS. T7 endonuclease I (T7EI) digestion method and sequencing of TA cloning were used to detect the knock-out efficiency of the Single guide RNA (sgRNA) after the cas9/gRNA vector transfected into D fibroblasts 1(DF-1), ESCs, and Chicken embryos. The results showed that CRISPR/Cas9 gene knockout efficiency is about 40%. Differentiation of the targeted ESCs into SSCs was inhibited at the embryoid body stage due to C1EIS deficiency. Immunofluorescent staining revealed that the mutagenized ESCs (RA (Retinoic Acid) with C1EIS Knock out) expressed lower levels of integrin α6 and integrin β1 compared to wild type cells. Quantitative real-time PCR (QRT-PCR) revealed Oct4 and Sox2 expression significantly increased, contrarily integrin β1 and Stra8 expression significantly decreased than RA induced group and RA with C1EIS Overexpression. During retinoic acid-induced differentiation, knockout of C1EIS in ESCs inhibited formation of SSC-like cells, suggesting C1EIS plays a vital role in promoting differentiation of avian ESCs to SSCs by regulating expression of multiple pluripotency-related genes. J. Cell. Biochem. 118: 2380-2386, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Immunolocalization of a Histidine-Rich Epidermal Differentiation Protein in the Chicken Supports the Hypothesis of an Evolutionary Developmental Link between the Embryonic Subperiderm and Feather Barbs and Barbules.

    Science.gov (United States)

    Alibardi, Lorenzo; Holthaus, Karin Brigit; Sukseree, Supawadee; Hermann, Marcela; Tschachler, Erwin; Eckhart, Leopold

    2016-01-01

    The morphogenesis of feathers is a complex process that depends on a tight spatiotemporal regulation of gene expression and assembly of the protein components of mature feathers. Recent comparative genomics and gene transcription studies have indicated that genes within the epidermal differentiation complex (EDC) encode numerous structural proteins of cornifying skin cells in amniotes including birds. Here, we determined the localization of one of these proteins, termed EDMTFH (Epidermal Differentiation Protein starting with a MTF motif and rich in Histidine), which belongs to a group of EDC-encoded proteins rich in aromatic amino acid residues. We raised an antibody against an EDMTFH-specific epitope and performed immunohistochemical investigations by light microscopy and immunogold labeling by electron microscopy of chicken embryos at days 14-18 of development. EDMTFH was specifically present in the subperiderm, a transient layer of the embryonic epidermis, and in barbs and barbules of feathers. In the latter, it partially localized to bundles of so-called feather beta-keratins (corneous beta-proteins, CBPs). Cells of the embryonic periderm, the epidermis proper, and the feather sheath were immunonegative for EDMTFH. The results of this study indicate that EDMTFH may contribute to the unique mechanical properties of feathers and define EDMTFH as a common marker of the subperiderm and the feather barbules. This expression pattern of EDMTFH resembles that of epidermal differentiation cysteine-rich protein (EDCRP) and feather CBPs and is in accordance with the hypothesis that a major part of the cyclically regenerating feather follicle is topologically, developmentally and evolutionarily related to the embryonic subperiderm.

  18. Immunolocalization of a Histidine-Rich Epidermal Differentiation Protein in the Chicken Supports the Hypothesis of an Evolutionary Developmental Link between the Embryonic Subperiderm and Feather Barbs and Barbules.

    Directory of Open Access Journals (Sweden)

    Lorenzo Alibardi

    Full Text Available The morphogenesis of feathers is a complex process that depends on a tight spatiotemporal regulation of gene expression and assembly of the protein components of mature feathers. Recent comparative genomics and gene transcription studies have indicated that genes within the epidermal differentiation complex (EDC encode numerous structural proteins of cornifying skin cells in amniotes including birds. Here, we determined the localization of one of these proteins, termed EDMTFH (Epidermal Differentiation Protein starting with a MTF motif and rich in Histidine, which belongs to a group of EDC-encoded proteins rich in aromatic amino acid residues. We raised an antibody against an EDMTFH-specific epitope and performed immunohistochemical investigations by light microscopy and immunogold labeling by electron microscopy of chicken embryos at days 14-18 of development. EDMTFH was specifically present in the subperiderm, a transient layer of the embryonic epidermis, and in barbs and barbules of feathers. In the latter, it partially localized to bundles of so-called feather beta-keratins (corneous beta-proteins, CBPs. Cells of the embryonic periderm, the epidermis proper, and the feather sheath were immunonegative for EDMTFH. The results of this study indicate that EDMTFH may contribute to the unique mechanical properties of feathers and define EDMTFH as a common marker of the subperiderm and the feather barbules. This expression pattern of EDMTFH resembles that of epidermal differentiation cysteine-rich protein (EDCRP and feather CBPs and is in accordance with the hypothesis that a major part of the cyclically regenerating feather follicle is topologically, developmentally and evolutionarily related to the embryonic subperiderm.

  19. Gluconeogenesis, non-essential amino acid synthesis and substrate partitioning in chicken embryos during later development.

    Science.gov (United States)

    Hu, Q; Agarwal, U; Bequette, B J

    2017-02-01

    We aimed to quantify the rate of gluconeogenesis (GNG), non-essential amino-acid (NEAA) synthesis, and substrate partitioning to the Krebs cycle in embryonic (e) day e14 and e19 chicken embryos. An in ovo continuous tracer infusion approach was employed to test the hypotheses that GNG and NEAA synthesis in developing chicken embryo increases from e14 to e19. [ 13 C 6 ]Glucose or [ 13 C 3 ]glycerol was continuously infused (8 h) into the chorio-allantoic compartment of eggs on e14 and e19. Glucose entry rate, Cori cycling, and GNG were higher (P < 0.05) in e19 compared to e14 embryos, presumably to support higher glycogen deposition in liver and muscle. Whereas de novo synthesis of alanine, aspartate, and glutamate via glycolysis and the Krebs cycle was higher (P < 0.01) in e14 embryos, synthesis of these NEAA from glycerol was higher (P < 0.05) in e19 compared to e14 embryos. These patterns of glucose and glycerol utilization suggest a metabolic shift to conserve glucose for glycogen synthesis and an increased utilization of yolk glycerol (from triacylglyceride) after e14. Although the contribution of glycerol to GNG in e19 embryos was higher (P < 0.05) than that in e14 embryos, the contribution of glycerol to GNG (1.3 to 6.0%) was minor. Based on [ 13 C 6 ]glucose tracer kinetics, the activities of both pyruvate carboxylase (PC) and pyruvate dehydrogenase (PDH) in the liver were higher (P < 0.05) in e19 embryos; whereas the higher (P < 0.01) relative activity of liver PC compared to PDH in e14 embryos suggests a greater anaplerotic flux into the Krebs cycle. In summary, the in ovo continuous tracer infusion approach allowed for a measurement of chicken embryo whole body and liver metabolism over a shorter window of development. This study provided quantitative estimates of the developmental shifts in substrate utilization, GNG, and NEAA synthesis by chicken embryos, as well as qualitative estimates of the activities of enzymes central to the Krebs cycle

  20. The role of the pupal determinant broad during embryonic development of a direct-developing insect

    Science.gov (United States)

    Rynerson, Melody R.; Truman, James W.; Riddiford, Lynn M.

    2010-01-01

    Metamorphosis is one of the most common, yet dramatic of life history strategies. In insects, complete metamorphosis with morphologically distinct larval stages arose from hemimetabolous ancestors that were more direct developing. Over the past century, several ideas have emerged that suggest the holometabolous pupa is developmentally homologous to the embryonic stages of the hemimetabolous ancestor. Other theories consider the pupal stage to be a modification of a hemimetabolous nymph. To address this question, we have isolated an ortholog of the pupal determinant, broad (br), from the hemimetabolous milkweed bug and examined its role during embryonic development. We show that Oncopeltus fasciatus br (Of'br) is expressed in two phases. The first occurs during germ band invagination and segmentation when Of'br is expressed ubiquitously in the embryonic tissues. The second phase of Of'br expression appears during the pronymphal phase of embryogenesis and persists through nymphal differentiation to decline just before hatching. Knock-down of Of'br transcripts results in defects that range from posterior truncations in the least-affected phenotypes to completely fragmented embryonic tissues in the most severe cases. Analysis of the patterning genes engrailed and hunchback reveal loss of segments and a failure in neural differentiation after Of'br depletion. Finally, we show that br is constitutively expressed during embyrogenesis of the ametabolous firebrat, Thermobia domestica. This suggests that br expression is prominent during embryonic development of ametabolous and hemimetabolous insects but was lost with the emergence of the completely metamorphosing insects. PMID:20127251

  1. Identification and expression analysis of zebrafish glypicans during embryonic development.

    Directory of Open Access Journals (Sweden)

    Mansi Gupta

    Full Text Available Heparan sulfate Proteoglycans (HSPG are ubiquitous molecules with indispensable functions in various biological processes. Glypicans are a family of HSPG's, characterized by a Gpi-anchor which directs them to the cell surface and/or extracellular matrix where they regulate growth factor signaling during development and disease. We report the identification and expression pattern of glypican genes from zebrafish. The zebrafish genome contains 10 glypican homologs, as opposed to six in mammals, which are highly conserved and are phylogenetically related to the mammalian genes. Some of the fish glypicans like Gpc1a, Gpc3, Gpc4, Gpc6a and Gpc6b show conserved synteny with their mammalian cognate genes. Many glypicans are expressed during the gastrulation stage, but their expression becomes more tissue specific and defined during somitogenesis stages, particularly in the developing central nervous system. Existence of multiple glypican orthologs in fish with diverse expression pattern suggests highly specialized and/or redundant function of these genes during embryonic development.

  2. Live imaging of mitosis in the developing mouse embryonic cortex.

    Science.gov (United States)

    Pilaz, Louis-Jan; Silver, Debra L

    2014-06-04

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixed brain sections. This protocol will describe in detail an approach for live imaging of mitosis in ex vivo embryonic brain slices. We will describe the critical steps for this procedure, which include: brain extraction, brain embedding, vibratome sectioning of brain slices, staining and culturing of slices, and time-lapse imaging. We will then demonstrate and describe in detail how to perform post-acquisition analysis of mitosis. We include representative results from this assay using the vital dye Syto11, transgenic mice (histone H2B-EGFP and centrin-EGFP), and in utero electroporation (mCherry-α-tubulin). We will discuss how this procedure can be best optimized and how it can be modified for study of genetic regulation of mitosis. Live imaging of mitosis in brain slices is a flexible approach to assess the impact of age, anatomy, and genetic perturbation in a controlled environment, and to generate a large amount of data with high temporal and spatial resolution. Hence this protocol will complement existing tools for analysis of neural progenitor mitosis.

  3. Maternal Embryonic Leucine Zipper Kinase (MELK: A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer

    Directory of Open Access Journals (Sweden)

    Pengfei Jiang

    2013-10-01

    Full Text Available Maternal embryonic leucine zipper kinase (MELK functions as a modulator of intracellular signaling and affects various cellular and biological processes, including cell cycle, cell proliferation, apoptosis, spliceosome assembly, gene expression, embryonic development, hematopoiesis, and oncogenesis. In these cellular processes, MELK functions by binding to numerous proteins. In general, the effects of multiple protein interactions with MELK are oncogenic in nature, and the overexpression of MELK in kinds of cancer provides some evidence that it may be involved in tumorigenic process. In this review, our current knowledge of MELK function and recent discoveries in MELK signaling pathway were discussed. The regulation of MELK in cancers and its potential as a therapeutic target were also described.

  4. Cytomegalovirus induces abnormal chondrogenesis and osteogenesis during embryonic mandibular development

    Directory of Open Access Journals (Sweden)

    Bringas Pablo

    2008-03-01

    Full Text Available Abstract Background Human clinical studies and mouse models clearly demonstrate that cytomegalovirus (CMV disrupts normal organ and tissue development. Although CMV is one of the most common causes of major birth defects in humans, little is presently known about the mechanism(s underlying CMV-induced congenital malformations. Our prior studies have demonstrated that CMV infection of first branchial arch derivatives (salivary glands and teeth induced severely abnormal phenotypes and that CMV has a particular tropism for neural crest-derived mesenchyme (NCM. Since early embryos are barely susceptible to CMV infection, and the extant evidence suggests that the differentiation program needs to be well underway for embryonic tissues to be susceptible to viral infection and viral-induced pathology, the aim of this study was to determine if first branchial arch NCM cells are susceptible to mCMV infection prior to differentiation of NCM derivatives. Results E11 mouse mandibular processes (MANs were infected with mouse CMV (mCMV for up to 16 days in vitro. mCMV infection of undifferentiated embryonic mouse MANs induced micrognathia consequent to decreased Meckel's cartilage chondrogenesis and mandibular osteogenesis. Specifically, mCMV infection resulted in aberrant stromal cellularity, a smaller, misshapen Meckel's cartilage, and mandibular bone and condylar dysmorphogenesis. Analysis of viral distribution indicates that mCMV primarily infects NCM cells and derivatives. Initial localization studies indicate that mCMV infection changed the cell-specific expression of FN, NF-κB2, RelA, RelB, and Shh and Smad7 proteins. Conclusion Our results indicate that mCMV dysregulation of key signaling pathways in primarily NCM cells and their derivatives severely disrupts mandibular morphogenesis and skeletogenesis. The pathogenesis appears to be centered around the canonical and noncanonical NF-κB pathways, and there is unusual juxtaposition of abnormal stromal

  5. Embryonic development rates of northern grasshoppers (Orthoptera: Acrididae): implications for climate change and habitat management

    Science.gov (United States)

    Temperature-dependent rates of embryonic development are a primary determinant of the life cycle of many species of grasshoppers which, in cold climates, spend two winters in the egg stage. Knowledge of embryonic developmental rates is important for an assessment of the effects of climate change and...

  6. Cadmium inhibits neurogenesis in zebrafish embryonic brain development

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Elly Suk Hen [Division of Biology, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125 (United States); Hui, Michelle Nga Yu; Lin Chunchi [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Cheng Shukhan [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)], E-mail: bhcheng@cityu.edu.hk

    2008-05-01

    Cadmium is a non-essential heavy metal found abundantly in the environment. Children of women exposed to cadmium during pregnancy display lower motor and perceptual abilities. High cadmium body burden in children is also related to impaired intelligence and lowered school achievement. However, little is known about the molecular and cellular basis of developmental neurotoxicity in the sensitive early life stages of animals. In this study, we explore neurological deficits caused by cadmium during early embryonic stages in zebrafish by examining regionalization of the neural tube, pattern formation and cell fate determination, commitment of proneural genes and induction of neurogenesis. We show that cadmium-treated embryos developed a smaller head with unclear boundaries between the brain subdivisions, particularly in the mid-hindbrain region. Embryos display normal anterior to posterior regionalization; however, the commitment of neural progenitor cells was affected by cadmium. We observe prominent reductions in the expression of several proneuronal genes including ngn1 in cell clusters, zash1a in the developing optic tectum, and zash1b in the telencephalon and tectum. Cadmium-treated embryos also have fewer differentiated neurons and glia in the facial sensory ganglia as indicated by decreased zn-12 expression. Also, a lower transcription level of neurogenic genes, ngn1 and neuroD, is observed in neurons. Our data suggest that cadmium-induced neurotoxicity can be caused by impaired neurogenesis, resulting in markedly reduced neuronal differentiation and axonogenesis.

  7. Cadmium inhibits neurogenesis in zebrafish embryonic brain development

    International Nuclear Information System (INIS)

    Chow, Elly Suk Hen; Hui, Michelle Nga Yu; Lin Chunchi; Cheng Shukhan

    2008-01-01

    Cadmium is a non-essential heavy metal found abundantly in the environment. Children of women exposed to cadmium during pregnancy display lower motor and perceptual abilities. High cadmium body burden in children is also related to impaired intelligence and lowered school achievement. However, little is known about the molecular and cellular basis of developmental neurotoxicity in the sensitive early life stages of animals. In this study, we explore neurological deficits caused by cadmium during early embryonic stages in zebrafish by examining regionalization of the neural tube, pattern formation and cell fate determination, commitment of proneural genes and induction of neurogenesis. We show that cadmium-treated embryos developed a smaller head with unclear boundaries between the brain subdivisions, particularly in the mid-hindbrain region. Embryos display normal anterior to posterior regionalization; however, the commitment of neural progenitor cells was affected by cadmium. We observe prominent reductions in the expression of several proneuronal genes including ngn1 in cell clusters, zash1a in the developing optic tectum, and zash1b in the telencephalon and tectum. Cadmium-treated embryos also have fewer differentiated neurons and glia in the facial sensory ganglia as indicated by decreased zn-12 expression. Also, a lower transcription level of neurogenic genes, ngn1 and neuroD, is observed in neurons. Our data suggest that cadmium-induced neurotoxicity can be caused by impaired neurogenesis, resulting in markedly reduced neuronal differentiation and axonogenesis

  8. Simultaneous cell death and desquamation of the embryonic diffusion barrier during epidermal development

    International Nuclear Information System (INIS)

    Saathoff, Manuela; Blum, Barbara; Quast, Thomas; Kirfel, Gregor; Herzog, Volker

    2004-01-01

    The periderm is an epithelial layer covering the emerging epidermis in early embryogenesis of vertebrates. In the chicken embryo, an additional cellular layer, the subperiderm, occurs at later embryonic stages underneath the periderm. The questions arose what is the function of both epithelial layers and, as they are transitory structures, by which mechanism are they removed. By immunocytochemistry, the tight junction (TJ) proteins occludin and claudin-1 were localized in the periderm and in the subperiderm, and sites of close contact between adjacent cells were detected by electron microscopy. Using horseradish peroxidase (HRP) as tracer, these contacts were identified as tight junctions involved in the formation of the embryonic diffusion barrier. This barrier was lost by desquamation at the end of the embryonic period, when the cornified envelope of the emerging epidermis was formed. By TUNEL and DNA ladder assays, we detected simultaneous cell death in the periderm and the subperiderm shortly before hatching. The absence of caspases-3, -6, and -7 activity, key enzymes of apoptosis, and the lack of typical morphological criteria of apoptosis such as cell fragmentation or membrane blebbing point to a special form of programmed cell death (PCD) leading to the desquamation of the embryonic diffusion barrier

  9. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Issa, Radwan, E-mail: rabuissa@umich.edu

    2015-01-24

    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development.

  10. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    International Nuclear Information System (INIS)

    Abu-Issa, Radwan

    2015-01-01

    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development

  11. Early embryonic development and transplantation in tree shrews

    Directory of Open Access Journals (Sweden)

    Lan-Zhen YAN

    2016-07-01

    Full Text Available As a novel experimental animal model, tree shrews have received increasing attention in recent years. Despite this, little is known in regards to the time phases of their embryonic development. In this study, surveillance systems were used to record the behavior and timing of copulations; embryos at different post-copulation stages were collected and cultured in vitro; and the developmental characteristics of both early-stage and in vitro cultured embryos were determined. A total of 163 females were collected following effective copulation, and 150 were used in either unilateral or bilateral oviduct embryo collections, with 307 embryos from 111 females obtained (conception rate=74%. Among them, 237 embryos were collected from 78 females, bilaterally, i.e., the average embryo number per female was 3.04; 172 fertilized eggs collected from 55 females, bilaterally, were cultured for 24-108 h in vitro for developmental observations; finally, 65 embryos from 23 bilateral cases and 70 embryos from 33 unilateral cases were used in embryo transplantation.

  12. Embryonic development of the sea bass Dicentrarchus labrax

    Science.gov (United States)

    Cucchi, Patricia; Sucré, Elliott; Santos, Raphaël; Leclère, Jeremy; Charmantier, Guy; Castille, René

    2012-06-01

    The embryonic development of the sea bass Dicentrarchus labrax during the endotrophic period is discussed. An 8 cells stage, not reported for other studied species, results from two rapid successive cleavages. Blastula occurs at the eighth division when the embryo is made of 128 cells. During gastrulation, the infolded blastoderm creates the endomesoblastic layer. The Kupffer's vesicle is reported to drive the left/right patterning of brain, heart and digestive tract. Heart formation starts at 8 pairs of somites, differentiation of myotomes and sclerotomes starts at the stage 18 pairs of somites; main parts of the digestive tract are entirely formed at 25 pairs of somites. At 28 pairs of somites, a rectal region is detected, however, the digestive tube is closed at both ends, the jaw appears the fourth day after hatching, but the mouth is not opened before the fifth day. Although cardiac beating and blood circulation are observed, gills are not reported in newly hatched individuals; eye melanization appears concomitant with exotrophic behavior.

  13. Effect of gamma irradiation on the hatchability and embryonic development of quail eggs

    International Nuclear Information System (INIS)

    Oroszlany, P.; Sinkovicsne Hlubik, I.

    1979-01-01

    The effect of different doses of gamma irradiation on the embryonic development of quail and hen's eggs was examined. The goals of the examinations were to determine the LD 50 and LD 100 values, to establish the effect of single and multiple irradiation on embryonic development and to get some information on the embryonation of eggs produced by quails and their progeny grown from irradiated eggs. It was shown that 200 rad dose has significant stimulation effect of the hatching results of quail eggs. The LD 50 and LD 100 values were about 800 to 850 rad and 1600 rad, respectively. Repeated irradiation on the progeny-generations proved to be unambiguously deleterious on embryonation. High doses changed the rhythm of embryonal mortality, showing a peak under the irradiation and in the first three days of incubation, and significantly enhanced the number of teratological types. (author)

  14. Low oxygen levels slow embryonic development of Limulus polyphemus

    DEFF Research Database (Denmark)

    Funch, Peter; Wang, Tobias; Pertoldi, Cino

    2016-01-01

    The American horseshoe crab Limulus polyphemus typically spawns in the upper intertidal zone, where the developing embryos are exposed to large variations in abiotic factors such as temperature, humidity, salinity, and oxygen, which affect the rate of development. It has been shown that embryonic...... pronounced hypoxia in later embryonic developmental stages, but also in earlier, previously unexplored, developmental stages....... development is slowed at both high and low salinities and temperatures, and that late embryos close to hatching tolerate periodic hypoxia. In this study we investigated the influence of hypoxia on both early and late embryonic development in L. polyphemus under controlled laboratory conditions. Embryos were...

  15. Using scale and feather traits for module construction provides a functional approach to chicken epidermal development.

    Science.gov (United States)

    Bao, Weier; Greenwold, Matthew J; Sawyer, Roger H

    2017-11-01

    Gene co-expression network analysis has been a research method widely used in systematically exploring gene function and interaction. Using the Weighted Gene Co-expression Network Analysis (WGCNA) approach to construct a gene co-expression network using data from a customized 44K microarray transcriptome of chicken epidermal embryogenesis, we have identified two distinct modules that are highly correlated with scale or feather development traits. Signaling pathways related to feather development were enriched in the traditional KEGG pathway analysis and functional terms relating specifically to embryonic epidermal development were also enriched in the Gene Ontology analysis. Significant enrichment annotations were discovered from customized enrichment tools such as Modular Single-Set Enrichment Test (MSET) and Medical Subject Headings (MeSH). Hub genes in both trait-correlated modules showed strong specific functional enrichment toward epidermal development. Also, regulatory elements, such as transcription factors and miRNAs, were targeted in the significant enrichment result. This work highlights the advantage of this methodology for functional prediction of genes not previously associated with scale- and feather trait-related modules.

  16. The Early Stages of Heart Development: Insights from Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Johannes G. Wittig

    2016-04-01

    Full Text Available The heart is the first functioning organ in the developing embryo and a detailed understanding of the molecular and cellular mechanisms involved in its formation provides insights into congenital malformations affecting its function and therefore the survival of the organism. Because many developmental mechanisms are highly conserved, it is possible to extrapolate from observations made in invertebrate and vertebrate model organisms to humans. This review will highlight the contributions made through studying heart development in avian embryos, particularly the chicken. The major advantage of chick embryos is their accessibility for surgical manipulation and functional interference approaches, both gain- and loss-of-function. In addition to experiments performed in ovo, the dissection of tissues for ex vivo culture, genomic, or biochemical approaches is straightforward. Furthermore, embryos can be cultured for time-lapse imaging, which enables tracking of fluorescently labeled cells and detailed analysis of tissue morphogenesis. Owing to these features, investigations in chick embryos have led to important discoveries, often complementing genetic studies in mice and zebrafish. As well as including some historical aspects, we cover here some of the crucial advances made in understanding early heart development using the chicken model.

  17. Cell surface carbohydrate changes during embryonic and fetal skin development

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Holbrook, K; Clausen, H

    1986-01-01

    Monoclonal antibodies to four type 2 chain carbohydrate antigens were used for immunohistochemical studies of embryonic and fetal skin. The antibodies detected N-acetyllactosamine and 3 fucosyl substitutes of this, blood group antigen H, Lex, and Ley. Periderm consistently stained for N-acetyllac......Monoclonal antibodies to four type 2 chain carbohydrate antigens were used for immunohistochemical studies of embryonic and fetal skin. The antibodies detected N-acetyllactosamine and 3 fucosyl substitutes of this, blood group antigen H, Lex, and Ley. Periderm consistently stained for N...

  18. Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development.

    Directory of Open Access Journals (Sweden)

    Jonathan Göke

    2011-12-01

    Full Text Available Transcription factors are proteins that regulate gene expression by binding to cis-regulatory sequences such as promoters and enhancers. In embryonic stem (ES cells, binding of the transcription factors OCT4, SOX2 and NANOG is essential to maintain the capacity of the cells to differentiate into any cell type of the developing embryo. It is known that transcription factors interact to regulate gene expression. In this study we show that combinatorial binding is strongly associated with co-localization of the transcriptional co-activator Mediator, H3K27ac and increased expression of nearby genes in embryonic stem cells. We observe that the same loci bound by Oct4, Nanog and Sox2 in ES cells frequently drive expression in early embryonic development. Comparison of mouse and human ES cells shows that less than 5% of individual binding events for OCT4, SOX2 and NANOG are shared between species. In contrast, about 15% of combinatorial binding events and even between 53% and 63% of combinatorial binding events at enhancers active in early development are conserved. Our analysis suggests that the combination of OCT4, SOX2 and NANOG binding is critical for transcription in ES cells and likely plays an important role for embryogenesis by binding at conserved early developmental enhancers. Our data suggests that the fast evolutionary rewiring of regulatory networks mainly affects individual binding events, whereas "gene regulatory hotspots" which are bound by multiple factors and active in multiple tissues throughout early development are under stronger evolutionary constraints.

  19. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Janine Spieker

    Full Text Available Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS. Here, we first analyzed the expression of acetylcholinesterase (AChE by IHC and of choline acetyltransferase (ChAT by ISH in developing embryonic chicken limbs (stages HH17-37. AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER and zone of polarizing activity (ZPA, respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB and Alizarin red (AR stainings, respectively. Both acetylcholine (ACh- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.

  20. Embryonic muscle development of Convoluta pulchra (Turbellaria-acoelomorpha, platyhelminthes).

    Science.gov (United States)

    Ladurner, P; Rieger, R

    2000-06-15

    We studied the embryonic development of body-wall musculature in the acoel turbellarian Convoluta pulchra by fluorescence microscopy using phalloidin-bound stains for F-actin. During stage 1, which we define as development prior to 50% of the time between egg-laying and hatching, actin was visible only in zonulae adhaerentes of epidermal cells. Subsequent development of muscle occurred in two distinct phases: first, formation of an orthogonal grid of early muscles and, second, differentiation of other myoblasts upon this grid. The first elements of the primary orthogonal muscle grid appeared as short, isolated, circular muscle fibers (stage 2; 50% developmental time), which eventually elongated to completely encircle the embryo (stage 3; at 60% of total developmental time). The first primary longitudinal fibers appeared later, along with some new primary circular fibers, by 60-63% of total developmental time (stage 4). From 65 to 100% of total developmental time (stages 5 to 7), secondary fibers, using primary fibers as templates, arose; the number of circular and longitudinal muscles thus increased, and at the same time parenchymal muscles began appearing. Hatchlings (stage 8) possessed about 25 circular and 30 longitudinal muscles as well as strong parenchymal muscles. The remarkable feature of the body wall of many adult acoel flatworms is that longitudinal muscles bend medially and cross each other behind the level of the mouth. We found that this development starts shortly after the appearance of the ventral mouth opening within the body wall muscle grid. The adult organization of the body-wall musculature consists of a grid of several hundred longitudinal and circular fibers and a few diagonal muscles. Musculature of the reproductive organs developed after hatching. Thus, extensive myogenesis must occur also during postembryonic development. Comparison between the turbellarians and the annelids suggests that formation of a primary orthogonal muscle grid and

  1. Innovative virtual reality measurements for embryonic growth and development

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); W.C.J. Hop (Wim); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2010-01-01

    textabstractBackground Innovative imaging techniques, using up-to-date ultrasonic equipment, necessitate specific biometry. The aim of our study was to test the possibility of detailed human embryonic biometry using a virtual reality (VR) technique. Methods In a longitudinal study, three-dimensional

  2. Alterations to embryonic serotonin change aggression and fearfulness

    Science.gov (United States)

    Prenatal environment, including maternal hormones, affects the development of the serotonin (5-HT) system, with long-lasting effects on mood and behavioral exhibition in children and adults. The chicken provides a unique animal model to study the effects of embryonic development on childhood and ado...

  3. Development of Sausages Containing Mechanically Deboned Chicken Meat Hydrolysates.

    Science.gov (United States)

    Jin, S K; Choi, J S; Choi, Y J; Lee, S J; Lee, S Y; Hur, S J

    2015-07-01

    Pork meat sausages were prepared using protein hydrolysates from mechanically deboned chicken meat (MDCM). In terms of the color, compared to the controls before and after storage, the redness (a*) was significantly higher in sausages containing MDCM hydrolysates, ascorbate, and sodium erythorbate. After storage, compared to the other sausage samples, the yellowness (b*) was lower in the sausages containing ascorbate and sodium erythorbate. TBARS was not significantly different among the sausage samples before storage, whereas TBARS and DPPH radical scavenging activities were significantly higher in the sausagescontainingascorbate and sodium erythorbate, compared to the other sausage samples after 4 wk of storage. In terms of sensory evaluation, the color was significantly higher in the sausages containing MDCM hydrolysates, ascorbate, and sodium erythorbate, compared to the other sausage samples after 4 wk of storage. The "off-flavor" and overall acceptability were significantly lower in the sausages containing MDCM hydrolysates than in the other sausage samples. In most of the developed countries, meat from spent laying hens is not consumed, leading toan urgent need for effectively utilization or disposal methods. In this study, sausages were prepared using spent laying hens and protein hydrolysates from mechanically deboned chicken meat. Sausage can be made by spent laying hens hydrolysates, although overall acceptability was lower than those of other sausage samples. © 2015 Institute of Food Technologists®

  4. Toward Development of Pluripotent Porcine Stem Cells by Road Mapping Early Embryonic Development

    DEFF Research Database (Denmark)

    Petkov, Stoyan; Freude, Kristine; Mashayekhi-Nezamabadi, Kaveh

    2017-01-01

    The lack in production of bona fide porcine pluripotent stem cells has definitely been hampered by a lack of research into porcine embryo development. Embryonic development in mammals is the extraordinary transition of a single-celled fertilized zygote into a complex fetus, which occurs...... in the uterus of the maternal adult during the early stages of gestation. Biomedical pig models could serve as genetic backgrounds for establishment of embryonic stem cells (ESCs) or other pluripotent stem cells (such as iPSC), which may be used to model and study diseases in vitro. This chapter provides...... insight into the current knowledge of pluripotent states in the developing pig embryo and the current status in establishment of bona fide porcine ESC (pESC) and piPSCs. It reflects the potential causes underlying the difficulty in establishing pluripotent stem cells and reviews recent data on global...

  5. Altered glucose transport to utero-embryonic unit in relation to delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Arnab, Banerjee; Amitabh, Krishna

    2011-02-10

    The aim of this study was to compare the changes in concentration of glucose and glucose transporters (GLUTs) in the utero-embryonic unit, consisting of decidua, trophoblast and embryo, during delayed and non-delayed periods to understand the possible cause of delayed embryonic development in Cynopterus sphinx. The results showed a significantly decreased concentration of glucose in the utero-embryonic unit due to decline in the expression of insulin receptor (IR) and GLUT 3, 4 and 8 proteins in the utero-embryonic unit during delayed period. The in vitro study showed suppressive effect of insulin on expression of GLUTs 4 and 8 in the utero-embryonic unit and a significant positive correlation between the decreased amount of glucose consumed by the utero-embryonic unit and decreased expression of GLUTs 4 (r=0.99; psphinx. Increased supply of fatty acid to the delayed embryo may be responsible for its survival under low glucose condition but unable to promote embryonic development in C. sphinx. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. δ-crystallin genes become hypomethylated in postmitotic lens cells during chicken development

    International Nuclear Information System (INIS)

    Sullivan, C.H.; Grainger, R.M.

    1987-01-01

    Although it has been argued that the loss of 5-methylcytosine from specific sites in DNA plays an important role in activation of specific genes, the mechanism of hypomethylation is not well understood. One model links the process to DNA replication, proposing that it occurs by not remethylating cytosine on newly synthesized DNA. An alternative model argues that hypomethylation results from excision of part or all of the 5-methylcytosine. The authors were able to test whether hypomethylation can occur without replication by analysis of methylation changes in the δ-crystallin genes of the chicken lens. During embryonic development a large fraction of cells in the lens stops dividing as part of the differentiation process, measured by autoradiography. Shortly after this stage, the δ-crystallin genes in samples of the whole lens become hypomethylated, suggesting the possibility that this process might be occurring in the subset of cells that is no longer dividing. They found that hypomethylation of these genes does occur in postmitotic lens cells, a result that implicates an excision mechanism in this tissue

  7. Zika Virus Can Strongly Infect and Disrupt Secondary Organizers in the Ventricular Zone of the Embryonic Chicken Brain.

    Science.gov (United States)

    Thawani, Ankita; Sirohi, Devika; Kuhn, Richard J; Fekete, Donna M

    2018-04-17

    Zika virus (ZIKV) is associated with severe neurodevelopmental impairments in human fetuses, including microencephaly. Previous reports examining neural progenitor tropism of ZIKV in organoid and animal models did not address whether the virus infects all neural progenitors uniformly. To explore this, ZIKV was injected into the neural tube of 2-day-old chicken embryos, resulting in nonuniform periventricular infection 3 days later. Recurrent foci of intense infection were present at specific signaling centers that influence neuroepithelial patterning at a distance through secretion of morphogens. ZIKV infection reduced transcript levels for 3 morphogens, SHH, BMP7, and FGF8 expressed at the midbrain basal plate, hypothalamic floor plate, and isthmus, respectively. Levels of Patched1, a SHH-pathway downstream gene, were also reduced, and a SHH-dependent cell population in the ventral midbrain was shifted in position. Thus, the diminishment of signaling centers through ZIKV-mediated apoptosis may yield broader, non-cell-autonomous changes in brain patterning. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Effect of taurine and gold nanoparticles on the morphological and molecular characteristics of muscle development during chicken embryogenesis

    DEFF Research Database (Denmark)

    Zielinska, Marlena; Sawosz, Ewa; Grodzik, Marta

    2012-01-01

    The objective of the present investigation was to evaluate the effects of taurine and Au nanoparticles on the expression of genes related to embryonic muscle development and on the morphological characteristics of muscles. Fertilised chicken eggs (n = 160) were randomly divided into four groups......: without injection (Control) and with injection of Au nanoparticles (NanoAu), taurine (Tau) or Au nanoparticles with taurine (NanoAu + Tau). The experimental solutions were given in ovo, on the third day of incubation, by injecting 0.3 ml of the experimental solution into the air sack. The embryos were...... evaluated on the 20th day of incubation. The methods included gene expression at the mRNA and protein levels, immunohistochemistry, histology and microscopy. In groups NanoAu, Tau and NanoAu + Tau, the muscle structure and the number of muscle cells were affected. Furthermore, taurine increased fibre...

  9. GLUT3 gene expression is critical for embryonic growth, brain development and survival.

    Science.gov (United States)

    Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U

    2014-04-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Chelated mineral supplements for Nelore: quality and early embryonic development

    Directory of Open Access Journals (Sweden)

    Camila Pasa

    2014-01-01

    Full Text Available ABSTRACT. Pasa C., Hatamoto-Zervoudakis L.K., Zervoudakis J.T. & Soares L. [Chelated mineral supplements for Nelore: quality and early embryonic development.] Suplementos minerais quelatados para vacas Nelore: qualidade e desenvolvimento embrionário inicial. Revista Brasileira de Medicina Veterinária, 36(1:29-34, 2014. Programa de Pós-Graduação em Ciência Animal, Faculdade de Agronomia e Medicina Veterinária, Universidade Federal do Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, Cuiabá, MT 78060-900, Brasil. E-mail: pasa_camila@hotmail.com The objective of this study was to evaluate the quality and early development of embryos produced with oocytes of cows supplemented with copper, zinc and selenium in a non-chelated and chelated. The experiment was conducted in Cuiabá-MT during the months April to July 2009. We used 24 adult Nellore multiparous, aged, average weights of the initial 36 months, 395 kg and mean body condition score 4.8, respectively randomly divided into 2 groups: control group (CG, supplemented with conventional mineral and Supplemented Group (GS, animals supplemented with zinc, copper and selenium chelated. Each group was kept in a paddock of Brachiaria brizantha cv Marandu received 1 kg of animal per day. chelated mineral supplementation (GS and conventional mineral (GC delivered via the protein supplement was given during a period of 99 days with daily average 1kg/cabeça. During the experimental period were two follicular aspirations, one to 59 days and another at 99 days of supplementation. Every two weeks the animals were weighed and ECC evaluated. oocytes viable (grades I, II and III were used for in vitro production of embryos. The experiment was completely randomized and data were analyzed by ANOVA and a significance level of 10%. There was no effect (p> 0.10 of supplementation with chelated minerals on the percentage of cleaved oocytes, total embryos produced, percentage of produced

  11. Delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Meenakumari, Karukayil J; Krishna, Amitabh

    2005-01-01

    The unusual feature of the breeding cycle of Cynopterus sphinx at Varanasi is the significant variation in gestation length of the two successive pregnancies of the year. The aim of this study was to investigate whether the prolongation of the first pregnancy in C. sphinx is due to delayed embryonic development. The first (winter) pregnancy commences in late October and lasts until late March and has a gestation period of about 150 days. The second (summer) pregnancy commences in April and lasts until the end of July or early August with a gestation period of about 125 days. Changes in the size and weight of uterine cornua during the two successive pregnancies suggest retarded embryonic growth during November and December. Histological analysis during the period of retarded embryonic development in November and December showed a slow gastrulation process. The process of amniogenesis was particularly slow. When the embryos attained the early primitive streak stage, their developmental rate suddenly increased considerably. During the summer pregnancy, on the other hand, the process of gastrulation was much faster and proceeded quickly. A comparison of the pattern of embryonic development for 4 consecutive years consistently showed retarded or delayed embryonic development during November and December. The time of parturition and post-partum oestrus showed only a limited variation from 1 year to another. This suggests that delayed embryonic development in C. sphinx may function to synchronize parturition among females. The period of delayed embryonic development in this species clearly coincides with the period of fat deposition. The significance of this correlation warrants further investigation.

  12. Relationship between delayed embryonic development and metabolic factors and fat deposition in fruit bat Cynopterus sphinx.

    Science.gov (United States)

    Banerjee, Arnab; Meenakumari, K J; Krishna, Amitabh

    2007-01-01

    The present study was undertaken in the fruit bat Cynopterus sphinx, which breeds twice in quick succession at Varanasi, India. Its gestation period varies significantly in the two successive pregnancies of the year owing to delayed embryonic development during the first (winter) pregnancy. The primary aim of the present study was to determine the role of metabolic factors in delayed embryonic development in the fruit bat C. sphinx. Variation in bodyweight, fat deposition, oxygen (O(2)) consumption rate, basal metabolic rate (BMR), body temperature (Tb) and hepatic succinate dehydrogenase (SDH) activity, along with circulating levels of thyroid hormones (tri-iodothyronine and thyroxine), were examined as metabolic factors during the two successive pregnancies in C. sphinx. The increase in bodyweight observed in November was due to accumulation of white adipose tissue in the posterior abdominal region. A significant decline in O(2) consumption rate, BMR, Tb and SDH activity was found in early winter in November-December, which coincides closely with the period of fat accumulation and with the period of delayed embryonic development in C. sphinx. A significantly higher O(2) consumption rate, BMR, Tb and SDH activity was noted during the second pregnancy in, when embryonic development was relatively faster. Thyroid hormone levels were high during the period of embryonic delay compared with levels during the remaining months. The results of the present study suggest that the delayed embryonic development in C. sphinx during early winter may be due to a low O(2) consumption rate, BMR, Tb and SDH activity in November-December. The energy saved by suppressing embryonic development in this species may be advantageous for fat accumulation. Increased thyroid hormone levels during the early winter period might facilitate fat accumulation in C. sphinx.

  13. Pituitary adenylate cyclase activating polypeptide plays a role in olfactory memory formation in chicken.

    Science.gov (United States)

    Józsa, Rita; Hollósy, Tibor; Tamás, Andrea; Tóth, Gábor; Lengvári, István; Reglodi, Dóra

    2005-11-01

    PACAP plays an important role during development of the nervous system and is also involved in memory processing. The aim of the present study was to investigate the function of PACAP in chicken embryonic olfactory memory formation by blocking PACAP at a sensitive period in ovo. Chicken were exposed daily to strawberry scent in ovo from embryonic day 15. Control eggs were treated only with saline, while other eggs received a single injection of the PACAP antagonist PACAP6-38 at day 15. The consumption of scented and unscented water was measured daily after hatching. Animals exposed to strawberry scent in ovo showed no preference. However, chickens exposed to PACAP6-38, showed a clear preference for plain water, similarly to unexposed chicken. Our present study points to PACAP's possible importance in embryonic olfactory memory formation.

  14. The effect of flurbiprofen on the development of anencephaly in early stage chicken embryos.

    Science.gov (United States)

    Özeren, Ersin; Er, Uygur; Güvenç, Yahya; Demirci, Adnan; Arıkök, Ata Türker; Şenveli, Engin; Ergün, Rüçhan Behzat

    2015-04-01

    The study investigated the effect of flurbiprofen on the development of anencephaly in early stage chicken embryos. We looked at four groups with a total of 36 embryos. There was a control group, a normal saline group, a normal-dose group and a high-dose group with ten, ten, eight and eight eggs with embryo respectively. Two embryos in the control group, studied with light microscopy at 48 h, were consistent with 28-29 hours' incubation in the Hamburger-Hamilton System. They had open neural tubes. The other embryos in this group were considered normal. One embryo in the normal saline group was on the occlusion stage at 48 h. One embryo showed an open neural tube. They were compatible with 28-29 hours' incubation in the Hamburger-Hamilton system. The remaining eight embryos showed normal development. In the normal dose group, one embryo showed underdevelopment of the embryonic disc and the embryo was dead. In four embryos, the neural tubes were open. One cranial malformation was found that was complicated with anencephaly in one embryo. In two embryos the neural tubes were closed, as they showed normal development, and they reached their expected stages according to the Hamburger-Hamilton classification. There was no malformation or growth retardation. Four experimental embryos were anencephalic in the high dose group, and three embryos had open neural tubes. One embryo exhibited both anencephaly and a neural tube closure defect. None of the embryos in this group showed normal development. Even the usual therapeutic doses of flurbiprofen increased the risk of neural tube defect. Flurbiprofen was found to significantly increase the risk of anencephaly. The provision of improved technical materials and studies with larger sample sizes will reveal the stage of morphological disruption during the development of embryos.

  15. The evolution of chicken stem cell culture methods.

    Science.gov (United States)

    Farzaneh, M; Attari, F; Mozdziak, P E; Khoshnam, S E

    2017-12-01

    1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking. 3. Despite similarities among the established chicken stem cell lines, fundamental differences have been reported between their culture conditions and applications. Recent conventional protocols used for expansion and culture of chicken stem cells mostly depend on feeder cells, serum-containing media and static culture. 4. Utilising chicken stem cells for generation of cell-based transgenic birds and a variety of vaccines requires large-scale cell production. However, scaling up the conventional adherent chicken stem cells is challenging and labour intensive. Development of a suspension cell culture process for chicken embryonic stem cells (cESCs), chicken primordial germ cells (PGCs) and chicken induced pluripotent stem cells (ciPSCs) will be an important advance for increasing the growth kinetics of these cells. 6. This review describes various approaches and suggestions to achieve optimal cell growth for defined chicken stem cells cultures and use in future manufacturing applications.

  16. Expression patterns of Wnt genes during development of an anterior part of the chicken eye

    OpenAIRE

    Fokina, Valentina M.; Frolova, Elena I.

    2006-01-01

    To address the roles of Wnts in the development of the anterior eye, we used a chicken model to perform comprehensive expression analysis of all Wnt genes during anterior eye development. In analyzing the available genomic sequences, we found that the chicken genome encodes 18 Wnt proteins that are homologous to corresponding human and mouse proteins. The mRNA sequences for 12 chicken Wnt genes are available in GenBank, and mRNAs for six other Wnt genes (Wnt2, Wnt5b, Wnt7b, Wnt8b, Wnt9b and W...

  17. Effects of a Campylobacter jejuni infection on the development of the intestinal microflora of broiler chickens.

    Science.gov (United States)

    Johansen, C H; Bjerrum, L; Finster, K; Pedersen, K

    2006-04-01

    The effect of a Campylobacter jejuni colonization on the development of the microflora of the cecum and the ileum of broiler chickens was studied using molecular methods. The infection did affect the development and complexity of the microbial communities of the ceca, but we found no permanent effect of a C. jejuni infection on the ileal microflora of the broilers. In addition, denaturant gradient gel electrophoresis (DGGE) profiles generated from cecal and ileal contents revealed several DGGE bands that were present in the control chickens, but not in the chickens colonized with C. jejuni. Some of these DGGE bands could be affiliated with Lactobacillus reuteri, Clostridium perfringens, and the genus Klebsiella.

  18. Arrested embryonic development: a review of strategies to delay hatching in egg-laying reptiles

    Science.gov (United States)

    Rafferty, Anthony R.; Reina, Richard D.

    2012-01-01

    Arrested embryonic development involves the downregulation or cessation of active cell division and metabolic activity, and the capability of an animal to arrest embryonic development results in temporal plasticity of the duration of embryonic period. Arrested embryonic development is an important reproductive strategy for egg-laying animals that provide no parental care after oviposition. In this review, we discuss each type of embryonic developmental arrest used by oviparous reptiles. Environmental pressures that might have directed the evolution of arrest are addressed and we present previously undiscussed environmentally dependent physiological processes that may occur in the egg to bring about arrest. Areas for future research are proposed to clarify how ecology affects the phenotype of developing embryos. We hypothesize that oviparous reptilian mothers are capable of providing their embryos with a level of phenotypic adaptation to local environmental conditions by incorporating maternal factors into the internal environment of the egg that result in different levels of developmental sensitivity to environmental conditions after they are laid. PMID:22438503

  19. How does blastomere removal affect embryonic development? : A time-lapse analysis

    DEFF Research Database (Denmark)

    Kirkegaard, Kirstine; Hindkjær, Johnny Juhl; Ingerslev, Hans Jakob

    of the 6-10 cell embryo. It has been argued that blastomere removal does not affect embryonic development, but few studies have focussed on safety of the procedure. Recently, time-lapse studies on mice have suggested that blastomere removal affects embryonic development. The present study was conducted...... to evaluate the effect of blastomere biopsy on early human embryonic development using time-lapse analysis. Materials and methods: Couples undergoing IVF treatment or PGD were requested permission to include embryos in the project. The diagnosis healthy/diseased was made by analysis of a single blastomere....... For PGD 56 human embryos were biopsied 68 hours after fertilisation, the majority at the eight cell stage. As controls 43 non-biopsied embryos at the 6-8 cell stage were selected. All embryos were cultured until 5 days after fertilisation in a time-lapse incubator (EmbryoScope™). Key events such as time...

  20. The ‘Ventral Organs’ of Pycnogonida (Arthropoda) Are Neurogenic Niches of Late Embryonic and Post-Embryonic Nervous System Development

    Science.gov (United States)

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions – traditionally designated as ‘ventral organs’ – detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons – as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient

  1. Activation of the Aryl Hydrocarbon Receptor Interferes with Early Embryonic Development

    Directory of Open Access Journals (Sweden)

    Manolis Gialitakis

    2017-11-01

    Full Text Available The transcriptional program of early embryonic development is tightly regulated by a set of well-defined transcription factors that suppress premature expression of differentiation genes and sustain the pluripotent identity. It is generally accepted that this program can be perturbed by environmental factors such as chemical pollutants; however, the precise molecular mechanisms remain unknown. The aryl hydrocarbon receptor (AHR is a widely expressed nuclear receptor that senses environmental stimuli and modulates target gene expression. Here, we have investigated the AHR interactome in embryonic stem cells by mass spectrometry and show that ectopic activation of AHR during early differentiation disrupts the differentiation program via the chromatin remodeling complex NuRD (nucleosome remodeling and deacetylation. The activated AHR/NuRD complex altered the expression of differentiation-specific genes that control the first two developmental decisions without affecting the pluripotency program. These findings identify a mechanism that allows environmental stimuli to disrupt embryonic development through AHR signaling.

  2. Time--temperature relation of embryonic development in the northwestern salamander, Ambystoma gracile

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H A

    1976-04-01

    A field and laboratory study on temperature-related embryonic development of Ambystoma gracile was made on a population from northwestern Washington. Natural spawning began in the beaver pond during early March, and the duration of embryonic development (stages 1 to 46) was about 62 days. Average water temperature in the pond during embryonic development was 8.5/sup 0/C (range, 4.4 to 14.3/sup 0/C). The laboratory data of embryonic development at constant temperatures show that the limits of temperature tolerance are about 5 to 22.5/sup 0/C. Rate of development was measured by determining time required to develop from first cleavage (stage 2) to gill circulation (stage 37); representative rates are 12.7 days at 20/sup 0/C, 27 days at 12/sup 0/C, and 89 days at 7/sup 0/C. Embryos of A. gracile have the slowest rate of development when compared with embryos of four other species of Ambystoma (maculatum, mexicanum, tigrinum, and jeffersonianum) and with embryos of three Pacific Northwest frogs (Ascaphus truei, Rana aurora, and Hyla regilla).

  3. Kisspeptin regulates ovarian steroidogenesis during delayed embryonic development in the fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Anuradha; Krishna, Amitabh

    2017-11-01

    Cynopterus sphinx, a fruit bat, undergoes delayed embryonic development during the winter months, a period that corresponds to low levels of progesterone and estradiol synthesis by the ovary. Kisspeptins (KPs) are a group of neuropeptide hormones that act via G-protein coupled receptor 54 (GPR54) to stimulate hypothalamic secretion of Gonadotropin-releasing hormone, thereby regulating ovarian steroidogenesis, folliculogenesis, and ovulation. GPR54 is also expressed in the ovary, suggesting a direct role for KPs in ovarian steroidogenesis. The aim of present study was to determine if a low serum level of KP is responsible for reduced progesterone and estradiol levels during the period of delayed embryonic development in C. sphinx. Indeed, low serum KP abundance corresponded to reduced expression of GPR54 in ovarian luteal cells during the period of delayed development compared to normal development. In vitro and in vivo treatment with KP increased GPR54 abundance, via Extracellular signal regulated kinase and its downstream mediators, leading to increased progesterone synthesis in the ovary during delayed embryonic development. KP treatment also increased cholesterol uptake and elevated expression of Luteinizing hormone receptor and Steroid acute regulatory protein in the ovary, suggesting that elevation in circulating KP during delayed embryonic development may reactivate luteal activity. KPs may also enhance cell survival (BCL-2, reduced Caspase 3 activity) and angiogenesis (Vascular endothelium growth factor) during this period. The findings of this study thus demonstrate a regulatory role for KPs in the maintenance of luteal steroidogenesis during pregnancy in C. sphinx. © 2017 Wiley Periodicals, Inc.

  4. Impaired embryonic development in mice overexpressing the RNA-binding protein TIAR.

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    Full Text Available BACKGROUND: TIA-1-related (TIAR protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs. Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. METHODOLOGY/PRINCIPAL FINDINGS: To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2alpha that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. CONCLUSIONS/SIGNIFICANCE: This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming.

  5. Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain.

    Directory of Open Access Journals (Sweden)

    Anke Popp

    Full Text Available BACKGROUND: GABA (gamma-aminobutyric acid, the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD. GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. METHODOLOGY/PRINCIPAL FINDINGS: QPCR was used to precisely investigate the postnatal expression level of GAD related mRNAs in cortex, hippocampus, cerebellum, and olfactory bulb of rats from P1 throughout adulthood. Within the first three postnatal weeks the expression of both GAD65 and GAD67 mRNAs reached adult levels in hippocampus, cortex, and cerebellum. The olfactory bulb showed by far the highest expression of GAD65 as well as GAD67 transcripts. Embryonic GAD67 splice variants were still detectable at birth. They continuously declined to barely detectable levels during postnatal development in all investigated regions with exception of a comparatively high expression in the olfactory bulb. Radioactive in situ hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream. CONCLUSIONS/SIGNIFICANCE: Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or

  6. Transcriptomic profiling of bovine IVF embryos revealed candidate genes and pathways involved in early embryonic development

    Directory of Open Access Journals (Sweden)

    Yandell Brian S

    2010-01-01

    Full Text Available Abstract Background Early embryonic loss is a large contributor to infertility in cattle. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. The objective of this study was to identify genes differentially expressed between blastocysts and degenerative embryos at early stages of development. Results Using microarrays, genome-wide RNA expression was profiled and compared for in vitro fertilization (IVF - derived blastocysts and embryos undergoing degenerative development up to the same time point. Surprisingly similar transcriptomic profiles were found in degenerative embryos and blastocysts. Nonetheless, we identified 67 transcripts that significantly differed between these two groups of embryos at a 15% false discovery rate, including 33 transcripts showing at least a two-fold difference. Several signaling and metabolic pathways were found to be associated with the developmental status of embryos, among which were previously known important steroid biosynthesis and cell communication pathways in early embryonic development. Conclusions This study presents the first direct and comprehensive comparison of transcriptomes between IVF blastocysts and degenerative embryos, providing important information for potential genes and pathways associated with early embryonic development.

  7. Divergent selection for shape of growth curve in Japanese quail. 2. Embryonic development and growth

    Czech Academy of Sciences Publication Activity Database

    Hyánková, L.; Novotná, Božena; Knížetová, H.; Horáčková, Š.

    2004-01-01

    Roč. 45, č. 2 (2004), s. 171-179 ISSN 0007-1668 R&D Projects: GA ČR GA523/99/1262 Institutional research plan: CEZ:AV0Z5039906 Keywords : embryonic development Subject RIV: EA - Cell Biology Impact factor: 0.677, year: 2004

  8. Importance of the pluripotency factor LIN28 in the mammalian nucleolus during early embryonic development.

    Science.gov (United States)

    Vogt, Edgar J; Meglicki, Maciej; Hartung, Kristina Ilka; Borsuk, Ewa; Behr, Rüdiger

    2012-12-01

    The maternal nucleolus is required for proper activation of the embryonic genome (EGA) and early embryonic development. Nucleologenesis is characterized by the transformation of a nucleolar precursor body (NPB) to a mature nucleolus during preimplantation development. However, the function of NPBs and the involved molecular factors are unknown. We uncover a novel role for the pluripotency factor LIN28, the biological significance of which was previously demonstrated in the reprogramming of human somatic cells to induced pluripotent stem (iPS) cells. Here, we show that LIN28 accumulates at the NPB and the mature nucleolus in mouse preimplantation embryos and embryonic stem cells (ESCs), where it colocalizes with the nucleolar marker B23 (nucleophosmin 1). LIN28 has nucleolar localization in non-human primate (NHP) preimplantation embryos, but is cytoplasmic in NHP ESCs. Lin28 transcripts show a striking decline before mouse EGA, whereas LIN28 protein localizes to NPBs at the time of EGA. Following knockdown with a Lin28 morpholino, the majority of embryos arrest between the 2- and 4-cell stages and never develop to morula or blastocyst. Lin28 morpholino-injected embryos arrested at the 2-cell stage were not enriched with nucleophosmin at presumptive NPB sites, indicating that functional NPBs were not assembled. Based on these results, we propose that LIN28 is an essential factor of nucleologenesis during early embryonic development.

  9. High-throughput identification of small molecules that affect human embryonic vascular development

    NARCIS (Netherlands)

    Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R.; Honório, Inês; De Vries, Margreet R.; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H.A.; Pereira, Carlos F.; Mercader, Nadia; Fernandes, Hugo; Ferreira, Lino

    2017-01-01

    Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach

  10. Comparative developmental trajectory of four strains of chicken ...

    African Journals Online (AJOL)

    This study evaluated egg traits, embryonic growth, and early growth rate in four strains of chicken. A total of 1200 hatching eggs, 300 each from four strains of chicken were used for this study. The strains included Nigerian indigenous chicken (NIC), Arbor acre, Hubbard, and Marshall broiler strains. Embryonic weights, yolk ...

  11. Expression of chicken LEAP-2 in the reproductive organs and embryos and in response to Salmonella enterica infection.

    Science.gov (United States)

    Michailidis, Georgios

    2010-06-01

    In recent years host antimicrobial peptides and proteins have been recognised as key mediators of the innate immune response in many vertebrate species, providing the first line of defense against potential pathogens. In chickens a number of cationic antimicrobial peptides have been recently identified. However, although these peptides have been studied extensively in the avian gastrointestinal tract, little is known about their function in the chicken reproductive organs and embryos. Chicken Liver Expressed Antimicrobial Peptide-2 (cLEAP-2) has been previously reported to function in protecting birds against microbial attack. The aim of this study was to investigate the expression of cLEAP-2 gene in the chicken reproductive organs, as well as in chicken embryos during embryonic development, and to determine whether cLEAP-2 expression in the chicken reproductive organs was constitutive or induced as a response to Salmonella enteritidis infection. RNA was extracted from ovary, oviduct, testis and epididymis of sexually mature healthy and Salmonella infected birds, as well as from chicken embryos until day ten of embryonic development. Expression analysis data revealed that cLEAP-2 was expressed in the chicken ovary, testis and epididymis as well as in embryos during early embryonic development. Quantitative real-time PCR analysis revealed that cLEAP-2 expression was constitutive in the chicken epididymis, but was significantly up regulated in the chicken gonads, following Salmonella infection. In addition, expression of cLEAP-2 during chicken embryogenesis appeared to be developmentally regulated. These data provide evidence to suggest a key role of cLEAP-2 in the protection of the chicken reproductive organs and the developing embryos from Salmonella colonization.

  12. Color photographic index of fall Chinook salmon embryonic development and accumulated thermal units.

    Directory of Open Access Journals (Sweden)

    James W Boyd

    Full Text Available BACKGROUND: Knowledge of the relationship between accumulated thermal units and developmental stages of Chinook salmon embryos can be used to determine the approximate date of egg fertilization in natural redds, thus providing insight into oviposition timing of wild salmonids. However, few studies have documented time to different developmental stages of embryonic Chinook salmon and no reference color photographs are available. The objectives of this study were to construct an index relating developmental stages of hatchery-reared fall Chinook salmon embryos to time and temperature (e.g., degree days and provide high-quality color photographs of each identified developmental stage. METHODOLOGY/PRINCIPAL FINDINGS: Fall Chinook salmon eggs were fertilized in a hatchery environment and sampled approximately every 72 h post-fertilization until 50% hatch. Known embryonic developmental features described for sockeye salmon were used to describe development of Chinook salmon embryos. A thermal sums model was used to describe the relationship between embryonic development rate and water temperature. Mean water temperature was 8.0 degrees C (range; 3.9-11.7 degrees C during the study period. Nineteen stages of embryonic development were identified for fall Chinook salmon; two stages in the cleavage phase, one stage in the gastrulation phase, and sixteen stages in the organogenesis phase. The thermal sums model used in this study provided similar estimates of fall Chinook salmon embryonic development rate in water temperatures varying from 3.9-11.7 degrees C (mean=8 degrees C to those from several other studies rearing embryos in constant 8 degrees C water temperature. CONCLUSIONS/SIGNIFICANCE: The developmental index provides a reasonable description of timing to known developmental stages of Chinook salmon embryos and was useful in determining developmental stages of wild fall Chinook salmon embryos excavated from redds in the Columbia River. This index

  13. Paternal identity impacts embryonic development for two species of freshwater fish.

    Science.gov (United States)

    Siddique, Mohammad Abdul Momin; Linhart, Otomar; Krejszeff, Sławomir; Żarski, Daniel; Pitcher, Trevor E; Politis, Sebastian Nikitas; Butts, Ian Anthony Ernest

    2017-05-01

    Paternal, compared to maternal, contributions were believed to have only a limited influence on embryonic development and larval fitness traits in fishes. Therefore, the perspective of male influence on early life history traits has come under scrutiny. This study was conducted to determine parental effects on the rate of eyed embryos of Ide Leuciscus idus and Northern pike Esox lucius. Five sires and five dams from each species were crossed using a quantitative genetic breeding design and the resulting 25 sib groups of each species were reared to the embryonic eyed stage. We then partition variation in embryonic phenotypic performance to maternal, paternal, and parental interactions using the Restricted Maximum Likelihood (REML) model. Results showed that paternal, maternal, and the paternal×maternal interaction terms were highly significant for both species; clearly demonstrating that certain family combinations were more compatible than others. Paternal effects explained 20.24% of the total variance, which was 2-fold higher than the maternal effects (10.73%) in Ide, while paternal effects explained 18.9% of the total variance, which was 15-fold higher than the maternal effects (1.3%) in Northern pike. Together, these results indicate that male effects are of major importance during embryonic development for these species. Furthermore, this study demonstrates that genetic compatibility between sires and dams plays an important role and needs to be taken into consideration for reproduction of these and likely other economically important fish species. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.

    Directory of Open Access Journals (Sweden)

    Chen Qian

    Full Text Available Platelet-derived growth factor receptor alpha (PDGFRα is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures.To address the temporal requirement of Pdgfra in embryonic development.We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies.Current study showed that (i conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5 resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives.Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b if mutations / sequence variations of these regulatory elements cause these anomalies.

  15. Developments and competitiveness of Mozambican chicken meat industry

    Directory of Open Access Journals (Sweden)

    Carlos Alberto de Oliveira

    2015-12-01

    Full Text Available Mozambican poultry industry might be an option to facilitate people's access to animal protein, as well as to reduce the dependence on imports of the product, bringing jobs and income forth. This study aimed to characterize and to analyze the competitiveness of poultry industry in Mozambique. Porter’s Five Forces Model, which focuses on the five strengths that shape business competition, was applied. The results show a low level of competition within the industry, a limited supply of raw material and the fact that national products are commodities and competes with strong foreign participants. Domestic demand for chicken meat is increasing, but buyers base their decision mainly on price. Challenges include establishment of governance structure and policies for poultry sector and consumer welfare. Another alternative to improve the poultry industry in Mozambique is to promote technical cooperation with other countries, such as Brazil, in order to acquire specific structures for chicken production, genetic material and adequate nutrition.

  16. Mouse Rad9b is essential for embryonic development and promotes resistance to DNA damage

    Science.gov (United States)

    Leloup, Corinne; Hopkins, Kevin M.; Wang, Xiangyuan; Zhu, Aiping; Wolgemuth, Debra J.; Lieberman, Howard B.

    2010-01-01

    RAD9 participates in promoting resistance to DNA damage, cell cycle checkpoint control, DNA repair, apoptosis, embryogenesis, and regulation of transcription. A paralogue of RAD9 (named RAD9B) has been identified. To define the function of mouse Rad9b (Mrad9b), embryonic stem (ES) cells with a targeted gene deletion were constructed and used to generate Mrad9b mutant mice. Mrad9b−/− embryos are resorbed after E7.5 while some of the heterozygotes die between E12.5 and a few days after birth. Mrad9b is expressed in embryonic brain and Mrad9b+/− embryos exhibit abnormal neural tube closure. Mrad9b−/− mouse embryonic fibroblasts are not viable. Mrad9b−/− ES cells are more sensitive to gamma rays and mitomycin C than Mrad9b+/+ controls, but show normal gamma-ray-induced G2/M checkpoint control. There is no evidence of spontaneous genomic instability in Mrad9b−/− cells. Our findings thus indicate that Mrad9b is essential for embryonic development and mediates resistance to certain DNA damaging agents. PMID:20842695

  17. Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.

    Science.gov (United States)

    Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio

    2014-01-01

    UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.

  18. Live Imaging of Mitosis in the Developing Mouse Embryonic Cortex

    OpenAIRE

    Pilaz, Louis-Jan; Silver, Debra L.

    2014-01-01

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixe...

  19. Forkhead box transcription factors in embryonic heart development and congenital heart disease.

    Science.gov (United States)

    Zhu, Hong

    2016-01-01

    Embryonic heart development is a very complicated process regulated precisely by a network composed of many genes and signaling pathways in time and space. Forkhead box (Fox, FOX) proteins are a family of transcription factors characterized by the presence of an evolutionary conserved "forkhead"or "winged-helix" DNA-binding domain and able to organize temporal and spatial gene expression during development. They are involved in a wide variety of cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism and DNA damage response. An abundance of studies in model organisms and systems has established that Foxa2, Foxc1/c2, Foxh1 and Foxm1, Foxos and Foxps are important components of the signaling pathways that instruct cardiogenesis and embryonic heart development, playing paramount roles in heart development. The previous studies also have demonstrated that mutations in some of the forkhead box genes and the aberrant expression of forkhead box gene are heavily implicated in the congenital heart disease (CHD) of humans. This review primarily focuses on the current understanding of heart development regulated by forkhead box transcription factors and molecular genetic mechanisms by which forkhead box factors modulate heart development during embryogenesis and organogenesis. This review also summarizes human CHD related mutations in forkhead box genes as well as the abnormal expression of forkhead box gene, and discusses additional possible regulatory mechanisms of the forkhead box genes during embryonic heart development that warrant further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The embryonic development of the central American wandering spider Cupiennius salei

    Directory of Open Access Journals (Sweden)

    Hilbrant Maarten

    2011-06-01

    Full Text Available Abstract Background The spider Cupiennius salei (Keyserling 1877 has become an important study organism in evolutionary and developmental biology. However, the available staging system for its embryonic development is difficult to apply to modern studies, with strong bias towards the earliest developmental stages. Furthermore, important embryonic events are poorly understood. We address these problems, providing a new description of the embryonic development of C. salei. The paper also discusses various observations that will improve our understanding of spider development. Results Conspicuous developmental events were used to define numbered stages 1 to 21. Stages 1 to 9 follow the existing staging system for the spider Achaearanea tepidariorum, and stages 10 to 21 provide a high-resolution description of later development. Live-embryo imaging shows cell movements during the earliest formation of embryonic tissue in C. salei. The imaging procedure also elucidates the encircling border between the cell-dense embryo hemisphere and the hemisphere with much lower cell density (a structure termed 'equator' in earlier studies. This border results from subsurface migration of primordial mesendodermal cells from their invagination site at the blastopore. Furthermore, our detailed successive sequence shows: 1 early differentiation of the precheliceral neuroectoderm; 2 the morphogenetic process of inversion and 3 initial invaginations of the opisthosomal epithelium for the respiratory system. Conclusions Our improved staging system of development in C. salei development should be of considerable value to future comparative studies of animal development. A dense germ disc is not evident during development in C. salei, but we show that the gastrulation process is similar to that in spider species that do have a dense germ disc. In the opisthosoma, the order of appearance of precursor epithelial invaginations provides evidence for the non-homology of the

  1. Diminished embryonic movements of developing embryo by direct exposure of sidestream whole smoke solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ejaz, Sohail [Chonbuk National University, Biosafety Research Institute, Jeonju (Korea); Woong, Lim Chae [Chonbuk National University, Department of Pathology, Jeonju (Korea)

    2006-02-01

    Embryonic movements (EM) are considered to be the first sign of life and cigarette smoking during pregnancy has been linked to affect EM. Exposure to sidestream smoke, produced from the emissions of a smoldering cigarette, may result in poor pregnancy outcome and increased risk of serious perinatal morbidity and mortality. In this study, the chicken embryo bioassay was used to systematically assess the effects of short-term exposure to sidestream whole smoke solutions (SSWSS) on EM, recorded in real time by a video camera for 60 min and each EM was counted for every 3-min interval. Application of different types of SSWSS to the embryos caused significant changes in all types of EM from 15 to 18 min of recording time. Extensive reduction (P<0.001) and some time complete stoppage of swing-like movements and whole-body movements were observed in almost all treated embryos. Our data clearly link between exposure of SSWSS and substantial decrease in EM. It is unclear whether nicotine and/or other ingredients present in sidestream smoke are responsible for these alterations in EM. This article provides an outline of the relevance of SSWSS on EM for evolutionary developmental biology and this assay can be used to investigate the complex mixtures with regard to their effects on EM. (orig.)

  2. Mosaic Expression of Thyroid Hormone Regulatory Genes Defines Cell Type-Specific Dependency in the Developing Chicken Cerebellum.

    Science.gov (United States)

    Delbaere, Joke; Van Herck, Stijn L J; Bourgeois, Nele M A; Vancamp, Pieter; Yang, Shuo; Wingate, Richard J T; Darras, Veerle M

    2016-12-01

    The cerebellum is a morphologically unique brain structure that requires thyroid hormones (THs) for the correct coordination of key cellular events driving its development. Unravelling the interplay between the multiple factors that can regulate intracellular TH levels is a key step to understanding their role in the regulation of these cellular processes. We therefore investigated the regional/cell-specific expression pattern of TH transporters and deiodinases in the cerebellum using the chicken embryo as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), L-type amino acid transporter 1 (LAT1) and organic anion transporting polypeptide 1C1 (OATP1C1) as well as the inactivating type 3 deiodinase (D3) in the fourth ventricle choroid plexus, suggesting a possible contribution of the resulting proteins to TH exchange and subsequent inactivation of excess hormone at the blood-cerebrospinal fluid barrier. Exclusive expression of LAT1 and the activating type 2 deiodinase (D2) mRNA was found at the level of the blood-brain barrier, suggesting a concerted function for LAT1 and D2 in the direct access of active T 3 to the developing cerebellum via the capillary endothelial cells. The presence of MCT8 mRNA in Purkinje cells and cerebellar nuclei during the first 2 weeks of embryonic development points to a potential role of this transporter in the uptake of T 3 in central neurons. At later stages, together with MCT10, detection of MCT8 signal in close association with the Purkinje cell dendritic tree suggests a role of both transporters in TH signalling during Purkinje cell synaptogenesis. MCT10 was also expressed in late-born cells in the rhombic lip lineage with a clear hybridisation signal in the outer external granular layer, indicating a potential role for MCT10 in the proliferation of granule cell precursors. By contrast, expression of D3 in the first-born rhombic lip-derived population may

  3. Magnetic resonance microscopy atlas of equine embryonic development

    NARCIS (Netherlands)

    Jenner, F; Närväinen, J; de Ruijter-Villani, M; Stout, T A E; van Weeren, P R; Brama, P

    2014-01-01

    REASONS FOR PERFORMING STUDY: Equine embryogenesis post implantation is not well studied, and only two-dimensional illustrations are available. A thorough appreciation of the complex three-dimensional relationship between tissues and organs and their development is, however, crucial for

  4. Normal and Abnormal Embryonic Development in Virtual Reality

    NARCIS (Netherlands)

    L. Baken (Leonie)

    2014-01-01

    markdownabstract__Abstract__ Research of the past years indicates that the periconception period, the period including gametogenesis and embryogenesis, determines growth and development of the embryo and subsequent pregnancy outcome. Prenatal care starts to focus more on the first-trimester of

  5. Bumps and Ridges: Trabeculation Effects in Embryonic Heart Development

    Science.gov (United States)

    Battista, Nicholas; Lane, Andrea; Miller, Laura

    2014-11-01

    Trabeculae form in developing zebrafish hearts for Re on the order of 0.1; effects of trabeculae in this flow is not well understood. Dynamic processes, such as vortex formation, are important in the generation of shear at the endothelial surface layer and strains at the epithelial layer, which aid in proper morphology and functionality. In this study, CFD is used to quantify the effects of Re and idealized trabeculae height on the resulting flows.

  6. Periconceptional maternal one-carbon biomarkers are associated with embryonic development according to the Carnegie stages.

    Science.gov (United States)

    Parisi, F; Rousian, M; Koning, A H J; Willemsen, S P; Cetin, I; Steegers-Theunissen, R P M

    2017-03-01

    Is periconceptional maternal one-carbon (I-C) metabolism associated with embryonic morphological development in non-malformed ongoing pregnancies? Serum vitamin B12, red blood cell (RBC) folate and plasma total homocysteine (tHcy) are associated with embryonic development according to the Carnegie stages. Derangements in maternal I-C metabolism affect reproductive and pregnancy outcomes, as well as future health of the offspring. Between 2010 and 2014, women with singleton ongoing pregnancies were enrolled in a prospective periconceptional cohort study. A total of 234 pregnancies, including 138 spontaneous or IUI pregnancies with strict pregnancy dating and 96 pregnancies derived from IVF, ICSI or cryopreserved embryo transfer (IVF/ICSI pregnancies), underwent longitudinal transvaginal three-dimensional ultrasound (3D US) scans from 6+0 up to 10+2 weeks of gestation. Carnegie stages were defined using internal and external morphologic criteria in a virtual reality system. Maternal venous blood samples were collected at enrollment for serum vitamin B12, RBC folate and plasma tHcy assessment. Associations between biomarker concentrations and longitudinal Carnegie stages were investigated using linear mixed models. We performed a median of three 3D US scans per pregnancy (range 1-5) resulting in 600 good quality data sets for the Carnegie stage annotation (80.5%). Vitamin B12 was positively associated with embryonic development in the total study population (β = 0.001 (95% CI: 0.000; 0.002), P Carnegie stages only in IVF/ICSI pregnancies (β = 0.001 (95% CI: 0.0005; 0.0015), P < 0.05). In this group, low RBC folate concentrations (-2SD, 875.4 nmol/l) were associated with a 1.8-day delay (95% CI: 1.7-1.8) in development compared with high concentrations (+2SD, 2119.9 nmol/l). tHcy was negatively associated with embryonic development in the total study population (β = -0.08 (95% CI: -0.14; -0.02), P < 0.01), as well as in the IVF/ICSI subgroup (β = -0.08 (95% CI: -0

  7. Pluripotent Stem Cell Studies Elucidate the Underlying Mechanisms of Early Embryonic Development

    Directory of Open Access Journals (Sweden)

    Lingyu Li

    2011-03-01

    Full Text Available Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently, pluripotent stem cell lines derived from different developmental stages have provided an in vitro system for investigating molecular mechanisms regulating cell fate decisions. In this review, we summarize the major functions of the BMP, FGF, Nodal and Wnt signaling pathways, which have well-established roles in vertebrate embryogenesis. Then, we highlight recent studies in pluripotent stem cells that have revealed the stage-specific roles of BMP,FGF and Nodal pathways during neural differentiation. These findings enhance our understanding of the stepwise regulation of embryo patterning by particular signaling pathways and provide new insight into the mechanisms underlying early embryonic development.

  8. The influence of temperature on the embryonic development of the annual fish Cynopoecilus melanotaenia (Cyprinodontiformes, Rivulidae

    Directory of Open Access Journals (Sweden)

    A. ARENZON

    Full Text Available The present study aims to provide data about the time required for Cynopoecilus melanotaenia kept at different temperatures to complete embryonic development. This information can be valuable for optimizing laboratory culture and facilitating future use of this species as a test organism in toxicity tests. Temperature effects on hatching rate are presented as well as information related to embryonic development stages. Eggs were observed daily, from start to finish of embryonic development. Thirteen developmental stages were described. Eggs were kept at two constant temperatures (20°C and 25°C and at a variable ambient temperature (16-25°C - mean = 21°C, sd = 1.95, to determine developmental rate (velocity at each temperature. A shorter incubation period was necessary to complete development at 25° ± 1°C. However, all embryos kept at this temperature hatched with morphological defects, which prevented their survival. No significant difference in developmental time period (p = 0.05 was observed at the 20°C and 16°-25°C (mean = 21°C, sd = 1.95 temperatures.

  9. Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development

    International Nuclear Information System (INIS)

    Cheng, Xin; Chen, Jian-long; Ma, Zheng-lai; Zhang, Zhao-long; Lv, Shun; Mai, Dong-mei; Liu, Jia-jia; Chuai, Manli; Lee, Kenneth Ka Ho; Wan, Chao; Yang, Xuesong

    2014-01-01

    Dexamethasone (Dex) has anti-inflammatory and immunomodulatory properties against many conditions. There is a potential teratogenic risk, however, for pregnant women receiving Dex treatment. It has been claimed that Dex exposure during pregnancy could affect osteogenesis in the developing embryo, which still remains highly controversial. In this study, we employed chick embryos to investigate the effects of Dex exposure on skeletal development using combined in vivo and in vitro approach. First, we demonstrated that Dex (10 −8 –10 −6 μmol/egg) exposure resulted in a shortening of the developing long bones of chick embryos, and it accelerated the deposition of calcium salts. Secondly, histological analysis of chick embryo phalanxes exhibited Dex exposure inhibited the proliferation of chondrocytes, increased apoptosis of chondrocytes and osteocytes, and led to atypical arranged hypertrophic chondrocytes. The expression of genes related to skeletogenesis was also analyzed by semi-quantitative RT-PCR. The expression of ALP, Col1a2 and Col2a1 was decreased in the Dex treated phalanxes. A detectable increase was observed in Runx-2 and Mmp-13 expression. We next examined how Dex affected the different stages of skeletogenesis in vitro. Utilizing limb bud mesenchyme micromass cultures, we determined that Dex exposure exerted no effect on apoptosis but impaired chondrogenic cell proliferation. Interestingly, low dose of Dex moderately prompted nodule formation as revealed by alcian blue staining, but higher doses of Dex significantly inhibited similar chondrogenic differentiation. Dex exposure did not induce apoptosis when the chondrogenic precursors were still at the mesenchymal stage, however, cell viability was suppressed when the mesenchyme differentiated into chondrocytes. Alizarin red staining revealed that the capacity to form mineralized bone nodules was correspondingly enhanced as Dex concentrations increased. The mRNA level of Sox-9 was slightly increased

  10. Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xin; Chen, Jian-long; Ma, Zheng-lai; Zhang, Zhao-long; Lv, Shun; Mai, Dong-mei; Liu, Jia-jia [Department of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Medicine, Jinan University, Guangzhou 510632 (China); Chuai, Manli [Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH (United Kingdom); Lee, Kenneth Ka Ho; Wan, Chao [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Yang, Xuesong, E-mail: yang_xuesong@126.com [Department of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Medicine, Jinan University, Guangzhou 510632 (China); Institute of Fetal-Preterm Labor Medicine, Jinan University, Guangzhou 510632 (China)

    2014-11-15

    Dexamethasone (Dex) has anti-inflammatory and immunomodulatory properties against many conditions. There is a potential teratogenic risk, however, for pregnant women receiving Dex treatment. It has been claimed that Dex exposure during pregnancy could affect osteogenesis in the developing embryo, which still remains highly controversial. In this study, we employed chick embryos to investigate the effects of Dex exposure on skeletal development using combined in vivo and in vitro approach. First, we demonstrated that Dex (10{sup −8}–10{sup −6} μmol/egg) exposure resulted in a shortening of the developing long bones of chick embryos, and it accelerated the deposition of calcium salts. Secondly, histological analysis of chick embryo phalanxes exhibited Dex exposure inhibited the proliferation of chondrocytes, increased apoptosis of chondrocytes and osteocytes, and led to atypical arranged hypertrophic chondrocytes. The expression of genes related to skeletogenesis was also analyzed by semi-quantitative RT-PCR. The expression of ALP, Col1a2 and Col2a1 was decreased in the Dex treated phalanxes. A detectable increase was observed in Runx-2 and Mmp-13 expression. We next examined how Dex affected the different stages of skeletogenesis in vitro. Utilizing limb bud mesenchyme micromass cultures, we determined that Dex exposure exerted no effect on apoptosis but impaired chondrogenic cell proliferation. Interestingly, low dose of Dex moderately prompted nodule formation as revealed by alcian blue staining, but higher doses of Dex significantly inhibited similar chondrogenic differentiation. Dex exposure did not induce apoptosis when the chondrogenic precursors were still at the mesenchymal stage, however, cell viability was suppressed when the mesenchyme differentiated into chondrocytes. Alizarin red staining revealed that the capacity to form mineralized bone nodules was correspondingly enhanced as Dex concentrations increased. The mRNA level of Sox-9 was slightly

  11. Generation of Functional Thymic Epithelium from Human Embryonic Stem Cells that Supports Host T Cell Development

    OpenAIRE

    Parent, Audrey V.; Russ, Holger A.; Khan, Imran S.; LaFlam, Taylor N.; Metzger, Todd C.; Anderson, Mark S.; Hebrok, Matthias

    2013-01-01

    Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into th...

  12. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Ruixin Hao

    Full Text Available Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2 or vehicle from 3 hours to 4 days post fertilization (dpf, harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP. Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database. The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.

  13. Brood parasite and host eggshells undergo similar levels of decalcification during embryonic development

    Czech Academy of Sciences Publication Activity Database

    Igic, B.; Hauber, M. E.; Moskát, C.; Grim, T.; Shawkey, M. D.; Procházka, Petr; Honza, Marcel

    2017-01-01

    Roč. 301, č. 3 (2017), s. 165-173 ISSN 0952-8369 R&D Projects: GA ČR(CZ) GAP506/12/2404 Institutional support: RVO:68081766 Keywords : Acrocephalus arundinaceus * brood parasitism * Cuculus canorus * decalcification * eggshell thickness * embryonic development * common cuckoo * scanning electron microscopy Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.186, year: 2016

  14. Development of enzyme-linked immunosorbent assay for detecting Ornithobacterium rhinotracheale (ORT infection in chicken

    Directory of Open Access Journals (Sweden)

    Adin Priadi

    2006-10-01

    Full Text Available Ornithobacterium rhinotracheale (ORT has been recognized in chicken in Indonesia and incriminated as a possible additional causative agent in respiratory disease complex. An enzyme-linked immunosorbent assay (ELISA has been developed for the seroepidemiological study of ORT infection in chickens. Ten weeks old chickens are injected with 0.5 ml of killed O. rhinotracheale emulsified in Freund's complete adjuvant at a concentration of 109 CFU/ml. Hyperimmune sera and non-reactive control sera were used to standardized the ELISA for ORT infection. Optimum condition for the ORT ELISA was antigen dilution 1/800, serum dilution 1/100 and 1/4000 conjugate dilution. Optical density cut-off point was determined by using 31 serum samples from 2 broiler farms. Cut-off for negative serum was 0.27 (mean + 3 standard deviation. With these optima, 187 chicken sera from broiler, layer and broiler breeder farms were collected and screened. Seroconvertions were detected from broiler and layer farms in Magelang district, Central Java (Bojong I, Paremono, Bojong II, Keblukan and a broiler breeder farm in West Java. The seraconvertion were 0, 10, 94, 88 and 100 percents respectively. These figures show that the prevalence of O. rhinotracheale infection in chicken in layer and breeder farms were very high.

  15. Early first trimester maternal ‘high fish and olive oil and low meat’ dietary pattern is associated with accelerated human embryonic development

    NARCIS (Netherlands)

    Parisi, Francesca; Rousian, Melek; Steegers-Theunissen, Régine P.M.; Koning, Anton H.J.; Willemsen, Sten P.; Vries, de Jeanne H.M.; Cetin, Irene; Steegers, Eric A.P.

    2018-01-01

    Background/objectives: Maternal dietary patterns were associated with embryonic growth and congenital anomalies. We aim to evaluate associations between early first trimester maternal dietary patterns and embryonic morphological development among pregnancies with non-malformed outcome.

  16. Evaluation Of Some Blood Biochemical And Hormonal Levels During Different Ages Of Ostrich Embryonic Development

    International Nuclear Information System (INIS)

    ELSAYED, M.A.; FARGHALY, H.A.M.; MAHROSE, KH.

    2010-01-01

    Eighty ostrich eggs were collected from the breeding flock at the ostrich farm in the Nuclear Research Centre, Atomic Energy Authority, Inshas, Sharkia Governorate, Egypt, during the period from March to May 2008 to evaluate some blood constituents during ostrich embryonic development. All adult birds were kept under the same managerial, hygienic and environmental conditions and had 2.1 kg palletized feed per bird per day. Eggs were collected at 15.00 pm each day. Eggs were washed and weighed on an electric balance(±)0.01 g.The eggs were placed in the setter for 39 days at 36.5 0 C and 25 % relative humidity. After 39 days, eggs were transferred to hatcher machine at 35.5 0 C and 40 - 45 % relative humidity until hatch. Blood samples were collected at days 21, 28, 35 and 39 of embryonic development and at one day age after 12 hours of hatch. Serum total protein, albumin, globulin, creatinine, urea and uric acid levels were determined. Serum aspartate transaminase and alanine transaminase, total cholesterol, triglycerides and triiodothyronine levels were estimated. The results showed that chicks of one day old and older embryos of ostriches had significant higher values of serum blood components than younger embryos.On the other hand, blood serum cholesterol level was decreased significantly with age advancement during embryonic development and as well as chicks of one day old.

  17. The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation

    International Nuclear Information System (INIS)

    Li Jianzhong; Chen Xia; Yang Hua; Wang Shuiliang; Guo Baoyu; Yu Long; Wang Zhugang; Fu Jiliang

    2006-01-01

    Human zinc finger protein 191 (ZNF191/ZNF24) was cloned and characterized as a SCAN family member, which shows 94% identity to its mouse homologue zinc finger protein 191 (Zfp191). ZNF191 can specifically interact with an intronic polymorphic TCAT repeat (HUMTH01) in the tyrosine hydroxylase (TH) gene. Allelic variations of HUMTH01 have been stated to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. Zfp191 is widely expressed during embryonic development and in multiple tissues and organs in adult. To investigate the functions of Zfp191 in vivo, we have used homologous recombination to generate mice that are deficient in Zfp191. Heterozygous Zfp191 +/- mice are normal and fertile. Homozygous Zfp191 -/- embryos are severely retarded in development and die at approximately 7.5 days post-fertilization. Unexpectedly, in Zfp191 -/- and Zfp191 +/- embryos, TH gene expression is not affected. Blastocyst outgrowth experiments and the RNA interference-mediated knockdown of ZNF191 in cultured cells revealed an essential role for Zfp191 in cell proliferation. In further agreement with this function, no viable Zfp191 -/- cell lines were obtained by derivation of embryonic stem (ES) cells from blastocysts of Zfp191 +/- intercrosses or by forced homogenotization of heterozygous ES cells at high concentrations of G418. These data show that Zfp191 is indispensable for early embryonic development and cell proliferation

  18. Redeployment of germ layers related TFs shows regionalized expression during two non-embryonic developments.

    Science.gov (United States)

    Ricci, Lorenzo; Cabrera, Fabien; Lotito, Sonia; Tiozzo, Stefano

    2016-08-01

    In all non-vertebrate metazoan phyla, species that evolved non-embryonic developmental pathways as means of propagation or regeneration can be found. In this context, new bodies arise through asexual reproduction processes (such as budding) or whole body regeneration, that lack the familiar temporal and spatial cues classically associated with embryogenesis, like maternal determinants, or gastrulation. The molecular mechanisms underlying those non-embryonic developments (i.e., regeneration and asexual reproduction), and their relationship to those deployed during embryogenesis are poorly understood. We have addressed this question in the colonial ascidian Botryllus schlosseri, which undergoes an asexual reproductive process via palleal budding (PB), as well as a whole body regeneration by vascular budding (VB). We identified early regenerative structures during VB and then followed the fate of differentiating tissues during both non-embryonic developments (PB and VB) by monitoring the expression of genes known to play key functions in germ layer specification with well conserved expression patterns in solitary ascidian embryogenesis. The expression patterns of FoxA1, GATAa, GATAb, Otx, Bra, Gsc and Tbx2/3 were analysed during both PB and VB. We found that the majority of these transcription factors were expressed during both non-embryonic developmental processes, revealing a regionalization of the palleal and vascular buds. Knockdown of GATAa by siRNA in palleal buds confirmed that preventing the correct development of one of these regions blocks further tissue specification. Our results indicate that during both normal and injury-induced budding, a similar alternative developmental program operates via early commitment of epithelial regions. Copyright © 2016. Published by Elsevier Inc.

  19. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  20. Paternal identity impacts embryonic development for two species of freshwater fish

    DEFF Research Database (Denmark)

    Siddique, Mohammad Abdul Momin; Linhart, Otomar; Krejszeff, Sławomir

    2017-01-01

    then partition variation in embryonic phenotypic performance to maternal, paternal, and parental interactions using the Restricted Maximum Likelihood (REML) model. Results showed that paternal, maternal, and the paternal. ×. maternal interaction terms were highly significant for both species; clearly......Paternal, compared to maternal, contributions were believed to have only a limited influence on embryonic development and larval fitness traits in fishes. Therefore, the perspective of male influence on early life history traits has come under scrutiny. This study was conducted to determine...... demonstrating that certain family combinations were more compatible than others. Paternal effects explained 20.24% of the total variance, which was 2-fold higher than the maternal effects (10.73%) in Ide, while paternal effects explained 18.9% of the total variance, which was 15-fold higher than the maternal...

  1. Effect of silver nanoparticles and hydroxyproline, administered in ovo, on the development of blood vessels and cartilage collagen structure in chicken embryos

    DEFF Research Database (Denmark)

    Beck, Iwona; Hotowy, Anna; Sawosz, Ewa

    2015-01-01

    . An assessment of the mass of embryo and selected organs was carried out followed by measurements of the expression of the key signalling factors' fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor-A (VEGF-A). Finally, an evaluation of collagen microstructure using scanning electron...... microscopy was performed. Our results clearly indicate that Hyp, Ag and AgHyp administered in ovo to chicken embryos did not harm embryos. Comparing to the control group, Hyp, Ag and the AgHyp complex significantly upregulated expression of the FGF-2 at the mRNA and protein levels. Moreover, Hyp, Ag and......It has been considered that concentrations of certain amino acids in the egg are not sufficient to fully support embryonic development of modern broilers. In this study we evaluated embryo growth and development with particular emphasis on one of the major components of connective tissue, collagen...

  2. Incubation Temperature during Fetal Development Influences Morphophysiological Characteristics and Preferred Ambient Temperature of Chicken Hatchlings.

    Directory of Open Access Journals (Sweden)

    Viviane de Souza Morita

    Full Text Available Skin and feather characteristics, which play a critical role in body temperature maintenance, can be affected by incubation circumstances, such as incubation temperature. However, no study to date has assessed the influence of incubation temperature during the fetal stage on morphometric characteristics and vascular development of the skin, feather characteristics, and their relationship to hormone levels and preferred temperature in later life in chickens. Broiler breeder eggs were exposed to low (36°C, control (37.5°C, or high (39°C temperatures (treatments LT, CK, and HT, respectively from day 13 of incubation onward, because it is known that the endocrine axes are already established at this time. During this period, eggshell temperature of HT eggs (38.8±0.33°C was higher than of LT (37.4±0.08°C and CK eggs (37.8 ±0.15°C. The difference between eggshell and incubator air temperature diminished with the increasing incubation temperature, and was approximately zero for HT. HT hatchlings had higher surface temperature on the head, neck, and back, and thinner and more vascularized skin than did CK and LT hatchlings. No differences were found among treatments for body weight, total feather weight, number and length of barbs, barbule length, and plasma T4 concentration. LT hatchlings showed lower plasma T3 and GH, as well as lower T3/T4 ratio and decreased vascularity in the neck, back, and thigh skin compared to CK hatchlings. On the other hand, HT hatchlings had decreased skin thickness and increased vascularity, and preferred a higher ambient temperature compared to CK and HT hatchlings. In addition, for all treatments, surface temperature on the head was higher than of the other body regions. We conclude that changes in skin thickness and vascularity, as well as changes in thyroid and growth hormone levels, are the result of embryonic strategies to cope with higher or lower than normal incubation temperatures. Additionally exposure to

  3. The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors

    DEFF Research Database (Denmark)

    Alexopoulou, Annika N; Couchman, John R; Whiteford, James

    2008-01-01

    BACKGROUND: Mouse embryonic stem cells cultured in vitro have the ability to differentiate into cells of the three germ layers as well as germ cells. The differentiation mimics early developmental events, including vasculogenesis and early angiogenesis and several differentiation systems are being...... used to identify factors that are important during the formation of the vascular system. Embryonic stem cells are difficult to transfect, while downregulation of promoter activity upon selection of stable transfectants has been reported, rendering the study of proteins by overexpression difficult....... RESULTS: CCE mouse embryonic stem cells were differentiated on collagen type IV for 4-5 days, Flk1+ mesodermal cells were sorted and replated either on collagen type IV in the presence of VEGFA to give rise to endothelial cells and smooth muscle cells or in collagen type I gels for the formation...

  4. Perinatal development and nutrient utilization in chickens : effects of incubation conditions

    NARCIS (Netherlands)

    Molenaar, R.

    2010-01-01

    Suboptimal incubation conditions can negatively affect survival and development of chicken embryos. However, physiological mechanisms that may explain these effects, and the long-lasting consequences are largely unknown. Therefore, the first aim of this thesis was to investigate effects of eggshell

  5. Development of an Enzyme Linked Immunosorbent Assay to Detect Chicken Parvovirus Specific Antibodies

    Science.gov (United States)

    Here we report the development and application of an enzyme linked immunosorbent assay to detect parvovirus-specific antibodies in chicken sera. We used an approach previously described for other parvoviruses to clone and express viral structural proteins in insect cells from recombinant baculovirus...

  6. Development of a chicken enterocyte culture to study its functional physiology

    Science.gov (United States)

    We developed a method to culture chicken intestinal enterocytes, the cells that absorb and form protective barriers against enteric bacteria, to study their functional physiologies. Using intestinal villi, harvested from day old broiler chicks, the enterocytes were isolated by sequential digestion ...

  7. Development and Characterization of Mouse Monoclonal Antibodies Reactive with Chicken CD83

    Science.gov (United States)

    This study was carried out to develop and characterize mouse monoclonal antibodies (mAbs) against chicken CD83 (chCD83), a membrane-bound glycoprotein belonging to the immunoglobulin superfamily that is primarily expressed on mature dendritic cells (DCs). A recombinant chCD83/IgG4 fusion protein con...

  8. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    Energy Technology Data Exchange (ETDEWEB)

    Sandercock, Brett K. [Kansas State Univ., Manhattan, KS (United States)

    2013-05-22

    This report summarizes the results of a seven-year, DOE-funded research project, conducted by researchers from Kansas State University and the National Wind Coordinating Collaborative, to assess the effects of wind energy development in Kansas on the population and reproduction of greater prairie chickens.

  9. RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Qun Zhao

    2017-04-01

    Full Text Available RIPK3 mediates cell death and regulates inflammatory responses. Although genetic studies have suggested that RIPK3-MLKL-mediated necroptosis leads to embryonic lethality in Fadd or Caspase-8-deficient mice, the exact mechanisms are not fully understood. Here, we generated Ripk3 mutant mice by altering the RIPK3 kinase domain (Ripk3Δ/Δ mice, thus abolishing its kinase activity. Ripk3Δ/Δ cells were resistant to necroptosis stimulation in vitro, and Ripk3Δ/Δ mice were protected from necroptotic diseases. Although the Ripk3Δ/Δ mutation rescued embryonic lethality in Fadd−/− embryos, Fadd−/− Ripk3Δ/Δ mice died within 1 day after birth due to massive inflammation. These results indicate that Ripk3 ablation rescues embryonic lethality in Fadd-deficient mice by suppressing two RIPK3-mediating processes: necroptosis during embryogenesis and inflammation during postnatal development in Fadd−/− mice.

  10. Protective effects of resveratrol on ethanol-induced apoptosis in embryonic stem cells and disruption of embryonic development in mouse blastocysts

    International Nuclear Information System (INIS)

    Huang, L.-H.; Shiao, N.-H.; Hsuuw, Y.-D.; Chan, W.-H.

    2007-01-01

    Previous studies have established that ethanol induces apoptosis, but the precise molecular mechanisms are currently unclear. Here, we show that 0.3-1.0% (w/v) ethanol induces apoptosis in mouse blastocysts and that resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties, prevents ethanol-induced apoptosis and inhibition of cell proliferation. Moreover, ethanol-treated blastocysts show normal levels of implantation on culture dishes in vitro but a reduced ability to reach the later stages of embryonic development. Pretreatment with resveratrol prevented ethanol-induced disruption of embryonic development in vitro and in vivo. In an in vitro cell-based assay, we further found that ethanol increases the production of reactive oxygen species in ESC-B5 embryonic stem cells, leading to an increase in the intracellular concentrations of cytoplasmic free Ca 2+ and NO, loss of mitochondrial membrane potential, mitochondrial release of cytochrome c, activation of caspase-9 and -3, and apoptosis. These changes were blocked by pretreatment with resveratrol. Based on these results, we propose a model for the protective effect of resveratrol on ethanol-induced cell injury in blastocysts and ESC-B5 cells

  11. Contribution to the study of the reduction of sulfate by the yolk sac of the chicken embryo; Contribution a l'etude de la reduction du sulfate par le sac vitellin de l'embryon de poulet

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Claude

    1958-11-15

    This academic reports addresses additional information obtained about the reduction of sulfate into sulphite by the yolk sac of a chicken embryo. Two important difficulties have been faced: the impossibility to isolate this reduction from reactions which immediately use the formed sulphite, and the impossibility to obtain an acellular preparation able to reduce the sulfate. Then, the problem of reduction of sulfate into sulphite by the yolk sac is associated with the problem of permeability of yolk sac cells to the studied substances. Thus, the author studied whether other animal species could provide a better material than the chicken embryo for this study of sulfate reduction. It appears that some vertebrate embryos present some evidence of sulphur metabolism similar to that of chicken embryo. However, this last one revealed to be the most favourable for the study. The author reports the study of the evolution of the reduction activity of the yolk sac sulfate with respect to the embryo age, and the effect of some metabolic inhibitors on this activity [French] Dans le present travail nous avons obtenu quelques renseignements concernant la reduction du sulfate en sulfite par l'embryon de poulet. Cette etude a ete menee, a l'aide de substances marquees par le soufre {sup 35}S, par les methodes qui avaient permis anterieurement a Chapeville et Fromageot de mettre en evidence cette reaction et les reactions qui lui font suite au cours de la synthese des aminoacides soufres. Pour apprecier la reduction du sulfate {sup 35}S, nous avons mesure la quantite d'acide cysteique {sup 35}S et de taurine {sup 35}S formes a partir du sulfite {sup 35}S. Appliquant ces techniques aux embryons d'especes animales variees, nous avons constate que quelques embryons de vertebres etaient capables d'utiliser le sulfite a la synthese d'acide cysteique: les embryons de roussette et de rat avec un rendement faible, l'embryon d'un passereau de la famille des turdides, comme celui du poulet

  12. L1 arrest, daf-16/FoxO and nonautonomous control of post-embryonic development.

    Science.gov (United States)

    Kaplan, Rebecca E W; Baugh, L Ryan

    2016-01-01

    Post-embryonic development is governed by nutrient availability. L1 arrest, dauer formation and aging illustrate how starvation, anticipation of starvation and caloric restriction have profound influence on C. elegans development, respectively. Insulin-like signaling through the Forkhead box O transcription factor daf-16/FoxO regulates each of these processes. We recently reported that ins-4, ins-6 and daf-28 promote L1 development from the intestine and chemosensory neurons, similar to their role in dauer development. daf-16 functions cell-nonautonomously in regulation of L1 arrest, dauer development and aging. Discrepancies in daf-16 sites of action have been reported in each context, but the consensus implicates epidermis, intestine and nervous system. We suggest technical limitations of the experimental approach responsible for discrepant results. Steroid hormone signaling through daf-12/NHR is known to function downstream of daf-16 in control of dauer development, but signaling pathways mediating cell-nonautonomous effects of daf-16 in aging and L1 arrest had not been identified. We recently showed that daf-16 promotes L1 arrest by inhibiting daf-12/NHR and dbl-1/TGF-β Sma/Mab signaling, two pathways that promote L1 development in fed larvae. We will review these results on L1 arrest and speculate on why there are so many signals and signaling centers regulating post-embryonic development.

  13. Co-infection of chickens with Eimeria praecox and Eimeria maxima does not prevent development of immunity to Eimeria maxima.

    Science.gov (United States)

    Jenkins, M; Fetterer, R; Miska, K

    2009-05-12

    Previous studies revealed an ameliorating effect of Eimeria praecox on concurrent E. maxima infection, such that weight gain, feed conversion ratio, and intestinal lesions were nearly identical to uninfected or E. praecox-infected controls. The purpose of the present study was to determine if protective immunity against E. maxima challenge infection developed in chickens infected with both E. praecox and E. maxima. Day-old chickens were infected with 10(3)E. praecox, 10(3)E. maxima, or a mixture of 10(3)E. praecox and 10(3)E. maxima oocysts. Chickens were then challenged at 4 weeks of age with 5x10(4)E. praecox or 5x10(3)E. maxima oocysts and clinical signs of coccidiosis were assessed 7 days post-challenge. Relative to non-challenged controls, naïve chickens or chickens immunized with E. praecox displayed a 32-34% weight gain depression after challenge with 5x10(3)E. maxima oocysts. In contrast, chickens immunized with either E. maxima oocysts alone or a combination of E. praecox and E. maxima oocysts displayed complete protection against lower weight gain associated with E. maxima challenge. Also, protection against decreased feed conversion ratio and intestinal lesions was observed in single E. maxima- or dual E. maxima+E. praecox-immunized chickens. These findings indicate that co-infection of chickens with E. maxima and E. praecox does not prevent development of immunity against E. maxima or E. praecox challenge.

  14. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Piya Prajumwongs

    2016-01-01

    Full Text Available Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation.

  15. Temperature dependent embryonic development of Trichuris suis eggs in a medicinal raw material

    DEFF Research Database (Denmark)

    Vejzagic, Nermina; Kringel, Helene; Bruun, Johan Musaeus

    2016-01-01

    in Göttingen minipigs.Both male and female pigs were used to evaluate eventual gender specific infectivity. Storage at 30 °C up to 14 weeks and subsequent embryonation for 14 weeks at 25 °C did not significantly reduce the overall larval establishment in minipigs, as compared to storage at 5 °C and subsequent...... analysis (OvaSpec), and an egg hatching assay prior to the final testing in minipigs (Trial 1). These methods showed that the development started earlier at higher temperatures, but the long-term storage at higher temperature affected the egg development. The present study further documents tolerance...

  16. Function of the PHA-4/FOXA transcription factor during C. elegans post-embryonic development

    Directory of Open Access Journals (Sweden)

    Chen Di

    2008-02-01

    Full Text Available Abstract Background pha-4 encodes a forkhead box (FOX A transcription factor serving as the C. elegans pharynx organ identity factor during embryogenesis. Using Serial Analysis of Gene Expression (SAGE, comparison of gene expression profiles between growing stages animals and long-lived, developmentally diapaused dauer larvae revealed that pha-4 transcription is increased in the dauer stage. Results Knocking down pha-4 expression by RNAi during post-embryonic development showed that PHA-4 is essential for dauer recovery, gonad and vulva development. daf-16, which encodes a FOXO transcription factor regulated by insulin/IGF-1 signaling, shows overlapping expression patterns and a loss-of-function post-embryonic phenotype similar to that of pha-4 during dauer recovery. pha-4 RNAi and daf-16 mutations have additive effects on dauer recovery, suggesting these two regulators may function in parallel pathways. Gene expression studies using RT-PCR and GFP reporters showed that pha-4 transcription is elevated under starvation, and a conserved forkhead transcription factor binding site in the second intron of pha-4 is important for the neuronal expression. The vulval transcription of lag-2, which encodes a ligand for the LIN-12/Notch lateral signaling pathway, is inhibited by pha-4 RNAi, indicating that LAG-2 functions downstream of PHA-4 in vulva development. Conclusion Analysis of PHA-4 during post-embryonic development revealed previously unsuspected functions for this important transcriptional regulator in dauer recovery, and may help explain the network of transcriptional control integrating organogenesis with the decision between growth and developmental arrest at the dauer entry and exit stages.

  17. Medical student retention of embryonic development: impact of the dimensions added by multimedia tutorials.

    Science.gov (United States)

    Marsh, Karen R; Giffin, Bruce F; Lowrie, Donald J

    2008-01-01

    The purpose of this project was to develop Web-based learning modules that combine (1) animated 3D graphics; (2) 3D models that a student can manipulate independently; (3) passage of time in embryonic development; and (4) animated 2D graphics, including 2D cross-sections that represent different "slices" of the embryo, and animate in parallel. These elements were presented in two tutorials, one depicting embryonic folding and the other showing development of the nervous system after neural tube formation. The goal was to enhance the traditional teaching format-lecture combined with printed diagrams, text, and existing computer animations-with customized, guided, Web-based learning modules that surpassed existing resources. To assess module effectiveness, we compared quiz performance of control groups who attended lecture and did not use a supporting module, with study groups who used a module in addition to attending lecture. We also assessed our students' long-term retention of the material, comparing classes who had used the module with students from a previous year that had not seen the module. Our data analysis suggests that students who used a module performed better than those given only traditional resources if they used the module after they were already somewhat familiar with the material. The findings suggest that our modules-and possibly computer-assisted-instruction modules in general-are more useful if used toward the later stages of learning, rather than as an initial resource. Furthermore, our data suggest that the animation aids in long-term retention. Both medical students at the University of Cincinnati and medical faculty from across the country commented favorably on their experiences with the embryonic development modules. Copyright 2008 American Association of Anatomists

  18. Fe(III Is Essential for Porcine Embryonic Development via Mitochondrial Function Maintenance.

    Directory of Open Access Journals (Sweden)

    Ming-Hui Zhao

    Full Text Available Iron is an important trace element involved in several biological processes. The role of iron in porcine early embryonic development remains unknown. In the present study, we depleted iron (III, Fe3+ with deferoxamine (DFM, a specific Fe3+ chelator, in cultured porcine parthenotes and monitored embryonic development, apoptosis, mitochondrial membrane potential, and ATP production. Results showed biphasic function of Fe3+ in porcine embryo development. 0.5 μM DFM obviously increased blastocyst formation (57.49 ± 2.18% vs. control, 43.99 ± 1.72%, P < 0.05 via reduced (P < 0.05 production of reactive oxygen species (ROS, further increased mitochondrial membrane potential and ATP production in blastocysts (P < 0.05. 0.5 μM DFM decreased mRNA expression of Caspase 3 (Casp3 and increased Bcl-xL. However, results showed a significant reduction in blastocyst formation in the presence of 5.0 μM DFM compared with the control group (DFM, 21.62 ± 3.92% vs. control, 43.99 ± 1.73%, P < 0.05. Fe3+ depletion reduced the total (DFM, 21.10 ± 8.78 vs. control, 44.09 ± 13.65, P < 0.05 and increased apoptotic cell number (DFM, 11.10 ± 5.24 vs. control, 2.64 ± 1.43, P < 0.05 in the blastocyst. An obvious reduction in mitochondrial membrane potential and ATP level after 5.0 μM DFM treatment was observed. Co-localization between mitochondria and cytochrome c was reduced after high concentration of DFM treatment. In conclusion, Fe3+ is essential for porcine embryonic development via mitochondrial function maintenance, but redundant Fe3+ impairs the function of mitochondria.

  19. Ochratoxin A Inhibits Mouse Embryonic Development by Activating a Mitochondrion-Dependent Apoptotic Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yan-Der Hsuuw

    2013-01-01

    Full Text Available Ochratoxin A (OTA, a mycotoxin found in many foods worldwide, causes nephrotoxicity, hepatotoxicity, and immunotoxicity, both in vitro and in vivo. In the present study, we explored the cytotoxic effects exerted by OTA on the blastocyst stage of mouse embryos, on subsequent embryonic attachment, on outgrowth in vitro, and following in vivo implantation via embryo transfer. Mouse blastocysts were incubated with or without OTA (1, 5, or 10 μM for 24 h. Cell proliferation and growth were investigated using dual differential staining; apoptosis was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL assay; and embryo implantation and post-implantation development were assessed by examination of in vitro growth and the outcome of in vivo embryo transfer, respectively. Blastocysts treated with 10 μM OTA displayed a significantly increased level of apoptosis and a reduction in total cell number. Interestingly, we observed no marked difference in implantation success rate between OTA-pretreated and control blastocysts either during in vitro embryonic development (following implantation in a fibronectin-coated culture dish or after in vivo embryo transfer. However, in vitro treatment with 10 μM OTA was associated with increased resorption of post-implantation embryos by the mouse uterus, and decreased fetal weight upon embryo transfer. Our results collectively indicate that in vitro exposure to OTA triggers apoptosis and retards early post-implantation development after transfer of embryos to host mice. In addition, OTA induces apoptosis-mediated injury of mouse blastocysts, via reactive oxygen species (ROS generation, and promotes mitochondrion-dependent apoptotic signaling processes that impair subsequent embryonic development.

  20. Semaphorin-1a is required for Aedes aegypti embryonic nerve cord development.

    Directory of Open Access Journals (Sweden)

    Morgan Haugen

    Full Text Available Although mosquito genome projects have uncovered orthologues of many known developmental regulatory genes, extremely little is known about mosquito development. In this study, the role of semaphorin-1a (sema1a was investigated during vector mosquito embryonic ventral nerve cord development. Expression of sema1a and the plexin A (plexA receptor are detected in the embryonic ventral nerve cords of Aedes aegypti (dengue vector and Anopheles gambiae (malaria vector, suggesting that Sema1a signaling may regulate mosquito nervous system development. Analysis of sema1a function was investigated through siRNA-mediated knockdown in A. aegypti embryos. Knockdown of sema1a during A. aegypti development results in a number of nerve cord phenotypes, including thinning, breakage, and occasional fusion of the longitudinal connectives, thin or absent commissures, and general distortion of the nerve cord. Although analysis of Drosophila melanogaster sema1a loss-of-function mutants uncovered many similar phenotypes, aspects of the longitudinal phenotypes differed between D. melanogaster and A. aegypti. The results of this investigation suggest that Sema1a is required for development of the insect ventral nerve cord, but that the developmental roles of this guidance molecule have diverged in dipteran insects.

  1. Origin of pluripotent germ cell tumours: the role of microenvironment during embryonic development

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Sonne, Si Brask; Ottesen, Anne Marie

    2008-01-01

    into virtually any type of tissue and form teratomas (non-seminomas). CIS cells display a close phenotypic similarity to fetal germ cells (primordial germ cells or gonocytes) suggesting an origin due to a developmental delay or arrest of differentiation of early germ cells. The pluripotency of these neoplasms...... in several tissue specific stem cells, such as TFAP2C (AP-2gamma) or KIT. CIS and seminomas highly express a number of pre-meiotic germ cell specific genes, which are down-regulated during development to non-seminomas, while the expression of other embryonic markers, such as SOX2, is up...

  2. Preliminary observations on the effects of selenate on the development of the embryonic skate, Raja eglanteria

    Science.gov (United States)

    Conrad, G. W.; Luer, C. A.; Paulsen, A. Q.; Funderburgh, J. L.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Morphogenesis of the clearnose skate, Raja eglanteria, was not significantly inhibited as a result of 7 days of exposure to 1-2 mM selenate in the sea water during Days 59-69 of embryonic development (hatching would normally have occurred at 82 +/- 4 days of incubation). Although corneal transparency appeared normal in the eye, preliminary measurements of the thickness of Bowman's layer of the cornea suggested that it was significantly thinner in the corneas of embryos exposed to 1-2 mM selenate. Selenate is an ion reported to inhibit sulfation of glycosaminoglycans in connective tissue.

  3. Rhein Induces Oxidative Stress and Apoptosis in Mouse Blastocysts and Has Immunotoxic Effects during Embryonic Development

    Directory of Open Access Journals (Sweden)

    Chien-Hsun Huang

    2017-09-01

    Full Text Available Rhein, a glucoside chemical compound found in a traditional Chinese medicine derived from the roots of rhubarb, induces cell apoptosis and is considered to have high potential as an antitumor drug. Several previous studies showed that rhein can inhibit cell proliferation and trigger mitochondria-related or endoplasmic reticulum (ER stress-dependent apoptotic processes. However, the side effects of rhein on pre- and post-implantation embryonic development remain unclear. Here, we show that rhein has cytotoxic effects on blastocyst-stage mouse embryos and induces oxidative stress and immunotoxicity in mouse fetuses. Blastocysts incubated with 5–20 μM rhein showed significant cell apoptosis, as well as decreases in their inner cell mass cell numbers and total cell numbers. An in vitro development assay showed that rhein affected the developmental potentials of both pre- and post-implantation embryos. Incubation of blastocysts with 5–20 μM rhein was associated with increased resorption of post-implantation embryos and decreased fetal weight in an embryo transfer assay. Importantly, in an in vivo model, intravenous injection of dams with rhein (1, 3, and 5 mg/kg body weight/day for four days resulted in apoptosis of blastocyst-stage embryos, early embryonic developmental injury, and decreased fetal weight. Intravenous injection of dams with 5 mg/kg body weight/day rhein significantly increased the total reactive oxygen species (ROS content of fetuses and the transcription levels of antioxidant proteins in fetal livers. Additional work showed that rhein induced apoptosis through ROS generation, and that prevention of apoptotic processes effectively rescued the rhein-induced injury effects on embryonic development. Finally, the transcription levels of the innate-immunity related genes, CXCL1, IL-1 β and IL-8, were down-regulated in the fetuses of dams that received intravenous injections of rhein. These results collectively show that rhein has

  4. Modulation of ovarian steroidogenesis by adiponectin during delayed embryonic development of Cynopterus sphinx.

    Science.gov (United States)

    Anuradha; Krishna, Amitabh

    2014-09-01

    The aim of present study was to evaluate role of adiponectin in ovarian steroidogenesis during delayed embryonic development of Cynopterus sphinx. This study showed significantly low circulating adiponectin level and a decline in expression of adiponectin receptor 1 (AdipoR1) in the ovary during the period of delayed embryonic development as compared with the normal development. The adiponectin treatment in vivo during the period of delayed development caused significantly increased in circulating progesterone and estradiol levels together with increased expression of AdipoR1 in the ovary. The in vitro study confirmed the stimulatory effect of adiponectin on progesterone synthesis. Both in vivo and in vitro studies showed that the effects of adiponectin on ovarian steroidogenesis were mediated through increased expression of luteinizing hormone-receptor, steroidogenic acute regulatory protein and 3β-hydroxyl steroid dehydrogenase enzyme. The adiponectin treatment may also promote progesterone synthesis by modulating ovarian angiogenesis, cell survival and rate of apoptosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Lipid metabolism during embryonic development of the common snapping turtle, Chelydra serpentina.

    Science.gov (United States)

    Lawniczak, Cynthia J; Teece, Mark A

    2009-05-01

    The metabolism of lipids and fatty acids during embryonic development of Chelydra serpentina (common snapping turtle) was investigated. Substantial changes in lipid class and fatty acid composition occurred as lipids were transferred from the yolk to the yolk sac membrane (YSM) and then to the brain, eyes, heart, and lungs of the hatchling. Lipids were hydrolyzed in the yolk prior to transport to the YSM, shown by a large increase in free fatty acids (FFAs) during the second half of development. Triglyceride-derived docosahexaenoic acid (DHA) was utilized preferentially to phospholipid-derived DHA. In the YSM, arachidonic acid (ARA) was selectively incorporated into phospholipids while DHA was preferentially incorporated into triglycerides. Selective incorporation of DHA and ARA into the brain and eyes, and ARA into the heart was observed, indicating the importance of these PUFAs for organ development and function. The amount of DHA and ARA in each organ was less than 1% of that measured in the yolk of the freshly laid egg, indicating that only a small portion of yolk PUFAs were incorporated into the hatchling organs studied. We discuss the differences in the mechanisms and utilization of yolk lipids in turtles compared with lipid uptake during embryonic development in birds.

  6. Ofd1 controls dorso-ventral patterning and axoneme elongation during embryonic brain development.

    Directory of Open Access Journals (Sweden)

    Anna D'Angelo

    Full Text Available Oral-facial-digital type I syndrome (OFDI is a human X-linked dominant-male-lethal developmental disorder caused by mutations in the OFD1 gene. Similar to other inherited disorders associated to ciliary dysfunction OFD type I patients display neurological abnormalities. We characterized the neuronal phenotype that results from Ofd1 inactivation in early phases of mouse embryonic development and at post-natal stages. We determined that Ofd1 plays a crucial role in forebrain development, and in particular, in the control of dorso-ventral patterning and early corticogenesis. We observed abnormal activation of Sonic hedgehog (Shh, a major pathway modulating brain development. Ultrastructural studies demonstrated that early Ofd1 inactivation results in the absence of ciliary axonemes despite the presence of mature basal bodies that are correctly orientated and docked. Ofd1 inducible-mediated inactivation at birth does not affect ciliogenesis in the cortex, suggesting a developmental stage-dependent role for a basal body protein in ciliogenesis. Moreover, we showed defects in cytoskeletal organization and apical-basal polarity in Ofd1 mutant embryos, most likely due to lack of ciliary axonemes. Thus, the present study identifies Ofd1 as a developmental disease gene that is critical for forebrain development and ciliogenesis in embryonic life, and indicates that Ofd1 functions after docking and before elaboration of the axoneme in vivo.

  7. THE EFFECTS OF WATER TEMPERATURE REGIME FLUCTUATIONS ON THE EMBRYONIC DEVELOPMENT OF SILVER CARP (HYPOPHTHALMICHTHYS MOLITRIX

    Directory of Open Access Journals (Sweden)

    А. Vodyanitskyi

    2015-03-01

    Full Text Available Purpose. To determine the effect of temperature regime fluctuations on the development of silver carp embryos, as well as the activity of enzymatic reactions in fish eggs. Methodology. The studies were conducted at the experimental station of the Institute of Hydrobiology of Bila Tserkov, Ukrainian National Academy of Sciences, from June to July. The biological materials were silver carp eggs, embryos and larvae. The dissolved oxygen content was determined using the Winkler method at four o’clock in the morning. Alkalinity phosphatase and LDG activity were determined using a set of reagents «Alkalinity phosphatase» and «LDG» (Phyllis diagnosis, Ukraine. SDH activity was determined by Vexy. The activity of Na, K-Mg-dependent-activated ATPase was determined as growth of inorganic phosphorus in the incubation medium by Kindratova M.N. et al. Protease activity was determined using immune enzymatic method of Tyurina et al. The obtained results were processed statistically in Statistica 5.5, Epaprobit analysis was used for calculating LC/EC values (Version 1.5. Findings The results showed that a delay of embryonic stages of development occur, the number of abnormal embryos increases, and the reproduction efficiency of fish reduces with an increase in water temperature and decrease in the dissolved oxygen content in water. The temperature factor had a significant effect on the activity of key enzymes, in particular the energetic metabolism changed from aerobic to anaerobic. Originality. It was found a negative effect of abiotic factors of water medium and drastic fluctuations in water temperature and gas regime of water bodies on the course of embryogenesis of silver carp that is especially important in the conditions of climate change. Practical value. The obtained results showed that the level of optimum and unfavorable environmental factors during the change of embryonic stages in embryonic and larval fish can be established based on the

  8. Proximate effects of temperature versus evolved intrinsic constraints for embryonic development times among temperate and tropical songbirds

    Science.gov (United States)

    Ton, Riccardo; Martin, Thomas E.

    2017-01-01

    The relative importance of intrinsic constraints imposed by evolved physiological trade-offs versus the proximate effects of temperature for interspecific variation in embryonic development time remains unclear. Understanding this distinction is important because slow development due to evolved trade-offs can yield phenotypic benefits, whereas slow development from low temperature can yield costs. We experimentally increased embryonic temperature in free-living tropical and north temperate songbird species to test these alternatives. Warmer temperatures consistently shortened development time without costs to embryo mass or metabolism. However, proximate effects of temperature played an increasingly stronger role than intrinsic constraints for development time among species with colder natural incubation temperatures. Long development times of tropical birds have been thought to primarily reflect evolved physiological trade-offs that facilitate their greater longevity. In contrast, our results indicate a much stronger role of temperature in embryonic development time than currently thought.

  9. Origin and early development of the chicken adenohypophysis.

    Directory of Open Access Journals (Sweden)

    Luisa eSanchez-Arrones

    2015-02-01

    Full Text Available The adenohypophysis (ADH is an important endocrine organ involved in the regulation of many physiological processes. The late morphogenesis of this organ at neural tube stages is well known: the epithelial ADH primordium is recognized as an invagination of the stomodeal roof (Rathke’s pouch, whose walls later thicken and differentiate as the primordium becomes pediculated, and then fully separated from the stomodeum. The primordium attaches to the pial surface of the basal hypothalamus, next to the neurohypophyseal field (NH; future posterior pituitary, from which it was previously separated by migrating prechordal plate cells. Once the NH evaginates, the ADH surrounds it and jointly forms with it the pituitary gland. In contrast, little is known about the precise origin of the ADH precursors at neural plate stages and how the primordium reaches the stomodeum. For that reason, we produced in the chicken a specific ADH fate map at early neural plate stages, which was amplified with gene markers. By means of experiments labelling the mapped presumptive ADH, we were able to follow the initial anlage into its transformation into Rathke’s pouch. The ADH origin was corroborated to be strictly extraneural, i.e., to lie at stage HH4/5 outside of the anterior neural plate within the pre-placodal field. The ADH primordium is fully segregated from the anterior neural border cells and the neighboring olfactory placodes both in terms of precursor cells and molecular profile from head fold stages onwards. The placode becomes visible as a molecularly characteristic ectodermal thickening from stage HH10 onwards. The onset of ADH genoarchitectonic regionalization into intermediate and anterior lobes occurs at closed neural tube stages.

  10. Differential gene expression patterns during embryonic development of sea urchin exposed to triclosan.

    Science.gov (United States)

    Hwang, Jinik; Suh, Sung-Suk; Park, Mirye; Park, So Yun; Lee, Sukchan; Lee, Taek-Kyun

    2017-02-01

    Triclosan (TCS; 2,4,4'-trichloro-2'-hydroxydiphenyl ether) is a broad-spectrum antibacterial agent used in common industrial, personal care and household products which are eventually rinsed down the drain and discharged with wastewater effluent. It is therefore commonly found in the aquatic environment, leading to the continual exposure of aquatic organisms to TCS and the accumulation of the antimicrobial and its harmful degradation products in their bodies. Toxic effects of TCS on reproductive and developmental progression of some aquatic organisms have been suggested but the underlying molecular mechanisms have not been defined. We investigated the expression patterns of genes involved in the early development of TCS-treated sea urchin Strongylocentrotus nudus using cDNA microarrays. We observed that the predominant consequence of TCS treatment in this model system was the widespread repression of TCS-modulated genes. In particular, empty spiracles homeobox 1 (EMX-1), bone morphogenic protein, and chromosomal binding protein genes showed a significant decrease in expression in response to TCS. These results suggest that TCS can induce abnormal development of sea urchin embryos through the concomitant suppression of a number of genes that are necessary for embryonic differentiation in the blastula stage. Our data provide new insight into the crucial role of genes associated with embryonic development in response to TCS. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 426-433, 2017. © 2016 Wiley Periodicals, Inc.

  11. Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network

    Science.gov (United States)

    Chevalier, Marc; Toporikova, Natalia; Simmers, John; Thoby-Brisson, Muriel

    2016-01-01

    Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons. DOI: http://dx.doi.org/10.7554/eLife.16125.001 PMID:27434668

  12. Tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Y Jeffrey Chiang

    2008-07-01

    Full Text Available Tankyrases are proteins with poly(ADP-ribose polymerase activity. Human tankyrases post-translationally modify multiple proteins involved in processes including maintenance of telomere length, sister telomere association, and trafficking of glut4-containing vesicles. To date, however, little is known about in vivo functions for tankyrases. We recently reported that body size was significantly reduced in mice deficient for tankyrase 2, but that these mice otherwise appeared developmentally normal. In the present study, we report generation of tankyrase 1-deficient and tankyrase 1 and 2 double-deficient mice, and use of these mutant strains to systematically assess candidate functions of tankyrase 1 and tankyrase 2 in vivo. No defects were observed in development, telomere length maintenance, or cell cycle regulation in tankyrase 1 or tankyrase 2 knockout mice. In contrast to viability and normal development of mice singly deficient in either tankyrase, deficiency in both tankyrase 1 and tankyrase 2 results in embryonic lethality by day 10, indicating that there is substantial redundancy between tankyrase 1 and tankyrase 2, but that tankyrase function is essential for embryonic development.

  13. Nitrogen excretion during embryonic development of the green iguana, Iguana iguana (Reptilia; Squamata).

    Science.gov (United States)

    Sartori, M R; Taylor, E W; Abe, A S

    2012-10-01

    Development within the cleidoic egg of birds and reptiles presents the embryo with the problem of accumulation of wastes from nitrogen metabolism. Ammonia derived from protein catabolism is converted into the less toxic product urea or relatively insoluble uric acid. The pattern of nitrogen excretion of the green iguana, Iguana iguana, was determined during embryonic development using samples from allantoic fluid and from the whole homogenized egg, and in hatchlings and adults using samples of blood plasma. Urea was the major excretory product over the course of embryonic development. It was found in higher concentrations in the allantoic sac, suggesting that there is a mechanism present on the allantoic membrane enabling the concentration of urea. The newly hatched iguana still produced urea while adults produced uric acid. The time course of this shift in the type of nitrogen waste was not determined but the change is likely to be related to the water relations associated with the terrestrial habit of the adult. The green iguana produces parchment-shelled eggs that double in mass during incubation due to water absorption; the eggs also accumulate 0.02 mM of urea, representing 82% of the total measured nitrogenous residues that accumulate inside the allantois. The increase in egg mass and urea concentration became significant after 55 days of incubation then were unchanged until hatching. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Melatonin prevents postovulatory oocyte aging and promotes subsequent embryonic development in the pig.

    Science.gov (United States)

    Wang, Tao; Gao, Ying-Ying; Chen, Li; Nie, Zheng-Wen; Cheng, Wei; Liu, Xiaoyan; Schatten, Heide; Zhang, Xia; Miao, Yi-Liang

    2017-06-26

    Oxidative stress is known as a major contributing factor involved in oocyte aging, which negatively affects oocyte quality and development after fertilization. Melatonin is an effective free radical scavenger and its metabolites AFMK and AMK are powerful detoxifiers that eliminate free radicals. In this study, we used porcine oocytes to test the hypothesis that melatonin could scavenge free radicals produced during oocyte aging, thereby maintaining oocyte quality. We compared reactive oxygen species levels, apoptosis levels, mitochondrial membrane potential ratios, total glutathione contents and expression levels in fresh, aged and melatonin-treated aged porcine oocytes and observed the percentage of blastocyst formation following parthenogenetic activation. We found that melatonin could effectively maintain the morphology of oocytes observed in control oocytes, alleviate oxidative stress, markedly decrease early apoptosis levels, retard the decline of mitochondrial membrane potential and significantly promote subsequent embryonic development in oocytes aged for 24 hr in vitro . These results strongly suggest that melatonin can prevent postovulatory oocyte aging and promote subsequent embryonic development in the pig, which might find practical applications to control oocyte aging in other mammalian species including humans to maintain the quality of human oocytes when performing clinical assisted reproductive technology.

  15. Characterization of the onset of embryonic control and early development in the bovine embryo

    International Nuclear Information System (INIS)

    Barnes, F.L.

    1988-01-01

    Bovine embryos were used to determine if morphological and molecular features of early development are similar to in vivo recovered bovine embryos and to determine at what level early bovine development is regulated. Radiolabeling of IVP embryos and in vivo recovered embryos with 35 S-methionine for SDS-polyacrylamide gel electrophoresis reveals that these embryos are equivalent. Few differences in protein profiles are observed between 1- and early 4-cell embryos. A change in protein profiles begins at the mid 4-cell stage and continues into the 8-cell stage. Few differences in protein profiles are observed between 1- and early 4-cell embryos. A change in protein profiles begins at the mid 4-cell stage and continues into the 8-cell stage. Few differences in protein profiles are observed between late 8-cells and morulae. This transition is α-amanitin sensitive therefore due to de novo embryonic transcription. Embryonic transcription is partially responsible for terminating the post-transcriptionally regulated period of early bovine development. Argentophillic nucleolar organizing regions (Ag-NORs) indicate onset of nucleolar activation. Ag-NORs were absent in 2- and 4-cell IVP embryos and rarely occurred in 8-cell IVP embryos cultured in vitro. IVP 1- and 2-cell embryos cultured to blastocysts in sheep oviducts demonstrated Ag-NORs. Thus the lack of nucleolar activation of IVP embryos cultured in vitro is culture induced between the 2- and 8-cell stage

  16. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Karl B Shpargel

    2012-09-01

    Full Text Available UTX (KDM6A and UTY are homologous X and Y chromosome members of the Histone H3 Lysine 27 (H3K27 demethylase gene family. UTX can demethylate H3K27; however, in vitro assays suggest that human UTY has lost enzymatic activity due to sequence divergence. We produced mouse mutations in both Utx and Uty. Homozygous Utx mutant female embryos are mid-gestational lethal with defects in neural tube, yolk sac, and cardiac development. We demonstrate that mouse UTY is devoid of in vivo demethylase activity, so hemizygous X(Utx- Y(+ mutant male embryos should phenocopy homozygous X(Utx- X(Utx- females. However, X(Utx- Y(+ mutant male embryos develop to term; although runted, approximately 25% survive postnatally reaching adulthood. Hemizygous X(+ Y(Uty- mutant males are viable. In contrast, compound hemizygous X(Utx- Y(Uty- males phenocopy homozygous X(Utx- X(Utx- females. Therefore, despite divergence of UTX and UTY in catalyzing H3K27 demethylation, they maintain functional redundancy during embryonic development. Our data suggest that UTX and UTY are able to regulate gene activity through demethylase independent mechanisms. We conclude that UTX H3K27 demethylation is non-essential for embryonic viability.

  17. Spatiotemporal expression profile of the Pumilio gene in the embryonic development of silkworm.

    Science.gov (United States)

    Chen, Liang; You, Zaizhi; Xia, Hengchuan; Tang, Qi; Zhou, Yang; Yao, Qin; Chen, Keping

    2014-01-01

    We previously identified a pumilio gene in silkworm (Bombyx mori L.), designated BmPUM, which was specifically expressed in the ovary and testis. To further characterize this gene's involvement in silkworm development, we have determined the spatiotemporal expression pattern of BmPUM during all embryonic stages. Real-time polymerase chain reaction (RT-PCR) analysis revealed that BmPUM was expressed in all stages of silkworm embryos and that its transcript levels displayed two distinct peaks. The first was observed at the germ-band formation stage (1 d after oviposition) and dropped to a low level at the gonad formation stage (5 d after oviposition). The second was detected at the stage of bristle follicle occurrence (6 d after oviposition), which was confirmed by Western blot analysis and immunohistochemistry. Nanos (Nos), functioning together with Pum in abdomen formation of Drosophila embryos, was also highly expressed at the beginning (0 h to 1 d after oviposition) of embryogenesis, but its transcript levels were very low after the stage of germ-band formation. These results suggest that BmPUM functions with Bombyx mori nanos (Bm-nanos) at the early stages of silkworm embryonic development, and may then play a role in gonad formation and the occurrence of bristle follicles. Our data thus provide a foundation to uncover the role of BmPUM during silkworm development.

  18. Early embryonic development of the head region of Gryllus assimilis Fabricius, 1775 (Orthoptera, Insecta).

    Science.gov (United States)

    Liu, Yu; Maas, Andreas; Waloszek, Dieter

    2010-09-01

    We report our investigations on the embryonic development of Gryllus assimilis, with particular attention to the head. Significant findings revealed with scanning electron microscopy (SEM) images include: (1) the pre-antennal lobes represent the anterior-most segment that does not bear any appendages; (2) each of the lobes consists of central and marginal regions; (3) the central region thereof develops into the protocerebrum and the optic lobes, whereas the marginal region thereof becomes the anterior portion of the head capsule; (4) the initial position of the antennal segment is posterior to the mouth region; (5) appendage anlagen are transitorily present in the intercalary segment, and they later vanish together with the segment itself; (6) a bulged sternum appears to develop from the ventral surface of the mandibular, maxillary and labial segments. Embryonic features are then compared across the Insecta and further extended to the embryos of a spider (Araneae, Chelicerata). Striking similarities shared by the anterior-most region of the insect and spider embryos lead the authors to conclude that such comparison should be further undertaken to cover the entire Euarthropoda. This will help us to understand the embryology and evolution of the arthropod head. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Meeting embryonic requirements of broilers throughout incubation: a review

    Directory of Open Access Journals (Sweden)

    R Molenaar

    2010-09-01

    Full Text Available During incubation of chicken embryos, environmental conditions, such as temperature, relative humidity, and CO2 concentration, must be controlled to meet embryonic requirements that change during the different phases of embryonic development. In the current review, the effects of embryo temperature, egg weight loss, and CO2 concentration on hatchability, hatchling quality, and subsequent performance are discussed from an embryonic point of view. In addition, new insights related to the incubation process are described. Several studies have shown that a constant eggshell temperature (EST of 37.5 to 38.0°C throughout incubation results in the highest hatchability, hatchling quality, and subsequent performance. Egg weight loss must be between 6.5 and 14.0% of the initial egg weight, to obtain an adequate air cell size before the embryo internally pips. An increased CO2 concentration during the developmental phase of incubation (first 10 days can accelerate embryonic development and hatchability, but the physiological mechanisms of this acceleration are not completely understood. Effects of ar increased CO2 concentration during late incubation also need further investigation. The preincubation warming profile, thermal manipulation, and in ovo feeding are new insights related to the incubation process and show that the optimal situation for the embryo during incubation highly depends on the conditions of the eggs before (storage duration and during incubation (environmental conditions and on the conditions of the chickens after hatching (environmental temperature.

  20. Essential roles of BCCIP in mouse embryonic development and structural stability of chromosomes.

    Directory of Open Access Journals (Sweden)

    Huimei Lu

    2011-09-01

    Full Text Available BCCIP is a BRCA2- and CDKN1A(p21-interacting protein that has been implicated in the maintenance of genomic integrity. To understand the in vivo functions of BCCIP, we generated a conditional BCCIP knockdown transgenic mouse model using Cre-LoxP mediated RNA interference. The BCCIP knockdown embryos displayed impaired cellular proliferation and apoptosis at day E7.5. Consistent with these results, the in vitro proliferation of blastocysts and mouse embryonic fibroblasts (MEFs of BCCIP knockdown mice were impaired considerably. The BCCIP deficient mouse embryos die before E11.5 day. Deletion of the p53 gene could not rescue the embryonic lethality due to BCCIP deficiency, but partially rescues the growth delay of mouse embryonic fibroblasts in vitro. To further understand the cause of development and proliferation defects in BCCIP-deficient mice, MEFs were subjected to chromosome stability analysis. The BCCIP-deficient MEFs displayed significant spontaneous chromosome structural alterations associated with replication stress, including a 3.5-fold induction of chromatid breaks. Remarkably, the BCCIP-deficient MEFs had a ∼20-fold increase in sister chromatid union (SCU, yet the induction of sister chromatid exchanges (SCE was modestly at 1.5 fold. SCU is a unique type of chromatid aberration that may give rise to chromatin bridges between daughter nuclei in anaphase. In addition, the BCCIP-deficient MEFs have reduced repair of irradiation-induced DNA damage and reductions of Rad51 protein and nuclear foci. Our data suggest a unique function of BCCIP, not only in repair of DNA damage, but also in resolving stalled replication forks and prevention of replication stress. In addition, BCCIP deficiency causes excessive spontaneous chromatin bridges via the formation of SCU, which can subsequently impair chromosome segregations in mitosis and cell division.

  1. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Sergio Carracedo

    Full Text Available Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  2. Left-Right Asymmetry of Maturation Rates in Human Embryonic Neural Development.

    Science.gov (United States)

    de Kovel, Carolien G F; Lisgo, Steven; Karlebach, Guy; Ju, Jia; Cheng, Gang; Fisher, Simon E; Francks, Clyde

    2017-08-01

    Left-right asymmetry is a fundamental organizing feature of the human brain, and neuropsychiatric disorders such as schizophrenia sometimes involve alterations of brain asymmetry. As early as 8 weeks postconception, the majority of human fetuses move their right arms more than their left arms, but because nerve fiber tracts are still descending from the forebrain at this stage, spinal-muscular asymmetries are likely to play an important developmental role. We used RNA sequencing to measure gene expression levels in the left and right spinal cords, and the left and right hindbrains, of 18 postmortem human embryos aged 4 to 8 weeks postconception. Genes showing embryonic lateralization were tested for an enrichment of signals in genome-wide association data for schizophrenia. The left side of the embryonic spinal cord was found to mature faster than the right side. Both sides transitioned from transcriptional profiles associated with cell division and proliferation at earlier stages to neuronal differentiation and function at later stages, but the two sides were not in synchrony (p = 2.2 E-161). The hindbrain showed a left-right mirrored pattern compared with the spinal cord, consistent with the well-known crossing over of function between these two structures. Genes that showed lateralization in the embryonic spinal cord were enriched for association signals with schizophrenia (p = 4.3 E-05). These are the earliest stage left-right differences of human neural development ever reported. Disruption of the lateralized developmental program may play a role in the genetic susceptibility to schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Role of leptin in delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Banerjee, A; Meenakumari, K J; Krishna, A

    2010-08-01

    An adiposity-associated rise in leptin occurs at the time of delayed embryonic development in Cynopterus sphinx. The aim of present study was to examine the mechanism by which leptin may inhibit progesterone, and therefore could be responsible for delayed development. The study showed a significant increase in circulating leptin level during the period of increased fat accumulation, which coincided with significant decrease in serum progesterone level and delayed embryonic development in C. sphinx. The study showed increased Ob-R expression in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed suppressive effect of leptin on progesterone synthesis. The effect of high dose of leptin on ovarian steroidogenesis was found to be mediated through decreased expression of StAR and LH-R proteins in the ovary. The treatment with leptin caused increased expression of STAT 3 and iNOS proteins in the ovary, which correlated with decreased expression of StAR protein in the ovary. The inhibitory effects of leptin on progesterone synthesis in the ovary are thus mediated through STAT 3 and iNOS-NO signaling pathways. This study further demonstrated low expression of PCNA coinciding with the increased concentration of the leptin receptor in the utero-embryonic unit and high circulating leptin level during November. In conclusion, adiposity associated increased leptin level during November-December might play role in suppressing progesterone synthesis in the corpus luteum as well as suppressing the rate of cell-proliferation in the utero-embryonic unit thereby causing delayed embryonic development in C. sphinx. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Luteal cell steroidogenesis in relation to delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Meenakumari, Karukayil J; Banerjee, Arnab; Krishna, Amitabh

    2009-01-01

    The primary aim of this study was to determine the possible cause of slow or delayed embryonic development in Cynopterus sphinx by investigating morphological and steroidogenic changes in the corpus luteum (CL) and circulating hormone concentrations during two pregnancies of a year. This species showed delayed post-implantational embryonic development during gastrulation of the first pregnancy. Morphological features of the CL showed normal luteinization during both pregnancies. The CL did not change significantly in luteal cell size during the delay period of the first pregnancy as compared with the second pregnancy. The circulating progesterone and 17beta-estradiol concentrations were significantly lower during the period of delayed embryonic development as compared with the same stage of embryonic development during the second pregnancy. We also showed a marked decline in the activity of 3beta-hydroxysteroid dehydrogenase, P450 side chain cleavage enzyme, and steroidogenic acute regulatory peptide in the CL during the delay period. This may cause low circulating progesterone and estradiol synthesis and consequently delay embryonic development. What causes the decrease in steroidogenic factors in the CL during the period of delayed development in C. sphinx is under investigation.

  5. Effects of wind energy development on nesting ecology of greater prairie-chickens in fragmented grasslands.

    Science.gov (United States)

    McNew, Lance B; Hunt, Lyla M; Gregory, Andrew J; Wisely, Samantha M; Sandercock, Brett K

    2014-08-01

    Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for development of renewable energy may overlap with important habitats of declining populations of grassland birds. Greater Prairie-Chickens (Tympanuchus cupido) are an obligate grassland bird species predicted to respond negatively to energy development. We used a modified before-after control-impact design to test for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We located 59 and 185 nests before and after development, respectively, of a 201 MW wind energy facility in Greater Prairie-Chicken nesting habitat and assessed nest site selection and nest survival relative to proximity to wind energy infrastructure and habitat conditions. Proximity to turbines did not negatively affect nest site selection (β = 0.03, 95% CI = -1.2-1.3) or nest survival (β = -0.3, 95% CI = -0.6-0.1). Instead, nest site selection and survival were strongly related to vegetative cover and other local conditions determined by management for cattle production. Integration of our project results with previous reports of behavioral avoidance of oil and gas facilities by other species of prairie grouse suggests new avenues for research to mitigate impacts of energy development. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  6. G-quadruplexes as novel cis-elements controlling transcription during embryonic development.

    Science.gov (United States)

    David, Aldana P; Margarit, Ezequiel; Domizi, Pablo; Banchio, Claudia; Armas, Pablo; Calcaterra, Nora B

    2016-05-19

    G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Reproductive effects of two neonicotinoid insecticides on mouse sperm function and early embryonic development in vitro.

    Directory of Open Access Journals (Sweden)

    Yi-Hua Gu

    Full Text Available Acetamiprid (ACE and imidacloprid (IMI are two major members in the family of neonicotinoid pesticides, which are synthesized with a higher selectivity to insects. The present study determined and compared in vitro effects of ACE, IMI and nicotine on mammalian reproduction by using an integrated testing strategy for reproductive toxicology, which covered sperm quality, sperm penetration into oocytes and preimplantation embryonic development. Direct chemical exposure (500 µM or 5 mM on spermatozoa during capacitation was performed, and in vitro fertilization (IVF process, zygotes and 2-cell embryos were respectively incubated with chemical-supplemented medium until blastocyst formation to evaluate the reproductive toxicity of these chemicals and monitor the stages mainly affected. Generally, treatment of 500 µM or 5 mM chemicals for 30 min did not change sperm motility and DNA integrity significantly but the fertilization ability in in vitro fertilization (IVF process, indicating that IVF process could detect and distinguish subtle effect of spermatozoa exposed to different chemicals. Culture experiment in the presence of chemicals in medium showed that fertilization process and zygotes are adversely affected by direct exposure of chemicals (PIMI>ACE, whereas developmental progression of 2-cell stage embryos was similar to controls (P>0.05. These findings unveiled the hazardous effects of neonicotinoid pesticides exposure on mammalian sperm fertilization ability as well as embryonic development, raising the concerns that neonicotinoid pesticides may pose reproductive risks on human reproductive health, especially in professional populations.

  8. Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species

    Science.gov (United States)

    Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.

    2016-01-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527

  9. Embryonic Testicular Regression Syndrome Presenting as Primary Amenorrhea: A Case Report and Review of Disorders of Sexual Development.

    Science.gov (United States)

    Hunter, J D; Pierce, S R; Calikoglu, A S; Howell, J O

    2016-08-01

    Sex development depends on the synchronous interaction of complicated genetic and hormonal events. Sex differentiation begins with sex determination, which is the assignment of the embryonic bipotential gonads as either testes or ovaries on the basis of transcriptional regulation. Hormonal regulation then directs the development of the male or female phenotype. Disruptions of this intricate cascade of events result in disorders of sexual development. A 16-year-old female adolescent presented with primary amenorrhea. Evaluation revealed female external genitalia, XY karyotype, absent gonadal tissue, and rudimentary Müllerian structures. On the basis of her constellation of findings, the most logical diagnosis was the rare embryonic testicular regression syndrome. A careful understanding of embryonic sexual development is critical to the evaluation of patients with disorders of sexual development. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  10. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development

    International Nuclear Information System (INIS)

    Simeone, A.; Mavilio, F.; Acampora, D.

    1987-01-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomains identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hybridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny

  11. Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development.

    Science.gov (United States)

    Edeling, Melissa A; Sanker, Subramaniam; Shima, Takaki; Umasankar, P K; Höning, Stefan; Kim, Hye Y; Davidson, Lance A; Watkins, Simon C; Tsang, Michael; Owen, David J; Traub, Linton M

    2009-12-03

    PACSIN/Syndapin proteins are membrane-active scaffolds that participate in endocytosis. The structure of the Drosophila Syndapin N-terminal EFC domain reveals a crescent shaped antiparallel dimer with a high affinity for phosphoinositides and a unique membrane-inserting prong upon the concave surface. Combined structural, biochemical and reverse genetic approaches in zebrafish define an important role for Syndapin orthologue, Pacsin3, in the early formation of the notochord during embryonic development. In pacsin3-morphant embryos, midline convergence of notochord precursors is defective as axial mesodermal cells fail to polarize, migrate and differentiate properly. The pacsin3 morphant phenotype of a stunted body axis and contorted trunk is rescued by ectopic expression of Drosophila Syndapin, and depends critically on both the prong that protrudes from the surface of the bowed Syndapin EFC domain and the ability of the antiparallel dimer to bind tightly to phosphoinositides. Our data confirm linkage between directional migration, endocytosis and cell specification during embryonic morphogenesis and highlight a key role for Pacsin3 in this coupling in the notochord.

  12. Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development.

    Directory of Open Access Journals (Sweden)

    Melissa A Edeling

    2009-12-01

    Full Text Available PACSIN/Syndapin proteins are membrane-active scaffolds that participate in endocytosis. The structure of the Drosophila Syndapin N-terminal EFC domain reveals a crescent shaped antiparallel dimer with a high affinity for phosphoinositides and a unique membrane-inserting prong upon the concave surface. Combined structural, biochemical and reverse genetic approaches in zebrafish define an important role for Syndapin orthologue, Pacsin3, in the early formation of the notochord during embryonic development. In pacsin3-morphant embryos, midline convergence of notochord precursors is defective as axial mesodermal cells fail to polarize, migrate and differentiate properly. The pacsin3 morphant phenotype of a stunted body axis and contorted trunk is rescued by ectopic expression of Drosophila Syndapin, and depends critically on both the prong that protrudes from the surface of the bowed Syndapin EFC domain and the ability of the antiparallel dimer to bind tightly to phosphoinositides. Our data confirm linkage between directional migration, endocytosis and cell specification during embryonic morphogenesis and highlight a key role for Pacsin3 in this coupling in the notochord.

  13. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development.

    Science.gov (United States)

    Simeone, A; Mavilio, F; Acampora, D; Giampaolo, A; Faiella, A; Zappavigna, V; D'Esposito, M; Pannese, M; Russo, G; Boncinelli, E

    1987-07-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomain identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hydridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.

  14. Sexual reproduction of Nausithoe aurea (Scyphozoa, Coronatae. Gametogenesis, egg release, embryonic development, and gastrulation

    Directory of Open Access Journals (Sweden)

    André C. Morandini

    2001-06-01

    Full Text Available The structure of the ovaries and testes of Nausithoe aurea, reared in the laboratory, is described to update the knowledge of coronate scyphomedusae gametogenesis and early development. The testis is similar to those of other scyphozoans. The organization of the ovary agrees with the description for other coronates, with free oocytes in the mesoglea. The oocytes develop in a limited region of the gastrodermis, and a maturation gradient is observed from this point on. Egg release, embryonic development, and gastrulation mode of Nausithoe aurea are also described. Egg production was continuous for 55 days, and the output of released eggs oscillated without observed cue. Cleavage was holoblastic and adequal, but after the 8-cell stage, the cleavage became pseudospiral. Gastrulation occurred through multipolar ingression and began 24 hours after fertilization.

  15. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    Energy Technology Data Exchange (ETDEWEB)

    Sandercock, Brett K. [Kansas State University

    2013-05-22

    Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our field studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most

  16. Perflurooctanoic acid induces developmental cardiotoxicity in chicken embryos and hatchlings

    International Nuclear Information System (INIS)

    Jiang, Qixiao; Lust, Robert M.; Strynar, Mark J.; Dagnino, Sonia; DeWitt, Jamie C.

    2012-01-01

    Highlights: ► PFOA exposure thinned right ventricular wall thickness in D19 chicken embryo hearts. ► PFOA exposure induced left ventricle hypertrophy in hearts of hatchling chickens. ► PFOA exposure induced altered cardiac function in hatchling chickens. -- Abstract: Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPARα). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that developmental PFOA exposure may not affect cardiac energetics. In summary, structural and functional characteristics of the heart appear to be developmental targets of PFOA, possibly at the level of cardiomyocytes. Additional studies will

  17. Embryonic development of human lice: rearing conditions and susceptibility to spinosad

    Directory of Open Access Journals (Sweden)

    Gastón Mougabure Cueto

    2006-05-01

    Full Text Available The embryonic development of human lice was evaluated according to the changes in the morphology of the embryo observed through the transparent chorion. Based on ocular and appendage development, three stages of embryogenesis were established: early, medium, and late. Influence of temperature and relative humidity (RH on the laboratory rearing of Pediculus humanus capitis eggs was assessed. The optimal ranges for temperature and RH were 27-31°C and 45-75%. The susceptibility of human louse eggs to insecticide spinosad (a macrocyclic lactone was assessed by immersion method. The results showed similar susceptibility to spinosad in early, medium, and late stages of head lice eggs. In addition, this study showed similar susceptibility of head and body lice eggs to spinosad, an insecticide that has not been used as pediculicide in Argentina (lethal concentration 50: 0.01%.

  18. The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse.

    Directory of Open Access Journals (Sweden)

    Helen Waller-Evans

    2010-11-01

    Full Text Available Adhesion-GPCRs provide essential cell-cell and cell-matrix interactions in development, and have been implicated in inherited human diseases like Usher Syndrome and bilateral frontoparietal polymicrogyria. They are the second largest subfamily of seven-transmembrane spanning proteins in vertebrates, but the function of most of these receptors is still not understood. The orphan Adhesion-GPCR GPR126 has recently been shown to play an essential role in the myelination of peripheral nerves in zebrafish. In parallel, whole-genome association studies have implicated variation at the GPR126 locus as a determinant of body height in the human population. The physiological function of GPR126 in mammals is still unknown. We describe a targeted mutation of GPR126 in the mouse, and show that GPR126 is required for embryonic viability and cardiovascular development.

  19. Leptin receptor signaling inhibits ovarian follicle development and egg laying in chicken hens

    Science.gov (United States)

    2014-01-01

    Background Nutrition intake during growth strongly influences ovarian follicle development and egg laying in chicken hens, yet the underlying endocrine regulatory mechanism is still poorly understood. The relevant research progress is hindered by difficulties in detection of leptin gene and its expression in the chicken. However, a functional leptin receptor (LEPR) is present in the chicken which has been implicated to play a regulatory role in ovarian follicle development and egg laying. The present study targeted LEPR by immunizing against its extracellular domain (ECD), and examined the resultant ovarian follicle development and egg-laying rate in chicken hens. Methods Hens that have been immunized four times with chicken LEPR ECD were assessed for their egg laying rate and feed intake, numbers of ovarian follicles, gene expression profiles, serum lipid parameters, as well as STAT3 signaling pathway. Results Administrations of cLEPR ECD antigen resulted in marked reductions in laying rate that over time eventually recovered to the levels exhibited by the Control hens. Together with the decrease in egg laying rate, cLEPR-immunized hens also exhibited significant reductions in feed intake, plasma concentrations of glucose, triglyceride, high-density lipoprotein, and low-density lipoprotein. Parallelled by reductions in feed intake, mRNA gene expression levels of AgRP, orexin, and NPY were down regulated, but of POMC, MC4R and lepR up-regulated in Immunized hen hypothalamus. cLEPR-immunization also promoted expressions of apoptotic genes such as caspase3 in theca and fas in granulosa layer, but severely depressed IGF-I expression in both theca and granulosa layers. Conclusions Immunization against cLEPR ECD in egg-laying hens generated antibodies that mimic leptin bioactivity by enhancing leptin receptor transduction. This up-regulated apoptotic gene expression in ovarian follicles, negatively regulated the expression of genes that promote follicular development

  20. Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function.

    Science.gov (United States)

    Uzumcu, Mehmet; Suzuki, Hiroetsu; Skinner, Michael K

    2004-01-01

    Vinclozolin is a systemic dicarboximide fungicide that is used on fruits, vegetables, ornamental plants, and turf grass. Vinclozolin and its metabolites are known to be endocrine disruptors and act as androgen receptor antagonists. The hypothesis tested in the current study is that transient embryonic exposure to an anti-androgenic endocrine disruptor at the time of testis determination alters testis development and subsequently influences adult spermatogenic capacity and male reproduction. The effects of vinclozolin on embryonic testicular cord formation in vitro were examined, as well as the effects of transient in utero vinclozolin exposure on postnatal testis development and function. Embryonic day 13 (E13, sperm-positive vaginal smear day = E0) gonads were cultured in the absence or presence of vinclozolin (50-500microM). Vinclozolin treated gonads had significantly fewer cords (P vinclozolin (100 mg/kg/day) between embryonic days 8 and 14 (E8-E14) of development. Testis morphology and function were analyzed from postnatal day (P) 0, pubertal P20, and adult P60. No significant effect of vinclozolin on testis histology or germ cell viability was observed in P0 testis. The pubertal P20 testis from vinclozolin exposed animals had significantly higher numbers of apoptotic germ cells (P vinclozolin exposed males (P vinclozolin exposed animals was higher in adult P60 animals. Observations demonstrate that vinclozolin can effect embryonic testicular cord formation in vitro and that transient in utero exposure to vinclozolin increases apoptotic germ cell numbers in the testis of pubertal and adult animals. This correlated to reduced sperm motility in the adult. In conclusion, transient exposure to vinclozolin during the time of testis differentiation (i.e. cord formation) alters testis development and function. Observations indicate that transient exposure to an anti-androgenic endocrine disruptor during embryonic development causes delayed effects later in adult life

  1. Variation in maternal effects and embryonic development rates among passerine species.

    Science.gov (United States)

    Martin, Thomas E; Schwabl, Hubert

    2008-05-12

    Embryonic development rates are reflected by the length of incubation period in birds, and these vary substantially among species within and among geographical regions. The incubation periods are consistently shorter in North America (Arizona study site) than in tropical (Venezuela) and subtropical (Argentina) South America based on the study of 83 passerine species in 17 clades. Parents, mothers in particular, may influence incubation periods and resulting offspring quality through proximate pathways, while variation in maternal strategies among species can result from selection by adult and offspring mortality. Parents of long-lived species, as is common in the tropics and subtropics, may be under selection to minimize costs to themselves during incubation. Indeed, time spent incubating is often lower in the tropical and subtropical species than the related north temperate species, causing cooler average egg temperatures in the southern regions. Decreased egg temperatures result in longer incubation periods and reflect a cost imposed on offspring by parents because energy cost to the embryo and risk of offspring predation are both increased. Mothers may adjust egg size and constituents as a means to partially offset such costs. For example, reduced androgen concentrations in egg yolks may slow development rates, but may enhance offspring quality through physiological trade-offs that may be particularly beneficial in longer-lived species, as in the tropics and subtropics. We provide initial data to show that yolks of tropical birds contain substantially lower concentrations of growth-promoting androgens than north temperate relatives. Thus, maternal (and parental) effects on embryonic development rates may include contrasting and complementary proximate influences on offspring quality and deserve further field study among species.

  2. Variation in maternal effects and embryonic development rates among passerine species

    Science.gov (United States)

    Martin, T.E.; Schwabl, H.

    2008-01-01

    Embryonic development rates are reflected by the length of incubation period in birds, and these vary substantially among species within and among geographical regions. The incubation periods are consistently shorter in North America (Arizona study site) than in tropical (Venezuela) and subtropical (Argentina) South America based on the study of 83 passerine species in 17 clades. Parents, mothers in particular, may influence incubation periods and resulting offspring quality through proximate pathways, while variation in maternal strategies among species can result from selection by adult and offspring mortality. Parents of long-lived species, as is common in the tropics and subtropics, may be under selection to minimize costs to themselves during incubation. Indeed, time spent incubating is often lower in the tropical and subtropical species than the related north temperate species, causing cooler average egg temperatures in the southern regions. Decreased egg temperatures result in longer incubation periods and reflect a cost imposed on offspring by parents because energy cost to the embryo and risk of offspring predation are both increased. Mothers may adjust egg size and constituents as a means to partially offset such costs. For example, reduced androgen concentrations in egg yolks may slow development rates, but may enhance offspring quality through physiological trade-offs that may be particularly beneficial in longer-lived species, as in the tropics and subtropics. We provide initial data to show that yolks of tropical birds contain substantially lower concentrations of growth-promoting androgens than north temperate relatives. Thus, maternal (and parental) effects on embryonic development rates may include contrasting and complementary proximate influences on offspring quality and deserve further field study among species. ?? 2007 The Royal Society.

  3. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development.

    Science.gov (United States)

    Kropp, Jenna; Khatib, Hasan

    2015-01-01

    In vitro production (IVP) systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage) embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerate conditioned media. Differential expression was confirmed by quantitative real-time PCR for fragments of mRNA POSTN and VSNL-1, in four additional biological replicates of media. To better understand the mechanisms of mRNA secretion into the media, the expression of a predicted RNA binding protein of POSTN, PUM2, was knocked down using an antisense oligonucleotide gapmer. Supplementation of a PUM2 gapmer significantly reduced blastocyst development and decreased secretion of POSTN mRNA into the media. Overall, differential mRNA expression in the media was repeatable and sets the framework for future study of mRNA biomarkers in in vitro culture media to improve predictability of reproductive performance.

  4. Endogenous hydrogen peroxide production in the epithelium of the developing embryonic lens.

    Science.gov (United States)

    Basu, Subhasree; Rajakaruna, Suren; Dickinson, Bryan C; Chang, Christopher J; Menko, A Sue

    2014-01-01

    Hydrogen peroxide (H2O2) is an endogenously produced reactive oxygen species (ROS) present in a variety of mammalian systems. This particular ROS can play dichotomous roles, being beneficial in some cases and deleterious in others, which reflects the level and location of H2O2 production. While much is known about the redox regulation of ROS by antioxidant and repair systems in the lens, little is known about the endogenous production of H2O2 in embryonic lens tissue or the physiologic relevance of endogenous H2O2 to lens development. This gap in knowledge exists primarily from a lack of reagents that can specifically detect endogenous H2O2 in the intact lens. Here, using a recently developed chemoselective fluorescent boronate probe, peroxyfluor-6 acetoxymethyl ester (PF6-AM), which selectively detects H2O2 over related ROS, we examined the endogenous H2O2 signals in the embryonic lens. Embryonic day 10 chick whole lenses in ex vivo organ culture and lens epithelial cells in primary culture were loaded with the H2O2 probe PF6-AM. To determine the relationship between localization of mitochondria with active membrane potential and the region of H2O2 production in the lens, cells were exposed to the mitochondrial probe MitoTracker Red CMXRos together with PF6-AM. Diphenyleneiodonium (DPI), a flavin inhibitor that blocks generation of intracellular ROS production, was used to confirm that the signal from PF6-AM was due to endogenous ROS production. All imaging was performed by live confocal microscopy. PF6-AM detected endogenous H2O2 in lens epithelial cells in whole lenses in ex vivo culture and in lens epithelial cells grown in primary culture. No endogenous H2O2 signal could be detected in differentiating lens fiber cells with this probe. Treatment with DPI markedly attenuated the fluorescence signal from the peroxide-specific probe PF6-AM in the lens epithelium, suggesting that basal generation of ROS occurs in this region. The lens epithelial cells producing an

  5. Cortical Morphogenesis during Embryonic Development Is Regulated by miR-34c and miR-204

    DEFF Research Database (Denmark)

    Veno, Morten T.; Veno, Susanne T.; Rehberg, Kati

    2017-01-01

    The porcine brain closely resembles the human brain in aspects such as development and morphology. Temporal miRNA profiling in the developing embryonic porcine cortex revealed a distinct set of miRNAs, including miR-34c and miR-204, which exhibited a highly specific expression profile across...

  6. Metallic nickel nanoparticles and their effect on the embryonic development of the sea urchin Paracentrotus lividus

    International Nuclear Information System (INIS)

    Kanold, Julia Maxi; Wang, Jiabin; Brümmer, Franz; Šiller, Lidija

    2016-01-01

    The presence of nanoparticles in many industrial applications and daily products is making it nowadays crucial to assess their impact when exposed to the environment. Metallic nickel nanoparticles (Ni NPs) are of high industrial interest due to their ability to catalyze the reversible hydration of CO_2 to carbonic acid at ambient conditions. We characterized metallic Ni NPs by XRD, HRTEM and EDS and determined the solubility of free nickel ions from 3 mg/L metallic Ni NPs in seawater by ICP-MS over 96 h, which was below 3%. Further, embryonic development of the sea urchin Paracentrotus lividus was investigated for 48 h in the presence of metallic Ni NPs (0.03 mg/L to 3 mg/L), but no lethal effects were observed. However, 3 mg/L metallic Ni NPs caused a size reduction similar to 1.2 mg/L NiCl_2*6 H_2O. The obtained results contribute to current studies on metallic Ni NPs and point to their consequences for the marine ecosystem. - Highlights: • Low solubility of nickel ions from metallic nickel nanoparticles in seawater. • No lethality of sea urchin embryos up to 3 mg/L metallic nickel nanoparticles. • Considerable size reduction after 48 h was comparable to the reduction for 1.2 mg/L nickel salt. • Contributes to the overall understanding of metallic Ni NPs in the marine environment. - Metallic nickel nanoparticles display weak dissolution rates in seawater, but higher concentrations resulted in similar effects on sea urchin embryonic development as nickel salt.

  7. Impact of electromagnetic radiation exposure during pregnancy on embryonic skeletal development in rats

    Directory of Open Access Journals (Sweden)

    Ali SAEED H Alchalabi

    2017-03-01

    Full Text Available Objective: To evaluate the teratogenic effect of mobile phone radiation exposure during pregnancy on embryonic skeletal development at the common used mobile phone frequency in our environment. Methods: Sixty female Sprague-Dawley rats were distributed into three experiment groups; control and two exposed groups (1 h/day, 2 h/day exposure groups (n=20/ each group and exposed to whole body radiation during gestation period from day 1- day 20. Electromagnetic radiofrequency signal generator was used to generate 1 800 MHz GSM-like signals at specific absorption rate value 0.974 W/kg. Animals were exposed during experiment in an especial designed Plexiglas box (60 cm × 40 cm × 30 cm. At the end of exposure duration at day 20 of pregnancy animals were sacrificed and foetuses were removed, washed with normal saline and processed to Alizarin red and Alcian blue stain. Skeleton specimens were examined under a stereo microscope and skeleton's snaps were being carefully captured by built in camera fixed on the stereo microscope. Results: Intrauterine exposure to electromagnetic radiation lead to variation in degree of ossification, mineralization, formation of certain parts of the skeleton majorly in head and lesser in other parts. Deformity and absence of formation of certain bones in the head, ribs, and coccygeal vertebrae were recorded in skeleton of foetuses from exposed dams compare to control group. Conclusions: The electromagnetic radiation exposure during pregnancy alter the processes of bone mineralization and the intensity of bone turnover processes, and thus impact embryonic skeleton formation and development directly.

  8. NDR Kinases Are Essential for Somitogenesis and Cardiac Looping during Mouse Embryonic Development.

    Directory of Open Access Journals (Sweden)

    Debora Schmitz-Rohmer

    Full Text Available Studies of mammalian tissue culture cells indicate that the conserved and distinct NDR isoforms, NDR1 and NDR2, play essential cell biological roles. However, mice lacking either Ndr1 or Ndr2 alone develop normally. Here, we studied the physiological consequences of inactivating both NDR1 and NDR2 in mice, showing that the lack of both Ndr1/Ndr2 (called Ndr1/2-double null mutants causes embryonic lethality. In support of compensatory roles for NDR1 and NDR2, total protein and activating phosphorylation levels of the remaining NDR isoform were elevated in mice lacking either Ndr1 or Ndr2. Mice retaining one single wild-type Ndr allele were viable and fertile. Ndr1/2-double null embryos displayed multiple phenotypes causing a developmental delay from embryonic day E8.5 onwards. While NDR kinases are not required for notochord formation, the somites of Ndr1/2-double null embryos were smaller, irregularly shaped and unevenly spaced along the anterior-posterior axis. Genes implicated in somitogenesis were down-regulated and the normally symmetric expression of Lunatic fringe, a component of the Notch pathway, showed a left-right bias in the last forming somite in 50% of all Ndr1/2-double null embryos. In addition, Ndr1/2-double null embryos developed a heart defect that manifests itself as pericardial edemas, obstructed heart tubes and arrest of cardiac looping. The resulting cardiac insufficiency is the likely cause of the lethality of Ndr1/2-double null embryos around E10. Taken together, we show that NDR kinases compensate for each other in vivo in mouse embryos, explaining why mice deficient for either Ndr1 or Ndr2 are viable. Ndr1/2-double null embryos show defects in somitogenesis and cardiac looping, which reveals their essential functions and shows that the NDR kinases are critically required during the early phase of organogenesis.

  9. Metal sensitivity of the embryonic development of the ramshorn snail Marisa cornuarietis (Prosobranchia).

    Science.gov (United States)

    Sawasdee, Banthita; Köhler, Heinz-R

    2010-11-01

    We investigated the effects of metal ions on the embryonic development of the ramshorn snail, Marisa cornuarietis, by exposing embryos to varying concentrations of copper (0, 50, 100, and 250 μg Cu(2+)/L), lead (0, 5, 10, and 15 mg Pb(2+)/L), lithium (0, 1, 2.5, and 3 mg Li(+)/L), or palladium (0, 50, 100, and 500 μg Pd(2+)/L). Effects of these metals were examined by recording mortality, the rate of tentacles and eyes formation, heart rate, hatching success, and weight after hatching. Compared to the control, we found a significant delay in the formation of tentacles and eyes after treatment with 100 μg Cu(2+)/L, 15 mg Pb(2+)/L, 2.5 mg Li(+)/L or 500 μg Pd(2+)/L. The heart rate decreased significantly at 500 μg Pd(2+)/L. At 10 mg Pb(2+)/L, 2.5 mg Li(+)/L, or 500 μg Pd(2+)/L, hatching was delayed significantly; 50 μg Cu(2+)/L induced a significantly earlier hatching, and reduced body weight. The LC(50) values were calculated to be about 50 μg Cu(2+)/L, 500 μg Pd(2+)/L, 2500 μg Li(+)/L, and 10000 μg Pb(2+)/L. These results show that the embryonic development of M. cornuarietis is about as sensitive to copper and lithium, compared to the most sensitive fishes used in embryo toxicity testing. Even though the MariETT is a laboratory-based assay focusing on toxicological endpoints of a selected model species, future application is envisaged to include testing of "natural" samples such as stream water or sediment interstitial water.

  10. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart.

    Directory of Open Access Journals (Sweden)

    Melisa Gomez-Velazquez

    2017-08-01

    Full Text Available Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.

  11. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development

    Directory of Open Access Journals (Sweden)

    Silvia Mazzotta

    2016-10-01

    Full Text Available Wnt signaling is a key regulator of vertebrate heart development; however, specific roles for human cardiomyocyte development remain uncertain. Here we use human embryonic stem cells (hESCs to analyze systematically in human cardiomyocyte development the expression of endogenous Wnt signaling components, monitor pathway activity, and dissect stage-specific requirements for canonical and noncanonical Wnt signaling mechanisms using small-molecule inhibitors. Our analysis suggests that WNT3 and WNT8A, via FZD7 and canonical signaling, regulate BRACHYURY expression and mesoderm induction; that WNT5A/5B, via ROR2 and noncanonical signaling, regulate MESP1 expression and cardiovascular development; and that later in development WNT2, WNT5A/5B, and WNT11, via FZD4 and FZD6, regulate functional cardiomyocyte differentiation via noncanonical Wnt signaling. Our findings confirm in human development previously proposed roles for canonical Wnt signaling in sequential stages of vertebrate cardiomyogenesis, and identify more precise roles for noncanonical signaling and for individual Wnt signal and Wnt receptor genes in human cardiomyocyte development.

  12. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart

    Science.gov (United States)

    Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F.; Roy, Anna R.; Galjart, Niels; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis

    2017-01-01

    Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development. PMID:28846746

  13. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart.

    Science.gov (United States)

    Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Tena, Juan J; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F; Roy, Anna R; Galjart, Niels; Delgado-Olguin, Paul; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis; Manzanares, Miguel

    2017-08-01

    Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.

  14. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    Science.gov (United States)

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  15. Effects of catechins and low temperature on embryonic development and hatching in Heterodera glycines and Meloidogyne incognita

    Science.gov (United States)

    Mimics of two natural influences, a chemical similar to one present in cyst nematodes and low temperature exposure of nematode eggs, were evaluated for their effects on quantitative and qualitative features of embryonic development and hatching. The polyphenol epigallocatechin gallate (EGCG), an ana...

  16. Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio L.)

    Czech Academy of Sciences Publication Activity Database

    Palíková, M.; Krejčí, R.; Hilscherová, Klára; Babica, Pavel; Navrátil, S.; Kopp, R.; Bláha, Luděk

    2007-01-01

    Roč. 81, č. 3 (2007), s. 312-318 ISSN 0166-445X R&D Projects: GA AV ČR KJB6005411 Institutional research plan: CEZ:AV0Z60050516 Keywords : cyanobacterial biomass * embryonal development * common carp Subject RIV: EF - Botanics Impact factor: 2.975, year: 2007

  17. Carbon dioxide dissociation and buffering in chicken blood during development.

    Science.gov (United States)

    Tazawa, H; Piiper, J

    1984-07-01

    Carbon dioxide dissociation curves of oxygenated and deoxygenated bloods, the Haldane effect, the buffer value and other blood and true plasma buffering indices, O2 capacity and hematocrit were determined in bloods withdrawn from chicks before, during and after hatching and 8-month-old hens. Blood CO2 dissociation curves shifted upwards in the developing embryo till pipping, and moved downwards after pipping and hatching. In accordance with the position of the CO2 dissociation curves, the true plasma bicarbonate and red cell CO2 standardized to PCO2 = 40 torr changed. The Haldane factor at standard PCO2 increased from 0.12-0.13 on days 10-14 of incubation to 0.34 in young hens. The buffering power changed in parallel with O2 capacity and hematocrit, increasing steadily during incubation, dropping at hatching and then increasing again to the adult value. The observed changes in the CO2 dissociation curves and buffering variables during the development enable the chick to minimize the changes in the acid-base status and are favorable for coping with the increasing demand for CO2 transport and buffering of the developing bird.

  18. Puerarin Facilitates T-Tubule Development of Murine Embryonic Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-07-01

    Full Text Available Aims: The embryonic stem cell-derived cardiomyocytes (ES-CM is one of the promising cell sources for repopulation of damaged myocardium. However, ES-CMs present immature structure, which impairs their integration with host tissue and functional regeneration. This study used murine ES-CMs as an in vitro model of cardiomyogenesis to elucidate the effect of puerarin, the main compound found in the traditional Chinese medicine the herb Radix puerariae, on t-tubule development of murine ES-CMs. Methods: Electron microscope was employed to examine the ultrastructure. The investigation of transverse-tubules (t-tubules was performed by Di-8-ANEPPS staining. Quantitative real-time PCR was utilized to study the transcript level of genes related to t-tubule development. Results: We found that long-term application of puerarin throughout cardiac differentiation improved myofibril array and sarcomeres formation, and significantly facilitated t-tubules development of ES-CMs. The transcript levels of caveolin-3, amphiphysin-2 and junctophinlin-2, which are crucial for the formation and development of t-tubules, were significantly upregulated by puerarin treatment. Furthermore, puerarin repressed the expression of miR-22, which targets to caveolin-3. Conclusion: Our data showed that puerarin facilitates t-tubule development of murine ES-CMs. This might be related to the repression of miR-22 by puerarin and upregulation of Cav3, Bin1 and JP2 transcripts.

  19. Prolactin modulates luteal activity in the short-nosed fruit bat, Cynopterus sphinx during delayed embryonic development.

    Science.gov (United States)

    Anuradha; Krishna, Amitabh

    2017-07-01

    The aim of this study was to evaluate the role of prolactin as a modulator of luteal steroidogenesis during the period of delayed embryonic development in Cynopterus sphinx. A marked decline in circulating prolactin levels was noted during the months of November through December coinciding with the period of decreased serum progesterone and delayed embryonic development. The seasonal changes in serum prolactin levels correlated positively with circulating progesterone (P) level, but inversely with circulating melatonin level during first pregnancy showing delayed development in Cynopterus sphinx. The results also showed decreased expression of prolactin receptor-short form (PRL-RS) both in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. Bats treated in vivo with prolactin during the period of delayed development showed significant increase in serum progesterone and estradiol levels together with significant increase in the expression of PRL-RS, luteinizing hormone receptor (LH-R), steroidogenic acute receptor protein (STAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) in the ovary. Prolactin stimulated ovarian angiogenesis (vascular endothelial growth factor) and cell survival (B-cell lymphoma 2) in vivo. Significant increases in ovarian progesterone production and the expression of prolactin-receptor, LH-R, STAR and 3β-HSD proteins were noted following the exposure of LH or prolactin in vitro during the delayed period. In conclusion, short-day associated increased melatonin level may be responsible for decreased prolactin release during November-December. The decline in prolactin level might play a role in suppressing P and estradiol-17β (E2) estradiol levels thereby causing delayed embryonic development in C. sphinx. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Development of an enzyme-linked immunosorbent assay for detection of chicken osteocalcin and its use in evaluation of perch effects on bone remodeling in caged White Leghorns.

    Science.gov (United States)

    Jiang, S; Cheng, H W; Hester, P Y; Hou, J-F

    2013-08-01

    Osteocalcin (OC) is a sensitive biochemical marker for evaluating bone turnover in mammals. The role of avian OC is less clear because of the need for a chicken assay. Our objectives were to develop an assay using indirect competitive ELISA for detecting chicken serum OC and use the assay to examine the effects of perches on bone remodeling in caged hens. Anti-chicken OC polyclonal antibody was produced by immunization of rabbits with a recombinant OC from Escherichia coli. Chicken OC extracted from bone was used as a coated protein, and purified chicken OC was used for calibration. The limit of detection of the developed OC ELISA was 0.13 ng/mL. The intra- and interassay CV were housed in conventional cages with or without perches. Serum samples were collected from 71-wk-old White Leghorn hens subjected to 4 treatments. Treatment 1 was control chickens that never had access to perches during their life cycle. Treatment 2 chickens had perches during the pullet phase (0 to 16.9 wk of age), whereas treatment 3 chickens had perches only during the egg-laying phase of the life cycle (17 to 71 wk of age). Treatment 4 chickens always had access to perches (0 to 71 wk of age). Correlation between the 2 assays was 0.62 (P < 0.0001). Levels of serum OC using the developed chicken ELISA were higher than that detected using the Rat-Mid ELISA (P < 0.0001). Results from the chicken ELISA assay showed that hens with perch access had higher concentrations of serum OC than hens without perches during egg laying (P = 0.04). Pullet access to perches did not affect serum OC levels in 71-wk-old hens (P = 0.15). In conclusion, a chicken OC ELISA has been validated that is sensitive and accurate with adequate discriminatory power for measuring bone remodeling in chickens.

  1. A chronological expression profile of gene activity during embryonic mouse brain development.

    Science.gov (United States)

    Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P

    2013-12-01

    The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.

  2. Microgravity, Stem Cells, and Embryonic Development: Challenges and Opportunities for 3D Tissue Generation

    International Nuclear Information System (INIS)

    Andreazzoli, Massimiliano; Angeloni, Debora; Broccoli, Vania; Demontis, Gian C.

    2017-01-01

    Space is a challenging environment for the human body, due to the combined effects of reduced gravity (microgravity) and cosmic radiation. Known effects of microgravity range from the blood redistribution that affects the cardiovascular system and the eye to muscle wasting, bone loss, anemia, and immune depression. About cosmic radiation, the shielding provided by the spaceship hull is far less efficient than that afforded at ground level by the combined effects of the Earth atmosphere and magnetic field. The eye and its nervous layer (the retina) are affected by both microgravity and heavy ions exposure. Considering the importance of sight for long-term manned flights, visual research aimed at devising measures to protect the eye from environmental conditions of the outer space represents a special challenge to meet. In this review we focus on the impact of microgravity on embryonic development, discussing the roles of mechanical forces in the context of the neutral buoyancy the embryo experiences in the womb. At variance with its adverse effects on the adult human body, simulated microgravity may provide a unique tool for understanding the biomechanical events involved in the development and assembly in vitro of three-dimensional (3D) ocular tissues. Prospective benefits are the development of novel safety measures to protect the human eye from cosmic radiation in microgravity during long-term manned spaceflights in the outer space, as well as the generation of human 3D-retinas with its supporting structures to develop innovative and effective therapeutic options for degenerative eye diseases.

  3. Microgravity, Stem Cells, and Embryonic Development: Challenges and Opportunities for 3D Tissue Generation

    Energy Technology Data Exchange (ETDEWEB)

    Andreazzoli, Massimiliano [Department of Biology, University of Pisa, Pisa (Italy); Angeloni, Debora [Institute of Life Sciences, Scuola Superiore Sant' Anna, Pisa (Italy); Broccoli, Vania [National Research Council, Institute of Neuroscience, Milan (Italy); Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan (Italy); Demontis, Gian C., E-mail: giancarlo.demontis@farm.unipi.it [Department of Pharmacy and Centro D' Ateneo “E. Piaggio”, University of Pisa, Pisa (Italy)

    2017-04-25

    Space is a challenging environment for the human body, due to the combined effects of reduced gravity (microgravity) and cosmic radiation. Known effects of microgravity range from the blood redistribution that affects the cardiovascular system and the eye to muscle wasting, bone loss, anemia, and immune depression. About cosmic radiation, the shielding provided by the spaceship hull is far less efficient than that afforded at ground level by the combined effects of the Earth atmosphere and magnetic field. The eye and its nervous layer (the retina) are affected by both microgravity and heavy ions exposure. Considering the importance of sight for long-term manned flights, visual research aimed at devising measures to protect the eye from environmental conditions of the outer space represents a special challenge to meet. In this review we focus on the impact of microgravity on embryonic development, discussing the roles of mechanical forces in the context of the neutral buoyancy the embryo experiences in the womb. At variance with its adverse effects on the adult human body, simulated microgravity may provide a unique tool for understanding the biomechanical events involved in the development and assembly in vitro of three-dimensional (3D) ocular tissues. Prospective benefits are the development of novel safety measures to protect the human eye from cosmic radiation in microgravity during long-term manned spaceflights in the outer space, as well as the generation of human 3D-retinas with its supporting structures to develop innovative and effective therapeutic options for degenerative eye diseases.

  4. Analysis of embryonic development in the unsequenced axolotl: waves of transcriptomic upheaval and stability

    Science.gov (United States)

    Jiang, Peng; Nelson, Jeffrey D.; Leng, Ning; Collins, Michael; Swanson, Scott; Dewey, Colin N.; Thomson, James A.; Stewart, Ron

    2016-01-01

    The axolotl (Ambystoma mexicanum) has long been the subject of biological research, primarily owing to its outstanding regenerative capabilities. However, the gene expression programs governing its embryonic development are particularly underexplored, especially when compared to other amphibian model species. Therefore, we performed whole transcriptome polyA+ RNA sequencing experiments on 17 stages of embryonic development. As the axolotl genome is unsequenced and its gene annotation is incomplete, we built de novo transcriptome assemblies for each stage and garnered functional annotation by comparing expressed contigs with known genes in other organisms. In evaluating the number of differentially expressed genes over time, we identify three waves of substantial transcriptome upheaval each followed by a period of relative transcriptome stability. The first wave of upheaval is between the one and two cell stage. We show that the number of differentially expressed genes per unit time is higher between the one and two cell stage than it is across the mid-blastula transition (MBT), the period of zygotic genome activation. We use total RNA sequencing to demonstrate that the vast majority of genes with increasing polyA+ signal between the one and two cell stage result from polyadenylation rather than de novo transcription. The first stable phase begins after the two cell stage and continues until the mid-blastula transition, corresponding with the pre-MBT phase of transcriptional quiescence in amphibian development. Following this is a peak of differential gene expression corresponding with the activation of the zygotic genome and a phase of transcriptomic stability from stages 9 to 11. We observe a third wave of transcriptomic change between stages 11 and 14, followed by a final stable period. The last two stable phases have not been documented in amphibians previously and correspond to times of major morphogenic change in the axolotl embryo: gastrulation and

  5. An embryonic staging table for in ovo development of Eublepharis macularius, the leopard gecko.

    Science.gov (United States)

    Wise, Patrick A D; Vickaryous, Matthew K; Russell, Anthony P

    2009-08-01

    Squamates constitute a major vertebrate radiation, representing almost one-third of all known amniotes. Although speciose and morphologically diverse, they remain poorly represented in developmental studies. Here, we present an embryonic staging table of in ovo development for the basal gekkotan Eublepharis macularius (the leopard gecko) and advocate this species as a laboratory-appropriate developmental model. E. macularius, is a hardy and tractable species of relatively large body size (with concomitantly relatively large eggs and embryos), that is widely available and easy to maintain and propagate. Additionally, E. macularius displays a body plan appropriate to the study of the plesiomorphic quadrupedal condition of early pentadactylous terrestrial amniotes. Although not unexpected, it is worth noting that the morphological events characterizing limb development in E. macularius are comparable with those described for the avian Gallus gallus. Therefore, E. macularius holds great promise as a model for developmental studies focusing on pentadactyly and the formation of digits. Furthermore, it is also attractive as a developmental model because it demonstrates temperature-dependent sex determination. The staging table presented herein is based on an all-female series and represents the entire 52 day in ovo period. Overall, embryogenesis of E. macularius is similar to that of other squamates in terms of developmental stage attained at the time of oviposition, patterns of limb and pharyngeal arch development, and features of the appearance of scalation and pigmentation, indicative of a conserved developmental program. (c) 2009 Wiley-Liss, Inc.

  6. Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development.

    Directory of Open Access Journals (Sweden)

    Julien Ackermann

    2011-04-01

    Full Text Available The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.

  7. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    Science.gov (United States)

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  8. Effects of heavy ion radiation on the brain vascular system and embryonic development

    Science.gov (United States)

    Yang, T. C.; Tobias, C. A.

    Using neonatal rats as a model system, we investigated the response of the brain vascular system to ionizing radiation and found that distinct petechial hemorrages developed in the cerebral cortex within a few hours after irradiation, reached a maximum about 13 to 24 hours, and decreased exponentially with time. No brain hemorrhage was found in neonatal rats 12 days after irradiation. Our experimental results indicate that a dose of a few hundred rad of X rays can induce a significant number of hemorrhages in the brain, and the number of lesions increases exponentially with dose. Heavy ions induce more hemorrhages than X rays for a given dose, and the RBE for 670 MeV/u neon particles ranges from about 2.0 for low doses to about 1.4 for high doses. A histological study on the hemorrhages indicates that a large number of red blood cells leak from the blood vessels. The radiation-induced hemorrhages may be a result of some capillary membrane damages or reproductive death of some blood vessel epithelial cells. The fast onset of hemorrhage after irradiation suggests that some membrane damage may be involved. The effect of heavy-ion radiation on the embryonic development was studied with energetic iron particles. Pregnant mice were whole-body irradiated with 600 MeV/u iron particles on day 6 of gestation and were sacrificed 12 days after irradiation. Various physical abnormalities were observed, and embryos irradiated with 1 rad iron particles showed retardation of body development.

  9. The effect of MRN complex and ATM kinase inhibitors on Zebrafish embryonic development

    Science.gov (United States)

    Kumaran, Malina; Fazry, Shazrul

    2018-04-01

    Zebrafish is an ideal animal model to study developmental biology due to its transparent embryos and rapid development stages of embryogenesis. Here we investigate the role of DNA damage proteins, specifically Mre11/Rad50/NBN (MRN) complex and ataxia-telangiectasia mutated (ATM) kinase during embryogenesis by inhibiting its function using specific MRN complex (Mirin) and ATM Kinase inhibitors (Ku60019 and Ku55933). Zebrafish embryos at midblastula transition (MBT) stage are treated with Mirin, Ku60019 and Ku55933. The embryonic development of the embryos was monitored at 24 hours-post fertilisation (hpf), 48 hpf and 72 hpf. We observed that at the lowest concentrations (3 µM of Mirin, 1.5 nM of Ku60019 and 3 nM of Ku55933), the inhibitors treated embryos have 100% survivability. However, with increasing inhibitor concentration, the survivability drops. Control or mock treatment of all embryos shows 100 % survivability rate. This study suggests that DNA damage repair proteins may be crucial for normal zebrafish embryo development and survival.

  10. The Expression of Embryonic Liver Development Genes in Hepatitis C Induced Cirrhosis and Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Martha, E-mail: mbehnke@mcvh-vcu.edu [Transplant Program Administration, Virginia Commonwealth University Health System, 1200 E. Broad St., Richmond, VA 23298 (United States); Reimers, Mark [Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, 800 E Leigh St., Richmond, VA 23298 (United States); Fisher, Robert [Department of Surgery, Virginia Commonwealth University, 1200 E. Broad St., Richmond, VA 23298 (United States)

    2012-09-18

    Hepatocellular carcinoma (HCC) remains a difficult disease to study even after a decade of genomic analysis. Patient and disease heterogeneity, differences in statistical methods and multiple testing issues have resulted in a fragmented understanding of the molecular basis of tumor biology. Some researchers have suggested that HCC appears to share pathways with embryonic development. Therefore we generated targeted hypotheses regarding changes in developmental genes specific to the liver in HCV-cirrhosis and HCV-HCC. We obtained microarray studies from 30 patients with HCV-cirrhosis and 49 patients with HCV-HCC and compared to 12 normal livers. Genes specific to non-liver development have known associations with other cancer types but none were expressed in either adult liver or tumor tissue, while 98 of 179 (55%) genes specific to liver development had differential expression between normal and cirrhotic or HCC samples. We found genes from each developmental stage dysregulated in tumors compared to normal and cirrhotic samples. Although there was no single tumor marker, we identified a set of genes (Bone Morphogenetic Protein inhibitors GPC3, GREM1, FSTL3, and FST) in which at least one gene was over-expressed in 100% of the tumor samples. Only five genes were differentially expressed exclusively in late-stage tumors, indicating that while developmental genes appear to play a profound role in cirrhosis and malignant transformation, they play a limited role in late-stage HCC.

  11. Embryonic and larval development of Eugerres mexicanus (Perciformes: Gerreidae in Tenosique: Tabasco, Mexico

    Directory of Open Access Journals (Sweden)

    Raúl E Hernández

    2012-03-01

    Full Text Available Most studies on Eugerres mexicanus mainly consider biogeographic and systematic aspects and rarely address reproductive characteristics, which are useful for fishery population management plans. This study aimed at evaluating the ontogeny of E. mexicanus, based on 30 embryos and 30 larvae sampled by induced spawning of breeders, taken in February 2009 from the Usumacinta River in Tenosique, Tabasco, Mexico. All descriptions of the embryonic development were based on morphometric and meristic data and followed standard methods. Eggs, recovered at the gastrula stage, had an average diameter of 1.17mm (SD=0.08. The bud stage appeared during the first three hours of development, in which the posterior side was adhered to the vitellus; Kupffer´s vesicle was visible. Yolk-sac larvae hatched 18 hours after fertilization, exhibiting a light brown color and an average total length of 2.94mm (SD=0.70; the preflexion stage was reached eight days after hatching, with a total average length of 4.67mm (SD=0.50 and a total notochord length of 4.45mm (SD=0.50. The flexion stage was reached on the 16th day, with an average total length of 6.66mm (SD=1.53, while postflexion was reached on the 24th day, with 10.33mm (SD=1.45. The pre-juvenile stage was reached on the 33rd day, with a total length of 14.30mm (SD=0.93, showing IX spines and 10 rays and III spines and eight rays in the dorsal and anal fins, respectively. The juvenile stage was reached by the 45th day, with an average length of 28.16mm (SD=1.93 and average weight of 4.75g (SD=1.49. Prejuveniles showed an initial pigmentation with dark colored dots in the superior and inferior jaw and dispersed on the head, while juveniles presented the same pigmentation pattern, decreasing towards the margin of the caudal peduncle. In conclusion, the embryonic developmental stages of E. mexicanus were typical for the Gerreidae group. However, their morphometric characters were slightly different since the diameter

  12. Incubation temperature alters thermal preference and response to heat stress of broiler chickens along the rearing phase.

    Science.gov (United States)

    Morita, V S; Almeida, V R; Matos Junior, J B; Vicentini, T I; van den Brand, H; Boleli, I C

    2016-08-01

    The current study aimed to investigate whether embryonic temperature manipulation may alter thermal preference throughout the rearing phase of broiler chickens and how this manipulation may affect response to thermal challenge, metabolism, growth rate and feed intake rate. Eggs were exposed to a constant incubation temperature [machine temperatures: 36°C (Low), 37.5°C (Control), and 39°C (High); eggshell temperature of 37.4 ± 0.08°C, 37.8 ± 0.15°C, and 38.8 ± 0.33°C, respectively] from d 13 till hatching. Low treatment chickens showed lower plasma T3 and GH levels at d 1 of age and lower T3 level at d 42 of age compared to the Control treatment. Preferred ambient, rectal temperature, T4 level, growth rate, food intake rate, and response to thermal challenge were not altered in these chickens. On the other hand, High-treatment chickens exhibited high preferred ambient temperature and rectal temperature during the first 2 wk post-hatch, lower plasma T3 level at d 21 and 42 and a delayed increase in respiratory movement in response to thermal challenge compared to the Control treatment. However, chickens subjected to the Control and High treatments did not differ in T4 and GH level and performance. We conclude that exposure to high temperature during late embryonic development has long-lasting effects on the thermoregulatory system of broiler chickens by affecting the heat tolerance of these chickens. Moreover, the preferred ambient temperature of the chickens from heat-treated eggs correspond to those recommended for the strain under study, whereas for the cold-treated and control-chickens it was 1°C below, indicating that incubation temperature might have consequences on the ambient temperature chickens require during the rearing phase. © 2016 Poultry Science Association Inc.

  13. Formation of the hindgut cuticular lining during embryonic development of Porcellio scaber (Crustacea, Isopoda

    Directory of Open Access Journals (Sweden)

    Polona Mrak

    2015-07-01

    Full Text Available The hindgut and foregut in terrestrial isopod crustaceans are ectodermal parts of the digestive system and are lined by cuticle, an apical extracellular matrix secreted by epithelial cells. Morphogenesis of the digestive system was reported in previous studies, but differentiation of the gut cuticle was not followed in detail. This study is focused on ultrastructural analyses of hindgut apical matrices and cuticle in selected intramarsupial developmental stages of the terrestrial isopod Porcellio scaber in comparison to adult animals to obtain data on the hindgut cuticular lining differentiation. Our results show that in late embryos of stages 16 and 18 the apical matrix in the hindgut consists of loose material overlaid by a thin intensely ruffled electron dense lamina facing the lumen. The ultrastructural resemblance to the embryonic epidermal matrices described in several arthropods suggests a common principle in chitinous matrix differentiation. The hindgut matrix in the prehatching embryo of stage 19 shows characteristics of the hindgut cuticle, specifically alignment to the apical epithelial surface and a prominent electron dense layer of epicuticle. In the preceding embryonic stage – stage 18 – an electron dense lamina, closely apposed to the apical cell membrane, is evident and is considered as the first epicuticle formation. In marsupial mancae the advanced features of the hindgut cuticle and epithelium are evident: a more prominent epicuticular layer, formation of cuticular spines and an extensive apical labyrinth. In comparison to the hindgut cuticle of adults, the hindgut cuticle of marsupial manca and in particular the electron dense epicuticular layer are much thinner and the difference between cuticle architecture in the anterior chamber and in the papillate region is not yet distinguishable. Differences from the hindgut cuticle in adults imply not fully developed structure and function of the hindgut cuticle in marsupial

  14. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis

    DEFF Research Database (Denmark)

    Geldner, Niko; Richter, Sandra; Vieten, Anne

    2004-01-01

    The Arabidopsis GNOM gene encodes an ARF GDP/GTP exchange factor involved in embryonic axis formation and polar localisation of the auxin efflux regulator PIN1. To examine whether GNOM also plays a role in post-embryonic development and to clarify its involvement in auxin transport, we have...

  15. Central vagal sensory and motor connections: human embryonic and fetal development.

    Science.gov (United States)

    Cheng, Gang; Zhou, Xiangtian; Qu, Jia; Ashwell, Ken W S; Paxinos, G

    2004-07-30

    The embryonic and fetal development of the nuclear components and pathways of vagal sensorimotor circuits in the human has been studied using Nissl staining and carbocyanine dye tracing techniques. Eight fetal brains ranging from 8 to 28 weeks of development had DiI (1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate) inserted into either the thoracic vagus nerve at the level of the sternal angle (two specimens of 8 and 9 weeks of gestation) or into vagal rootlets at the surface of the medulla (at all other ages), while a further five were used for study of cytoarchitectural development. The first central labeling resulting from peripheral application of DiI to the thoracic vagus nerve was seen at 8 weeks. By 9 weeks, labeled bipolar cells at the ventricular surface around the sulcus limitans (sl) were seen after DiI application to the thoracic vagus nerve. Subnuclear organization as revealed by both Nissl staining and carbocyanine dye tracing was found to be advanced at a relatively early fetal age, with afferent segregation in the medial Sol apparent at 13 weeks and subnuclear organization of efferent magnocellular divisions of dorsal motor nucleus of vagus nerve noticeable at the same stage. The results of the present study also confirm that vagal afferents are distributed to the dorsomedial subnuclei of the human nucleus of the solitary tract, with particular concentrations of afferent axons in the gelatinosus subnucleus. These vagal afferents appeared to have a restricted zone of termination from quite early in development (13 weeks) suggesting that there is no initial exuberance in the termination field of vagal afferents in the developing human nucleus of the solitary tract. On the other hand, the first suggestion of afferents invading 10N from the medial Sol was not seen until 20 weeks and was not well developed until 24 weeks, suggesting that direct monosynaptic connections between the sensory and effector components of the vagal

  16. Asymmetric larval head and mandibles of Hydrophilus acuminatus (Insecta: Coleoptera, Hydrophilidae): Fine structure and embryonic development.

    Science.gov (United States)

    Sato, Shun'ichi; Inoda, Toshio; Niitsu, Shuhei; Kubota, Souichirou; Goto, Yuji; Kobayashi, Yukimasa

    2017-11-01

    The larvae of a water scavenger beetle, Hydrophilus acuminatus, have strongly asymmetric mandibles; the right one is long and slender, whereas the left one is short and stout. The fine structure and embryonic development of the head capsule and mandibles of this species were examined using light and scanning electron microscopy, and asymmetries in shape were detected in these structures applying an elliptic Fourier analysis. The larval mandibles are asymmetric in the following aspects: whole length, the number, structure and arrangement of retinacula (inner teeth), and size and shape of both the molar and incisor regions. The larval head is also asymmetric; the left half of the head capsule is larger than the right, and the left adductor muscle of the mandible is much thicker than the right. The origin and developmental process of asymmetric mandibles were traced in developing embryos whose developmental period is about 270 h and divided into 10 stages. Mandibular asymmetries are produced by the cumulative effects of six stepwise modifications that occur from about 36% of the total developmental time onward. The significance of these modifications was discussed with respect to the functional advantages of asymmetries and the phylogeny of members of the Hydrophilidae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea).

    Science.gov (United States)

    Nobre, C R; Santana, M F M; Maluf, A; Cortez, F S; Cesar, A; Pereira, C D S; Turra, A

    2015-03-15

    Apart from the physiological impacts on marine organisms caused by ingesting microplastics, the toxicity caused by substances leaching from these particles into the environment requires investigation. To understand this potential risk, we evaluated the toxicity of virgin (raw) and beach-stranded plastic pellets to the development of embryos of Lytechinus variegatus, simulating transfers of chemical compounds to interstitial water and water column by assays of pellet-water interface and elutriate, respectively. Both assays showed that virgin pellets had toxic effects, increasing anomalous embryonic development by 58.1% and 66.5%, respectively. The toxicity of stranded pellets was lower than virgin pellets, and was observed only for pellet-water interface assay. These results show that (i) plastic pellets act as a vector of pollutants, especially for plastic additives found on virgin particles; and that (ii) the toxicity of leached chemicals from pellets depends on the exposure pathway and on the environmental compartment in which pellets accumulate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cytotoxic Effects of Dillapiole on Embryonic Development of Mouse Blastocysts in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2014-06-01

    Full Text Available We examined the cytotoxic effects of dillapiole, a phenylpropanoid with antileishmanial, anti-inflammatory, antifungal, and acaricidal activities, on the blastocyst stage of mouse embryos, subsequent embryonic attachment and outgrowth in vitro, and in vivo implantation via embryo transfer. Blastocysts treated with 2.5–10 μM dillapiole exhibited a significant increase in apoptosis and corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with dillapiole were lower than those of their control counterparts. Moreover, in vitro treatment with 2.5–10 μM dillapiole was associated with increased resorption of post-implantation embryos and decreased fetal weight. Our results collectively indicate that dillapiole induces apoptosis and retards early post-implantation development, both in vitro and in vivo. However, the extent to which this organic compound exerts teratogenic effects on early human development is not known at present. Further studies are required to establish effective protection strategies against the cytotoxic effects of dillapiole.

  19. The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available In order to investigate the influence of the molecular karyotype based on single nucleotide polymorphism (SNP microarray on embryonic development potential in preimplantation genetic diagnosis (PGD, we retrospectively analyzed the clinical data generated by PGD using embryos retrieved from parents with chromosome rearrangements in our center. In total, 929 embryos from 119 couples had exact diagnosis and development status. The blastocyst formation rate of balanced molecular karyotype embryos was 56.6% (276/488, which was significantly higher than that of genetic imbalanced embryos 24.5% (108/441 (P35 respectively. Blastocyst formation rates of male and female embryos were 44.5% (183/411 and 38.8% (201/518 respectively, with no significant difference between them (P>0.05. The rates of balanced molecular karyotype embryos vary from groups of embryos with different cell numbers at 68 hours after insemination. The blastocyst formation rate of embryos with 6-8 cells (48.1% was significantly higher than that of embryos with 8 cells (42.9% (P8 cells, embryos with 6-8 blastomeres have higher rate of balanced molecular karyotype and blastocyst formation.

  20. A genetic screen for mutations affecting embryonic development in medaka fish (Oryzias latipes).

    Science.gov (United States)

    Loosli, F; Köster, R W; Carl, M; Kühnlein, R; Henrich, T; Mücke, M; Krone, A; Wittbrodt, J

    2000-10-01

    In a pilot screen, we assayed the efficiency of ethylnitrosourea (ENU) as a chemical mutagen to induce mutations that lead to early embryonic and larval lethal phenotypes in the Japanese medaka fish, Oryzias latipes. ENU acts as a very efficient mutagen inducing mutations at high rates in germ cells. Three repeated treatments of male fish in 3 mM ENU for 1 h results in locus specific mutation rates of 1.1-1.95 x10(-3). Mutagenized males were outcrossed to wild type females and the F1 offspring was used to establish F2 families. F2 siblings were intercrossed and the F3 progeny was scored 24, 48 and 72 h after fertilization for morphological alterations affecting eye development. The presented mutant phenotypes were identified using morphological criteria and occur during early developmental stages of medaka. They are stably inherited in a Mendelian fashion. The high efficiency of ENU to induce mutations in this pilot screen indicates that chemical mutagenesis and screening for morphologically visible phenotypes in medaka fish allows the genetic analysis of specific aspects of vertebrate development complementing the screens performed in other vertebrate model systems.

  1. Golga5 is dispensable for mouse embryonic development and postnatal survival.

    Science.gov (United States)

    McGee, Lynessa J; Jiang, Alex L; Lan, Yu

    2017-07-01

    Golgins are a family of coiled-coil proteins located at the cytoplasmic surface of the Golgi apparatus and have been implicated in maintaining Golgi structural integrity through acting as tethering factors for retrograde vesicle transport. Whereas knockdown of several individual golgins in cultured cells caused Golgi fragmentation and disruption of vesicle trafficking, analysis of mutant mouse models lacking individual golgins have discovered tissue-specific developmental functions. Recently, homozygous loss of function of GOLGA2, of which previous in vitro studies suggested an essential role in maintenance of Golgi structure and in mitosis, has been associated with a neuromuscular disorder in human patients, which highlights the need for understanding the developmental roles of the golgins in vivo. We report here generation of Golga5-deficient mice using CRISPR/Cas9-mediated genome editing. Although knockdown studies in cultured cells have implicated Golga5 in maintenance of Golgi organization, we show that Golga5 is not required for mouse embryonic development, postnatal survival, or fertility. Moreover, whereas Golga5 is structurally closely related to Golgb1, we show that inactivation of Golga5 does not enhance the severity of developmental defects in Golgb1-deficient mice. The Golga5-deficient mice enable further investigation of the roles and functional specificity of golgins in development and diseases. © 2017 Wiley Periodicals, Inc.

  2. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    Science.gov (United States)

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  3. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum

    Science.gov (United States)

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237

  4. Development and evaluation of chicken nuggets with partial replacement of meat and fat by pea fibre

    Directory of Open Access Journals (Sweden)

    Yana Jorge POLIZER

    2015-03-01

    Full Text Available The aim of this study was to develop and evaluate a chicken nugget formulation with partial substitution of the meat or fat by pea fibre. Three formulations were developed: Control (C – commercial formulation, Fibre Less Meat (FLM – reduction of 10% of meat and addition of 2% of pea fibre and Fibre Less Fat (FLF – reduction of 10% of fat and addition of 2% pea fibre. The products were characterized for their pH value, instrumental colour, texture, cooking loss (frying, proximate composition, and sensory properties (acceptance test. The control treatment presented lower (p0.05 amongst the treatments. The texture analysis showed no significant differences amongst the treatments for elasticity and cohesiveness, although the FLF batch was firmer than the others (p0.05 amongst the three treatments for aroma, texture, flavour or overall acceptability. One can conclude that it is possible to partially replace meat and fat by pea fibre in chicken nuggets, without compromising most of the physicochemical characteristics and without altering the sensory acceptance.

  5. FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development.

    Science.gov (United States)

    Inglis-Broadgate, Suzanne L; Thomson, Rachel E; Pellicano, Francesca; Tartaglia, Michael A; Pontikis, Charlie C; Cooper, Jonathan D; Iwata, Tomoko

    2005-03-01

    Mice with the K644E kinase domain mutation in fibroblast growth factor receptor 3 (Fgfr3) (EIIa;Fgfr3(+/K644E)) exhibited a marked enlargement of the brain. The brain size was increased as early as E11.5, not secondary to the possible effect of Fgfr3 activity in the skeleton. Furthermore, the mutant brains showed a dramatic increase in cortical thickness, a phenotype opposite to that in FGF2 knockout mice. Despite this increased thickness, cortical layer formation was largely unaffected and no cortical folding was observed during embryonic days 11.5-18.5 (E11.5-E18.5). Measurement of cortical thickness revealed an increase of 38.1% in the EIIa;Fgfr3(+/K644E) mice at E14.5 and the advanced appearance of the cortical plate was frequently observed at this stage. Unbiased stereological analysis revealed that the volume of the ventricular zone (VZ) was increased by more than two fold in the EIIa;Fgfr3(+/K644E) mutants at E14.5. A relatively mild increase in progenitor cell proliferation and a profound decrease in developmental apoptosis during E11.5-E14.5 most likely accounts for the dramatic increase in total telecephalic cell number. Taken together, our data suggest a novel function of Fgfr3 in controlling the development of the cortex, by regulating proliferation and apoptosis of cortical progenitors.

  6. Evidence for intron length conservation in a set of mammalian genes associated with embryonic development

    LENUS (Irish Health Repository)

    2011-10-05

    Abstract Background We carried out an analysis of intron length conservation across a diverse group of nineteen mammalian species. Motivated by recent research suggesting a role for time delays associated with intron transcription in gene expression oscillations required for early embryonic patterning, we searched for examples of genes that showed the most extreme conservation of total intron content in mammals. Results Gene sets annotated as being involved in pattern specification in the early embryo or containing the homeobox DNA-binding domain, were significantly enriched among genes with highly conserved intron content. We used ancestral sequences reconstructed with probabilistic models that account for insertion and deletion mutations to distinguish insertion and deletion events on lineages leading to human and mouse from their last common ancestor. Using a randomization procedure, we show that genes containing the homeobox domain show less change in intron content than expected, given the number of insertion and deletion events within their introns. Conclusions Our results suggest selection for gene expression precision or the existence of additional development-associated genes for which transcriptional delay is functionally significant.

  7. Embryonic, Larval, and Early Juvenile Development of the Tropical Sea Urchin, Salmacis sphaeroides (Echinodermata: Echinoidea

    Directory of Open Access Journals (Sweden)

    M. Aminur Rahman

    2012-01-01

    Full Text Available Salmacis sphaeroides (Linnaeus, 1758 is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10−5 dilution was 96.6±1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell, 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72±4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition.

  8. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    Directory of Open Access Journals (Sweden)

    Keisuke Nagao

    Full Text Available BACKGROUND: EpCAM (CD326 is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. METHODOLOGY/PRINCIPAL FINDINGS: To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts, eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. CONCLUSION: EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  9. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    Science.gov (United States)

    Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C

    2009-12-31

    EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  10. Characterizing the distribution of steroid sulfatase during embryonic development: when and where might metabolites of maternal steroids be reactivated?

    Science.gov (United States)

    Paitz, Ryan T; Duffield, Kristin R; Bowden, Rachel M

    2017-12-15

    All vertebrate embryos are exposed to maternally derived steroids during development. In placental vertebrates, metabolism of maternal steroids by the placenta modulates embryonic exposure, but how exposure is regulated in oviparous vertebrates is less clear. Recent work in oviparous vertebrates has demonstrated that steroids are not static molecules, as they can be converted to more polar steroid sulfates by sulfotransferase enzymes. Importantly, these steroid sulfates can be converted back to the parent compound by the enzyme steroid sulfatase (STS). We investigated when and where STS was present during embryonic development in the red-eared slider turtle, Trachemys scripta We report that STS is present during all stages of development and in all tissues we examined. We conclude that STS activity may be particularly important for regulating maternal steroid exposure in oviparous vertebrates. © 2017. Published by The Company of Biologists Ltd.

  11. Effect of litter treatment on growth performance, intestinal development, and selected cecum microbiota in broiler chickens

    Directory of Open Access Journals (Sweden)

    Gilaneh Taherparvar

    2016-05-01

    Full Text Available ABSTRACT The objective of this study was to determine whether the type of bedding materials (sand, wood shavings, and paper and of two chemical amendments (lime and bentonite could interfere with litter quality (moisture, pH, and total bacterial counts, thereby influencing also the growth performance and the development of intestinal traits and cecum microbiota of chickens. Two hundred and seventy male Ross 308 broiler chickens were randomly assigned into nine treatment groups with three replicates per treatment. Broiler productive parameters, relative weight of different intestinal segments, content of cecal total bacterial counts (total aerobic bacteria, Lactobacilli, and coliforms, as well as litter moisture, pH, and total aerobic bacteria and coliforms counts, were assessed. Litter material, per se, did not significantly affect the productivity parameters at the end of the experimental period (42 days with the exception of protein efficiency. A significant trend was found among treatments with regard to weight gain and feed intake, with lower performance in birds on sand beddings. Litter pH was relatively homogenous between bedding types and amendments, but the moisture was significantly lower when sand was used. Litter type did not influence the relative weight of the different intestinal segments; however, the type of amendment affected the relative jejunum weight, which was increased in bentonite-treated litter. The use of lime and bentonite treatments may be helpful to decrease the differences in litter moisture associated with particular bedding materials. The tested amendments do not interfere with the productive performance of birds.

  12. Chronology of early embryonic development and embryo uterine migration in alpacas.

    Science.gov (United States)

    Picha, Y; Tibary, A; Memon, M; Kasimanickam, R; Sumar, J

    2013-03-01

    The objectives were to: (1) describe the chronology of early embryonic development from ovulation to entry into the uterus; and (2) to determine the timing of embryo migration to the left uterine horn when ovulation occurred from the right ovary. The experiment was conducted in Peru. Females (n = 132) were randomly assigned to 15 experimental groups. All females were mated to an intact male, given 50 μg GnRH im (Cystorelin) and ovulation time determined by transrectal ultrasonography, conducted every 6 hours, starting 24 hours postmating. Animals were slaughtered at a specific intervals postovulation and reproductive tracts were recovered and subjected to oviductal and uterine flushing for females slaughtered between 1 and 6 days postovulation (dpo; Day 0 = ovulation) and uterine flushing for females slaughtered from 7 to 15 dpo for recovery of oocytes/embryos. Season of mating did not influence the interval from mating to ovulation (winter: 29 ± 6 hours vs. summer: 30 ± 6 hours; P = 0.49). Ovulation rates for females mated during winter and summer were 92% versus 100%, respectively (P = 0.05). Fertilization rates for winter and summer mated females were 72% and 82% (P = 0.29). Unfertilized ova were not retained in the uterine tube. All embryos collected were in the uterine tube ipsilateral to the side of ovulation between 1 and 5 dpo. Embryos reached the uterus on 6 dpo. Embryos began to elongate on 9 dpo; at this time, 83% of embryos derived from right-ovary ovulations were collected from the left uterine horn. Embryos occupied the entire uterine cavity by 10 dpo. In conclusion, we characterized early embryo development and location of embryo during its early developmental stages in alpaca. This was apparently the first report regarding chronology of embryo development and migration to the left horn in alpaca which merits further investigation regarding its role in maternal recognition of pregnancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The Chicken Creek catchment as observatory for early-stage landscape development

    Science.gov (United States)

    Schaaf, W.; Gerwin, W.; Pohle, I.; Maurer, T. J.

    2017-12-01

    Constructed in 2005, the Chicken Creek catchment offers unique opportunities to observe ecosystem and landscape development. The site was constructed within the post-mining landscape of a lignite mine in Germany (State of Brandenburg, 100 km southeast from Berlin). Using large mining machinery a clay layer was dumped as an aquiclude covered by a sandy layer as the aquifer of this 6 ha artificial watershed. After leveling the surface no further reclamation measures were applied and the site was left to a non-managed primary succession. A comprehensive monitoring program was established directly after the end of construction works including meteorological, hydrological, biogeochemical and biological parameters. Time series for these measured parameters are available for the last 12 years. Based on these data, the growing interactions between different compartments of the developing landscape give valuable insights into the functioning of ecosystems under transition. We will introduce the site as well as recent analyzes of hydrological data against the background of the ongoing development of the soil and the vegetation cover. The annual water balance was calculated based on known and modeled substrate volumes and water contents. The dynamics of the balance are clearly influenced by the development of the ecosystem, e.g. by the occurrence and rapid propagation of woody species. It was possible to define transitional states, which can be characterized by specific feedback processes between abiotic and biotic compartments. Our results indicate that for small catchments with a highly dynamic ecological development like the Chicken Creek, the knowledge about saturated and unsaturated storage volumes enables a good estimate and closure of the water balance using a rather simple approach. Uncertainties in storage changes partly compensate each other and the high variability of soil moisture in the unsaturated zone is of minor impact compared to the storage volume changes

  14. Bioprotective effect of zinc in macro- and nanoaquachelate form on embryonal development of rats in conditions of lead intoxication

    Directory of Open Access Journals (Sweden)

    Beletskaya E.M.

    2013-06-01

    Full Text Available The article presents results of studied influence of low doses of lead and zinc (nanozinc on embryonal development in a la¬boratory experiment on rats. Negative influence of lead on pregnancy of laboratory animals, manifested in violation of the physiological dynamics of the rectal temperature and decrease in body weight gain was revealed. Embryotoxic effect of low doses of lead results in increased fetal mortality by 2.16 times compared to the control group of animals, de¬terioration of the morphometric indices of fetuses, violation of placentogenesis. Simultaneous injections of zinc on back¬ground of lead intoxication causes a protective effect on the body of pregnant rats and embryonal development of the offspring, more pronounced for zinc citrate, received by using aquananotehnology, as compared to zinc chloride. Thus, by morphometry indices, male fetuses were more sensitive to prenatal lead exposure in comparison to female fetuses.

  15. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    LENUS (Irish Health Repository)

    Sapetto-Rebow, Beata

    2011-11-23

    Abstract Background Genetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome.

  16. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    Directory of Open Access Journals (Sweden)

    Sapetto-Rebow Beata

    2011-11-01

    Full Text Available Abstract Background Genetic alterations in human topoisomerase II alpha (TOP2A are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm, a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization. Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome.

  17. Membrane properties of chick semicircular canal hair cells in situ during embryonic development.

    Science.gov (United States)

    Masetto, S; Perin, P; Malusà, A; Zucca, G; Valli, P

    2000-05-01

    The electrophysiological properties of developing vestibular hair cells have been investigated in a chick crista slice preparation, from embryonic day 10 (E10) to E21 (when hatching would occur). Patch-clamp whole-cell experiments showed that different types of ion channels are sequentially expressed during development. An inward Ca(2+) current and a slow outward rectifying K(+) current (I(K(V))) are acquired first, at or before E10, followed by a rapid transient K(+) current (I(K(A))) at E12, and by a small Ca-dependent K(+) current (I(KCa)) at E14. Hair cell maturation then proceeds with the expression of hyperpolarization-activated currents: a slow I(h) appears first, around E16, followed by the fast inward rectifier I(K1) around E19. From the time of its first appearance, I(K(A)) is preferentially expressed in peripheral (zone 1) hair cells, whereas inward rectifying currents are preferentially expressed in intermediate (zone 2) and central (zone 3) hair cells. Each conductance conferred distinctive properties on hair cell voltage response. Starting from E15, some hair cells, preferentially located at the intermediate region, showed the amphora shape typical of type I hair cells. From E17 (a time when the afferent calyx is completed) these cells expressed I(K, L), the signature current of mature type I hair cells. Close to hatching, hair cell complements and regional organization of ion currents appeared similar to those reported for the mature avian crista. By the progressive acquisition of different types of inward and outward rectifying currents, hair cell repolarization after both positive- and negative-current injections is greatly strengthened and speeded up.

  18. The individual and combined effects of γ rays and hyperthermia on the development of embryonic brains

    International Nuclear Information System (INIS)

    Yang Yepeng; Ruan Ming; Liu Jingyuan; Hong Min; Lu Chunlin

    2000-01-01

    Objective: To observe the individual and combined effects of exposure to γ rays and hyperthermia on the development of embryonic brains. Methods: the pregnant LACA mice were exposed to 1.0 Gy 60 Co-γ rays, 42 degree C hyperthermia for 10 minutes or the two treatments combined together on day 9 of pregnancy. The females were sacrificed on day 18 of pregnancy and the fetuses were gained by cesarean section. The appearance of fetuses was observed and, then, the weight of fetal brains, the cell number of whole brains, the contents of nucleic acid and protein in brain tissue and the activity of acetylcholine esterase (AChE) in brain tissue as a marker for cholinergic neurons were determined. Results: Nervous tube defects did not occur in all groups. Compared with the control group, all the indices determined significantly declined in the radiation group while the cell number of whole brains and the AChE activity in brain tissue significantly decreased in the hyperthermia group. In the group of hyperthermia in advance, 4 hours later, followed by exposure to radiation, the AChE activity in brain tissue was significantly higher than the single radiation group. In the group of prior radiation exposure, 4 hours later, followed by hyperthermia, all the indices did not present significant difference from the single radiation group. Conclusion: The effects of 42 degree C hyperthermia for 10 minutes on the development of mouse embryo's brains are much weaker than 1.0 Gy γ radiation. It seems that the hyperthermia in advance can induce mouse fetuses to produce the cross adaptability to the following exposure to radiation. Exposure to γ radiation followed by hyperthermia does not present and additive action or a synergistic action

  19. PENGEMBANGAN KONSEP SISTEM JAMINAN HALAL DI RUMAH POTONG AYAM (Studi Kasus pada Industri Daging Ayam [Concept Development Of Halal Assurance System In The Chicken Slaughter House (Case Study Of Chicken Meat Industry

    Directory of Open Access Journals (Sweden)

    Wiwit Estuti1

    2005-12-01

    Full Text Available The application of effective halal assurance system model was one of producer's effort to supply halal food for Moslem consumers. The objective Of this research was to develop halal assurance system concept which is consist of halal manual. Halal Standard Operating Procedure, Guideline, and Work Instruction which should be applied at Chicken Slaughter House. flied research used descriptive method by distributing questionnaire, direct observation, on-site verification and halal assurance system assessment on two Chicken Slaughter House. The halal assurance system assessment was conducted based on ISO 9000, 2000 guideline of arrangement of HACCP system. The conclusion of this research was that this Halal Assurance System was suitable to be used as a standard for Chicken Slaughter House. The document change on both industry was that of applied halal assurance system. It was found that there were two kinds of haram Critical Control Point, which were two points at raw material and four point at chicken production process

  20. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    Science.gov (United States)

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  1. Effect of culture medium volume and embryo density on early mouse embryonic development: tracking the development of the individual embryo.

    Science.gov (United States)

    Dai, Shan-Jun; Xu, Chang-Long; Wang, Jeffrey; Sun, Ying-Pu; Chian, Ri-Cheng

    2012-07-01

    To determine the optimal volume or density of embryos for the well-of-the-well (WOW) system in order to track the development of individual embryos and to determine whether the WOW system can reverse the negative impact of culturing embryos singly. (1) Mouse embryos (groups of nine at the 2-cell stage) were cultured in 6.25 μl, 12.50 μl, 25.00 μl and 50.00 μl of droplets of culture medium under paraffin oil; (2) Groups of three, six, nine and twelve embryos at the 2-cell stage were cultured in 50 μl of droplet of culture medium under paraffin oil; (3) Groups of nine embryos at the 2-cell stage were cultured in 50 μl of droplet under paraffin oil with or without nine micro-wells made on the bottom of the Petri dish into each of which were placed one of the nine embryos (WOW system). Also single 2-cell stage embryos was cultured individually in 5.5 μl of droplet of culture medium under paraffin oil with or without a single micro-well made on the bottom of the Petri dish (WOW system for single culture). At the end of culture, the percentages of blastocyst development, hatching and hatched blastocysts were compared in each group. The blastocysts were fixed for differential staining. The blastocyst development was significantly higher (P WOW system. The blastocyst development was not improved when single embryo cultured individually in a micro-well was compared to single embryo cultured individually without micro-well. The total cell numbers of blastocysts were significantly higher in group embryo culture than single embryo culture regardless of whether the WOW system was used. In addition, the total cell numbers of blastocysts were significantly higher (P WOW system than without. Group embryo culture is superior to single embryo culture for blastocyst development. The WOW system with 50 μl of droplet of culture medium can be used to track the individual development of embryo cultured in groups while preserving good embryonic development. The reduced

  2. Microscopic analysis of Spodoptera frugiperda (Lepidoptera: Noctuidae) embryonic development before and after treatment with azadirachtin, lufenuron, and deltamethrin.

    Science.gov (United States)

    Correia, Alicely A; Wanderley-Teixeira, Valéria; Teixeira, Alvaro A C; Oliveira, José V; Gonçalves, Gabriel G A; Cavalcanti, MaríIia G S; Brayner, Fábio A; Alves, Luiz C

    2013-04-01

    The botanical insecticides, growth regulators, and pyrethroids have an effect on the biology of Spodoptera frugiperda (Smith). However, no emphasis has been given to the effect of these insecticides on embryonic development of insects, in histological level. Thus, this research aimed to examine by light and scanning electron microscopy S. frugiperda eggs and to describe the embryonic development, before and after immersion treatment, using commercial concentrations and lower concentrations than commercial ones, of the compounds lufenuron (Match), azadirachtin (AzaMax), and deltamethrin (Decis-positive control). For light microscopy semithin sections of eggs were used, and for scanning electron microscopy, images of the surface of eggs, treated and untreated with insecticides. The morphological characteristics of S. frugiperda eggs, in general, were similar to those described in the literature for most of the insects in the order Lepidoptera. Spherical eggs slightly flattened at the poles, with chorion, yolk, vitelline membrane, and embryo formation. In both microscopic analysis, we observed that insecticides acted immediately and independent of concentration, resulting absence, or incomplete embryo, presented yolk granules widely dispersed, without vitellophage formation, chorion disintegration, disorganized blastoderm, presenting vacuoles, yolk region with amorphous cells, and formation of completely uncharacterized appendages. Thus, we conclude that the compounds lufenuron and azadirachtin interfere on S. frugiperda embryonic development.

  3. Changes in the concentrations of four maternal steroids during embryonic development in the threespined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Paitz, Ryan Thomas; Mommer, Brett Christian; Suhr, Elissa; Bell, Alison Marie

    2015-08-01

    Embryonic exposure to steroids often leads to long-term phenotypic effects. It has been hypothesized that mothers may be able to create a steroid environment that adjusts the phenotypes of offspring to current environmental conditions. Complicating this hypothesis is the potential for developing embryos to modulate their early endocrine environment. This study utilized the threespined stickleback (Gasterosteus aculeatus) to characterize the early endocrine environment within eggs by measuring four steroids (progesterone, testosterone, estradiol, and cortisol) of maternal origin. We then examined how the concentrations of these four steroids changed over the first 12 days post fertilization (dpf). Progesterone, testosterone, estradiol, and cortisol of maternal origin could be detected within unfertilized eggs and levels of all four steroids declined in the first 3 days following fertilization. While levels of progesterone, testosterone, and estradiol remained low after the initial decline, levels of cortisol rose again by 8 dpf. These results demonstrate that G. aculeatus embryos begin development in the presence of a number of maternal steroids but levels begin to change quickly following fertilization. This suggests that embryonic processes change the early endocrine environment and hence influence the ability of maternal steroids to affect development. With these findings, G. aculeatus becomes an intriguing system in which to study how selection may act on both maternal and embryonic processes to shape the evolutionary consequence of steroid-mediated maternal effects. © 2015 Wiley Periodicals, Inc.

  4. On the genesis of articular cartilage. Embryonic joint development and gene expression - implications for tissue engineering

    NARCIS (Netherlands)

    Jenner, F

    2013-01-01

    Articular chondrocytes descend from a distinct cohort of progenitor cells located in the embryonic joint anlagen, termed interzones. Their unique lineage might explain some of the problems encountered using chondrocytes of different lineages for articular cartilage tissue engineering. While it is

  5. Oocyte adhesiveness and embryonic development of Astyanax bimaculatus (Linnaeus, 1758) (Pisces: Characidae).

    Science.gov (United States)

    Weber, André Alberto; Arantes, Fábio Pereira; Sato, Yoshimi; Rizzo, Elizete; Bazzoli, Nilo

    2013-05-01

    This study shows for the first time the presence of a jelly coat on oocytes of neotropical Characiformes fish. This structure could be responsible for the adhesiveness of Astyanax bimaculatus oocytes, a species widely distributed in South America including in the São Francisco River basin in Brazil. Adult specimens of A. bimaculatus were submitted to artificial reproduction in order to analyse the egg morphology and embryonic development. The eggs were fertilised and kept in incubators with a water temperature of 24°C so that embryogenesis could be monitored. Ovulated and unfertilised oocytes were also collected and submitted to routine histological techniques. Astyanax bimaculatus oocytes were found to be spherical, yellowish, and covered by a thin jelly coat with a slightly adhesive surface. The mean oocyte diameter was 1.03 ± 0.03 mm, the perivitelline space was 0.21 ± 0.02 mm and the jelly coat's thickness was 0.04 ± 0.01 mm. Positive periodic acid-Schiff (PAS) stain and Alcian blue stain pH 2.5 indicated the presence of neutral glycoproteins, and carboxylated acid glycoconjugates on the jelly coat that formed mucosubstances that may be associated with egg adhesiveness. At a water temperature of 24°C, blastopore closure and hatching occurred at 5 h and 17 h after fertilisation, respectively. The results of this study provide essential information for phylogenetic studies and for a better understanding of the reproductive strategy of A. bimaculatus, currently included in the incertae sedis group of the Characidae family due to the lack of monophyly among the families of the group.

  6. Cytotoxic assessment of silver nanoparticles in embryonic development and kidney tissue in pregnant mice

    Directory of Open Access Journals (Sweden)

    Bagher seyedalipour

    2015-10-01

    Full Text Available Background and Aim: Regarding the widespread use of silver nanoparticles in medecine and lack of a detailed study of toxicity effects of these particles on fetus, this study was carried out to investigate histopathological changes of the kidneys and also embryonic development following exposure to silver nanoparticles. Materials and Methods: In this experimental study, thirty five female NMRI mice were randomly divided into five equal groups i.e. one control group and four experimental groups. The experimental groups intraperitoneally (IP received silver nanoparticles at concentrations of 50, 100, 200 and 400 mg/ kg . .every other day. On the 17th day  of pregnancy, the mice were dissected and  their kidneys and embryos tissues were separated and stained with hematoxylin and eosin for histopathological examinations. .Finally, the obtained data was fed into SPSS software (V:16 using statistical tests including Kolmogrof-Smearnof, one-way variance analysis, Dante, Mann-Whitney and Kruskal-Wallis and P<0.05 was taken as the significant level. Results: Histopathological assessment of kidney tissue following IP administration of silver nanoparticle indicated pathological changes including congestion, necrosis, inflammatory cell infiltration, vacuolar degeneration compared to the control group. Our findings showed that silver nanoparticles during the gestation period affects fetal organogenesis, evolution of neural structure, liver lobulation and fetal growth retardation. Mean number of somites in groups receiving doses of 200 and 400 mg kg, . significantly reduced compared to the control group (P<0.05. Conclusion: The obtained results suggest that  passing of silver nanoparticles through placenta is possible and damage caused by the particles  could lead to the deformity or developmental retardation of the fetus.

  7. Real-time Visualization of Tissue Dynamics during Embryonic Development and Malignant Transformation

    Science.gov (United States)

    Yamada, Kenneth

    Tissues undergo dramatic changes in organization during embryonic development, as well as during cancer progression and invasion. Recent advances in microscopy now allow us to visualize and track directly the dynamic movements of tissues, their constituent cells, and cellular substructures. This behavior can now be visualized not only in regular tissue culture on flat surfaces (`2D' environments), but also in a variety of 3D environments that may provide physiological cues relevant to understanding dynamics within living organisms. Acquisition of imaging data using various microscopy modalities will provide rich opportunities for determining the roles of physical factors and for computational modeling of complex processes in living tissues. Direct visualization of real-time motility is providing insight into biology spanning multiple spatio-temporal scales. Many cells in our body are known to be in contact with connective tissue and other forms of extracellular matrix. They do so through microscopic cellular adhesions that bind to matrix proteins. In particular, fluorescence microscopy has revealed that cells dynamically probe and bend the matrix at the sites of cell adhesions, and that 3D matrix architecture, stiffness, and elasticity can each regulate migration of the cells. Conversely, cells remodel their local matrix as organs form or tumors invade. Cancer cells can invade tissues using microscopic protrusions that degrade the surrounding matrix; in this case, the local matrix protein concentration is more important for inducing the micro-invasive protrusions than stiffness. On the length scales of tissues, transiently high rates of individual cell movement appear to help establish organ architecture. In fact, isolated cells can self-organize to form tissue structures. In all of these cases, in-depth real-time visualization will ultimately provide the extensive data needed for computer modeling and for testing hypotheses in which physical forces interact

  8. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    Science.gov (United States)

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  9. Development of an enzyme-linked immunosorbent assay for the detection of ciguatoxin in fish tissue using chicken immunoglobulin Y.

    Science.gov (United States)

    Empey Campora, Cara; Hokama, Yoshitsugi; Yabusaki, Kenichi; Isobe, Minoru

    2008-01-01

    A sandwich enzyme-linked immunosorbent assay was developed to detect ciguatoxin (CTX) in fish tissue. The assay utilizes two antibodies, chicken immunoglobulin Y specific to the ABCD domain of CTX and a mouse monoclonal immunoglobulin G-horseradish peroxidase conjugate specific to the JKLM domain of CTX. The sensitivity, working range, cross reactivity, accuracy, precision, and reproducibility were examined.

  10. Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits

    Science.gov (United States)

    2010-01-01

    Background Planktonic life history stages of spiralians share some muscular, nervous and ciliary system characters in common. The distribution of these characters is patchy and can be interpreted either as the result of convergent evolution, or as the retention of primitive spiralian larval features. To understand the evolution of these characters adequate taxon sampling across the Spiralia is necessary. Polyclad flatworms are the only free-living Platyhelminthes that exhibit a continuum of developmental modes, with direct development at one extreme, and indirect development via a trochophore-like larval stage at the other. Here I present embryological and larval anatomical data from the indirect developing polyclad Maritrigrella crozieri, and consider these data within a comparative spiralian context. Results After 196 h hours of embryonic development, M. crozieri hatches as a swimming, planktotrophic larva. Larval myoanatomy consists of an orthogonal grid of circular and longitudinal body wall muscles plus parenchymal muscles. Diagonal body wall muscles develop over the planktonic period. Larval neuroanatomy consists of an apical plate, neuropile, paired nerve cords, a peri-oral nerve ring, a medial nerve, a ciliary band nerve net and putative ciliary photoreceptors. Apical neural elements develop first followed by posterior perikarya and later pharyngeal neural elements. The ciliated larva is encircled by a continuous, pre-oral band of longer cilia, which follows the distal margins of the lobes; it also possesses distinct apical and caudal cilia. Conclusions Within polyclads heterochronic shifts in the development of diagonal bodywall and pharyngeal muscles are correlated with life history strategies and feeding requirements. In contrast to many spiralians, M. crozieri hatch with well developed nervous and muscular systems. Comparisons of the ciliary bands and apical organs amongst spiralian planktonic life-stages reveal differences; M. crozieri lack a distinct

  11. Isomyosin expression patterns in tubular stages of chicken heart development: a 3-D immunohistochemical analysis

    NARCIS (Netherlands)

    de Jong, F.; Geerts, W. J.; Lamers, W. H.; Los, J. A.; Moorman, A. F.

    1987-01-01

    The 3-D distribution of atrial and ventricular isomyosins is analysed in tubular chicken hearts (stage 12+ to 17 (H/H)) using antibodies specific for adult chicken atrial and ventricular myosin heavy chains, respectively. At stage 12+ (H/H) all myocytes express the atrial isomyosin; furthermore, all

  12. Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice

    Directory of Open Access Journals (Sweden)

    Hong F

    2017-08-01

    Full Text Available Fashui Hong,1–4 Yingjun Zhou,1–4 Xiaoyang Zhao,5 Lei Sheng,5 Ling Wang6 1Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, 2Jiangsu Key Laboratory for Food Safety and Nutritional Function, 3Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, 4School of Life Sciences, Huaiyin Normal University, Huaian, 5Medical College of Soochow University, Suzhou, 6Library of Soochow University, Suzhou, Jiangsu, China Abstract: Although nanoscale titanium dioxide (nano-TiO2 has been extensively used in industrial food applications and daily products for pregnant women, infants, and children, its potential toxicity on fetal development has been rarely studied. The main objective of this investigation was to establish the effects of maternal exposure of nano-TiO2 on developing embryos. Female imprinting control region mice were orally administered nano-TiO2 from gestational day 0 to 17. Our findings showed that Ti concentrations in maternal serum, placenta, and fetus were increased in nano-TiO2-exposed mice when compared to controls, which resulted in reductions in the contents of calcium and zinc in maternal serum, placenta, and fetus, maternal weight gain, placental weight, fetal weight, number of live fetuses, and fetal crown–rump length as well as cauda length, and caused an increase in the number of both dead fetuses and resorptions. Furthermore, maternal nano-TiO2 exposure inhibited development of the fetal skeleton, suggesting a significant absence of cartilage, reduced or absent ossification, and an increase in the number of fetuses with dysplasia, including exencephaly, spina bifida, coiled tail, scoliosis, rib absence, and sternum absence. These findings indicated that nano-TiO2 can cross the blood–fetal barrier and placental barrier, thereby delaying the development of fetal mice and inducing skeletal malformation. These factors may be associated with reductions in

  13. Comparing the effects of tetrabromobisphenol-A, bisphenol A, and their potential replacement alternatives, TBBPA-bis(2,3-dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes.

    Science.gov (United States)

    Ma, Melissa; Crump, Doug; Farmahin, Reza; Kennedy, Sean W

    2015-02-01

    A market for alternative brominated flame retardants (BFRs) has emerged recently due to the phase out of persistent and inherently toxic BFRs. Several of these replacement compounds have been detected in environmental matrices, including wild birds. A chicken embryonic hepatocyte (CEH) assay was utilized to assess the effects of the BFR, tetrabromobisphenol-A (TBBPA), and its replacement alternative, tetrabromobisphenol A bis(2,3-dibromopropyl ether [TBBPA-DBPE]) on cell viability and messenger ribonucleic acid (mRNA) expression. Bisphenol A (BPA) and 1 of its replacement alternatives, bisphenol S (BPS), were also screened for effects. Both TBBPA and BPA decreased CEH viability with calculated median lethal concentration (LC50) values of 40.6 μM and 61.7 μM, respectively. However, the replacement alternatives, TBBPA-DBPE and BPS, did not affect cell viability (up to 300 μM). Effects on mRNA expression were determined using an Avian ToxChip polymerse chain reaction (PCR) array and a real-time (RT)-PCR assay for the estrogen-responsive genes, apolipoproteinII (ApoII) and vitellogenin (Vtg). A luciferase reporter gene assay was used to assess dioxin-like effects. Tetrabromobisphenol-A altered mRNA levels of 4 genes from multiple toxicity pathways and increased luciferase activity in the luciferase reporter gene assay, whereas its alternative, TBBPA-DBPE, only altered 1 gene on the array, Cyp1a4, and increased luciferase activity. At 300 μM, a concentration that decreased cell viability for TBBPA and BPA, the BPA replacement, BPS, altered the greatest number of transcripts, including both ApoII and Vtg. Bisphenol A exposure did not alter any genes on the array but did up-regulate Vtg at 10 μM. Characterization of the potential toxicological and molecular-level effects of these compounds will ideally be useful to chemical regulators tasked with assessing the risk of new and existing chemicals. © 2014 SETAC.

  14. Chicken Picadillo

    Science.gov (United States)

    ... this page: https://medlineplus.gov/recipe/chickenpicadillo.html Chicken Picadillo To use the sharing features on this ... together on a busy weeknight Ingredients 1 pound chicken breast, boneless, skinless, cut into thin strips 2 ...

  15. Chicken Stew

    Science.gov (United States)

    ... this page: https://medlineplus.gov/recipe/chickenstew.html Chicken Stew To use the sharing features on this ... leftovers for lunch the next day! Ingredients 8 chicken pieces (breasts or legs) 1 cup water 2 ...

  16. Comparative analysis of conditional reporter alleles in the developing embryo and embryonic nervous system.

    Science.gov (United States)

    Ellisor, Debra; Koveal, Dorothy; Hagan, Nellwyn; Brown, Ashly; Zervas, Mark

    2009-10-01

    A long-standing problem in development is understanding how progenitor cells transiently expressing genes contribute to complex anatomical and functional structures. In the developing nervous system an additional level of complexity arises when considering how cells of distinct lineages relate to newly established neural circuits. To address these problems, we used both cumulative marking with Cre/loxP and Genetic Inducible Fate Mapping (GIFM), which permanently and heritably marks small populations of progenitors and their descendants with fine temporal control using CreER/loxP. A key component used in both approaches is a conditional phenotyping allele that has the potential to be expressed in all cell types, but is quiescent because of a loxP flanked Stop sequence, which precedes a reporter allele. Upon recombination, the resulting phenotyping allele is 'turned on' and then constitutively expressed. Thus, the reporter functions as a high fidelity genetic lineage tracer in vivo. Currently there is an array of reporter alleles that can be used in marking strategies, but their recombination efficiency and applicability to a wide array of tissues has not been thoroughly described. To assess the recombination/marking potential of the reporters, we utilized CreER(T) under the control of a Wnt1 transgene (Wnt1-CreER(T)) as well as a cumulative, non-inducible En1(Cre) knock-in line in combination with three different reporters: R26R (LacZ reporter), Z/EG (EGFP reporter), and Tau-Lox-STOP-Lox-mGFP-IRES-NLS-LacZ (membrane-targeted GFP/nuclear LacZ reporter). We marked the Wnt1 lineage using each of the three reporters at embryonic day (E) 8.5 followed by analysis at E10.0, E12.5, and in the adult. We also compared cumulative marking of cells with a history of En1 expression at the same stages. We evaluated the reporters by whole-mount and section analysis and ascertained the strengths and weaknesses of each of the reporters. Comparative analysis with the reporters

  17. Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Hepatoma-derived growth factor (HDGF related protein 2 (HRP2 and lens epithelium-derived growth factor (LEDGF/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E 13.5. Histological examination revealed ventricular septal defect (VSD associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s, RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality

  18. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Amanda Fraga

    Full Text Available Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3 and hexokinase (HexA genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.

  19. Embryonic and larval development in barfin flounder Verasper moseri (Jordan and Gilbert)

    Science.gov (United States)

    Du, Rongbin; Wang, Yongqiang; Jiang, Haibin; Liu, Liming; Wang, Maojian; Li, Tianbao; Zhang, Shubao

    2010-01-01

    Broodstock of Verasper moseri (Jordan and Gilbert) aged 3-4 years old were selected, and reinforced cultivation was conducted to promote maturation under controlled water temperature and photoperiod conditions. Fertilized eggs were obtained by artificial fertilization, and the development of embryos, larvae and juveniles was observed continuously. The results showed that the fertilized eggs of V. moseri were spherical, with transparent yolk and homogeneous bioplasm, and had no oil globule inside. The average diameter of the eggs was 1.77±0.02 mm. The eggs of V. moseri were buoyant in water with salinity above 35. The cleavage type was typical discoidal. Young pigment cells appeared when olfactory plates began to form. Hatching occurred at 187 h after fertilization at a water temperature of 8.5°C. The newly hatched larvae, floating on the water surface, were transparent with an average total length of 4.69±0.15 mm. During the cultivation period, when the water temperature was raised from 9 to 14.5°C, 4-day old larvae showed more melanophores on the body surface, making the larvae gray in color. The pectoral fins began to develop, which enabled the larvae to swim horizontally and in a lively manner. On days 7-8, the digestive duct formed. The yolk sac was small and black. The yolk sac was absorbed on day 11. Larvae took food actively, and body length and body height clearly increased. The rudiments of dorsal and anal fin pterygiophores were discernible and caudal fin ray elements formed on day 19. On day 24, the larval notochord flexed upwards, and the rays of unpaired fins began to differentiate. Pigment cells converged on the dorsal and anal fin rays, and the mastoid teeth on the mandible appeared. On day 29, the left eyes of juveniles began to move upwards. Depigmentation began in some juveniles and they became sandy brown in color on day 37. Most juveniles began to settle on the bottom of the tank. The left eyes of juveniles migrated completely to the right

  20. Ectopic Fgf signaling induces the intercalary response in developing chicken limb buds.

    Science.gov (United States)

    Makanae, Aki; Satoh, Akira

    2018-01-01

    Intercalary pattern formation is an important regulatory step in amphibian limb regeneration. Amphibian limb regeneration is composed of multiple steps, including wounding, blastema formation, and intercalary pattern formation. Attempts have been made to transfer insights from regeneration-competent animals to regeneration-incompetent animalsat each step in the regeneration process. In the present study, we focused on the intercalary mechanism in chick limb buds. In amphibian limb regeneration, a proximodistal axis is organized as soon as a regenerating blastema is induced. Intermediate structures are subsequently induced (intercalated) between the established proximal and distal identities. Intercalary tissues are derived from proximal tissues. Fgf signaling mediates the intercalary response in amphibian limb regeneration. We attempted to transfer insights into intercalary regeneration from amphibian models to the chick limb bud. The zeugopodial part was dissected out, and the distal and proximal parts were conjunct at st. 24. Delivering ectopic Fgf2 + Fgf8 between the distal and proximal parts resulted in induction of zeugopodial elements. Examination of HoxA11 expression, apoptosis, and cell proliferation provides insights to compare with those in the intercalary mechanism of amphibian limb regeneration. Furthermore, the cellular contribution was investigated in both the chicken intercalary response and that of axolotl limb regeneration. We developed new insights into cellular contribution in amphibian intercalary regeneration, and found consistency between axolotl and chicken intercalary responses. Our findings demonstrate that the same principal of limb regeneration functions between regeneration-competent and -incompetent animals. In this context, we propose the feasibility of the induction of the regeneration response in amniotes.

  1. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1

    DEFF Research Database (Denmark)

    Robert-Moreno, Àlex; Robert-Moreno, Àlex; Guiu, Jordi

    2008-01-01

    Specific deletion of Notch1 and RBPjκ in the mouse results in abrogation of definitive haematopoiesis concomitant with the loss of arterial identity at embryonic stage. As prior arterial determination is likely to be required for the generation of embryonic haematopoiesis, it is difficult...... to establish the specific haematopoietic role of Notch in these mutants. By analysing different Notch-ligand-null embryos, we now show that Jagged1 is not required for the establishment of the arterial fate but it is required for the correct execution of the definitive haematopoietic programme, including...... activation of Notch1 is responsible for regulating GATA2 expression in the AGM, which in turn is essential for definitive haematopoiesis in the mouse....

  2. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development.

    Directory of Open Access Journals (Sweden)

    Selda Goktas

    Full Text Available The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis.

  3. Cannabinoids as modulators of cancer cell viability, neuronal differentiation, and embryonal development

    OpenAIRE

    Gustafsson, Sofia

    2012-01-01

    Cannabinoids (CBs) are compounds that activate the CB1 and CB2 receptors. CB receptors mediate many different physiological functions, and cannabinoids have been reported to decrease tumor cell viability, proliferation, migration, as well as to modulate metastasis. In this thesis, the effects of cannabinoids on human colorectal carcinoma Caco-2 cells (Paper I) and mouse P19 embryonal carcinoma (EC) cells (Paper III) were studied.  In both cell lines, the compounds examined produced a concentr...

  4. A three-prong strategy to develop functional food using protein isolates recovered from chicken processing by-products with isoelectric solubilization/precipitation.

    Science.gov (United States)

    Tahergorabi, Reza; Sivanandan, Litha; Beamer, Sarah K; Matak, Kristen E; Jaczynski, Jacek

    2012-09-01

    Skin-on bone-in chicken drumsticks were processed with isoelectric solubilization/precipitation to recover muscle proteins. The drumsticks were used as a model for dark chicken meat processing by-products. The main objective of this study was conversion of dark chicken meat processing by-products to restructured functional food product. An attempt was made to develop functional food product that would resemble respective product made from boneless skinless chicken breast meat. A three-prong strategy to address diet-driven cardiovascular disease (CVD)with a functional food was used in this study. The strategy included addition of three ingredients with well-documented cardiovascular benefits: (i) ω-3 polyunsaturated fatty acid-rich oil (flaxseed-algae, 9:1); (ii) soluble fiber; and (iii) salt substitute. Titanium dioxide, potato starch, polyphosphate, and transglutaminase were also added. The batters were formulated and cooked resulting in heat-set gels. Color (L*a*b*), texture (torsion test, Kramer shear test, and texture profile analysis), thermal denaturation (differential scanning calorimetry), and gelation (dynamic rheology) of chicken drumstick gels and chicken breast gels were determined and compared. Chicken drumstick gels generally had comparable color and texture properties to the gels made from chicken breast meat. The endothermic transition (thermal denaturation) of myosin was more pronounced and gelation properties were better for the drumstick gels. This study demonstrated a feasibility to develop functional food made of muscle proteins recovered with isoelectric solubilization/precipitation from low-value dark chicken meat processing by-products. The functional food developed in this study was enriched with CVD-beneficial nutrients and had comparable instrumental quality attributes to respective products made of chicken breast meat. Although the results of this study point towards the potential for a novel, marketable functional food product, sensory

  5. Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples

    Directory of Open Access Journals (Sweden)

    Whyte Paul

    2008-09-01

    Full Text Available Abstract Background A real-time multiplex PCR assay was developed for the detection of multiple Salmonella serotypes in chicken samples. Poultry-associated serotypes detected in the assay include Enteritidis, Gallinarum, Typhimurium, Kentucky and Dublin. The traditional cultural method according to EN ISO 6579:2002 for the detection of Salmonella in food was performed in parallel. The real-time PCR based method comprised a pre-enrichment step in Buffered Peptone Water (BPW overnight, followed by a shortened selective enrichment in Rappaport Vasilliadis Soya Broth (RVS for 6 hours and subsequent DNA extraction. Results The real-time multiplex PCR assay and traditional cultural method showed 100% inclusivity and 100% exclusivity on all strains tested. The real-time multiplex PCR assay was as sensitive as the traditional cultural method in detecting Salmonella in artificially contaminated chicken samples and correctly identified the serotype. Artificially contaminated chicken samples resulted in a detection limit of between 1 and 10 CFU per 25 g sample for both methods. A total of sixty-three naturally contaminated chicken samples were investigated by both methods and relative accuracy, relative sensitivity and relative specificity of the real-time PCR method were determined to be 89, 94 and 87%, respectively. Thirty cultures blind tested were correctly identified by the real-time multiplex PCR method. Conclusion Real-time PCR methodology can contribute to meet the need for rapid identification and detection methods in food testing laboratories.

  6. Development of a Rapid Immunodiagnostic Test for Pork Components in Raw Beef and Chicken Meats: a Preliminary Study

    Directory of Open Access Journals (Sweden)

    S. N. Depamede

    2011-08-01

    Full Text Available A rapid immunodiagnostic test that provides visual evidence of the presence of pork components in raw beef and chicken meats was developed. Colloidal gold was prepared and conjugated with anti-Swine IgG polyclonal antibody. Immunochromatographic test strips were produced, and then were used to test laboratory adulterated raw meat samples. The samples consisted adulteration meat, immunodiagnostic, pork, rapid test of pork-in-beef, or pork-in-chicken at 1/0; 1/100; 1/1,000; 1/5,000; 1/10,000 (w/w adulteration levels that were extracted in phosphate-buffered saline. Raw beef and chicken meats without pork were included as controls. Analysis was completed in 10 min. Detection limit was 1/5,000 (w/w, although 1/10,000 was also observed. This immunodiagnostic tests can be conveniently applied to detect low levels of pork components in raw beef and chicken meat products. For the commercial purposes, further studies need to be carried out.

  7. The development of a novel cooking method (alternate roasting with its own fat) for chicken to improve nutritional value.

    Science.gov (United States)

    Kim, J H; Park, H G; Kim, J H; Jung, H; Kim, J K; Oh, S S; Shin, D H; Lim, E J; Kim, Y J

    2008-05-01

    The goal of this study was to develop a novel cooking method for fried meat products, to improve their nutritional value, and to provide superior taste and texture. We used the fat derived from each individual meat source during radiant heat roasting (alternate roasting with its own fat: AROF) without deep-fat frying (DFF), first without any air flow and subsequently with an exposure to air flow. We then compared these roasted chicken samples to breaded fried chicken samples that were deep-fat fried in 3 types of fat: soybean oil (SB), partially hydrogenated soybean oil (PSB), and lard. The final fat contents of both the skin and lean parts of the AROF samples of chicken were less than half of those of the DFF groups. The total trans-fatty acids (TFA) contents were significantly lower in the AROF samples compared to the DFF samples. The cholesterol levels of the samples did not show any significant differences among the tested groups, except for the sample fried in lard, which was significantly higher. Moreover, the sensory evaluation results showed that the crispy texture of the AROF samples was not significantly different from that of the DFF samples (P chicken and other meat products and improve their nutritional value.

  8. Effect of Age and Caponization on Blood Parameters and Bone Development of Male Native Chickens in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Yung Lin

    2012-07-01

    Full Text Available An experiment was carried out to determine the effect of age and caponization on the development blood and bone characteristics development in male country chickens in Taiwan. A total of two hundred 8-wk-old LRI native chicken cockerels, Taishi meat No.13 from LRI-COA, were used as experimental animals. Cockerels were surgically caponized at 8 wks of age. Twelve birds in each group were bled and dressed from 8 wks to 35 wks of age at 1 to 5 wk intervals. The results indicated that the plasma testosterone concentration was significantly (p<0.05 lower in capons after 12 wks of age (caponized treatment after 4 wks than that of the intact males. The relative tibia weight, bone breaking strength, cortical thickness, bone ash, bone calcium, bone phosphorus and bone magnesium contents were significantly (p<0.05 higher in intact males, while capons had higher (p<0.05 plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. The plasma testosterone concentration, relative tibia weight, tibia length, breaking strength, cortical thickness, bone ash, calcium, and phosphorus contents of intact males chickens increased significantly (p<0.05 with the advance of age. In addition, the relative tibia weight of capons peaked at 18 wks of age, and declined at 35 wks of age. The bone ash, calcium and phosphorus content increased most after 14 wks of age in male native chickens in Taiwan. Also, tibia length and cortical thickness peaked at 22 wks of age. However, the peak of bone strength was found at 26 wks of age. These findings support the assertion that androgens can directly influence bone composition fluxes in male chickens. Caponization caused a significant increase in bone loss at 4 wks post treatment, which reflected bone cell damage, and demonstrated reductions in the relative tibia weight, breaking strength, cortical thickness, bone ash, calcium, phosphorus and magnesium contents, and increases in plasma ionized calcium

  9. New gene targets for glucagon-like peptide-1 during embryonic development and in undifferentiated pluripotent cells.

    Science.gov (United States)

    Sanz, Carmen; Blázquez, Enrique

    2011-09-01

    In humans, glucagon-like peptide (GLP-1) functions during adult life as an incretin hormone with anorexigenic and antidiabetogenic properties. Also, the therapeutic potential of GLP-1 in preventing the adipocyte hyperplasia associated with obesity and in bolstering the maintenance of human mesenchymal stem cell (hMSC) stores by promoting the proliferation and cytoprotection of hMSC seems to be relevant. Since these observations suggest a role for GLP-1 during developmental processes, the aim of the present work was to characterize GLP-1 in early development as well as its gene targets in mouse embryonic stem (mES) cells. Mouse embryos E6, E8, and E10.5 and pluripotent mES were used for the inmunodetection of GLP-1 and GLP-1 receptor. Quantitative real-time PCR was used to determine the expression levels of GLP-1R in several tissues from E12.5 mouse embryos. Additionally, GLP-1 gene targets were studied in mES by multiple gene expression analyses. GLP-1 and its receptors were identified in mES and during embryonic development. In pluripotent mES, GLP-1 modified the expression of endodermal, ectodermal, and mesodermal gene markers as well as sonic hedgehog, noggin, members of the fibroblast and hepatic growth factor families, and others involved in pancreatic development. Additionally, GLP-1 promoted the expression of the antiapoptotic gene bcl2 and at the same time reduced proapoptotic caspase genes. Our results indicate that apart from the effects and therapeutic benefits of GLP-1 in adulthood, it may have additional gene targets in mES cells during embryonic life. Furthermore, the pathophysiological implications of GLP-1 imbalance in adulthood may have a counterpart during development.

  10. Effects of Wind Energy Development on Nesting Ecology of Greater Prairie-Chickens in Fragmented Grasslands

    Science.gov (United States)

    McNew, Lance B; Hunt, Lyla M; Gregory, Andrew J; Wisely, Samantha M; Sandercock, Brett K

    2014-01-01

    Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for development of renewable energy may overlap with important habitats of declining populations of grassland birds. Greater Prairie-Chickens (Tympanuchus cupido) are an obligate grassland bird species predicted to respond negatively to energy development. We used a modified before–after control–impact design to test for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We located 59 and 185 nests before and after development, respectively, of a 201 MW wind energy facility in Greater Prairie-Chicken nesting habitat and assessed nest site selection and nest survival relative to proximity to wind energy infrastructure and habitat conditions. Proximity to turbines did not negatively affect nest site selection (β = 0.03, 95% CI = −1.2–1.3) or nest survival (β = −0.3, 95% CI = −0.6–0.1). Instead, nest site selection and survival were strongly related to vegetative cover and other local conditions determined by management for cattle production. Integration of our project results with previous reports of behavioral avoidance of oil and gas facilities by other species of prairie grouse suggests new avenues for research to mitigate impacts of energy development. Efectos del Desarrollo de la Energía Eólica sobre la Ecología de Anidación de Gallinas de la Gran Pradera en Pastizales Fragmentados Resumen Se calcula que la energía eólica aportará el 20% de las necesidades energéticas de los Estados Unidos para el 2030, pero nuevos sitios para el desarrollo de energía renovable pueden traslaparse con hábitats importantes de poblaciones declinantes de aves de pastizal. La gallina de la Gran Pradera (Tympanuchus cupido) es una especie de ave obligada de pastizal que se pronostica responderá negativamente al desarrollo energético. Usamos un diseño ADCI modificado para probar los impactos del desarrollo de la energía e

  11. Sensory and chemical investigations on the effect of oven cooking on warmed-over flavour development in chicken meat.

    Science.gov (United States)

    Byrne, D V; Bredie, W L P; Mottram, D S; Martens, M

    2002-06-01

    Descriptive sensory profiling was carried out to evaluate the effect of oven-cooking temperature (160, 170, 180, 190 °C) on warmed-over flavour (WOF) development in cooked, chill-stored (at 4 °C for 0, 1, 2 and 4 days) and reheated chicken patties, derived from M. pectoralis major. In addition, gas chromatography-mass spectrometry (GC-MS) was carried out on a representative sub-set (160, 180, 190(o)C, stored at 4 °C for 0, 1, 4 days) of the meat samples used in sensory profiling. The effects of cooking and WOF in the sensory and chemical data were analysed using multivariate ANOVA-Partial Least Squares Regression (APLSR). Descriptive profiling indicated that WOF development was described by an increase of 'rancid' and 'sulphur/rubber' sensory notes and a concurrent decrease of chicken 'meaty' characteristics. Increasing cooking temperature resulted in meat samples with a more 'roasted', 'toasted' and 'bitter' sensory nature. Moreover, the 'roasted' character of the meat samples was also related to WOF development. Analysis of the volatile compounds from the chicken patties showed a rapid development of lipid oxidation derived compounds with chill-storage. Such compounds most likely contributed to the 'rancid' aspect of WOF development. Moreover, changes in sulphur-containing compounds were also related to WOF development and were proposed as additional participants in the lipid oxidation reactions. The sensory effects of these compounds were mainly described by the 'sulphur/rubber' note associated with WOF development. Overall, cooking temperature was found to increase the formation of Maillard-derived compounds, however, these did not appear to inhibit WOF development in the chicken patties.

  12. Development and immunochemical evaluation of a novel chicken IgY antibody specific for KLK6

    Directory of Open Access Journals (Sweden)

    Sotiropoulou Georgia

    2012-12-01

    Full Text Available Abstract Background Human kallikrein-related peptidase 6 (KLK6 has been implicated in various types of cancer and in neurodegenerative and demyelinating diseases including multiple sclerosis. Further, anti-KLK6 antibodies attenuated disease manifestations in the mouse model of multiple sclerosis. Availability of specific antibodies against KLK6 is fundamental to the development of improved diagnostic and/or immunotherapeutic applications. Here, we exploited the enhanced immunogenicity of mammalian proteins in avian species to generate a polyclonal antibody against KLK6. Results Chicken were immunized with recombinant KLK6 and antibodies Y (IgYs were purified from egg yolk with a simple procedure and evaluated for KLK6 detection by ELISA and Western blot using recombinant proteins and human cell lysates and supernatants. The anti-KLK6 Y polyclonal exhibited high affinity for KLK6 with a detection limit of 30 fmol. On the other hand, the widely used rabbit polyclonal antibody that was raised against the same recombinant KLK6 had a detection limit of 300 fmol. Moreover, the IgYs did not display any crossreactivity with recombinant KLKs or endogenous KLKs and other cellular proteins. Conclusions Based on its high specificity and sensitivity the developed anti-KLK6 IgY is expected to aid the development of improved diagnostic tools for the detection of KLK6 in biological and clinical samples.

  13. Fecundity, embryonic and ovarian development of blue swimming crab, Portunus pelagicus (Linnaeus, 1758) in coastal water of Johor, Malaysia.

    Science.gov (United States)

    Ikhwanuddin, M; Azra, M N; Siti-Aimuni, H; Abol-Munafi, A B

    2012-08-01

    Blue swimming crab, Portunus pelagicus is widely study and research throughout the Indo-West Pacific, but little is known of its reproductive biology in Malaysia. The present study describes the fecundity, embryonic development and ovarian development stages of the P. pelagicus from Johor coastal water, Malaysia. Carapace width range of berried crabs sampled was from 9.64 to 13.32 cm, while the body weight range was from 75 to 235 g. The mean number of egg produced by females in different sizes ranged from 105443.333 +/- 35448.075 per eggs batch. Mean egg size during embryonic development at stage 1 was 0.307 +/- 0.037, while 0.386 +/- 0.039 and 0.396 +/- 0.033 for stage 2 and stage 3, respectively. Study showed that there was significant (p < 0.05) relationship between the number of eggs and carapace width/body weight. Mean diameter oocyte during ovarian development at stage 1 was 97.732 +/- 12.391 while for stage 2 was 149.516 +/- 23.287. Stage 3 showed increasingly of size with mean diameter was 158.506 +/- 27.616 and 181.013 +/- 24.339 for stage 4.

  14. Ras-dva is a novel Pit-1- and glucocorticoid-regulated gene in the embryonic anterior pituitary gland.

    Science.gov (United States)

    Ellestad, Laura E; Porter, Tom E

    2013-01-01

    Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.

  15. High environmental temperature increases glucose requirement in the developing chicken embryo.

    Directory of Open Access Journals (Sweden)

    Roos Molenaar

    Full Text Available Environmental conditions during the perinatal period influence metabolic and developmental processes in mammals and avian species, which could impact pre- and postnatal survival and development. The current study investigated the effect of eggshell temperature (EST on glucose metabolism in broiler chicken embryos. Broiler eggs were incubated at a high (38.9°C or normal (37.8°C EST from day 10.5 of incubation onward and were injected with a bolus of [U-(13C]glucose in the chorio-allantoic fluid at day 17.5 of incubation. After [U-(13C]glucose administration, (13C enrichment was determined in intermediate pools and end-products of glucose metabolism. Oxidation of labeled glucose occurred for approximately 3 days after injection. Glucose oxidation was higher in the high than in the normal EST treatment from day 17.6 until 17.8 of incubation. The overall recovery of (13CO2 tended to be 4.7% higher in the high than in the normal EST treatment. An increase in EST (38.9°C vs 37.8°C increased (13C enrichment in plasma lactate at day 17.8 of incubation and (13C in hepatic glycogen at day 18.8 of incubation. Furthermore, high compared to normal EST resulted in a lower yolk-free body mass at day 20.9 (-2.74 g and 21.7 (-3.81 g of incubation, a lower hepatic glycogen concentration at day 18.2 (-4.37 mg/g and 18.8 (-4.59 mg/g of incubation, and a higher plasma uric acid concentration (+2.8 mg/mL/+43% at day 21.6 of incubation. These results indicate that the glucose oxidation pattern is relatively slow, but the intensity increased consistently with an increase in developmental stage of the embryo. High environmental temperatures in the perinatal period of chicken embryos increased glucose oxidation and decreased hepatic glycogen prior to the hatching process. This may limit glucose availability for successful hatching and could impact body development, probably by increased gluconeogenesis from glucogenic amino acids to allow anaerobic glycolysis.

  16. Embryonic and larval development of Eugerres mexicanus (Perciformes: Gerreidae in Tenosique: Tabasco, Mexico

    Directory of Open Access Journals (Sweden)

    Raúl E Hernández

    2012-03-01

    Full Text Available Most studies on Eugerres mexicanus mainly consider biogeographic and systematic aspects and rarely address reproductive characteristics, which are useful for fishery population management plans. This study aimed at evaluating the ontogeny of E. mexicanus, based on 30 embryos and 30 larvae sampled by induced spawning of breeders, taken in February 2009 from the Usumacinta River in Tenosique, Tabasco, Mexico. All descriptions of the embryonic development were based on morphometric and meristic data and followed standard methods. Eggs, recovered at the gastrula stage, had an average diameter of 1.17mm (SD=0.08. The bud stage appeared during the first three hours of development, in which the posterior side was adhered to the vitellus; Kupffer´s vesicle was visible. Yolk-sac larvae hatched 18 hours after fertilization, exhibiting a light brown color and an average total length of 2.94mm (SD=0.70; the preflexion stage was reached eight days after hatching, with a total average length of 4.67mm (SD=0.50 and a total notochord length of 4.45mm (SD=0.50. The flexion stage was reached on the 16th day, with an average total length of 6.66mm (SD=1.53, while postflexion was reached on the 24th day, with 10.33mm (SD=1.45. The pre-juvenile stage was reached on the 33rd day, with a total length of 14.30mm (SD=0.93, showing IX spines and 10 rays and III spines and eight rays in the dorsal and anal fins, respectively. The juvenile stage was reached by the 45th day, with an average length of 28.16mm (SD=1.93 and average weight of 4.75g (SD=1.49. Prejuveniles showed an initial pigmentation with dark colored dots in the superior and inferior jaw and dispersed on the head, while juveniles presented the same pigmentation pattern, decreasing towards the margin of the caudal peduncle. In conclusion, the embryonic developmental stages of E. mexicanus were typical for the Gerreidae group. However, their morphometric characters were slightly different since the diameter

  17. Prediction of warmed-over flavour development in cooked chicken by colorimetric sensor array.

    Science.gov (United States)

    Kim, Su-Yeon; Li, Jinglei; Lim, Na-Ri; Kang, Bo-Sik; Park, Hyun-Jin

    2016-11-15

    The aim of this study was to develop a simple and rapid method based on colorimetric sensor array (CSA) for evaluation of warmed-over flavour (WOF) in cooked chicken. All samples were classified according to storage time by CSA coupled with principle component analysis (PCA) or hierarchical cluster analysis (HCA). The CSA data were used to establish prediction models with thiobarbituric acid reactive substances (TBARS), pentanal, hexanal, or heptanal associated with WOF by partial least square regression (PLSR). For the TBARS model, the coefficient of determination (rp(2)) was 0.9997 in the prediction range of 0.28-0.69mg/kg. In each of the models for pentanal, hexanal, and heptanal, all rp(2) were higher than 0.960 in the range of 0.58-2.10mg/kg, 5.50-11.69mg/kg, and 0.09-0.16mg/kg, respectively. These results demonstrate that the CSA was able to predict WOF development and to distinguish between each storage time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Promotion of hair follicle development and trichogenesis by Wnt-10b in cultured embryonic skin and in reconstituted skin

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-01-01

    We previously showed that Wnt-10b promoted the differentiation of primary skin epithelial cells (MPSEC) toward hair shaft and inner root sheath of the hair follicle (IRS) cells in vitro. In the present study, we found that Wnt-10b promotes the development of hair follicles using a culture of mouse embryonic skin tissue and trichogenesis using a reconstitution experiment with nude mice. Hair follicle development was observed in skin taken from mouse embryos on embryonic day 10.5 following a 2-day culture with recombinant Wnt-10b (rWnt-10b), however, not without rWnt-10b. Brown hair growth was observed at the site of reconstituted skin in Balb/c nude mice where dermal fibroblasts and keratinocytes, derived from C3H/HeN new born mice, were transplanted with Wnt-10b-producing COS cells (Wnt-COS). Without the co-transplantation of Wnt-COS, no hair growth was observed. Our results suggest an important role of Wnt-10b in the initiation of hair follicle development and following trichogenesis

  19. Ott1 (Rbm15) is essential for placental vascular branching morphogenesis and embryonic development of the heart and spleen.

    Science.gov (United States)

    Raffel, Glen D; Chu, Gerald C; Jesneck, Jonathan L; Cullen, Dana E; Bronson, Roderick T; Bernard, Olivier A; Gilliland, D Gary

    2009-01-01

    The infant leukemia-associated gene Ott1 (Rbm15) has broad regulatory effects within murine hematopoiesis. However, germ line Ott1 deletion results in fetal demise prior to embryonic day 10.5, indicating additional developmental requirements for Ott1. The spen gene family, to which Ott1 belongs, has a transcriptional activation/repression domain and RNA recognition motifs and has a significant role in the development of the head and thorax in Drosophila melanogaster. Early Ott1-deficient embryos show growth retardation and incomplete closure of the notochord. Further analysis demonstrated placental defects in the spongiotrophoblast and syncytiotrophoblast layers, resulting in an arrest of vascular branching morphogenesis. The rescue of the placental defect using a conditional allele with a trophoblast-sparing cre transgene allowed embryos to form a normal placenta and survive gestation. This outcome showed that the process of vascular branching morphogenesis in Ott1-deficient animals was regulated by the trophoblast compartment rather than the fetal vasculature. Mice surviving to term manifested hyposplenia and abnormal cardiac development. Analysis of global gene expression of Ott1-deficient embryonic hearts showed an enrichment of hypoxia-related genes and a significant alteration of several candidate genes critical for cardiac development. Thus, Ott1-dependent pathways, in addition to being implicated in leukemogenesis, may also be important for the pathogenesis of placental insufficiency and cardiac malformations.

  20. A macroscopic classification of the embryonic development of the one-sided livebearer Jenynsia multidentata (Teleostei: Anablepidae

    Directory of Open Access Journals (Sweden)

    Nathalia C. López-Rodríguez

    2017-12-01

    Full Text Available ABSTRACT This study proposes eight stages according to the main discernible changes recorded throughout the embryonic development of Jenynsia multidentata. The development of morphological embryo structures, pigmentation, and changes in tissues connecting mother and embryo were included in the stage characterization. From the fertilized egg (Stage 1, an embryo reaches the intermediary stages when presenting yolk syncytial layer (Stage 2, initial pigmentation of the outer layers of the retina and dorsal region of the head (Stage 3, and the sprouting of the caudal (Stage 4, dorsal and anal fins (Stage 5. During the later stages, the ovarian folds enter the gills, and the body pigmentation becomes more intense (Stage 6, the body becomes elongated (Stage 7, and there is a greater intensity in body pigmentation and increased muscle mass (Stage 8. The dry weight of the batches varied between 0.6 ± 0.3 mg (Stage 3 to 54.6 ± 19.7 mg (Stage 8, but the dry weight of the maternal-embryonic connecting tissues remained almost constant. After controlling the effect of those reproductive tissues, the gain in dry weight of the batches throughout development increased exponentially from Stage 6, reflecting the increase in size and weight of the embryos due to matrotrophy.

  1. Persistent expression of BMP-4 in embryonic chick adrenal cortical cells and its role in chromaffin cell development

    Directory of Open Access Journals (Sweden)

    Halbach Oliver

    2008-10-01

    Full Text Available Abstract Background Adrenal chromaffin cells and sympathetic neurons both originate from the neural crest, yet signals that trigger chromaffin development remain elusive. Bone morphogenetic proteins (BMPs emanating from the dorsal aorta are important signals for the induction of a sympathoadrenal catecholaminergic cell fate. Results We report here that BMP-4 is also expressed by adrenal cortical cells throughout chick embryonic development, suggesting a putative role in chromaffin cell development. Moreover, bone morphogenetic protein receptor IA is expressed by both cortical and chromaffin cells. Inhibiting BMP-4 with noggin prevents the increase in the number of tyrosine hydroxylase positive cells in adrenal explants without affecting cell proliferation. Hence, adrenal BMP-4 is likely to induce tyrosine hydroxylase in sympathoadrenal progenitors. To investigate whether persistent BMP-4 exposure is able to induce chromaffin traits in sympathetic ganglia, we locally grafted BMP-4 overexpressing cells next to sympathetic ganglia. Embryonic day 8 chick sympathetic ganglia, in addition to principal neurons, contain about 25% chromaffin-like cells. Ectopic BMP-4 did not increase this proportion, yet numbers and sizes of 'chromaffin' granules were significantly increased. Conclusion BMP-4 may serve to promote specific chromaffin traits, but is not sufficient to convert sympathetic neurons into a chromaffin phenotype.

  2. Micro-computed tomography-based phenotypic approaches in embryology: procedural artifacts on assessments of embryonic craniofacial growth and development

    Directory of Open Access Journals (Sweden)

    Logan C Cairine

    2010-02-01

    Full Text Available Abstract Background Growing demand for three dimensional (3D digital images of embryos for purposes of phenotypic assessment drives implementation of new histological and imaging techniques. Among these micro-computed tomography (μCT has recently been utilized as an effective and practical method for generating images at resolutions permitting 3D quantitative analysis of gross morphological attributes of developing tissues and organs in embryonic mice. However, histological processing in preparation for μCT scanning induces changes in organ size and shape. Establishing normative expectations for experimentally induced changes in size and shape will be an important feature of 3D μCT-based phenotypic assessments, especially if quantifying differences in the values of those parameters between comparison sets of developing embryos is a primary aim. Toward that end, we assessed the nature and degree of morphological artifacts attending μCT scanning following use of common fixatives, using a two dimensional (2D landmark geometric morphometric approach to track the accumulation of distortions affecting the embryonic head from the native, uterine state through to fixation and subsequent scanning. Results Bouin's fixation reduced average centroid sizes of embryonic mouse crania by approximately 30% and substantially altered the morphometric shape, as measured by the shift in Procrustes distance, from the unfixed state, after the data were normalized for naturally occurring shape variation. Subsequent μCT scanning produced negligible changes in size but did appear to reduce or even reverse fixation-induced random shape changes. Mixtures of paraformaldehyde + glutaraldehyde reduced average centroid sizes by 2-3%. Changes in craniofacial shape progressively increased post-fixation. Conclusions The degree to which artifacts are introduced in the generation of random craniofacial shape variation relates to the degree of specimen dehydration during the

  3. Micro-computed tomography-based phenotypic approaches in embryology: procedural artifacts on assessments of embryonic craniofacial growth and development.

    Science.gov (United States)

    Schmidt, Eric J; Parsons, Trish E; Jamniczky, Heather A; Gitelman, Julian; Trpkov, Cvett; Boughner, Julia C; Logan, C Cairine; Sensen, Christoph W; Hallgrímsson, Benedikt

    2010-02-17

    Growing demand for three dimensional (3D) digital images of embryos for purposes of phenotypic assessment drives implementation of new histological and imaging techniques. Among these micro-computed tomography (microCT) has recently been utilized as an effective and practical method for generating images at resolutions permitting 3D quantitative analysis of gross morphological attributes of developing tissues and organs in embryonic mice. However, histological processing in preparation for microCT scanning induces changes in organ size and shape. Establishing normative expectations for experimentally induced changes in size and shape will be an important feature of 3D microCT-based phenotypic assessments, especially if quantifying differences in the values of those parameters between comparison sets of developing embryos is a primary aim. Toward that end, we assessed the nature and degree of morphological artifacts attending microCT scanning following use of common fixatives, using a two dimensional (2D) landmark geometric morphometric approach to track the accumulation of distortions affecting the embryonic head from the native, uterine state through to fixation and subsequent scanning. Bouin's fixation reduced average centroid sizes of embryonic mouse crania by approximately 30% and substantially altered the morphometric shape, as measured by the shift in Procrustes distance, from the unfixed state, after the data were normalized for naturally occurring shape variation. Subsequent microCT scanning produced negligible changes in size but did appear to reduce or even reverse fixation-induced random shape changes. Mixtures of paraformaldehyde + glutaraldehyde reduced average centroid sizes by 2-3%. Changes in craniofacial shape progressively increased post-fixation. The degree to which artifacts are introduced in the generation of random craniofacial shape variation relates to the degree of specimen dehydration during the initial fixation. Fixation methods that

  4. Protein Profiles for Muscle Development and Intramuscular Fat Accumulation at Different Post-Hatching Ages in Chickens.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    Full Text Available Muscle development and growth influences the efficiency of poultry meat production, and is closely related to deposition of intramuscular fat (IMF, which is crucial in meat quality. To clarify the molecular mechanisms underlying muscle development and IMF deposition in chickens, protein expression profiles were examined in the breast muscle of Beijing-You chickens at ages 1, 56, 98 and 140 days, using isobaric tags for relative and absolute quantification (iTRAQ. Two hundred and four of 494 proteins were expressed differentially. The expression profile at day 1 differed greatly from those at day 56, 98 and 140. KEGG pathway analysis of differential protein expression from pair-wise comparisons (day 1 vs. 56; 56 vs. 98; 98 vs. 140, showed that the fatty acid degradation pathway was more active during the stage from day 1 to 56 than at other periods. This was consistent with the change in IMF content, which was highest at day 1 and declined dramatically thereafter. When muscle growth was most rapid (days 56-98, pathways involved in muscle development were dominant, including hypertrophic cardiomyopathy, dilated cardiomyopathy, cardiac muscle contraction, tight junctions and focal adhesion. In contrast with hatchlings, the fatty acid degradation pathway was downregulated from day 98 to 140, which was consistent with the period for IMF deposition following rapid muscle growth. Changes in some key specific proteins, including fast skeletal muscle troponin T isoform, aldehyde dehydrogenase 1A1 and apolipoprotein A1, were verified by Western blotting, and could be potential biomarkers for IMF deposition in chickens. Protein-protein interaction networks showed that ribosome-related functional modules were clustered in all three stages. However, the functional module involved in the metabolic pathway was only clustered in the first stage (day 1 vs. 56. This study improves our understanding of the molecular mechanisms underlying muscle development and IMF

  5. Phenotypic plasticity in the common snapping turtle (Chelydra serpentina): long-term physiological effects of chronic hypoxia during embryonic development.

    Science.gov (United States)

    Wearing, Oliver H; Eme, John; Rhen, Turk; Crossley, Dane A

    2016-01-15

    Studies of embryonic and hatchling reptiles have revealed marked plasticity in morphology, metabolism, and cardiovascular function following chronic hypoxic incubation. However, the long-term effects of chronic hypoxia have not yet been investigated in these animals. The aim of this study was to determine growth and postprandial O2 consumption (V̇o2), heart rate (fH), and mean arterial pressure (Pm, in kPa) of common snapping turtles (Chelydra serpentina) that were incubated as embryos in chronic hypoxia (10% O2, H10) or normoxia (21% O2, N21). We hypothesized that hypoxic development would modify posthatching body mass, metabolic rate, and cardiovascular physiology in juvenile snapping turtles. Yearling H10 turtles were significantly smaller than yearling N21 turtles, both of which were raised posthatching in normoxic, common garden conditions. Measurement of postprandial cardiovascular parameters and O2 consumption were conducted in size-matched three-year-old H10 and N21 turtles. Both before and 12 h after feeding, H10 turtles had a significantly lower fH compared with N21 turtles. In addition, V̇o2 was significantly elevated in H10 animals compared with N21 animals 12 h after feeding, and peak postprandial V̇o2 occurred earlier in H10 animals. Pm of three-year-old turtles was not affected by feeding or hypoxic embryonic incubation. Our findings demonstrate that physiological impacts of developmental hypoxia on embryonic reptiles continue into juvenile life. Copyright © 2016 the American Physiological Society.

  6. Reproductive Toxicity of Zishen Yutai Pill in Rats: The Fertility and Early Embryonic Development Study (Segment I

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2016-01-01

    Full Text Available Purpose. This study was aimed to investigate the reproductive toxicity of Zishen Yutai Pill (ZYP on fertility and early embryonic development in rats. Methods. SD rats were randomly divided into 5 groups: vehicle control group (distilled water, i.g., positive control group (80 mg/kg of cyclophosphamide, i.p., and three ZYP-treated groups (3, 6, and 12 g/kg/d, i.e., 12x, 24x, and 48x clinical doses, i.g.. The high dose was set as the maximum gavage dosage. Results. Cyclophosphamide showed diverse hazards, such as decreased weight of male reproductive organs and sperm density (P<0.05. However, there were no obvious effects of ZYP on physical signs, animal behavior, and survival rate, as well as on weight and food intake during the premating and gestation periods. Importantly, there were no significant adverse effects of ZYP on indexes of copulation, fecundity and fertility indexes, weights and coefficients of male reproductive organs, epididymal sperm number and motility, estrous cycle, preimplantation loss rate, and implantation rate. Besides, the numbers of live and resorbed fetuses per litter were not significantly altered. Conclusions. ZYP had no reproductive toxicities on fertility and early embryonic development in rats at 48x equivalent clinical doses.

  7. mRNA Fragments in In-Vitro Culture Media are Associated with Bovine Preimplantation Embryonic Development

    Directory of Open Access Journals (Sweden)

    Jenna eKropp

    2015-08-01

    Full Text Available In vitro production (IVP systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerated conditioned media. Differential expression was confirmed by quantitative real-time PCR for

  8. The development of methods for the detection of Salmonella in chickens by a combination of immunomagnetic separation and PCRs.

    Science.gov (United States)

    Dai, Fengying; Zhang, Miao; Xu, Dixin; Yang, Yin; Wang, Jiaxiao; Li, Mingzhen; Du, Meihong

    2017-11-01

    Micro- and nanoimmunomagnetic beads (MIMBs and NIMBs) used for immunomagnetic separation (IMS) with PCR were studied for the rapid detection of Salmonella. The capture efficiency of the two different IMBs was evaluated by a conventional plate counting method, and the binding pattern was studied using scanning electron microscopy. The specificity of the IMBs was tested with Salmonella, Shigella flexneri, enterohemorrhagic Escherichia coli O157:H7, and Listeria monocytogenes. By comparing the pre-enrichment IMS and the IMS enrichment steps with a 5.5-H enrichment time, this study developed a rapid and sensitive method for the detection of Salmonella in chicken. The method was implemented by IMS enrichment and PCR with MIMBs and NIMBs, with a total analysis time of 8 H. We showed that the method was sensitive based on NIMBs with a detection limit of 10° CFU for Salmonella in 25 g of chicken. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  9. The effect of dietary protein on reproduction in the mare. VII. Embryonic development, early embryonic death, foetal losses and their relationship with serum progestagen

    Directory of Open Access Journals (Sweden)

    F.E. Van Niekerk

    1998-07-01

    Full Text Available Sixty-four Thoroughbred and Anglo-Arab mares aged 6-12 years were randomly allocated to 4 dietary groups and fed diets that differed in the total protein content and quality (essential amino-acids. Forty mares were non-lactating and 24 lactating. Eight mares were withdrawn from the investigation owing to injuries or gynaecological pathology. An overall conception rate of 94.6%and a foaling rate of 80%was achieved. Five of 14 (35.7 % mares (Group 1 fed a low-quality protein diet suffered from early embryonic loss before 90 days of pregnancy compared to 3 of 41 (7.3 % mares in the remaining groups that received the higher-quality protein in their diets. Serum progestagen concentrations of mares in Group 1 that suffered foetal loss were indicative of luteal function insufficiency during the 1st 40 days post-ovulation. Non-lactating mares in all 4 groups gained on average approximately 30 kg in mass during the 90 days before the breeding period. Lactating mares in Group 1 (low-quality protein lost on average 25 kg in mass during lactation, with no weight loss observed among the lactating mares in the other 3 groups. No difference in the diameter of the embryonic vesicle was found between dietary groups until Day 35 of pregnancy.

  10. Development of a tailored vaccine against challenge with very virulent infectious bursal disease virus of chickens using reverse genetics.

    Science.gov (United States)

    Gao, Li; Qi, Xiaole; Li, Kai; Gao, Honglei; Gao, Yulong; Qin, Liting; Wang, Yongqiang; Wang, Xiaomei

    2011-07-26

    Due to the problems associated with traditional methods for infectious bursal disease virus (IBDV) vaccine development and the pressure of evolution and variation of very virulent strains, it is urgent to develop IBDV vaccine rapidly with novel approaches. Using reverse genetics, the aim of this study was to generate a tailored vaccine strain (rGtHLJVP2) with its VP2 gene similar to very virulent IBDV (vvIBDV) to prevent the prevalence of IBDV. Characteristics of rGtHLJVP2 were evaluated in both cell culture and SPF chickens. rGtHLJVP2 replicated well as its parental strain Gt in vitro and in vivo. Immunization of SPF chickens with rGtHLJVP2 resulted in comparable antibody titers against IBDV as that of the medium virulent live vaccine B87, which was significant higher than that of attenuated vaccine Gt. Challenge studies with 10(4)ELD(50) of prevalent homogeneous or heterogeneous vvIBDV revealed complete (100%) protection in the groups immunized with rGtHLJVP2. No significant clinical and pathological lesions were observed in chickens immunized with rGtHLJVP2. Our data demonstrated that rGtHLJVP2 could be used as a novel vaccine candidate for prevention against vvIBDV. Copyright © 2011. Published by Elsevier Ltd.

  11. Effect of Age and Caponization on Blood Parameters and Bone Development of Male Native Chickens in Taiwan

    Science.gov (United States)

    Lin, Cheng-Yung; Hsu, Jenn-Chung; Wan, Tien-Chun

    2012-01-01

    An experiment was carried out to determine the effect of age and caponization on the development blood and bone characteristics development in male country chickens in Taiwan. A total of two hundred 8-wk-old LRI native chicken cockerels, Taishi meat No.13 from LRI-COA, were used as experimental animals. Cockerels were surgically caponized at 8 wks of age. Twelve birds in each group were bled and dressed from 8 wks to 35 wks of age at 1 to 5 wk intervals. The results indicated that the plasma testosterone concentration was significantly (pTaiwan. Also, tibia length and cortical thickness peaked at 22 wks of age. However, the peak of bone strength was found at 26 wks of age. These findings support the assertion that androgens can directly influence bone composition fluxes in male chickens. Caponization caused a significant increase in bone loss at 4 wks post treatment, which reflected bone cell damage, and demonstrated reductions in the relative tibia weight, breaking strength, cortical thickness, bone ash, calcium, phosphorus and magnesium contents, and increases in plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. PMID:25049655

  12. cables1 Is Required for Embryonic Neural Development: Molecular, Cellular, and Behavioral Evidence From the Zebrafish

    Science.gov (United States)

    GROENEWEG, JOLIJN W.; WHITE, YVONNE A.R.; KOKEL, DAVID; PETERSON, RANDALL T.; ZUKERBERG, LAWRENCE R.; BERIN, INNA; RUEDA, BO R.; WOOD, ANTONY W.

    2014-01-01

    SUMMARY In vitro studies have suggested that the Cables1 gene regulates epithelial cell proliferation, whereas other studies suggest a role in promoting neural differentiation. In efforts to clarify the functions of Cables1 in vivo, we conducted gain- and loss-of-function studies targeting its ortholog (cables1) in the zebrafish embryo. Similar to rodents, zebrafish cables1 mRNA expression is detected most robustly in embryonic neural tissues. Antisense knockdown of cables1 leads to increased numbers of apoptotic cells, particularly in brain tissue, in addition to a distinct behavioral phenotype, characterized by hyperactivity in response to stimulation. Apoptosis and the behavioral abnormality could be rescued by co-expression of a morpholino-resistant cables1 construct. Suppression of p53 expression in cables1 morphants partially rescued both apoptosis and the behavioral phenotype, suggesting that the phenotype of cables1 morphants is due in part to p53-dependent apoptosis. Alterations in the expression patterns of several neural transcription factors were observed in cables1 morphants during early neurulation, suggesting that cables1 is required for early neural differentiation. Ectopic overexpression of cables1 strongly disrupted embryonic morphogenesis, while overexpression of a cables1 mutant lacking the C-terminal cyclin box had little effect, suggesting functional importance of the cyclin box. Lastly, marked reductions in p35, but not Cdk5, were observed in cables1 morphants. Collectively, these data suggest that cables1 is important for neural differentiation during embryogenesis, in a mechanism that likely involves interactions with the Cdk5/p35 kinase pathway. PMID:21268180

  13. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology.

    Science.gov (United States)

    Moralli, Daniela; Monaco, Zoia L

    2015-02-01

    De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.

  14. Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development.

    Science.gov (United States)

    Rabatel, Andréane; Febvay, Gérard; Gaget, Karen; Duport, Gabrielle; Baa-Puyoulet, Patrice; Sapountzis, Panagiotis; Bendridi, Nadia; Rey, Marjolaine; Rahbé, Yvan; Charles, Hubert; Calevro, Federica; Colella, Stefano

    2013-04-10

    Nutritional symbioses play a central role in insects' adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch

  15. Nitric oxide synthase during early embryonic development in silkworm Bombyx mori: Gene expression, enzyme activity, and tissue distribution.

    Science.gov (United States)

    Kitta, Ryo; Kuwamoto, Marina; Yamahama, Yumi; Mase, Keisuke; Sawada, Hiroshi

    2016-12-01

    To elucidate the mechanism for embryonic diapause or the breakdown of diapause in Bombyx mori, we biochemically analyzed nitric oxide synthase (NOS) during the embryogenesis of B. mori. The gene expression and enzyme activity of B. mori NOS (BmNOS) were examined in diapause, non-diapause, and HCl-treated diapause eggs. In the case of HCl-treated diapause eggs, the gene expression and enzyme activity of BmNOS were induced by HCl treatment. However, in the case of diapause and non-diapause eggs during embryogenesis, changes in the BmNOS activity and gene expressions did not coincide except 48-60 h after oviposition in diapause eggs. The results imply that changes in BmNOS activity during the embryogenesis of diapause and non-diapause eggs are regulated not only at the level of transcription but also post-transcription. The distribution and localization of BmNOS were also investigated with an immunohistochemical technique using antibodies against the universal NOS; the localization of BmNOS was observed mainly in the cytoplasm of yolk cells in diapause eggs and HCl-treated diapause eggs. These data suggest that BmNOS has an important role in the early embryonic development of the B. mori. © 2016 Japanese Society of Developmental Biologists.

  16. Scanning microscopic evaluation on the development of the cerebral cortex in embryonic mouse subjected to γ-irradiation

    International Nuclear Information System (INIS)

    Sun Xuezhi; Inouye, Minoru; Hayasaka, Shizu; Takagishi, Yoshiko; Yamamura, Hideki

    1995-01-01

    Morphological events occurring in the developing cerebral hemispheres of mice exposed to a single dose of 60 Co γ-irradiation 1.5 Gy on embryonic day 13 (E13) were evaluated by scanning microscope. Twenty-four hr after the exposure, both cell debris and surviving cells had poured out into the ventricular lumen. Radial glial fibers were more crumpled than in the controls. By day E15, proliferating cells in different stages of the cell cycle appeared in the ventricular zone. The glial fibers formed a network through the brain mantle. By E17 many migrating cells attached to the disorderly glial fibers appeared in the different layers of the thin cerebral mantle. These findings suggest that development of the glial fibers was interrupted as early as 24 hr after the single exposure, implying that irradiation on the developing brain may disrupt neuronal migration. (author)

  17. Chicken Art

    Science.gov (United States)

    Bickett, Marianne

    2009-01-01

    In this article, the author describes how a visit from a flock of chickens provided inspiration for the children's chicken art. The gentle clucking of the hens, the rooster crowing, and the softness of the feathers all provided rich aural, tactile, visual, and emotional experiences. The experience affirms the importance and value of direct…

  18. Porcine embryonic stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2008-01-01

    The development of porcine embryonic stem cell lines (pESC) has received renewed interest given the advances being made in the production of immunocompatible transgenic pigs. However, difficulties are evident in the production of pESCs in-vitro. This may largely be attributable to differences...

  19. C. elegans MRP-5 Exports Vitamin B12 from Mother to Offspring to Support Embryonic Development.

    Science.gov (United States)

    Na, Huimin; Ponomarova, Olga; Giese, Gabrielle E; Walhout, Albertha J M

    2018-03-20

    Vitamin B12 functions as a cofactor for methionine synthase to produce the anabolic methyl donor S-adenosylmethionine (SAM) and for methylmalonyl-CoA mutase to catabolize the short-chain fatty acid propionate. In the nematode Caenorhabditis elegans, maternally supplied vitamin B12 is required for the development of offspring. However, the mechanism for exporting vitamin B12 from the mother to the offspring is not yet known. Here, we use RNAi of more than 200 transporters with a vitamin B12-sensor transgene to identify the ABC transporter MRP-5 as a candidate vitamin B12 exporter. We show that the injection of vitamin B12 into the gonad of mrp-5 deficient mothers rescues embryonic lethality in the offspring. Altogether, our findings identify a maternal mechanism for the transit of an essential vitamin to support the development of the next generation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Directory of Open Access Journals (Sweden)

    Siebler Mario

    2009-08-01

    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  1. High Mutation Levels are Compatible with Normal Embryonic Development in Mlh1-Deficient Mice.

    Science.gov (United States)

    Fan, Xiaoyan; Li, Yan; Zhang, Yulong; Sang, Meixiang; Cai, Jianhui; Li, Qiaoxia; Ozaki, Toshinori; Ono, Tetsuya; He, Dongwei

    2016-10-01

    To elucidate the role of the mismatch repair gene Mlh1 in genome instability during the fetal stage, spontaneous mutations were studied in Mlh1-deficient lacZ-transgenic mouse fetuses. Mutation levels were high at 9.5 days post coitum (dpc) and gradually increased during the embryonic stage, after which they remained unchanged. In addition, mutations that were found in brain, liver, spleen, small intestine and thymus showed similar levels and no statistically significant difference was found. The molecular nature of mutations at 12.5 dpc in fetuses of Mlh1 +/+ and Mlh1 -/- mice showed their own unique spectra, suggesting that deletion mutations were the main causes in the deficiency of the Mlh1 gene. Of note, fetuses of irradiated mice exhibited marked differences such as post-implantation loss and Mendelian distribution. Collectively, these results strongly suggest that high mutation ofMlh1 -/- -deficient fetuses has little effect on the fetuses during their early developmental stages, whereas Mlh1 -/- -deficient fetuses from X-ray irradiated mothers are clearly effected.

  2. Light impacts embryonic and early larval development of the European eel, Anguilla anguilla

    DEFF Research Database (Denmark)

    Politis, Sebastian Nikitas; Butts, Ian; Tomkiewicz, Jonna

    2014-01-01

    Little is known about the natural ecology of European eel during early life history. Weextend our understandings on the ecology of this species by studying howearly life stages perform under various light regimes.We assessed the effects of intensity, photoperiod (12:12 and 24:0 h light/dark) and ......Little is known about the natural ecology of European eel during early life history. Weextend our understandings on the ecology of this species by studying howearly life stages perform under various light regimes.We assessed the effects of intensity, photoperiod (12:12 and 24:0 h light...... stages. In particular, for the 12:12 h photoperiod, embryonic survival, until 26 h post-fertilization was significantly higher when reared under low (62 ± 13%) than those reared under high intensity light (42 ± 13%). Furthermore, embryos reared in low light had a higher hatch success (16 ± 7%) than those...... in high intensity light (12 ± 7%). Larval yolk-sac area was significantly affected by photoperiod and body area was significantly affected by the interaction between intensity × photoperiod. The highest incidence of deformities (75%) occurred when embryos were reared in high intensity white light under...

  3. Tetranectin in slow intra- and extrafusal chicken muscle fibers

    DEFF Research Database (Denmark)

    Xu, X; Gilpin, B; Iba, K

    2001-01-01

    Tetranectin is a C-type lectin that occurs in the mammalian musculoskeletal system. In the present report we describe the first studies on an avian tetranectin. A full-length chicken tetranectin cDNA was isolated. Comparison of the deduced amino acid sequence of chicken tetranectin with mouse...... and human tetranectin showed an identity of 67 and 68%, respectively. Northern blot analysis demonstrated broad expression of chicken tetranectin mRNA, which was first detected on embryonic day 4. Tetranectin protein was detected in chicken serum and egg yolk. Since muscle is one of few tissues in which...... tetranectin protein is retained, we examined the distribution of tetranectin in various muscle types in chicken. Myofibers strongly positive for tetranectin were observed in several muscles including m. tibialis ant. and m. sartorius (from embryonic day 10 to adult). Using antibodies to fast and slow myosin...

  4. Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development.

    Science.gov (United States)

    Erickson, Gregory M; Zelenitsky, Darla K; Kay, David Ian; Norell, Mark A

    2017-01-17

    Birds stand out from other egg-laying amniotes by producing relatively small numbers of large eggs with very short incubation periods (average 11-85 d). This aspect promotes high survivorship by limiting exposure to predation and environmental perturbation, allows for larger more fit young, and facilitates rapid attainment of adult size. Birds are living dinosaurs; their rapid development has been considered to reflect the primitive dinosaurian condition. Here, nonavian dinosaurian incubation periods in both small and large ornithischian taxa are empirically determined through growth-line counts in embryonic teeth. Our results show unexpectedly slow incubation (2.8 and 5.8 mo) like those of outgroup reptiles. Developmental and physiological constraints would have rendered tooth formation and incubation inherently slow in other dinosaur lineages and basal birds. The capacity to determine incubation periods in extinct egg-laying amniotes has implications for dinosaurian embryology, life history strategies, and survivorship across the Cretaceous-Paleogene mass extinction event.

  5. Effects of temperature and CO2 during late incubation on broiler chicken development

    NARCIS (Netherlands)

    Maatjens, C.M.

    2016-01-01

    Incubation conditions need to be adjusted to meet embryonic requirements to obtain optimal chick quality and hatchability. Eggshell temperature (EST) can be used as a non- invasive method to determine embryo temperature. A high EST of 38.9°C during the second or third week of incubation

  6. Embryonic Toxicity of Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Celá, Petra; Veselá, Barbora; Matalová, Eva; Večeřa, Zbyněk; Buchtová, Marcela

    2014-01-01

    Roč. 199, č. 1 (2014), s. 1-23 ISSN 1422-6405 R&D Projects: GA ČR(CZ) GAP503/11/2315; GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985904 ; RVO:68081715 Keywords : development * nanotechnology * toxicology * chicken * mouse Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.137, year: 2014

  7. Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response.

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    Full Text Available Ribosome is responsible for protein synthesis in all organisms and ribosomal proteins (RPs play important roles in the formation of a functional ribosome. L11 was recently shown to regulate p53 activity through a direct binding with MDM2 and abrogating the MDM2-induced p53 degradation in response to ribosomal stress. However, the studies were performed in cell lines and the significance of this tumor suppressor function of L11 has yet to be explored in animal models. To investigate the effects of the deletion of L11 and its physiological relevance to p53 activity, we knocked down the rpl11 gene in zebrafish and analyzed the p53 response. Contrary to the cell line-based results, our data indicate that an L11 deficiency in a model organism activates the p53 pathway. The L11-deficient embryos (morphants displayed developmental abnormalities primarily in the brain, leading to embryonic lethality within 6-7 days post fertilization. Extensive apoptosis was observed in the head region of the morphants, thus correlating the morphological defects with apparent cell death. A decrease in total abundance of genes involved in neural patterning of the brain was observed in the morphants, suggesting a reduction in neural progenitor cells. Upregulation of the genes involved in the p53 pathway were observed in the morphants. Simultaneous knockdown of the p53 gene rescued the developmental defects and apoptosis in the morphants. These results suggest that ribosomal dysfunction due to the loss of L11 activates a p53-dependent checkpoint response to prevent improper embryonic development.

  8. Embryonic exposure of medaka (Oryzias latipes) to propylparaben: Effects on early development and post-hatching growth

    International Nuclear Information System (INIS)

    González-Doncel, Miguel; García-Mauriño, José Enrique; San Segundo, Laura; Beltrán, Eulalia M.; Sastre, Salvador; Fernández Torija, Carlos

    2014-01-01

    Here we proposed a battery of non-invasive biomarkers and a histological survey to examine physiological/anatomical features in embryos, eleutheroembryos (13 days post-fertilization, dpf), and larvae (28–42 dpf) of medaka to investigate the effects of embryonic exposure to propylparaben (PrP). Concentrations <1000 μg PrP/L didn't exert early or late toxic effects. However, survivorship was affected at 4000 μg/L in eleutheroembryos and at ≥1000 μg/L in larvae. Histological alterations were found in 37.5% of eleutheroembryos exposed to 4000 μg PrP/L. Morphometric analysis of the gallbladder revealed significant dilation at ≥400 μg/L throughout embryo development. Ethoxyresorufin-O-deethylase (EROD), as indicator of cytochrome P4501A activity, didn't reveal induction/inhibition although its combination with a P4501A agonist (i.e. β-naphthoflavone) resulted in a synergic EROD response. Results suggest a low toxicity of PrP for fish and support the use of fish embryos and eleutheroembryos as alternatives of in vivo biomarkers indicative of exposure/toxicity. -- Highlights: • Addressing pre- and post-hatch effects from medaka embryo exposure to propylparaben. • Macroscopical effects (length, mortality) seen primarily after hatch at ≥400 μg/L. • Synergic EROD embryonic response when propylparaben combined with a CYP1A agonist. • Significant gallbladder dilation seen at ≥400 μg PrP/L and as soon as discernible. • Histological harm to eleutheroembryos in peritoneal cavity, liver, kidney and brain. -- PrP resulted in low toxicity based on non-invasive biomarkers and histological tools to analyze pre- and post-hatch effects after medaka embryo exposure

  9. Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure.

    Science.gov (United States)

    Burić, Petra; Jakšić, Željko; Štajner, Lara; Dutour Sikirić, Maja; Jurašin, Darija; Cascio, Claudia; Calzolai, Luigi; Lyons, Daniel Mark

    2015-10-01

    With the ever growing use of nanoparticles in a broad range of industrial and consumer applications there is increasing likelihood that such nanoparticles will enter the aquatic environment and be transported through freshwater systems, eventually reaching estuarine or marine waters. Due to silver's known antimicrobial properties and widespread use of silver nanoparticles (AgNP), their environmental fate and impact is therefore of particular concern. In this context we have investigated the species-specific effects of low concentrations of 60 nm AgNP on embryonal development in Mediterranean sea urchins Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis. The sensitivity of urchin embryos was tested by exposing embryos to nanoparticle concentrations in the 1-100 μg L(-1) range, with times of exposure varying from 30 min to 24 h (1 h-48 h for S. granularis) post-fertilisation which corresponded with fertilized egg, 4 cell, blastula and gastrula development phases. The most sensitive species to AgNP was A. lixula with significant modulation of embryonal development at the lowest AgNP concentrations of 1-10 μg L(-1) with high numbers of malformed embryos or arrested development. The greatest impact on development was noted for those embryos first exposed to nanoparticles at 6 and 24 h post fertilisation. For P. lividus, similar effects were noted at higher concentrations of 50 μg L(-1) and 100 μg L(-1) for all times of first exposure. The S. granularis embryos indicated a moderate AgNP impact, and significant developmental abnormalities were recorded in the concentration range of 10-50 μg L(-1). As later post-fertilisation exposure times to AgNP caused greater developmental changes in spite of a shorter total exposure time led us to postulate on additional mechanisms of AgNP toxicity. The results herein indicate that toxic effects of AgNP are species-specific. The moment at which embryos first encounter AgNP is also shown to be

  10. Chicken pox in pregnancy : an obstetric concern.

    Science.gov (United States)

    Wiwanitkit, Viroj

    2010-10-01

    Chicken pox is a common viral infection presenting with fever and discrete vesicular lesions. This infection can be widely detected in developing countries, especially for those tropical countries. The pregnant can get chicken pox, and this becomes an important obstetrical concern. In this specific paper, the author hereby details and discusses on chicken pox in pregnancy. Clinical presentation, diagnosis, treatment, and prevention are briefly summarized. In addition, the effects of chicken pox on pregnancy as well as the vertical transmission are also documented.

  11. Prairie Chicken

    Data.gov (United States)

    Kansas Data Access and Support Center — An outline of the general range occupied by greayter and lesser prairie chickens. The range was delineated by expert opinion, then varified by local wildlife...

  12. Deletion of Indian hedgehog gene causes dominant semi-lethal Creeper trait in chicken

    Science.gov (United States)

    Jin, Sihua; Zhu, Feng; Wang, Yanyun; Yi, Guoqiang; Li, Junying; Lian, Ling; Zheng, Jiangxia; Xu, Guiyun; Jiao, Rengang; Gong, Yu; Hou, Zhuocheng; Yang, Ning

    2016-01-01

    The Creeper trait, a classical monogenic phenotype of chicken, is controlled by a dominant semi-lethal gene. This trait has been widely cited in the genetics and molecular biology textbooks for illustrating autosomal dominant semi-lethal inheritance over decades. However, the genetic basis of the Creeper trait remains unknown. Here we have utilized ultra-deep sequencing and extensive analysis for targeting causative mutation controlling the Creeper trait. Our results indicated that the deletion of Indian hedgehog (IHH) gene was only found in the whole-genome sequencing data of lethal embryos and Creeper chickens. Large scale segregation analysis demonstrated that the deletion of IHH was fully linked with early embryonic death and the Creeper trait. Expression analysis showed a much lower expression of IHH in Creeper than wild-type chickens. We therefore suggest the deletion of IHH to be the causative mutation for the Creeper trait in chicken. Our findings unravel the genetic basis of the longstanding Creeper phenotype mystery in chicken as the same gene also underlies bone dysplasia in human and mouse, and thus highlight the significance of IHH in animal development and human haploinsufficiency disorders. PMID:27439785

  13. The Effect of Low-Density Diets on Broiler Breeder Performance During the Laying Period and on Embryonic Development of their Offspring

    NARCIS (Netherlands)

    Enting, H.; Kruip, T.A.M.; Verstegen, M.W.A.; Aar, van de P.J.

    2007-01-01

    The effect of low-density diets on bird performance, egg composition, and embryonic development was studied with 2,100 female and 210 male Cobb broiler breeders from 25 to 60 wk of age. The experiment included 5 treatments. These included a control group with a normal density diet (ND, 2,800 kcal of

  14. Development of a microculture system for stimulation of chicken peripheral blood lymphocytes with concanavalin A.

    Science.gov (United States)

    Maheswaran, S K; Thies, E S

    1975-07-01

    A microculture system in conjunction with a semiautomatic multiple sample harvester (SAMSH) was used to study the in vitro properties of chicken peripheral lymphocytes. This new procedure enabled doing rapid multiple tests, using relatively few cells, and was highly reproducible. Data were presented to show many variables that are involved in studying the concanavalin A (Con A) response of chicken lymphocytes in a microculture system. Analysis indicated that the conditions for optimal Con A stimulation as measured by incorporation of 3H-TdR include: (a) use of 2 x 10(6) cells per culture in RPMI 1640 culture medium in the absence of any serum, (b) use of 0.4 mug of Con A per culture, (c) incubation at 37 degrees C for 72 hours, and (d) addition of 1 muCi of 3H-TdR to each culture 12 to 24 hours prior to termination. This technique could be used to monitor immunocompetence of the chicken.

  15. Embryo Development and Post-Hatch Performances of Kampung Chicken by in Ovo Feeding of L-Arginine

    Directory of Open Access Journals (Sweden)

    M. Azhar

    2016-12-01

    Full Text Available The research was conducted to evaluate embryo development, post-hatch performances, and growth rate of kampung chicken treated in-ovo feeding of L-Arginine. A total of 135 kampung chicken fertile eggs (weight 42-43 g were used and divided into 5 treatment groups of three replications. They were placed in the semi-automatic incubator. The first group was without in-ovo feeding (negative control; the second group was in-ovo feeding of saline 0.9% (positive control; the 3, 4, and 5 groups were in-ovo feeding of 0.5, 1.0, and 1.5% L-Arginine, respectively. In-ovo feeding of L-Arginine were injected into albumen on day 10 of incubation period using automatic syringe in the narrow end side of egg by inserting needle through a small hole at 10 mm depth. After hatching, all day old chicks were placed in floor pens (1 x 0.5 x 0.5 m accordance with the previous egg groups. The results showed that in-ovo feeding of L-Arginine increased weight and circumference of the embryo, but did not affect the length of embryo. In-ovo feeding of L-Arginine resulted in a higher body weight gain and a lower feed conversion even though feed intake was not significantly different compared to the control groups. The growth rate performance up to 6 weeks rearing increased significantly by increasing L-Arginine administration to 1.0%. It can be concluded that embryo development and post-hatch performances of kampung chicken were markedly increased by in-ovo feeding of L-arginine.

  16. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability*

    Science.gov (United States)

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André

    2012-01-01

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  17. Sonic Hedgehog-signalling patterns the developing chicken comb as revealed by exploration of the pea-comb mutation.

    Directory of Open Access Journals (Sweden)

    Henrik Boije

    Full Text Available The genetic basis and mechanisms behind the morphological variation observed throughout the animal kingdom is still relatively unknown. In the present work we have focused on the establishment of the chicken comb-morphology by exploring the Pea-comb mutant. The wild-type single-comb is reduced in size and distorted in the Pea-comb mutant. Pea-comb is formed by a lateral expansion of the central comb anlage into three ridges and is caused by a mutation in SOX5, which induces ectopic expression of the SOX5 transcription factor in mesenchyme under the developing comb. Analysis of differential gene expression identified decreased Sonic hedgehog (SHH receptor expression in Pea-comb mesenchyme. By experimentally blocking SHH with cyclopamine, the wild-type single-comb was transformed into a Pea-comb-like phenotype. The results show that the patterning of the chicken comb is under the control of SHH and suggest that ectopic SOX5 expression in the Pea-comb change the response of mesenchyme to SHH signalling with altered comb morphogenesis as a result. A role for the mesenchyme during comb morphogenesis is further supported by the recent finding that another comb-mutant (Rose-comb, is caused by ectopic expression of a transcription factor in comb mesenchyme. The present study does not only give knowledge about how the chicken comb is formed, it also adds to our understanding how mutations or genetic polymorphisms may contribute to inherited variations in the human face.

  18. Development of heart muscle-cell diversity: a help or a hindrance for phenotyping embryonic stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Fijnvandraat, Arnoud C.; Lekanne Deprez, Ronald H.; Moorman, Antoon F. M.

    2003-01-01

    Despite the advances in cardiovascular treatment, cardiac disease remains a major cause of morbidity in all industrialized countries. The extraordinary potential of (embryonic) stem cells for therapeutic purposes has revolutionized ideas about cardiac repair of diseased cardiac muscle to exciting

  19. Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm.

    Science.gov (United States)

    Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László

    2010-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.

  20. Studies on improving ostrich egg hatch ability and its relation with some factors affecting embryonic development during artificial incubation

    International Nuclear Information System (INIS)

    Amer, N.S.I.

    2012-01-01

    The present study was carried out in co-operation between the Ostrich Production Farm, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt and the Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo, Egypt. Ostrich eggs were obtained from Resk Company for Ostrich Production and set for incubation at ElShfie Farm, Belbas, Sharkia, Egypt. The objectives are:1- To follow up changes in some vital physiological parameters and blood components associated with ostrich embryonic development during incubation and to provide reference blood biochemical baseline values for future studies of avian species and to document novel information on some normal changes associated with growth of the developing ostrich embryo during the incubation, as no similar and complete data could be found on this aspect in the literature. 2- In an effort to improve the hatch ability and hatching performance of ostrich eggs by testing the effect of in ovo injection of several nutrients. Two trials were carried out: 1-First trial To follow up changes in some vital physiological parameters and blood components associated with ostrich embryonic development during incubation. A total number of 60 ostrich eggs weighed between 1300 and 1500 g were obtained from from Resk Company for Ostrich Production. Eggs were collected weekly in patches of 25 eggs and Egg incubation was performed in ElShfie Farm, Belbas, Egypt. Egg weight and egg weight loss during incubation were determined on each eggs.2- Second Trial In vivo injection In an effort to improve the hatch ability and hatching performance of ostrich eggs by testing the effect of in ovo injection of several nutrients. A total of 100 fertile ostrich eggs weighed between 1300 and 1500 g were obtained from from Resk Company for Ostrich Production. Eggs were collected weekly in patches of 25 eggs and egg incubation was performed in ElShfie Farm, Belbas, Egypt. Eggs were injected at the 7 th day of incubation to deposit test material in

  1. Embryonic and larvae development of reciprocal crosses between Pangasianodon hypophthalmus (Sauvage, 1878 and Clarias gariepinus (Burchell, 1822

    Directory of Open Access Journals (Sweden)

    V.T. Okomoda

    2017-12-01

    Full Text Available The egg and larval development of reciprocal crosses of Pangasianodon hypophthalmus (Sauvage, 1878 and Clarias gariepinus (Burchell, 1822 were studied under laboratory conditions. Crosses between ♀C. gariepinus × ♂P. hypophthalmus (Clariothalmus and ♀P. hypophthalmus × ♂C. gariepinus (Pangapinus had embryonic stages similar to those of the pure sib, however, unequal cell cleavages were notable in the early development of both crosses, hence, leading to different forms of deformities. The critical stage where highest mortality occurred during the embryogenesis was the somite (21.68% and hatching (48.1% stages (respectively for the Clariothalmus and Pangapinus. However, both crosses produced viable larvae (60.21 vs 13.20% hatchability respectively, which survived (30.3 vs 2.1% respectively until the end of the study (2 weeks. The external morphological features of the larvae were completely formed by the 14th day after hatching. The body forms of the crosses at this time were either phenotypic intermediary of the parent species (92% of Clariothalmus or indistinguishable from the female parent (all Pangapinus and 8% of the Clariothalmus. This study thus laid the groundwork for further comparative studies on hybrid performance and characterization.

  2. Elevation of corticosteroid-binding globulin in Obese strain (OS) chickens: possible implications for the disturbed immunoregulation and the development of spontaneous autoimmune thyroiditis

    International Nuclear Information System (INIS)

    Faessler, R.; Schauenstein, K.; Kroemer, G.; Schwarz, S.; Wick, G.

    1986-01-01

    Basal plasma levels of corticosterone and corticosteroid-binding globulin (CBG) have been investigated in Obese strain (OS) chickens afflicted with spontaneous autoimmune thyroiditis (SAT). Corticosterone was determined radioimmunologically, and CBG by using a highly sensitive radioligand saturation assay. OS chickens displayed total corticosterone levels not different from healthy normal White Leghorn (NWL) chickens. CBG, however, was found to be twice as high in OS chickens as compared with their healthy counterparts, irrespective of sex or age. This quantitative difference in the CBG level is not compensated for by either altered affinity or specificity of the molecule. Furthermore, no differences were found in the response of OS and NWL lymphocytes to the suppressive effect of glucocorticoids in vitro. It was therefore assumed that OS animals are deficient in free, hormonally active corticosterone. An additional indication for such a diminished glucocorticoid tonus was that in vivo treatment of OS chickens with glucocorticoid hormones, thus increasing the free and active hormone fraction, normalizes the T cell hyperreactivity and significantly reduces thyroid infiltration. Possible pathophysiological implications of a diminished glucocorticoid tonus for spontaneous autoimmunity, as well as possible explanations for the beneficial effects of glucocorticoid treatment on the development of SAT, are discussed

  3. Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1984-01-01

    on the binding distribution of [125I]EGF, representing the tissue localization of available EGF receptors, during embryonic rat skin development including hair follicle formation and the adult hair growth cycle. At 16 days embryonic development a relatively low receptor density is seen over all the epidermal...... condensates marking the first stage of hair follicle development. This restricted and temporary loss of EGF receptors above these specialized mesenchymal condensates implies a role for the EGF receptor and possibly EGF or an EGF-like ligand in stimulating the epithelial downgrowth required for hair follicle...... development. In the anagen hair bulb, receptors for EGF are detected over the outer root sheath and the epithelial cell layers at the base of the follicle and show a correlation with the areas of epithelial proliferation in the hair bulb. During the catagen and telogen phases of the hair cycle, receptors...

  4. Clinicopathologic assessment of pancreatic ductal carcinoma located at the head of the pancreas, in relation to embryonic development.

    Science.gov (United States)

    Okamura, Yukiyasu; Fujii, Tsutomu; Kanzaki, Akiyuki; Yamada, Suguru; Sugimoto, Hiroyuki; Nomoto, Shuji; Takeda, Shin; Nakao, Akimasa

    2012-05-01

    Pancreaticoduodenectomy is performed for pancreatic head cancer that originated from the dorsal or ventral primordium. Although the extent of lymph node (LN) dissection is the same irrespective of the origin, the lymphatic continuities may differ between the 2 primordia. Between March 2003 and September 2010, 152 patients underwent pancreaticoduodenectomy for pancreatic cancer. One hundred six patients were assigned into 2 groups according to tumor location on preoperative computed tomography, and their clinical and pathological features were retrospectively analyzed in view of the embryonic development of the pancreas. Sixty of 106 patients were classified with tumors that were derived from the dorsal pancreas (D group) and 46 from the ventral pancreas (V group). The frequency of LN involvement around the middle colic artery (LN 15) in the D group was higher than in the V group (P = 0.008). The rate of additional resection of the pancreas tended to be higher in the D group (P = 0.067). The present study showed the detailed pattern of spread of pancreatic ductal carcinoma to the LNs and provided important information for determining the optimal surgical strategy.

  5. How the embryonic chick brain twists

    OpenAIRE

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A.

    2016-01-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left–right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic m...

  6. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart

    NARCIS (Netherlands)

    M. Gomez-Velazquez (Melisa); C. Badia-Careaga (Claudio); Lechuga-Vieco, A.V. (Ana Victoria); Nieto-Arellano, R. (Rocio); Tena, J.J. (Juan J.); Rollan, I. (Isabel); Alvarez, A. (Alba); Torroja, C. (Carlos); Caceres, E.F. (Eva F.); Roy, A. (Anna); N.J. Galjart (Niels); Delgado-Olguin, P. (Paul); F. Sánchez-Cabo (Fátima); Enriquez, J.A. (Jose Antonio); Gomez-Skarmeta, J.L. (Jose Luis); M. Manzanares (Miguel)

    2017-01-01

    textabstractCardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such

  7. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development

    DEFF Research Database (Denmark)

    Venø, Morten T; Hansen, Thomas B; Venø, Susanne T

    2015-01-01

    BACKGROUND: Recently, thousands of circular RNAs (circRNAs) have been discovered in various tissues and cell types from human, mouse, fruit fly and nematodes. However, expression of circRNAs across mammalian brain development has never been examined. RESULTS: Here we profile the expression of circ......RNA in five brain tissues at up to six time-points during fetal porcine development, constituting the first report of circRNA in the brain development of a large animal. An unbiased analysis reveals a highly complex regulation pattern of thousands of circular RNAs, with a distinct spatio-temporal expression...... are functionally conserved between mouse and human. Furthermore, we observe that "hot-spot" genes produce multiple circRNA isoforms, which are often differentially expressed across porcine brain development. A global comparison of porcine circRNAs reveals that introns flanking circularized exons are longer than...

  8. Manic fringe is not required for embryonic development, and fringe family members do not exhibit redundant functions in the axial skeleton, limb, or hindbrain

    Science.gov (United States)

    Moran, Jennifer L.; Shifley, Emily T.; Levorse, John M.; Mani, Shyamala; Ostmann, Kristin; Perez-Balaguer, Ariadna; Walker, Dawn M.; Vogt, Thomas F.; Cole, Susan E.

    2009-01-01

    Tight regulation of Notch pathway signaling is important in many aspects of embryonic development. Notch signaling can be modulated by expression of fringe genes, encoding glycosyltransferases that modify EGF repeats in the Notch receptor. Although Lunatic fringe (Lfng) has been shown to play important roles in vertebrate segmentation, comparatively little is known regarding the developmental functions of the other vertebrate fringe genes, Radical fringe (Rfng) and Manic fringe (Mfng). Here we report that Mfng expression is not required for embryonic development. Further, we find that despite significant overlap in expression patterns, we detect no obvious synergistic defects in mice in the absence of two, or all three, fringe genes during development of the axial skeleton, limbs, hindbrain and cranial nerves. PMID:19479951

  9. p63 protein is essential for the embryonic development of vibrissae and teeth

    International Nuclear Information System (INIS)

    Rufini, Alessandro; Weil, Miguel; McKeon, Frank; Barlattani, Alberto; Melino, Gerry; Candi, Eleonora

    2006-01-01

    Development of skin appendages strongly depends on epithelial-mesenchymal interactions. One of the genes involved in this process is p63, a member of the p53 family of transcription factors, essential for ectodermal development, as elucidated by the phenotype of p63 knock-out mice. Surprisingly, no information on p63 expression in tooth and hair is yet available. Here, we show p63 expression during teeth and vibrissae morphogenesis in mouse embryos and we also show a correlation with the expression patterns of the epithelial marker keratin 5 and the proliferation marker Ki67. Our results show that p63 colocalizes with both K5 and Ki67 in the epithelium of developing vibrissae, while in teeth p63 is expressed, together with K5, in the undifferentiated ectoderm (enamel organ), and in ameloblasts, a subpopulation of differentiated ectodermal cells. Moreover, p63 expression in tooth seems not to be fully colocalized with nuclear Ki67 expression

  10. The "chicken-and-egg" development of political opinionsThe roles of genes, social status, ideology, and information.

    Science.gov (United States)

    Peter, Beattie J D

    2017-01-01

    Twin studies have revealed political ideology to be partially heritable. Neurological research has shown that ideological differences are reflected in brain structure and response, suggesting a direct genotype-phenotype link. Social and informational environments, however, also demonstrably affect brain structure and response. This leads to a "chicken-and-egg" question: do genes produce brains with ideological predispositions, causing the preferential absorption of consonant information and thereby forming an ideology, or do social and informational environments do most of the heavy lifting, with genetic evidence the spurious artifact of outdated methodology? Or are both inextricably intertwined contributors? This article investigates the relative contributions of genetic and environmental factors to ideological development using a role-play experiment investigating the development of opinions on a novel political issue. The results support the view that the process is bidirectional, suggesting that, like most traits, political ideology is produced by the complex interplay of genetic and (social/informational) environmental influences.

  11. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    Science.gov (United States)

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.

  12. The role of energetic reserves during embryonic development of an annual killifish

    Czech Academy of Sciences Publication Activity Database

    Vrtílek, Milan; Polačik, Matej; Reichard, Martin

    2017-01-01

    Roč. 246, č. 11 (2017), s. 838-847 ISSN 1058-8388 R&D Projects: GA ČR(CZ) GA16-00291S Institutional support: RVO:68081766 Keywords : Nothobranchius furzeri * egg size * hatching * maternal effects * development duration Subject RIV: EG - Zoology OBOR OECD: Developmental biology Impact factor: 2.004, year: 2016

  13. Embryonic expression of Drosophila IMP in the developing CNS and PNS

    DEFF Research Database (Denmark)

    Adolph, Sidsel Kramshøj; Delotto, Robert; Nielsen, Finn Cilius

    2008-01-01

    embryogenesis. In the cellular blastoderm, immunoreactivity was seen in the entire cell-layer, where it was localized apically to the nucleus, and in the pole cells. Later, the GFP-dIMP fusion protein appeared in the developing central nervous system, both in the brain and in the ventral nerve cord...

  14. The effect of unilateral ovariectomy on early embryonic survival and embryo development in rabbits

    Directory of Open Access Journals (Sweden)

    R. Peiró

    2014-06-01

    Full Text Available Unilateral ovariectomy can be used to study uterine capacity in rabbits because an overcrowding of the functional uterine horn is produced. Due to the uterus duplex, the rabbit is the ideal model for such studies. However, this technique may affect embryo survival. The aim of this work is to study the effect of unilateral ovariectomy on early embryo survival and development in rabbit. A total of 101 unilateral ovariectomised females and 52 intact females were compared after slaughter at 30 h post-mating. Early embryo survival was estimated as the ratio between number of embryo recovered and ovulation rate. No differences were found between intact and unilaterally ovariectomised females in this trait. Unilateral ovariectomy did not change embryo development, measured as the number of embryo cells. Variability of embryo development was not affected either. At 30 h post-mating, the majority of embryos (86.2% were 4-cell stage. Embryo quality was evaluated according to morphological criteria. No difference in embryo quality between intact and unilaterally ovariectomised females was found. Therefore, unilateral ovariectomy performed before puberty in rabbit does not modify early embryo survival and development.

  15. Cardiac development in zebrafish and human embryonic stem cells is inhibited by exposure to tobacco cigarettes and e-cigarettes.

    Directory of Open Access Journals (Sweden)

    Nathan J Palpant

    Full Text Available Maternal smoking is a risk factor for low birth weight and other adverse developmental outcomes.We sought to determine the impact of standard tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo.Zebrafish (Danio rerio were used to assess developmental effects in vivo and cardiac differentiation of human embryonic stem cells (hESCs was used as a model for in vitro cardiac development.In zebrafish, exposure to both types of cigarettes results in broad, dose-dependent developmental defects coupled with severe heart malformation, pericardial edema and reduced heart function. Tobacco cigarettes are more toxic than e-cigarettes at comparable nicotine concentrations. During cardiac differentiation of hESCs, tobacco smoke exposure results in a delayed transition through mesoderm. Both types of cigarettes decrease expression of cardiac transcription factors in cardiac progenitor cells, suggesting a persistent delay in differentiation. In definitive human cardiomyocytes, both e-cigarette- and tobacco cigarette-treated samples showed reduced expression of sarcomeric genes such as MLC2v and MYL6. Furthermore, tobacco cigarette-treated samples had delayed onset of beating and showed low levels and aberrant localization of N-cadherin, reduced myofilament content with significantly reduced sarcomere length, and increased expression of the immature cardiac marker smooth muscle alpha-actin.These data indicate a negative effect of both tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. Tobacco cigarettes are more toxic than E-cigarettes and exhibit a broader spectrum of cardiac developmental defects.

  16. Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues.

    Science.gov (United States)

    Van Herck, Stijn L J; Geysens, Stijn; Bald, Edward; Chwatko, Grazyna; Delezie, Evelyne; Dianati, Elham; Ahmed, R G; Darras, Veerle M

    2013-07-01

    Methimazole (MMI) is an anti-thyroid drug used in the treatment of chronic hyperthyroidism. There is, however, some debate about its use during pregnancy as MMI is known to cross the mammalian placenta and reach the developing foetus. A similar problem occurs in birds, where MMI is deposited in the egg and taken up by the developing embryo. To investigate whether maternally derived MMI can have detrimental effects on embryonic development, we treated laying hens with MMI (0.03% in drinking water) and measured total and reduced MMI contents in the tissues of hens and embryos at different stages of development. In hens, MMI was selectively increased in the thyroid gland, while its levels in the liver and especially brain remained relatively low. Long-term MMI treatment induced a pronounced goitre with a decrease in thyroxine (T₄) content but an increase in thyroidal 3,5,3'-triiodothyronine (T₃) content. This resulted in normal T₃ levels in tissues except in the brain. In chicken embryos, MMI levels were similar in the liver and brain. They gradually decreased during development but always remained above those in the corresponding maternal tissues. Contrary to the situation in hens, T₄ availability was only moderately affected in embryos. Peripheral T₃ levels were reduced in 14-day-old embryos but normal in 18-day-old embryos, while brain T₃ content was decreased at all embryonic stages tested. We conclude that all embryonic tissues are exposed to relatively high doses of MMI and its oxidised metabolites. The effect of maternal MMI treatment on embryonic thyroid hormone availability is most pronounced for brain T₃ content, which is reduced throughout the embryonic development period.

  17. Embryonic development of the axial column in the little skate, Leucoraja erinacea.

    Science.gov (United States)

    Criswell, Katharine E; Coates, Michael I; Gillis, J Andrew

    2017-03-01

    The morphological patterns and molecular mechanisms of vertebral column development are well understood in bony fishes (osteichthyans). However, vertebral column morphology in elasmobranch chondrichthyans (e.g., sharks and skates) differs from that of osteichthyans, and its development has not been extensively studied. Here, we characterize vertebral development in an elasmobranch fish, the little skate, Leucoraja erinacea, using microCT, paraffin histology, and whole-mount skeletal preparations. Vertebral development begins with the condensation of mesenchyme, first around the notochord, and subsequently around the neural tube and caudal artery and vein. Mesenchyme surrounding the notochord differentiates into a continuous sheath of spindle-shaped cells, which forms the precursor to the mineralized areolar calcification of the centrum. Mesenchyme around the neural tube and caudal artery/vein becomes united by a population of mesenchymal cells that condenses lateral to the sheath of spindle-shaped cells, with this mesenchymal complex eventually differentiating into the hyaline cartilage of the future neural arches, hemal arches, and outer centrum. The initially continuous layers of areolar tissue and outer hyaline cartilage eventually subdivide into discrete centra and arches, with the notochord constricted in the center of each vertebra by a late-forming "inner layer" of hyaline cartilage, and by a ring of areolar calcification located medial to the outer vertebral cartilage. The vertebrae of elasmobranchs are distinct among vertebrates, both in terms of their composition (i.e., with centra consisting of up to three tissues layers-an inner cartilage layer, a calcified areolar ring, and an outer layer of hyaline cartilage), and their mode of development (i.e., the subdivision of arch and outer centrum cartilage from an initially continuous layer of hyaline cartilage). Given the evident variation in patterns of vertebral construction, broad taxon sampling, and

  18. The role of nitric oxide during embryonic epidermis development of Xenopus laevis

    Czech Academy of Sciences Publication Activity Database

    Tománková, Silvie; Abaffy, Pavel; Šindelka, Radek

    2017-01-01

    Roč. 6, č. 6 (2017), s. 862-871 ISSN 2046-6390 R&D Projects: GA AV ČR LK21305; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Development * Nitric oxide * Epidermis * Xenopus laevis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 2.095, year: 2016

  19. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development

    OpenAIRE

    Tian, X; Diaz, FJ

    2013-01-01

    Recent findings show that zinc is an important factor necessary for regulating the meiotic cell cycle and ovulation. However, the role of zinc in promoting oocyte quality and developmental potential is not known. Using an in vivo model of acute dietary zinc deficiency, we show that feeding a zinc deficient diet (ZDD) for 3–5 days before ovulation (preconception) dramatically disrupts oocyte chromatin methylation and preimplantation development. There was a dramatic decrease in histone H3K4 tr...

  20. Processes underlying the nutritional programming of embryonic development by iron deficiency in the rat.

    Directory of Open Access Journals (Sweden)

    Angelina Swali

    Full Text Available Poor iron status is a global health issue, affecting two thirds of the world population to some degree. It is a particular problem among pregnant women, in both developed and developing countries. Feeding pregnant rats a diet deficient in iron is associated with both hypertension and reduced nephron endowment in adult male offspring. However, the mechanistic pathway leading from iron deficiency to fetal kidney development remains elusive. This study aimed to establish the underlying processes associated with iron deficiency by assessing gene and protein expression changes in the rat embryo, focussing on the responses occurring at the time of the nutritional insult. Analysis of microarray data showed that iron deficiency in utero resulted in the significant up-regulation of 979 genes and down-regulation of 1545 genes in male rat embryos (d13. Affected processes associated with these genes included the initiation of mitosis, BAD-mediated apoptosis, the assembly of RNA polymerase II preinitiation complexes and WNT signalling. Proteomic analyses highlighted 7 proteins demonstrating significant up-regulation with iron deficiency and the down-regulation of 11 proteins. The main functions of these key proteins included cell proliferation, protein transport and folding, cytoskeletal remodelling and the proteasome complex. In line with our recent work, which identified the perturbation of the proteasome complex as a generalised response to in utero malnutrition, we propose that iron deficiency alone leads to a more specific failure in correct protein folding and transport. Such an imbalance in this delicate quality-control system can lead to cellular dysfunction and apoptosis. Therefore these findings offer an insight into the underlying mechanisms associated with the development of the embryo during conditions of poor iron status, and its health in adult life.

  1. Reproduction, Embryonic Development, and Maternal Transfer of Contaminants in the Amphibian Gastrophryne carolinensis

    OpenAIRE

    Hopkins, William Alexander; DuRant, Sarah Elizabeth; Staub, Brandon Patrick; Rowe, Christopher Lee; Jackson, Brian Phillip

    2005-01-01

    Although many amphibian populations around the world are declining at alarming rates, the cause of most declines remains unknown. Environmental contamination is one of several factors implicated in declines and may have particularly important effects on sensitive developmental stages. Despite the severe effects of maternal transfer of contaminants on early development in other vertebrate lineages, no studies have examined the effects of maternal transfer of contaminants on reproduction or dev...

  2. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish.

    Science.gov (United States)

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.

  3. Embryonic Development of the Light Organ of the Sepiolid Squid Euprymna scolopes Berry.

    Science.gov (United States)

    Montgomery, M K; McFall-Ngai, M

    1993-06-01

    The sepiolid squid Euprymna scolopes maintains luminous bacterial symbionts of the species Vibrio fischeri in a bilobed light organ partially embedded in the ventral surface of the ink sac. Anatomical and ultrastructural observations of the light organ during embryogenesis indicate that the organ begins development as a paired proliferation of the mesoderm of the hindgut-ink sac complex. Three-dimensional reconstruction of the incipient light organ of a newly hatched juvenile revealed the presence of three pairs of sacculate crypts, each crypt joined to a pore on the surface of the light organ by a ciliated duct. The crypts, which become populated with bacterial symbionts within hours after the juvenile hatches, appear to result from sequential paired invaginations of the surface epithelium of the hindgut-ink sac complex during embryogenesis. A pair of anterior and a pair of posterior ciliated epithelial appendages, which may facilitate infection of the incipient light organ with symbiotic bacteria, develop by extension and growth of the surface epithelium. The ink sac and reflector develop dorsal to the crypts and together function to direct luminescence ventrally. These two accessory tissues are present at the time of hatching, although changes in their overall structure accompany growth and maturation of the light organ. A third accessory tissue, the muscle-derived lens, appears during post-hatch maturation of the light organ.

  4. A meta-analysis of effects of post-hatch food and water deprivation on development, performance and welfare of chickens

    NARCIS (Netherlands)

    Jong, de I.C.; Riel, van J.W.; Bracke, M.B.M.; Brand, van den H.

    2017-01-01

    A ‘meta-analysis’ was performed to determine effects of post-hatch food and water deprivation (PHFWD) on chicken development, performance and welfare (including health). Two types of meta-analysis were performed on peer-reviewed scientific publications: a quantitative ‘meta-analysis’ (MA) and a

  5. The effect of temperature on the embryonic development of barramundi, the Australian strain of Lates calcarifer (Bloch using current hatchery practices

    Directory of Open Access Journals (Sweden)

    Valentin Thépot

    2015-11-01

    Full Text Available Lates calcarifer (barramundi or Asian seabass has been farmed since the 1970s, yet despite its widespread culture little has been documented on the species’ embryonic development and particularly how development relates to temperature. This is particularly the case for the Australian L. calcarifer genetic strain. Accordingly, embryonic development of fertilised barramundi eggs incubated at 26, 28, 30, 32, 34 and 36 °C were followed from the time of incubation until hatching and the timing to reach key developmental stages and temperature-induced hatching success established. Eggs incubated at 26 and 36 °C did not survive past the first two hours post-fertilisation. Development of the Australian strain of L. calcarifer was observed to proceed similarly to those documented from Asia, however, differences were observed in the timing of major embryonic events among the two strains. Incubation trials showed that eggs maintained at 30 °C had the highest hatch rate (86.7%. The findings of this study are discussed and put in a commercial context with potential future research to further improve practices at the hatchery level.

  6. Insights on the Reproduction and Embryonic Development of Garra rufa (Cyprinidae

    Directory of Open Access Journals (Sweden)

    Mónica R S Gomes

    2015-11-01

    In a total of 28 postures, only 17 resulted in newly born fish. This was mostly due to fungal development around the eggs that caused the embryos to degenerate. There was a hatching success of 60%. The eggs showed no adhesive properties, being deposited on the bottom. The most prominent structures of the embryos were noticeable after: 3h - tail bud; 6h - optic primordium; 10h - heart beating; 15h - pectoral fins buds. They hatched between 24 to 48h and the larvae consumed the yolk sac in 48h.

  7. Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development.

    Science.gov (United States)

    Bourc'his, Déborah; Proudhon, Charlotte

    2008-01-30

    Genomic imprinting refers to the functional non-equivalence of parental genomes in mammals that results from the parent-of-origin allelic expression of a subset of genes. Parent-specific expression is dependent on the germ line acquisition of DNA methylation marks at imprinting control regions (ICRs), coordinated by the DNA-methyltransferase homolog DNMT3L. We discuss here how the gender-specific stages of DNMT3L expression may have influenced the various sexually dimorphic aspects of genomic imprinting: (1) the differential developmental timing of methylation establishment at paternally and maternally imprinted genes in each parental germ line, (2) the differential dependence on DNMT3L of parental methylation imprint establishment, (3) the unequal duration of paternal versus maternal methylation imprints during germ cell development, (4) the biased distribution of methylation-dependent ICRs towards the maternal genome, (5) the different genomic organization of paternal versus maternal ICRs, and finally (6) the overwhelming contribution of maternal germ line imprints to development compared to their paternal counterparts.

  8. Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate

    Science.gov (United States)

    Nedelec, Sophie L.; Radford, Andrew N.; Simpson, Stephen D.; Nedelec, Brendan; Lecchini, David; Mills, Suzanne C.

    2014-07-01

    Human activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function.

  9. A developmental transcriptomic analysis of Pax1 and Pax9 in embryonic intervertebral disc development

    Directory of Open Access Journals (Sweden)

    V. Sivakamasundari

    2017-02-01

    Full Text Available Pax1 and Pax9 play redundant, synergistic functions in the patterning and differentiation of the sclerotomal cells that give rise to the vertebral bodies and intervertebral discs (IVD of the axial skeleton. They are conserved in mice and humans, whereby mutation/deficiency of human PAX1/PAX9 has been associated with kyphoscoliosis. By combining cell-type-specific transcriptome and ChIP-sequencing data, we identified the roles of Pax1/Pax9 in cell proliferation, cartilage development and collagen fibrillogenesis, which are vital in early IVD morphogenesis. Pax1 is up-regulated in the absence of Pax9, while Pax9 is unaffected by the loss of Pax1/Pax9. We identified the targets compensated by a single- or double-copy of Pax9. They positively regulate many of the cartilage genes known to be regulated by Sox5/Sox6/Sox9 and are connected to Sox5/Sox6 by a negative feedback loop. Pax1/Pax9 are intertwined with BMP and TGF-B pathways and we propose they initiate expression of chondrogenic genes during early IVD differentiation and subsequently become restricted to the outer annulus by the negative feedback mechanism. Our findings highlight how early IVD development is regulated spatio-temporally and have implications for understanding kyphoscoliosis.

  10. Reproduction, embryonic development, and maternal transfer of contaminants in the amphibian Gastrophryne carolinensis.

    Science.gov (United States)

    Hopkins, William Alexander; DuRant, Sarah Elizabeth; Staub, Brandon Patrick; Rowe, Christopher Lee; Jackson, Brian Phillip

    2006-05-01

    Although many amphibian populations around the world are declining at alarming rates, the cause of most declines remains unknown. Environmental contamination is one of several factors implicated in declines and may have particularly important effects on sensitive developmental stages. Despite the severe effects of maternal transfer of contaminants on early development in other vertebrate lineages, no studies have examined the effects of maternal transfer of contaminants on reproduction or development in amphibians. We examined maternal transfer of contaminants in eastern narrow-mouth toads (Gastrophryne carolinensis) collected from a reference site and near a coal-burning power plant. Adult toads inhabiting the industrial area transferred significant quantities of selenium and strontium to their eggs, but Se concentrations were most notable (up to 100 microg/g dry mass). Compared with the reference site, hatching success was reduced by 11% in clutches from the contaminated site. In surviving larvae, the frequency of developmental abnormalities and abnormal swimming was 55-58% higher in the contaminated site relative to the reference site. Craniofacial abnormalities were nearly an order of magnitude more prevalent in hatchlings from the contaminated site. When all developmental criteria were considered collectively, offspring from the contaminated site experienced 19% lower viability. Although there was no statistical relationship between the concentration of Se or Sr transferred to eggs and any measure of offspring viability, our study demonstrates that maternal transfer may be an important route of contaminant exposure in amphibians that has been overlooked.

  11. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    Directory of Open Access Journals (Sweden)

    Nakkrasae La-Iad

    2008-05-01

    Full Text Available Abstract Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7 is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network.

  12. Population dynamics of Ascaridia galli following single infection in young chickens

    DEFF Research Database (Denmark)

    Ferdushy, Tania; Luna Olivares, Luz Adilia; Nejsum, Peter

    2013-01-01

    SUMMARY The population dynamics of Ascaridia galli was studied in 70 ISA Brown layer pullets, 42 of them were each experimentally infected with 500 embryonated A. galli eggs and 28 chickens were kept as uninfected controls. Six chickens from the infected group and 4 from the control group were...

  13. Omega-3 polyunsaturated fatty acids provided during embryonic development improve the growth performance and welfare of Muscovy ducks (Cairina moschata).

    Science.gov (United States)

    Baéza, E; Chartrin, P; Bordeau, T; Lessire, M; Thoby, J M; Gigaud, V; Blanchet, M; Alinier, A; Leterrier, C

    2017-09-01

    The welfare of ducks can be affected by unwanted behaviors such as excessive reactivity and feather pecking. Providing long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) during gestation and early life has been shown to improve the brain development and function of human and rodent offspring. The aim of this study was to test whether the pecking behavior of Muscovy ducks during rearing could be reduced by providing LC n-3 PUFA during embryonic and/or post-hatching development of ducklings. Enrichment of eggs, and consequently embryos, with LC n-3 PUFA was achieved by feeding female ducks (n-3F) a diet containing docosahexaenoic (DHA) and linolenic acids (microalgae and linseed oil). A control group of female ducks (CF) was fed a diet containing linoleic acid (soybean oil). Offspring from both groups were fed starter and grower diets enriched with DHA and linolenic acid or only linoleic acid, resulting in four treatment groups with 48 ducklings in each. Several behavioral tests were performed between 1 and 3 weeks of age to analyze the adaptation ability of ducklings. The growth performance, time budget, social interactions, feather growth, and pecking behavior of ducklings were recorded regularly during the rearing period. No significant interaction between maternal and duckling feeding was found. Ducklings from n-3F ducks had a higher body weight at day 0, 28, and 56, a lower feed conversion ratio during the growth period, and lower reactivity to stress than ducklings from CF ducks. Ducklings from n-3F ducks also exhibited a significantly reduced feather pecking frequency at 49 and 56 days of age and for the whole rearing period. Moreover, consumption of diets enriched with n-3 PUFA during the starter and grower post-hatching periods significantly improved the tibia mineralization of ducklings and the fatty acid composition of thigh muscles at 84 days of age by increasing the n-3 FA content. © 2017 Poultry Science Association Inc.

  14. Localization of DNA methyltransferase-1 during oocyte differentiation, in vitro maturation and early embryonic development in cow

    Directory of Open Access Journals (Sweden)

    A. M. Luciano

    2009-12-01

    Full Text Available DNA methyltransferase-1 (Dnmt1 is involved in the maintenance of DNA methylation patterns and is crucial for normal mammalian development. The aim of the present study was to assess the localization of Dnmt1 in cow, during the latest phases of oocyte differentiation and during the early stages of segmentation. Dnmt1 expression and localization were assessed in oocytes according to the chromatin configuration, which in turn provides an important epigenetic mechanism for the control of global gene expression and represents a morphological marker of oocyte differentiation.We found that the initial chromatin condensation was accompanied by a slight increase in the level of global DNA methylation, as assessed by 5-methyl-cytosine immunostaining followed by laser scanning confocal microscopy analysis (LSCM. RT-PCR confirmed the presence of Dnmt1 transcripts throughout this phase of oocyte differentiation. Analogously, Dnmt1 immunodetection and LSCM indicated that the protein was always present and localized in the cytoplasm, regardless the chromatin configuration and the level of global DNA methylation. Moreover, our data indicate that while Dnmt1 is retained in the cytoplasm in metaphase II stage oocytes and zygotes, it enters the nuclei of 8-16 cell stage embryos. As suggested in mouse, the functional meaning of the presence of Dnmt1 in the bovine embryo nuclei could be the maintainement of the methylation pattern of imprinted genes. In conclusion, the present work provides useful elements for the study of Dnmt1 function during the late stage of oocyte differentiation, maturation and early embryonic development in mammals.

  15. The Hedgehog-GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy

    Science.gov (United States)

    Armas-López, Leonel; Zúñiga, Joaquín; Arrieta, Oscar; Ávila-Moreno, Federico

    2017-01-01

    Transcriptional regulation and epigenetic mechanisms closely control gene expression through diverse physiological and pathophysiological processes. These include the development of germ layers and post-natal epithelial cell-tissue differentiation, as well as, involved with the induction, promotion and/or progression of human malignancies. Diverse studies have shed light on the molecular similarities and differences involved in the stages of embryological epithelial development and dedifferentiation processes in malignant tumors of epithelial origin, of which many focus on lung carcinomas. In lung cancer, several transcriptional, epigenetic and genetic aberrations have been described to partly arise from environmental risk factors, but ethnic genetic predisposition factors may also play a role. The classification of the molecular hallmarks of cancer has been essential to study and achieve a comprehensive view of the interaction networks between cell signaling pathways and functional roles of the transcriptional and epigenetic regulatory mechanisms. This has in turn increased understanding on how these molecular networks are involved in embryo-layers and malignant diseases development. Ultimately, a major biomedicine goal is to achieve a thorough understanding of their roles as diagnostic, prognostic and treatment response indicators in lung oncological patients. Recently, several notable cell-signaling pathways have been studied based on their contribution to promoting and/or regulating the engagement of different cancer hallmarks, among them genome instability, exacerbated proliferative signaling, replicative immortality, tumor invasion-metastasis, inflammation, and immune-surveillance evasion mechanisms. Of these, the Hedgehog-GLI (Hh) cell-signaling pathway has been identified as a main molecular contribution into several of the abovementioned functional embryo-malignancy processes. Nonetheless, the systematic study of the regulatory epigenetic and

  16. Optimized ex-ovo culturing of chick embryos to advanced stages of development.

    Science.gov (United States)

    Cloney, Kellie; Franz-Odendaal, Tamara Anne

    2015-01-24

    Research in anatomy, embryology, and developmental biology has largely relied on the use of model organisms. In order to study development in live embryos model organisms, such as the chicken, are often used. The chicken is an excellent model organism due to its low cost and minimal maintenance, however they present observational challenges because they are enclosed in an opaque eggshell. In order to properly view the embryo as it develops, the shell must be windowed or removed. Both windowing and ex ovo techniques have been developed to assist researchers in the study of embryonic development. However, each of the methods has limitations and challenges. Here, we present a simple, optimized ex ovo culture technique for chicken embryos that enables the observation of embryonic development from stage HH 19 into late stages of development (HH 40), when many organs have developed. This technique is easy to adopt in both undergraduate classes and more advanced research laboratories where embryo manipulations are conducted.

  17. Distributional shift of urea production site from the extraembryonic yolk sac membrane to the embryonic liver during the development of cloudy catshark (Scyliorhinus torazame).

    Science.gov (United States)

    Takagi, Wataru; Kajimura, Makiko; Tanaka, Hironori; Hasegawa, Kumi; Ogawa, Shuntaro; Hyodo, Susumu

    2017-09-01

    Urea is an essential osmolyte for marine cartilaginous fishes. Adult elasmobranchs and holocephalans are known to actively produce urea in the liver, muscle and other extrahepatic organs; however, osmoregulatory mechanisms in the developing cartilaginous fish embryo with an undeveloped urea-producing organ are poorly understood. We recently described the contribution of extraembryonic yolk sac membranes (YSM) to embryonic urea synthesis during the early developmental period of the oviparous holocephalan elephant fish (Callorhinchus milii). In the present study, to test whether urea production in the YSM is a general phenomenon among oviparous Chondrichthyes, we investigated gene expression and activities of ornithine urea cycle (OUC) enzymes together with urea concentrations in embryos of the elasmobranch cloudy catshark (Scyliorhinus torazame). The intracapsular fluid, in which the catshark embryo develops, had a similar osmolality to seawater, and embryos maintained a high concentration of urea at levels similar to that of adult plasma throughout development. Relative mRNA expressions and activities of catshark OUC enzymes were significantly higher in YSM than in embryos until stage 32. Concomitant with the development of the embryonic liver, the expression levels and activities of OUC enzymes were markedly increased in the embryo from stage 33, while those of the YSM decreased from stage 32. The present study provides further evidence that the YSM contributes to embryonic urea homeostasis until the liver and other extrahepatic organs become fully functional, and that urea-producing tissue shifts from the YSM to the embryonic liver in the late developmental period of oviparous marine cartilaginous fishes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. In vivo exposure to northern diatoms arrests sea urchin embryonic development.

    Science.gov (United States)

    Gudimova, Elena; Eilertsen, Hans C; Jørgensen, Trond Ø; Hansen, Espen

    2016-01-01

    There are numerous reports indicating that marine diatoms may act harmful to early developmental stages of invertebrates. It is believed that the compounds responsible for these detrimental effects are oxylipins resulting from oxidized polyunsaturated fatty acids, and that they may function as grazing deterrents. Most studies reporting these effects have exposed test organisms to diatom extracts or purified toxins, but data from in vivo exposure to intact diatoms are scarce. We have conducted sea urchin egg incubation and plutei feeding experiments to test if intact diatom cells affected sea urchin embryo development and survival. This was done by exposing the common northern sea urchins Strongylocentrotus droebachiensis and Echinus acutus to northern strains of the diatoms Chaetoceros socialis, Skeletonema marinoi, Chaetoceros furcellatus, Attheya longicornis, Thalassiosira gravida and Porosira glacialis. The intact diatom cell suspensions were found to inhibit sea urchin egg hatching and embryogenesis. S. marinoi was the most potent one as it caused acute mortality in S. droebachiensis eggs after only four hours exposure to high (50 μg/L Chla) diatom concentrations, as well as 24 h exposure to normal (20 μg/L Chla) and high diatom concentrations. The second most potent species was T. gravida that caused acute mortality after 24 h exposure to both diatom concentrations. A. longicornis was the least harmful of the diatom species in terms of embryo development arrestment, and it was the species that was most actively ingested by S. droebachiensis plutei. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas).

    Science.gov (United States)

    Gazeau, Frédéric; Gattuso, Jean-Pierre; Greaves, Mervyn; Elderfield, Henry; Peene, Jan; Heip, Carlo H R; Middelburg, Jack J

    2011-01-01

    Ocean acidification, due to anthropogenic CO₂ absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.

  20. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development.

    Science.gov (United States)

    Tian, X; Diaz, F J

    2013-04-01

    Recent findings show that zinc is an important factor necessary for regulating the meiotic cell cycle and ovulation. However, the role of zinc in promoting oocyte quality and developmental potential is not known. Using an in vivo model of acute dietary zinc deficiency, we show that feeding a zinc deficient diet (ZDD) for 3-5 days before ovulation (preconception) dramatically disrupts oocyte chromatin methylation and preimplantation development. There was a dramatic decrease in histone H3K4 trimethylation and global DNA methylation in zinc deficient oocytes. Moreover, there was a 3-20 fold increase in transcript abundance of repetitive elements (Iap, Line1, Sineb1, Sineb2), but a decrease in Gdf9, Zp3 and Figla mRNA. Only 53% and 8% of mature eggs reached the 2-cell stage after IVF in animals receiving a 3 and 5 days ZDD, respectively, while a 5 day ZDD in vivo reduced the proportion of 2-cells to 49%. In vivo fertilized 2-cell embryos cultured in vitro formed fewer (38%) blastocysts compared to control embryos (74%). Likewise, fewer blastocyst and expanded blastocyst were collected from the reproductive tract of zinc deficient animals on day 3.5 of pregnancy. This could be due to a decrease in Igf2 and H19 mRNA in ZDD blastocyst. Supplementation with a methyl donor (SAM) during IVM restored histone H3K4me3 and doubled the IVF success rate from 17% to 43% in oocytes from zinc deficient animals. Thus, the terminal period of oocyte development is extremely sensitive to perturbation in dietary zinc availability. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas.

    Directory of Open Access Journals (Sweden)

    Frédéric Gazeau

    Full Text Available Ocean acidification, due to anthropogenic CO₂ absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas larvae during the first 3 days of development (until shelled D-veliger larvae. Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition. Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.

  2. Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development

    International Nuclear Information System (INIS)

    Sone, Yoshie; Ito, Masahiko; Shirakawa, Hideki; Shikano, Tomohide; Takeuchi, Hiroyuki; Kinoshita, Katsuyuki; Miyazaki, Shunichi

    2005-01-01

    Phospholipase C-zeta (PLCζ), a strong candidate of the egg-activating sperm factor, causes intracellular Ca 2+ oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLCζ. Changes in the localization of expressed PLCζ were investigated by tagging with a fluorescent protein. PLCζ began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLCζ in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLCζ was recognized in every embryo up to blastocyst. Thus, PLCζ exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca 2+ oscillations in early embryogenesis

  3. Toxic effects of NH4+-N on embryonic development of Bufo gargarizans and Rana chensinensis.

    Science.gov (United States)

    Deng, Hongzhang; Chai, Lihong; Luo, Pingping; Zhou, Meimei; Nover, Daniel; Zhao, Xiaohong

    2017-09-01

    Although nitrogen fertilizer is commonly used worldwide, little information is currently available about NH 4 + -N toxicity on amphibians. This study determined the acute and chronic toxic effects of NH 4 + -N on two native Chinese amphibian species (Bufo gargarizans and Rana chensinensis), and compared the negative sensitivity of different embryos to NH 4 + -N. Static renewal aqueous exposures were performed using B. gargarizans and R. chensinensis embryos at Gosner stage 2 over 96 h. In terms of 96 h-LC 50 , B. gargarizans and R. chensinensis embryos had significantly different responses to NH 4 + -N, and the latter was more sensitive to NH 4 + -N than the former. In the chronic toxicity test, exposure to 10 mg L -1 NH 4 + -N or higher significantly decreased the hatching rate of embryos in both species. Significant increases in the abnormality rate of embryos at 50 mg L -1 NH 4 + -N or higher were observed and morphological abnormalities were characterized by axial flexures, yolk sac edema, and hyperplasia in both species. Additionally, the total length of embryos decreased in a dose-dependent manner after exposure to NH 4 + -N. The results indicate that NH 4 + -N exposure can increase abnormality and inhibit the hatching and development of embryos in B. gargarizans and R. chensinensis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Study of Sperm Parameters and Sperm Fertility in Mice were Exposed to Tamoxifen during Embryonic Development

    Directory of Open Access Journals (Sweden)

    J Soleimanirad

    2017-05-01

    Full Text Available Introduction: Tamoxifen is steroidal drug, which mainly treats breast cancer and also used to stimulate ovulation. The purpose of the present study was the evaluation of sperm parameters and fertility of mice whose mothers had received tamoxifen during pregnancy. Methods: In this study, 30 female and 15 male mice of NMRI were selected for mating. After mating female mice were randomly divided into two groups, the first group (control and second group (experimental. All of which contained 15 mice. From the day 13th day of pregnancy, experimental group has received tamoxifen with the dosage of 5 mg/kg for 7 days. After childbirth of the mated mice, male infants were selected. After reaching the age of puberty (6-8Weeks, adult mice were sacrificed by the cervical dislocation. After take sperm, sperm parameters (count, normality and motility, and sperm fertility was performed. In this study SPSS software and statistical t-test was used (p <0.001. Results: Studies showed that sperm parameters and sperm fertilization were significantly different. The number of sperm in the control group was 83.50±28.20 million, and in the experimental group was 60±14.14 million. There was a decrease in average sperm count in the experimental group compared with the control group (p <0.001. Our findings from in vitro fertilization culture media showed that embryos formation and oocyte disruption between control and experimental groups significantly different (p <0.001. Conclusion: The results showed that tamoxifen exposure during development can cause histological changes in the seminiferous tubules, which can lead to infertility.

  5. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development

    Directory of Open Access Journals (Sweden)

    Jimann Shin

    2012-11-01

    Neurofibromatosis type 1 (NF1 is a common, dominantly inherited genetic disorder that results from mutations in the neurofibromin 1 (NF1 gene. Affected individuals demonstrate abnormalities in neural-crest-derived tissues that include hyperpigmented skin lesions and benign peripheral nerve sheath tumors. NF1 patients also have a predisposition to malignancies including juvenile myelomonocytic leukemia (JMML, optic glioma, glioblastoma, schwannoma and malignant peripheral nerve sheath tumors (MPNSTs. In an effort to better define the molecular and cellular determinants of NF1 disease pathogenesis in vivo, we employed targeted mutagenesis strategies to generate zebrafish harboring stable germline mutations in nf1a and nf1b, orthologues of NF1. Animals homozygous for loss-of-function alleles of nf1a or nf1b alone are phenotypically normal and viable. Homozygous loss of both alleles in combination generates larval phenotypes that resemble aspects of the human disease and results in larval lethality between 7 and 10 days post fertilization. nf1-null larvae demonstrate significant central and peripheral nervous system defects. These include aberrant proliferation and differentiation of oligodendrocyte progenitor cells (OPCs, dysmorphic myelin sheaths and hyperplasia of Schwann cells. Loss of nf1 contributes to tumorigenesis as demonstrated by an accelerated onset and increased penetrance of high-grade gliomas and MPNSTs in adult nf1a+/−; nf1b−/−; p53e7/e7 animals. nf1-null larvae also demonstrate significant motor and learning defects. Importantly, we identify and quantitatively analyze a novel melanophore phenotype in nf1-null larvae, providing the first animal model of the pathognomonic pigmentation lesions of NF1. Together, these findings support a role for nf1a and nf1b as potent tumor suppressor genes that also function in the development of both central and peripheral glial cells as well as melanophores in zebrafish.

  6. Adiposity associated changes in serum glucose and adiponectin levels modulate ovarian steroidogenesis during delayed embryonic development in the fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Anuradha; Krishna, Amitabh

    2018-06-01

    The aim of the present study was to evaluate the mechanism by which embryonic development in Cynopterus sphinx is impaired during the period of increased accumulation of white adipose tissue during winter scarcity of food. The change in the mass of white adipose tissue during adipogenesis showed significant positive correlation with the circulating glucose level. But increase in circulating glucose level during the adipogenesis showed negative correlation with circulating progesterone and adiponectin levels. The in vivo study showed increased glucose uptake by the adipose tissue during adipogenesis due to increased expression of insulin receptor (IR) and glucose transporter (GLUT) 4 proteins. This study showed decline in the adiponectin level during fat accumulation. In the in vitro study, ovary treated with high doses of glucose showed impaired progesterone synthesis. This is due to decreased glucose uptake mediated decrease in the expression of luteinizing hormone-receptor, steroidogenic acute regulatory protein, IR, GLUT4 and AdipoR1 proteins. But the ovary treated with adiponectin either alone or with higher concentration of glucose showed improvement in progesterone synthesis due to increased expression of IR, GLUT4 and AdipoR1 mediated increased glucose uptake. In conclusion, increased circulating glucose level prior to winter dormancy preferably transported to white adipose tissue for fat accumulation diverting glucose away from the ovary. Consequently the decreased availability of adiponectin and glucose to the ovary and utero-embryonic unit may be responsible for impaired progesterone synthesis and delayed embryonic development. The delayed embryonic development in Cynopterus sphinx may have evolved, in part, as a mechanism to prevent pregnancy loss during the period of decreased energy availability. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Chicken and Food Poisoning

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Past Emails Chicken and Food Poisoning Language: English (US) Español (Spanish) ... on Facebook Tweet Share Compartir Americans eat more chicken every year than any other meat. Chicken can ...

  8. Egg formation and the early embryonic development of Aspidogaster limacoides Diesing, 1835 (Aspidogastrea: Aspidogastridae), with comments on their phylogenetic significance

    Czech Academy of Sciences Publication Activity Database

    Świderski, Z.; Poddubnaya, L. G.; Gibson, D. I.; Levron, Céline; Młocicki, D.

    2011-01-01

    Roč. 60, č. 4 (2011), 371-380 ISSN 1383-5769 R&D Projects: GA ČR GAP506/10/1994 Institutional research plan: CEZ:AV0Z60220518 Keywords : Aspidogaster limacoides * Aspidogastrea * Eggshell * Early embryo * Embryonic envelope * Intrauterine eggs * Ultrastructure Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.132, year: 2011

  9. Gene Expression and Polymorphism of Myostatin Gene and its Association with Growth Traits in Chicken.

    Science.gov (United States)

    Dushyanth, K; Bhattacharya, T K; Shukla, R; Chatterjee, R N; Sitaramamma, T; Paswan, C; Guru Vishnu, P

    2016-10-01

    Myostatin is a member of TGF-β super family and is directly involved in regulation of body growth through limiting muscular growth. A study was carried out in three chicken lines to identify the polymorphism in the coding region of the myostatin gene through SSCP and DNA sequencing. A total of 12 haplotypes were observed in myostatin coding region of chicken. Significant associations between haplogroups with body weight at day 1, 14, 28, and 42 days, and carcass traits at 42 days were observed across the lines. It is concluded that the coding region of myostatin gene was polymorphic, with varied levels of expression among lines and had significant effects on growth traits. The expression of MSTN gene varied during embryonic and post hatch development stage.

  10. Effects of exposure to four endocrine disrupting-chemicals on fertilization and embryonic development of Barbel chub ( Squaliobarbus curriculus)

    Science.gov (United States)

    Niu, Cuijuan; Wang, Wei; Gao, Ying; Li, Li

    2013-09-01

    The toxicities of 4 common endocrine-disrupting chemicals (EDCs), 17β-estradiol (E2), p,p'-dichlorodiphenyldichloro-ethylene (DDE), 4-nonylphenol (NP) and tributyltin (TBT), to sperm motility, fertilization rate, hatching rate and embryonic development of Barbel chub ( Squaliobarbus curriculus) were investigated in this study. The duration of sperm motility was significantly shortened by exposure to the EDCs at the threshold concentrations of 10 ng L-1 for E2 and TBT, 1 μg L-1 for NP and 100 μg L-1 for DDE, respectively. The fertilization rate was substantially reduced by the EDCs at the lowest observable effect concentrations (LOECs) of 10 ng L-1 for E2 and TBT and 10 μg L-1 for DDE and NP, respectively. Of the tested properties of S. curriculus, larval deformity rate was most sensitive to EDC exposure and was significantly increased by DDE at the lowest experimental level of 0.1 μg L-1. Other EDCs increased the larval deformity rate at the LOECs of 1 ng L-1 for E2, 10 ng L-1 for TBT and 1 μg L-1 for NP, respectively. Despite their decreases with the increasing EDC concentrations, the hatching rate and larval survival rate of S. curriculus were not significantly affected by the exposure to EDCs. The results indicated that all the 4 EDCs affected significantly and negatively the early life stages of the freshwater fish S. curriculus. Overall, E2 and TBT were more toxic than NP and DDE, while DDE might be more toxic to larval deformity rate than to other measured parameters. Thus, the 4 EDCs showed potential negative influences on natural population dynamics of S. curriculus. Our findings provided valuable basic data for the ecological risk assessment of E2, DDE, NP and TBT.

  11. Exposure of spermatozoa to dibutyl phthalate induces abnormal embryonic development in a marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae).

    Science.gov (United States)

    Lu, Yonggang; Lin, Minjie; Aitken, Robert John

    2017-10-01

    In this study, we have investigated the impact of dibutyl phthalate (DBP) on early embryogenesis in a sessile marine invertebrate, Galeolaria caespitosa. DBP was found to induce sperm dysfunction as well as impaired and defective embryogenesis characterised by a particular pattern of abnormality. Thus, after the first cleavage, one blastomere in these abnormal embryos was able to carry out further mitoses, while the other arrested. Analysis of microtubules, chromosomes and actin filaments demonstrated that the mitotic spindles in the abnormal embryos were irregularly bent, shortened and unable to anchor to the cortex, resulting in the defective segregation of chromosomes. Within the non-dividing blastomeres, karyokinesis was found to continue at a slow pace as indicated by the presence of multiple sets of abnormal mitotic spindles. However, cytokinesis had been disrupted in these arrested cells due to a failure to assemble the contractile actin ring, as a result of which one pole of the embryos remained as one large, undivided cell. DBP was found to suppress the activity of superoxide dismutase in spermatozoa and, in association with this change, DBP-treated cells experienced oxidative stress as indicated by the presence of lipid aldehydes, such as 4-hydroxynonenal (4-HNE) in the sperm acrosome and neck. Adduction of lipid aldehydes at the level of the acrosome would be expected to impede the acrosome reaction and account for the significant decrease in fertilisation rates. 4-HNE generated as a consequence of lipid peroxidation in the sperm neck resulted in alkylation of the sperm centrioles. Such paternally damaged centrioles were inherited by the embryos and disrupted cytoskeletal protein organisation during early cleavage, generating the observed abnormalities in embryonic development. This research emphasises the vulnerability of spermatozoa to oxidative damage and highlights novel potential mechanisms for reproductive toxicity involving the alkylation of

  12. Characterization of the Chicken Ovarian Cancer Model

    National Research Council Canada - National Science Library

    Rodriguez, Gustavo

    2002-01-01

    .... Unlike other ovarian cancer models, which require experimental induction of ovarian tumors, chickens develop ovarian adenocarcinoma spontaneously, with an incidence ranging from 13 to 40 percent...

  13. Characterization of the Chicken Ovarian Cancer Model

    National Research Council Canada - National Science Library

    Rodriguez, Gustavo C

    2004-01-01

    .... Unlike other ovarian cancer models, which require experimental induction of ovarian tumors, chickens develop ovarian adenocarcinoma spontaneously, with an incidence ranging from 13 to 40 percent...

  14. Characterization of the Chicken Ovarian Cancer Model

    National Research Council Canada - National Science Library

    Rodriguez, Gustavo C

    2005-01-01

    .... Unlike other ovarian cancer models, which require experimental induction of ovarian tumors, chickens develop ovarian adenocarcinoma spontaneously, with an incidence ranging from 13 to 40 percent...

  15. Characterization of the Chicken Ovarian Cancer Model

    National Research Council Canada - National Science Library

    Rodriguez, Gustavo

    2003-01-01

    .... Unlike other ovarian cancer models, which require experimental induction of ovarian tumors, chickens develop ovarian adenocarcinoma spontaneously, with an incidence ranging from 13 to 40 percent...

  16. Characterization of the Chicken Ovarian Cancer Model

    National Research Council Canada - National Science Library

    Rodriquez, Gustavo

    2001-01-01

    .... Unlike other ovarian cancer models, which require experimental induction of ovarian tumors, chickens develop ovarian adenocarcinoma spontaneously, with an incidence ranging from 13 to 40 percent...

  17. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways.

    Science.gov (United States)

    Liu, Jing; Zhao, Yong; Ge, Wei; Zhang, Pengfei; Liu, Xinqi; Zhang, Weidong; Hao, Yanan; Yu, Shuai; Li, Lan; Chu, Meiqiang; Min, Lingjiang; Zhang, Hongfu; Shen, Wei

    2017-06-27

    The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.

  18. Analysis of Consumers' Preferences and Price Sensitivity to Native Chickens.

    Science.gov (United States)

    Lee, Min-A; Jung, Yoojin; Jo, Cheorun; Park, Ji-Young; Nam, Ki-Chang

    2017-01-01

    This study analyzed consumers' preferences and price sensitivity to native chickens. A survey was conducted from Jan 6 to 17, 2014, and data were collected from consumers (n=500) living in Korea. Statistical analyses evaluated the consumption patterns of native chickens, preference marketing for native chicken breeds which will be newly developed, and price sensitivity measurement (PSM). Of the subjects who preferred broilers, 24.3% do not purchase native chickens because of the dryness and tough texture, while those who preferred native chickens liked their chewy texture (38.2%). Of the total subjects, 38.2% preferred fried native chickens (38.2%) for processed food, 38.4% preferred direct sales for native chicken distribution, 51.0% preferred native chickens to be slaughtered in specialty stores, and 32.4% wanted easy access to native chickens. Additionally, the price stress range (PSR) was 50 won and the point of marginal cheapness (PMC) and point of marginal expensiveness (PME) were 6,980 won and 12,300 won, respectively. Evaluation of the segmentation market revealed that consumers who prefer broiler to native chicken breeds were more sensitive to the chicken price. To accelerate the consumption of newly developed native chicken meat, it is necessary to develop a texture that each consumer needs, to increase the accessibility of native chickens, and to have diverse menus and recipes as well as reasonable pricing for native chickens.

  19. Whole genome sequencing of Gyeongbuk Araucana, a newly developed blue-egg laying chicken breed, reveals its origin and genetic characteristics.

    Science.gov (United States)

    Jeong, Hyeonsoo; Kim, Kwondo; Caetano-Anollés, Kelsey; Kim, Heebal; Kim, Byung-Ki; Yi, Jun-Koo; Ha, Jae-Jung; Cho, Seoae; Oh, Dong Yep

    2016-05-24

    Chicken, Gallus gallus, is a valuable species both as a food source and as a model organism for scientific research. Here, we sequenced the genome of Gyeongbuk Araucana, a rare chicken breed with unique phenotypic characteristics including flight ability, large body size, and laying blue-shelled eggs, to identify its genomic features. We generated genomes of Gyeongbuk Araucana, Leghorn, and Korean Native Chicken at a total of 33.5, 35.82, and 33.23 coverage depth, respectively. Along with the genomes of 12 Chinese breeds, we identified genomic variants of 16.3 million SNVs and 2.3 million InDels in mapped regions. Additionally, through assembly of unmapped reads and selective sweep, we identified candidate genes that fall into heart, vasculature and muscle development and body growth categories, which provided insight into Gyeongbuk Araucana's phenotypic traits. Finally, genetic variation based on the transposable element insertion pattern was investigated to elucidate the features of transposable elements related to blue egg shell formation. This study presents results of the first genomic study on the Gyeongbuk Araucana breed; it has potential to serve as an invaluable resource for future research on the genomic characteristics of this chicken breed as well as others.

  20. In Ovo Vaccination with Turkey Herpesvirus Hastens Maturation of Chicken Embryo Immune Responses in Specific-Pathogen-Free Chickens.

    Science.gov (United States)

    Gimeno, Isabel M; Faiz, Nik M; Cortes, Aneg L; Barbosa, Taylor; Villalobos, Tarsicio; Pandiri, Arun R

    2015-09-01

    Administration of Marek's disease (MD) vaccines in ovo has become a common practice for the poultry industry. Efficacy of MD vaccines is very high, even though they are administered to chicken embryos that are immunologically immature. We have recently demonstrated that in ovo vaccination with turkey herpesvirus (HVT) results in increased activation of T cells at hatch. Our previous results suggested that in ovo vaccination with HVT might have a positive impact not only on MD protection but also on the overall maturity of the developing immune system of the chicken (Gallus gallus domesticus). The objective of this study was to evaluate the effect of administration of HVT at 18 days of embryonation (ED) on the maturation of the embryo immune system. Four experiments were conducted in Specific-Pathogen-Free Avian Supplies (SPAFAS) chickens to evaluate the effect of administration of HVT at 18 ED on the splenic cell phenotypes at day of age (experiment 1) and on the ability of 1-day-old chickens to respond to various antigens compared with older birds (experiments 2 and 3). In addition, a fourth experiment was conducted to elucidate whether administration of other serotype's MD vaccines (CVI988 and SB-1) at 18 ED had the same effect as HVT on the spleen cell phenotypes at day of age. Our results demonstrated that 1-day-old chickens that had received HVT in ovo (1-day HVT) had higher percentages of CD45+, MHC-I+, CD45+MHC-I+, CD3+, MHC-II+, CD3+MHC-II+, CD4+, CD8+, and CD4+CD8+ cells in the spleen than 1-day-old sham-inoculated chickens (1-day sham). Moreover, spleens of 1-day HVT chickens had greater percentages of CD45+MHC-I+ cells and equal or greater numbers of CD4+CD8- and CD4-CD8+ cells than older unvaccinated chickens. In addition, administration of HVT at 18 ED rendered chicks at hatch more responsive to unrelated antigens such as concavalin A, phytohemagglutinin-L, and keyhole limpet hemocyanin. Administration of MD vaccines of other serotypes had an effect

  1. Post-embryonic development of Camallanus cotti (Nematoda: Camallanidae), with emphasis on growth of some taxonomically important somatic characters.

    Science.gov (United States)

    Levsen, Arne; Berland, Bjørn

    2002-01-01

    In this paper, the quantitative post-embryonic development of the Asian freshwater fish nematode Camallanus cotti Fujita, 1927, is described. Larval and adult morphometrics were obtained by following the parasite's life cycle experimentally using copepods Macrocyclops albidus (Jurine) as intermediate host and guppies Poecilia reticulata (Peters), southern platyfish Xiphophorus maculatus (Günther) and paradise fish Macropodus opercularis (L.) as definitive host. Additionally, adult worms were obtained from heavily infected paradise fish imported from Singapore. It is suggested that the gradual change in proportions of the worm's somatic body parts reflects the specific ecological role of each developmental stage. The free-living infective first-stage larva seems to be adapted for transmission, as indicated by its relatively long tail, designed to generate host-attracting movements, and its non-functional intestine. The second- and third-stage larvae from the copepod intermediate host seem mainly to invest in trophic functionality, i.e., the development of the buccal capsule and the oesophagus, which are crucial structures for the worm's successful establishment in the definitive fish host. Once in the fish intestine, the larvae enter a period of considerable growth. After the fourth (i.e., last) moult, a 72% increase in average female body length occurs. This is accompanied by doubling the average vulva-tail tip distance and the average tail length. The length of the female hind body expands in an accelerating allometric fashion, and seems to be closely linked to the posterior-wards expansion of the uterus. In the males however, growth seems to cease after the final moult. We conclude that female post-maturational body size, but especially the length of the hind body and the tail, are closely related to reproductive state, i.e., the developmental stage of the offspring in the uterus, and, probably, the worms' age. Any future taxonomical studies of camallanids in

  2. Molecular characterization and expression profiling of BMP 3 gene in broiler and layer chicken.

    Science.gov (United States)

    Divya, Devara; Bhattacharya, Tarun Kumar; Gnana Prakash, Manthani; Chatterjee, R N; Shukla, Renu; Guru Vishnu, Pothana Boyina; Vinoth, Amirthalingam; Dushyanth, Kotha

    2018-04-10

    A study was carried out to characterize and explore the expression profile of BMP 3 gene in control broiler and control layer chicken. The total open reading frame of BMP 3 (1389 bp) was cloned and sequenced. The control broiler and control layer chicken showed variation at nucleotide and amino acid level with reference gene (Gallus gallus, NCBI Acc. No. NM_001034819). When compared to reference gene, the control broiler showed four nucleotide differences (c.192A>G, c.519C>T, 903G>A and 960C>G), while, control layer showed variation at c.33G>C, 192A>G, 858G>A, 904G>A, 960C>G and 1257C>T making six differences in total. However, between control broiler and control layer lines, nucleotide differences was observed at c.33G>C, 519T>C, 858G>A, 903A>G, 904G>A and 1257C>T. The change at amino acid level between reference and control broiler was p.D320N and with control layer chicken, it was p.D302N and p.D320N. On the other hand, a single amino acid difference (p.D302N) was observed between the control broiler and control layer chicken lines. The phylogenetic study displayed a close relationship between broiler and layer lines and reference gene and also with other avian species resulting in a cluster formation. These cluster in turn displayed a distant link with the mammalian species. The expression profile of BMP 3 gene exhibited a variation at different stages of embryonic development and also at post embryonic period among the lines with control layer showing higher expression than that of broiler chicken. The protein was also detected in bone marrow tissue of broiler and layer lines by western blotting. It is concluded that the BMP 3 gene sequence differed at nucleotide and amino acid level among the lines and the gene expressed differentially at different periods of embryonic development and also at post hatch period.

  3. Characterizing viscoelasticity of unhydrolyzed chicken sternal cartilage extract suspensions: Towards development of injectable therapeutics formulations.

    Science.gov (United States)

    Hama, Brian; Mahajan, Gautam; Kothapalli, Chandrasekhar

    2017-08-01

    Exogenous delivery of cartilage extract is being explored as a promising candidate for knee arthritis treatment as it biomimics native cartilage tissue characteristics. In this study, we report on the rheological characterization of aqueous suspensions constituted from a powdered form of unhydrolyzed chicken sternum extract. The effect of particle size (as-received vs. milled), suspension fluid (water vs. PBS), and temperature (37°C vs. 4°C), on the viscoelastic properties of the sternum extract based particulate suspensions were evaluated. Results showed that these suspensions exhibit shear-thinning characteristics as shear rate (γ̇) increases, while viscosity (η), storage (G'), and loss (G″) moduli of the suspensions increased with increasing particulate loading (ϕ: 2.5-10wt%). Reducing the as-received particle size by milling decreased G', G, and η of the suspensions and increased the influence of ϕ on these properties, possibly due to improved particle packing. Replacing water with PBS had no significant effect on the rheological properties, but temperature reduction from 37°C to 4°C increased G', G", and η of the suspensions and lowered the impact of powder loading on viscoelastic properties. The suspension's time-dependent response was typical of viscoelastic materials, characterized by an asymptotical approach to a final stress (stress relaxation) or strain (creep). Results were fit to a power-law model for creep, a general relaxation model for exponential decay in stress, Carreau-Yasuda models for flow curves, and a two-parameter Liu model to identify the maximum powder loading (ϕ m ). Among the various forces involved in particle-particle interactions within these suspensions, electrostatic forces appeared to dominate the most. Such characterization of the viscoelastic nature of these suspensions would help in formulating stable injectable cartilage extract based therapeutics for in vivo applications. Copyright © 2017 Elsevier Ltd. All

  4. Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies.

    Science.gov (United States)

    Lee, Warren; Syed Atif, Ali; Tan, Soo Choon; Leow, Chiuan Herng

    2017-08-01

    The advantages of chicken (Gallus gallus domesticus) antibodies as immunodiagnostic and immunotherapeutic biomolecules has only been recently recognized. Even so, chicken antibodies remain less-well characterized than their mammalian counterparts. This review aims at providing a current overview of the structure, function, development and generation of chicken antibodies. Additionally, brief but comprehensive insights into current knowledge pertaining to the immunogenetic framework and diversity-generation of the chicken immunoglobulin repertoire which have contributed to the establishment of recombinant chicken mAb-generating methods are discussed. Focus is provided on the current methods used to generate antibodies from chickens with added emphasis on the generation of recombinant chicken mAbs and its derivative formats. The advantages and limitations of established protocols for the generation of chicken mAbs are highlighted. The various applications of recombinant chicken mAbs and its derivative formats in immunodiagnostics and immunotherapy are further detailed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Development of GPCR modulation of GABAergic transmission in chicken nucleus laminaris neurons.

    Directory of Open Access Journals (Sweden)

    Zheng-Quan Tang

    Full Text Available Neurons in the nucleus laminaris (NL of birds act as coincidence detectors and encode interaural time difference to localize the sound source in the azimuth plane. GABAergic transmission in a number of CNS nuclei including the NL is subject to a dual modulation by presynaptic GABA(B receptors (GABA(BRs and metabotropic glutamate receptors (mGluRs. Here, using in vitro whole-cell patch clamp recordings from acute brain slices of the chick, we characterized the following important but unknown properties pertaining to such a dual modulation: (1 emergence of functional GABA synapses in NL neurons; (2 the temporal onset of neuromodulation mediated by GABA(BRs and mGluRs; and (3 the physiological conditions under which GABA(BRs and mGluRs are activated by endogenous transmitters. We found that (1 GABA(AR-mediated synaptic responses were observed in about half of the neurons at embryonic day 11 (E11; (2 GABA(BR-mediated modulation of the GABAergic transmission was detectable at E11, whereas the modulation by mGluRs did not emerge until E15; and (3 endogenous activity of GABA(BRs was induced by both low- (5 or 10 Hz and high-frequency (200 Hz stimulation of the GABAergic pathway, whereas endogenous activity of mGluRs was induced by high- (200 Hz but not low-frequency (5 or 10 Hz stimulation of the glutamatergic pathway. Furthermore, the endogenous activity of mGluRs was mediated by group II but not group III members. Therefore, autoreceptor-mediated modulation of GABAergic transmission emerges at the same time when the GABA synapses become functional. Heteroreceptor-mediated modulation appears at a later time and is receptor type dependent in vitro.

  6. Regulation and functions of the lms homeobox gene during development of embryonic lateral transverse muscles and direct flight muscles in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dominik Müller

    Full Text Available BACKGROUND: Patterning and differentiation of developing musculatures require elaborate networks of transcriptional regulation. In Drosophila, significant progress has been made into identifying the regulators of muscle development and defining their interactive networks. One major family of transcription factors involved in these processes consists of homeodomain proteins. In flies, several members of this family serve as muscle identity genes to specify the fates of individual muscles, or groups thereof, during embryonic and/or adult muscle development. Herein, we report on the expression and function of a new Drosophila homeobox gene during both embryonic and adult muscle development. METHODOLOGY/PRINCIPAL FINDINGS: The newly described homeobox gene, termed lateral muscles scarcer (lms, which has yet uncharacterized orthologs in other invertebrates and primitive chordates but not in vertebrates, is expressed exclusively in subsets of developing muscle tissues. In embryos, lms is expressed specifically in the four lateral transverse (LT muscles and their founder cells in each hemisegment, whereas in larval wing imaginal discs, it is expressed in myoblasts that develop into direct flight muscles (DFMs, which are important for proper wing positioning. We have analyzed the regulatory inputs of various other muscle identity genes with overlapping or complementary expression patterns towards the cell type specific regulation of lms expression. Further we demonstrate that lms null mutants exhibit reduced numbers of embryonic LT muscles, and null mutant adults feature held-out-wing phenotypes. We provide a detailed description of the pattern and morphology of the direct flight muscles in the wild type and lms mutant flies by using the recently-developed ultramicroscopy and show that, in the mutants, all DFMs are present and present normal morphologies. CONCLUSIONS/SIGNIFICANCE: We have identified the homeobox gene lms as a new muscle identity gene

  7. Production of crispy bread snacks containing chicken meat and chicken meat powder

    Directory of Open Access Journals (Sweden)

    HULYA CAKMAK

    Full Text Available ABSTRACT Chicken meat in two different forms (chicken meat and chicken meat powder were added into white flour and whole wheat blend baguette bread formulations for protein enrichment and finally developing new and healthy snacks. The chicken meat and powder levels were 10% for white flour baguette, and 15% for whole wheat blend. The dried baguette samples were packaged under 100% N2, and physical, chemical, microbiological and sensorial properties were evaluated during 3 months of storage. Protein content of chicken meat powder added samples were found statistically higher than chicken meat added samples. Hardness of the snacks was significantly affected from type of chicken meat, such as values were higher for chicken meat added samples than chicken meat powder added samples. Lipid oxidation of the snacks was determined by TBA analysis, and TBA value for whole wheat mixture snack with 15% of chicken meat was the highest among all during storage. The highest overall acceptance score was obtained from white flour snack with 10% chicken meat. There was no coliform bacteria detected during storage and the results of yeast-mold count and aerobic plate count of snacks remained between the quantitative ranges.

  8. High-Throughput Sequencing Reveals Hypothalamic MicroRNAs as Novel Partners Involved in Timing the Rapid Development of Chicken (Gallus gallus) Gonads.

    Science.gov (United States)

    Han, Wei; Zou, Jianmin; Wang, Kehua; Su, Yijun; Zhu, Yunfen; Song, Chi; Li, Guohui; Qu, Liang; Zhang, Huiyong; Liu, Honglin

    2015-01-01

    Onset of the rapid gonad growth is a milestone in sexual development that comprises many genes and regulatory factors. The observations in model organisms and mammals including humans have shown a potential link between miRNAs and development timing. To determine whether miRNAs play roles in this process in the chicken (Gallus gallus), the Solexa deep sequencing was performed to analyze the profiles of miRNA expression in the hypothalamus of hens from two different pubertal stages, before onset of the rapid gonad development (BO) and after onset of the rapid gonad development (AO). 374 conserved and 46 novel miRNAs were identified as hypothalamus-expressed miRNAs in the chicken. 144 conserved miRNAs were showed to be differentially expressed (reads > 10, P time quantitative RT-PCR (qRT-PCR) method. 2013 putative genes were predicted as the targets of the 15 most differentially expressed miRNAs (fold-change > 4.0, P times by the miRNAs. qRT-PCR revealed the basic transcription levels of these clock genes were much higher (P development of chicken gonads. Considering the characteristics of miRNA functional conservation, the results will contribute to the research on puberty onset in humans.

  9. The effect of minimal concentration of ethylene glycol (EG) combined with polyvinylpyrrolidone (PVP) on mouse oocyte survival and subsequent embryonic development following vitrification.

    Science.gov (United States)

    Wang, Yao; Okitsu, Osamu; Zhao, Xiao-Ming; Sun, Yun; Di, Wen; Chian, Ri-Cheng

    2014-01-01

    Vitrification techniques employ a relatively high concentration of cryoprotectant in vitrification solutions. Exposure of oocytes to high concentrations of cryoprotectant is known to damage the oocytes via both cytotoxic and osmotic effects. Therefore, the key to successful vitrification of oocytes is to strike a balance between the usage of minimal concentration of cryoprotectant without compromising their cryoprotective actions. The minimal concentration of ethylene glycol (EG) on mouse oocyte survival and subsequent embryonic development was evaluated following vitrification-warming and parthenogenetic activation. Polyvinylpyrrolidone (PVP) combined with EG on mouse oocyte survival and subsequent embryonic development as well as morphology of the spindle and chromosome alignment were also evaluated. Vitrification system was adapted with JY Straw and the cooling rate was approximately 442-500 °C/min. In contrast, the warming rate was approximately 2,210-2,652 °C/min. Survival rate of oocytes increased significantly when 15 % EG was combined with 2 % PVP in vitrification solution (VS). The effect of combination of EG and PVP was not significant when the concentration of EG was 20 % and higher. Although there were no significant differences in embryonic development, the percentage of abnormal spindle and chromosome alignment was significantly higher in the oocytes without 2 % PVP in VS. Our data provide a proof of principle for oocyte vitrification that may not require a high concentration of cryoprotectant. There are synergic effects of EG combined with PVP for oocyte vitrification, which may provide important information to the field in developing less cytotoxic VS.

  10. The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens.

    Science.gov (United States)

    Antonissen, Gunther; Van Immerseel, Filip; Pasmans, Frank; Ducatelle, Richard; Haesebrouck, Freddy; Timbermont, Leen; Verlinden, Marc; Janssens, Geert Paul Jules; Eeckhaut, Venessa; Eeckhout, Mia; De Saeger, Sarah; Hessenberger, Sabine; Martel, An; Croubels, Siska

    2014-01-01

    Both mycotoxin contamination of feed and Clostridium perfringens-induced necrotic enteritis have an increasing global economic impact on poultry production. Especially the Fusarium mycotoxin deoxynivalenol (DON) is a common feed contaminant. This study aimed at examining the predisposing effect of DON on the development of necrotic enteritis in broiler chickens. An experimental Clostridium perfringens infection study revealed that DON, at a contamination level of 3,000 to 4,000 µg/kg feed, increased the percentage of birds with subclinical necrotic enteritis from 20±2.6% to 47±3.0% (Peffect on in vitro growth, alpha toxin production and netB toxin transcription of Clostridium perfringens. In conclusion, feed contamination with DON at concentrations below the European maximum guidance level of 5,000 µg/kg feed, is a predisposing factor for the development of necrotic enteritis in broilers. These results are associated with a negative effect of DON on the intestinal barrier function and increased intestinal protein availability, which may stimulate growth and toxin production of Clostridium perfringens.

  11. The Demethylase JMJD2C Localizes to H3K4me3 Positive Transcription Start Sites and Is Dispensable for Embryonic Development

    DEFF Research Database (Denmark)

    Pedersen, Marianne Terndrup; Agger, Karl; Laugesen, Anne

    2014-01-01

    cell (ESC) self-renewal and embryonic development. Moreover, we report that JMJD2C localizes to H3K4me3 positive transcription start sites in both primary cells and in the human carcinoma KYSE150 cell line, containing an amplification of the JMJD2C locus. Binding is dependent on the double Tudor domain...... expression of a subset of target genes involved in cell cycle progression. Taken together, we show that JMJD2C is targeted to H3K4me3 positive transcription start sites, where it can contribute to transcriptional regulation, and report that the putative oncogene, JMJD2C, is not generally required...

  12. Embryonic development and organogenesis in the snail Marisa cornuarietis (Mesogastropoda: Ampullariidae). V. Development of the nervous system.

    Science.gov (United States)

    Demian, E S; Yousif, F

    1975-01-01

    The nervous system is ectodermal in origin. All nerve ganglia arise separately by proliferation and later delamination from the ectoderm, not by invagination. They become secondarily connected to one another by commissures and connectives developing as extensions from the peripheral layer of ganglionic nerve cells. Rudiments of the cerebral, pedal, pleural and intestinal (parietal) ganglia arise almost simultaneously at a relatively early stage (Stage V). The cerebral ganglia develop from the ectoderm of the head plates. Rudiments of the pedal and pleural ganglia are separate at their inception. They later fuse (Stage VI) to form a pleuro-pedal ganglionic mass on each side. The 2 intestinal ganglia are symmetrical at the beginning, but they soon lose their symmetry as a result of torsion. The right ganglion crosses to the left over the gut and persists as the supraintestinal ganglion. The left or subintestinal ganglion shifts to the right and forward, and fuses with the right pleural ganglion (Stage VIII), thus obscuring the chiastoneury. The paired buccal and single visceral (abdominal) ganglia start differentiating in Stage VII. The former develop from the ectodermal wall of the stomodaeum, while the visceral ganglion delaminates from the right wall of the visceral sac, then shifts to the left during torsion. The statocysts develop early (Stage V) from 2 ectodermal invaginations on either side of the rudimentary foot. They later separate from the overlying ectoderm and statoconi appear in their lumina. Contrary to earlier reports on related ampullariids, the osphradium proved to be ontogenetically older than the mantle and mantle cavity. It starts differentiating as a thickened ectodermal plate in the right wall of the visceral sac (Stage V). During torsion, it becomes engulfed in the mantle cavity and shifts to the left side, then is carried forward as the mantlegrow. The eyes develop late (Stage IX) as ectodermal invaginations which rapidly separate from the

  13. 1,2-Dibromo-4-(1,2-dibromoethyl)-cyclohexane and tris(methylphenyl) phosphate cause significant effects on development, mRNA expression, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Egloff, Caroline; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-06-15

    1,2-Dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH; formerly abbreviated as TBECH) and tris(methylphenyl) phosphate (TMPP; formerly abbreviated as TCP) are additive flame retardants that are detected in the environment and biota. A recent avian in vitro screening study of 16 flame retardants identified DBE-DBCH and TMPP as important chemicals for follow-up in ovo evaluation based on their effects on cytotoxicity and mRNA expression in avian hepatocytes. In this study, technical mixtures of DBE-DBCH and TMPP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 54,900 ng/g and from 0 to 261,400 ng/g, respectively, to determine effects on pipping success, development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations. Both compounds were detectable in embryos at pipping and the β-DBE-DBCH isomer was depleted more rapidly than the α-isomer in tissue samples. DBE-DBCH had limited effects on the endpoints measured, with the exception of the up-regulation of two phase I metabolizing enzymes, CYP3A37 and CYP2H1. TMPP exposure caused embryonic deformities, altered growth, increased liver somatic index (LSI) and plasma bile acid concentrations, and altered mRNA expression levels of genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Overall, TMPP elicited more adverse molecular and phenotypic effects than DBE-DBCH albeit at concentrations several orders of magnitude greater than those detected in the environment. The increase in plasma bile acid concentrations was a useful phenotypic anchor as it was associated with a concomitant increase in LSI, discoloration of the liver tissue, and modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • DBE-DBCH and TMPP are not embryolethal to chicken embryos. • TMPP caused deformities, morphometric alterations, and increased plasma bile acids. • DBE-DBCH and TMPP altered mRNA levels

  14. Critical windows in embryonic development: Shifting incubation temperatures alter heart rate and oxygen consumption of Lake Whitefish (Coregonus clupeaformis) embryos and hatchlings.

    Science.gov (United States)

    Eme, J; Mueller, C A; Manzon, R G; Somers, C M; Boreham, D R; Wilson, J Y

    2015-01-01

    Critical windows are periods of developmental susceptibility when the phenotype of an embryonic, juvenile or adult animal may be vulnerable to environmental fluctuations. Temperature has pervasive effects on poikilotherm physiology, and embryos are especially vulnerable to temperature shifts. To identify critical windows, we incubated whitefish embryos at control temperatures of 2°C, 5°C, or 8°C, and shifted treatments among temperatures at the end of gastrulation or organogenesis. Heart rate (fH) and oxygen consumption ( [Formula: see text] ) were measured across embryonic development, and [Formula: see text] was measured in 1-day old hatchlings. Thermal shifts, up or down, from initial incubation temperatures caused persistent changes in fH and [Formula: see text] compared to control embryos measured at the same temperature (2°C, 5°C, or 8°C). Most prominently, when embryos were measured at organogenesis, shifting incubation temperature after gastrulation significantly lowered [Formula: see text] or fH. Incubation at 2°C or 5°C through gastrulation significantly lowered [Formula: see text] (42% decrease) and fH (20% decrease) at 8°C, incubation at 2°C significantly lowered [Formula: see text] (40% decrease) and fH (30% decrease) at 5°C, and incubation at 5°C and 8°C significantly lowered [Formula: see text] at 2°C (27% decrease). Through the latter half of development, [Formula: see text] and fH in embryos were not different from control values for thermally shifted treatments. However, in hatchlings measured at 2°C, [Formula: see text] was higher in groups incubated at 5°C or 8°C through organogenesis, compared to 2°C controls (43 or 65% increase, respectively). Collectively, these data suggest that embryonic development through organogenesis represents a critical window of embryonic and hatchling phenotypic plasticity. This study presents an experimental design that identified thermally sensitive periods for fish embryos. Crown Copyright

  15. The jejunal cellular responses in chickens infected with a single dose of Ascaridia galli eggs

    DEFF Research Database (Denmark)

    Luna Olivares, Luz Adilia; Kyvsgaard, Niels Christian; Ferdushy, Tania

    2015-01-01

    This histopathological study was carried out in order to investigate the cellular response in the jejunum to Ascaridia galli during the first 7 weeks of infection. Fourty-two ISA Brown chickens (7 weeks old) were infected orally with 500 embryonated A. galli eggs each while 28 chickens were left.......001), 28 (P layer. No adult worms were seen during the experiment; therefore...

  16. Effect of graded levels of rapeseed oil in isonitrogenous diets on the development of the gastrointestinal tract, and utilisation of protein, fat and energy in broiler chickens

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Zhao, Xin Quan; Theil, Peter Kappel

    2008-01-01

    The effect of feeding 0, 4, 8 and 16% rapeseed oil from 12-42 days of age was studied in broiler chickens on performance, digestibility of nutrients, and development of gastrointestinal tract, protein and energy metabolism. Thirty six female chickens (Ross 208) with initial body weight average 246...... periods each of five days with two 24 h measurements of gas exchange in two open-air-circuit respiration chambers inserted on the second and third day of each period. The addition of rapeseed oil increased the amount of gutfill indicating a reduced rate of passage and causing a hypertrophy...... of the gastrointestinal tract. There was a positive effect on feed utilisation as well as on digestibility especially of dietary fat together with higher utilisation of protein with addition of rapeseed oil. The partial fat digestibility of rapeseed oil estimated by regression was 91.1% and the partial metabolisability...

  17. SENSORY CHARACTERISTICS OF NATIVE CHICKEN QUEEN PINEAPPLE-CURED HAM

    OpenAIRE

    Dr. Lilibeth A. Roxas; Nikko A. Roxas

    2015-01-01

    The potential of Native Chicken to be processed into palatable ham was conducted making use of Queen Pineapple (QP) crude extract as one of the curing ingredients. Primarily, the main goal is to develop a protocol in the manufacture of processed native chicken ham and determine the organoleptic quality of native chicken ham product. The age of the bird and maturity of the fruit were considered for the best organoleptic quality of chicken ham. In this study, the combine injectio...

  18. Sensory characteristics and consumer preference for chicken meat in Guinea.

    Science.gov (United States)

    Sow, T M A; Grongnet, J F

    2010-10-01

    This study identified the sensory characteristics and consumer preference for chicken meat in Guinea. Five chicken samples [live village chicken, live broiler, live spent laying hen, ready-to-cook broiler, and ready-to-cook broiler (imported)] bought from different locations were assessed by 10 trained panelists using 19 sensory attributes. The ANOVA results showed that 3 chicken appearance attributes (brown, yellow, and white), 5 chicken odor attributes (oily, intense, medicine smell, roasted, and mouth persistent), 3 chicken flavor attributes (sweet, bitter, and astringent), and 8 chicken texture attributes (firm, tender, juicy, chew, smooth, springy, hard, and fibrous) were significantly discriminating between the chicken samples (Pchicken, the live spent laying hen, and the ready-to-cook broiler (imported) were very well represented and clearly distinguished from the live broiler and the ready-to-cook broiler. One hundred twenty consumers expressed their preferences for the chicken samples using a 5-point Likert scale. The hierarchical cluster analysis of the preference data identified 4 homogenous consumer clusters. The hierarchical cluster analysis results showed that the live village chicken was the most preferred chicken sample, whereas the ready-to-cook broiler was the least preferred one. The partial least squares regression (PLSR) type 1 showed that 72% of the sensory data for the first 2 principal components explained 83% of the chicken preference. The PLSR1 identified that the sensory characteristics juicy, oily, sweet, hard, mouth persistent, and yellow were the most relevant sensory drivers of the Guinean chicken preference. The PLSR2 (with multiple responses) identified the relationship between the chicken samples, their sensory attributes, and the consumer clusters. Our results showed that there was not a chicken category that was exclusively preferred from the other chicken samples and therefore highlight the existence of place for development of

  19. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo.

    Directory of Open Access Journals (Sweden)

    Gwenn-Aël Carré

    Full Text Available BACKGROUND: In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s involved in gonad differentiation is still incomplete. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of improving characterization of the molecular pathway(s involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. CONCLUSION/SIGNIFICANCE: This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors

  20. Gene Expression Profiling Reveals New Potential Players of Gonad Differentiation in the Chicken Embryo

    Science.gov (United States)

    Carré, Gwenn-Aël; Couty, Isabelle; Hennequet-Antier, Christelle; Govoroun, Marina S.

    2011-01-01

    Background In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s) involved in gonad differentiation is still incomplete. Methodology/Principal Findings With the aim of improving characterization of the molecular pathway(s) involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein) and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. Conclusion/Significance This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors of chicken gonad

  1. Identification of a spatially specific enhancer element in the chicken Msx-2 gene that regulates its expression in the apical ectodermal ridge of the developing limb buds of transgenic mice.

    Science.gov (United States)

    Sumoy, L; Wang, C K; Lichtler, A C; Pierro, L J; Kosher, R A; Upholt, W B

    1995-07-01

    Msx-2 is a member of the Msx family of homeobox-containing genes expressed in a variety of embryonic tissues involved in epithelial-mesenchymal interactions and pattern formation. In the developing chick limb bud, Msx-2 is expressed in the apical ectodermal ridge, which plays a crucial role in directing the growth and patterning of limb mesoderm. In addition, Msx-2 is expressed in the anterior nonskeletal-forming mesoderm of the limb bud, in the posterior necrotic zone, and in the interdigital mesenchyme. Studies of the altered expression patterns of Msx-2 in amelic and polydactylous mutant chick limbs have suggested that the apical ectodermal ridge and mesodermal domains of Msx-2 expression are independently regulated and that there might be separate cis-regulatory elements in the Msx-2 gene controlling its spatially distinct domains of expression. To test this hypothesis, we have isolated the chicken Msx-2 gene and have tested the ability of various regions of the gene to target expression of LacZ reporter gene to specific regions of the limbs of transgenic mice. A variety of these constructs are consistently expressed only in the apical ectodermal ridge and the ectoderm of the genital tubercle and are not expressed in the mesoderm of the limb bud or in other regions of the embryo where the endogenous Msx-2 gene is expressed. These results suggest the presence of spatially specific cis-regulatory elements in the Msx-2 gene. We identified a 348-bp region in the 5' flanking region of the Msx-2 gene which can act as an apical ectodermal ridge enhancer element when placed in reverse orientation in front of the reporter gene with transcription initiation directed by the minimal hsp68 promoter.

  2. Effects of Short-Term Presalting and Salt Level o