WorldWideScience

Sample records for chi-7913 comparative sequence

  1. Sequencing and comparing whole mitochondrial genomes ofanimals

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  2. A comparative evaluation of sequence classification programs

    Directory of Open Access Journals (Sweden)

    Bazinet Adam L

    2012-05-01

    Full Text Available Abstract Background A fundamental problem in modern genomics is to taxonomically or functionally classify DNA sequence fragments derived from environmental sampling (i.e., metagenomics. Several different methods have been proposed for doing this effectively and efficiently, and many have been implemented in software. In addition to varying their basic algorithmic approach to classification, some methods screen sequence reads for ’barcoding genes’ like 16S rRNA, or various types of protein-coding genes. Due to the sheer number and complexity of methods, it can be difficult for a researcher to choose one that is well-suited for a particular analysis. Results We divided the very large number of programs that have been released in recent years for solving the sequence classification problem into three main categories based on the general algorithm they use to compare a query sequence against a database of sequences. We also evaluated the performance of the leading programs in each category on data sets whose taxonomic and functional composition is known. Conclusions We found significant variability in classification accuracy, precision, and resource consumption of sequence classification programs when used to analyze various metagenomics data sets. However, we observe some general trends and patterns that will be useful to researchers who use sequence classification programs.

  3. Supplementary data: Comparative studies on sequence ...

    Indian Academy of Sciences (India)

    Unknown

    Page 1. Supplementary data: Comparative studies on sequence characteristics around translation initiation codon in four eukaryotes. Qingpo Liu and Qingzhong Xue. J. Genet. 84, 317–322. Table 1. Spearman's rank correlation coefficients of 39 base positions around the AUG codon in the four eukaryotic species studied.

  4. Comparative analysis of sequences from PT 2013

    DEFF Research Database (Denmark)

    Mikkelsen, Susie Sommer

    Sheatfish and not EHNV. Generally, mistakes occurred at the ends of the sequences. This can be due to several factors. One is that the sequence has not been trimmed of the sequence primer sites. Another is the lack of quality control of the chromatogram. Finally, sequencing in just one direction can result...... diseases in Europe. As part of the EURL proficiency test for fish diseases it is required to sequence any RANA virus isolates found in any of the samples. It is also highly recommended to sequence the ISA virus to determine whether it be HPRΔ or HPR0. Furthermore, it is recommended that any VHSV and IHNV...... isolates be genotyped. As part of the evaluation of the proficiency results it was decided this year to look into the quality and similarity of the sequence results for selected viruses. Ampoule III in the proficiency test 2013 contained an EHNV isolate. The EURL received 43 sequences from 41 laboratories...

  5. Comparative genomics beyond sequence-based alignments

    DEFF Research Database (Denmark)

    Þórarinsson, Elfar; Yao, Zizhen; Wiklund, Eric D.

    2008-01-01

    Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple sequence alignments. However, as sequence similarity drops, a key signal of RNA structure--frequent compensating base changes--is increasingly likely to cause sequence-based alignment me...

  6. An evaluation of Comparative Genome Sequencing (CGS by comparing two previously-sequenced bacterial genomes

    Directory of Open Access Journals (Sweden)

    Herring Christopher D

    2007-08-01

    Full Text Available Abstract Background With the development of new technology, it has recently become practical to resequence the genome of a bacterium after experimental manipulation. It is critical though to know the accuracy of the technique used, and to establish confidence that all of the mutations were detected. Results In order to evaluate the accuracy of genome resequencing using the microarray-based Comparative Genome Sequencing service provided by Nimblegen Systems Inc., we resequenced the E. coli strain W3110 Kohara using MG1655 as a reference, both of which have been completely sequenced using traditional sequencing methods. CGS detected 7 of 8 small sequence differences, one large deletion, and 9 of 12 IS element insertions present in W3110, but did not detect a large chromosomal inversion. In addition, we confirmed that CGS also detected 2 SNPs, one deletion and 7 IS element insertions that are not present in the genome sequence, which we attribute to changes that occurred after the creation of the W3110 lambda clone library. The false positive rate for SNPs was one per 244 Kb of genome sequence. Conclusion CGS is an effective way to detect multiple mutations present in one bacterium relative to another, and while highly cost-effective, is prone to certain errors. Mutations occurring in repeated sequences or in sequences with a high degree of secondary structure may go undetected. It is also critical to follow up on regions of interest in which SNPs were not called because they often indicate deletions or IS element insertions.

  7. Comparative sequence analyses of genome and transcriptome ...

    Indian Academy of Sciences (India)

    2015-12-04

    Dec 4, 2015 ... 2011), unique vocal communication. (Payne 2003; Nair et al. ... induction of apoptosis when compared to human cells. In this study, we have .... based on calculated Pearson correlation and displayed based on centroid of the ...

  8. Establishing a framework for comparative analysis of genome sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, A.K.

    1995-06-01

    This paper describes a framework and a high-level language toolkit for comparative analysis of genome sequence alignment The framework integrates the information derived from multiple sequence alignment and phylogenetic tree (hypothetical tree of evolution) to derive new properties about sequences. Multiple sequence alignments are treated as an abstract data type. Abstract operations have been described to manipulate a multiple sequence alignment and to derive mutation related information from a phylogenetic tree by superimposing parsimonious analysis. The framework has been applied on protein alignments to derive constrained columns (in a multiple sequence alignment) that exhibit evolutionary pressure to preserve a common property in a column despite mutation. A Prolog toolkit based on the framework has been implemented and demonstrated on alignments containing 3000 sequences and 3904 columns.

  9. Swallow Event Sequencing: Comparing Healthy Older and Younger Adults.

    Science.gov (United States)

    Herzberg, Erica G; Lazarus, Cathy L; Steele, Catriona M; Molfenter, Sonja M

    2018-04-23

    Previous research has established that a great deal of variation exists in the temporal sequence of swallowing events for healthy adults. Yet, the impact of aging on swallow event sequence is not well understood. Kendall et al. (Dysphagia 18(2):85-91, 2003) suggested there are 4 obligatory paired-event sequences in swallowing. We directly compared adherence to these sequences, as well as event latencies, and quantified the percentage of unique sequences in two samples of healthy adults: young ( 65). The 8 swallowing events that contribute to the sequences were reliably identified from videofluoroscopy in a sample of 23 healthy seniors (10 male, mean age 74.7) and 20 healthy young adults (10 male, mean age 31.5) with no evidence of penetration-aspiration or post-swallow residue. Chi-square analyses compared the proportions of obligatory pairs and unique sequences by age group. Compared to the older subjects, younger subjects had significantly lower adherence to two obligatory sequences: Upper Esophageal Sphincter (UES) opening occurs before (or simultaneous with) the bolus arriving at the UES and UES maximum distention occurs before maximum pharyngeal constriction. The associated latencies were significantly different between age groups as well. Further, significantly fewer unique swallow sequences were observed in the older group (61%) compared with the young (82%) (χ 2  = 31.8; p < 0.001). Our findings suggest that paired swallow event sequences may not be robust across the age continuum and that variation in swallow sequences appears to decrease with aging. These findings provide normative references for comparisons to older individuals with dysphagia.

  10. eShadow: A tool for comparing closely related sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.

    2004-01-15

    Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualization of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/

  11. Determining and comparing protein function in Bacterial genome sequences

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla

    of this class have very little homology to other known genomes making functional annotation based on sequence similarity very difficult. Inspired in part by this analysis, an approach for comparative functional annotation was created based public sequenced genomes, CMGfunc. Functionally related groups......In November 2013, there was around 21.000 different prokaryotic genomes sequenced and publicly available, and the number is growing daily with another 20.000 or more genomes expected to be sequenced and deposited by the end of 2014. An important part of the analysis of this data is the functional...... annotation of genes – the descriptions assigned to genes that describe the likely function of the encoded proteins. This process is limited by several factors, including the definition of a function which can be more or less specific as well as how many genes can actually be assigned a function based...

  12. Comparative effectiveness of inter-simple sequence repeat and ...

    African Journals Online (AJOL)

    A study to compare the effectiveness of inter-simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD) profiling was carried out with a total of 65 DNA samples using 12 species of Indian Garcinia. ISSR and RAPD profiling were performed with 19 and 12 primers, respectively. ISSR markers ...

  13. CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline

    OpenAIRE

    Agrawal, Sonia; Arze, Cesar; Adkins, Ricky S.; Crabtree, Jonathan; Riley, David; Vangala, Mahesh; Galens, Kevin; Fraser, Claire M.; Tettelin, Herv?; White, Owen; Angiuoli, Samuel V.; Mahurkar, Anup; Fricke, W. Florian

    2017-01-01

    Background The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. Results CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. ...

  14. Statistical method to compare massive parallel sequencing pipelines.

    Science.gov (United States)

    Elsensohn, M H; Leblay, N; Dimassi, S; Campan-Fournier, A; Labalme, A; Roucher-Boulez, F; Sanlaville, D; Lesca, G; Bardel, C; Roy, P

    2017-03-01

    Today, sequencing is frequently carried out by Massive Parallel Sequencing (MPS) that cuts drastically sequencing time and expenses. Nevertheless, Sanger sequencing remains the main validation method to confirm the presence of variants. The analysis of MPS data involves the development of several bioinformatic tools, academic or commercial. We present here a statistical method to compare MPS pipelines and test it in a comparison between an academic (BWA-GATK) and a commercial pipeline (TMAP-NextGENe®), with and without reference to a gold standard (here, Sanger sequencing), on a panel of 41 genes in 43 epileptic patients. This method used the number of variants to fit log-linear models for pairwise agreements between pipelines. To assess the heterogeneity of the margins and the odds ratios of agreement, four log-linear models were used: a full model, a homogeneous-margin model, a model with single odds ratio for all patients, and a model with single intercept. Then a log-linear mixed model was fitted considering the biological variability as a random effect. Among the 390,339 base-pairs sequenced, TMAP-NextGENe® and BWA-GATK found, on average, 2253.49 and 1857.14 variants (single nucleotide variants and indels), respectively. Against the gold standard, the pipelines had similar sensitivities (63.47% vs. 63.42%) and close but significantly different specificities (99.57% vs. 99.65%; p < 0.001). Same-trend results were obtained when only single nucleotide variants were considered (99.98% specificity and 76.81% sensitivity for both pipelines). The method allows thus pipeline comparison and selection. It is generalizable to all types of MPS data and all pipelines.

  15. Low-pass sequencing for microbial comparative genomics

    Directory of Open Access Journals (Sweden)

    Kennedy Sean

    2004-01-01

    Full Text Available Abstract Background We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1 the metabolically versatile Haloarcula marismortui; (2 the non-pigmented Natrialba asiatica; (3 the psychrophile Halorubrum lacusprofundi and (4 the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe. Results As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI for their predicted proteins. Multiple insertion sequence (IS elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP and transcription factor IIB (TFB homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi. Conclusion Despite the diverse habitats of these species, all five halophiles share (1 high GC content and (2 low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the

  16. CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline.

    Science.gov (United States)

    Agrawal, Sonia; Arze, Cesar; Adkins, Ricky S; Crabtree, Jonathan; Riley, David; Vangala, Mahesh; Galens, Kevin; Fraser, Claire M; Tettelin, Hervé; White, Owen; Angiuoli, Samuel V; Mahurkar, Anup; Fricke, W Florian

    2017-04-27

    The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. CloVR-Comparative runs reference-free multiple whole-genome alignments to determine unique, shared and core coding sequences (CDSs) and single nucleotide polymorphisms (SNPs). Output includes short summary reports and detailed text-based results files, graphical visualizations (phylogenetic trees, circular figures), and a database file linked to the Sybil comparative genome browser. Data up- and download, pipeline configuration and monitoring, and access to Sybil are managed through CloVR-Comparative web interface. CloVR-Comparative and Sybil are distributed as part of the CloVR virtual appliance, which runs on local computers or the Amazon EC2 cloud. Representative datasets (e.g. 40 draft and complete Escherichia coli genomes) are processed in genomics projects, while eliminating the need for on-site computational resources and expertise.

  17. Next generation sequencing and comparative analyses of Xenopus mitogenomes

    Directory of Open Access Journals (Sweden)

    Lloyd Rhiannon E

    2012-09-01

    Full Text Available Abstract Background Mitochondrial genomes comprise a small but critical component of the total DNA in eukaryotic organisms. They encode several key proteins for the cell’s major energy producing apparatus, the mitochondrial respiratory chain. Additonally, their nucleotide and amino acid sequences are of great utility as markers for systematics, molecular ecology and forensics. Their characterization through nucleotide sequencing is a fundamental starting point in mitogenomics. Methods to amplify complete mitochondrial genomes rapidly and efficiently from microgram quantities of tissue of single individuals are, however, not always available. Here we validate two approaches, which combine long-PCR with Roche 454 pyrosequencing technology, to obtain two complete mitochondrial genomes from individual amphibian species. Results We obtained two new xenopus frogs (Xenopus borealis and X. victorianus complete mitochondrial genome sequences by means of long-PCR followed by 454 of individual genomes (approach 1 or of multiple pooled genomes (approach 2, the mean depth of coverage per nucleotide was 9823 and 186, respectively. We also characterised and compared the new mitogenomes against their sister taxa; X. laevis and Silurana tropicalis, two of the most intensely studied amphibians. Our results demonstrate how our approaches can be used to obtain complete amphibian mitogenomes with depths of coverage that far surpass traditional primer-walking strategies, at either the same cost or less. Our results also demonstrate: that the size, gene content and order are the same among xenopus mitogenomes and that S. tropicalis form a separate clade to the other xenopus, among which X. laevis and X. victorianus were most closely related. Nucleotide and amino acid diversity was found to vary across the xenopus mitogenomes, with the greatest diversity observed in the Complex 1 gene nad4l and the least diversity observed in Complex 4 genes (cox1-3. All protein

  18. Expression profiling and comparative sequence derived insights into lipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Callow, Matthew J.; Rubin, Edward M.

    2001-12-19

    Expression profiling and genomic DNA sequence comparisons are increasingly being applied to the identification and analysis of the genes involved in lipid metabolism. Not only has genome-wide expression profiling aided in the identification of novel genes involved in important processes in lipid metabolism such as sterol efflux, but the utilization of information from these studies has added to our understanding of the regulation of pathways participating in the process. Coupled with these gene expression studies, cross species comparison, searching for sequences conserved through evolution, has proven to be a powerful tool to identify important non-coding regulatory sequences as well as the discovery of novel genes relevant to lipid biology. An example of the value of this approach was the recent chance discovery of a new apolipoprotein gene (apo AV) that has dramatic effects upon triglyceride metabolism in mice and humans.

  19. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Science.gov (United States)

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  20. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Directory of Open Access Journals (Sweden)

    Nathan D. Olson

    2015-03-01

    Full Text Available This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1 identity of biologically conserved position, (2 ratio of 16S rRNA gene copies featuring identified variants, and (3 the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies.

  1. Sequence and comparative analysis of Leuconostoc dairy bacteriophages

    DEFF Research Database (Denmark)

    Kot, Witold; Hansen, Lars Henrik; Neve, Horst

    2014-01-01

    Bacteriophages attacking Leuconostoc species may significantly influence the quality of the final product. There is however limited knowledge of this group of phages in the literature. We have determined the complete genome sequences of nine Leuconostoc bacteriophages virulent to either Leuconostoc...

  2. Binocular video ophthalmoscope for simultaneous recording of sequences of the human retina to compare dynamic parameters

    Science.gov (United States)

    Tornow, Ralf P.; Milczarek, Aleksandra; Odstrcilik, Jan; Kolar, Radim

    2017-07-01

    A parallel video ophthalmoscope was developed to acquire short video sequences (25 fps, 250 frames) of both eyes simultaneously with exact synchronization. Video sequences were registered off-line to compensate for eye movements. From registered video sequences dynamic parameters like cardiac cycle induced reflection changes and eye movements can be calculated and compared between eyes.

  3. Comparative performance of the BGISEQ-500 versus Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing

    DEFF Research Database (Denmark)

    Mak, Sarah Siu Tze Mak; Gopalakrishnan, Shyam Sunder; Carøe, Christian

    2017-01-01

    on degraded DNA, then directly compared the sequencing performance and data quality of the BGISEQ-500 to the Illumina HiSeq2500 platform, on DNA extracted from eight historic and ancient dog and wolf samples. Results: The data generated was largely comparable between sequencing platforms...... difference was also observed in the mitochondrial DNA percentages recovered (p = 0.018), although we believe this is likely a stochastic effect relating to the extremely low levels of mitochondria that were sequenced from three of the samples with overall very low levels of endogenous DNA. Conclusions......: Although we acknowledge our analyses were limited to animal material, our observations suggest that the BGISEQ-500 holds the potential to represent valid and potentially valuable alternative platform for palaeogenomic data generation, that is worthy of future exploration by those interested...

  4. Optimal choice of word length when comparing two Markov sequences using a χ 2-statistic.

    Science.gov (United States)

    Bai, Xin; Tang, Kujin; Ren, Jie; Waterman, Michael; Sun, Fengzhu

    2017-10-03

    Alignment-free sequence comparison using counts of word patterns (grams, k-tuples) has become an active research topic due to the large amount of sequence data from the new sequencing technologies. Genome sequences are frequently modelled by Markov chains and the likelihood ratio test or the corresponding approximate χ 2 -statistic has been suggested to compare two sequences. However, it is not known how to best choose the word length k in such studies. We develop an optimal strategy to choose k by maximizing the statistical power of detecting differences between two sequences. Let the orders of the Markov chains for the two sequences be r 1 and r 2 , respectively. We show through both simulations and theoretical studies that the optimal k= max(r 1 ,r 2 )+1 for both long sequences and next generation sequencing (NGS) read data. The orders of the Markov chains may be unknown and several methods have been developed to estimate the orders of Markov chains based on both long sequences and NGS reads. We study the power loss of the statistics when the estimated orders are used. It is shown that the power loss is minimal for some of the estimators of the orders of Markov chains. Our studies provide guidelines on choosing the optimal word length for the comparison of Markov sequences.

  5. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    DEFF Research Database (Denmark)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.

    2005-01-01

    years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences......We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each...... between the species-but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence...

  6. Intestinal lesions in pediatric Crohn disease: comparative detectability among pulse sequences at MR enterography

    International Nuclear Information System (INIS)

    Sohn, Beomseok; Kim, Myung-Joon; Lee, Mi-Jung; Koh, Hong; Han, Kyung Hwa

    2014-01-01

    Variable sequences can be used in MR enterography, and no consensus exists for the best protocol in children with Crohn disease. To compare the lesion detectability of various MR enterography sequences and to correlate the findings of these sequences with the Pediatric Crohn's Disease Activity Index (PCDAI) in children with Crohn disease. Children with clinically or pathologically confirmed Crohn disease underwent MR enterography, including a single-shot fast spin-echo (SSFSE) sequence, motility imaging (coronal 2-D balanced fast field echo), diffusion-weighted imaging (DWI), and dynamic contrast enhancement imaging (including arterial, portal and delayed phases). The lesion detectability of each sequence was graded 0-2 for each involved bowel segment. The lesion detectability and PCDAI result on different sequences were compared using the weighted least squares method and Student's t-test, respectively. Fifteen children (11 boys, 4 girls, mean age 13.7 ± 1.4 years) with a total of 41 lesions were included in this study. All lesions detected in more than two sequences were visible on the single-shot fast spin-echo (SSFSE) sequence. The relative lesion detection rate was 78.1% on motility imaging, 90.2% on DWI, and 92.7% on arterial, 95.1% on portal and 95.1% on delayed phase imaging. Compared to the SSFSE sequence, motility imaging (P < 0.001) and DWI (P = 0.039) demonstrated lower detectability. The mean PCDAI result in the detected lesions was statistically higher only on dynamic enhancement imaging (P < 0.001). All MR enterography sequences were found to have relatively high lesion detectability in children with Crohn disease, while motility imaging showed the lowest lesion detectability. Lesions detected on dynamic enhancement imaging showed a higher PCDAI result, which suggests that this sequence is specific for active inflammation. (orig.)

  7. Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii genome.

    Directory of Open Access Journals (Sweden)

    Byrappa Venkatesh

    2007-04-01

    Full Text Available Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4x coverage and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element-like and long interspersed element-like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes.

  8. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation.

    Science.gov (United States)

    Nowrousian, Minou; Würtz, Christian; Pöggeler, Stefanie; Kück, Ulrich

    2004-03-01

    One of the most challenging parts of large scale sequencing projects is the identification of functional elements encoded in a genome. Recently, studies of genomes of up to six different Saccharomyces species have demonstrated that a comparative analysis of genome sequences from closely related species is a powerful approach to identify open reading frames and other functional regions within genomes [Science 301 (2003) 71, Nature 423 (2003) 241]. Here, we present a comparison of selected sequences from Sordaria macrospora to their corresponding Neurospora crassa orthologous regions. Our analysis indicates that due to the high degree of sequence similarity and conservation of overall genomic organization, S. macrospora sequence information can be used to simplify the annotation of the N. crassa genome.

  9. Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis

    International Nuclear Information System (INIS)

    Pinto Gama, Hugo Pereira; Campos Meirelles, Rogerio Goncalves de; Mendonca do Rego, Jose Iram; Rocha, Antonio Jose da; Silva, Carlos Jorge da; Braga, Flavio Tulio; Martins Maia, Antonio Carlos; Lederman, Henrique Manoel

    2006-01-01

    Tuberous sclerosis (TS) is a neurocutaneous genetically inherited disease with variable penetrance characterized by dysplasias and hamartomas affecting multiple organs. MR is the imaging method of choice to demonstrate structural brain lesions in TS. To compare MR sequences and determine which is most useful for the demonstration of each type of brain lesion in TS patients. We reviewed MR scans of 18 TS patients for the presence of cortical tubers, white matter lesions (radial bands), subependymal nodules, and subependymal giant cell astrocytoma (SGCA) on the following sequences: (1) T1-weighted spin-echo (T1 SE) images before and after gadolinium (Gd) injection; (2) nonenhanced T1 SE sequence with an additional magnetization transfer contrast medium pulse on resonance (T1 SE/MTC); and (3) fluid-attenuated inversion recovery (FLAIR) sequence. Cortical tubers were found in significantly (P<0.05) larger numbers and more conspicuously in FLAIR and T1 SE/MTC sequences. The T1 SE/MTC sequence was far superior to other methods in detecting white matter lesions (P<0.01). There was no significant difference between the T1 SE/MTC and T1 SE (before and after Gd injection) sequences in the detection of subependymal nodules; FLAIR sequence showed less sensitivity than the others in identifying the nodules. T1 SE sequences after Gd injection demonstrated better the limits of the SGCA. We demonstrated the importance of appropriate MRI sequences for diagnosis of the most frequent brain lesions in TS. Our study reinforces the fact that each sequence has a particular application according to the type of TS lesion. Gd injection might be useful in detecting SGCA; however, the parameters of size and location are also important for a presumptive diagnosis of these tumors. (orig.)

  10. Post-contrast T1-weighted sequences in pediatric abdominal imaging: comparative analysis of three different sequences and imaging approach

    Energy Technology Data Exchange (ETDEWEB)

    Roque, Andreia; Ramalho, Miguel; AlObaidy, Mamdoh; Heredia, Vasco; Burke, Lauren M.; De Campos, Rafael O.P.; Semelka, Richard C. [University of North Carolina at Chapel Hill, Department of Radiology, Chapel Hill, NC (United States)

    2014-10-15

    Post-contrast T1-weighted imaging is an essential component of a comprehensive pediatric abdominopelvic MR examination. However, consistent good image quality is challenging, as respiratory motion in sedated children can substantially degrade the image quality. To compare the image quality of three different post-contrast T1-weighted imaging techniques - standard three-dimensional gradient-echo (3-D-GRE), magnetization-prepared gradient-recall echo (MP-GRE) and 3-D-GRE with radial data sampling (radial 3-D-GRE) - acquired in pediatric patients younger than 5 years of age. Sixty consecutive exams performed in 51 patients (23 females, 28 males; mean age 2.5 ± 1.4 years) constituted the final study population. Thirty-nine scans were performed at 3 T and 21 scans were performed at 1.5 T. Two different reviewers independently and blindly qualitatively evaluated all sequences to determine image quality and extent of artifacts. MP-GRE and radial 3-D-GRE sequences had the least respiratory motion (P < 0.0001). Standard 3-D-GRE sequences displayed the lowest average score ratings in hepatic and pancreatic edge definition, hepatic vessel clarity and overall image quality. Radial 3-D-GRE sequences showed the highest scores ratings in overall image quality. Our preliminary results support the preference of fat-suppressed radial 3-D-GRE as the best post-contrast T1-weighted imaging approach for patients under the age of 5 years, when dynamic imaging is not essential. (orig.)

  11. Comparative analysis of myostatin gene and promoter sequences of Qinchuan and Red Angus cattle.

    Science.gov (United States)

    He, Y L; Wu, Y H; Quan, F S; Liu, Y G; Zhang, Y

    2013-09-04

    To better understand the function of the myostatin gene and its promoter region in bovine, we amplified and sequenced the myostatin gene and promoter from the blood of Qinchuan and Red Angus cattle by using polymerase chain reaction. The sequences of Qinchuan and Red Angus cattle were compared with those of other cattle breeds available in GenBank. Exon splice sites were confirmed by mRNA sequencing. Compared to the published sequence (GenBank accession No. AF320998), 69 single nucleotide polymorphisms (SNPs) were identified in the Qinchuan myostatin gene, only one of which was an insertion mutation in Qinchuan cattle. There was a 16-bp insertion in the first 705-bp intron in 3 Qinchuan cattle. A total of 7 SNPs were identified in exon 3, in which the mutation occurred in the third base of the codon and was synonymous. On comparing the Qinchuan myostatin gene sequence to that of Red Angus cattle, a total of 50 SNPs were identified in the first and third exons. In addition, there were 18 SNPs identified in the Qinchuan cattle promoter region compared with those of other cattle compared to the Red Angus cattle myostatin promoter region. breeds (GenBank accession No. AF348479), but only 14 SNPs when compared to the Red Angus cattle myostatin promoter region.

  12. A comparative analysis of double inversion recovery TFE and TSE sequences on carotid artery wall imaging

    International Nuclear Information System (INIS)

    Chen Jun; Di Yujin; Bu Chunqing; Zhang Yanfeng; Li Shuhua

    2012-01-01

    Objective: To analyze the characteristics of double inversion recovery (DIR) turbo field echo (TFE) and turbo spin echo (TSE) sequences and explore the value of double inversion recovery TFE sequence on carotid artery wall imaging. Patients and methods: 56 patients (32 males and 24 females, aged 31–76 years with a mean age of 53 years) were performed with DIR TFE and DIR TSE T1 weighted imaging (T1WI) sequences on carotid artery bifurcations. Image quality acquired by different techniques were evaluated and scored by two physicians. Whether there is significant difference is determined by SPSS 11.0 software. Paired-samples t test was used for statistics. Results: There was no significant difference in the image quality scores between two sequences (t = 0.880, P = 0.383 > 0.05). Conclusions: DIR TFE sequence has short scanning time and high spatial resolution. DIR TFE sequence can be used as the preferred sequence for screening carotid atherosclerotic plaque compared with DIR TSE sequence.

  13. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    Science.gov (United States)

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca ovina). Total cellular DNA was extracted from either roots or leaves, was sequenced, and the output was filtered for plastome-related reads. A comparison between sources revealed fewer plastome-related reads from root-derived template but an increase in incidental bacterium-derived sequences. Plastome assembly and annotation indicated high levels of sequence identity and a conserved organization and gene content between species. However, frequent deletions within the F. ovina plastome appeared to contribute to a smaller plastid genome size. Comparative analysis with complete plastome sequences from other members of the Poaceae confirmed conservation of most grass-specific features. Detailed analysis of the rbcL–psaI intergenic region, however, revealed a “hot-spot” of variation characterized by independent deletion events. The evolutionary implications of this observation are discussed. The complete plastome sequences are anticipated to provide the basis for potential organelle-specific genetic modification of pasture grasses. PMID:23550121

  14. Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae).

    Science.gov (United States)

    Walker, Joseph F; Zanis, Michael J; Emery, Nancy C

    2014-04-01

    Complete chloroplast genome studies can help resolve relationships among large, complex plant lineages such as Asteraceae. We present the first whole plastome from the Madieae tribe and compare its sequence variation to other chloroplast genomes in Asteraceae. We used high throughput sequencing to obtain the Lasthenia burkei chloroplast genome. We compared sequence structure and rates of molecular evolution in the small single copy (SSC), large single copy (LSC), and inverted repeat (IR) regions to those for eight Asteraceae accessions and one Solanaceae accession. The chloroplast sequence of L. burkei is 150 746 bp and contains 81 unique protein coding genes and 4 coding ribosomal RNA sequences. We identified three major inversions in the L. burkei chloroplast, all of which have been found in other Asteraceae lineages, and a previously unreported inversion in Lactuca sativa. Regions flanking inversions contained tRNA sequences, but did not have particularly high G + C content. Substitution rates varied among the SSC, LSC, and IR regions, and rates of evolution within each region varied among species. Some observed differences in rates of molecular evolution may be explained by the relative proportion of coding to noncoding sequence within regions. Rates of molecular evolution vary substantially within and among chloroplast genomes, and major inversion events may be promoted by the presence of tRNAs. Collectively, these results provide insight into different mechanisms that may promote intramolecular recombination and the inversion of large genomic regions in the plastome.

  15. Comparative analysis of catfish BAC end sequences with the zebrafish genome

    Directory of Open Access Journals (Sweden)

    Abernathy Jason

    2009-12-01

    Full Text Available Abstract Background Comparative mapping is a powerful tool to transfer genomic information from sequenced genomes to closely related species for which whole genome sequence data are not yet available. However, such an approach is still very limited in catfish, the most important aquaculture species in the United States. This project was initiated to generate additional BAC end sequences and demonstrate their applications in comparative mapping in catfish. Results We reported the generation of 43,000 BAC end sequences and their applications for comparative genome analysis in catfish. Using these and the additional 20,000 existing BAC end sequences as a resource along with linkage mapping and existing physical map, conserved syntenic regions were identified between the catfish and zebrafish genomes. A total of 10,943 catfish BAC end sequences (17.3% had significant BLAST hits to the zebrafish genome (cutoff value ≤ e-5, of which 3,221 were unique gene hits, providing a platform for comparative mapping based on locations of these genes in catfish and zebrafish. Genetic linkage mapping of microsatellites associated with contigs allowed identification of large conserved genomic segments and construction of super scaffolds. Conclusion BAC end sequences and their associated polymorphic markers are great resources for comparative genome analysis in catfish. Highly conserved chromosomal regions were identified to exist between catfish and zebrafish. However, it appears that the level of conservation at local genomic regions are high while a high level of chromosomal shuffling and rearrangements exist between catfish and zebrafish genomes. Orthologous regions established through comparative analysis should facilitate both structural and functional genome analysis in catfish.

  16. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    OpenAIRE

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca...

  17. Comparing methods of classifying life courses: Sequence analysis and latent class analysis

    NARCIS (Netherlands)

    Elzinga, C.H.; Liefbroer, Aart C.; Han, Sapphire

    2017-01-01

    We compare life course typology solutions generated by sequence analysis (SA) and latent class analysis (LCA). First, we construct an analytic protocol to arrive at typology solutions for both methodologies and present methods to compare the empirical quality of alternative typologies. We apply this

  18. Comparing methods of classifying life courses: sequence analysis and latent class analysis

    NARCIS (Netherlands)

    Han, Y.; Liefbroer, A.C.; Elzinga, C.

    2017-01-01

    We compare life course typology solutions generated by sequence analysis (SA) and latent class analysis (LCA). First, we construct an analytic protocol to arrive at typology solutions for both methodologies and present methods to compare the empirical quality of alternative typologies. We apply this

  19. Characterization of Liaoning cashmere goat transcriptome: sequencing, de novo assembly, functional annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    Full Text Available Liaoning cashmere goat is a famous goat breed for cashmere wool. In order to increase the transcriptome data and accelerate genetic improvement for this breed, we performed de novo transcriptome sequencing to generate the first expressed sequence tag dataset for the Liaoning cashmere goat, using next-generation sequencing technology.Transcriptome sequencing of Liaoning cashmere goat on a Roche 454 platform yielded 804,601 high-quality reads. Clustering and assembly of these reads produced a non-redundant set of 117,854 unigenes, comprising 13,194 isotigs and 104,660 singletons. Based on similarity searches with known proteins, 17,356 unigenes were assigned to 6,700 GO categories, and the terms were summarized into three main GO categories and 59 sub-categories. 3,548 and 46,778 unigenes had significant similarity to existing sequences in the KEGG and COG databases, respectively. Comparative analysis revealed that 42,254 unigenes were aligned to 17,532 different sequences in NCBI non-redundant nucleotide databases. 97,236 (82.51% unigenes were mapped to the 30 goat chromosomes. 35,551 (30.17% unigenes were matched to 11,438 reported goat protein-coding genes. The remaining non-matched unigenes were further compared with cattle and human reference genes, 67 putative new goat genes were discovered. Additionally, 2,781 potential simple sequence repeats were initially identified from all unigenes.The transcriptome of Liaoning cashmere goat was deep sequenced, de novo assembled, and annotated, providing abundant data to better understand the Liaoning cashmere goat transcriptome. The potential simple sequence repeats provide a material basis for future genetic linkage and quantitative trait loci analyses.

  20. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  1. Comparative analysis of the prion protein gene sequences in African lion.

    Science.gov (United States)

    Wu, Chang-De; Pang, Wan-Yong; Zhao, De-Ming

    2006-10-01

    The prion protein gene of African lion (Panthera Leo) was first cloned and polymorphisms screened. The results suggest that the prion protein gene of eight African lions is highly homogenous. The amino acid sequences of the prion protein (PrP) of all samples tested were identical. Four single nucleotide polymorphisms (C42T, C81A, C420T, T600C) in the prion protein gene (Prnp) of African lion were found, but no amino acid substitutions. Sequence analysis showed that the higher homology is observed to felis catus AF003087 (96.7%) and to sheep number M31313.1 (96.2%) Genbank accessed. With respect to all the mammalian prion protein sequences compared, the African lion prion protein sequence has three amino acid substitutions. The homology might in turn affect the potential intermolecular interactions critical for cross species transmission of prion disease.

  2. Genomic sequence around butterfly wing development genes: annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Inês C Conceição

    Full Text Available BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes. CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1 the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2 the high

  3. Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Salomon, Jesper; Søkilde, Rolf

    2009-01-01

    Recently, next-generation sequencing has been introduced as a promising, new platform for assessing the copy number of transcripts, while the existing microarray technology is considered less reliable for absolute, quantitative expression measurements. Nonetheless, so far, results from the two...... technologies have only been compared based on biological data, leading to the conclusion that, although they are somewhat correlated, expression values differ significantly. Here, we use synthetic RNA samples, resembling human microRNA samples, to find that microarray expression measures actually correlate...... better with sample RNA content than expression measures obtained from sequencing data. In addition, microarrays appear highly sensitive and perform equivalently to next-generation sequencing in terms of reproducibility and relative ratio quantification....

  4. Microbiological profile of chicken carcasses: A comparative analysis using shotgun metagenomic sequencing

    Directory of Open Access Journals (Sweden)

    Alessandra De Cesare

    2018-04-01

    Full Text Available In the last few years metagenomic and 16S rRNA sequencing have completly changed the microbiological investigations of food products. In this preliminary study, the microbiological profile of chicken carcasses collected from animals fed with different diets were tested by using shotgun metagenomic sequencing. A total of 15 carcasses have been collected at the slaughetrhouse at the end of the refrigeration tunnel from chickens reared for 35 days and fed with a control diet (n=5, a diet supplemented with 1500 FTU/kg of commercial phytase (n=5 and a diet supplemented with 1500 FTU/kg of commercial phytase and 3g/kg of inositol (n=5. Ten grams of neck and breast skin were obtained from each carcass and submited to total DNA extraction by using the DNeasy Blood & Tissue Kit (Qiagen. Sequencing libraries have been prepared by using the Nextera XT DNA Library Preparation Kit (Illumina and sequenced in a HiScanSQ (Illumina at 100 bp in paired ends. A number of sequences ranging between 5 and 9 million was obtained for each sample. Sequence analysis showed that Proteobacteria and Firmicutes represented more than 98% of whole bacterial populations associated to carcass skin in all groups but their abundances were different between groups. Moraxellaceae and other degradative bacteria showed a significantly higher abundance in the control compared to the treated groups. Furthermore, Clostridium perfringens showed a relative frequency of abundance significantly higher in the group fed with phytase and Salmonella enterica in the group fed with phytase plus inositol. The results of this preliminary study showed that metagenome sequencing is suitable to investigate and monitor carcass microbiota in order to detect specific pathogenic and/or degradative populations.

  5. Comparative performance of double-digest RAD sequencing across divergent arachnid lineages.

    Science.gov (United States)

    Burns, Mercedes; Starrett, James; Derkarabetian, Shahan; Richart, Casey H; Cabrero, Allan; Hedin, Marshal

    2017-05-01

    Next-generation sequencing technologies now allow researchers of non-model systems to perform genome-based studies without the requirement of a (often unavailable) closely related genomic reference. We evaluated the role of restriction endonuclease (RE) selection in double-digest restriction-site-associated DNA sequencing (ddRADseq) by generating reduced representation genome-wide data using four different RE combinations. Our expectation was that RE selections targeting longer, more complex restriction sites would recover fewer loci than RE with shorter, less complex sites. We sequenced a diverse sample of non-model arachnids, including five congeneric pairs of harvestmen (Opiliones) and four pairs of spiders (Araneae). Sample pairs consisted of either conspecifics or closely related congeneric taxa, and in total 26 sample pair analyses were tested. Sequence demultiplexing, read clustering and variant calling were performed in the pyRAD program. The 6-base pair cutter EcoRI combined with methylated site-specific 4-base pair cutter MspI produced, on average, the greatest numbers of intra-individual loci and shared loci per sample pair. As expected, the number of shared loci recovered for a sample pair covaried with the degree of genetic divergence, estimated with cytochrome oxidase I sequences, although this relationship was non-linear. Our comparative results will prove useful in guiding protocol selection for ddRADseq experiments on many arachnid taxa where reference genomes, even from closely related species, are unavailable. © 2016 John Wiley & Sons Ltd.

  6. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome evolution between two wheat cultivars

    KAUST Repository

    Thind, Anupriya Kaur

    2018-02-08

    Background: Recent improvements in DNA sequencing and genome scaffolding have paved the way to generate high-quality de novo assemblies of pseudomolecules representing complete chromosomes of wheat and its wild relatives. These assemblies form the basis to compare the evolutionary dynamics of wheat genomes on a megabase-scale. Results: Here, we provide a comparative sequence analysis of the 700-megabase chromosome 2D between two bread wheat genotypes, the old landrace Chinese Spring and the elite Swiss spring wheat line CH Campala Lr22a. There was a high degree of sequence conservation between the two chromosomes. Analysis of large structural variations revealed four large insertions/deletions (InDels) of >100 kb. Based on the molecular signatures at the breakpoints, unequal crossing over and double-strand break repair were identified as the evolutionary mechanisms that caused these InDels. Three of the large InDels affected copy number of NLRs, a gene family involved in plant immunity. Analysis of single nucleotide polymorphism (SNP) density revealed three haploblocks of 8 Mb, 9 Mb and 48 Mb with a 35-fold increased SNP density compared to the rest of the chromosome. Conclusions: This comparative analysis of two high-quality chromosome assemblies enabled a comprehensive assessment of large structural variations. The insight obtained from this analysis will form the basis of future wheat pan-genome studies.

  7. Comparing Whole-Genome Sequencing with Sanger Sequencing for spa Typing of Methicillin-Resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bartels, Mette Damkjaer; Petersen, Andreas; Worning, Peder

    2014-01-01

    spa typing of methicillin-resistant Staphylococcus aureus (MRSA) has traditionally been done by PCR amplification and Sanger sequencing of the spa repeat region. At Hvidovre Hospital, Denmark, whole-genome sequencing (WGS) of all MRSA isolates has been performed routinely since January 2013, and ...

  8. Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma.

    Science.gov (United States)

    Wrzeszczynski, Kazimierz O; Frank, Mayu O; Koyama, Takahiko; Rhrissorrakrai, Kahn; Robine, Nicolas; Utro, Filippo; Emde, Anne-Katrin; Chen, Bo-Juen; Arora, Kanika; Shah, Minita; Vacic, Vladimir; Norel, Raquel; Bilal, Erhan; Bergmann, Ewa A; Moore Vogel, Julia L; Bruce, Jeffrey N; Lassman, Andrew B; Canoll, Peter; Grommes, Christian; Harvey, Steve; Parida, Laxmi; Michelini, Vanessa V; Zody, Michael C; Jobanputra, Vaidehi; Royyuru, Ajay K; Darnell, Robert B

    2017-08-01

    To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each. Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated system for prioritizing somatic variants and identifying drugs. More variants were identified by WGS/RNA analysis than by targeted panels. WGA completed a comparable analysis in a fraction of the time required by the human analysts. The development of an effective human-machine interface in the analysis of deep cancer genomic datasets may provide potentially clinically actionable calls for individual patients in a more timely and efficient manner than currently possible. NCT02725684.

  9. Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh

    Science.gov (United States)

    Begum, Rabeya; Alam, Sheikh Shamimul; Menzel, Gerhard; Schmidt, Thomas

    2009-01-01

    Background and Aims Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera. Methods In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH). Key Results Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species. Conclusions The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal

  10. Sequencing, Characterization, and Comparative Analyses of the Plastome of Caragana rosea var. rosea

    Directory of Open Access Journals (Sweden)

    Mei Jiang

    2018-05-01

    Full Text Available To exploit the drought-resistant Caragana species, we performed a comparative study of the plastomes from four species: Caragana rosea, C. microphylla, C. kozlowii, and C. Korshinskii. The complete plastome sequence of the C. rosea was obtained using the next generation DNA sequencing technology. The genome is a circular structure of 133,122 bases and it lacks inverted repeat. It contains 111 unique genes, including 76 protein-coding, 30 tRNA, and four rRNA genes. Repeat analyses obtained 239, 244, 258, and 246 simple sequence repeats in C. rosea, C. microphylla, C. kozlowii, and C. korshinskii, respectively. Analyses of sequence divergence found two intergenic regions: trnI-CAU-ycf2 and trnN-GUU-ycf1, exhibiting a high degree of variations. Phylogenetic analyses showed that the four Caragana species belong to a monophyletic clade. Analyses of Ka/Ks ratios revealed that five genes: rpl16, rpl20, rps11, rps7, and ycf1 and several sites having undergone strong positive selection in the Caragana branch. The results lay the foundation for the development of molecular markers and the understanding of the evolutionary process for drought-resistant characteristics.

  11. The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses.

    Science.gov (United States)

    Saina, Josphat K; Gichira, Andrew W; Li, Zhi-Zhong; Hu, Guang-Wan; Wang, Qing-Feng; Liao, Kuo

    2018-02-01

    The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.

  12. Comparative study and application of MR sialography using different pulse sequences

    International Nuclear Information System (INIS)

    Shi Ruihua; Qi Jianping; Feng Dingyi; Zou Mingli; Hu Junwu; Zhu Wenzhen; Xia Liming; Wang Chengyuan

    2004-01-01

    Objective: To evaluate the accuracy of MR sialography in demonstrating the main salivary duct systems by using a series of pulse sequences and stimulation of salivation by vitamin C. Methods: MR sialography was prospectively performed with STIR, heavily T 2 weighted FSE, and SS FSE sequences in 17 patients suspected with salivary duct abnormalities and 13 volunteers, respectively, and MR sialography was further performed in 16 patients after vitamin C stimulation. The results of the above three sequences were compared with each other. Results: The main salivary gland duct was depicted in all cases by any of the mentioned sequence. The STIR images were significantly superior to SS FSE and heavily T 2 weighted FSE images for demonstrating the salivary duct system, followed by heavily T 2 weighted FSE images. On STIR images, first- and second- order intraglandular branches were clearly depicted in all cases, and the thinnest branches were about 0.8 mm. On heavily T 2 weighted FSE images, the first-order and the second-order intraglandular branches were delineated in 25 of 30 and 18 of 30 cases, respectively. But on SS FSE images, only 20 to 30 first-order and 10 of 30 second-order intraglandular branches could be detected. MR sialography with vitamin C stimulation revealed the good visualization of the salivary duct system, and the ducts became wider than before. In 7 cases with acute sialadenitis, the main duct became slightly wider and the distal ducts were dilated; In 7 cases with benign tumor, the ducts were displaced but remained continuous; The duct in one patients with submandibular gland cancer showed destruction and discontinuity. The ducts of one patient with Sjogren syndrome and one with sialidosis displayed normal. Conclusion: MR sialography with evoked salivation is noninvasive and allows delineation of both normal and abnormal parotid and submandibular gland duct systems, and the images are especially better on STIR sequence

  13. Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera).

    Science.gov (United States)

    Huang, Ya-Yi; Matzke, Antonius J M; Matzke, Marjori

    2013-01-01

    Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available.

  14. Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Stahl Ulf

    2010-05-01

    Full Text Available Abstract Background The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 → 3-β-linked glucose with a (1 → 6-β-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the genetics of scleroglucan biosynthesis. Similarly, the biosynthetic pathway of oxalate, the main by-product during scleroglucan production, has not been elucidated yet. In order to provide a basis for genetic and metabolic engineering approaches, we studied scleroglucan and oxalate biosynthesis in S. rolfsii using different transcriptomic approaches. Results Two S. rolfsii transcriptomes obtained from scleroglucan-producing and scleroglucan-nonproducing conditions were pooled and sequenced using the 454 pyrosequencing technique yielding ~350,000 reads. These could be assembled into 21,937 contigs and 171,833 singletons, for which 6,951 had significant matches in public protein data bases. Sequence data were used to obtain first insights into the genomics of scleroglucan and oxalate production and to predict putative proteins involved in the synthesis of both metabolites. Using comparative transcriptomics, namely Agilent microarray hybridization and suppression subtractive hybridization, we identified ~800 unigenes which are differently expressed under scleroglucan-producing and non-producing conditions. From these, candidate genes were identified which could represent potential leads for targeted modification of the S. rolfsii metabolism for increased scleroglucan yields. Conclusions The results presented in this paper provide for the first time genomic and transcriptomic data about S. rolfsii and demonstrate the power and usefulness of combined transcriptome sequencing and comparative microarray analysis. The data obtained allowed us to predict the biosynthetic pathways of scleroglucan and

  15. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae.

    Science.gov (United States)

    Lim, K Yoong; Kovarik, Ales; Matyasek, Roman; Chase, Mark W; Knapp, Sandra; McCarthy, Elizabeth; Clarkson, James J; Leitch, Andrew R

    2006-12-01

    Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.

  16. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica.

    Science.gov (United States)

    Hoffmann, Maria; Pettengill, James B; Gonzalez-Escalona, Narjol; Miller, John; Ayers, Sherry L; Zhao, Shaohua; Allard, Marc W; McDermott, Patrick F; Brown, Eric W; Monday, Steven R

    2017-01-01

    Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in

  17. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Maria Hoffmann

    2017-08-01

    Full Text Available Determinants of multidrug resistance (MDR are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI, and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about

  18. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae.

    Science.gov (United States)

    Abebe-Akele, Feseha; Tisa, Louis S; Cooper, Vaughn S; Hatcher, Philip J; Abebe, Eyualem; Thomas, W Kelley

    2015-07-18

    Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are

  19. Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora

    Directory of Open Access Journals (Sweden)

    Maria Eguiluz

    2017-11-01

    Full Text Available Abstract Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies focusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and single-copy regions of 88,097 bp (LSC and 18,587 bp (SSC. The genome contains 111 single-copy genes (77 protein-coding, 30 tRNA and four rRNA genes. Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization.

  20. Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora

    Science.gov (United States)

    Eguiluz, Maria; Yuyama, Priscila Mary; Guzman, Frank; Rodrigues, Nureyev Ferreira; Margis, Rogerio

    2017-01-01

    Abstract Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies focusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp) genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and single-copy regions of 88,097 bp (LSC) and 18,587 bp (SSC). The genome contains 111 single-copy genes (77 protein-coding, 30 tRNA and four rRNA genes). Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization. PMID:29111566

  1. Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora.

    Science.gov (United States)

    Eguiluz, Maria; Yuyama, Priscila Mary; Guzman, Frank; Rodrigues, Nureyev Ferreira; Margis, Rogerio

    2017-01-01

    Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies focusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp) genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and single-copy regions of 88,097 bp (LSC) and 18,587 bp (SSC). The genome contains 111 single-copy genes (77 protein-coding, 30 tRNA and four rRNA genes). Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus. The complete cp sequence reported here can be used in evolutionary and population genetics studies, contributing to resolve the complex taxonomy of this species and fill the gap in genetic characterization.

  2. Draft Genome Sequencing and Comparative Analysis of Aspergillus sojae NBRC4239

    Science.gov (United States)

    Sato, Atsushi; Oshima, Kenshiro; Noguchi, Hideki; Ogawa, Masahiro; Takahashi, Tadashi; Oguma, Tetsuya; Koyama, Yasuji; Itoh, Takehiko; Hattori, Masahira; Hanya, Yoshiki

    2011-01-01

    We conducted genome sequencing of the filamentous fungus Aspergillus sojae NBRC4239 isolated from the koji used to prepare Japanese soy sauce. We used the 454 pyrosequencing technology and investigated the genome with respect to enzymes and secondary metabolites in comparison with other Aspergilli sequenced. Assembly of 454 reads generated a non-redundant sequence of 39.5-Mb possessing 13 033 putative genes and 65 scaffolds composed of 557 contigs. Of the 2847 open reading frames with Pfam domain scores of >150 found in A. sojae NBRC4239, 81.7% had a high degree of similarity with the genes of A. oryzae. Comparative analysis identified serine carboxypeptidase and aspartic protease genes unique to A. sojae NBRC4239. While A. oryzae possessed three copies of α-amyalse gene, A. sojae NBRC4239 possessed only a single copy. Comparison of 56 gene clusters for secondary metabolites between A. sojae NBRC4239 and A. oryzae revealed that 24 clusters were conserved, whereas 32 clusters differed between them that included a deletion of 18 508 bp containing mfs1, mao1, dmaT, and pks-nrps for the cyclopiazonic acid (CPA) biosynthesis, explaining the no productivity of CPA in A. sojae. The A. sojae NBRC4239 genome data will be useful to characterize functional features of the koji moulds used in Japanese industries. PMID:21659486

  3. Comparing whole-genome sequencing with Sanger sequencing for spa typing of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Bartels, Mette Damkjær; Petersen, Andreas; Worning, Peder; Nielsen, Jesper Boye; Larner-Svensson, Hanna; Johansen, Helle Krogh; Andersen, Leif Percival; Jarløv, Jens Otto; Boye, Kit; Larsen, Anders Rhod; Westh, Henrik

    2014-12-01

    spa typing of methicillin-resistant Staphylococcus aureus (MRSA) has traditionally been done by PCR amplification and Sanger sequencing of the spa repeat region. At Hvidovre Hospital, Denmark, whole-genome sequencing (WGS) of all MRSA isolates has been performed routinely since January 2013, and an in-house analysis pipeline determines the spa types. Due to national surveillance, all MRSA isolates are sent to Statens Serum Institut, where the spa type is determined by PCR and Sanger sequencing. The purpose of this study was to evaluate the reliability of the spa types obtained by 150-bp paired-end Illumina WGS. MRSA isolates from new MRSA patients in 2013 (n = 699) in the capital region of Denmark were included. We found a 97% agreement between spa types obtained by the two methods. All isolates achieved a spa type by both methods. Nineteen isolates differed in spa types by the two methods, in most cases due to the lack of 24-bp repeats in the whole-genome-sequenced isolates. These related but incorrect spa types should have no consequence in outbreak investigations, since all epidemiologically linked isolates, regardless of spa type, will be included in the single nucleotide polymorphism (SNP) analysis. This will reveal the close relatedness of the spa types. In conclusion, our data show that WGS is a reliable method to determine the spa type of MRSA. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Complete Chloroplast Genome Sequences and Comparative Analysis of Chenopodium quinoa and C. album.

    Science.gov (United States)

    Hong, Su-Young; Cheon, Kyeong-Sik; Yoo, Ki-Oug; Lee, Hyun-Oh; Cho, Kwang-Soo; Suh, Jong-Taek; Kim, Su-Jeong; Nam, Jeong-Hwan; Sohn, Hwang-Bae; Kim, Yul-Ho

    2017-01-01

    The Chenopodium genus comprises ~150 species, including Chenopodium quinoa and Chenopodium album , two important crops with high nutritional value. To elucidate the phylogenetic relationship between the two species, the complete chloroplast (cp) genomes of these species were obtained by next generation sequencing. We performed comparative analysis of the sequences and, using InDel markers, inferred phylogeny and genetic diversity of the Chenopodium genus. The cp genome is 152,099 bp ( C. quinoa ) and 152,167 bp ( C. album ) long. In total, 119 genes (78 protein-coding, 37 tRNA, and 4 rRNA) were identified. We found 14 ( C. quinoa ) and 15 ( C. album ) tandem repeats (TRs); 14 TRs were present in both species and C. album and C. quinoa each had one species-specific TR. The trnI-GAU intron sequences contained one ( C. quinoa ) or two ( C. album ) copies of TRs (66 bp); the InDel marker was designed based on the copy number variation in TRs. Using the InDel markers, we detected this variation in the TR copy number in four species, Chenopodium hybridum, Chenopodium pumilio, Chenopodium ficifolium , and Chenopodium koraiense , but not in Chenopodium glaucum . A comparison of coding and non-coding regions between C. quinoa and C. album revealed divergent sites. Nucleotide diversity >0.025 was found in 17 regions-14 were located in the large single copy region (LSC), one in the inverted repeats, and two in the small single copy region (SSC). A phylogenetic analysis based on 59 protein-coding genes from 25 taxa resolved Chenopodioideae monophyletic and sister to Betoideae. The complete plastid genome sequences and molecular markers based on divergence hotspot regions in the two Chenopodium taxa will help to resolve the phylogenetic relationships of Chenopodium .

  5. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping.

    Science.gov (United States)

    Zhang, Yunxia; Cheng, Chunyan; Li, Ji; Yang, Shuqiong; Wang, Yunzhu; Li, Ziang; Chen, Jinfeng; Lou, Qunfeng

    2015-09-25

    Differentiation and copy number of repetitive sequences affect directly chromosome structure which contributes to reproductive isolation and speciation. Comparative cytogenetic mapping has been verified an efficient tool to elucidate the differentiation and distribution of repetitive sequences in genome. In present study, the distinct chromosomal structures of five Cucumis species were revealed through genomic in situ hybridization (GISH) technique and comparative cytogenetic mapping of major satellite repeats. Chromosome structures of five Cucumis species were investigated using GISH and comparative mapping of specific satellites. Southern hybridization was employed to study the proliferation of satellites, whose structural characteristics were helpful for analyzing chromosome evolution. Preferential distribution of repetitive DNAs at the subtelomeric regions was found in C. sativus, C hystrix and C. metuliferus, while majority was positioned at the pericentromeric heterochromatin regions in C. melo and C. anguria. Further, comparative GISH (cGISH) through using genomic DNA of other species as probes revealed high homology of repeats between C. sativus and C. hystrix. Specific satellites including 45S rDNA, Type I/II, Type III, Type IV, CentM and telomeric repeat were then comparatively mapped in these species. Type I/II and Type IV produced bright signals at the subtelomeric regions of C. sativus and C. hystrix simultaneously, which might explain the significance of their amplification in the divergence of Cucumis subgenus from the ancient ancestor. Unique positioning of Type III and CentM only at the centromeric domains of C. sativus and C. melo, respectively, combining with unique southern bands, revealed rapid evolutionary patterns of centromeric DNA in Cucumis. Obvious interstitial telomeric repeats were observed in chromosomes 1 and 2 of C. sativus, which might provide evidence of the fusion hypothesis of chromosome evolution from x = 12 to x = 7 in

  6. Comparative genomic sequence analysis of strawberry and other rosids reveals significant microsynteny

    Directory of Open Access Journals (Sweden)

    Abbott Albert

    2010-06-01

    Full Text Available Abstract Background Fragaria belongs to the Rosaceae, an economically important family that includes a number of important fruit producing genera such as Malus and Prunus. Using genomic sequences from 50 Fragaria fosmids, we have examined the microsynteny between Fragaria and other plant models. Results In more than half of the strawberry fosmids, we found syntenic regions that are conserved in Populus, Vitis, Medicago and/or Arabidopsis with Populus containing the greatest number of syntenic regions with Fragaria. The longest syntenic region was between LG VIII of the poplar genome and the strawberry fosmid 72E18, where seven out of twelve predicted genes were collinear. We also observed an unexpectedly high level of conserved synteny between Fragaria (rosid I and Vitis (basal rosid. One of the strawberry fosmids, 34E24, contained a cluster of R gene analogs (RGAs with NBS and LRR domains. We detected clusters of RGAs with high sequence similarity to those in 34E24 in all the genomes compared. In the phylogenetic tree we have generated, all the NBS-LRR genes grouped together with Arabidopsis CNL-A type NBS-LRR genes. The Fragaria RGA grouped together with those of Vitis and Populus in the phylogenetic tree. Conclusions Our analysis shows considerable microsynteny between Fragaria and other plant genomes such as Populus, Medicago, Vitis, and Arabidopsis to a lesser degree. We also detected a cluster of NBS-LRR type genes that are conserved in all the genomes compared.

  7. Estimating and comparing microbial diversity in the presence of sequencing errors

    Science.gov (United States)

    Chiu, Chun-Huo

    2016-01-01

    Estimating and comparing microbial diversity are statistically challenging due to limited sampling and possible sequencing errors for low-frequency counts, producing spurious singletons. The inflated singleton count seriously affects statistical analysis and inferences about microbial diversity. Previous statistical approaches to tackle the sequencing errors generally require different parametric assumptions about the sampling model or about the functional form of frequency counts. Different parametric assumptions may lead to drastically different diversity estimates. We focus on nonparametric methods which are universally valid for all parametric assumptions and can be used to compare diversity across communities. We develop here a nonparametric estimator of the true singleton count to replace the spurious singleton count in all methods/approaches. Our estimator of the true singleton count is in terms of the frequency counts of doubletons, tripletons and quadrupletons, provided these three frequency counts are reliable. To quantify microbial alpha diversity for an individual community, we adopt the measure of Hill numbers (effective number of taxa) under a nonparametric framework. Hill numbers, parameterized by an order q that determines the measures’ emphasis on rare or common species, include taxa richness (q = 0), Shannon diversity (q = 1, the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of Simpson index). A diversity profile which depicts the Hill number as a function of order q conveys all information contained in a taxa abundance distribution. Based on the estimated singleton count and the original non-singleton frequency counts, two statistical approaches (non-asymptotic and asymptotic) are developed to compare microbial diversity for multiple communities. (1) A non-asymptotic approach refers to the comparison of estimated diversities of standardized samples with a common finite sample size or sample completeness. This

  8. Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes.

    Science.gov (United States)

    Huotari, Tea; Korpelainen, Helena

    2012-10-15

    Elodea canadensis is an aquatic angiosperm native to North America. It has attracted great attention due to its invasive nature when transported to new areas in its non-native range. We have determined the complete nucleotide sequence of the chloroplast (cp) genome of Elodea. Taxonomically Elodea is a basal monocot, and only few monocot cp genomes representing early lineages of monocots have been sequenced so far. The genome is a circular double-stranded DNA molecule 156,700 bp in length, and has a typical structure with large (LSC 86,194 bp) and small (SSC 17,810 bp) single-copy regions separated by a pair of inverted repeats (IRs 26,348 bp each). The Elodea cp genome contains 113 unique genes and 16 duplicated genes in the IR regions. A comparative analysis showed that the gene order and organization of the Elodea cp genome is almost identical to that of Amborella trichopoda, a basal angiosperm. The structure of IRs in Elodea is unique among monocot species with the whole cp genome sequenced. In Elodea and another monocot Lemna minor the borders between IRs and LSC are located upstream of rps 19 gene and downstream of trnH-GUG gene, while in most monocots, IR has extended to include both trnH and rps 19 genes. A phylogenetic analysis conducted using Bayesian method, based on the DNA sequences of 81 chloroplast genes from 17 monocot taxa provided support for the placement of Elodea together with Lemna as a basal monocot and the next diverging lineage of monocots after Acorales. In comparison with other monocots, the Elodea cp genome has gone through only few rearrangements or gene losses. IR of Elodea has a unique structure among the monocot species studied so far as its structure is similar to that of a basal angiosperm Amborella. This result together with phylogenetic analyses supports the placement of Elodea as a basal monocot to the next diverging lineage of monocots after Acorales. So far, only few cp genomes representing early lineages of monocots have been

  9. Comparative genome sequence analysis of Choristoneura occidentalis Freeman and C. rosaceana Harris (Lepidoptera: Tortricidae alphabaculoviruses.

    Directory of Open Access Journals (Sweden)

    David K Thumbi

    Full Text Available The complete genome sequences of Choristoneura occidentalis and C. rosaceana nucleopolyhedroviruses (ChocNPV and ChroNPV, respectively (Baculoviridae: Alphabaculovirus were determined and compared with each other and with those of other baculoviruses, including the genome of the closely related C. fumiferana NPV (CfMNPV. The ChocNPV genome was 128,446 bp in length (1147 bp smaller than that of CfMNPV, had a G+C content of 50.1%, and contained 148 open reading frames (ORFs. In comparison, the ChroNPV genome was 129,052 bp in length, had a G+C content of 48.6% and contained 149 ORFs. ChocNPV and ChroNPV shared 144 ORFs in common, and had a 77% sequence identity with each other and 96.5% and 77.8% sequence identity, respectively, with CfMNPV. Five homologous regions (hrs, with sequence similarities to those of CfMNPV, were identified in ChocNPV, whereas the ChroNPV genome contained three hrs featuring up to 14 repeats. Both genomes encoded three inhibitors of apoptosis (IAP-1, IAP-2, and IAP-3, as reported for CfMNPV, and the ChocNPV IAP-3 gene represented the most divergent functional region of this genome relative to CfMNPV. Two ORFs were unique to ChocNPV, and four were unique to ChroNPV. ChroNPV ORF chronpv38 is a eukaryotic initiation factor 5 (eIF-5 homolog that has also been identified in the C. occidentalis granulovirus (ChocGV and is believed to be the product of horizontal gene transfer from the host. Based on levels of sequence identity and phylogenetic analysis, both ChocNPV and ChroNPV fall within group I alphabaculoviruses, where ChocNPV appears to be more closely related to CfMNPV than does ChroNPV. Our analyses suggest that it may be appropriate to consider ChocNPV and CfMNPV as variants of the same virus species.

  10. Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic Testing for Inherited Retinal Disease.

    Science.gov (United States)

    Ellingford, Jamie M; Barton, Stephanie; Bhaskar, Sanjeev; Williams, Simon G; Sergouniotis, Panagiotis I; O'Sullivan, James; Lamb, Janine A; Perveen, Rahat; Hall, Georgina; Newman, William G; Bishop, Paul N; Roberts, Stephen A; Leach, Rick; Tearle, Rick; Bayliss, Stuart; Ramsden, Simon C; Nemeth, Andrea H; Black, Graeme C M

    2016-05-01

    To compare the efficacy of whole genome sequencing (WGS) with targeted next-generation sequencing (NGS) in the diagnosis of inherited retinal disease (IRD). Case series. A total of 562 patients diagnosed with IRD. We performed a direct comparative analysis of current molecular diagnostics with WGS. We retrospectively reviewed the findings from a diagnostic NGS DNA test for 562 patients with IRD. A subset of 46 of 562 patients (encompassing potential clinical outcomes of diagnostic analysis) also underwent WGS, and we compared mutation detection rates and molecular diagnostic yields. In addition, we compared the sensitivity and specificity of the 2 techniques to identify known single nucleotide variants (SNVs) using 6 control samples with publically available genotype data. Diagnostic yield of genomic testing. Across known disease-causing genes, targeted NGS and WGS achieved similar levels of sensitivity and specificity for SNV detection. However, WGS also identified 14 clinically relevant genetic variants through WGS that had not been identified by NGS diagnostic testing for the 46 individuals with IRD. These variants included large deletions and variants in noncoding regions of the genome. Identification of these variants confirmed a molecular diagnosis of IRD for 11 of the 33 individuals referred for WGS who had not obtained a molecular diagnosis through targeted NGS testing. Weighted estimates, accounting for population structure, suggest that WGS methods could result in an overall 29% (95% confidence interval, 15-45) uplift in diagnostic yield. We show that WGS methods can detect disease-causing genetic variants missed by current NGS diagnostic methodologies for IRD and thereby demonstrate the clinical utility and additional value of WGS. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  11. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Mower, Jeffrey P; Jansen, Robert K

    2013-12-29

    Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition

  12. Comparative Transcriptomes and EVO-DEVO Studies Depending on Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Tiancheng Liu

    2015-01-01

    Full Text Available High throughput technology has prompted the progressive omics studies, including genomics and transcriptomics. We have reviewed the improvement of comparative omic studies, which are attributed to the high throughput measurement of next generation sequencing technology. Comparative genomics have been successfully applied to evolution analysis while comparative transcriptomics are adopted in comparison of expression profile from two subjects by differential expression or differential coexpression, which enables their application in evolutionary developmental biology (EVO-DEVO studies. EVO-DEVO studies focus on the evolutionary pressure affecting the morphogenesis of development and previous works have been conducted to illustrate the most conserved stages during embryonic development. Old measurements of these studies are based on the morphological similarity from macro view and new technology enables the micro detection of similarity in molecular mechanism. Evolutionary model of embryo development, which includes the “funnel-like” model and the “hourglass” model, has been evaluated by combination of these new comparative transcriptomic methods with prior comparative genomic information. Although the technology has promoted the EVO-DEVO studies into a new era, technological and material limitation still exist and further investigations require more subtle study design and procedure.

  13. Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates

    Science.gov (United States)

    Romanchuk, Artur; Chang, Jeff H.; Mukhtar, M. Shahid; Cherkis, Karen; Roach, Jeff; Grant, Sarah R.; Jones, Corbin D.; Dangl, Jeffery L.

    2011-01-01

    Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species. PMID:21799664

  14. Thermodynamic Molecular Switch in Sequence-Specific Hydrophobic Interaction: Two Computational Models Compared

    Directory of Open Access Journals (Sweden)

    Paul Chun

    2003-01-01

    Full Text Available We have shown in our published work the existence of a thermodynamic switch in biological systems wherein a change of sign in ΔCp°(Treaction leads to a true negative minimum in the Gibbs free energy change of reaction, and hence, a maximum in the related Keq. We have examined 35 pair-wise, sequence-specific hydrophobic interactions over the temperature range of 273–333 K, based on data reported by Nemethy and Scheraga in 1962. A closer look at a single example, the pair-wise hydrophobic interaction of leucine-isoleucine, will demonstrate the significant differences when the data are analyzed using the Nemethy-Scheraga model or treated by the Planck-Benzinger methodology which we have developed. The change in inherent chemical bond energy at 0 K, ΔH°(T0 is 7.53 kcal mol-1 compared with 2.4 kcal mol-1, while ‹ts› is 365 K as compared with 355 K, for the Nemethy-Scheraga and Planck-Benzinger model, respectively. At ‹tm›, the thermal agitation energy is about five times greater than ΔH°(T0 in the Planck-Benzinger model, that is 465 K compared to 497 K in the Nemethy-Scheraga model. The results imply that the negative Gibbs free energy minimum at a well-defined ‹ts›, where TΔS° = 0 at about 355 K, has its origin in the sequence-specific hydrophobic interactions, which are highly dependent on details of molecular structure. The Nemethy-Scheraga model shows no evidence of the thermodynamic molecular switch that we have found to be a universal feature of biological interactions. The Planck-Benzinger method is the best known for evaluating the innate temperature-invariant enthalpy, ΔH°(T0, and provides for better understanding of the heat of reaction for biological molecules.

  15. Detection of molecular markers by comparative sequence analysis of enzymes from mycobacteria species

    International Nuclear Information System (INIS)

    Asad, S.; Hussain, M.; Siddiqua, A.; Ain, Q.U.

    2014-01-01

    Mycobacterial species are one of the most important pathogens and among these members of non-tuberculous mycobacteria (NTM) and mycobacterial tuberculousis complex (MTC) are the causative agent of a relatively milder form of Tuberculosis. Traditional methods for identification of these groups of pathogens are time consuming, lack specificity and sensitivity and furthermore lead to the misidentification due to high similarity index. Therefore, more rapid, specific and cost-effective methods are required for the accurate identification of Mycobacterium species in routine diagnostics. In our study, we identified molecular markers in order to differentiate closely related cousin species of genus Mycobacterium including M. bovis, M. avium, M. leprae and M. tuberculosis. The nucleotide sequences of selected unique markers, i.e., enzymes (used previously in various biochemical tests for the identification of M. species) were selected and their ORFs were retrieved and selected functional proteins of respective biosynthetic pathways were compared in-silico. Result suggested that the variations in nucleotide sequences of the selected enzymes can be directly used for M. species discrimination in one step PCR test. We believe that the in-silico identification and storage of these distinctive characteristics of individual M. species will help in more precise recognition of pathogenic strains and hence specie specific targeted therapy. (author)

  16. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains.

    Directory of Open Access Journals (Sweden)

    Kathrin Rychli

    Full Text Available The food-borne pathogen Listeria (L. monocytogenes is able to survive for months and even years in food production environments. Strains belonging to sequence type (ST121 are particularly found to be abundant and to persist in food and food production environments. To elucidate genetic determinants characteristic for L. monocytogenes ST121, we sequenced the genomes of 14 ST121 strains and compared them with currently available L. monocytogenes ST121 genomes. In total, we analyzed 70 ST121 genomes deriving from 16 different countries, different years of isolation, and different origins-including food, animal and human ST121 isolates. All ST121 genomes show a high degree of conservation sharing at least 99.7% average nucleotide identity. The main differences between the strains were found in prophage content and prophage conservation. We also detected distinct highly conserved subtypes of prophages inserted at the same genomic locus. While some of the prophages showed more than 99.9% similarity between strains from different sources and years, other prophages showed a higher level of diversity. 81.4% of the strains harbored virtually identical plasmids. 97.1% of the ST121 strains contain a truncated internalin A (inlA gene. Only one of the seven human ST121 isolates encodes a full-length inlA gene, illustrating the need of better understanding their survival and virulence mechanisms.

  17. Comparative study of methods for recognition of an unknown person's action from a video sequence

    Science.gov (United States)

    Hori, Takayuki; Ohya, Jun; Kurumisawa, Jun

    2009-02-01

    This paper proposes a Tensor Decomposition Based method that can recognize an unknown person's action from a video sequence, where the unknown person is not included in the database (tensor) used for the recognition. The tensor consists of persons, actions and time-series image features. For the observed unknown person's action, one of the actions stored in the tensor is assumed. Using the motion signature obtained from the assumption, the unknown person's actions are synthesized. The actions of one of the persons in the tensor are replaced by the synthesized actions. Then, the core tensor for the replaced tensor is computed. This process is repeated for the actions and persons. For each iteration, the difference between the replaced and original core tensors is computed. The assumption that gives the minimal difference is the action recognition result. For the time-series image features to be stored in the tensor and to be extracted from the observed video sequence, the human body silhouette's contour shape based feature is used. To show the validity of our proposed method, our proposed method is experimentally compared with Nearest Neighbor rule and Principal Component analysis based method. Experiments using 33 persons' seven kinds of action show that our proposed method achieves better recognition accuracies for the seven actions than the other methods.

  18. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms

    Science.gov (United States)

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  19. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    Directory of Open Access Journals (Sweden)

    Francesca Bertolini

    Full Text Available Few studies investigated the donkey (Equus asinus at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca. The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing and Ion Torrent (RRL runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.

  20. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics.

    Directory of Open Access Journals (Sweden)

    Lincoln D Stein

    2003-11-01

    Full Text Available The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp and C. elegans (100.3 Mbp genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C

  1. Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom Archea, Prokaryotes and Eukaryotes.

    Science.gov (United States)

    Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra

    2014-01-01

    Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry.

  2. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    Science.gov (United States)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic

  3. Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea genome.

    Directory of Open Access Journals (Sweden)

    Dapeng Bao

    Full Text Available Volvariella volvacea, the edible straw mushroom, is a highly nutritious food source that is widely cultivated on a commercial scale in many parts of Asia using agricultural wastes (rice straw, cotton wastes as growth substrates. However, developments in V. volvacea cultivation have been limited due to a low biological efficiency (i.e. conversion of growth substrate to mushroom fruit bodies, sensitivity to low temperatures, and an unclear sexuality pattern that has restricted the breeding of improved strains. We have now sequenced the genome of V. volvacea and assembled it into 62 scaffolds with a total genome size of 35.7 megabases (Mb, containing 11,084 predicted gene models. Comparative analyses were performed with the model species in basidiomycete on mating type system, carbohydrate active enzymes, and fungal oxidative lignin enzymes. We also studied transcriptional regulation of the response to low temperature (4°C. We found that the genome of V. volvacea has many genes that code for enzymes, which are involved in the degradation of cellulose, hemicellulose, and pectin. The molecular genetics of the mating type system in V. volvacea was also found to be similar to the bipolar system in basidiomycetes, suggesting that it is secondary homothallism. Sensitivity to low temperatures could be due to the lack of the initiation of the biosynthesis of unsaturated fatty acids, trehalose and glycogen biosyntheses in this mushroom. Genome sequencing of V. volvacea has improved our understanding of the biological characteristics related to the degradation of the cultivating compost consisting of agricultural waste, the sexual reproduction mechanism, and the sensitivity to low temperatures at the molecular level which in turn will enable us to increase the industrial production of this mushroom.

  4. Sequencing and Comparative Analysis of the Straw Mushroom (Volvariella volvacea) Genome

    Science.gov (United States)

    Bao, Dapeng; Gong, Ming; Zheng, Huajun; Chen, Mingjie; Zhang, Liang; Wang, Hong; Jiang, Jianping; Wu, Lin; Zhu, Yongqiang; Zhu, Gang; Zhou, Yan; Li, Chuanhua; Wang, Shengyue; Zhao, Yan; Zhao, Guoping; Tan, Qi

    2013-01-01

    Volvariella volvacea, the edible straw mushroom, is a highly nutritious food source that is widely cultivated on a commercial scale in many parts of Asia using agricultural wastes (rice straw, cotton wastes) as growth substrates. However, developments in V. volvacea cultivation have been limited due to a low biological efficiency (i.e. conversion of growth substrate to mushroom fruit bodies), sensitivity to low temperatures, and an unclear sexuality pattern that has restricted the breeding of improved strains. We have now sequenced the genome of V. volvacea and assembled it into 62 scaffolds with a total genome size of 35.7 megabases (Mb), containing 11,084 predicted gene models. Comparative analyses were performed with the model species in basidiomycete on mating type system, carbohydrate active enzymes, and fungal oxidative lignin enzymes. We also studied transcriptional regulation of the response to low temperature (4°C). We found that the genome of V. volvacea has many genes that code for enzymes, which are involved in the degradation of cellulose, hemicellulose, and pectin. The molecular genetics of the mating type system in V. volvacea was also found to be similar to the bipolar system in basidiomycetes, suggesting that it is secondary homothallism. Sensitivity to low temperatures could be due to the lack of the initiation of the biosynthesis of unsaturated fatty acids, trehalose and glycogen biosyntheses in this mushroom. Genome sequencing of V. volvacea has improved our understanding of the biological characteristics related to the degradation of the cultivating compost consisting of agricultural waste, the sexual reproduction mechanism, and the sensitivity to low temperatures at the molecular level which in turn will enable us to increase the industrial production of this mushroom. PMID:23526973

  5. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081.

    Directory of Open Access Journals (Sweden)

    Nicholas R Thomson

    2006-12-01

    Full Text Available The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common

  6. Genome Sequencing and Comparative Analysis of the Biocontrol Agent Trichoderma harzianum sensu stricto TR274

    Energy Technology Data Exchange (ETDEWEB)

    Steindorff, Andrei S.; Noronha, Elilane F.; Ulhoa, Cirano J.; Kuo, Alan; Salamov, Asaf A.; Haridas, Sajeet; Riley, Robert W.; Druzhinina, Irina S.; Kubicek, Christian P.; Grigoriev, Igor V.

    2015-03-17

    Biological control is a complex process which requires many mechanisms and a high diversity of biochemical pathways. The species of Trichoderma harzianum are well known for their biocontrol activity against many plant pathogens. To gain new insights into the biocontrol mechanism used by T. harzianum, we sequenced the isolate TR274 genome using Illumina. The assembly was performed using AllPaths-LG with a maximum coverage of 100x. The assembly resulted in 2282 contigs with a N50 of 37033bp. The genome size generated was 40.8 Mb and the GC content was 47.7%, similar to other Trichoderma genomes. Using the JGI Annotation Pipeline we predicted 13,932 genes with a high transcriptome support. CEGMA tests suggested 100% genome completeness and 97.9% of RNA-SEQ reads were mapped to the genome. The phylogenetic comparison using orthologous proteins with all Trichoderma genomes sequenced at JGI, corroborates the Trichoderma (T. asperellum and T. atroviride), Longibrachiatum (T. reesei and T. longibrachiatum) and Pachibasium (T. harzianum and T. virens) section division described previously. The comparison between two Trichoderma harzianum species suggests a high genome similarity but some strain-specific expansions. Analyses of the secondary metabolites, CAZymes, transporters, proteases, transcription factors were performed. The Pachybasium section expanded virtually all categories analyzed compared with the other sections, specially Longibrachiatum section, that shows a clear contraction. These results suggests that these proteins families have an important role in their respective phenotypes. Future analysis will improve the understanding of this complex genus and give some insights about its lifestyle and the interactions with the environment.

  7. Comparative sequence analysis of nitrogen fixation-related genes in six legumes

    Directory of Open Access Journals (Sweden)

    Dong Hyun eKim

    2013-08-01

    Full Text Available Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved. To understand the relationship of divergence and evolutionary processes in legumes, this study analyzes orthologs and paralogs for selected 20 NF-related genes by using comparative genomic approaches in six legumes i.e. Medicago truncatula (Mt, Cicer arietinum, Lotus japonicus, Cajanus cajan (Cc, Phaseolus vulgaris (Pv and Glycine max (Gm. Subsequently, sequence distances, numbers of synonymous substitutions per synonymous site (Ks and nonsynonymous substitutions per nonsynonymous site (Ka between orthologs and paralogs were calculated and compared across legumes. These analyses suggest the closest relationship between Gm and Cc and the farthest distance between Mt and Pv in 6 legumes. Ks proportional plots clearly showed ancient genome duplication in all legumes, whole genome duplication event in Gm and also speciation pattern in different legumes. This study also reported some interesting observations e.g. no peak at Ks 0.4 in Gm-Gm, location of two independent genes next to each other in Mt and low Ks values for outparalogs for three genes as compared to other 12 genes. In summary, this study underlines the importance of NF-related genes and provides important insights in genome organization and evolutionary aspects of six legume species analyzed.

  8. Comparative d2/d3 LSU–rDNA sequence study of some Iranian ...

    African Journals Online (AJOL)

    SERVER

    2007-11-05

    Nov 5, 2007 ... segments yielded one fragment at over all sequenced isolates as 787 bp in size. The DNA sequences were aligned .... expansion segments of the 28S rDNA subunit (D2/D3. LSU-rDNA) are the ... isolated from different geographical location from tea shrubs infested roots of Guilan province, Iran (Table 1).

  9. Comparative analysis of differentially expressed sequence tags of sweet orange and mandarin infected with Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Alessandra A. de Souza

    2007-01-01

    Full Text Available The Citrus ESTs Sequencing Project (CitEST conducted at Centro APTA Citros Sylvio Moreira/IAC has identified and catalogued ESTs representing a set of citrus genes expressed under relevant stress responses, including diseases such as citrus variegated chlorosis (CVC, caused by Xylella fastidiosa. All sweet orange (Citrus sinensis L. Osb. varieties are susceptible to X. fastidiosa. On the other hand, mandarins (C. reticulata Blanco are considered tolerant or resistant to the disease, although the bacterium can be sporadically detected within the trees, but no disease symptoms or economic losses are observed. To study their genetic responses to the presence of X. fastidiosa, we have compared EST libraries of leaf tissue of sweet orange Pêra IAC (highly susceptible cultivar to X. fastidiosa and mandarin ‘Ponkan’ (tolerant artificially infected with the bacterium. Using an in silico differential display, 172 genes were found to be significantly differentially expressed in such conditions. Sweet orange presented an increase in expression of photosynthesis related genes that could reveal a strategy to counterbalance a possible lower photosynthetic activity resulting from early effects of the bacterial colonization in affected plants. On the other hand, mandarin showed an active multi-component defense response against the bacterium similar to the non-host resistance pattern.

  10. Comparative sequence analysis of acid sensitive/resistance proteins in Escherichia coli and Shigella flexneri

    Science.gov (United States)

    Manikandan, Selvaraj; Balaji, Seetharaaman; Kumar, Anil; Kumar, Rita

    2007-01-01

    The molecular basis for the survival of bacteria under extreme conditions in which growth is inhibited is a question of great current interest. A preliminary study was carried out to determine residue pattern conservation among the antiporters of enteric bacteria, responsible for extreme acid sensitivity especially in Escherichia coli and Shigella flexneri. Here we found the molecular evidence that proved the relationship between E. coli and S. flexneri. Multiple sequence alignment of the gadC coded acid sensitive antiporter showed many conserved residue patterns at regular intervals at the N-terminal region. It was observed that as the alignment approaches towards the C-terminal, the number of conserved residues decreases, indicating that the N-terminal region of this protein has much active role when compared to the carboxyl terminal. The motif, FHLVFFLLLGG, is well conserved within the entire gadC coded protein at the amino terminal. The motif is also partially conserved among other antiporters (which are not coded by gadC) but involved in acid sensitive/resistance mechanism. Phylogenetic cluster analysis proves the relationship of Escherichia coli and Shigella flexneri. The gadC coded proteins are converged as a clade and diverged from other antiporters belongs to the amino acid-polyamine-organocation (APC) superfamily. PMID:21670792

  11. Characterization of Three Mycobacterium spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics.

    Science.gov (United States)

    Das, Sarbashis; Pettersson, B M Fredrik; Behra, Phani Rama Krishna; Ramesh, Malavika; Dasgupta, Santanu; Bhattacharya, Alok; Kirsebom, Leif A

    2015-06-16

    We provide the genome sequences of the type strains of the polychlorophenol-degrading Mycobacterium chlorophenolicum (DSM43826), the degrader of chlorinated aliphatics Mycobacterium chubuense (DSM44219) and Mycobacterium obuense (DSM44075) that has been tested for use in cancer immunotherapy. The genome sizes of M. chlorophenolicum, M. chubuense, and M. obuense are 6.93, 5.95, and 5.58 Mb with GC-contents of 68.4%, 69.2%, and 67.9%, respectively. Comparative genomic analysis revealed that 3,254 genes are common and we predicted approximately 250 genes acquired through horizontal gene transfer from different sources including proteobacteria. The data also showed that the biodegrading Mycobacterium spp. NBB4, also referred to as M. chubuense NBB4, is distantly related to the M. chubuense type strain and should be considered as a separate species, we suggest it to be named Mycobacterium ethylenense NBB4. Among different categories we identified genes with potential roles in: biodegradation of aromatic compounds and copper homeostasis. These are the first nonpathogenic Mycobacterium spp. found harboring genes involved in copper homeostasis. These findings would therefore provide insight into the role of this group of Mycobacterium spp. in bioremediation as well as the evolution of copper homeostasis within the Mycobacterium genus. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution.

    Science.gov (United States)

    2004-12-09

    We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.

  13. Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

    Science.gov (United States)

    Shang, Yanfang; Duan, Zhibing; Hu, Xiao; Xie, Xue-Qin; Zhou, Gang; Peng, Guoxiong; Luo, Zhibing; Huang, Wei; Wang, Bing; Fang, Weiguo; Wang, Sibao; Zhong, Yi; Ma, Li-Jun; St. Leger, Raymond J.; Zhao, Guo-Ping; Pei, Yan; Feng, Ming-Guang; Xia, Yuxian; Wang, Chengshu

    2011-01-01

    Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains

  14. Efficient use of unlabeled data for protein sequence classification: a comparative study.

    Science.gov (United States)

    Kuksa, Pavel; Huang, Pai-Hsi; Pavlovic, Vladimir

    2009-04-29

    Recent studies in computational primary protein sequence analysis have leveraged the power of unlabeled data. For example, predictive models based on string kernels trained on sequences known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly improved accuracy if this data is supplemented with protein sequences that lack any class tags-the unlabeled data. In this study, we present a principled and biologically motivated computational framework that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated databases may bias the estimation of computational models that rely on unlabeled data, we also propose a method to remove this bias and improve performance of the resulting classifiers. Combined with state-of-the-art string kernels, our proposed computational framework achieves very accurate semi-supervised protein remote fold and homology detection on three large unlabeled databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running time. The unlabeled sequences used under the semi-supervised setting resemble the unpolished gemstones; when used as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and polished, they improve the accuracy of the classifiers considerably.

  15. Comparative Genomics in Switchgrass Using 61,585 High-Quality Expressed Sequence Tags

    Directory of Open Access Journals (Sweden)

    Christian M. Tobias

    2008-11-01

    Full Text Available The development of genomic resources for switchgrass ( L., a perennial NAD-malic enzyme type C grass, is required to enable molecular breeding and biotechnological approaches for improving its value as a forage and bioenergy crop. Expressed sequence tag (EST sequencing is one method that can quickly sample gene inventories and produce data suitable for marker development or analysis of tissue-specific patterns of expression. Toward this goal, three cDNA libraries from callus, crown, and seedling tissues of ‘Kanlow’ switchgrass were end-sequenced to generate a total of 61,585 high-quality ESTs from 36,565 separate clones. Seventy-three percent of the assembled consensus sequences could be aligned with the sorghum [ (L. Moench] genome at a -value of <1 × 10, indicating a high degree of similarity. Sixty-five percent of the ESTs matched with gene ontology molecular terms, and 3.3% of the sequences were matched with genes that play potential roles in cell-wall biogenesis. The representation in the three libraries of gene families known to be associated with C photosynthesis, cellulose and β-glucan synthesis, phenylpropanoid biosynthesis, and peroxidase activity indicated likely roles for individual family members. Pairwise comparisons of synonymous codon substitutions were used to assess genome sequence diversity and indicated an overall similarity between the two genome copies present in the tetraploid. Identification of EST–simple sequence repeat markers and amplification on two individual parents of a mapping population yielded an average of 2.18 amplicons per individual, and 35% of the markers produced fragment length polymorphisms.

  16. Mitochondrial genome sequences and comparative genomics ofPhytophthora ramorum and P. sojae

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Frank N.; Douda, Bensasson; Tyler, Brett M.; Boore,Jeffrey L.

    2007-01-01

    The complete sequences of the mitochondrial genomes of theoomycetes of Phytophthora ramorum and P. sojae were determined during thecourse of their complete nuclear genome sequencing (Tyler, et al. 2006).Both are circular, with sizes of 39,314 bp for P. ramorum and 42,975 bpfor P. sojae. Each contains a total of 37 identifiable protein-encodinggenes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively)specifying19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12for P. sojae) which are potentially additional functional genes.Non-coding regions comprise approximately 11.5 percent and 18.4 percentof the genomes of P. ramorum and P. sojae, respectively. Relative to P.sojae, there is an inverted repeat of 1,150 bp in P. ramorum thatincludes an unassigned unique ORF, a tRNA gene, and adjacent non-codingsequences, but otherwise the gene order in both species is identical.Comparisons of these genomes with published sequences of the P. infestansmitochondrial genome reveals a number of similarities, but the gene orderin P. infestans differs in two adjacent locations due to inversions.Sequence alignments of the three genomes indicated sequence conservationranging from 75 to 85 percent and that specific regions were morevariable than others.

  17. Antibody-based screening for hereditary nonpolyposis colorectal carcinoma compared with microsatellite analysis and sequencing

    DEFF Research Database (Denmark)

    Christensen, Mariann; Katballe, Niels; Wikman, Friedrik

    2002-01-01

    BACKGROUND: Germline mutations in the DNA mismatch repair genes, MSH2, MLH1, and others are associated with hereditary nonpolyposis colorectal cancer (HNPCC). Due to the high costs of sequencing, cheaper screening methods are needed to identify HNPCC cases. Ideally, these methods should have a high...... carcinoma of whom 11 met the Amsterdam criteria and 31 were suspected to belong to HNPCC families. Thirty-five patients were examined by microsatellite analysis, 40 by immunohistochemical staining, and in 31 patients both the MLH1 and MSH2 genes were sequenced. RESULTS: Ninety-two percent of patients...... the three methods was found in 74 % of the tumors. CONCLUSIONS: The authors suggest that immunohistochemistry should be used in combination with microsatellite analysis to prescreen suspected HNPCC patients for the selection of cases where sequencing of the MLH1 and MSH2 mismatch repair genes is indicated....

  18. Quantification of massively parallel sequencing libraries - a comparative study of eight methods

    DEFF Research Database (Denmark)

    Hussing, Christian; Kampmann, Marie-Louise; Mogensen, Helle Smidt

    2018-01-01

    Quantification of massively parallel sequencing libraries is important for acquisition of monoclonal beads or clusters prior to clonal amplification and to avoid large variations in library coverage when multiple samples are included in one sequencing analysis. No gold standard for quantification...... estimates followed by Qubit and electrophoresis-based instruments (Bioanalyzer, TapeStation, GX Touch, and Fragment Analyzer), while SYBR Green and TaqMan based qPCR assays gave the lowest estimates. qPCR gave more accurate predictions of sequencing coverage than Qubit and TapeStation did. Costs, time......-consumption, workflow simplicity, and ability to quantify multiple samples are discussed. Technical specifications, advantages, and disadvantages of the various methods are pointed out....

  19. Comparative analysis of full genomic sequences among different genotypes of dengue virus type 3

    Directory of Open Access Journals (Sweden)

    Lin Ting-Hsiang

    2008-05-01

    Full Text Available Abstract Background Although the previous study demonstrated the envelope protein of dengue viruses is under purifying selection pressure, little is known about the genetic differences of full-length viral genomes of DENV-3. In our study, complete genomic sequencing of DENV-3 strains collected from different geographical locations and isolation years were determined and the sequence diversity as well as selection pressure sites in the DENV genome other than within the E gene were also analyzed. Results Using maximum likelihood and Bayesian approaches, our phylogenetic analysis revealed that the Taiwan's indigenous DENV-3 isolated from 1994 and 1998 dengue/DHF epidemics and one 1999 sporadic case were of the three different genotypes – I, II, and III, each associated with DENV-3 circulating in Indonesia, Thailand and Sri Lanka, respectively. Sequence diversity and selection pressure of different genomic regions among DENV-3 different genotypes was further examined to understand the global DENV-3 evolution. The highest nucleotide sequence diversity among the fully sequenced DENV-3 strains was found in the nonstructural protein 2A (mean ± SD: 5.84 ± 0.54 and envelope protein gene regions (mean ± SD: 5.04 ± 0.32. Further analysis found that positive selection pressure of DENV-3 may occur in the non-structural protein 1 gene region and the positive selection site was detected at position 178 of the NS1 gene. Conclusion Our study confirmed that the envelope protein is under purifying selection pressure although it presented higher sequence diversity. The detection of positive selection pressure in the non-structural protein along genotype II indicated that DENV-3 originated from Southeast Asia needs to monitor the emergence of DENV strains with epidemic potential for better epidemic prevention and vaccine development.

  20. Comparative analysis of protein coding sequences from human, mouse and the domesticated pig

    DEFF Research Database (Denmark)

    Jørgensen, Frank Grønlund; Hobolth, Asger; Hornshøj, Henrik

    2005-01-01

    Background: The availability of abundant sequence data from key model organisms has made large scale studies of mulecular evolution an exciting possibility. Here we use full length cDNA alignments comprising more than 700,000 nucleotides from human, mouse, pig and the Japanese pufferfish Fugu rub...... rubrices in order to investigate 1) the relationships between three major lineages of mammals: rodents, artiodactys and primates, and 2) the rate of evolution and the occurrence of positive Darwinian selection using codon based models of sequence evolution. Results: We provide evidence...

  1. Comparative Sequence Analysis of Plasmids from Lactobacillus delbrueckii and Construction of a Shuttle Cloning Vector▿

    Science.gov (United States)

    Lee, Ju-Hoon; Halgerson, Jamie S.; Kim, Jeong-Hwan; O'Sullivan, Daniel J.

    2007-01-01

    While plasmids are very commonly associated with the majority of the lactic acid bacteria, they are only very rarely associated with Lactobacillus delbrueckii, with only four characterized to date. In this study, the complete sequence of a native plasmid, pDOJ1, from a strain of Lactobacillus delbrueckii subsp. bulgaricus was determined. It consisted of a circular DNA molecule of 6,220 bp with a G+C content of 44.6% and a characteristic ori and encoded six open reading frames (ORFs), of which functions could be predicted for three—a mobilization (Mob) protein, a transposase, and a fused primase-helicase replication protein. Comparative analysis of pDOJ1 and the other available L. delbrueckii plasmids (pLBB1, pJBL2, pN42, and pLL1212) revealed a very similar organization and amino acid identities between 85 and 98% for the putative proteins of all six predicted ORFs from pDOJ1, reflecting a common origin for L. delbrueckii plasmids. Analysis of the fused primase-helicase replication gene found a similar fused organization only in the theta replicating group B plasmids from Streptococcus thermophilus. This observation and the ability of the replicon to function in S. thermophilus support the idea that the origin of plasmids in L. delbrueckii was likely from S. thermophilus. This may reflect the close association of these two species in dairy fermentations, particularly yogurt production. As no vector based on plasmid replicons from L. delbrueckii has previously been constructed, an Escherichia coli-L. delbrueckii shuttle cloning vector, pDOJ4, was constructed from pDOJ1, the p15A ori, the chloramphenicol resistance gene of pCI372, and the lacZ polylinker from pUC18. This cloning vector was successfully introduced into E. coli, L. delbrueckii subsp. bulgaricus, S. thermophilus, and Lactococcus lactis. This shuttle cloning vector provides a new tool for molecular analysis of Lactobacillus delbrueckii and other lactic acid bacteria. PMID:17526779

  2. Rapid sequence induction and intubation with rocuronium-sugammadex compared with succinylcholine

    DEFF Research Database (Denmark)

    Sørensen, M K; Bretlau, C; Gätke, M R

    2012-01-01

    An unanticipated difficult airway may arise during rapid sequence induction and intubation (RSII). The aim of the trial was to assess how rapidly spontaneous ventilation could be re-established after RSII. We hypothesized that the time period from tracheal intubation to spontaneous ventilation wo...... would be shorter with rocuronium-sugammadex than with succinylcholine....

  3. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    Science.gov (United States)

    Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  4. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    Directory of Open Access Journals (Sweden)

    Jianmin Fu

    Full Text Available Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  5. Sequence-based comparative study of classical swine fever virus genogroup 2.2 isolate with pestivirus reference strains.

    Science.gov (United States)

    Kumar, Ravi; Rajak, Kaushal Kishor; Chandra, Tribhuwan; Muthuchelvan, Dhanavelu; Saxena, Arpit; Chaudhary, Dheeraj; Kumar, Ajay; Pandey, Awadh Bihari

    2015-09-01

    This study was undertaken with the aim to compare and establish the genetic relatedness between classical swine fever virus (CSFV) genogroup 2.2 isolate and pestivirus reference strains. The available complete genome sequences of CSFV/IND/UK/LAL-290 strain and other pestivirus reference strains were retrieved from GenBank. The complete genome sequence, complete open reading frame, 5' and 3' non-coding region (NCR) sequences were analyzed and compared with reference pestiviruses strains. Clustal W model in MegAlign program of Lasergene 6.0 software was used for analysis of genetic heterogeneity. Phylogenetic analysis was carried out using MEGA 6.06 software package. The complete genome sequence alignment of CSFV/IND/UK/LAL-290 isolate and reference pestivirus strains showed 58.9-72% identities at the nucleotide level and 50.3-76.9% at amino acid level. Sequence homology of 5' and 3' NCRs was found to be 64.1-82.3% and 22.9-71.4%, respectively. In phylogenetic analysis, overall tree topology was found similar irrespective of sequences used in this study; however, whole genome phylogeny of pestivirus formed two main clusters, which further distinguished into the monophyletic clade of each pestivirus species. CSFV/IND/UK/LAL-290 isolate placed with the CSFV Eystrup strain in the same clade with close proximity to border disease virus and Aydin strains. CSFV/IND/UK/LAL-290 exhibited the analogous genomic organization to those of all reference pestivirus strains. Based on sequence identity and phylogenetic analysis, the isolate showed close homology to Aydin/04-TR virus and distantly related to Bungowannah virus.

  6. Whole-Genome Sequencing and Comparative Genome Analysis of Bacillus subtilis Strains Isolated from Non-Salted Fermented Soybean Foods.

    Directory of Open Access Journals (Sweden)

    Mayumi Kamada

    Full Text Available Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA, we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from "Tua Nao" of Thailand traces a different evolutionary process from other strains.

  7. Comparative analysis of idiom selection and sequencing 5 in Estonian basic school EFL coursebooks

    Directory of Open Access Journals (Sweden)

    Rita Anita Forssten

    2017-05-01

    Full Text Available The article investigates the selection and sequencing of the idioms encountered in two locally-produced and international coursebook series currently employed in Estonian basic schools. It is hypothesized that there exists a positive correlation between idioms’ difficulty and coursebooks’ language proficiency level. The hypothesis is tested through a statistical analysis of the idioms found which are categorized in terms of their analysability into three categories where category 1 includes analysable semi-literal idioms, category 2 comprises analysable semi-transparent idioms, and category 3 encompasses non-analysable opaque idioms, and then analysed through an online language corpus (British National Corpus. The results of the study reveal that the coursebook authors under discussion have disregarded idioms’ frequency as a criterion for selection or sequencing, whereas the factor utilized to some extent is the degree of analysability.

  8. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    OpenAIRE

    Kubicek, Christian P.; Herrera-Estrella, Alfredo; Seidl-Seiboth, Verena; Martinez, Diego A.; Druzhinina, Irina S.; Thon, Michael; Zeilinger, Susanne; Casas-Flores, Sergio; Horwitz, Benjamin A.; Mukherjee, Prasun K.; Mukherjee, Mala; Kredics, László; Alcaraz, Luis D.; Aerts, Andrea; Antal, Zsuzsanna

    2011-01-01

    Background Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Results Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocl...

  9. The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis.

    Science.gov (United States)

    Yao, Xiaohong; Tang, Ping; Li, Zuozhou; Li, Dawei; Liu, Yifei; Huang, Hongwen

    2015-01-01

    Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.

  10. Comparative transcriptome sequencing and de novo analysis of Vaccinium corymbosum during fruit and color development.

    Science.gov (United States)

    Li, Lingli; Zhang, Hehua; Liu, Zhongshuai; Cui, Xiaoyue; Zhang, Tong; Li, Yanfang; Zhang, Lingyun

    2016-10-12

    Blueberry is an economically important fruit crop in Ericaceae family. The substantial quantities of flavonoids in blueberry have been implicated in a broad range of health benefits. However, the information regarding fruit development and flavonoid metabolites based on the transcriptome level is still limited. In the present study, the transcriptome and gene expression profiling over berry development, especially during color development were initiated. A total of approximately 13.67 Gbp of data were obtained and assembled into 186,962 transcripts and 80,836 unigenes from three stages of blueberry fruit and color development. A large number of simple sequence repeats (SSRs) and candidate genes, which are potentially involved in plant development, metabolic and hormone pathways, were identified. A total of 6429 sequences containing 8796 SSRs were characterized from 15,457 unigenes and 1763 unigenes contained more than one SSR. The expression profiles of key genes involved in anthocyanin biosynthesis were also studied. In addition, a comparison between our dataset and other published results was carried out. Our high quality reads produced in this study are an important advancement and provide a new resource for the interpretation of high-throughput data for blueberry species whether regarding sequencing data depth or species extension. The use of this transcriptome data will serve as a valuable public information database for the studies of blueberry genome and would greatly boost the research of fruit and color development, flavonoid metabolisms and regulation and breeding of more healthful blueberries.

  11. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database.

    Science.gov (United States)

    Carver, Tim; Berriman, Matthew; Tivey, Adrian; Patel, Chinmay; Böhme, Ulrike; Barrell, Barclay G; Parkhill, Julian; Rajandream, Marie-Adèle

    2008-12-01

    Artemis and Artemis Comparison Tool (ACT) have become mainstream tools for viewing and annotating sequence data, particularly for microbial genomes. Since its first release, Artemis has been continuously developed and supported with additional functionality for editing and analysing sequences based on feedback from an active user community of laboratory biologists and professional annotators. Nevertheless, its utility has been somewhat restricted by its limitation to reading and writing from flat files. Therefore, a new version of Artemis has been developed, which reads from and writes to a relational database schema, and allows users to annotate more complex, often large and fragmented, genome sequences. Artemis and ACT have now been extended to read and write directly to the Generic Model Organism Database (GMOD, http://www.gmod.org) Chado relational database schema. In addition, a Gene Builder tool has been developed to provide structured forms and tables to edit coordinates of gene models and edit functional annotation, based on standard ontologies, controlled vocabularies and free text. Artemis and ACT are freely available (under a GPL licence) for download (for MacOSX, UNIX and Windows) at the Wellcome Trust Sanger Institute web sites: http://www.sanger.ac.uk/Software/Artemis/ http://www.sanger.ac.uk/Software/ACT/

  12. Complete Plastid Genome Sequencing of Four Tilia Species (Malvaceae: A Comparative Analysis and Phylogenetic Implications.

    Directory of Open Access Journals (Sweden)

    Jie Cai

    Full Text Available Tilia is an ecologically and economically important genus in the family Malvaceae. However, there is no complete plastid genome of Tilia sequenced to date, and the taxonomy of Tilia is difficult owing to frequent hybridization and polyploidization. A well-supported interspecific relationships of this genus is not available due to limited informative sites from the commonly used molecular markers. We report here the complete plastid genome sequences of four Tilia species determined by the Illumina technology. The Tilia plastid genome is 162,653 bp to 162,796 bp in length, encoding 113 unique genes and a total number of 130 genes. The gene order and organization of the Tilia plastid genome exhibits the general structure of angiosperms and is very similar to other published plastid genomes of Malvaceae. As other long-lived tree genera, the sequence divergence among the four Tilia plastid genomes is very low. And we analyzed the nucleotide substitution patterns and the evolution of insertions and deletions in the Tilia plastid genomes. Finally, we build a phylogeny of the four sampled Tilia species with high supports using plastid phylogenomics, suggesting that it is an efficient way to resolve the phylogenetic relationships of this genus.

  13. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database

    Science.gov (United States)

    Carver, Tim; Berriman, Matthew; Tivey, Adrian; Patel, Chinmay; Böhme, Ulrike; Barrell, Barclay G.; Parkhill, Julian; Rajandream, Marie-Adèle

    2008-01-01

    Motivation: Artemis and Artemis Comparison Tool (ACT) have become mainstream tools for viewing and annotating sequence data, particularly for microbial genomes. Since its first release, Artemis has been continuously developed and supported with additional functionality for editing and analysing sequences based on feedback from an active user community of laboratory biologists and professional annotators. Nevertheless, its utility has been somewhat restricted by its limitation to reading and writing from flat files. Therefore, a new version of Artemis has been developed, which reads from and writes to a relational database schema, and allows users to annotate more complex, often large and fragmented, genome sequences. Results: Artemis and ACT have now been extended to read and write directly to the Generic Model Organism Database (GMOD, http://www.gmod.org) Chado relational database schema. In addition, a Gene Builder tool has been developed to provide structured forms and tables to edit coordinates of gene models and edit functional annotation, based on standard ontologies, controlled vocabularies and free text. Availability: Artemis and ACT are freely available (under a GPL licence) for download (for MacOSX, UNIX and Windows) at the Wellcome Trust Sanger Institute web sites: http://www.sanger.ac.uk/Software/Artemis/ http://www.sanger.ac.uk/Software/ACT/ Contact: artemis@sanger.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18845581

  14. Full-length cDNA sequences from Rhesus monkey placenta tissue: analysis and utility for comparative mapping

    Directory of Open Access Journals (Sweden)

    Lee Sang-Rae

    2010-07-01

    Full Text Available Abstract Background Rhesus monkeys (Macaca mulatta are widely-used as experimental animals in biomedical research and are closely related to other laboratory macaques, such as cynomolgus monkeys (Macaca fascicularis, and to humans, sharing a last common ancestor from about 25 million years ago. Although rhesus monkeys have been studied extensively under field and laboratory conditions, research has been limited by the lack of genetic resources. The present study generated placenta full-length cDNA libraries, characterized the resulting expressed sequence tags, and described their utility for comparative mapping with human RefSeq mRNA transcripts. Results From rhesus monkey placenta full-length cDNA libraries, 2000 full-length cDNA sequences were determined and 1835 rhesus placenta cDNA sequences longer than 100 bp were collected. These sequences were annotated based on homology to human genes. Homology search against human RefSeq mRNAs revealed that our collection included the sequences of 1462 putative rhesus monkey genes. Moreover, we identified 207 genes containing exon alterations in the coding region and the untranslated region of rhesus monkey transcripts, despite the highly conserved structure of the coding regions. Approximately 10% (187 of all full-length cDNA sequences did not represent any public human RefSeq mRNAs. Intriguingly, two rhesus monkey specific exons derived from the transposable elements of AluYRa2 (SINE family and MER11B (LTR family were also identified. Conclusion The 1835 rhesus monkey placenta full-length cDNA sequences described here could expand genomic resources and information of rhesus monkeys. This increased genomic information will greatly contribute to the development of evolutionary biology and biomedical research.

  15. Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database

    Directory of Open Access Journals (Sweden)

    Marais Gabriel AB

    2011-07-01

    Full Text Available Abstract Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO terms, and thousands of single-nucleotide polymorphisms (SNPs were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49% that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to

  16. Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database

    Science.gov (United States)

    2011-01-01

    Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO) terms, and thousands of single-nucleotide polymorphisms (SNPs) were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49%) that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to further develop Silene as a

  17. Core Genome Multilocus Sequence Typing Scheme for Stable, Comparative Analyses of Campylobacter jejuni and C. coli Human Disease Isolates.

    Science.gov (United States)

    Cody, Alison J; Bray, James E; Jolley, Keith A; McCarthy, Noel D; Maiden, Martin C J

    2017-07-01

    Human campylobacteriosis, caused by Campylobacter jejuni and C. coli , remains a leading cause of bacterial gastroenteritis in many countries, but the epidemiology of campylobacteriosis outbreaks remains poorly defined, largely due to limitations in the resolution and comparability of isolate characterization methods. Whole-genome sequencing (WGS) data enable the improvement of sequence-based typing approaches, such as multilocus sequence typing (MLST), by substantially increasing the number of loci examined. A core genome MLST (cgMLST) scheme defines a comprehensive set of those loci present in most members of a bacterial group, balancing very high resolution with comparability across the diversity of the group. Here we propose a set of 1,343 loci as a human campylobacteriosis cgMLST scheme (v1.0), the allelic profiles of which can be assigned to core genome sequence types. The 1,343 loci chosen were a subset of the 1,643 loci identified in the reannotation of the genome sequence of C. jejuni isolate NCTC 11168, chosen as being present in >95% of draft genomes of 2,472 representative United Kingdom campylobacteriosis isolates, comprising 2,207 (89.3%) C. jejuni isolates and 265 (10.7%) C. coli isolates. Validation of the cgMLST scheme was undertaken with 1,478 further high-quality draft genomes, containing 150 or fewer contiguous sequences, from disease isolate collections: 99.5% of these isolates contained ≥95% of the 1,343 cgMLST loci. In addition to the rapid and effective high-resolution analysis of large numbers of diverse isolates, the cgMLST scheme enabled the efficient identification of very closely related isolates from a well-defined single-source campylobacteriosis outbreak. Copyright © 2017 Cody et al.

  18. Complete Chloroplast Genome Sequence of Tartary Buckwheat (Fagopyrum tataricum and Comparative Analysis with Common Buckwheat (F. esculentum.

    Directory of Open Access Journals (Sweden)

    Kwang-Soo Cho

    Full Text Available We report the chloroplast (cp genome sequence of tartary buckwheat (Fagopyrum tataricum obtained by next-generation sequencing technology and compared this with the previously reported common buckwheat (F. esculentum ssp. ancestrale cp genome. The cp genome of F. tataricum has a total sequence length of 159,272 bp, which is 327 bp shorter than the common buckwheat cp genome. The cp gene content, order, and orientation are similar to those of common buckwheat, but with some structural variation at tandem and palindromic repeat frequencies and junction areas. A total of seven InDels (around 100 bp were found within the intergenic sequences and the ycf1 gene. Copy number variation of the 21-bp tandem repeat varied in F. tataricum (four repeats and F. esculentum (one repeat, and the InDel of the ycf1 gene was 63 bp long. Nucleotide and amino acid have highly conserved coding sequence with about 98% homology and four genes--rpoC2, ycf3, accD, and clpP--have high synonymous (Ks value. PCR based InDel markers were applied to diverse genetic resources of F. tataricum and F. esculentum, and the amplicon size was identical to that expected in silico. Therefore, these InDel markers are informative biomarkers to practically distinguish raw or processed buckwheat products derived from F. tataricum and F. esculentum.

  19. Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2017-03-01

    Full Text Available Willow is a widely used dioecious woody plant of Salicaceae family in China. Due to their high biomass yields, willows are promising sources for bioenergy crops. In this study, we assembled the complete mitochondrial (mt genome sequence of S. suchowensis with the length of 644,437 bp using Roche-454 GS FLX Titanium sequencing technologies. Base composition of the S. suchowensis mt genome is A (27.43%, T (27.59%, C (22.34%, and G (22.64%, which shows a prevalent GC content with that of other angiosperms. This long circular mt genome encodes 58 unique genes (32 protein-coding genes, 23 tRNA genes and 3 rRNA genes, and 9 of the 32 protein-coding genes contain 17 introns. Through the phylogenetic analysis of 35 species based on 23 protein-coding genes, it is supported that Salix as a sister to Populus. With the detailed phylogenetic information and the identification of phylogenetic position, some ribosomal protein genes and succinate dehydrogenase genes are found usually lost during evolution. As a native shrub willow species, this worthwhile research of S. suchowensis mt genome will provide more desirable information for better understanding the genomic breeding and missing pieces of sex determination evolution in the future.

  20. Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation

    DEFF Research Database (Denmark)

    Czaban, Adrian; Sharma, Sapna; Byrne, Stephen

    2015-01-01

    species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family...... clusters for the four species using OrthoMCL and analyzed their inferred phylogenetic relationships. Our results indicate that VRN2 is a candidate gene for differentiating vernalization and non-vernalization types in the Lolium-Festuca complex. Grouping of the gene families based on their BLAST identity...... enabled us to divide ortholog groups into those that are very conserved and those that are more evolutionarily relaxed. The ratio of the non-synonumous to synonymous substitutions enabled us to pinpoint protein sequences evolving in response to positive selection. These proteins may explain some...

  1. Comparing microarrays and next-generation sequencing technologies for microbial ecology research.

    Science.gov (United States)

    Roh, Seong Woon; Abell, Guy C J; Kim, Kyoung-Ho; Nam, Young-Do; Bae, Jin-Woo

    2010-06-01

    Recent advances in molecular biology have resulted in the application of DNA microarrays and next-generation sequencing (NGS) technologies to the field of microbial ecology. This review aims to examine the strengths and weaknesses of each of the methodologies, including depth and ease of analysis, throughput and cost-effectiveness. It also intends to highlight the optimal application of each of the individual technologies toward the study of a particular environment and identify potential synergies between the two main technologies, whereby both sample number and coverage can be maximized. We suggest that the efficient use of microarray and NGS technologies will allow researchers to advance the field of microbial ecology, and importantly, improve our understanding of the role of microorganisms in their various environments.

  2. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models

    Science.gov (United States)

    Keeler, James D.

    1987-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  3. No more non-model species: the promise of next generation sequencing for comparative immunology.

    Science.gov (United States)

    Dheilly, Nolwenn M; Adema, Coen; Raftos, David A; Gourbal, Benjamin; Grunau, Christoph; Du Pasquier, Louis

    2014-07-01

    Next generation sequencing (NGS) allows for the rapid, comprehensive and cost effective analysis of entire genomes and transcriptomes. NGS provides approaches for immune response gene discovery, profiling gene expression over the course of parasitosis, studying mechanisms of diversification of immune receptors and investigating the role of epigenetic mechanisms in regulating immune gene expression and/or diversification. NGS will allow meaningful comparisons to be made between organisms from different taxa in an effort to understand the selection of diverse strategies for host defence under different environmental pathogen pressures. At the same time, it will reveal the shared and unique components of the immunological toolkit and basic functional aspects that are essential for immune defence throughout the living world. In this review, we argue that NGS will revolutionize our understanding of immune responses throughout the animal kingdom because the depth of information it provides will circumvent the need to concentrate on a few "model" species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing

    Directory of Open Access Journals (Sweden)

    Volckaert Filip AM

    2010-01-01

    Full Text Available Abstract Background Food supply from the ocean is constrained by the shortage of domesticated and selected fish. Development of genomic models of economically important fishes should assist with the removal of this bottleneck. European sea bass Dicentrarchus labrax L. (Moronidae, Perciformes, Teleostei is one of the most important fishes in European marine aquaculture; growing genomic resources put it on its way to serve as an economic model. Results End sequencing of a sea bass genomic BAC-library enabled the comparative mapping of the sea bass genome using the three-spined stickleback Gasterosteus aculeatus genome as a reference. BAC-end sequences (102,690 were aligned to the stickleback genome. The number of mappable BACs was improved using a two-fold coverage WGS dataset of sea bass resulting in a comparative BAC-map covering 87% of stickleback chromosomes with 588 BAC-contigs. The minimum size of 83 contigs covering 50% of the reference was 1.2 Mbp; the largest BAC-contig comprised 8.86 Mbp. More than 22,000 BAC-clones aligned with both ends to the reference genome. Intra-chromosomal rearrangements between sea bass and stickleback were identified. Size distributions of mapped BACs were used to calculate that the genome of sea bass may be only 1.3 fold larger than the 460 Mbp stickleback genome. Conclusions The BAC map is used for sequencing single BACs or BAC-pools covering defined genomic entities by second generation sequencing technologies. Together with the WGS dataset it initiates a sea bass genome sequencing project. This will allow the quantification of polymorphisms through resequencing, which is important for selecting highly performing domesticated fish.

  5. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae.

    Science.gov (United States)

    Redwan, R M; Saidin, A; Kumar, S V

    2015-08-12

    Pineapple (Ananas comosus var. comosus) is known as the king of fruits for its crown and is the third most important tropical fruit after banana and citrus. The plant, which is indigenous to South America, is the most important species in the Bromeliaceae family and is largely traded for fresh fruit consumption. Here, we report the complete chloroplast sequence of the MD-2 pineapple that was sequenced using the PacBio sequencing technology. In this study, the high error rate of PacBio long sequence reads of A. comosus's total genomic DNA were improved by leveraging on the high accuracy but short Illumina reads for error-correction via the latest error correction module from Novocraft. Error corrected long PacBio reads were assembled by using a single tool to produce a contig representing the pineapple chloroplast genome. The genome of 159,636 bp in length is featured with the conserved quadripartite structure of chloroplast containing a large single copy region (LSC) with a size of 87,482 bp, a small single copy region (SSC) with a size of 18,622 bp and two inverted repeat regions (IRA and IRB) each with the size of 26,766 bp. Overall, the genome contained 117 unique coding regions and 30 were repeated in the IR region with its genes contents, structure and arrangement similar to its sister taxon, Typha latifolia. A total of 35 repeats structure were detected in both the coding and non-coding regions with a majority being tandem repeats. In addition, 205 SSRs were detected in the genome with six protein-coding genes contained more than two SSRs. Comparative chloroplast genomes from the subclass Commelinidae revealed a conservative protein coding gene albeit located in a highly divergence region. Analysis of selection pressure on protein-coding genes using Ka/Ks ratio showed significant positive selection exerted on the rps7 gene of the pineapple chloroplast with P less than 0.05. Phylogenetic analysis confirmed the recent taxonomical relation among the member of

  6. The complete chloroplast genome sequences of Lychnis wilfordii and Silene capitata and comparative analyses with other Caryophyllaceae genomes.

    Science.gov (United States)

    Kang, Jong-Soo; Lee, Byoung Yoon; Kwak, Myounghai

    2017-01-01

    The complete chloroplast genomes of Lychnis wilfordii and Silene capitata were determined and compared with ten previously reported Caryophyllaceae chloroplast genomes. The chloroplast genome sequences of L. wilfordii and S. capitata contain 152,320 bp and 150,224 bp, respectively. The gene contents and orders among 12 Caryophyllaceae species are consistent, but several microstructural changes have occurred. Expansion of the inverted repeat (IR) regions at the large single copy (LSC)/IRb and small single copy (SSC)/IR boundaries led to partial or entire gene duplications. Additionally, rearrangements of the LSC region were caused by gene inversions and/or transpositions. The 18 kb inversions, which occurred three times in different lineages of tribe Sileneae, were thought to be facilitated by the intermolecular duplicated sequences. Sequence analyses of the L. wilfordii and S. capitata genomes revealed 39 and 43 repeats, respectively, including forward, palindromic, and reverse repeats. In addition, a total of 67 and 56 simple sequence repeats were discovered in the L. wilfordii and S. capitata chloroplast genomes, respectively. Finally, we constructed phylogenetic trees of the 12 Caryophyllaceae species and two Amaranthaceae species based on 73 protein-coding genes using both maximum parsimony and likelihood methods.

  7. Mason: a JavaScript web site widget for visualizing and comparing annotated features in nucleotide or protein sequences.

    Science.gov (United States)

    Jaschob, Daniel; Davis, Trisha N; Riffle, Michael

    2015-03-07

    Sequence feature annotations (e.g., protein domain boundaries, binding sites, and secondary structure predictions) are an essential part of biological research. Annotations are widely used by scientists during research and experimental design, and are frequently the result of biological studies. A generalized and simple means of disseminating and visualizing these data via the web would be of value to the research community. Mason is a web site widget designed to visualize and compare annotated features of one or more nucleotide or protein sequence. Annotated features may be of virtually any type, ranging from annotating transcription binding sites or exons and introns in DNA to secondary structure or domain boundaries in proteins. Mason is simple to use and easy to integrate into web sites. Mason has a highly dynamic and configurable interface supporting multiple sets of annotations per sequence, overlapping regions, customization of interface and user-driven events (e.g., clicks and text to appear for tooltips). It is written purely in JavaScript and SVG, requiring no 3(rd) party plugins or browser customization. Mason is a solution for dissemination of sequence annotation data on the web. It is highly flexible, customizable, simple to use, and is designed to be easily integrated into web sites. Mason is open source and freely available at https://github.com/yeastrc/mason.

  8. Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma

    Directory of Open Access Journals (Sweden)

    Gartner Jared J

    2012-09-01

    Full Text Available Abstract Background Metastasis is characterized by spreading of neoplastic cells to an organ other than where they originated and is the predominant cause of death among cancer patients. This holds true for melanoma, whose incidence is increasing more rapidly than any other cancer and once disseminated has few therapeutic options. Here we performed whole exome sequencing of two sets of matched normal and metastatic tumor DNAs. Results Using stringent criteria, we evaluated the similarities and differences between the lesions. We find that in both cases, 96% of the single nucleotide variants are shared between the two metastases indicating that clonal populations gave rise to the distant metastases. Analysis of copy number variation patterns of both metastatic sets revealed a trend similar to that seen with our single nucleotide variants. Analysis of pathway enrichment on tumor sets shows commonly mutated pathways enriched between individual sets of metastases and all metastases combined. Conclusions These data provide a proof-of-concept suggesting that individual metastases may have sufficient similarity for successful targeting of driver mutations.

  9. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma.

    Science.gov (United States)

    Kubicek, Christian P; Herrera-Estrella, Alfredo; Seidl-Seiboth, Verena; Martinez, Diego A; Druzhinina, Irina S; Thon, Michael; Zeilinger, Susanne; Casas-Flores, Sergio; Horwitz, Benjamin A; Mukherjee, Prasun K; Mukherjee, Mala; Kredics, László; Alcaraz, Luis D; Aerts, Andrea; Antal, Zsuzsanna; Atanasova, Lea; Cervantes-Badillo, Mayte G; Challacombe, Jean; Chertkov, Olga; McCluskey, Kevin; Coulpier, Fanny; Deshpande, Nandan; von Döhren, Hans; Ebbole, Daniel J; Esquivel-Naranjo, Edgardo U; Fekete, Erzsébet; Flipphi, Michel; Glaser, Fabian; Gómez-Rodríguez, Elida Y; Gruber, Sabine; Han, Cliff; Henrissat, Bernard; Hermosa, Rosa; Hernández-Oñate, Miguel; Karaffa, Levente; Kosti, Idit; Le Crom, Stéphane; Lindquist, Erika; Lucas, Susan; Lübeck, Mette; Lübeck, Peter S; Margeot, Antoine; Metz, Benjamin; Misra, Monica; Nevalainen, Helena; Omann, Markus; Packer, Nicolle; Perrone, Giancarlo; Uresti-Rivera, Edith E; Salamov, Asaf; Schmoll, Monika; Seiboth, Bernhard; Shapiro, Harris; Sukno, Serenella; Tamayo-Ramos, Juan Antonio; Tisch, Doris; Wiest, Aric; Wilkinson, Heather H; Zhang, Michael; Coutinho, Pedro M; Kenerley, Charles M; Monte, Enrique; Baker, Scott E; Grigoriev, Igor V

    2011-01-01

    Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei. The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants. © 2011 Kubicek et al.; licensee BioMed Central Ltd.

  10. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

    Science.gov (United States)

    2011-01-01

    Background Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma. Results Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei. Conclusions The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants. PMID:21501500

  11. Deep Sequencing of Porphyromonas gingivalis and comparative transcriptome analysis of a LuxS mutant

    Directory of Open Access Journals (Sweden)

    Takanoi eHirano

    2012-06-01

    Full Text Available Porphyromonas gingivalis is a major etiological agent and chronic and aggressive forms of periodontal disease. The organism is an assacharolytic anaerobe and is a constituent of mixed species biofilms in a variety of microenvironments in the oral cavity. P. gingivalis expresses a range of virulence factors over which it exerts tight control. High-throughput sequencing technologies provide the opportunity to relate functional genomics to basic biology. In this study we report qualitative and quantitative RNA-Seq analysis of the transcriptome of P. gingivalis. We have also applied RNA-Seq to the transcriptome of a ΔluxS mutant of P. gingivalis deficient in AI-2-mediated bacterial communication. The transcriptome analysis confirmed the expression of all predicted ORFs for strain ATCC 33277, including 854 hypothetical proteins, and allowed the identification of hitherto unknown transcriptional units. Twelve noncoding RNAs were identified, including 11 small RNAs and one cobalamine riboswitch. Fifty seven genes were differentially regulated in the LuxS mutant. Addition of exogenous synthetic 4,5-dihydroxy-2,3-pentanedione (DPD, AI-2 precursor to the ΔluxS mutant culture complemented expression of a subset of genes, indicating that LuxS is involved in both AI-2 signaling and non-signaling dependent systems in P. gingivalis. This work provides an important dataset for future study of P. gingivalis pathophysiology and further defines the LuxS regulon in this oral pathogen.

  12. Comparative molecular analysis of Herbaspirillum strains by RAPD, RFLP, and 16S rDNA sequencing

    Directory of Open Access Journals (Sweden)

    Soares-Ramos Juliana R.L.

    2003-01-01

    Full Text Available Herbaspirillum spp. are endophytic diazotrophic bacteria associated with important agricultural crops. In this work, we analyzed six strains of H. seropedicae (Z78, M2, ZA69, ZA95, Z152, and Z67 and one strain of H. rubrisubalbicans (M4 by restriction fragment length polymorphism (RFLP using HindIII or DraI restriction endonucleases, random amplified polymorphic DNA (RAPD, and partial sequencing of 16S rDNA. The results of these analyses ascribed the strains studied to three distinct groups: group I, consisting of M2 and M4; group II, of ZA69; and group III, of ZA95, Z78, Z67, and Z152. RAPD fingerprinting showed a higher variability than the other methods, and each strain had a unique electrophoretic pattern with five of the six primers used. Interestingly, H. seropedicae M2 was found by all analyses to be genetically very close to H. rubrisubalbicans M4. Our results show that RAPD can distinguish between all Herbaspirillum strains tested.

  13. Comparative analysis of codon usage bias and codon context patterns between dipteran and hymenopteran sequenced genomes.

    Directory of Open Access Journals (Sweden)

    Susanta K Behura

    Full Text Available BACKGROUND: Codon bias is a phenomenon of non-uniform usage of codons whereas codon context generally refers to sequential pair of codons in a gene. Although genome sequencing of multiple species of dipteran and hymenopteran insects have been completed only a few of these species have been analyzed for codon usage bias. METHODS AND PRINCIPAL FINDINGS: Here, we use bioinformatics approaches to analyze codon usage bias and codon context patterns in a genome-wide manner among 15 dipteran and 7 hymenopteran insect species. Results show that GAA is the most frequent codon in the dipteran species whereas GAG is the most frequent codon in the hymenopteran species. Data reveals that codons ending with C or G are frequently used in the dipteran genomes whereas codons ending with A or T are frequently used in the hymenopteran genomes. Synonymous codon usage orders (SCUO vary within genomes in a pattern that seems to be distinct for each species. Based on comparison of 30 one-to-one orthologous genes among 17 species, the fruit fly Drosophila willistoni shows the least codon usage bias whereas the honey bee (Apis mellifera shows the highest bias. Analysis of codon context patterns of these insects shows that specific codons are frequently used as the 3'- and 5'-context of start and stop codons, respectively. CONCLUSIONS: Codon bias pattern is distinct between dipteran and hymenopteran insects. While codon bias is favored by high GC content of dipteran genomes, high AT content of genes favors biased usage of synonymous codons in the hymenopteran insects. Also, codon context patterns vary among these species largely according to their phylogeny.

  14. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available With a draft genome-sequence assembly for the chimpanzee available, it is now possible to perform genome-wide analyses to identify, at a submicroscopic level, structural rearrangements that have occurred between chimpanzees and humans. The goal of this study was to investigate chromosomal regions that are inverted between the chimpanzee and human genomes. Using the net alignments for the builds of the human and chimpanzee genome assemblies, we identified a total of 1,576 putative regions of inverted orientation, covering more than 154 mega-bases of DNA. The DNA segments are distributed throughout the genome and range from 23 base pairs to 62 mega-bases in length. For the 66 inversions more than 25 kilobases (kb in length, 75% were flanked on one or both sides by (often unrelated segmental duplications. Using PCR and fluorescence in situ hybridization we experimentally validated 23 of 27 (85% semi-randomly chosen regions; the largest novel inversion confirmed was 4.3 mega-bases at human Chromosome 7p14. Gorilla was used as an out-group to assign ancestral status to the variants. All experimentally validated inversion regions were then assayed against a panel of human samples and three of the 23 (13% regions were found to be polymorphic in the human genome. These polymorphic inversions include 730 kb (at 7p22, 13 kb (at 7q11, and 1 kb (at 16q24 fragments with a 5%, 30%, and 48% minor allele frequency, respectively. Our results suggest that inversions are an important source of variation in primate genome evolution. The finding of at least three novel inversion polymorphisms in humans indicates this type of structural variation may be a more common feature of our genome than previously realized.

  15. Comparing Seismic And Magnetic Responses To Copper Gold Deposits Under Different Cover Sequences

    Directory of Open Access Journals (Sweden)

    Okan Evans Onojasun

    2015-08-01

    Full Text Available Appropriate application of geophysical techniques is required to effectively explore through the cover sequences that will allow the discovery of deep seated orebodies within the 1-3km depth range. Whilst potential field methods that are traditionally used for Cu-Au exploration seems effective they lack the expected resolution required to detect deeper mineral deposits under 500 m cover. Seismic reflection techniques offers a distinct advantage over all other geophysical techniques because of its ability to penetrate deeper into the subsurface without losing its resolution. We present in this report modelling results from magnetic and seismic responses to Cu-Au deposits when located within 100-1000m depth range. In the case of magnetic modelling we apply upward continuation filters which calculate the potential field that would have been recorded at 100m 250m 500m and 1000 m levels by filtering away shallow anomalies from the initial data. For seismic modelling simple but realistic geological model with varying cover thicknesses 100m 250m 500m and 1000m were created and then populate these models with petrophysical data. Simulated synthetic seismic responses from the models was processed using basic processing flows to obtained depth migrated images. Results show that for shower depths 0-100m good correlation exist between the magnetic and the seismic responses. From 100-250m depth cover though we can still see some magnetic anomalies within the target zone its effectiveness decreases with depths whereas seismic responses was maintain within the depth range. From 500m to 1000m magnetic response becomes spear or fuzzy as much useful information is practically missed out. Similarly high resolution power of seismic was ably demonstrated as the depth of even 2km did not degrade its resolution. Thus both magnetic and seismic methods are very useful for shallow investigation but at greater depth seismic method appears to be a more valid exploration

  16. A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science.

    Science.gov (United States)

    Turetschek, Reinhard; Lyon, David; Desalegn, Getinet; Kaul, Hans-Peter; Wienkoop, Stefanie

    2016-01-01

    The proteomic study of non-model organisms, such as many crop plants, is challenging due to the lack of comprehensive genome information. Changing environmental conditions require the study and selection of adapted cultivars. Mutations, inherent to cultivars, hamper protein identification and thus considerably complicate the qualitative and quantitative comparison in large-scale systems biology approaches. With this workflow, cultivar-specific mutations are detected from high-throughput comparative MS analyses, by extracting sequence polymorphisms with de novo sequencing. Stringent criteria are suggested to filter for confidential mutations. Subsequently, these polymorphisms complement the initially used database, which is ready to use with any preferred database search algorithm. In our example, we thereby identified 26 specific mutations in two cultivars of Pisum sativum and achieved an increased number (17 %) of peptide spectrum matches.

  17. Complete genome sequences and comparative genome analysis of Lactobacillus plantarum strain 5-2 isolated from fermented soybean.

    Science.gov (United States)

    Liu, Chen-Jian; Wang, Rui; Gong, Fu-Ming; Liu, Xiao-Feng; Zheng, Hua-Jun; Luo, Yi-Yong; Li, Xiao-Ran

    2015-12-01

    Lactobacillus plantarum is an important probiotic and is mostly isolated from fermented foods. We sequenced the genome of L. plantarum strain 5-2, which was derived from fermented soybean isolated from Yunnan province, China. The strain was determined to contain 3114 genes. Fourteen complete insertion sequence (IS) elements were found in 5-2 chromosome. There were 24 DNA replication proteins and 76 DNA repair proteins in the 5-2 genome. Consistent with the classification of L. plantarum as a facultative heterofermentative lactobacillus, the 5-2 genome encodes key enzymes required for the EMP (Embden-Meyerhof-Parnas) and phosphoketolase (PK) pathways. Several components of the secretion machinery are found in the 5-2 genome, which was compared with L. plantarum ST-III, JDM1 and WCFS1. Most of the specific proteins in the four genomes appeared to be related to their prophage elements. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae

    Czech Academy of Sciences Publication Activity Database

    Lim, Y.K.; Kovařík, Aleš; Matyášek, Roman; Chase, M.W.; Knapp, S.; McCarthy, E.; Clarkson, J.; Leitch, A.R.

    2006-01-01

    Roč. 48, č. 6 (2006), s. 907-919 ISSN 0960-7412 R&D Projects: GA ČR(CZ) GA521/04/0775 Institutional research plan: CEZ:AV0Z50040507 Keywords : comparative genomics * DNA phylogenetics * tandem repeats Subject RIV: BO - Biophysics Impact factor: 6.565, year: 2006

  19. Comparative systems biology between human and animal models based on next-generation sequencing methods.

    Science.gov (United States)

    Zhao, Yu-Qi; Li, Gong-Hua; Huang, Jing-Fei

    2013-04-01

    Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism. To improve the efficacy of animal models, a technological breakthrough is required. The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform. In the present study, we introduce the concept of the comparative systems biology, which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels". Furthermore, we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.

  20. Library sequencing strategies for comparative analysis of stress resistance mechanisms in Escherichia coli strains

    DEFF Research Database (Denmark)

    Lennen, Rebecca; Bonde, Ida; Koza, Anna

    2014-01-01

    and subjected to growth selections. Following selection, the locations of all insertions in the population are counted and can be compared between a control and a target condition, enabling the identification of genes that are both conditionally essential and conditionally detrimental. We have exploited Tn....... Tn-Seq revealed many differences and similarities in resistance mechanisms at the genetic level across strains, allowing correlations to be made with growth phenotypes. Cross-strain comparisons of conditionally essential genes and their relative essentiality also suggest a large degree of variation...

  1. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  2. Complete genome sequence and comparative genomics of the probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Khatri, Indu; Tomar, Rajul; Ganesan, K; Prasad, G S; Subramanian, Srikrishna

    2017-03-23

    The probiotic yeast, Saccharomyces boulardii (Sb) is known to be effective against many gastrointestinal disorders and antibiotic-associated diarrhea. To understand molecular basis of probiotic-properties ascribed to Sb we determined the complete genomes of two strains of Sb i.e. Biocodex and unique28 and the draft genomes for three other Sb strains that are marketed as probiotics in India. We compared these genomes with 145 strains of S. cerevisiae (Sc) to understand genome-level similarities and differences between these yeasts. A distinctive feature of Sb from other Sc is absence of Ty elements Ty1, Ty3, Ty4 and associated LTR. However, we could identify complete Ty2 and Ty5 elements in Sb. The genes for hexose transporters HXT11 and HXT9, and asparagine-utilization are absent in all Sb strains. We find differences in repeat periods and copy numbers of repeats in flocculin genes that are likely related to the differential adhesion of Sb as compared to Sc. Core-proteome based taxonomy places Sb strains along with wine strains of Sc. We find the introgression of five genes from Z. bailii into the chromosome IV of Sb and wine strains of Sc. Intriguingly, genes involved in conferring known probiotic properties to Sb are conserved in most Sc strains.

  3. The complete chloroplast genome sequence of Gentiana lawrencei var. farreri (Gentianaceae) and comparative analysis with its congeneric species.

    Science.gov (United States)

    Fu, Peng-Cheng; Zhang, Yan-Zhao; Geng, Hui-Min; Chen, Shi-Long

    2016-01-01

    The chloroplast (cp) genome is useful in plant systematics, genetic diversity analysis, molecular identification and divergence dating. The genus Gentiana contains 362 species, but there are only two valuable complete cp genomes. The purpose of this study is to report the characterization of complete cp genome of G. lawrencei var. farreri , which is endemic to the Qinghai-Tibetan Plateau (QTP). Using high throughput sequencing technology, we got the complete nucleotide sequence of the G. lawrencei var. farreri cp genome. The comparison analysis including genome difference and gene divergence was performed with its congeneric species G. straminea . The simple sequence repeats (SSRs) and phylogenetics were studied as well. The cp genome of G. lawrencei var. farreri is a circular molecule of 138,750 bp, containing a pair of 24,653 bp inverted repeats which are separated by small and large single-copy regions of 11,365 and 78,082 bp, respectively. The cp genome contains 130 known genes, including 85 protein coding genes (PCGs), eight ribosomal RNA genes and 37 tRNA genes. Comparative analyses indicated that G. lawrencei var. farreri is 10,241 bp shorter than its congeneric species G. straminea. Four large gaps were detected that are responsible for 85% of the total sequence loss. Further detailed analyses revealed that 10 PCGs were included in the four gaps that encode nine NADH dehydrogenase subunits. The cp gene content, order and orientation are similar to those of its congeneric species, but with some variation among the PCGs. Three genes, ndhB , ndhF and clpP , have high nonsynonymous to synonymous values. There are 34 SSRs in the G. lawrencei var. farreri cp genome, of which 25 are mononucleotide repeats: no dinucleotide repeats were detected. Comparison with the G. straminea cp genome indicated that five SSRs have length polymorphisms and 23 SSRs are species-specific. The phylogenetic analysis of 48 PCGs from 12 Gentianales taxa cp genomes clearly identified

  4. [Molecular phylogeny of Turbellaria, based on data from comparing the nucleotide sequences of 18S ribosomal RNA genes].

    Science.gov (United States)

    Kuznedelov, K D; Timoshkin, O A

    1995-01-01

    Polymerase chain reaction and direct sequencing of the 5'-end region of the 18S ribosomal RNA gene were used to infer phylogenetic relationship among turbellarian flatworms from Lake Baikal. Representatives of 5 orders (Tricladida--10 spp., Lecithoepitheliata--5 spp., Prolecithophora--3 spp., Proseriata and Kalyptorhynchia one for each) were studied; nucleotide sequence of more than 340 nucleotides was determined for each species. Consensus sequence for each order having more than one representative species was determined. Distance matrix and maximum parsimony approaches were applied to infer phylogenies. Bootstrap procedure was used to estimate confidence limits, at the 100% level by bootstrapping, the group of three orders: Kalyptorhynchia, Proseriata and Lecithoepitheliata was found to be monophyletic. However, subsets inside the group had no significant support to be preferred or rejected. Our data do not support traditional systematics which joins two suborders Tricladida and Proseriata into the single order Seriata, and also do not support comparative anatomical data which show close relationship of Lecithoepitheliata and lower Prolecithophora.

  5. KRAS mutation detection in colorectal cancer by a commercially available gene chip array compares well with Sanger sequencing.

    Science.gov (United States)

    French, Deborah; Smith, Andrew; Powers, Martin P; Wu, Alan H B

    2011-08-17

    Binding of a ligand to the epidermal growth factor receptor (EGFR) stimulates various intracellular signaling pathways resulting in cell cycle progression, proliferation, angiogenesis and apoptosis inhibition. KRAS is involved in signaling pathways including RAF/MAPK and PI3K and mutations in this gene result in constitutive activation of these pathways, independent of EGFR activation. Seven mutations in codons 12 and 13 of KRAS comprise around 95% of the observed human mutations, rendering monoclonal antibodies against EGFR (e.g. cetuximab and panitumumab) useless in treatment of colorectal cancer. KRAS mutation testing by two different methodologies was compared; Sanger sequencing and AutoGenomics INFINITI® assay, on DNA extracted from colorectal cancers. Out of 29 colorectal tumor samples tested, 28 were concordant between the two methodologies for the KRAS mutations that were detected in both assays with the INFINITI® assay detecting a mutation in one sample that was indeterminate by Sanger sequencing and a third methodology; single nucleotide primer extension. This study indicates the utility of the AutoGenomics INFINITI® methodology in a clinical laboratory setting where technical expertise or access to equipment for DNA sequencing does not exist. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Gene Discovery in the Apicomplexa as Revealed by EST Sequencing and Assembly of a Comparative Gene Database

    Science.gov (United States)

    Li, Li; Brunk, Brian P.; Kissinger, Jessica C.; Pape, Deana; Tang, Keliang; Cole, Robert H.; Martin, John; Wylie, Todd; Dante, Mike; Fogarty, Steven J.; Howe, Daniel K.; Liberator, Paul; Diaz, Carmen; Anderson, Jennifer; White, Michael; Jerome, Maria E.; Johnson, Emily A.; Radke, Jay A.; Stoeckert, Christian J.; Waterston, Robert H.; Clifton, Sandra W.; Roos, David S.; Sibley, L. David

    2003-01-01

    Large-scale EST sequencing projects for several important parasites within the phylum Apicomplexa were undertaken for the purpose of gene discovery. Included were several parasites of medical importance (Plasmodium falciparum, Toxoplasma gondii) and others of veterinary importance (Eimeria tenella, Sarcocystis neurona, and Neospora caninum). A total of 55,192 ESTs, deposited into dbEST/GenBank, were included in the analyses. The resulting sequences have been clustered into nonredundant gene assemblies and deposited into a relational database that supports a variety of sequence and text searches. This database has been used to compare the gene assemblies using BLAST similarity comparisons to the public protein databases to identify putative genes. Of these new entries, ∼15%–20% represent putative homologs with a conservative cutoff of p neurona: , , , , , , , , , , , , , –, –, –, –, –. Eimeria tenella: –, –, –, –, –, –, –, –, – , –, –, –, –, –, –, –, –, –, –, –. Neospora caninum: –, –, , – , –, –.] PMID:12618375

  7. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum.

    Science.gov (United States)

    Rao, Soumya; Nandineni, Madhusudan R

    2017-01-01

    Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.

  8. Musicians' and nonmusicians' short-term memory for verbal and musical sequences: comparing phonological similarity and pitch proximity.

    Science.gov (United States)

    Williamson, Victoria J; Baddeley, Alan D; Hitch, Graham J

    2010-03-01

    Language-music comparative studies have highlighted the potential for shared resources or neural overlap in auditory short-term memory. However, there is a lack of behavioral methodologies for comparing verbal and musical serial recall. We developed a visual grid response that allowed both musicians and nonmusicians to perform serial recall of letter and tone sequences. The new method was used to compare the phonological similarity effect with the impact of an operationalized musical equivalent-pitch proximity. Over the course of three experiments, we found that short-term memory for tones had several similarities to verbal memory, including limited capacity and a significant effect of pitch proximity in nonmusicians. Despite being vulnerable to phonological similarity when recalling letters, however, musicians showed no effect of pitch proximity, a result that we suggest might reflect strategy differences. Overall, the findings support a limited degree of correspondence in the way that verbal and musical sounds are processed in auditory short-term memory.

  9. Genome Sequencing and Comparative Analysis of Stenotrophomonas acidaminiphila Reveal Evolutionary Insights Into Sulfamethoxazole Resistance

    Directory of Open Access Journals (Sweden)

    Yao-Ting Huang

    2018-05-01

    Full Text Available Stenotrophomonas acidaminiphila is an aerobic, glucose non-fermentative, Gram-negative bacterium that been isolated from various environmental sources, particularly aquatic ecosystems. Although resistance to multiple antimicrobial agents has been reported in S. acidaminiphila, the mechanisms are largely unknown. Here, for the first time, we report the complete genome and antimicrobial resistome analysis of a clinical isolate S. acidaminiphila SUNEO which is resistant to sulfamethoxazole. Comparative analysis among closely related strains identified common and strain-specific genes. In particular, comparison with a sulfamethoxazole-sensitive strain identified a mutation within the sulfonamide-binding site of folP in SUNEO, which may reduce the binding affinity of sulfamethoxazole. Selection pressure analysis indicated folP in SUNEO is under purifying selection, which may be owing to long-term administration of sulfonamide against Stenotrophomonas.

  10. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis.

    Science.gov (United States)

    Zhu, Huayu; Song, Pengyao; Koo, Dal-Hoe; Guo, Luqin; Li, Yanman; Sun, Shouru; Weng, Yiqun; Yang, Luming

    2016-08-05

    Microsatellite markers are one of the most informative and versatile DNA-based markers used in plant genetic research, but their development has traditionally been difficult and costly. The whole genome sequencing with next-generation sequencing (NGS) technologies provides large amounts of sequence data to develop numerous microsatellite markers at whole genome scale. SSR markers have great advantage in cross-species comparisons and allow investigation of karyotype and genome evolution through highly efficient computation approaches such as in silico PCR. Here we described genome wide development and characterization of SSR markers in the watermelon (Citrullus lanatus) genome, which were then use in comparative analysis with two other important crop species in the Cucurbitaceae family: cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). We further applied these markers in evaluating the genetic diversity and population structure in watermelon germplasm collections. A total of 39,523 microsatellite loci were identified from the watermelon draft genome with an overall density of 111 SSRs/Mbp, and 32,869 SSR primers were designed with suitable flanking sequences. The dinucleotide SSRs were the most common type representing 34.09 % of the total SSR loci and the AT-rich motifs were the most abundant in all nucleotide repeat types. In silico PCR analysis identified 832 and 925 SSR markers with each having a single amplicon in the cucumber and melon draft genome, respectively. Comparative analysis with these cross-species SSR markers revealed complicated mosaic patterns of syntenic blocks among the genomes of three species. In addition, genetic diversity analysis of 134 watermelon accessions with 32 highly informative SSR loci placed these lines into two groups with all accessions of C.lanatus var. citorides and three accessions of C. colocynthis clustered in one group and all accessions of C. lanatus var. lanatus and the remaining accessions of C. colocynthis

  11. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae: structural comparative analysis, gene content and microsatellite detection

    Directory of Open Access Journals (Sweden)

    Andrew W. Gichira

    2017-01-01

    Full Text Available Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp, with a pair of Inverted Repeats (IR 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp and a small single copy (SSC, 18,696. H. abyssinica’s chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.

  12. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection.

    Science.gov (United States)

    Gichira, Andrew W; Li, Zhizhong; Saina, Josphat K; Long, Zhicheng; Hu, Guangwan; Gituru, Robert W; Wang, Qingfeng; Chen, Jinming

    2017-01-01

    Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce) J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp), with a pair of Inverted Repeats (IR) 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp) and a small single copy (SSC, 18,696). H. abyssinica 's chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene ( infA ) which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica . A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.

  13. Comparative sequence analysis revealed altered chromosomal organization and a novel insertion sequence encoding DNA modification and potentially stress-related functions in an Escherichia coli O157:H7 foodborne isolate

    Science.gov (United States)

    We recently described the complete genome of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain NADC 6564, an isolate of strain 86-24 linked to the 1986 disease outbreak. In the current study, we compared the chromosomal sequence of NADC 6564 to the well-characterized chromosomal sequences of ...

  14. Sequencing and comparative genome analysis of two pathogenic Streptococcus gallolyticus subspecies: genome plasticity, adaptation and virulence.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I and S. pasteurianus ATCC 43144 (biotype II.2. The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92% and 1607 (86% of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops.

  15. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts

    LENUS (Irish Health Repository)

    2011-08-30

    Abstract Background The genus Lactobacillus is characterized by an extraordinary degree of phenotypic and genotypic diversity, which recent genomic analyses have further highlighted. However, the choice of species for sequencing has been non-random and unequal in distribution, with only a single representative genome from the L. salivarius clade available to date. Furthermore, there is no data to facilitate a functional genomic analysis of motility in the lactobacilli, a trait that is restricted to the L. salivarius clade. Results The 2.06 Mb genome of the bovine isolate Lactobacillus ruminis ATCC 27782 comprises a single circular chromosome, and has a G+C content of 44.4%. In silico analysis identified 1901 coding sequences, including genes for a pediocin-like bacteriocin, a single large exopolysaccharide-related cluster, two sortase enzymes, two CRISPR loci and numerous IS elements and pseudogenes. A cluster of genes related to a putative pilin was identified, and shown to be transcribed in vitro. A high quality draft assembly of the genome of a second L. ruminis strain, ATCC 25644 isolated from humans, suggested a slightly larger genome of 2.138 Mb, that exhibited a high degree of synteny with the ATCC 27782 genome. In contrast, comparative analysis of L. ruminis and L. salivarius identified a lack of long-range synteny between these closely related species. Comparison of the L. salivarius clade core proteins with those of nine other Lactobacillus species distributed across 4 major phylogenetic groups identified the set of shared proteins, and proteins unique to each group. Conclusions The genome of L. ruminis provides a comparative tool for directing functional analyses of other members of the L. salivarius clade, and it increases understanding of the divergence of this distinct Lactobacillus lineage from other commensal lactobacilli. The genome sequence provides a definitive resource to facilitate investigation of the genetics, biochemistry and host

  16. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Directory of Open Access Journals (Sweden)

    Catherine L Worth

    Full Text Available BACKGROUND: Up until recently the only available experimental (high resolution structure of a G-protein-coupled receptor (GPCR was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. METHODOLOGY: We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s for building a comparative molecular model. CONCLUSIONS: The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying

  17. Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.

    Science.gov (United States)

    Worth, Catherine L; Kleinau, Gunnar; Krause, Gerd

    2009-09-16

    Up until recently the only available experimental (high resolution) structure of a G-protein-coupled receptor (GPCR) was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs. However, despite the common general architecture of these structures key differences do exist between them. The choice of which experimental GPCR structure(s) to use for building a comparative model of a particular GPCR is unclear and without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a systematic and detailed analysis of sequence-structure relationships of known GPCR structures. We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable information for template selection has been gained. Using key features a workflow has been formulated for identifying the most appropriate template(s) for building homology models of GPCRs of unknown structure. This workflow was applied to a set of 14 human family A GPCRs suggesting for each the most appropriate template(s) for building a comparative molecular model. The available crystal structures represent only a subset of all possible structural variation in family A GPCRs. Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the templates suggesting that homology models should be built using multiple templates. This study provides a systematic analysis of GPCR crystal structures and a consistent method for identifying suitable templates for GPCR homology modelling that will

  18. Genome sequencing and comparative genomics analysis revealed pathogenic potential in Penicillium capsulatum as a novel fungal pathogen belonging to Eurotiales

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2016-10-01

    Full Text Available Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptome of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNP in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen.

  19. spa Typing and Multilocus Sequence Typing Show Comparable Performance in a Macroepidemiologic Study of Staphylococcus aureus in the United States.

    Science.gov (United States)

    O'Hara, F Patrick; Suaya, Jose A; Ray, G Thomas; Baxter, Roger; Brown, Megan L; Mera, Robertino M; Close, Nicole M; Thomas, Elizabeth; Amrine-Madsen, Heather

    2016-01-01

    A number of molecular typing methods have been developed for characterization of Staphylococcus aureus isolates. The utility of these systems depends on the nature of the investigation for which they are used. We compared two commonly used methods of molecular typing, multilocus sequence typing (MLST) (and its clustering algorithm, Based Upon Related Sequence Type [BURST]) with the staphylococcal protein A (spa) typing (and its clustering algorithm, Based Upon Repeat Pattern [BURP]), to assess the utility of these methods for macroepidemiology and evolutionary studies of S. aureus in the United States. We typed a total of 366 clinical isolates of S. aureus by these methods and evaluated indices of diversity and concordance values. Our results show that, when combined with the BURP clustering algorithm to delineate clonal lineages, spa typing produces results that are highly comparable with those produced by MLST/BURST. Therefore, spa typing is appropriate for use in macroepidemiology and evolutionary studies and, given its lower implementation cost, this method appears to be more efficient. The findings are robust and are consistent across different settings, patient ages, and specimen sources. Our results also support a model in which the methicillin-resistant S. aureus (MRSA) population in the United States comprises two major lineages (USA300 and USA100), which each consist of closely related variants.

  20. Parallel computation for biological sequence comparison: comparing a portable model to the native model for the Intel Hypercube.

    Science.gov (United States)

    Nadkarni, P M; Miller, P L

    1991-01-01

    A parallel program for inter-database sequence comparison was developed on the Intel Hypercube using two models of parallel programming. One version was built using machine-specific Hypercube parallel programming commands. The other version was built using Linda, a machine-independent parallel programming language. The two versions of the program provide a case study comparing these two approaches to parallelization in an important biological application area. Benchmark tests with both programs gave comparable results with a small number of processors. As the number of processors was increased, the Linda version was somewhat less efficient. The Linda version was also run without change on Network Linda, a virtual parallel machine running on a network of desktop workstations.

  1. Second generation DNA sequencing of the mitogenome of the Chinstrap penguin and comparative genomics of Antarctic penguins.

    Science.gov (United States)

    Subramanian, Sankar; Lingala, Syamala Gowri; Swaminathan, Siva; Huynen, Leon; Lambert, David

    2014-08-01

    The complete mitochondrial genome of the Chinstrap penguin (Pygoscelis antarcticus) was sequenced and compared with other penguin mitogenomes. The genome is 15,972 bp in length with the number and order of protein coding genes and RNAs being very similar to that of other known penguin mitogenomes. Comparative nucleotide analysis showed the Chinstrap mitogenome shares 94% homology with the mitogenome of its sister species, Pygoscelis adelie (Adélie penguin). Divergence at nonsynonymous nucleotide positions was found to be up to 23 times less than that observed in synonymous positions of protein coding genes, suggesting high selection constraints. The complete mitogenome data will be useful for genetic and evolutionary studies of penguins.

  2. Comparative analysis of expressed sequence tags from three castes and two life stages of the termite Reticulitermes flavipes

    Directory of Open Access Journals (Sweden)

    Steller Matthew M

    2010-08-01

    Full Text Available Abstract Background Termites (Isoptera are eusocial insects whose colonies consist of morphologically and behaviorally specialized castes of sterile workers and soldiers, and reproductive alates. Previous studies on eusocial insects have indicated that caste differentiation and behavior are underlain by differential gene expression. Although much is known about gene expression in the honey bee, Apis mellifera, termites remain relatively understudied in this regard. Therefore, our objective was to assemble an expressed sequence tag (EST data base for the eastern subterranean termite, Reticulitermes flavipes, for future gene expression studies. Results Soldier, worker, and alate caste and two larval cDNA libraries were constructed, and approximately 15,000 randomly chosen clones were sequenced to compile an EST data base. Putative gene functions were assigned based on a BLASTX Swissprot search. Categorical in silico expression patterns for each library were compared using the R-statistic. A significant proportion of the ESTs of each caste and life stages had no significant similarity to those in existing data bases. All cDNA libraries, including those of non-reproductive worker and soldier castes, contained sequences with putative reproductive functions. Genes that showed a potential expression bias among castes included a putative antibacterial humoral response and translation elongation protein in soldiers and a chemosensory protein in alates. Conclusions We have expanded upon the available sequences for R. flavipes and utilized an in silico method to compare gene expression in different castes of an eusocial insect. The in silico analysis allowed us to identify several genes which may be differentially expressed and involved in caste differences. These include a gene overrepresented in the alate cDNA library with a predicted function of neurotransmitter secretion or cholesterol absorption and a gene predicted to be involved in protein

  3. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.

    Science.gov (United States)

    Patil, Gunvant; Valliyodan, Babu; Deshmukh, Rupesh; Prince, Silvas; Nicander, Bjorn; Zhao, Mingzhe; Sonah, Humira; Song, Li; Lin, Li; Chaudhary, Juhi; Liu, Yang; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-07-11

    SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research

  4. Specific versus non-specific immune responses in an invertebrate species evidenced by a comparative de novo sequencing study.

    Directory of Open Access Journals (Sweden)

    Emeline Deleury

    Full Text Available Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5'-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5'-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance

  5. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-01-01

    Full Text Available Abstract Background Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results The genome of the type strain of E. pyrifoliae strain DSM 12163T, was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria.

  6. Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches

    Directory of Open Access Journals (Sweden)

    Changwei Bi

    2016-01-01

    Full Text Available Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of the G. raimondii mt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals that G. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense than other rosids, and the clade formed by two Gossypium species is sister to Brassicales. The G. raimondii mt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants.

  7. T1 Gd-enhanced compared with CISS sequences in retinoblastoma: superiority of T1 sequences in evaluation of tumour extension

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, Elke R.; Wanke, Isabel; Guengoer, Ali-Riza; Forsting, Michael [University Hospital, Department of Diagnostic and Interventional Neuroradiology, Essen (Germany); Jurklies, Christine [University Hospital Essen, Department of Ophthalmology (Germany)

    2005-01-01

    Background As adequate therapy for retinoblastoma in young children depends on infiltration of extra-retinal structures, diagnostic modalities play an essential role. Methods: In this widely extended study, 80 children with retinoblastoma were studied with MRI (standard fat-suppressed Gd-enhanced T1, T2 thin-slice sequences (additionally with small loop surface coil), constructive interference in steady state (CISS) sequence covering the orbita). The images were analysed by two blinded neuroradiologists. Histology was used as the gold standard. MRI assumed infiltration of extra-retinal structures in 13 of 80 patients of which ten were confirmed by histology. Affected extra-retinal structures were: optic nerve (five, of which two were on CISS and three on T1 with higher image resolution using the surface coil), scleral infiltration (five, of which four on CISS and T1) and ciliary body infiltration (one on CISS and T1). Another 61 enucleated patients did not have any extra-retinal infiltration in histology. The CISS sequence with multiplanar reconstruction was mainly helpful in revealing exact three-dimensional tumour extension with excellent clinical acceptance and pre-surgical planning but T1 fat-suppressed Gd-enhanced images were superior in revealing exact tumour extension. CISS sequences allow to produce excellent anatomical images and to perform multiplanar reconstruction to better demonstrate tumour extension. However, T1-weighted sequences after contrast application are more sensitive (60 versus 40%) in detecting infiltration of the optic nerve but equal in detecting scleral infiltration. (orig.)

  8. Studies on Dasyaceae. 3. Towards a phylogeny of the Dasyaceae (Ceramiales, Rhodophyta), based on comparative rbcL gene sequences and morphology

    NARCIS (Netherlands)

    de Jong, Y.S D M; van der Wurff, A.W G; Stam, W.T.; Olsen, J.L.

    Phylogenetic analyses of the Dasyaceae based on sequence analysis of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and 42 morphological characters are presented. Comparative sequence analysis confirms the general view of the Ceramiaceae as a primitive, paraphyletic

  9. Optimal pulse sequence for ferumoxides-enhanced MR imaging used in the detection of hepatocellular carcinoma: a comparative study using seven pulse sequences

    International Nuclear Information System (INIS)

    Kim, Seung Hoon; Choi, Dongil; Lim, Jae Hoon; Lee, Won Jae; Jang, Hyun Jung; Lim, Kyo Keun; Lee, Soon Jin; Cho, Jae Min; Kim, Seung Kwon; Kim, Gab Chul

    2002-01-01

    To identify the optimal pulse sequence for ferumoxides-enhanced magnetic resonance (MR) imaging in the detection of hepatocelluar carcinomas (HCCs). Sixteen patients with 25 HCCs underwent MR imaging following intravenous infusion of ferumoxides. All MR studies were performed on a 1.5-T MR system, using a phased-array coil. Ferumoxides (Feridex IV) at a dose of 15 μmol/Kg was slowly infused intravenously, and axial images of seven sequences were obtained 30 minutes after the end of infusion. The MR protocol included fast spin-echo (FSE) with two echo times (TR3333-8571/TE18 and 90-117), singleshot FSE (SSFSE) with two echo times (TR∞/TE39 and 98), T2-weighted gradient-recalled acquisition in the steady state (GRASS) (TR216/TE20), T2-weighted fast multiplanar GRASS (FMPGR) (TR130/TE8.4-9.5), and T2-weighted fast multiplanar spoiled GRASS (FMPSPGR) (TR130/TE8.4-9.5). Contrast-to-noise ratios (CNRs) of HCCs determined during the imaging sequences formed the basis of quantitative analysis, and images were qualitatively assessed in terms of lesion conspicuity and image artifacts. The diagnostic accuracy of all sequences was assessed using receiver operating characteristic (ROC) analysis. Quantitative analysis revealed that the CNRs of T2-weighted FMPGR and T2-weighted FMPSPGR were significantly higher than those of the other sequences, while qualitative analysis showed that image artifacts were prominent at T2-weighted GRASS imaging. Lesion conspicuity was statistically significantly less clear at SSFSE imaging. In term of lesion detection, T-weighted FMPGR, T2- weighted FMPSPGR, and proton density FSE imaging were statistically superior to the others. T2-weighted FMPGR, T2- weighted FMPSPGR, and proton density FSE appear to be the optimal pulse sequences for ferumoxidesenhanced MR imaging in the detection of HCCs

  10. Comparative analyses of plastid sequences between native and introduced populations of aquatic weeds Elodea canadensis and E. nuttallii.

    Directory of Open Access Journals (Sweden)

    Tea Huotari

    Full Text Available Non-indigenous species (NIS are species living outside their historic or native range. Invasive NIS often cause severe environmental impacts, and may have large economical and social consequences. Elodea (Hydrocharitaceae is a New World genus with at least five submerged aquatic angiosperm species living in fresh water environments. Our aim was to survey the geographical distribution of cpDNA haplotypes within the native and introduced ranges of invasive aquatic weeds Elodea canadensis and E. nuttallii and to reconstruct the spreading histories of these invasive species. In order to reveal informative chloroplast (cp genome regions for phylogeographic analyses, we compared the plastid sequences of native and introduced individuals of E. canadensis. In total, we found 235 variable sites (186 SNPs, 47 indels and two inversions between the two plastid sequences consisting of 112,193 bp and developed primers flanking the most variable genomic areas. These 29 primer pairs were used to compare the level and pattern of intraspecific variation within E. canadensis to interspecific variation between E. canadensis and E. nuttallii. Nine potentially informative primer pairs were used to analyze the phylogeographic structure of both Elodea species, based on 70 E. canadensis and 25 E. nuttallii individuals covering native and introduced distributions. On the whole, the level of variation between the two Elodea species was 53% higher than that within E. canadensis. In our phylogeographic analysis, only a single haplotype was found in the introduced range in both species. These haplotypes H1 (E. canadensis and A (E. nuttallii were also widespread in the native range, covering the majority of native populations analyzed. Therefore, we were not able to identify either the geographic origin of the introduced populations or test the hypothesis of single versus multiple introductions. The divergence between E. canadensis haplotypes was surprisingly high, and future

  11. Comparative analyses of plastid sequences between native and introduced populations of aquatic weeds Elodea canadensis and E. nuttallii.

    Science.gov (United States)

    Huotari, Tea; Korpelainen, Helena

    2013-01-01

    Non-indigenous species (NIS) are species living outside their historic or native range. Invasive NIS often cause severe environmental impacts, and may have large economical and social consequences. Elodea (Hydrocharitaceae) is a New World genus with at least five submerged aquatic angiosperm species living in fresh water environments. Our aim was to survey the geographical distribution of cpDNA haplotypes within the native and introduced ranges of invasive aquatic weeds Elodea canadensis and E. nuttallii and to reconstruct the spreading histories of these invasive species. In order to reveal informative chloroplast (cp) genome regions for phylogeographic analyses, we compared the plastid sequences of native and introduced individuals of E. canadensis. In total, we found 235 variable sites (186 SNPs, 47 indels and two inversions) between the two plastid sequences consisting of 112,193 bp and developed primers flanking the most variable genomic areas. These 29 primer pairs were used to compare the level and pattern of intraspecific variation within E. canadensis to interspecific variation between E. canadensis and E. nuttallii. Nine potentially informative primer pairs were used to analyze the phylogeographic structure of both Elodea species, based on 70 E. canadensis and 25 E. nuttallii individuals covering native and introduced distributions. On the whole, the level of variation between the two Elodea species was 53% higher than that within E. canadensis. In our phylogeographic analysis, only a single haplotype was found in the introduced range in both species. These haplotypes H1 (E. canadensis) and A (E. nuttallii) were also widespread in the native range, covering the majority of native populations analyzed. Therefore, we were not able to identify either the geographic origin of the introduced populations or test the hypothesis of single versus multiple introductions. The divergence between E. canadensis haplotypes was surprisingly high, and future research may

  12. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    Science.gov (United States)

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.

  13. Comparative genomic assessment of Multi-Locus Sequence Typing: rapid accumulation of genomic heterogeneity among clonal isolates of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Nash John HE

    2008-08-01

    Full Text Available Abstract Background Multi-Locus Sequence Typing (MLST has emerged as a leading molecular typing method owing to its high ability to discriminate among bacterial isolates, the relative ease with which data acquisition and analysis can be standardized, and the high portability of the resulting sequence data. While MLST has been successfully applied to the study of the population structure for a number of different bacterial species, it has also provided compelling evidence for high rates of recombination in some species. We have analyzed a set of Campylobacter jejuni strains using MLST and Comparative Genomic Hybridization (CGH on a full-genome microarray in order to determine whether recombination and high levels of genomic mosaicism adversely affect the inference of strain relationships based on the analysis of a restricted number of genetic loci. Results Our results indicate that, in general, there is significant concordance between strain relationships established by MLST and those based on shared gene content as established by CGH. While MLST has significant predictive power with respect to overall genome similarity of isolates, we also found evidence for significant differences in genomic content among strains that would otherwise appear to be highly related based on their MLST profiles. Conclusion The extensive genomic mosaicism between closely related strains has important implications in the context of establishing strain to strain relationships because it suggests that the exact gene content of strains, and by extension their phenotype, is less likely to be "predicted" based on a small number of typing loci. This in turn suggests that a greater emphasis should be placed on analyzing genes of clinical interest as we forge ahead with the next generation of molecular typing methods.

  14. Comparative analysis of the complete genome sequence of the California MSW strain of myxoma virus reveals potential host adaptations.

    Science.gov (United States)

    Kerr, Peter J; Rogers, Matthew B; Fitch, Adam; Depasse, Jay V; Cattadori, Isabella M; Hudson, Peter J; Tscharke, David C; Holmes, Edward C; Ghedin, Elodie

    2013-11-01

    Myxomatosis is a rapidly lethal disease of European rabbits that is caused by myxoma virus (MYXV). The introduction of a South American strain of MYXV into the European rabbit population of Australia is the classic case of host-pathogen coevolution following cross-species transmission. The most virulent strains of MYXV for European rabbits are the Californian viruses, found in the Pacific states of the United States and the Baja Peninsula, Mexico. The natural host of Californian MYXV is the brush rabbit, Sylvilagus bachmani. We determined the complete sequence of the MSW strain of Californian MYXV and performed a comparative analysis with other MYXV genomes. The MSW genome is larger than that of the South American Lausanne (type) strain of MYXV due to an expansion of the terminal inverted repeats (TIRs) of the genome, with duplication of the M156R, M154L, M153R, M152R, and M151R genes and part of the M150R gene from the right-hand (RH) end of the genome at the left-hand (LH) TIR. Despite the extreme virulence of MSW, no novel genes were identified; five genes were disrupted by multiple indels or mutations to the ATG start codon, including two genes, M008.1L/R and M152R, with major virulence functions in European rabbits, and a sixth gene, M000.5L/R, was absent. The loss of these gene functions suggests that S. bachmani is a relatively recent host for MYXV and that duplication of virulence genes in the TIRs, gene loss, or sequence variation in other genes can compensate for the loss of M008.1L/R and M152R in infections of European rabbits.

  15. The complete chloroplast genome sequence of the CAM epiphyte Spanish moss (Tillandsia usneoides, Bromeliaceae and its comparative analysis.

    Directory of Open Access Journals (Sweden)

    Péter Poczai

    Full Text Available Spanish moss (Tillandsia usneoides is an epiphytic bromeliad widely distributed throughout tropical and warm temperate America. This plant is highly adapted to extreme environmental conditions. Striking features of this species include specialized trichomes (scales covering the surface of its shoots aiding the absorption of water and nutrients directly from the atmosphere and a specific photosynthesis using crassulacean acid metabolism (CAM. Here we report the plastid genome of Spanish moss and present the comparison of genome organization and sequence evolution within Poales. The plastome of Spanish moss has a quadripartite structure consisting of a large single copy (LSC, 87,439 bp, two inverted regions (IRa and IRb, 26,803 bp and short single copy (SSC, 18,612 bp region. The plastid genome had 37.2% GC content and 134 genes with 88 being unique protein-coding genes and 20 of these are duplicated in the IR, similar to other reported bromeliads. Our study shows that early diverging lineages of Poales do not have high substitution rates as compared to grasses, and plastid genomes of bromeliads show structural features considered to be ancestral in graminids. These include the loss of the introns in the clpP and rpoC1 genes and the complete loss or partial degradation of accD and ycf genes in the Graminid clade. Further structural rearrangements appeared in the graminids lacking in Spanish moss, which include a 28-kb inversion between the trnG-UCC-rps14 region and 6-kb in the trnG-UCC-psbD, followed by a third <1kb inversion in the trnT sequence.

  16. The complete chloroplast genome sequence of the CAM epiphyte Spanish moss (Tillandsia usneoides, Bromeliaceae) and its comparative analysis.

    Science.gov (United States)

    Poczai, Péter; Hyvönen, Jaakko

    2017-01-01

    Spanish moss (Tillandsia usneoides) is an epiphytic bromeliad widely distributed throughout tropical and warm temperate America. This plant is highly adapted to extreme environmental conditions. Striking features of this species include specialized trichomes (scales) covering the surface of its shoots aiding the absorption of water and nutrients directly from the atmosphere and a specific photosynthesis using crassulacean acid metabolism (CAM). Here we report the plastid genome of Spanish moss and present the comparison of genome organization and sequence evolution within Poales. The plastome of Spanish moss has a quadripartite structure consisting of a large single copy (LSC, 87,439 bp), two inverted regions (IRa and IRb, 26,803 bp) and short single copy (SSC, 18,612 bp) region. The plastid genome had 37.2% GC content and 134 genes with 88 being unique protein-coding genes and 20 of these are duplicated in the IR, similar to other reported bromeliads. Our study shows that early diverging lineages of Poales do not have high substitution rates as compared to grasses, and plastid genomes of bromeliads show structural features considered to be ancestral in graminids. These include the loss of the introns in the clpP and rpoC1 genes and the complete loss or partial degradation of accD and ycf genes in the Graminid clade. Further structural rearrangements appeared in the graminids lacking in Spanish moss, which include a 28-kb inversion between the trnG-UCC-rps14 region and 6-kb in the trnG-UCC-psbD, followed by a third <1kb inversion in the trnT sequence.

  17. Complete chloroplast genome sequence of common bermudagrass (Cynodon dactylon (L.) Pers.) and comparative analysis within the family Poaceae.

    Science.gov (United States)

    Huang, Ya-Yi; Cho, Shu-Ting; Haryono, Mindia; Kuo, Chih-Horng

    2017-01-01

    Common bermudagrass (Cynodon dactylon (L.) Pers.) belongs to the subfamily Chloridoideae of the Poaceae family, one of the most important plant families ecologically and economically. This grass has a long connection with human culture but its systematics is relatively understudied. In this study, we sequenced and investigated the chloroplast genome of common bermudagrass, which is 134,297 bp in length with two single copy regions (LSC: 79,732 bp; SSC: 12,521 bp) and a pair of inverted repeat (IR) regions (21,022 bp). The annotation contains a total of 128 predicted genes, including 82 protein-coding, 38 tRNA, and 8 rRNA genes. Additionally, our in silico analyses identified 10 sets of repeats longer than 20 bp and predicted the presence of 36 RNA editing sites. Overall, the chloroplast genome of common bermudagrass resembles those from other Poaceae lineages. Compared to most angiosperms, the accD gene and the introns of both clpP and rpoC1 genes are missing. Additionally, the ycf1, ycf2, ycf15, and ycf68 genes are pseudogenized and two genome rearrangements exist. Our phylogenetic analysis based on 47 chloroplast protein-coding genes supported the placement of common bermudagrass within Chloridoideae. Our phylogenetic character mapping based on the parsimony principle further indicated that the loss of the accD gene and clpP introns, the pseudogenization of four ycf genes, and the two rearrangements occurred only once after the most recent common ancestor of the Poaceae diverged from other monocots, which could explain the unusual long branch leading to the Poaceae when phylogeny is inferred based on chloroplast sequences.

  18. Comparing treatment outcomes of different chemotherapy sequences during intensity modulated radiotherapy for advanced N-stage nasopharyngeal carcinoma patients

    International Nuclear Information System (INIS)

    Sun, Xueming; Zeng, Lei; Chen, Chunyan; Huang, Ying; Han, Fei; Xiao, Weiwei; Liu, Shuai; Lu, Taixiang

    2013-01-01

    N-stage is related to distant metastasis of nasopharyngeal carcinoma (NPC) patients. We performed this study to compare the efficacy of different chemotherapy sequences in advanced N-stage (N2 and N3) NPC patients treated with intensity modulated radiotherapy (IMRT). From 2001 to 2008, 198 advanced N-stage NPC patients were retrospectively analyzed. Thirty-three patients received IMRT alone. Concurrent chemoradiotherapy (CCRT) was delivered to 72 patients, neoadjuvant chemotherapy (NACT) + CCRT to 82 patients and CCRT + adjuvant chemotherapy (AC) to 11 patients. The 5-year overall survival rate, recurrence-free survival rate, distant metastasis-free survival rate and progress-free survival rate were 47.7% and 73.1%(p<0.001), 74.5% and 91.3% (p = 0.004), 49.2% and 68.5% (p = 0.018), 37.5% and 63.8% (p<0.001) in IMRT alone and chemoradiotherapy group. Subgroup analyses indicated that there were no significant differences among the survival curves of CCRT, NACT + CCRT and CCRT + AC groups. The survival benefit mainly came from CCRT. However, there was only an improvement attendency in distant metastasis-free survival rate of CCRT group (p = 0.107) when compared with RT alone group, and NACT + CCRT could significantly improve distant metastasis-free survival (p = 0.017). For advanced N-stage NPC patients, NACT + CCRT might be a reasonable treatment strategy

  19. Low-field MR imaging of the spine. A comparative study of a traditional and a new, completely balanced gradient-echo sequence

    International Nuclear Information System (INIS)

    Drejer, J.; Thomsen, H.S.; Tanttu, J.

    1995-01-01

    49 patients underwent 53 examinations with both a traditional T1-weighted gradient-echo (PS) sequence and a new completely balanced steady-state 3-D (CBASS3D) sequence; 20 examinations included the cervical spine, 8 the thoracic spine and 25 the lumbar spine. All 106 examinations were reviewed twice regarding visibility of selected structures in the spinal region and diagnostic usefulness. The CBASS3D sequence delineated the medulla, nerve roots, CSF, the intervertebral discs and the posterior longitudinal ligament significantly better than the PS sequence. Disc hernia was also better visualised (p<0.01). There were significantly more artefacts on images obtained with the CBASS3D sequence, but they were usually outside the region of interest and occurred less frequently over time due to increased experience of the staff. Both reviewers found the diagnostic usefulness of CBASS3D to be superior compared to that of PS and excellent for diagnostic purposes. (orig./MG)

  20. Low-field MR imaging of the spine. A comparative study of a traditional and a new, completely balanced gradient-echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Drejer, J. [Dept. of Diagnostic Radiology, Herlev Hospital, Univ. Copenhagen (Denmark); Thomsen, H.S. [Dept. of Diagnostic Radiology, Herlev Hospital, Univ. Copenhagen (Denmark); Tanttu, J. [Picker Nordstar, Helsinki (Finland)

    1995-09-01

    49 patients underwent 53 examinations with both a traditional T1-weighted gradient-echo (PS) sequence and a new completely balanced steady-state 3-D (CBASS3D) sequence; 20 examinations included the cervical spine, 8 the thoracic spine and 25 the lumbar spine. All 106 examinations were reviewed twice regarding visibility of selected structures in the spinal region and diagnostic usefulness. The CBASS3D sequence delineated the medulla, nerve roots, CSF, the intervertebral discs and the posterior longitudinal ligament significantly better than the PS sequence. Disc hernia was also better visualised (p<0.01). There were significantly more artefacts on images obtained with the CBASS3D sequence, but they were usually outside the region of interest and occurred less frequently over time due to increased experience of the staff. Both reviewers found the diagnostic usefulness of CBASS3D to be superior compared to that of PS and excellent for diagnostic purposes. (orig./MG).

  1. A comparative, BAC end sequence enabled map of the genome of the American mink (Neovison vison)

    DEFF Research Database (Denmark)

    Benkel, Bernhard F.; Smith, Amanda; Christensen, Knud

    2012-01-01

    In this report we present the results of the analysis of approximately 2.7 Mb of genomic information for the American mink (Neovison vison) derived through BAC end sequencing. Our study, which encompasses approximately 1/1000th of the mink genome, suggests that simple sequence repeats (SSRs...

  2. A comparative study of sequence- and structure-based features of small RNAs and other RNAs of bacteria.

    Science.gov (United States)

    Barik, Amita; Das, Santasabuj

    2018-01-02

    Small RNAs (sRNAs) in bacteria have emerged as key players in transcriptional and post-transcriptional regulation of gene expression. Here, we present a statistical analysis of different sequence- and structure-related features of bacterial sRNAs to identify the descriptors that could discriminate sRNAs from other bacterial RNAs. We investigated a comprehensive and heterogeneous collection of 816 sRNAs, identified by northern blotting across 33 bacterial species and compared their various features with other classes of bacterial RNAs, such as tRNAs, rRNAs and mRNAs. We observed that sRNAs differed significantly from the rest with respect to G+C composition, normalized minimum free energy of folding, motif frequency and several RNA-folding parameters like base-pairing propensity, Shannon entropy and base-pair distance. Based on the selected features, we developed a predictive model using Random Forests (RF) method to classify the above four classes of RNAs. Our model displayed an overall predictive accuracy of 89.5%. These findings would help to differentiate bacterial sRNAs from other RNAs and further promote prediction of novel sRNAs in different bacterial species.

  3. A comparative study of cold- and warm-adapted Endonucleases A using sequence analyses and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Davide Michetti

    Full Text Available The psychrophilic and mesophilic endonucleases A (EndA from Aliivibrio salmonicida (VsEndA and Vibrio cholera (VcEndA have been studied experimentally in terms of the biophysical properties related to thermal adaptation. The analyses of their static X-ray structures was no sufficient to rationalize the determinants of their adaptive traits at the molecular level. Thus, we used Molecular Dynamics (MD simulations to compare the two proteins and unveil their structural and dynamical differences. Our simulations did not show a substantial increase in flexibility in the cold-adapted variant on the nanosecond time scale. The only exception is a more rigid C-terminal region in VcEndA, which is ascribable to a cluster of electrostatic interactions and hydrogen bonds, as also supported by MD simulations of the VsEndA mutant variant where the cluster of interactions was introduced. Moreover, we identified three additional amino acidic substitutions through multiple sequence alignment and the analyses of MD-based protein structure networks. In particular, T120V occurs in the proximity of the catalytic residue H80 and alters the interaction with the residue Y43, which belongs to the second coordination sphere of the Mg2+ ion. This makes T120V an amenable candidate for future experimental mutagenesis.

  4. Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts

    Directory of Open Access Journals (Sweden)

    Ouyang Shu

    2005-09-01

    Full Text Available Abstract Background The Solanaceae is a family of closely related species with diverse phenotypes that have been exploited for agronomic purposes. Previous studies involving a small number of genes suggested sequence conservation across the Solanaceae. The availability of large collections of Expressed Sequence Tags (ESTs for the Solanaceae now provides the opportunity to assess sequence conservation and divergence on a genomic scale. Results All available ESTs and Expressed Transcripts (ETs, 449,224 sequences for six Solanaceae species (potato, tomato, pepper, petunia, tobacco and Nicotiana benthamiana, were clustered and assembled into gene indices. Examination of gene ontologies revealed that the transcripts within the gene indices encode a similar suite of biological processes. Although the ESTs and ETs were derived from a variety of tissues, 55–81% of the sequences had significant similarity at the nucleotide level with sequences among the six species. Putative orthologs could be identified for 28–58% of the sequences. This high degree of sequence conservation was supported by expression profiling using heterologous hybridizations to potato cDNA arrays that showed similar expression patterns in mature leaves for all six solanaceous species. 16–19% of the transcripts within the six Solanaceae gene indices did not have matches among Solanaceae, Arabidopsis, rice or 21 other plant gene indices. Conclusion Results from this genome scale analysis confirmed a high level of sequence conservation at the nucleotide level of the coding sequence among Solanaceae. Additionally, the results indicated that part of the Solanaceae transcriptome is likely to be unique for each species.

  5. Comparative analysis of function and interaction of transcription factors in nematodes: Extensive conservation of orthology coupled to rapid sequence evolution

    Directory of Open Access Journals (Sweden)

    Singh Rama S

    2008-08-01

    Full Text Available Abstract Background Much of the morphological diversity in eukaryotes results from differential regulation of gene expression in which transcription factors (TFs play a central role. The nematode Caenorhabditis elegans is an established model organism for the study of the roles of TFs in controlling the spatiotemporal pattern of gene expression. Using the fully sequenced genomes of three Caenorhabditid nematode species as well as genome information from additional more distantly related organisms (fruit fly, mouse, and human we sought to identify orthologous TFs and characterized their patterns of evolution. Results We identified 988 TF genes in C. elegans, and inferred corresponding sets in C. briggsae and C. remanei, containing 995 and 1093 TF genes, respectively. Analysis of the three gene sets revealed 652 3-way reciprocal 'best hit' orthologs (nematode TF set, approximately half of which are zinc finger (ZF-C2H2 and ZF-C4/NHR types and HOX family members. Examination of the TF genes in C. elegans and C. briggsae identified the presence of significant tandem clustering on chromosome V, the majority of which belong to ZF-C4/NHR family. We also found evidence for lineage-specific duplications and rapid evolution of many of the TF genes in the two species. A search of the TFs conserved among nematodes in Drosophila melanogaster, Mus musculus and Homo sapiens revealed 150 reciprocal orthologs, many of which are associated with important biological processes and human diseases. Finally, a comparison of the sequence, gene interactions and function indicates that nematode TFs conserved across phyla exhibit significantly more interactions and are enriched in genes with annotated mutant phenotypes compared to those that lack orthologs in other species. Conclusion Our study represents the first comprehensive genome-wide analysis of TFs across three nematode species and other organisms. The findings indicate substantial conservation of transcription

  6. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing.

    Science.gov (United States)

    David, Jean-Philippe; Faucon, Frédéric; Chandor-Proust, Alexia; Poupardin, Rodolphe; Riaz, Muhammad Asam; Bonin, Aurélie; Navratil, Vincent; Reynaud, Stéphane

    2014-03-05

    Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes revealed that permethrin

  7. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids.

    Science.gov (United States)

    Li, Yushuang; Song, Tian; Yang, Jiasheng; Zhang, Yi; Yang, Jialiang

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector.

  8. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    Science.gov (United States)

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of

  9. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    International Nuclear Information System (INIS)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja; Espinosa, Norman

    2017-01-01

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  10. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    Energy Technology Data Exchange (ETDEWEB)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); Espinosa, Norman [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Orthopedic Surgery, Zurich (Switzerland)

    2017-08-15

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  11. Insights into bacterioplankton community structure from Sundarbans mangrove ecoregion using Sanger and Illumina MiSeq sequencing approaches: A comparative analysis

    Directory of Open Access Journals (Sweden)

    Anwesha Ghosh

    2017-03-01

    Full Text Available Next generation sequencing using platforms such as Illumina MiSeq provides a deeper insight into the structure and function of bacterioplankton communities in coastal ecosystems compared to traditional molecular techniques such as clone library approach which incorporates Sanger sequencing. In this study, structure of bacterioplankton communities was investigated from two stations of Sundarbans mangrove ecoregion using both Sanger and Illumina MiSeq sequencing approaches. The Illumina MiSeq data is available under the BioProject ID PRJNA35180 and Sanger sequencing data under accession numbers KX014101-KX014140 (Stn1 and KX014372-KX014410 (Stn3. Proteobacteria-, Firmicutes- and Bacteroidetes-like sequences retrieved from both approaches appeared to be abundant in the studied ecosystem. The Illumina MiSeq data (2.1 GB provided a deeper insight into the structure of bacterioplankton communities and revealed the presence of bacterial phyla such as Actinobacteria, Cyanobacteria, Tenericutes, Verrucomicrobia which were not recovered based on Sanger sequencing. A comparative analysis of bacterioplankton communities from both stations highlighted the presence of genera that appear in both stations and genera that occur exclusively in either station. However, both the Sanger sequencing and Illumina MiSeq data were coherent at broader taxonomic levels. Pseudomonas, Devosia, Hyphomonas and Erythrobacter-like sequences were the abundant bacterial genera found in the studied ecosystem. Both the sequencing methods showed broad coherence although as expected the Illumina MiSeq data helped identify rarer bacterioplankton groups and also showed the presence of unassigned OTUs indicating possible presence of novel bacterioplankton from the studied mangrove ecosystem.

  12. De novo transcriptome sequencing and comparative analysis to discover genes involved in ovarian maturity in Strongylocentrotus nudus.

    Science.gov (United States)

    Jia, Zhiying; Wang, Qiai; Wu, Kaikai; Wei, Zhenlin; Zhou, Zunchun; Liu, Xiaolin

    2017-09-01

    Strongylocentrotus nudus is an edible sea urchin, mainly harvested in China. Correlation studies indicated that S. nudus with larger diameter have a prolonged marketing time and better palatability owing to their precocious gonads and extended maturation process. However, the molecular mechanism underlying this phenomenon is still unknown. Here, transcriptome sequencing was applied to study the ovaries of adult S. nudus with different shell diameters to explore the possible mechanism. In this study, four independent cDNA libraries were constructed, including two from the big size urchins and two from the small ones using a HiSeq™2500 platform. A total of 88,581 unigenes were acquired with a mean length of 1354bp, of which 66,331 (74.88%) unigenes could be annotated using six major publicly available databases. Comparative analysis revealed that 353 unigenes were differentially expressed (with log2(ratio)≥1, FDR≤0.001) between the two groups. Of these, 20 differentially expressed genes (DEGs) were selected to confirm the accuracy of RNA-seq data by quantitative real-time RT-PCR. Furthermore, gene ontology and KEGG pathway enrichment analyses were performed to find the putative genes and pathways related to ovarian maturity. Eight unigenes were identified as significant DEGs involved in reproduction related pathways; these included Mos, Cdc20, Rec8, YP30, cytochrome P450 2U1, ovoperoxidase, proteoliaisin, and rendezvin. Our research fills the gap in the studies on the S. nudus ovaries using transcriptome analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes

    Directory of Open Access Journals (Sweden)

    Telonis-Scott Marina

    2010-09-01

    Full Text Available Abstract Background Vibrio vulnificus is the leading cause of reported death from consumption of seafood in the United States. Despite several decades of research on molecular pathogenesis, much remains to be learned about the mechanisms of virulence of this opportunistic bacterial pathogen. The two complete and annotated genomic DNA sequences of V. vulnificus belong to strains of clade 2, which is the predominant clade among clinical strains. Clade 2 strains generally possess higher virulence potential in animal models of disease compared with clade 1, which predominates among environmental strains. SOLiD sequencing of four V. vulnificus strains representing different clades (1 and 2 and biotypes (1 and 2 was used for comparative genomic analysis. Results Greater than 4,100,000 bases were sequenced of each strain, yielding approximately 100-fold coverage for each of the four genomes. Although the read lengths of SOLiD genomic sequencing were only 35 nt, we were able to make significant conclusions about the unique and shared sequences among the genomes, including identification of single nucleotide polymorphisms. Comparative analysis of the newly sequenced genomes to the existing reference genomes enabled the identification of 3,459 core V. vulnificus genes shared among all six strains and 80 clade 2-specific genes. We identified 523,161 SNPs among the six genomes. Conclusions We were able to glean much information about the genomic content of each strain using next generation sequencing. Flp pili, GGDEF proteins, and genomic island XII were identified as possible virulence factors because of their presence in virulent sequenced strains. Genomic comparisons also point toward the involvement of sialic acid catabolism in pathogenesis.

  14. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes

    Science.gov (United States)

    Saski, Christopher; Lee, Seung-Bum; Fjellheim, Siri; Guda, Chittibabu; Jansen, Robert K.; Luo, Hong; Tomkins, Jeffrey; Rognli, Odd Arne; Clarke, Jihong Liu

    2009-01-01

    Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5′ end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19–37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16–21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C–U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae. PMID:17534593

  15. Whole-exome sequencing gives additional benefits compared to candidate gene sequencing in the molecular diagnosis of children with growth hormone or IGF-1 insensitivity.

    Science.gov (United States)

    Shapiro, Lucy; Chatterjee, Sumana; Ramadan, Dina G; Davies, Kate M; Savage, Martin O; Metherell, Louise A; Storr, Helen L

    2017-12-01

    GH insensitivity (GHI) is characterised by short stature, IGF-1 deficiency and normal/elevated serum GH. IGF-1 insensitivity results in pre- and post-natal growth failure with normal/high IGF-1 levels. The prevalence of genetic defects is unknown. To identify the underlying genetic diagnoses in a paediatric cohort with GH or IGF-1 insensitivity using candidate gene (CGS) and whole-exome sequencing (WES) and assess factors associated with the discovery of a genetic defect. We undertook a prospective study of 132 patients with short stature and suspected GH or IGF-1 insensitivity referred to our centre for genetic analysis. 107 (96 GHI, 88 probands; 11 IGF-1 insensitivity, 9 probands) underwent CGS. WES was performed in those with no defined genetic aetiology following CGS. A genetic diagnosis was discovered 38/107 (36%) patients (32% probands) by CGS. WES revealed 11 patients with genetic variants in genes known to cause short stature. A further 2 patients had hypomethylation in the H19/IGF2 region or mUPD7 consistent with Silver-Russell Syndrome (total with genetic diagnosis 51/107, 48% or 41/97, 42% probands). WES also identified homozygous putative variants in FANCA and PHKB in 2 patients. Low height SDS and consanguinity were highly predictive for identifying a genetic defect. Comprehensive genetic testing confirms the genetic heterogeneity of GH/IGF-1 insensitivity and successfully identified the genetic aetiology in a significant proportion of cases. WES is rapid and may isolate genetic variants that have been missed by traditional clinically driven genetic testing. This emphasises the benefits of specialist diagnostic centres. © 2017 European Society of Endocrinology.

  16. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences

    Energy Technology Data Exchange (ETDEWEB)

    Altahawi, Faysal F.; Blount, Kevin J.; Omar, Imran M. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Morley, Nicholas P. [Marshfield Clinic, Department of Radiology, Marshfield, WI (United States); Raithel, Esther [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-01-15

    To compare a faster, new, high-resolution accelerated 3D-fast-spin-echo (3D-FSE) acquisition sequence (CS-SPACE) to traditional 2D and high-resolution 3D sequences for knee 3-T magnetic resonance imaging (MRI). Twenty patients received knee MRIs that included routine 2D (T1, PD ± FS, T2-FS; 0.5 x 0.5 x 3 mm{sup 3}; ∝10 min), traditional 3D FSE (SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝7.5 min), and accelerated 3D-FSE prototype (CS-SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝5 min) acquisitions on a 3-T MRI system (Siemens MAGNETOM Skyra). Three musculoskeletal radiologists (MSKRs) prospectively and independently reviewed the studies with graded surveys comparing image and diagnostic quality. Tissue-specific signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were also compared. MSKR-perceived diagnostic quality of cartilage was significantly higher for CS-SPACE than for SPACE and 2D sequences (p < 0.001). Assessment of diagnostic quality of menisci and synovial fluid was higher for CS-SPACE than for SPACE (p < 0.001). CS-SPACE was not significantly different from SPACE but had lower assessments than 2D sequences for evaluation of bones, ligaments, muscles, and fat (p ≤ 0.004). 3D sequences had higher spatial resolution, but lower overall assessed contrast (p < 0.001). Overall image quality from CS-SPACE was assessed as higher than SPACE (p = 0.007), but lower than 2D sequences (p < 0.001). Compared to SPACE, CS-SPACE had higher fluid SNR and CNR against all other tissues (all p < 0.001). The CS-SPACE prototype allows for faster isotropic acquisitions of knee MRIs over currently used protocols. High fluid-to-cartilage CNR and higher spatial resolution over routine 2D sequences may present a valuable role for CS-SPACE in the evaluation of cartilage and menisci. (orig.)

  17. A comparative study of pseudorandom sequences used in a c-VEP based BCI for online wheelchair control

    DEFF Research Database (Denmark)

    Isaksen, Jonas L.; Mohebbi, Ali; Puthusserypady, Sadasivan

    2016-01-01

    In this study, a c-VEP based BCI system was developed to run on three distinctive pseudorandom sequences, namely the m-code, the Gold-code, and the Barker-code. The Visual Evoked Potentials (VEPs) were provoked using these codes. In the online session, subjects controlled a LEGO® Mindstorms® robot...

  18. Comparative sequence analyses of the major quantitative trait locus phosphorus uptake 1 (Pup1) reveal a complex genetic structure.

    Science.gov (United States)

    Heuer, Sigrid; Lu, Xiaochun; Chin, Joong Hyoun; Tanaka, Juan Pariasca; Kanamori, Hiroyuki; Matsumoto, Takashi; De Leon, Teresa; Ulat, Victor Jun; Ismail, Abdelbagi M; Yano, Masahiro; Wissuwa, Matthias

    2009-06-01

    The phosphorus uptake 1 (Pup1) locus was identified as a major quantitative trait locus (QTL) for tolerance of phosphorus deficiency in rice. Near-isogenic lines with the Pup1 region from tolerant donor parent Kasalath typically show threefold higher phosphorus uptake and grain yield in phosphorus-deficient field trials than the intolerant parent Nipponbare. In this study, we report the fine mapping of the Pup1 locus to the long arm of chromosome 12 (15.31-15.47 Mb). Genes in the region were initially identified on the basis of the Nipponbare reference genome, but did not reveal any obvious candidate genes related to phosphorus uptake. Kasalath BAC clones were therefore sequenced and revealed a 278-kbp sequence significantly different from the syntenic regions in Nipponbare (145 kb) and in the indica reference genome of 93-11 (742 kbp). Size differences are caused by large insertions or deletions (INDELs), and an exceptionally large number of retrotransposon and transposon-related elements (TEs) present in all three sequences (45%-54%). About 46 kb of the Kasalath sequence did not align with the entire Nipponbare genome, and only three Nipponbare genes (fatty acid alpha-dioxygenase, dirigent protein and aspartic proteinase) are highly conserved in Kasalath. Two Nipponbare genes (expressed proteins) might have evolved by at least three TE integrations in an ancestor gene that is still present in Kasalath. Several predicted Kasalath genes are novel or unknown genes that are mainly located within INDEL regions. Our results highlight the importance of sequencing QTL regions in the respective donor parent, as important genes might not be present in the current reference genomes.

  19. Encoding and recall of finger sequences in experienced pianists compared with musically naïve controls: a combined behavioral and functional imaging study.

    Science.gov (United States)

    Pau, S; Jahn, G; Sakreida, K; Domin, M; Lotze, M

    2013-01-01

    Long-term intensive sensorimotor training alters functional representation of the motor and sensory system and might even result in structural changes. However, there is not much knowledge about how previous training impacts learning transfer and functional representation. We tested 14 amateur pianists and 15 musically naïve participants in a short-term finger sequence training procedure, differing considerably from piano playing and measured associated functional representation with functional magnetic resonance imaging. The conditions consisted of encoding a finger sequence indicated by hand symbols ("sequence encoding") and subsequently replaying the sequence from memory, both with and without auditory feedback ("sequence retrieval"). Piano players activated motor areas and the mirror neuron system more strongly than musically naïve participants during encoding. When retrieving the sequence, musically naïve participants showed higher activation in similar brain areas. Thus, retrieval activations of naïve participants were comparable to encoding activations of piano players, who during retrieval performed the sequences more accurately despite lower motor activations. Interestingly, both groups showed primary auditory activation even during sequence retrieval without auditory feedback, supporting previous reports about coactivation of the auditory cortex after learned association with motor performance. When playing with auditory feedback, only pianists lateralized to the left auditory cortex. During encoding activation in left primary somatosensory cortex in the height of the finger representations had a predictive value for increased motor performance later on (error rates). Contrarily, decreased performance was associated with increased visual cortex activation during encoding. Our study extends previous reports about training transfer of motor knowledge resulting in superior training effects in musicians. Performance increase went along with activity in

  20. Separation of the Components of a Commercial Analgesic Tablet: A Two-Week Sequence Comparing Purification by Two-Base Extraction and Column Chromatography

    Science.gov (United States)

    Revell, Kevin D.

    2011-01-01

    A new laboratory experiment is described in which students compare two benchtop separation methods to isolate the three active components of the commercial analgesic Excedrin. In the two-week sequence, aspirin, acetaminophen, and caffeine are separated using either a two-base liquid-liquid extraction or silica column chromatography. Students then…

  1. Comparative sequence analysis of Solanum and Arabidopsis in a hot spot for pathogen resistance on potato chromosome V reveals a patchwork of conserved and rapidly evolving genome segments

    Directory of Open Access Journals (Sweden)

    Bruggmann Rémy

    2007-05-01

    Full Text Available Abstract Background Quantitative phenotypic variation of agronomic characters in crop plants is controlled by environmental and genetic factors (quantitative trait loci = QTL. To understand the molecular basis of such QTL, the identification of the underlying genes is of primary interest and DNA sequence analysis of the genomic regions harboring QTL is a prerequisite for that. QTL mapping in potato (Solanum tuberosum has identified a region on chromosome V tagged by DNA markers GP21 and GP179, which contains a number of important QTL, among others QTL for resistance to late blight caused by the oomycete Phytophthora infestans and to root cyst nematodes. Results To obtain genomic sequence for the targeted region on chromosome V, two local BAC (bacterial artificial chromosome contigs were constructed and sequenced, which corresponded to parts of the homologous chromosomes of the diploid, heterozygous genotype P6/210. Two contiguous sequences of 417,445 and 202,781 base pairs were assembled and annotated. Gene-by-gene co-linearity was disrupted by non-allelic insertions of retrotransposon elements, stretches of diverged intergenic sequences, differences in gene content and gene order. The latter was caused by inversion of a 70 kbp genomic fragment. These features were also found in comparison to orthologous sequence contigs from three homeologous chromosomes of Solanum demissum, a wild tuber bearing species. Functional annotation of the sequence identified 48 putative open reading frames (ORF in one contig and 22 in the other, with an average of one ORF every 9 kbp. Ten ORFs were classified as resistance-gene-like, 11 as F-box-containing genes, 13 as transposable elements and three as transcription factors. Comparing potato to Arabidopsis thaliana annotated proteins revealed five micro-syntenic blocks of three to seven ORFs with A. thaliana chromosomes 1, 3 and 5. Conclusion Comparative sequence analysis revealed highly conserved collinear regions

  2. Comparative In silico Study of Sex-Determining Region Y (SRY) Protein Sequences Involved in Sex-Determining.

    Science.gov (United States)

    Vakili Azghandi, Masoume; Nasiri, Mohammadreza; Shamsa, Ali; Jalali, Mohsen; Shariati, Mohammad Mahdi

    2016-04-01

    The SRY gene (SRY) provides instructions for making a transcription factor called the sex-determining region Y protein. The sex-determining region Y protein causes a fetus to develop as a male. In this study, SRY of 15 spices included of human, chimpanzee, dog, pig, rat, cattle, buffalo, goat, sheep, horse, zebra, frog, urial, dolphin and killer whale were used for determine of bioinformatic differences. Nucleotide sequences of SRY were retrieved from the NCBI databank. Bioinformatic analysis of SRY is done by CLC Main Workbench version 5.5 and ClustalW (http:/www.ebi.ac.uk/clustalw/) and MEGA6 softwares. The multiple sequence alignment results indicated that SRY protein sequences from Orcinus orca (killer whale) and Tursiopsaduncus (dolphin) have least genetic distance of 0.33 in these 15 species and are 99.67% identical at the amino acid level. Homosapiens and Pantroglodytes (chimpanzee) have the next lowest genetic distance of 1.35 and are 98.65% identical at the amino acid level. These findings indicate that the SRY proteins are conserved in the 15 species, and their evolutionary relationships are similar.

  3. Comparative In silico Study of Sex-Determining Region Y (SRY Protein Sequences Involved in Sex-Determining

    Directory of Open Access Journals (Sweden)

    Masoume Vakili Azghandi

    2016-05-01

    Full Text Available Background: The SRY gene (SRY provides instructions for making a transcription factor called the sex-determining region Y protein. The sex-determining region Y protein causes a fetus to develop as a male. In this study, SRY of 15 spices included of human, chimpanzee, dog, pig, rat, cattle, buffalo, goat, sheep, horse, zebra, frog, urial, dolphin and killer whale were used for determine of bioinformatic differences. Methods: Nucleotide sequences of SRY were retrieved from the NCBI databank. Bioinformatic analysis of SRY is done by CLC Main Workbench version 5.5 and ClustalW (http:/www.ebi.ac.uk/clustalw/ and MEGA6 softwares. Results: The multiple sequence alignment results indicated that SRY protein sequences from Orcinus orca (killer whale and Tursiopsaduncus (dolphin have least genetic distance of 0.33 in these 15 species and are 99.67% identical at the amino acid level. Homosapiens and Pantroglodytes (chimpanzee have the next lowest genetic distance of 1.35 and are 98.65% identical at the amino acid level. Conclusion: These findings indicate that the SRY proteins are conserved in the 15 species, and their evolutionary relationships are similar.

  4. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in dryoperis fragrans under temperature stress

    International Nuclear Information System (INIS)

    Wang, W.Z.; Tong, W.S.; Gao, R.

    2016-01-01

    Dryopteris fragrans is a species of fern and contains flavonoids compounds with medicinal value. This study explain the temperature stress impact flavonoids synthesis in D. fragrans tissue culture seedlings under the low temperature at 4 degree C, high temperature at 35 degree C and moderate temperature at 25 degree C. By using Illumina HiSeq 2000 sequencing, 80.9 million raw sequence reads were de novo assembled into 66,716 non-redundant unigenes. 38,486 unigenes (57.7%) were annotated for their function. 13,973 unigenes and 29,598 unigenes were allocated to gene ontology (GO) and clusters of orthologous group (COG), respectively. 18,989 sequences mapped to 118 Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 204 genes were involved in flavonoid biosynthesis, regulation and transport. 25,292 and 16,817 unigenes exhibited marked differential expression in response to temperature shifts of 25 degree C to 4 degree C and 25 degree C to 35 degree C, respectively. 4CL and CHS genes involved in flavonoid biosynthesis were tested and suggested that they were responsible for biosynthesis of flavonoids. This study provides the first published data to describe the D. fragrans transcriptome and should accelerate understanding of flavonoids biosynthesis, regulation and transport mechanisms. Since most unigenes described here were successfully annotated, these results should facilitate future functional genomic understanding and research of D. fragrans. (author)

  5. Comparative genomic analysis of translation initiation mechanisms for genes lacking the Shine–Dalgarno sequence in prokaryotes

    KAUST Repository

    Nakagawa, So

    2017-02-15

    In prokaryotes, translation initiation is believed to occur through an interaction between the 3\\' tail of a 16S rRNA and a corresponding Shine-Dalgarno (SD) sequence in the 5\\' untranslated region (UTR) of an mRNA. However, some genes lack SD sequences (non-SD genes), and the fraction of non-SD genes in a genome varies depending on the prokaryotic species. To elucidate non-SD translation initiation mechanisms in prokaryotes from an evolutionary perspective, we statistically examined the nucleotide frequencies around the initiation codons in non-SD genes from 260 prokaryotes (235 bacteria and 25 archaea). We identified distinct nucleotide frequency biases upstream of the initiation codon in bacteria and archaea, likely because of the presence of leaderless mRNAs lacking a 5\\' UTR. Moreover, we observed overall similarities in the nucleotide patterns between upstream and downstream regions of the initiation codon in all examined phyla. Symmetric nucleotide frequency biases might facilitate translation initiation by preventing the formation of secondary structures around the initiation codon. These features are more prominent in species\\' genomes that harbor large fractions of non-SD sequences, suggesting that a reduced stability around the initiation codon is important for efficient translation initiation in prokaryotes.

  6. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases.

    Directory of Open Access Journals (Sweden)

    Malihe Masomian

    Full Text Available Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.

  7. Comparative genomic analysis of translation initiation mechanisms for genes lacking the Shine–Dalgarno sequence in prokaryotes

    KAUST Repository

    Nakagawa, So; Niimura, Yoshihito; Gojobori, Takashi

    2017-01-01

    In prokaryotes, translation initiation is believed to occur through an interaction between the 3' tail of a 16S rRNA and a corresponding Shine-Dalgarno (SD) sequence in the 5' untranslated region (UTR) of an mRNA. However, some genes lack SD sequences (non-SD genes), and the fraction of non-SD genes in a genome varies depending on the prokaryotic species. To elucidate non-SD translation initiation mechanisms in prokaryotes from an evolutionary perspective, we statistically examined the nucleotide frequencies around the initiation codons in non-SD genes from 260 prokaryotes (235 bacteria and 25 archaea). We identified distinct nucleotide frequency biases upstream of the initiation codon in bacteria and archaea, likely because of the presence of leaderless mRNAs lacking a 5' UTR. Moreover, we observed overall similarities in the nucleotide patterns between upstream and downstream regions of the initiation codon in all examined phyla. Symmetric nucleotide frequency biases might facilitate translation initiation by preventing the formation of secondary structures around the initiation codon. These features are more prominent in species' genomes that harbor large fractions of non-SD sequences, suggesting that a reduced stability around the initiation codon is important for efficient translation initiation in prokaryotes.

  8. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species.

    Directory of Open Access Journals (Sweden)

    Inkyu Park

    Full Text Available Aconitum species (belonging to the Ranunculaceae are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC-trnV, and successfully developed a SCAR (sequence characterized amplified region marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.

  9. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species.

    Science.gov (United States)

    Park, Inkyu; Kim, Wook-Jin; Yang, Sungyu; Yeo, Sang-Min; Li, Hulin; Moon, Byeong Cheol

    2017-01-01

    Aconitum species (belonging to the Ranunculaceae) are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp) genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC-trnV, and successfully developed a SCAR (sequence characterized amplified region) marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.

  10. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Science.gov (United States)

    2011-01-01

    Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar

  11. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Directory of Open Access Journals (Sweden)

    Wynhoven Brian

    2011-03-01

    Full Text Available Abstract Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt, we have generated Expressed Sequence Tags (ESTs by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores and asexual (germinated urediniospores stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum, 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs. Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt and stripe rust, P. striiformis f. sp

  12. De novo transcriptome sequencing of Isaria cateniannulata and comparative analysis of gene expression in response to heat and cold stresses.

    Directory of Open Access Journals (Sweden)

    Dingfeng Wang

    Full Text Available Isaria cateniannulata is a very important and virulent entomopathogenic fungus that infects many insect pest species. Although I. cateniannulata is commonly exposed to extreme environmental temperature conditions, little is known about its molecular response mechanism to temperature stress. Here, we sequenced and de novo assembled the transcriptome of I. cateniannulata in response to high and low temperature stresses using Illumina RNA-Seq technology. Our assembly encompassed 17,514 unigenes (mean length = 1,197 bp, in which 11,445 unigenes (65.34% showed significant similarities to known sequences in NCBI non-redundant protein sequences (Nr database. Using digital gene expression analysis, 4,483 differentially expressed genes (DEGs were identified after heat treatment, including 2,905 up-regulated genes and 1,578 down-regulated genes. Under cold stress, 1,927 DEGs were identified, including 1,245 up-regulated genes and 682 down-regulated genes. The expression patterns of 18 randomly selected candidate DEGs resulting from quantitative real-time PCR (qRT-PCR were consistent with their transcriptome analysis results. Although DEGs were involved in many pathways, we focused on the genes that were involved in endocytosis: In heat stress, the pathway of clathrin-dependent endocytosis (CDE was active; however at low temperature stresses, the pathway of clathrin-independent endocytosis (CIE was active. Besides, four categories of DEGs acting as temperature sensors were observed, including cell-wall-major-components-metabolism-related (CWMCMR genes, heat shock protein (Hsp genes, intracellular-compatible-solutes-metabolism-related (ICSMR genes and glutathione S-transferase (GST. These results enhance our understanding of the molecular mechanisms of I. cateniannulata in response to temperature stresses and provide a valuable resource for the future investigations.

  13. De Novo Sequencing and Comparative Analysis of Schima superba Seedlings to Explore the Response to Drought Stress.

    Directory of Open Access Journals (Sweden)

    Bao-Cai Han

    Full Text Available Schima superba is an important dominant species in subtropical evergreen broadleaved forests of China, and plays a vital role in community structure and dynamics. However, the survival rate of its seedlings in the field is low, and water shortage could be a factor that limits its regeneration. In order to better understand the response of its seedlings to drought stress on a functional genomics scale, RNA-seq technology was utilized in this study to perform a large-scale transcriptome sequencing of the S. superba seedlings under drought stress. More than 320 million clean reads were generated and 72218 unique transcripts were obtained through de novo assembly. These unigenes were further annotated by blasting with different public databases and a total of 53300 unique transcripts were annotated. A total of 31586 simple sequence repeat (SSR loci were presented. Through gene expression profiling analysis between drought treatment and control, 11038 genes were found to be significantly enriched in drought-stressed seedlings. Based on these differentially expressed genes (DEGs, Gene Ontology (GO terms enrichment and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG enrichment analysis indicated that drought stress caused a number of changes in the types of sugars, enzymes, secondary mechanisms, and light responses, and induced some potential physical protection mechanisms. In addition, the expression patterns of 18 transcripts induced by drought, as determined by quantitative real-time PCR, were consistent with their transcript abundance changes, as identified by RNA-seq. This transcriptome study provides a rapid method for understanding the response of S. superba seedlings to drought stress and provides a number of gene sequences available for further functional genomics studies.

  14. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Gurusamy eRaman

    2016-03-01

    Full Text Available Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of

  15. Comparative analysis of transcriptomes in aerial stems and roots of Ephedra sinica based on high-throughput mRNA sequencing

    Directory of Open Access Journals (Sweden)

    Taketo Okada

    2016-12-01

    Full Text Available Ephedra plants are taxonomically classified as gymnosperms, and are medicinally important as the botanical origin of crude drugs and as bioresources that contain pharmacologically active chemicals. Here we show a comparative analysis of the transcriptomes of aerial stems and roots of Ephedra sinica based on high-throughput mRNA sequencing by RNA-Seq. De novo assembly of short cDNA sequence reads generated 23,358, 13,373, and 28,579 contigs longer than 200 bases from aerial stems, roots, or both aerial stems and roots, respectively. The presumed functions encoded by these contig sequences were annotated by BLAST (blastx. Subsequently, these contigs were classified based on gene ontology slims, Enzyme Commission numbers, and the InterPro database. Furthermore, comparative gene expression analysis was performed between aerial stems and roots. These transcriptome analyses revealed differences and similarities between the transcriptomes of aerial stems and roots in E. sinica. Deep transcriptome sequencing of Ephedra should open the door to molecular biological studies based on the entire transcriptome, tissue- or organ-specific transcriptomes, or targeted genes of interest.

  16. The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species.

    Science.gov (United States)

    Zhang, Yanzhen; Ma, Ji; Yang, Bingxian; Li, Ruyi; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Zhang, Lin

    2014-05-01

    Taxus chinensis var. mairei (Taxaceae) is a domestic variety of yew species in local China. This plant is one of the sources for paclitaxel, which is a promising antineoplastic chemotherapy drugs during the last decade. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of T. chinensis var. mairei. The T. chinensis var. mairei cp genome is 129,513 bp in length, with 113 single copy genes and two duplicated genes (trnI-CAU, trnQ-UUG). Among the 113 single copy genes, 9 are intron-containing. Compared to other land plant cp genomes, the T. chinensis var. mairei cp genome has lost one of the large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperm such as Cycas revoluta and Ginkgo biloba L. Compared to related species, the gene order of T. chinensis var. mairei has a large inversion of ~110kb including 91 genes (from rps18 to accD) with gene contents unarranged. Repeat analysis identified 48 direct and 2 inverted repeats 30 bp long or longer with a sequence identity greater than 90%. Repeated short segments were found in genes rps18, rps19 and clpP. Analysis also revealed 22 simple sequence repeat (SSR) loci and almost all are composed of A or T. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models. [Sparse, Distributed Memory

    Science.gov (United States)

    Keeler, James D.

    1988-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  18. COMPAR

    International Nuclear Information System (INIS)

    Kuefner, K.

    1976-01-01

    COMPAR works on FORTRAN arrays with four indices: A = A(i,j,k,l) where, for each fixed k 0 ,l 0 , only the 'plane' [A(i,j,k 0 ,l 0 ), i = 1, isub(max), j = 1, jsub(max)] is held in fast memory. Given two arrays A, B of this type COMPAR has the capability to 1) re-norm A and B ind different ways; 2) calculate the deviations epsilon defined as epsilon(i,j,k,l): =[A(i,j,k,l) - B(i,j,k,l)] / GEW(i,j,k,l) where GEW (i,j,k,l) may be chosen in three different ways; 3) calculate mean, standard deviation and maximum in the array epsilon (by several intermediate stages); 4) determine traverses in the array epsilon; 5) plot these traverses by a printer; 6) simplify plots of these traverses by the PLOTEASY-system by creating input data blocks for this system. The main application of COMPAR is given (so far) by the comparison of two- and three-dimensional multigroup neutron flux-fields. (orig.) [de

  19. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Tanaka Yoshiyuki

    2012-07-01

    Full Text Available Abstract Background Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. Results Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura-type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3 kb, similarity >99.9%. It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size that are non-syntenic to normal-type genome, and the gene orf138

  20. Assembly of the Lactuca sativa, L. cv. Tizian draft genome sequence reveals differences within major resistance complex 1 as compared to the cv. Salinas reference genome.

    Science.gov (United States)

    Verwaaijen, Bart; Wibberg, Daniel; Nelkner, Johanna; Gordin, Miriam; Rupp, Oliver; Winkler, Anika; Bremges, Andreas; Blom, Jochen; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2018-02-10

    Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ESTs encoding glycine-rich proteins (GRPs

    Directory of Open Access Journals (Sweden)

    Fusaro Adriana

    2001-01-01

    Full Text Available Since the isolation of the first glycine-rich proteins (GRPs in plants a wealth of new GRPs have been identified. The highly specific but diverse expression pattern of grp genes, taken together with the distinct sub-cellular localization of some GRP groups, clearly indicate that these proteins are involved in several independent physiological processes. Notwithstanding the absence of a clear definition of the role of GRPs in plant cells, studies conducted with these proteins have provided new and interesting insights into the molecular biology and cell biology of plants. Complexly regulated promoters and distinct mechanisms for the regulation of gene expression have been demonstrated and new protein targeting pathways, as well as the exportation of GRPs from different cell types have been discovered. These data show that GRPs can be useful as markers and/or models to understand distinct aspects of plant biology. In this paper, the structural and functional features of these proteins in sugarcane (Saccharum officinarum L. are summarized. Since this is the first description of GRPs in sugarcane, special emphasis has been given to the expression pattern of these GRP genes by studying their abundance and prevalence in the different cDNA-libraries of the Sugarcane Expressed Sequence Tag (SUCEST project . The comparison of sugarcane GRPs with GRPs from other species is also discussed.

  2. Acinetobacter baumannii Virulence Traits: A Comparative Study of a Novel Sequence Type with Other Italian Endemic International Clones

    Directory of Open Access Journals (Sweden)

    Cecilia Ambrosi

    2017-10-01

    Full Text Available Carbapenem-resistant Acinetobacter baumannii (CRAb have emerged in recent decades as major causes of nosocomial infections. Resistance is mainly due to overexpression of intrinsic and/or acquired carbapenemases, especially oxacillinases (OXA. In Italy, although the sequence type (ST 2 and the ST78 are the most frequently detected, we recently reported ST632, a single locus variant of ST2. Therefore, this study was aimed at unraveling common bacterial surface virulence factors involved in pathogenesis and antibiotic resistance in representative CRAb of these ST genotypes. Outer membrane protein (OMP composition together with motility, biofilm formation, in vitro adherence to, invasion of, and survival within pneumocytes were analyzed. Differently from the carbapenem-susceptible reference strain ATCC 17978, either overexpressed OXA-51 or both OXA-23 and OXA-51 co-purified with OMPs in CRAb. This tight association ensures their maximal concentration on the inner surface of the outer membrane to provide the best protection against carbapenems. These findings led us to propose for the first time a common behavior of OXA enzymes in CRAb. Despite the presence of both OmpA and phosphorylcholine-porinD and the ability of all the strains to adhere to cells, invasion, and survival within pneumocytes was shown only by ST2 and ST78 isolates, sharing the highest number of identified OMPs. Conversely, notwithstanding genetic and OMPs similarities with ST2, ST632 was unable to invade and survive within epithelial cells. Overall, our study shows that different STs share a specific OMP composition, also shaped by overexpressed OXA, that is needed for invasiveness and survival of CRAb.

  3. Acinetobacter baumannii Virulence Traits: A Comparative Study of a Novel Sequence Type with Other Italian Endemic International Clones.

    Science.gov (United States)

    Ambrosi, Cecilia; Scribano, Daniela; Aleandri, Marta; Zagaglia, Carlo; Di Francesco, Laura; Putignani, Lorenza; Palamara, Anna Teresa

    2017-01-01

    Carbapenem-resistant Acinetobacter baumannii (CRAb) have emerged in recent decades as major causes of nosocomial infections. Resistance is mainly due to overexpression of intrinsic and/or acquired carbapenemases, especially oxacillinases (OXA). In Italy, although the sequence type (ST) 2 and the ST78 are the most frequently detected, we recently reported ST632, a single locus variant of ST2. Therefore, this study was aimed at unraveling common bacterial surface virulence factors involved in pathogenesis and antibiotic resistance in representative CRAb of these ST genotypes. Outer membrane protein (OMP) composition together with motility, biofilm formation, in vitro adherence to, invasion of, and survival within pneumocytes were analyzed. Differently from the carbapenem-susceptible reference strain ATCC 17978, either overexpressed OXA-51 or both OXA-23 and OXA-51 co-purified with OMPs in CRAb. This tight association ensures their maximal concentration on the inner surface of the outer membrane to provide the best protection against carbapenems. These findings led us to propose for the first time a common behavior of OXA enzymes in CRAb. Despite the presence of both OmpA and phosphorylcholine-porinD and the ability of all the strains to adhere to cells, invasion, and survival within pneumocytes was shown only by ST2 and ST78 isolates, sharing the highest number of identified OMPs. Conversely, notwithstanding genetic and OMPs similarities with ST2, ST632 was unable to invade and survive within epithelial cells. Overall, our study shows that different STs share a specific OMP composition, also shaped by overexpressed OXA, that is needed for invasiveness and survival of CRAb.

  4. Insights into the evolution of Darwin’s finches from comparative analysis of the Geospiza magnirostris genome sequence

    Directory of Open Access Journals (Sweden)

    Rands Chris M

    2013-02-01

    Full Text Available Abstract Background A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin’s (Galápagos finches (Thraupidae, Passeriformes. Their adaptive radiation in the Galápagos archipelago took place in the last 2–3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris. Results 13,291 protein-coding genes were predicted from a 991.0 Mb G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1 have been implicated in beak morphology changes in Darwin’s finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. Conclusions These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin’s finches.

  5. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space.

    Science.gov (United States)

    Stegemann, Björn; Klebe, Gerhard

    2012-02-01

    Small molecules are recognized in protein-binding pockets through surface-exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein-ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise to unexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein-cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein-binding pockets, and the local folding patterns next to the cofactor-binding site. State-of-the-art clustering techniques have been applied to group the different protein-cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process. Copyright © 2011 Wiley Periodicals, Inc.

  6. Fold-recognition and comparative modeling of human α2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Balaji Petety V

    2006-04-01

    Full Text Available Abstract Background The 3-D structure of none of the eukaryotic sialyltransferases (SiaTs has been determined so far. Sequence alignment algorithms such as BLAST and PSI-BLAST could not detect a homolog of these enzymes from the protein databank. SiaTs, thus, belong to the hard/medium target category in the CASP experiments. The objective of the current work is to model the 3-D structures of human SiaTs which transfer the sialic acid in α2,3-linkage viz., ST3Gal I, II, III, IV, V, and VI, using fold-recognition and comparative modeling methods. The pair-wise sequence similarity among these six enzymes ranges from 41 to 63%. Results Unlike the sequence similarity servers, fold-recognition servers identified CstII, a α2,3/8 dual-activity SiaT from Campylobacter jejuni as the homolog of all the six ST3Gals; the level of sequence similarity between CstII and ST3Gals is only 15–20% and the similarity is restricted to well-characterized motif regions of ST3Gals. Deriving template-target sequence alignments for the entire ST3Gal sequence was not straightforward: the fold-recognition servers could not find a template for the region preceding the L-motif and that between the L- and S-motifs. Multiple structural templates were identified to model these regions and template identification-modeling-evaluation had to be performed iteratively to choose the most appropriate templates. The modeled structures have acceptable stereochemical properties and are also able to provide qualitative rationalizations for some of the site-directed mutagenesis results reported in literature. Apart from the predicted models, an unexpected but valuable finding from this study is the sequential and structural relatedness of family GT42 and family GT29 SiaTs. Conclusion The modeled 3-D structures can be used for docking and other modeling studies and for the rational identification of residues to be mutated to impart desired properties such as altered stability, substrate

  7. Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils

    NARCIS (Netherlands)

    Bruns, M.A.; Stephen, J.R.; Kowalchuk, G.A.; Prosser, J.I.; Paul, E.A.

    1999-01-01

    Autotrophic ammonia oxidizer (AAO) populations in soils from native, tilled, and successional treatments at the Kellogg Biological Station Long-Term Ecological Research site in southwestern Michigan were compared to assess effects of disturbance on these bacteria. N fertilization effects on AAO

  8. GenHtr: a tool for comparative assessment of genetic heterogeneity in microbial genomes generated by massive short-read sequencing

    Directory of Open Access Journals (Sweden)

    Yu GongXin

    2010-10-01

    Full Text Available Abstract Background Microevolution is the study of short-term changes of alleles within a population and their effects on the phenotype of organisms. The result of the below-species-level evolution is heterogeneity, where populations consist of subpopulations with a large number of structural variations. Heterogeneity analysis is thus essential to our understanding of how selective and neutral forces shape bacterial populations over a short period of time. The Solexa Genome Analyzer, a next-generation sequencing platform, allows millions of short sequencing reads to be obtained with great accuracy, allowing for the ability to study the dynamics of the bacterial population at the whole genome level. The tool referred to as GenHtr was developed for genome-wide heterogeneity analysis. Results For particular bacterial strains, GenHtr relies on a set of Solexa short reads on given bacteria pathogens and their isogenic reference genome to identify heterogeneity sites, the chromosomal positions with multiple variants of genes in the bacterial population, and variations that occur in large gene families. GenHtr accomplishes this by building and comparatively analyzing genome-wide heterogeneity genotypes for both the newly sequenced genomes (using massive short-read sequencing and their isogenic reference (using simulated data. As proof of the concept, this approach was applied to SRX007711, the Solexa sequencing data for a newly sequenced Staphylococcus aureus subsp. USA300 cell line, and demonstrated that it could predict such multiple variants. They include multiple variants of genes critical in pathogenesis, e.g. genes encoding a LysR family transcriptional regulator, 23 S ribosomal RNA, and DNA mismatch repair protein MutS. The heterogeneity results in non-synonymous and nonsense mutations, leading to truncated proteins for both LysR and MutS. Conclusion GenHtr was developed for genome-wide heterogeneity analysis. Although it is much more time

  9. Comparative sequence, structure and redox analyses of Klebsiella pneumoniae DsbA show that anti-virulence target DsbA enzymes fall into distinct classes.

    Directory of Open Access Journals (Sweden)

    Fabian Kurth

    Full Text Available Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified as targets for antivirulence drugs. However, DsbA enzymes characterized to date exhibit a wide spectrum of redox properties and divergent structural features compared to the prototypical DsbA enzyme of Escherichia coli DsbA (EcDsbA. Nonetheless, sequence analysis shows that DsbAs are more highly conserved than their known substrate virulence factors, highlighting the potential to inhibit virulence across a range of organisms by targeting DsbA. For example, Salmonella enterica typhimurium (SeDsbA, 86 % sequence identity to EcDsbA shares almost identical structural, surface and redox properties. Using comparative sequence and structure analysis we predicted that five other bacterial DsbAs would share these properties. To confirm this, we characterized Klebsiella pneumoniae DsbA (KpDsbA, 81 % identity to EcDsbA. As expected, the redox properties, structure and surface features (from crystal and NMR data of KpDsbA were almost identical to those of EcDsbA and SeDsbA. Moreover, KpDsbA and EcDsbA bind peptides derived from their respective DsbBs with almost equal affinity, supporting the notion that compounds designed to inhibit EcDsbA will also inhibit KpDsbA. Taken together, our data show that DsbAs fall into different classes; that DsbAs within a class may be predicted by sequence analysis of binding loops; that DsbAs within a class are able to complement one another in vivo and that compounds designed to inhibit EcDsbA are likely to inhibit DsbAs within the same class.

  10. High-resolution comparative mapping among man, cattle and mouse suggests a role for repeat sequences in mammalian genome evolution

    Directory of Open Access Journals (Sweden)

    Rodolphe François

    2006-08-01

    Full Text Available Abstract Background Comparative mapping provides new insights into the evolutionary history of genomes. In particular, recent studies in mammals have suggested a role for segmental duplication in genome evolution. In some species such as Drosophila or maize, transposable elements (TEs have been shown to be involved in chromosomal rearrangements. In this work, we have explored the presence of interspersed repeats in regions of chromosomal rearrangements, using an updated high-resolution integrated comparative map among cattle, man and mouse. Results The bovine, human and mouse comparative autosomal map has been constructed using data from bovine genetic and physical maps and from FISH-mapping studies. We confirm most previous results but also reveal some discrepancies. A total of 211 conserved segments have been identified between cattle and man, of which 33 are new segments and 72 correspond to extended, previously known segments. The resulting map covers 91% and 90% of the human and bovine genomes, respectively. Analysis of breakpoint regions revealed a high density of species-specific interspersed repeats in the human and mouse genomes. Conclusion Analysis of the breakpoint regions has revealed specific repeat density patterns, suggesting that TEs may have played a significant role in chromosome evolution and genome plasticity. However, we cannot rule out that repeats and breakpoints accumulate independently in the few same regions where modifications are better tolerated. Likewise, we cannot ascertain whether increased TE density is the cause or the consequence of chromosome rearrangements. Nevertheless, the identification of high density repeat clusters combined with a well-documented repeat phylogeny should highlight probable breakpoints, and permit their precise dating. Combining new statistical models taking the present information into account should help reconstruct ancestral karyotypes.

  11. Full sequence and comparative analysis of the plasmid pAPEC-1 of avian pathogenic E. coli chi7122 (O78:K80:H9.

    Directory of Open Access Journals (Sweden)

    Melha Mellata

    Full Text Available Extra-intestinal pathogenic E. coli (ExPEC, including Avian Pathogenic E. coli (APEC, are very diverse. They cause a complex of diseases in Human, animals, and birds. Even though large plasmids are often associated with the virulence of ExPEC, their characterization is still in its infancy.We fully sequenced and analyzed the large plasmid pAPEC-1 (103,275-bp associated with the APEC strain chi7122, from worldwide serogroup O78ratioK80ratioH9. A putative virulence region spanning an 80-kb region of pAPEC-1 possesses four iron acquisition systems (iutA iucABCD, sitABCD, iroBCDN, and temperature-sensitive hemagglutinin tsh, a colicin V operon, increasing serum sensitivity iss, ompT, hlyF, and etsABC. Thirty three ORFs in pAPEC-1 are identified as insertion sequences (ISs that belong to nine families with diverse origins. The full length of the transfer region in pAPEC-1 (11 kb is shorter compared to the tra region of other sequenced F plasmids; the absence of some tra genes in pAPEC-1 affects its self-transferability, and the conjugative function of the plasmid was effective only in the presence of other plasmids. Two-replicon systems, repFIIA-repFIC and repFIB, and two post-segregational systems, srnB and hok/sok, are also present in the sequence of pAPEC-1. The comparison of the pAPEC-1 sequence with the two available plasmid sequences reveals more gene loss and reorganization than previously appreciated. The presence of pAPEC-1-associated genes is assessed in human ExPEC by PCR. Many patterns of association between genes are found.The pathotype typical of pAPEC-1 was present in some human strains, which indicates a horizontal transfer between strains and the zoonotic risk of APEC strains. ColV plasmids could have common virulence genes that could be acquired by transposition, without sharing genes of plasmid function.

  12. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Science.gov (United States)

    Yu, Chuanfei; Li, Yang; Holmes, Andrew; Szafranski, Karol; Faulkes, Chris G; Coen, Clive W; Buffenstein, Rochelle; Platzer, Matthias; de Magalhães, João Pedro; Church, George M

    2011-01-01

    The naked mole-rat (Heterocephalus glaber) is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam), a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m), and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  13. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Directory of Open Access Journals (Sweden)

    Chuanfei Yu

    Full Text Available The naked mole-rat (Heterocephalus glaber is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam, a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m, and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  14. Whole-Genome Sequencing and Comparative Analysis of Mycobacterium brisbanense Reveals a Possible Soil Origin and Capability in Fertiliser Synthesis.

    Directory of Open Access Journals (Sweden)

    Wei Yee Wee

    Full Text Available Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.

  15. Whole-Genome Sequencing and Comparative Analysis of Mycobacterium brisbanense Reveals a Possible Soil Origin and Capability in Fertiliser Synthesis.

    Science.gov (United States)

    Wee, Wei Yee; Tan, Tze King; Jakubovics, Nicholas S; Choo, Siew Woh

    2016-01-01

    Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.

  16. Comparative genomic analysis of single-molecule sequencing and hybrid approaches for finishing the Clostridium autoethanogenum JA1-1 strain DSM 10061 genome

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Nagaraju, Shilpa [LanzaTech; Utturkar, Sagar M [ORNL; De Tissera, Sashini [LanzaTech; Segovia, Simón [LanzaTech; Mitchell, Wayne [LanzaTech; Land, Miriam L [ORNL; Dassanayake, Asela [LanzaTech; Köpke, Michael [LanzaTech

    2014-01-01

    Background Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. Results A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G + C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a

  17. Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanospheres: a comparative study with gold nanorods

    Science.gov (United States)

    Pylaev, T. E.; Khanadeev, V. A.; Khlebtsov, B. N.; Dykman, L. A.; Bogatyrev, V. A.; Khlebtsov, N. G.

    2011-07-01

    We introduce a new genosensing approach employing CTAB (cetyltrimethylammonium bromide)-coated positively charged colloidal gold nanoparticles (GNPs) to detect target DNA sequences by using absorption spectroscopy and dynamic light scattering. The approach is compared with a previously reported method employing unmodified CTAB-coated gold nanorods (GNRs). Both approaches are based on the observation that whereas the addition of probe and target ssDNA to CTAB-coated particles results in particle aggregation, no aggregation is observed after addition of probe and nontarget DNA sequences. Our goal was to compare the feasibility and sensitivity of both methods. A 21-mer ssDNA from the human immunodeficiency virus type 1 HIV-1 U5 long terminal repeat (LTR) sequence and a 23-mer ssDNA from the Bacillus anthracis cryptic protein and protective antigen precursor (pagA) genes were used as ssDNA models. In the case of GNRs, unexpectedly, the colorimetric test failed with perfect cigar-like particles but could be performed with dumbbell and dog-bone rods. By contrast, our approach with cationic CTAB-coated GNPs is easy to implement and possesses excellent feasibility with retention of comparable sensitivity—a 0.1 nM concentration of target cDNA can be detected with the naked eye and 10 pM by dynamic light scattering (DLS) measurements. The specificity of our method is illustrated by successful DLS detection of one-three base mismatches in cDNA sequences for both DNA models. These results suggest that the cationic GNPs and DLS can be used for genosensing under optimal DNA hybridization conditions without any chemical modifications of the particle surface with ssDNA molecules and signal amplification. Finally, we discuss a more than two-three-order difference in the reported estimations of the detection sensitivity of colorimetric methods (0.1 to 10-100 pM) to show that the existing aggregation models are inconsistent with the detection limits of about 0.1-1 pM DNA and that

  18. Global MLST of Salmonella Typhi Revisited in Post-Genomic Era: Genetic conservation, Population Structure and Comparative genomics of rare sequence types

    Directory of Open Access Journals (Sweden)

    Kien-Pong eYap

    2016-03-01

    Full Text Available Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus Sequence Typing (MLST is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2 co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC and tviD that may explain the variations that differentiate between seemingly successful (widespread and unsuccessful (poor dissemination S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.

  19. A Comparative Prospective Study of Two Different Treatment Sequences i.e. Bottom Up-Inside Out and Topdown-Outside in, in the Treatment of Panfacial Fractures.

    Science.gov (United States)

    Degala, Saikrishna; Sundar, S Shyam; Mamata, K S

    2015-12-01

    To compare the sequence bottom-up inside-out with top-down outside-in, in the treatment of pan facial fractures and to evaluate the outcome of these approaches. The data from 11 patients with panfacial fracture are prospectively analysed. Five cases are treated with bottom-up approach and six patients with top-down approach. There were 11 male patients (six in top-down approach and five in bottom-up approach), ranging in age from 24 to 50 years. All injuries were result of RTA (n = 11, 100 %). Final treatment outcome was excellent in 3 (50 %), 1 (16 %) good and 2 (32 %) cases were fair in topdown approach, 3 (60 %) excellent and 2 (40 %) fair in bottom up approach with contingency coefficient value (P reconstruction of the remaining. Choice of the bottom-up inside-out or top-down outside-in sequence should be according to the pattern of fractures and preference of the surgeon. However, further controlled clinical trials, comparative studies with a larger sample size would be better to evaluate the final clinical outcome of individual techniques.

  20. Evaluation of Dixon Sequence on Hybrid PET/MR Compared with Contrast-Enhanced PET/CT for PET-Positive Lesions

    International Nuclear Information System (INIS)

    Jeong, Ju Hye; Cho, Ihn Ho; Kong, Eun Jung; Chun, Kyung Ah

    2014-01-01

    Hybrid positron emission tomography and magnetic resonance (PET/MR) imaging performs a two-point Dixon MR sequence for attenuation correction. However, MR data in hybrid PET/MR should provide anatomic and morphologic information as well as an attenuation map. We evaluated the Dixon sequence of hybrid PET/MR for anatomic correlation of PET-positive lesions compared with contrast-enhanced PET/computed tomography (CT) in patients with oncologic diseases. Twelve patients underwent a single injection, dual imaging protocol. PET/CT was performed with an intravenous contrast agent (85±13 min after 18 F-FDG injection of 403± 45 MBq) and then (125±19 min after injection) PET/MR was performed. Attenuation correction and anatomic allocation of PET were performed using contrast-enhanced CT for PET/CT and Dixon MR sequence for hybrid PET/MR. The Dixon MR sequence and contrast-enhanced CT were compared for anatomic correlation of PET-positive lesions (scoring scale ranging from 0 to 3 for visual ratings). Additionally, standardized uptake values (SUVs) for the detected lesions were assessed for quantitative comparison. Both hybrid PET/MR and contrast-enhanced PET/CT identified 55 lesions with increased FDG uptake in ten patients. In total, 28 lymph nodes, 11 bone lesions, 3 dermal nodules, 3 pleural thickening lesions, 2 thyroid nodules, 1 pancreas, 1 liver, 1 ovary, 1 uterus, 1 breast, 1 soft tissue and 2 lung lesions were present. The best performance was observed for anatomic correlation of PET findings by the contrast-enhanced CT scans (contrast-enhanced CT, 2.64± 0.70; in-phase, 1.29±1.01; opposed-phase, 1.29±1.15; water-weighted, 1.71±1.07; fat weighted, 0.56±1.03). A significant difference was observed between the scores obtained from the contrast-enhanced CT and all four coregistered Dixon MR images. Quantitative evaluation revealed a high correlation between the SUVs measured with hybrid PET/MR (SUVmean, 2.63±1.62; SUVmax, 4.30±2.88) and contrast-enhanced PET

  1. Evaluation of Dixon Sequence on Hybrid PET/MR Compared with Contrast-Enhanced PET/CT for PET-Positive Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ju Hye; Cho, Ihn Ho; Kong, Eun Jung; Chun, Kyung Ah [Yeungnam Univ. Hospital, Daegu (Korea, Republic of)

    2014-03-15

    Hybrid positron emission tomography and magnetic resonance (PET/MR) imaging performs a two-point Dixon MR sequence for attenuation correction. However, MR data in hybrid PET/MR should provide anatomic and morphologic information as well as an attenuation map. We evaluated the Dixon sequence of hybrid PET/MR for anatomic correlation of PET-positive lesions compared with contrast-enhanced PET/computed tomography (CT) in patients with oncologic diseases. Twelve patients underwent a single injection, dual imaging protocol. PET/CT was performed with an intravenous contrast agent (85±13 min after {sup 18}F-FDG injection of 403± 45 MBq) and then (125±19 min after injection) PET/MR was performed. Attenuation correction and anatomic allocation of PET were performed using contrast-enhanced CT for PET/CT and Dixon MR sequence for hybrid PET/MR. The Dixon MR sequence and contrast-enhanced CT were compared for anatomic correlation of PET-positive lesions (scoring scale ranging from 0 to 3 for visual ratings). Additionally, standardized uptake values (SUVs) for the detected lesions were assessed for quantitative comparison. Both hybrid PET/MR and contrast-enhanced PET/CT identified 55 lesions with increased FDG uptake in ten patients. In total, 28 lymph nodes, 11 bone lesions, 3 dermal nodules, 3 pleural thickening lesions, 2 thyroid nodules, 1 pancreas, 1 liver, 1 ovary, 1 uterus, 1 breast, 1 soft tissue and 2 lung lesions were present. The best performance was observed for anatomic correlation of PET findings by the contrast-enhanced CT scans (contrast-enhanced CT, 2.64± 0.70; in-phase, 1.29±1.01; opposed-phase, 1.29±1.15; water-weighted, 1.71±1.07; fat weighted, 0.56±1.03). A significant difference was observed between the scores obtained from the contrast-enhanced CT and all four coregistered Dixon MR images. Quantitative evaluation revealed a high correlation between the SUVs measured with hybrid PET/MR (SUVmean, 2.63±1.62; SUVmax, 4.30±2.88) and contrast

  2. [Comparative analysis on the complete genome sequence of mumps epidemic strain and mumps vaccine strain S79 isolated in Zhejiang province, China between year 2005 and 2010].

    Science.gov (United States)

    Zhang, Dong-Yan; Feng, Yan; Zhong, Shu-Ling; Lu, Yi-Yu; Zhuang, Fang-Cheng; Xu, Chang-Ping

    2012-03-01

    To compare the differences in the complete genome sequence between mumps epidemic strain and mumps vaccine strain S79 isolated in Zhejiang province. A total of 4 mumps epidemic strains, which were separated from Zhejiang province during 2005 to 2010, named as ZJ05-1, ZJ06-3, ZJ08-1 and ZJ10-1 were selected in the study. The complete genome sequences were amplified using RT-PCR. The genetic differences between vaccine strain S79 and other genotype strains were compared; while the genetic-distance was calculated and the evolution was analyzed. The biggest difference between the 4 epidemic strains and the vaccine strain S79 was found on the membrane associated protein gene; whose average nucleotide differential number was 42.5 +/- 3.0 and the average variant ratio was 13.6%; while the mean amino acid differential number was 12.8 +/- 1.5 and the average variant ratio was 22.4%. The smallest difference among the 4 epidemic strains and the vaccine strain was found in stromatin genes, whose average nucleotide differential number was 73.8 +/- 2.5 and the average variant ratio was 5.9%; while the mean amino acid differential number was 3.0 +/- 0.8 and the average variant ratio was 0.8%. The dn/ds value of the stromatin genes of the 4 epidemic strains reached the highest, as 0.6526; but without any positive pressure (dn/ds 0.05). There were mutations happened on the known antigen epitope, as 8th amino acid of membrane associated protein genes and on the 336th and 356th amino acid of hemagglutinin/neuraminidase proteins. Compared with the vaccine strain, the glycosylation sites of ZJ05-1, ZJ06-3, ZJ08-1 and ZJ10-1 increased 1, 1, 2 and 2 respectively. The complete amino acid sequence of all strains showed that there were 17 characteristic sites found on the genotype-F mumps strain. Within the complete genome, the genetic-distance between epidemic strains and vaccine strains in Zhejiang province (0.071) was significantly larger than the genetic-distance between strains in

  3. Novel nonphosphorylated peptides with conserved sequences selectively bind to Grb7 SH2 domain with affinity comparable to its phosphorylated ligand.

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    Full Text Available The Grb7 (growth factor receptor-bound 7 protein, a member of the Grb7 protein family, is found to be highly expressed in such metastatic tumors as breast cancer, esophageal cancer, liver cancer, etc. The src-homology 2 (SH2 domain in the C-terminus is reported to be mainly involved in Grb7 signaling pathways. Using the random peptide library, we identified a series of Grb7 SH2 domain-binding nonphosphorylated peptides in the yeast two-hybrid system. These peptides have a conserved GIPT/K/N sequence at the N-terminus and G/WD/IP at the C-terminus, and the region between the N-and C-terminus contains fifteen amino acids enriched with serines, threonines and prolines. The association between the nonphosphorylated peptides and the Grb7 SH2 domain occurred in vitro and ex vivo. When competing for binding to the Grb7 SH2 domain in a complex, one synthesized nonphosphorylated ligand, containing the twenty-two amino acid-motif sequence, showed at least comparable affinity to the phosphorylated ligand of ErbB3 in vitro, and its overexpression inhibited the proliferation of SK-BR-3 cells. Such nonphosphorylated peptides may be useful for rational design of drugs targeted against cancers that express high levels of Grb7 protein.

  4. Characterization of fungi in office dust: Comparing results of microbial secondary metabolites, fungal internal transcribed spacer region sequencing, viable culture and other microbial indices.

    Science.gov (United States)

    Park, J-H; Sulyok, M; Lemons, A R; Green, B J; Cox-Ganser, J M

    2018-05-04

    Recent developments in molecular and chemical methods have enabled the analysis of fungal DNA and secondary metabolites, often produced during fungal growth, in environmental samples. We compared 3 fungal analytical methods by analysing floor dust samples collected from an office building for fungi using viable culture, internal transcribed spacer (ITS) sequencing and secondary metabolites using liquid chromatography-tandem mass spectrometry. Of the 32 metabolites identified, 29 had a potential link to fungi with levels ranging from 0.04 (minimum for alternariol monomethylether) to 5700 ng/g (maximum for neoechinulin A). The number of fungal metabolites quantified per sample ranged from 8 to 16 (average = 13/sample). We identified 216 fungal operational taxonomic units (OTUs) with the number per sample ranging from 6 to 29 (average = 18/sample). We identified 37 fungal species using culture, and the number per sample ranged from 2 to 13 (average = 8/sample). Agreement in identification between ITS sequencing and culturing was weak (kappa = -0.12 to 0.27). The number of cultured fungal species poorly correlated with OTUs, which did not correlate with the number of metabolites. These suggest that using multiple measurement methods may provide an improved understanding of fungal exposures in indoor environments and that secondary metabolites may be considered as an additional source of exposure. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Study of canine parvovirus evolution: comparative analysis of full-length VP2 gene sequences from Argentina and international field strains.

    Science.gov (United States)

    Gallo Calderón, Marina; Wilda, Maximiliano; Boado, Lorena; Keller, Leticia; Malirat, Viviana; Iglesias, Marcela; Mattion, Nora; La Torre, Jose

    2012-02-01

    The continuous emergence of new strains of canine parvovirus (CPV), poorly protected by current vaccination, is a concern among breeders, veterinarians, and dog owners around the world. Therefore, the understanding of the genetic variation in emerging CPV strains is crucial for the design of disease control strategies, including vaccines. In this paper, we obtained the sequences of the full-length gene encoding for the main capsid protein (VP2) of 11 canine parvovirus type 2 (CPV-2) Argentine representative field strains, selected from a total of 75 positive samples studied in our laboratory in the last 9 years. A comparative sequence analysis was performed on 9 CPV-2c, one CPV-2a, and one CPV-2b Argentine strains with respect to international strains reported in the GenBank database. In agreement with previous reports, a high degree of identity was found among CPV-2c Argentine strains (99.6-100% and 99.7-100% at nucleotide and amino acid levels, respectively). However, the appearance of a new substitution in the 440 position (T440A) in four CPV-2c Argentine strains obtained after the year 2009 gives support to the variability observed for this position located within the VP2, three-fold spike. This is the first report on the genetic characterization of the full-length VP2 gene of emerging CPV strains in South America and shows that all the Argentine CPV-2c isolates cluster together with European and North American CPV-2c strains.

  6. Motif-independent prediction of a secondary metabolism gene cluster using comparative genomics: application to sequenced genomes of Aspergillus and ten other filamentous fungal species.

    Science.gov (United States)

    Takeda, Itaru; Umemura, Myco; Koike, Hideaki; Asai, Kiyoshi; Machida, Masayuki

    2014-08-01

    Despite their biological importance, a significant number of genes for secondary metabolite biosynthesis (SMB) remain undetected due largely to the fact that they are highly diverse and are not expressed under a variety of cultivation conditions. Several software tools including SMURF and antiSMASH have been developed to predict fungal SMB gene clusters by finding core genes encoding polyketide synthase, nonribosomal peptide synthetase and dimethylallyltryptophan synthase as well as several others typically present in the cluster. In this work, we have devised a novel comparative genomics method to identify SMB gene clusters that is independent of motif information of the known SMB genes. The method detects SMB gene clusters by searching for a similar order of genes and their presence in nonsyntenic blocks. With this method, we were able to identify many known SMB gene clusters with the core genes in the genomic sequences of 10 filamentous fungi. Furthermore, we have also detected SMB gene clusters without core genes, including the kojic acid biosynthesis gene cluster of Aspergillus oryzae. By varying the detection parameters of the method, a significant difference in the sequence characteristics was detected between the genes residing inside the clusters and those outside the clusters. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  7. Comparative analysis of human cytomegalovirus a-sequence in multiple clinical isolates by using polymerase chain reaction and restriction fragment length polymorphism assays.

    Science.gov (United States)

    Zaia, J A; Gallez-Hawkins, G; Churchill, M A; Morton-Blackshere, A; Pande, H; Adler, S P; Schmidt, G M; Forman, S J

    1990-01-01

    The human cytomegalovirus (HCMV) a-sequence (a-seq) is located in the joining region between the long (L) and short (S) unique sequences of the virus (L-S junction), and this hypervariable junction has been used to differentiate HCMV strains. The purpose of this study was to investigate whether there are differences among strains of human cytomegalovirus which could be characterized by polymerase chain reaction (PCR) amplification of the a-seq of HCMV DNA and to compare a PCR method of strain differentiation with conventional restriction fragment length polymorphism (RFLP) methodology by using HCMV junction probes. Laboratory strains of HCMV and viral isolates from individuals with HCMV infection were characterized by using both RFLPs and PCR. The PCR assay amplified regions in the major immediate-early gene (IE-1), the 64/65-kDa matrix phosphoprotein (pp65), and the a-seq of the L-S junction region. HCMV laboratory strains Towne, AD169, and Davis were distinguishable, in terms of size of the amplified product, when analyzed by PCR with primers specific for the a-seq but were indistinguishable by using PCR targeted to IE-1 and pp65 sequences. When this technique was applied to a characterization of isolates from individuals with HCMV infection, selected isolates could be readily distinguished. In addition, when the a-seq PCR product was analyzed with restriction enzyme digestion for the presence of specific sequences, these DNA differences were confirmed. PCR analysis across the variable a-seq of HCMV demonstrated differences among strains which were confirmed by RFLP in 38 of 40 isolates analyzed. The most informative restriction enzyme sites in the a-seq for distinguishing HCMV isolates were those of MnlI and BssHII. This indicates that the a-seq of HCMV is heterogeneous among wild strains, and PCR of the a-seq of HCMV is a practical way to characterize differences in strains of HCMV. Images PMID:1980680

  8. Developing a framework to assess the cost-effectiveness of COMPARE -A global platform for the exchange of sequence-based pathogen data

    DEFF Research Database (Denmark)

    Alleweldt, F.; Kara, Sami; Osinski, A.

    2017-01-01

    Analysing the genomic data of pathogens with the help of next-generation sequencing (NGS) is an increasingly important part of disease outbreak investigations and helps guide responses. While this technology has already been successfully employed to elucidate and control disease outbreaks, wider...... implementation of NGS also depends on its cost-effectiveness. COMPARE - short for 'Collaborative Management Platform for detection and Analyses of (Re-) emerging and foodborne outbreaks' - is a major project, funded by the European Union, to develop a global platform for sharing and analysing NGS data...... and thereby improve the rapid identification, containment and mitigation of emerging infectious diseases and foodborne outbreaks. This article introduces the project and presents the results of a review of the literature, composed of previous relevant cost-benefit and cost-effectiveness analyses. The authors...

  9. Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors.

    Science.gov (United States)

    Williams, Angela H; Sharma, Mamta; Thatcher, Louise F; Azam, Sarwar; Hane, James K; Sperschneider, Jana; Kidd, Brendan N; Anderson, Jonathan P; Ghosh, Raju; Garg, Gagan; Lichtenzveig, Judith; Kistler, H Corby; Shea, Terrance; Young, Sarah; Buck, Sally-Anne G; Kamphuis, Lars G; Saxena, Rachit; Pande, Suresh; Ma, Li-Jun; Varshney, Rajeev K; Singh, Karam B

    2016-03-05

    Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host

  10. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing.

    Science.gov (United States)

    Liu, Na; Yang, Jinghua; Guo, Shaogui; Xu, Yong; Zhang, Mingfang

    2013-01-01

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs involved in the post-transcriptional gene regulation and play a critical role in plant growth, development and stresses response. However less is known about miRNAs involvement in grafting behaviors, especially with the watermelon (Citrullus lanatus L.) crop, which is one of the most important agricultural crops worldwide. Grafting method is commonly used in watermelon production in attempts to improve its adaptation to abiotic and biotic stresses, in particular to the soil-borne fusarium wilt disease. In this study, Solexa sequencing has been used to discover small RNA populations and compare miRNAs on genome-wide scale in watermelon grafting system. A total of 11,458,476, 11,614,094 and 9,339,089 raw reads representing 2,957,751, 2,880,328 and 2,964,990 unique sequences were obtained from the scions of self-grafted watermelon and watermelon grafted on-to bottle gourd and squash at two true-leaf stage, respectively. 39 known miRNAs belonging to 30 miRNA families and 80 novel miRNAs were identified in our small RNA dataset. Compared with self-grafted watermelon, 20 (5 known miRNA families and 15 novel miRNAs) and 47 (17 known miRNA families and 30 novel miRNAs) miRNAs were expressed significantly different in watermelon grafted on to bottle gourd and squash, respectively. MiRNAs expressed differentially when watermelon was grafted onto different rootstocks, suggesting that miRNAs might play an important role in diverse biological and metabolic processes in watermelon and grafting may possibly by changing miRNAs expressions to regulate plant growth and development as well as adaptation to stresses. The small RNA transcriptomes obtained in this study provided insights into molecular aspects of miRNA-mediated regulation in grafted watermelon. Obviously, this result would provide a basis for further unravelling the mechanism on how miRNAs information is exchanged between scion and rootstock in grafted

  11. Comparative genomic survey, exon-intron annotation and phylogenetic analysis of NAT-homologous sequences in archaea, protists, fungi, viruses, and invertebrates

    Science.gov (United States)

    We have previously published extensive genomic surveys [1-3], reporting NAT-homologous sequences in hundreds of sequenced bacterial, fungal and vertebrate genomes. We present here the results of our latest search of 2445 genomes, representing 1532 (70 archaeal, 1210 bacterial, 43 protist, 97 fungal,...

  12. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: a comparative study on a novel sequencing batch reactor based on zero valent iron.

    Science.gov (United States)

    Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping

    2012-08-30

    A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p<0.05) than that of conventional treatments of electrolysis (22.8-47.0%), coagulation-sedimentation (18.5-22.2%), and the Fenton process (19.9-40.2%), respectively. The innovative concept behind this excellent performance is a combination effect of reductive and oxidative processes of the IME, and the integration electro-coagulation. Optimal operating parameters, including the initial pH, Fe/C mass ratio, air flow rate, and addition of H(2)O(2), were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.).

    Science.gov (United States)

    Finkers-Tomczak, Anna; Bakker, Erin; de Boer, Jan; van der Vossen, Edwin; Achenbach, Ute; Golas, Tomasz; Suryaningrat, Suwardi; Smant, Geert; Bakker, Jaap; Goverse, Aska

    2011-02-01

    The H1 locus confers resistance to the potato cyst nematode Globodera rostochiensis pathotypes 1 and 4. It is positioned at the distal end of chromosome V of the diploid Solanum tuberosum genotype SH83-92-488 (SH) on an introgression segment derived from S. tuberosum ssp. andigena. Markers from a high-resolution genetic map of the H1 locus (Bakker et al. in Theor Appl Genet 109:146-152, 2004) were used to screen a BAC library to construct a physical map covering a 341-kb region of the resistant haplotype coming from SH. For comparison, physical maps were also generated of the two haplotypes from the diploid susceptible genotype RH89-039-16 (S. tuberosum ssp. tuberosum/S. phureja), spanning syntenic regions of 700 and 319 kb. Gene predictions on the genomic segments resulted in the identification of a large cluster consisting of variable numbers of the CC-NB-LRR type of R genes for each haplotype. Furthermore, the regions were interspersed with numerous transposable elements and genes coding for an extensin-like protein and an amino acid transporter. Comparative analysis revealed a major lack of gene order conservation in the sequences of the three closely related haplotypes. Our data provide insight in the evolutionary mechanisms shaping the H1 locus and will facilitate the map-based cloning of the H1 resistance gene.

  14. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron

    International Nuclear Information System (INIS)

    Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping

    2012-01-01

    Highlights: ► Specifically-designed SIME reactor for treatment of mature landfill leachate. ► Excellent removal efficiencies of COD (86.1%), color (95.3%), and HA (81.8%). ► Combination effect of IME without aeration and IME with aeration. ► Optimal pH of 5, Fe/C of 1:1, gas flow rate of 80 L h −1 , and H 2 O 2 of 100 mg L −1 . - Abstract: A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p 2 O 2 , were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate.

  15. 3D double-echo steady-state sequence assessment of hip joint cartilage and labrum at 3 Tesla: comparative analysis of magnetic resonance imaging and intraoperative data

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Christoph; Antoch, Gerald [University of Dusseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Duesseldorf (Germany); Hesper, Tobias; Rettegi, Fanni; Zilkens, Christoph; Krauspe, Ruediger; Bittersohl, Bernd [University of Dusseldorf, Department of Orthopedic Surgery, Medical Faculty, Duesseldorf (Germany); Hosalkar, Harish S. [Paradise Valley Hospital, Joint Preservation and Deformity Correction, San Diego, CA (United States); Tri-city Medical Center, Hip Preservation, San Diego, CA (United States)

    2017-10-15

    To assess the diagnostic accuracy of a high-resolution, three-dimensional (3D) double-echo steady-state (DESS) sequence with radial imaging at 3 Tesla (T) for evaluating cartilage and labral alterations in the hip. Magnetic resonance imaging (MRI) data obtained at 3 T, including radially reformatted DESS images and intraoperative data of 45 patients (mean age 42 ± 13.7 years) who underwent hip arthroscopy, were compared. The acetabular cartilage and labrum of the upper hemisphere of the acetabulum and the central femoral head cartilage were evaluated. Sensitivity, specificity, accuracy, and negative and positive predictive values were determined. Sensitivity, specificity and accuracy of the DESS technique were 96.7%, 75% and 93.7% for detecting cartilage lesions and 98%, 76.2% and 95.9% for detecting labral lesions. The positive and negative predictive values for detecting or ruling out cartilage lesions were 96% and 78.9%. For labral lesions, the positive and negative predictive values were 97.5% and 80%. A high-resolution, 3D DESS technique with radial imaging at 3 T demonstrated high accuracy for detecting hip cartilage and labral lesions with excellent interobserver agreement and moderate correlation between MRI and intraoperative assessment. (orig.)

  16. Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing.

    Science.gov (United States)

    Liu, Na; Yang, Jinghua; Fu, Xinxing; Zhang, Li; Tang, Kai; Guy, Kateta Malangisha; Hu, Zhongyuan; Guo, Shaogui; Xu, Yong; Zhang, Mingfang

    2016-04-01

    Grafting is an important agricultural technique widely used to improve plant growth, yield, and adaptation to either biotic or abiotic stresses. However, the molecular mechanisms underlying grafting-induced physiological processes remain unclear. Watermelon (Citrullus lanatus L.) is an important horticultural crop worldwide. Grafting technique is commonly used in watermelon production for improving its tolerance to stresses, especially to the soil-borne fusarium wilt disease. In the present study, we used high-throughput sequencing to perform a genome-wide transcript analysis of scions from watermelon grafted onto bottle gourd and squash rootstocks. Our transcriptome and digital gene expression (DGE) profiling data provided insights into the molecular aspects of gene regulation in grafted watermelon. Compared with self-grafted watermelon, there were 787 and 3485 genes differentially expressed in watermelon grafted onto bottle gourd and squash rootstocks, respectively. These genes were associated with primary and secondary metabolism, hormone signaling, transcription factors, transporters, and response to stimuli. Grafting led to changes in expression of these genes, suggesting that they may play important roles in mediating the physiological processes of grafted seedlings. The potential roles of the grafting-responsive mRNAs in diverse biological and metabolic processes were discussed. Obviously, the data obtained in this study provide an excellent resource for unraveling the mechanisms of candidate genes function in diverse biological processes and in environmental adaptation in a graft system.

  17. Genome Sequence of Azospirillum brasilense CBG497 and Comparative Analyses of Azospirillum Core and Accessory Genomes provide Insight into Niche Adaptation

    Science.gov (United States)

    Wisniewski-Dyé, Florence; Lozano, Luis; Acosta-Cruz, Erika; Borland, Stéphanie; Drogue, Benoît; Prigent-Combaret, Claire; Rouy, Zoé; Barbe, Valérie; Mendoza Herrera, Alberto; González, Victor; Mavingui, Patrick

    2012-01-01

    Bacteria of the genus Azospirillum colonize roots of important cereals and grasses, and promote plant growth by several mechanisms, notably phytohormone synthesis. The genomes of several Azospirillum strains belonging to different species, isolated from various host plants and locations, were recently sequenced and published. In this study, an additional genome of an A. brasilense strain, isolated from maize grown on an alkaline soil in the northeast of Mexico, strain CBG497, was obtained. Comparative genomic analyses were performed on this new genome and three other genomes (A. brasilense Sp245, A. lipoferum 4B and Azospirillum sp. B510). The Azospirillum core genome was established and consists of 2,328 proteins, representing between 30% to 38% of the total encoded proteins within a genome. It is mainly chromosomally-encoded and contains 74% of genes of ancestral origin shared with some aquatic relatives. The non-ancestral part of the core genome is enriched in genes involved in signal transduction, in transport and in metabolism of carbohydrates and amino-acids, and in surface properties features linked to adaptation in fluctuating environments, such as soil and rhizosphere. Many genes involved in colonization of plant roots, plant-growth promotion (such as those involved in phytohormone biosynthesis), and properties involved in rhizosphere adaptation (such as catabolism of phenolic compounds, uptake of iron) are restricted to a particular strain and/or species, strongly suggesting niche-specific adaptation. PMID:24705077

  18. Genome Sequence of Azospirillum brasilense CBG497 and Comparative Analyses of Azospirillum Core and Accessory Genomes provide Insight into Niche Adaptation

    Directory of Open Access Journals (Sweden)

    Victor González

    2012-09-01

    Full Text Available Bacteria of the genus Azospirillum colonize roots of important cereals and grasses, and promote plant growth by several mechanisms, notably phytohormone synthesis. The genomes of several Azospirillum strains belonging to different species, isolated from various host plants and locations, were recently sequenced and published. In this study, an additional genome of an A. brasilense strain, isolated from maize grown on an alkaline soil in the northeast of Mexico, strain CBG497, was obtained. Comparative genomic analyses were performed on this new genome and three other genomes (A. brasilense Sp245, A. lipoferum 4B and Azospirillum sp. B510. The Azospirillum core genome was established and consists of 2,328 proteins, representing between 30% to 38% of the total encoded proteins within a genome. It is mainly chromosomally-encoded and contains 74% of genes of ancestral origin shared with some aquatic relatives. The non-ancestral part of the core genome is enriched in genes involved in signal transduction, in transport and in metabolism of carbohydrates and amino-acids, and in surface properties features linked to adaptation in fluctuating environments, such as soil and rhizosphere. Many genes involved in colonization of plant roots, plant-growth promotion (such as those involved in phytohormone biosynthesis, and properties involved in rhizosphere adaptation (such as catabolism of phenolic compounds, uptake of iron are restricted to a particular strain and/or species, strongly suggesting niche-specific adaptation.

  19. Determination of Trichuris skrjabini by sequencing of the ITS1-5.8S-ITS2 segment of the ribosomal DNA: comparative molecular study of different species of trichurids.

    Science.gov (United States)

    Cutillas, C; Oliveros, R; de Rojas, M; Guevara, D C

    2004-06-01

    Adults of Trichuris skrjahini have been isolated from the cecum of caprine hosts (Capra hircus), Trichuris ovis and Trichuris globulosa from Ovis aries (sheep) and C. hircus (goats), and Trichuris leporis from Lepus europaeus (rabbits) in Spain. Genomic DNA was isolated and the ITS1-5.8S-ITS2 segment from the ribosomal DNA (rDNA) was amplified and sequenced by polymerase chain reaction (PCR) techniques. The ITS1 of T. skrjabini, T. ovis, T. globulosa, and T. leporis was 495, 757, 757, and 536 nucleotides in length, respectively, and had G + C contents of 59.6, 58.7, 58.7, and 60.8%, respectively. Intraindividual variation was detected in the ITSI sequences of the 4 species. Furthermore, the 5.8S sequences of T. skrjabini, T. ovis, T. globulosa, and T. leporis were compared. A total of 157, 152, 153, and 157 nucleotides in length was observed in the 5.8S sequences of these 4 species, respectively. There were no sequence differences of ITS1 and 5.8S products between T. ovis and T. globulosa. Nevertheless, clear differences were detected between the ITS1 sequences of T. skrjabini, T. ovis, T. leporis, Trichuris muris, and T. arvicolae. The ITS2 fragment from the rDNA of T. skrjabini was sequenced. A comparative study of the ITS2 sequence of T. skrjabini with the previously published ITS2 sequence data of T. ovis, T. leporis, T. muris, and T. arvicolae suggested that the combined use of sequence data from both spacers would be useful in the molecular characterization of trichurid parasites.

  20. Semiquantitative assessment of focal cartilage damage at 3 T MRI: A comparative study of dual echo at steady state (DESS) and intermediate-weighted (IW) fat suppressed fast spin echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, Frank W., E-mail: froemer@bu.edu [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States); Department of Radiology, Klinikum Augsburg, Augsburg (Germany); Kwoh, C. Kent [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); VA Pittsburgh Healthcare System (United States); Hannon, Michael J. [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); Crema, Michel D. [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States); Moore, Carolyn E. [Department of Nutrition and Food Sciences, Texas Woman' s University (United States); Jakicic, John M. [Department of Health and Physical Activity, University of Pittsburgh (United States); Green, Stephanie M. [Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine (United States); Guermazi, Ali [Quantitative Imaging Center (QIC), Department of Radiology, Boston University Medical Center, Boston, MA (United States)

    2011-11-15

    Purpose: The aim of the study was to compare semiquantitative assessment of focal cartilage damage using the dual echo at steady state (DESS)- and intermediate-weighted (IW) fat suppressed (fs) sequences at 3 T MRI. Methods: Included were 201 subjects aged 35-65 with frequent knee pain. MRI was performed with the same sequence protocol as in the Osteoarthritis Initiative (OAI): sagittal IW fs, triplanar DESS and coronal IW sequences. Cartilage status was scored according to the WORMS system using all five sequences. A total of 243 focal defects were detected. In an additional consensus reading, the lesions were evaluated side-by-side using only the sagittal DESS and IW fs sequences. Lesion conspicuity was graded from 0 to 3, intrachondral signal changes adjacent to the defect were recorded and the sequence that depicted the lesion with larger diameter was noted. Wilcoxon signed-rank tests, controlled for clustering by person, were used to examine differences between the sequences. Results: 37 (17.5%) of the scorable lesions were located in the medial tibio-femoral (TF), 48 (22.7%) in the lateral TF and 126 (59.7%) in the patello-femoral compartment. 82.5% were superficial and 17.5% full-thickness defects. Conspicuity was superior for the IW sequence (p < 0.001). The DESS sequence showed more associated intrachondral signal changes (p < 0.001). In 103 (48.8%) cases, the IW fs sequence depicted the lesions as being larger (p < 0.001). Conclusions: The IW fs sequence detected more and larger focal cartilage defects than the DESS. More intrachondral signal changes were observed with the DESS.

  1. Whole-body MRI in children: Would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Merlini, Laura, E-mail: laura.merlini@hcuge.ch [Department of Radiology, Unit of Pediatric Radiology, University Hospital Rue Willy-Donzé 6, 1205 Geneva (Switzerland); Carpentier, Marc [Department of Epidemiology, University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva Switzerland (Switzerland); Ferrey, Solène; Anooshiravani, Mehrak [Department of Radiology, Unit of Pediatric Radiology, University Hospital Rue Willy-Donzé 6, 1205 Geneva (Switzerland); Poletti, Pierre-Alexandre [Department of Radiology, University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva (Switzerland); Hanquinet, Sylviane [Department of Radiology, Unit of Pediatric Radiology, University Hospital Rue Willy-Donzé 6, 1205 Geneva (Switzerland)

    2017-03-15

    Objectives: To test the performance of a single 3D IR T2-Weighted sequence compared to a Whole-body MRI protocol including DWI, T1-Weighted and STIR 3D IR (3S) in a pediatric population. Methods: Two radiologists (15 and 30 years of experience),reviewed WBMRIs: first the STIR alone and 2 weeks later the 3S protocol. The indications were variable. Only positive findings were explicitly reported. A third reader compared the results to gold standard (GS) exams specific for the pathology. Agreement between the two readers, sensitivity and positive predictive value of STIR were calculated. Results: fifty-four WBMRIs were included (16 suspected child abuse, 8 chronic recurrent multifocal osteomyelitis (CRMO), 11 lymphomas, 4 osteosarcomas, 9 neuroblastomas, 6 histiocytosis). The mean age was 6 years 10 months, range: 1 month to 15 years. Agreement between readers was of 0.87 [0.82–0.91] for 3D STIR, and 0.89 [0.83–0.93] for the 3S protocol. For reader 1 sensitivity of 3D STIR was 81.6% and of 3S 81.0%. For reader 2 it was 74.1% for 3D STIR and 74.7% for 3S. For both readers and for both protocols, the positive predictive value (PPV) depended on the type of disease (for example 100% histocytosis and osteosarcomas, >90% for child abuse, >85% CRMO but <70% for lymphoma and neuroblastoma). Conclusions: Sensitivities were not different between the 2 protocols, for each reader and were different between the 2 readers for each protocol.

  2. Whole-body MRI in children: Would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study

    International Nuclear Information System (INIS)

    Merlini, Laura; Carpentier, Marc; Ferrey, Solène; Anooshiravani, Mehrak; Poletti, Pierre-Alexandre; Hanquinet, Sylviane

    2017-01-01

    Objectives: To test the performance of a single 3D IR T2-Weighted sequence compared to a Whole-body MRI protocol including DWI, T1-Weighted and STIR 3D IR (3S) in a pediatric population. Methods: Two radiologists (15 and 30 years of experience),reviewed WBMRIs: first the STIR alone and 2 weeks later the 3S protocol. The indications were variable. Only positive findings were explicitly reported. A third reader compared the results to gold standard (GS) exams specific for the pathology. Agreement between the two readers, sensitivity and positive predictive value of STIR were calculated. Results: fifty-four WBMRIs were included (16 suspected child abuse, 8 chronic recurrent multifocal osteomyelitis (CRMO), 11 lymphomas, 4 osteosarcomas, 9 neuroblastomas, 6 histiocytosis). The mean age was 6 years 10 months, range: 1 month to 15 years. Agreement between readers was of 0.87 [0.82–0.91] for 3D STIR, and 0.89 [0.83–0.93] for the 3S protocol. For reader 1 sensitivity of 3D STIR was 81.6% and of 3S 81.0%. For reader 2 it was 74.1% for 3D STIR and 74.7% for 3S. For both readers and for both protocols, the positive predictive value (PPV) depended on the type of disease (for example 100% histocytosis and osteosarcomas, >90% for child abuse, >85% CRMO but <70% for lymphoma and neuroblastoma). Conclusions: Sensitivities were not different between the 2 protocols, for each reader and were different between the 2 readers for each protocol.

  3. T2-weighted MR imaging of liver lesions: a prospective evaluation comparing turbo spin-echo, breath-hold turbo spin-echo and half-Fourier turbo spin-echo (HASTE) sequences

    International Nuclear Information System (INIS)

    Martin, J.; Villajos, M.; Oses, M. J.; Veintemillas, M.; Rue, M.; Puig, J.; Sentis, M.

    2000-01-01

    To compare turbo spin-echo (TSE), breath-hold TSE and half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences quantitatively and qualitatively in T2-weighted images of liver lesions. The authors evaluated prospectively 89 liver lesions in 73 patients using a 1.0-T magnetic resonance system to compare TSE, breath-hold TSE and HASTE sequences. The quantitative parameters were: lesion-to-liver contrast and lesion-to-liver contrast-to-noise ratio. The qualitative analysis was performed by two observers in consensus who examined four parameters: respiratory artifacts, lesion edge definition, intrahepatic vessel definition and image quality. Repeated measures analysis of variance was utilized to compare the quantitative variables and Friedman's nonparametric test for the qualitative parameters. In quantitative terms, the lesion-to-liver contrast was similar in TSE and breath-hold TSE sequences (2.45±1.44 versus 2.60±1.66), both of which were significantly better than the HASTE sequence (1.12±0.72; p<0.001). The lesion-to-liver contrast-to-noise ratio was significantly higher in the TSE sequence (62.60±46.40 versus 40.22±25.35 versus 50.90±32.10 for TSE, breath-hold TSE and HASTE sequences, respectively; p<0.001). In the qualitative comparisons, the HASTE sequence was significantly better than the TSE and breath-hold TSE sequences (p<0.001) in terms of artifacts and definition of lesion edge and intrahepatic vessels. Image quality was also significantly greater in the HASTE sequence (p<0.001). In quantitative terms, the TSE sequence is better than the breath-hold TSE and HASTE sequences, but there are no movement artifacts in the HASTE sequence, which is also significantly superior to TSE and breath-hold TSE sequences in qualitative terms and, thus, can be employed for T2-weighted images in liver studies. (Author) 17 refs

  4. Nonparametric combinatorial sequence models.

    Science.gov (United States)

    Wauthier, Fabian L; Jordan, Michael I; Jojic, Nebojsa

    2011-11-01

    This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This article presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three biological sequence families which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution over sequence representations induced by the prior. By integrating out the posterior, our method compares favorably to leading binding predictors.

  5. Long sequence correlation coprocessor

    Science.gov (United States)

    Gage, Douglas W.

    1994-09-01

    A long sequence correlation coprocessor (LSCC) accelerates the bitwise correlation of arbitrarily long digital sequences by calculating in parallel the correlation score for 16, for example, adjacent bit alignments between two binary sequences. The LSCC integrated circuit is incorporated into a computer system with memory storage buffers and a separate general purpose computer processor which serves as its controller. Each of the LSCC's set of sequential counters simultaneously tallies a separate correlation coefficient. During each LSCC clock cycle, computer enable logic associated with each counter compares one bit of a first sequence with one bit of a second sequence to increment the counter if the bits are the same. A shift register assures that the same bit of the first sequence is simultaneously compared to different bits of the second sequence to simultaneously calculate the correlation coefficient by the different counters to represent different alignments of the two sequences.

  6. Identification and comparative profiling of miRNAs in an early flowering mutant of trifoliate orange and its wild type by genome-wide deep sequencing.

    Directory of Open Access Journals (Sweden)

    Lei-Ming Sun

    Full Text Available MicroRNAs (miRNAs are a new class of small, endogenous RNAs that play a regulatory role in various biological and metabolic processes by negatively affecting gene expression at the post-transcriptional level. While the number of known Arabidopsis and rice miRNAs is continuously increasing, information regarding miRNAs from woody plants such as citrus remains limited. Solexa sequencing was performed at different developmental stages on both an early flowering mutant of trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf. and its wild-type in this study, resulting in the obtainment of 141 known miRNAs belonging to 99 families and 75 novel miRNAs in four libraries. A total of 317 potential target genes were predicted based on the 51 novel miRNAs families, GO and KEGG annotation revealed that high ranked miRNA-target genes are those implicated in diverse cellular processes in plants, including development, transcription, protein degradation and cross adaptation. To characterize those miRNAs expressed at the juvenile and adult development stages of the mutant and its wild-type, further analysis on the expression profiles of several miRNAs through real-time PCR was performed. The results revealed that most miRNAs were down-regulated at adult stage compared with juvenile stage for both the mutant and its wild-type. These results indicate that both conserved and novel miRNAs may play important roles in citrus growth and development, stress responses and other physiological processes.

  7. Research resources: comparative microRNA profiles in human corona radiata cells and cumulus oophorus cells detected by next-generation small RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xian-Hong Tong

    Full Text Available During folliculogenesis, cumulus cells surrounding the oocyte differentiate into corona radiata cells (CRCs and cumulus oophorus cells (COCs, which are involved in gonadal steroidogenesis and the development of germ cells. Several studies suggested that microRNAs (miRNAs play an important regulatory role at the post-transcriptional level in cumulus cells. However, comparative miRNA profiles and associated processes in human CRCs and COCs have not been reported before. In this study, miRNA profiles were obtained from CRCs and COCs using next generation sequencing in women undergoing controlled ovarian stimulation for IVF. A total of 785 and 799 annotated miRNAs were identified in CRCs and COCs, while high expression levels of six novel miRNAs were detected both in CRCs and in COCs. In addition, different expression patterns in CRCs and COCs were detected in 72 annotated miRNAs. To confirm the miRNA profile in COCs and CRCs, quantitative real-time PCR was used to validate the expression of annotated miRNAs, differentially expressed miRNAs, and novel miRNAs. The miRNAs in the let-7 family were found to be involved in the regulation of a broad range of biological processes in both cumulus cell populations, which was accompanied by a large amount of miRNA editing. Bioinformatics analysis showed that amino acid and energy metabolism were targeted significantly by miRNAs that were differentially expressed between CRCs and COCs. Our work extends the current knowledge of the regulatory role of miRNAs and their targeted pathways in folliculogenesis, and provides novel candidates for molecular biomarkers in the research of female infertility.

  8. Comparative anatomy of the human APRT gene and enzyme: nucleotide sequence divergence and conservation of a nonrandom CpG dinucleotide arrangement

    International Nuclear Information System (INIS)

    Broderick, T.P.; Schaff, D.A.; Bertino, A.M.; Dush, M.K.; Tischfield, J.A.; Stambrook, P.J.

    1987-01-01

    The functional human adenine phosphoribosyltransferase (APRT) gene is <2.6 kilobases in length and contains five exons. The amino acid sequences of APRTs have been highly conserved throughout evolution. The human enzyme is 82%, 90%, and 40% identical to the mouse, hamster, and Escherichia coli enzymes, respectively. The promoter region of the human APRT gene, like that of several other housekeeping genes, lacks TATA and CCAAT boxes but contains five GC boxes that are potential binding sites for the Sp1 transcription factor. The distal three, however, are dispensable for gene expression. Comparison between human and mouse APRT gene nucleotide sequences reveals a high degree of homology within protein coding regions but an absence of significant homology in 5' flanking, 3' untranslated, and intron sequences, except for similarly positioned GC boxes in the promoter region and a 26-base-pair region in intron 3. This 26-base-pair sequence is 92% identical with a similarly positioned sequence in the mouse gene and is also found in intron 3 of the hamster gene, suggesting that its retention may be a consequence of stringent selection. The positions of all introns have been precisely retained in the human and both rodent genes. Retention of an elevated CpG dinucleotide content, despite loss of sequence homology, suggests that there may be selection for CpG dinucleotides in these regions and that their maintenance may be important for APRT gene function

  9. Fast T1 and T2 mapping methods: the zoomed U-FLARE sequence compared with EPI and snapshot-FLASH for abdominal imaging at 11.7 Tesla.

    Science.gov (United States)

    Pastor, Géraldine; Jiménez-González, María; Plaza-García, Sandra; Beraza, Marta; Reese, Torsten

    2017-06-01

    A newly adapted zoomed ultrafast low-angle RARE (U-FLARE) sequence is described for abdominal imaging applications at 11.7 Tesla and compared with the standard echo-plannar imaging (EPI) and snapshot fast low angle shot (FLASH) methods. Ultrafast EPI and snapshot-FLASH protocols were evaluated to determine relaxation times in phantoms and in the mouse kidney in vivo. Owing to their apparent shortcomings, imaging artefacts, signal-to-noise ratio (SNR), and variability in the determination of relaxation times, these methods are compared with the newly implemented zoomed U-FLARE sequence. Snapshot-FLASH has a lower SNR when compared with the zoomed U-FLARE sequence and EPI. The variability in the measurement of relaxation times is higher in the Look-Locker sequences than in inversion recovery experiments. Respectively, the average T1 and T2 values at 11.7 Tesla are as follows: kidney cortex, 1810 and 29 ms; kidney medulla, 2100 and 25 ms; subcutaneous tumour, 2365 and 28 ms. This study demonstrates that the zoomed U-FLARE sequence yields single-shot single-slice images with good anatomical resolution and high SNR at 11.7 Tesla. Thus, it offers a viable alternative to standard protocols for mapping very fast parameters, such as T1 and T2, or dynamic processes in vivo at high field.

  10. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Diwen [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Peng, Juan [Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Xu, Xinyan; Li, Kan; Wang, Yalin [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Jia, Jinping, E-mail: jpjia@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Specifically-designed SIME reactor for treatment of mature landfill leachate. Black-Right-Pointing-Pointer Excellent removal efficiencies of COD (86.1%), color (95.3%), and HA (81.8%). Black-Right-Pointing-Pointer Combination effect of IME without aeration and IME with aeration. Black-Right-Pointing-Pointer Optimal pH of 5, Fe/C of 1:1, gas flow rate of 80 L h{sup -1}, and H{sub 2}O{sub 2} of 100 mg L{sup -1}. - Abstract: A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 {+-} 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 {+-} 3.8% to mature landfill leachate in the continuous operation, which is much higher (p < 0.05) than that of conventional treatments of electrolysis (22.8-47.0%), coagulation-sedimentation (18.5-22.2%), and the Fenton process (19.9-40.2%), respectively. The innovative concept behind this excellent performance is a combination effect of reductive and oxidative processes of the IME, and the integration electro-coagulation. Optimal operating parameters, including the initial pH, Fe/C mass ratio, air flow rate, and addition of H{sub 2}O{sub 2}, were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate.

  11. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Maolong Hu

    Full Text Available Acetohydroxyacid synthase (AHAS, also called acetolactate synthase, is a key enzyme involved in the first step of the biosynthesis of the branched-chain amino acids valine, isoleucine and leucine. Acetohydroxyacid synthase-inhibiting herbicides (AHAS herbicides are five chemical families of herbicides that inhibit AHAS enzymes, including imidazolinones (IMI, sulfonylureas (SU, pyrimidinylthiobenzoates, triazolinones and triazolopyrimidines. Five AHAS genes have been identified in rapeseed, but little information is available regarding the role of miRNAs in response to AHAS herbicides. In this study, an AHAS herbicides tolerant genotype and a sensitive genotype were used for miRNA comparative analysis. A total of 20 small RNA libraries were obtained of these two genotypes at three time points (0h, 24 h and 48 h after spraying SU and IMI herbicides with two replicates. We identified 940 conserved miRNAs and 1515 novel candidate miRNAs in Brassica napus using high-throughput sequencing methods combined with computing analysis. A total of 3284 genes were predicted to be targets of these miRNAs, and their functions were shown using GO, KOG and KEGG annotations. The differentiation expression results of miRNAs showed almost twice as many differentiated miRNAs were found in tolerant genotype M342 (309 miRNAs after SU herbicide application than in sensitive genotype N131 (164 miRNAs. In additiond 177 and 296 miRNAs defined as differentiated in sensitive genotype and tolerant genotype in response to SU herbicides. The miR398 family was observed to be associated with AHAS herbicide tolerance because their expression increased in the tolerant genotype but decreased in the sensitive genotype. Moreover, 50 novel miRNAs from 39 precursors were predicted. There were 8 conserved miRNAs, 4 novel miRNAs and 3 target genes were validated by quantitative real-time PCR experiment. This study not only provides novel insights into the miRNA content of AHAS herbicides

  12. Finite-size effects in transcript sequencing count distribution: its power-law correction necessarily precedes downstream normalization and comparative analysis.

    Science.gov (United States)

    Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank

    2018-02-12

    Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in

  13. Whole-Genome Sequencing and Comparative Genome Analysis Provided Insight into the Predatory Features and Genetic Diversity of Two Bdellovibrio Species Isolated from Soil

    Directory of Open Access Journals (Sweden)

    Omotayo Opemipo Oyedara

    2018-01-01

    Full Text Available Bdellovibrio spp. are predatory bacteria with great potential as antimicrobial agents. Studies have shown that members of the genus Bdellovibrio exhibit peculiar characteristics that influence their ecological adaptations. In this study, whole genomes of two different Bdellovibrio spp. designated SKB1291214 and SSB218315 isolated from soil were sequenced. The core genes shared by all the Bdellovibrio spp. considered for the pangenome analysis including the epibiotic B. exovorus were 795. The number of unique genes identified in Bdellovibrio spp. SKB1291214, SSB218315, W, and B. exovorus JJS was 1343, 113, 857, and 1572, respectively. These unique genes encode hydrolytic, chemotaxis, and transporter proteins which might be useful for predation in the Bdellovibrio strains. Furthermore, the two Bdellovibrio strains exhibited differences based on the % GC content, amino acid identity, and 16S rRNA gene sequence. The 16S rRNA gene sequence of Bdellovibrio sp. SKB1291214 shared 99% identity with that of an uncultured Bdellovibrio sp. clone 12L 106 (a pairwise distance of 0.008 and 95–97% identity (a pairwise distance of 0.043 with that of other culturable terrestrial Bdellovibrio spp., including strain SSB218315. In Bdellovibrio sp. SKB1291214, 174 bp sequence was inserted at the host interaction (hit locus region usually attributed to prey attachment, invasion, and development of host independent Bdellovibrio phenotypes. Also, a gene equivalent to Bd0108 in B. bacteriovorus HD100 was not conserved in Bdellovibrio sp. SKB1291214. The results of this study provided information on the genetic characteristics and diversity of the genus Bdellovibrio that can contribute to their successful applications as a biocontrol agent.

  14. Comparative sensitivities of functional MRI sequences in detection of local recurrence of prostate carcinoma after radical prostatectomy or external-beam radiotherapy.

    Science.gov (United States)

    Roy, Catherine; Foudi, Fatah; Charton, Jeanne; Jung, Michel; Lang, Hervé; Saussine, Christian; Jacqmin, Didier

    2013-04-01

    The aim of this retrospective study was to determine the respective accuracies of three types of functional MRI sequences-diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) MRI, and 3D (1)H-MR spectroscopy (MRS)-in the depiction of local prostate cancer recurrence after two different initial therapy options. From a cohort of 83 patients with suspicion of local recurrence based on prostate-specific antigen (PSA) kinetics who were imaged on a 3-T MRI unit using an identical protocol including the three functional sequences with an endorectal coil, we selected 60 patients (group A, 28 patients who underwent radical prostatectomy; group B, 32 patients who underwent external-beam radiation) who had local recurrence ascertained on the basis of a transrectal ultrasound-guided biopsy results and a reduction in PSA level after salvage therapy. All patients presented with a local relapse. Sensitivity with T2-weighted MRI and 3D (1)H-MRS sequences was 57% and 53%, respectively, for group A and 71% and 78%, respectively, for group B. DCE-MRI alone showed a sensitivity of 100% and 96%, respectively, for groups A and B. DWI alone had a higher sensitivity for group B (96%) than for group A (71%). The combination of T2-weighted imaging plus DWI plus DCE-MRI provided a sensitivity as high as 100% in group B. The performance of functional imaging sequences for detecting recurrence is different after radical prostatectomy and external-beam radiotherapy. DCE-MRI is a valid and efficient tool to detect prostate cancer recurrence in radical prostatectomy as well as in external-beam radiotherapy. The combination of DCE-MRI and DWI is highly efficient after radiation therapy. Three-dimensional (1)H-MRS needs to be improved. Even though it is not accurate enough, T2-weighted imaging remains essential for the morphologic analysis of the area.

  15. Comparative genome analysis and characterization of the Salmonella Typhimurium strain CCRJ_26 isolated from swine carcasses using whole-genome sequencing approach.

    Science.gov (United States)

    Panzenhagen, P H N; Cabral, C C; Suffys, P N; Franco, R M; Rodrigues, D P; Conte-Junior, C A

    2018-04-01

    Salmonella pathogenicity relies on virulence factors many of which are clustered within the Salmonella pathogenicity islands. Salmonella also harbours mobile genetic elements such as virulence plasmids, prophage-like elements and antimicrobial resistance genes which can contribute to increase its pathogenicity. Here, we have genetically characterized a selected S. Typhimurium strain (CCRJ_26) from our previous study with Multiple Drugs Resistant profile and high-frequency PFGE clonal profile which apparently persists in the pork production centre of Rio de Janeiro State, Brazil. By whole-genome sequencing, we described the strain's genome virulent content and characterized the repertoire of bacterial plasmids, antibiotic resistance genes and prophage-like elements. Here, we have shown evidence that strain CCRJ_26 genome possible represent a virulence-associated phenotype which may be potentially virulent in human infection. Whole-genome sequencing technologies are still costly and remain underexplored for applied microbiology in Brazil. Hence, this genomic description of S. Typhimurium strain CCRJ_26 will provide help in future molecular epidemiological studies. The analysis described here reveals a quick and useful pipeline for bacterial virulence characterization using whole-genome sequencing approach. © 2018 The Society for Applied Microbiology.

  16. Comparative effectiveness of eight antiepileptic drugs in adults with focal refractory epilepsy: the influence of age, gender, and the sequence in which drugs were introduced onto the market.

    Science.gov (United States)

    Mäkinen, Jussi; Peltola, Jukka; Raitanen, Jani; Alapirtti, Tiina; Rainesalo, Sirpa

    2017-07-01

    The first objective was to determine the long-term retention rate of eight antiepileptic drugs (AEDs) commonly used as adjunctive therapy in adults with focal refractory epilepsy. Second, we assessed the effects of age and gender on retention rates. Third, we examined if the retention rate could be influenced by the sequence in which the AEDs had entered the market. Patients with focal refractory epilepsy treated with any of the eight AEDs in Tampere University Hospital were identified retrospectively (N = 507). Retention rates were evaluated with the Kaplan-Meier method. Follow-up started at the first date of treatment and each individual was followed a maximum of 36 months. We calculated the following 3-year retention rates: lacosamide 77.1% (N = 137), lamotrigine 68.3% (N = 177), levetiracetam 66.7% (N = 319), clobazam 65.6% (N = 130), topiramate 61.6% (N = 178), zonisamide 60.4% (N = 103), pregabalin 54.6% (N = 127), and gabapentin 40.2% (N = 66). Lacosamide, levetiracetam, and clobazam were the most effective AEDs in the elderly. The retention rate for pregabalin was higher in males (65%) than females (51%) whereas females had higher retention rates for both topiramate (72 vs. 58%) and zonisamide (67 vs. 57%). The retention rate was influenced by the sequence in which these AEDs entered the market. We provide important information about practical aspects of these eight AEDs, revealing that there are differences in their effectiveness as adjunctive treatment for focal refractory epilepsy. Most importantly, the retention rate appears to be influenced by the sequence in which these AEDs were introduced onto the market.

  17. Lactococcus lactis Diversity in Undefined Mixed Dairy Starter Cultures as Revealed by Comparative Genome Analyses and Targeted Amplicon Sequencing of epsD.

    Science.gov (United States)

    Frantzen, Cyril A; Kleppen, Hans Petter; Holo, Helge

    2018-02-01

    Undefined mesophilic mixed (DL) starter cultures are used in the production of continental cheeses and contain unknown strain mixtures of Lactococcus lactis and leuconostocs. The choice of starter culture affects the taste, aroma, and quality of the final product. To gain insight into the diversity of Lactococcus lactis strains in starter cultures, we whole-genome sequenced 95 isolates from three different starter cultures. Pan-genomic analyses, which included 30 publically available complete genomes, grouped the strains into 21 L. lactis subsp . lactis and 28 L. lactis subsp. cremoris lineages. Only one of the 95 isolates grouped with previously sequenced strains, and the three starter cultures showed no overlap in lineage distributions. The culture diversity was assessed by targeted amplicon sequencing using purR , a core gene, and epsD , present in 93 of the 95 starter culture isolates but absent in most of the reference strains. This enabled an unprecedented discrimination of starter culture Lactococcus lactis and revealed substantial differences between the three starter cultures and compositional shifts during the cultivation of cultures in milk. IMPORTANCE In contemporary cheese production, standardized frozen seed stock starter cultures are used to ensure production stability, reproducibility, and quality control of the product. The dairy industry experiences significant disruptions of cheese production due to phage attacks, and one commonly used countermeasure to phage attack is to employ a starter rotation strategy, in which two or more starters with minimal overlap in phage sensitivity are used alternately. A culture-independent analysis of the lactococcal diversity in complex undefined starter cultures revealed large differences between the three starter cultures and temporal shifts in lactococcal composition during the production of bulk starters. A better understanding of the lactococcal diversity in starter cultures will enable the development of

  18. Comparative sequence analysis of VRN1 alleles of Lolium perenne with the co-linear regions in barley, wheat, and rice

    DEFF Research Database (Denmark)

    Asp, Torben; Byrne, Stephen; Gundlach, Heidrun

    2011-01-01

    Vernalization, a period of low temperature to induce transition from vegetative to reproductive state, is an important environmental stimulus for many cool season grasses. A key gene in the vernalization pathway in grasses is the VRN1 gene. The objective of this study was to identify causative...... polymorphism(s) at the VRN1 locus in perennial ryegrass (Lolium perenne) for variation in vernalization requirement. Two allelic Bacterial Artificial Chromosome clones of the VRN1 locus from the two genotypes Veyo and Falster with contrasting vernalization requirements were identified, sequenced...

  19. A gene-based high-resolution comparative radiation hybrid map as a framework for genome sequence assembly of a bovine chromosome 6 region associated with QTL for growth, body composition, and milk performance traits

    Directory of Open Access Journals (Sweden)

    Laurent Pascal

    2006-03-01

    Full Text Available Abstract Background A number of different quantitative trait loci (QTL for various phenotypic traits, including milk production, functional, and conformation traits in dairy cattle as well as growth and body composition traits in meat cattle, have been mapped consistently in the middle region of bovine chromosome 6 (BTA6. Dense genetic and physical maps and, ultimately, a fully annotated genome sequence as well as their mutual connections are required to efficiently identify genes and gene variants responsible for genetic variation of phenotypic traits. A comprehensive high-resolution gene-rich map linking densely spaced bovine markers and genes to the annotated human genome sequence is required as a framework to facilitate this approach for the region on BTA6 carrying the QTL. Results Therefore, we constructed a high-resolution radiation hybrid (RH map for the QTL containing chromosomal region of BTA6. This new RH map with a total of 234 loci including 115 genes and ESTs displays a substantial increase in loci density compared to existing physical BTA6 maps. Screening the available bovine genome sequence resources, a total of 73 loci could be assigned to sequence contigs, which were already identified as specific for BTA6. For 43 loci, corresponding sequence contigs, which were not yet placed on the bovine genome assembly, were identified. In addition, the improved potential of this high-resolution RH map for BTA6 with respect to comparative mapping was demonstrated. Mapping a large number of genes on BTA6 and cross-referencing them with map locations in corresponding syntenic multi-species chromosome segments (human, mouse, rat, dog, chicken achieved a refined accurate alignment of conserved segments and evolutionary breakpoints across the species included. Conclusion The gene-anchored high-resolution RH map (1 locus/300 kb for the targeted region of BTA6 presented here will provide a valuable platform to guide high-quality assembling and

  20. Comparing Enterovirus 71 with Coxsackievirus A16 by analyzing nucleotide sequences and antigenicity of recombinant proteins of VP1s and VP4s

    Directory of Open Access Journals (Sweden)

    Sun Yu

    2011-11-01

    Full Text Available Abstract Background Enterovirus 71 (EV71 and Coxsackievirus A16 (CA16 are two major etiological agents of Hand, Foot and Mouth Disease (HFMD. EV71 is associated with severe cases but not CA16. The mechanisms contributed to the different pathogenesis of these two viruses are unknown. VP1 and VP4 are two major structural proteins of these viruses, and should be paid close attention to. Results The sequences of vp1s from 14 EV71 and 14 CA16, and vp4s from 10 EV71 and 1 CA16 isolated in this study during 2007 to 2009 HFMD seasons were analyzed together with the corresponding sequences available in GenBank using DNAStar and MEGA 4.0. Phylogenetic analysis of complete vp1s or vp4s showed that EV71 isolated in Beijing belonged to C4 and CA16 belonged to lineage B2 (lineage C. VP1s and VP4s from 4 strains of viruses expressed in E. coli BL21 cells were used to detect IgM and IgG in human sera by Western Blot. The detection of IgM against VP1s of EV71 and CA16 showed consistent results with current infection, while none of the sera were positive against VP4s of EV71 and CA16. There was significant difference in the positive rates between EV71 VP1 and CA16 VP1 (χ2 = 5.02, P 2 = 15.30, P 2 = 26.47, P 2 = 16.78, P Conclusions EV71 and CA16 were highly diverse in the nucleotide sequences of vp1s and vp4s. The sera positive rates of VP1 and VP4 of EV71 were lower than those of CA16 respectively, which suggested a less exposure rate to EV71 than CA16 in Beijing population. Human serum antibodies detected by Western blot using VP1s and VP4s as antigen indicated that the immunological reaction to VP1 and VP4 of both EV71 and CA16 was different.

  1. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  2. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  3. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells.

    Directory of Open Access Journals (Sweden)

    Soraya Rumbo-Feal

    Full Text Available Acinetobacterbaumannii has emerged as a dangerous opportunistic pathogen, with many strains able to form biofilms and thus cause persistent infections. The aim of the present study was to use high-throughput sequencing techniques to establish complete transcriptome profiles of planktonic (free-living and sessile (biofilm forms of A. baumannii ATCC 17978 and thereby identify differences in their gene expression patterns. Collections of mRNA from planktonic (both exponential and stationary phase cultures and sessile (biofilm cells were sequenced. Six mRNA libraries were prepared following the mRNA-Seq protocols from Illumina. Reads were obtained in a HiScanSQ platform and mapped against the complete genome to describe the complete mRNA transcriptomes of planktonic and sessile cells. The results showed that the gene expression pattern of A. baumannii biofilm cells was distinct from that of planktonic cells, including 1621 genes over-expressed in biofilms relative to stationary phase cells and 55 genes expressed only in biofilms. These differences suggested important changes in amino acid and fatty acid metabolism, motility, active transport, DNA-methylation, iron acquisition, transcriptional regulation, and quorum sensing, among other processes. Disruption or deletion of five of these genes caused a significant decrease in biofilm formation ability in the corresponding mutant strains. Among the genes over-expressed in biofilm cells were those in an operon involved in quorum sensing. One of them, encoding an acyl carrier protein, was shown to be involved in biofilm formation as demonstrated by the significant decrease in biofilm formation by the corresponding knockout strain. The present work serves as a basis for future studies examining the complex network systems that regulate bacterial biofilm formation and maintenance.

  4. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny.

    Science.gov (United States)

    Smith, Adam R; Proffitt, Melissa R; Ho, Winnie W; Mullaney, Claire B; Maldonado-Ocampo, Javier A; Lovejoy, Nathan R; Alves-Gomes, José A; Smith, G Troy

    2016-10-01

    The electric communication signals of weakly electric ghost knifefishes (Gymnotiformes: Apteronotidae) provide a valuable model system for understanding the evolution and physiology of behavior. Apteronotids produce continuous wave-type electric organ discharges (EODs) that are used for electrolocation and communication. The frequency and waveform of EODs, as well as the structure of transient EOD modulations (chirps), vary substantially across species. Understanding how these signals have evolved, however, has been hampered by the lack of a well-supported phylogeny for this family. We constructed a molecular phylogeny for the Apteronotidae by using sequence data from three genes (cytochrome c oxidase subunit 1, recombination activating gene 2, and cytochrome oxidase B) in 32 species representing 13 apteronotid genera. This phylogeny and an extensive database of apteronotid signals allowed us to examine signal evolution by using ancestral state reconstruction (ASR) and phylogenetic generalized least squares (PGLS) models. Our molecular phylogeny largely agrees with another recent sequence-based phylogeny and identified five robust apteronotid clades: (i) Sternarchorhamphus+Orthosternarchus, (ii) Adontosternarchus, (iii) Apteronotus+Parapteronotus, (iv) Sternarchorhynchus, and (v) a large clade including Porotergus, 'Apteronotus', Compsaraia, Sternarchogiton, Sternarchella, and Magosternarchus. We analyzed novel chirp recordings from two apteronotid species (Orthosternarchus tamandua and Sternarchorhynchus mormyrus), and combined data from these species with that from previously recorded species in our phylogenetic analyses. Some signal parameters in O. tamandua were plesiomorphic (e.g., low frequency EODs and chirps with little frequency modulation that nevertheless interrupt the EOD), suggesting that ultra-high frequency EODs and "big" chirps evolved after apteronotids diverged from other gymnotiforms. In contrast to previous studies, our PGLS analyses using the

  5. Fast global sequence alignment technique

    KAUST Repository

    Bonny, Mohamed Talal; Salama, Khaled N.

    2011-01-01

    fast alignment algorithm, called 'Alignment By Scanning' (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the wellknown sequence alignment algorithms, the 'GAP' (which is heuristic) and the 'Needleman

  6. A comparative study of two statistical approaches for the analysis of real seismicity sequences and synthetic seismicity generated by a stick-slip experimental model

    Science.gov (United States)

    Flores-Marquez, Leticia Elsa; Ramirez Rojaz, Alejandro; Telesca, Luciano

    2015-04-01

    The study of two statistical approaches is analyzed for two different types of data sets, one is the seismicity generated by the subduction processes occurred at south Pacific coast of Mexico between 2005 and 2012, and the other corresponds to the synthetic seismic data generated by a stick-slip experimental model. The statistical methods used for the present study are the visibility graph in order to investigate the time dynamics of the series and the scaled probability density function in the natural time domain to investigate the critical order of the system. This comparison has the purpose to show the similarities between the dynamical behaviors of both types of data sets, from the point of view of critical systems. The observed behaviors allow us to conclude that the experimental set up globally reproduces the behavior observed in the statistical approaches used to analyses the seismicity of the subduction zone. The present study was supported by the Bilateral Project Italy-Mexico Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences, jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016.

  7. Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis.

    Science.gov (United States)

    Luo, Gang; Fotidis, Ioannis A; Angelidaki, Irini

    2016-01-01

    Biogas production is a very complex process due to the high complexity in diversity and interactions of the microorganisms mediating it, and only limited and diffuse knowledge exists about the variation of taxonomic and functional patterns of microbiomes across different biogas reactors, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. The results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature and free ammonia were crucial environmental variables shaping the taxonomic and functional patterns. The study further the overall patterns of functional genes were strongly correlated with overall patterns of taxonomic composition across different biogas reactors. The discrepancy between the metabolic patterns determined by metagenomic analysis and metabolic pathways determined by radioisotopic analysis was found. Besides, a clear correlation between taxonomic and functional patterns was demonstrated for biogas reactors, and also the environmental factors that shaping both taxonomic and functional genes patterns were identified.

  8. Grateloupia ramosa Wang & Luan sp. nov. (Halymeniaceae, Rhodophyta), a new species from China based on morphological evidence and comparative rbcL sequences

    Science.gov (United States)

    Cao, Cuicui; Liu, Miao; Guo, Shaoru; Zhao, Dan; Luan, Rixiao; Wang, Hongwei

    2016-03-01

    Grateloupia ramosa Wang & Luan sp. nov. (Halymeniaceae, Rhodophyta) is newly described from Hainan Province, southern China. The organism has the following morphological features: (1) purplish red, cartilaginous and lubricous thalli 5-10 cm in height; (2) compressed percurrent axes bearing abundant branches with opposite arrangement; (3) claw-like apices on top, constricted to 2-4 cm at the base; (4) cortex consisting of 3-6 layers of elliptical or anomalous cells and a medulla covered by compact medullary filaments; (5) reproductive structures distributed throughout the thallus, especially centralized at the bottom of the end portion of the branches; and (6) 4-celled Carpogonial branches and 3-celled auxiliary-cell branches, both of the Grateloupia-type. The morphological diff erences were supported by molecular phylogenetics based on ribulose-1, 5-bisphosphate carboxylase/oxygenase ( rbcL) gene sequence analysis. There was only a 1 bp divergence between specimens collected from Wenchang and Lingshui of Hainan province. The new species was embedded in the large Grateloupia clade of the Halymeniaceae. The pairwise distances between G. ramosa and other species within Grateloupia ranged from 26 to 105 bp, within pairwise distances of 13-111 bp between species of the large genus Grateloupia in Halymeniaceae. Thus, we propose this new species as G. ramosa Wang & Luan sp. nov.

  9. Complete genome sequence of the Lactococcus lactis temperate phage phiLC3: comparative analysis of phiLC3 and its relatives in lactococci and streptococci

    International Nuclear Information System (INIS)

    Blatny, Janet Martha; Godager, Linda; Lunde, Merete; Nes, Ingolf Figved

    2004-01-01

    Complete genome sequencing of the P335 temperate Lactococcus lactis bacteriophage phiLC3 (32, 172 bp) revealed fifty-one open reading frames (ORFs). Four ORFs did not show any homology to other proteins in the database and twenty-one ORFs were assigned a putative biological function. phiLC3 contained a unique replication module and orf201 was identified as the putative replication initiator protein-encoding gene. phiLC3 was closely related to the L. lactis r1t phage (73% DNA identity). Similarity was also shared with other lactococcal P335 phages and the Streptococcus pyogenes prophages 370.3, 8232.4 and 315.5 over the non-structural genes and the genes involved in DNA packaging/phage morphogenesis, respectively. phiLC3 contained small homologous regions distributed among lactococcal phages suggesting that these regions might be involved in mediating genetic exchange. Two regions of 30 and 32 bp were conserved among the streptococcal and lactococcal r1t-like phages. These two regions, as well as other homologous regions, were located at mosaic borders and close to putative transcriptional terminators indicating that such regions together might attract recombination. The conserved regions found among lactococcal and streptococcal phages might be used for identification of phages/prophages/prophage remnants in their hosts

  10. A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa

    Directory of Open Access Journals (Sweden)

    Uyeda Taro QP

    2005-03-01

    Full Text Available Abstract Background Formins are multidomain proteins defined by a conserved FH2 (formin homology 2 domain with actin nucleation activity preceded by a proline-rich FH1 (formin homology 1 domain. Formins act as profilin-modulated processive actin nucleators conserved throughout a wide range of eukaryotes. Results We present a detailed sequence analysis of the 10 formins (ForA to J identified in the genome of the social amoeba Dictyostelium discoideum. With the exception of ForI and ForC all other formins conform to the domain structure GBD/FH3-FH1-FH2-DAD, where DAD is the Diaphanous autoinhibition domain and GBD/FH3 is the Rho GTPase-binding domain/formin homology 3 domain that we propose to represent a single domain. ForC lacks a FH1 domain, ForI lacks recognizable GBD/FH3 and DAD domains and ForA, E and J have additional unique domains. To establish the relationship between formins of Dictyostelium and other organisms we constructed a phylogenetic tree based on the alignment of FH2 domains. Real-time PCR was used to study the expression pattern of formin genes. Expression of forC, D, I and J increased during transition to multi-cellular stages, while the rest of genes displayed less marked developmental variations. During sexual development, expression of forH and forI displayed a significant increase in fusion competent cells. Conclusion Our analysis allows some preliminary insight into the functionality of Dictyostelium formins: all isoforms might display actin nucleation activity and, with the exception of ForI, might also be susceptible to autoinhibition and to regulation by Rho GTPases. The architecture GBD/FH3-FH1-FH2-DAD appears common to almost all Dictyostelium, fungal and metazoan formins, for which we propose the denomination of conventional formins, and implies a common regulatory mechanism.

  11. A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa.

    Science.gov (United States)

    Rivero, Francisco; Muramoto, Tetsuya; Meyer, Ann-Kathrin; Urushihara, Hideko; Uyeda, Taro Q P; Kitayama, Chikako

    2005-03-01

    Formins are multidomain proteins defined by a conserved FH2 (formin homology 2) domain with actin nucleation activity preceded by a proline-rich FH1 (formin homology 1) domain. Formins act as profilin-modulated processive actin nucleators conserved throughout a wide range of eukaryotes. We present a detailed sequence analysis of the 10 formins (ForA to J) identified in the genome of the social amoeba Dictyostelium discoideum. With the exception of ForI and ForC all other formins conform to the domain structure GBD/FH3-FH1-FH2-DAD, where DAD is the Diaphanous autoinhibition domain and GBD/FH3 is the Rho GTPase-binding domain/formin homology 3 domain that we propose to represent a single domain. ForC lacks a FH1 domain, ForI lacks recognizable GBD/FH3 and DAD domains and ForA, E and J have additional unique domains. To establish the relationship between formins of Dictyostelium and other organisms we constructed a phylogenetic tree based on the alignment of FH2 domains. Real-time PCR was used to study the expression pattern of formin genes. Expression of forC, D, I and J increased during transition to multi-cellular stages, while the rest of genes displayed less marked developmental variations. During sexual development, expression of forH and forI displayed a significant increase in fusion competent cells. Our analysis allows some preliminary insight into the functionality of Dictyostelium formins: all isoforms might display actin nucleation activity and, with the exception of ForI, might also be susceptible to autoinhibition and to regulation by Rho GTPases. The architecture GBD/FH3-FH1-FH2-DAD appears common to almost all Dictyostelium, fungal and metazoan formins, for which we propose the denomination of conventional formins, and implies a common regulatory mechanism.

  12. Comparative analysis of seven viral nuclear export signals (NESs reveals the crucial role of nuclear export mediated by the third NES consensus sequence of nucleoprotein (NP in influenza A virus replication.

    Directory of Open Access Journals (Sweden)

    Nopporn Chutiwitoonchai

    Full Text Available The assembly of influenza virus progeny virions requires machinery that exports viral genomic ribonucleoproteins from the cell nucleus. Currently, seven nuclear export signal (NES consensus sequences have been identified in different viral proteins, including NS1, NS2, M1, and NP. The present study examined the roles of viral NES consensus sequences and their significance in terms of viral replication and nuclear export. Mutation of the NP-NES3 consensus sequence resulted in a failure to rescue viruses using a reverse genetics approach, whereas mutation of the NS2-NES1 and NS2-NES2 sequences led to a strong reduction in viral replication kinetics compared with the wild-type sequence. While the viral replication kinetics for other NES mutant viruses were also lower than those of the wild-type, the difference was not so marked. Immunofluorescence analysis after transient expression of NP-NES3, NS2-NES1, or NS2-NES2 proteins in host cells showed that they accumulated in the cell nucleus. These results suggest that the NP-NES3 consensus sequence is mostly required for viral replication. Therefore, each of the hydrophobic (Φ residues within this NES consensus sequence (Φ1, Φ2, Φ3, or Φ4 was mutated, and its viral replication and nuclear export function were analyzed. No viruses harboring NP-NES3 Φ2 or Φ3 mutants could be rescued. Consistent with this, the NP-NES3 Φ2 and Φ3 mutants showed reduced binding affinity with CRM1 in a pull-down assay, and both accumulated in the cell nucleus. Indeed, a nuclear export assay revealed that these mutant proteins showed lower nuclear export activity than the wild-type protein. Moreover, the Φ2 and Φ3 residues (along with other Φ residues within the NP-NES3 consensus were highly conserved among different influenza A viruses, including human, avian, and swine. Taken together, these results suggest that the Φ2 and Φ3 residues within the NP-NES3 protein are important for its nuclear export function

  13. BLADE acquisition method improves T2-weighted MR images of the female pelvis compared with a standard fast spin-echo sequence

    International Nuclear Information System (INIS)

    Fujimoto, Koji; Koyama, Takashi; Tamai, Ken; Morisawa, Nobuko; Okada, Tomohisa; Togashi, Kaori

    2011-01-01

    Purpose: To investigate feasibility of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER or BLADE) T2-weighted imaging (T2WI) of the female pelvis by comparing it with standard fast spin-echo T2WI (STD-T2WI). Materials and methods: Sagittal STD-T2WI and BLADE-T2WI of the female pelvis were performed with (36 patients) or without (15 patients) administration of butylscopolamine on a 1.5 T MR unit. Two radiologists independently rated depiction of the uterus, ovary, intestines, bladder, gynecological lesions, overall quality, and artifacts using a four-point scale. Results were compared between STD-T2WI vs. BLADE-T2WI either with (B+) or without (B−) administration of butylscopolamine, BLADE-T2WI (B−) vs. BLADE-T2WI (B+), and STD-T2WI (B+) vs. BLADE-T2WI (B−). Results: When butylscopolamine was administrated, depiction of the uterus, ovary, intestines, gynecological lesions, and overall image quality was rated higher and artifacts were rated fewer for BLADE-T2WI with significance compared with STD-T2WI. When the drug was not administrated, significant difference was observed in depiction of the lesion, overall quality, and artifacts. Depiction of the uterus, gynecological lesion, and overall quality was rated significantly higher and artifacts were fewer in BLADE-T2WI (B+) than in BLADE-T2WI (B−). Conclusion: BLADE method was feasible for female pelvic MRI, with best image quality in BLADE-T2WI (B+).

  14. Comparative genomic hybridization analysis detects frequent over-representation of DNA sequences at 3q, 7p, 8q and 18q in head and neck carcinomas

    DEFF Research Database (Denmark)

    Bergamo, N A; Rogatto, S R; Poli-Frederico, R C

    2000-01-01

    Comparative genomic hybridization (CGH) was used to identify chromosomal imbalances in 19 samples of squamous cell carcinoma of the head and neck (HNSCC). The chromosome arms most often over-represented were 3q (48%), 8q (42%), and 7p (32%); in many cases, these changes were observed at high copy...... and 2q material were detected in patients exhibiting a clinical history of recurrence and/or metastasis followed by terminal disease. This association suggests that gain of 1q and 2q may be a new marker of head and neck tumors with a refractory clinical response....

  15. Phylogenetic Trees From Sequences

    Science.gov (United States)

    Ryvkin, Paul; Wang, Li-San

    In this chapter, we review important concepts and approaches for phylogeny reconstruction from sequence data.We first cover some basic definitions and properties of phylogenetics, and briefly explain how scientists model sequence evolution and measure sequence divergence. We then discuss three major approaches for phylogenetic reconstruction: distance-based phylogenetic reconstruction, maximum parsimony, and maximum likelihood. In the third part of the chapter, we review how multiple phylogenies are compared by consensus methods and how to assess confidence using bootstrapping. At the end of the chapter are two sections that list popular software packages and additional reading.

  16. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    Science.gov (United States)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  17. A short note on the paper of Liu et al. (2012). A relative Lempel-Ziv complexity: Application to comparing biological sequences. Chemical Physics Letters, volume 530, 19 March 2012, pages 107-112

    Science.gov (United States)

    Arit, Turkan; Keskin, Burak; Firuzan, Esin; Cavas, Cagin Kandemir; Liu, Liwei; Cavas, Levent

    2018-04-01

    The report entitled "L. Liu, D. Li, F. Bai, A relative Lempel-Ziv complexity: Application to comparing biological sequences, Chem. Phys. Lett. 530 (2012) 107-112" mentions on the powerful construction of phylogenetic trees based on Lempel-Ziv algorithm. On the other hand, the method explained in the paper does not give promising result on the data set on invasive Caulerpa taxifolia in the Mediterranean Sea. The phylogenetic trees are obtained by the proposed method of the aforementioned paper in this short note.

  18. Prevalência de artefatos em exames de ressonância magnética do abdome utilizando a seqüência GRASE: comparável com as melhores seqüências rápidas? Prevalence of artifacts in abdominal magnetic resonance imaging using GRASE sequence: a comparison with TSE sequences

    Directory of Open Access Journals (Sweden)

    Viviane Vieira Francisco

    2005-09-01

    ência semelhante e geralmente sem interferência na avaliação das imagens.OBJECTIVE: To determine the overall frequency of artifacts per type and grade using the GRASE sequence in abdominal magnetic resonance; to compare GRASE sequences with two previously selected TSE sequences as well as sequences with best signal-noise ratio and lower incidence of artifacts. MATERIALS AND METHODS: A prospective self-paired study was carried out in 86 patients submitted to upper abdominal magnetic resonance using a GRASE sequence obtained upon respiratory triggered and fat suppression and six TSE T2-weighted sequences. Among the six TSE sequences, those bearing the best signal-noise ratio and lower number of artifacts were previously selected, which consisted of those performed with fat suppression and respiratory triggering: one using a conventional body coil (sequence 1 and a second sequence using a synergy coil (sequence 2. Image analysis was carried out by two observers upon consensus regarding the presence, grade and type of artifact thereon. Subsequently, data were statistically analyzed using the Friedman test and chi-square. RESULTS: The absolute frequency of artifacts in all sequences was 65.02%. Most common artifacts in the three sequences analyzed were breathing (30% and pulsation (33% artifacts. Only in 3% of the cases artifacts interfered with the analysis of the images. The frequency of artifacts in the different sequences was: GRASE, 67.2%; TSE sequence 1, 62.2%; TSE sequence 2, 65.5%. There was no significant statistical difference between artifact frequency seen with GRASE and TSE sequences (p = 0.845; NS. CONCLUSION: GRASE and TSE T2-weighted, respiratory triggered, fat suppressed sequences often produce artifacts, notwithstanding the coil, although, with similar frequency and generally without interfering with the evaluation of the images.

  19. Diversity of antisense and other non-coding RNAs in Archaea revealed by comparative small RNA sequencing in four Pyrobaculum species

    Directory of Open Access Journals (Sweden)

    David L Bernick

    2012-07-01

    Full Text Available A great diversity of small, non-coding RNA molecules with roles in gene regulation and RNA processing have been intensely studied in eukaryotic and bacterial model organisms, yet our knowledge of possible parallel roles for small RNAs in archaea is limited. We employed RNA-seq to identify novel small RNA across multiple species of the hyperthermophilic genus Pyrobaculum, known for unusual RNA gene characteristics. By comparing transcriptional data collected in parallel among four species, we were able to identify conserved RNA genes fitting into known and novel families. Among our findings, we highlight three novel cis-antisense small RNAs encoded opposite to key regulatory (ferric uptake regulator, metabolic (triose-phosphate isomerase, and core transcriptional apparatus genes (transcription factor B. We also found a large increase in the number of conserved C/D box small RNA genes over what had been previously recognized; many of these genes are encoded antisense to protein coding genes. The conserved opposition to orthologous genes across the Pyrobaculum genus suggests similarities to other cis-antisense regulatory systems. Furthermore, the genus-specific nature of these small RNAs indicates they are relatively recent, stable adaptations.

  20. Comparative study of single-nucleotide polymorphism array and next generation sequencing based strategies on triploid identification in preimplantation genetic diagnosis and screen.

    Science.gov (United States)

    Xu, Jiawei; Niu, Wenbin; Peng, Zhaofeng; Bao, Xiao; Zhang, Meixiang; Wang, Linlin; Du, Linqing; Zhang, Nan; Sun, Yingpu

    2016-12-06

    Triploidy occurred about 2-3% in human pregnancies and contributed to approximately 15% of chromosomally caused human early miscarriage. It is essential for preimplantation genetic diagnosis and screen to distinct triploidy sensitively. Here, we performed comparative investigations between MALBAC-NGS and MDA-SNP array sensitivity on triploidy detection. Self-correction and reference-correction algorism were used to analyze the NGS data. We identified 5 triploid embryos in 1198 embryos of 218 PGD and PGS cycles using MDA-SNP array, the rate of tripoidy was 4.17‰ in PGS and PGD patients. Our results indicated that the MDA-SNP array was sensitive to digyny and diandry triploidy, MALBAC-NGS combined with self and reference genome correction strategies analyze were not sensitive to detect triploidy. Our study demonstrated that triploidy occurred at 4.17‰ in PGD and PGS, MDA-SNP array could successfully identify triploidy in PGD and PGS and genomic DNA. MALBAC-NGS combined with self and reference genome correction strategies were not sensitive to triploidy.

  1. Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image (T2 and FLAIR) Sequence

    International Nuclear Information System (INIS)

    Oh, Jong Kap; Im, Jung Yeol

    2009-01-01

    Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in T 2 -DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  2. HIV Sequence Compendium 2015

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Brian Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leitner, Thomas Kenneth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Apetrei, Cristian [Univ. of Pittsburgh, PA (United States); Hahn, Beatrice [Univ. of Pennsylvania, Philadelphia, PA (United States); Mizrachi, Ilene [National Center for Biotechnology Information, Bethesda, MD (United States); Mullins, James [Univ. of Washington, Seattle, WA (United States); Rambaut, Andrew [Univ. of Edinburgh, Scotland (United Kingdom); Wolinsky, Steven [Northwestern Univ., Evanston, IL (United States); Korber, Bette Tina Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-05

    This compendium is an annual printed summary of the data contained in the HIV sequence database. We try to present a judicious selection of the data in such a way that it is of maximum utility to HIV researchers. Each of the alignments attempts to display the genetic variability within the different species, groups and subtypes of the virus. This compendium contains sequences published before January 1, 2015. Hence, though it is published in 2015 and called the 2015 Compendium, its contents correspond to the 2014 curated alignments on our website. The number of sequences in the HIV database is still increasing. In total, at the end of 2014, there were 624,121 sequences in the HIV Sequence Database, an increase of 7% since the previous year. This is the first year that the number of new sequences added to the database has decreased compared to the previous year. The number of near complete genomes (>7000 nucleotides) increased to 5834 by end of 2014. However, as in previous years, the compendium alignments contain only a fraction of these. A more complete version of all alignments is available on our website, http://www.hiv.lanl.gov/ content/sequence/NEWALIGN/align.html As always, we are open to complaints and suggestions for improvement. Inquiries and comments regarding the compendium should be addressed to seq-info@lanl.gov.

  3. Mapping sequences by parts

    Directory of Open Access Journals (Sweden)

    Guziolowski Carito

    2007-09-01

    Full Text Available Abstract Background: We present the N-map method, a pairwise and asymmetrical approach which allows us to compare sequences by taking into account evolutionary events that produce shuffled, reversed or repeated elements. Basically, the optimal N-map of a sequence s over a sequence t is the best way of partitioning the first sequence into N parts and placing them, possibly complementary reversed, over the second sequence in order to maximize the sum of their gapless alignment scores. Results: We introduce an algorithm computing an optimal N-map with time complexity O (|s| × |t| × N using O (|s| × |t| × N memory space. Among all the numbers of parts taken in a reasonable range, we select the value N for which the optimal N-map has the most significant score. To evaluate this significance, we study the empirical distributions of the scores of optimal N-maps and show that they can be approximated by normal distributions with a reasonable accuracy. We test the functionality of the approach over random sequences on which we apply artificial evolutionary events. Practical Application: The method is illustrated with four case studies of pairs of sequences involving non-standard evolutionary events.

  4. A comparative study of mutation screening of sarcomeric genes (MYBPC3, MYH7, TNNT2 using single gene approach versus targeted gene panel next generation sequencing in a cohort of HCM patients in Egypt

    Directory of Open Access Journals (Sweden)

    Heba Sh. Kassem

    2017-10-01

    Full Text Available Background: NGS enables simultaneous sequencing of large numbers of associated genes in genetic heterogeneous disorders, in a more rapid and cost-effective manner than traditional technologies. However there have been limited direct comparisons between NGS and more established technologies to assess the sensitivity and false negative rates of this new approach. The scope of the present manuscript is to compare variants detected in MYBPC3, MYH7 and TNNT2 genes using the stepwise dHPLC/Sanger versus targeted NGS. Methods: In this study, we have analysed a group of 150 samples of patients from the Bibliotheca Alexandrina-Aswan Heart Centre National HCM program. The genetic testing was simultaneously undertaken by high throughput denaturing high-performance liquid chromatography (dHPLC followed by Sanger based sequencing and targeted next generation deep sequencing using panel of inherited cardiac genes (ICC. The panel included over 100 genes including the 3 sarcomeric genes. Analysis of the sequencing data of the 3 genes was undertaken in a double blinded strategy. Results: NGS analysis detected all pathogenic and likely pathogenic variants identified by dHPLC (50 in total, some samples had double hits. There was a 0% false negative rate for NGS based analysis. Nineteen variants were missed by dHPLC and detected by NGS, thus increasing the diagnostic yield in this co- analysed cohort from 22.0% (33/150 to 31.3% (47/150.Of interest to note that the mutation spectrum in this Egyptian HCM population revealed a high rate of homozygosity in MYBPC3 and MYH7 genes in comparison to other population studies (6/150, 4%. None of the homozygous samples were detected by dHPLC analysis. Conclusion: NGS provides a useful and rapid tool to allow panoramic screening of several genes simultaneously with a high sensitivity rate amongst genes of known etiologic role allowing high throughput analysis of HCM patients and relevant control series in a less characterised

  5. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  6. Comparative genomics of an IncA/C multidrug resistance plasmid from Escherichia coli and Klebsiella isolates from intensive care unit patients and the utility of whole-genome sequencing in health care settings.

    Science.gov (United States)

    Hazen, Tracy H; Zhao, LiCheng; Boutin, Mallory A; Stancil, Angela; Robinson, Gwen; Harris, Anthony D; Rasko, David A; Johnson, J Kristie

    2014-08-01

    The IncA/C plasmids have been implicated for their role in the dissemination of β-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. A bla(FOX-5) gene was detected in 14 Escherichia coli and 16 Klebsiella isolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC β-lactamase upon admission to the ICU, suggesting that the AmpC β-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of five E. coli isolates and six Klebsiella isolates containing bla(FOX-5) were selected for sequencing based on their plasmid profiles. An ∼ 167-kb IncA/C plasmid encoding the FOX-5 β-lactamase, a CARB-2 β-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 β-lactamase relative to the whole-genome diversity of 11 E. coli and Klebsiella isolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Apical extrusion of debris during the preparation of oval root canals: a comparative study between a full-sequence SAF system and a rotary file system supplemented by XP-endo finisher file.

    Science.gov (United States)

    Kfir, Anda; Moza-Levi, Rotem; Herteanu, Moran; Weissman, Amir; Wigler, Ronald

    2018-03-01

    The purpose of this study was to assess the amount of apically extruded debris during the preparation of oval canals with either a rotary file system supplemented by the XP-endo Finisher file or a full-sequence self-adjusting file (SAF) system. Sixty mandibular incisors were randomly assigned to two groups: group A: stage 1-glide path preparation with Pre-SAF instruments. Stage 2-cleaning and shaping with SAF. Group B: stage 1-glide path preparation with ProGlider file. Stage 2-cleaning and shaping with ProTaper Next system. Stage 3-Final cleaning with XP-endo Finisher file. The debris extruded during each of the stages was collected, and the debris weights were compared between the groups and between the stages within the groups using t tests with a significance level set at P file followed by XP-endo Finisher file extruded significantly more debris than a full-sequence SAF system. Each stage, in either procedure, had its own contribution to the extrusion of debris. Final preparation with XP-endo Finisher file contributes to the total amount of extruded debris, but the clinical relevance of the relative difference in the amount of apically extruded debris remains unclear.

  8. Human papillomavirus detection using the Abbott RealTime high-risk HPV tests compared with conventional nested PCR coupled to high-throughput sequencing of amplification products in cervical smear specimens from a Gabonese female population.

    Science.gov (United States)

    Moussavou-Boundzanga, Pamela; Koumakpayi, Ismaël Hervé; Labouba, Ingrid; Leroy, Eric M; Belembaogo, Ernest; Berthet, Nicolas

    2017-12-21

    Cervical cancer is the fourth most common malignancy in women worldwide. However, screening with human papillomavirus (HPV) molecular tests holds promise for reducing cervical cancer incidence and mortality in low- and middle-income countries. The performance of the Abbott RealTime High-Risk HPV test (AbRT) was evaluated in 83 cervical smear specimens and compared with a conventional nested PCR coupled to high-throughput sequencing (HTS) to identify the amplicons. The AbRT assay detected at least one HPV genotype in 44.57% of women regardless of the grade of cervical abnormalities. Except for one case, good concordance was observed for the genotypes detected with the AbRT assay in the high-risk HPV category determined with HTS of the amplicon generated by conventional nested PCR. The AbRT test is an easy and reliable molecular tool and was as sensitive as conventional nested PCR in cervical smear specimens for detection HPVs associated with high-grade lesions. Moreover, sequencing amplicons using an HTS approach effectively identified the genotype of the hrHPV identified with the AbRT test.

  9. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal

    2011-08-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  10. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal; Salama, Khaled N.

    2011-01-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the 'Needleman-Wunsch' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  11. Fast global sequence alignment technique

    KAUST Repository

    Bonny, Mohamed Talal

    2011-11-01

    Bioinformatics database is growing exponentially in size. Processing these large amount of data may take hours of time even if super computers are used. One of the most important processing tool in Bioinformatics is sequence alignment. We introduce fast alignment algorithm, called \\'Alignment By Scanning\\' (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the wellknown sequence alignment algorithms, the \\'GAP\\' (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 51% enhancement in alignment score when it is compared with the GAP Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  12. Method and apparatus for biological sequence comparison

    Science.gov (United States)

    Marr, T.G.; Chang, W.I.

    1997-12-23

    A method and apparatus are disclosed for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence. 5 figs.

  13. Identification and mapping of conserved ortholog set(COS) II sequences of cacao and their conversion to SNP markers for marker-assisted selection in Theobroma cocoa and comparative genomics studies

    Science.gov (United States)

    Theobroma cacao is a tree cultivated in the tropics around the world for its seeds that are the source of both chocolate and cocoa butter. The cacao genome sequencing project initiated as a collaboration between USDA, Mars, Inc. and IBM has generated a great deal of transcriptome and genome sequenc...

  14. Universal sequence map (USM of arbitrary discrete sequences

    Directory of Open Access Journals (Sweden)

    Almeida Jonas S

    2002-02-01

    Full Text Available Abstract Background For over a decade the idea of representing biological sequences in a continuous coordinate space has maintained its appeal but not been fully realized. The basic idea is that any sequence of symbols may define trajectories in the continuous space conserving all its statistical properties. Ideally, such a representation would allow scale independent sequence analysis – without the context of fixed memory length. A simple example would consist on being able to infer the homology between two sequences solely by comparing the coordinates of any two homologous units. Results We have successfully identified such an iterative function for bijective mappingψ of discrete sequences into objects of continuous state space that enable scale-independent sequence analysis. The technique, named Universal Sequence Mapping (USM, is applicable to sequences with an arbitrary length and arbitrary number of unique units and generates a representation where map distance estimates sequence similarity. The novel USM procedure is based on earlier work by these and other authors on the properties of Chaos Game Representation (CGR. The latter enables the representation of 4 unit type sequences (like DNA as an order free Markov Chain transition table. The properties of USM are illustrated with test data and can be verified for other data by using the accompanying web-based tool:http://bioinformatics.musc.edu/~jonas/usm/. Conclusions USM is shown to enable a statistical mechanics approach to sequence analysis. The scale independent representation frees sequence analysis from the need to assume a memory length in the investigation of syntactic rules.

  15. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    Energy Technology Data Exchange (ETDEWEB)

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by

  16. Complete genome sequence and comparative genomic analysis of Mycobacterium massiliense JCM 15300 in the Mycobacterium abscessus group reveal a conserved genomic island MmGI-1 related to putative lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sekizuka

    Full Text Available Mycobacterium abscessus group subsp., such as M. massiliense, M. abscessus sensu stricto and M. bolletii, are an environmental organism found in soil, water and other ecological niches, and have been isolated from respiratory tract infection, skin and soft tissue infection, postoperative infection of cosmetic surgery. To determine the unique genetic feature of M. massiliense, we sequenced the complete genome of M. massiliense type strain JCM 15300 (corresponding to CCUG 48898. Comparative genomic analysis was performed among Mycobacterium spp. and among M. abscessus group subspp., showing that additional ß-oxidation-related genes and, notably, the mammalian cell entry (mce operon were located on a genomic island, M. massiliense Genomic Island 1 (MmGI-1, in M. massiliense. In addition, putative anaerobic respiration system-related genes and additional mycolic acid cyclopropane synthetase-related genes were found uniquely in M. massiliense. Japanese isolates of M. massiliense also frequently possess the MmGI-1 (14/44, approximately 32% and three unique conserved regions (26/44; approximately 60%, 34/44; approximately 77% and 40/44; approximately 91%, as well as isolates of other countries (Malaysia, France, United Kingdom and United States. The well-conserved genomic island MmGI-1 may play an important role in high growth potential with additional lipid metabolism, extra factors for survival in the environment or synthesis of complex membrane-associated lipids. ORFs on MmGI-1 showed similarities to ORFs of phylogenetically distant M. avium complex (MAC, suggesting that horizontal gene transfer or genetic recombination events might have occurred within MmGI-1 among M. massiliense and MAC.

  17. Comparative bioavailability and tolerability of a single 20-mg dose of two fluoxetine hydrochloride dispersible tablet formulations in fasting, healthy Chinese male volunteers: an open-label, randomized-sequence, two-period crossover study.

    Science.gov (United States)

    Shi, Shaojun; Liu, Yani; Wu, Jianhong; Li, Zhongfang; Zhao, Yan; Zhong, Dafang; Zeng, Fandian

    2010-10-01

    The proprietary formulation of fluoxetine hydrochloride is an antidepressant of the selective serotonin reuptake inhibitor class. Pharmacokinetic studies investigating the bioequivalence of generic and branded formulations are needed to market generic fluoxetine in China. The aim of this study was to compare the bioavailability and tolerability of the proposed generic formulation with the established reference formulation of fluoxetine hydrochloride 20 mg in a fasting, healthy Chinese male population. This 10-week, open-label, randomized-sequence, single-dose, 2-period crossover study was conducted in healthy native Han Chinese male volunteers. Eligible subjects were randomly assigned in a 1:1 ratio to receive a single 20-mg dose of the test or reference formulation, followed by a 35-day washout period and administration of the alternate formulation. Doses were administered after a 12-hour overnight fast. For analysis of pharmacokinetic properties (including C(max), T(max), AUC(0-t), AUC(0-∞), and t(½)), blood samples were obtained over a 672-hour period after dosing. Plasma concentrations of fluoxetine and its active metabolite, norfluoxetine, were analyzed using a validated LC-MS/MS method. The formulations were to be considered bioequivalent if the ln-transformed ratios (test/ reference) of C(max) and AUC were within the predetermined bioequivalence range of 80% to 125%, as established by the US Food and Drug Administration, and if the P values were fasting, healthy Chinese male volunteers. Both formulations appeared to be well tolerated. Copyright © 2010 Excerpta Medica Inc. All rights reserved.

  18. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  19. Static multiplicities in heterogeneous azeotropic distillation sequences

    DEFF Research Database (Denmark)

    Esbjerg, Klavs; Andersen, Torben Ravn; Jørgensen, Sten Bay

    1998-01-01

    In this paper the results of a bifurcation analysis on heterogeneous azeotropic distillation sequences are given. Two sequences suitable for ethanol dehydration are compared: The 'direct' and the 'indirect' sequence. It is shown, that the two sequences, despite their similarities, exhibit very...... different static behavior. The method of Petlyuk and Avet'yan (1971), Bekiaris et al. (1993), which assumes infinite reflux and infinite number of stages, is extended to and applied on heterogeneous azeotropic distillation sequences. The predictions are substantiated through simulations. The static sequence...

  20. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.

    Science.gov (United States)

    Pfeiffer, Friedhelm; Zamora-Lagos, Maria-Antonia; Blettinger, Martin; Yeroslaviz, Assa; Dahl, Andreas; Gruber, Stephan; Habermann, Bianca H

    2018-01-05

    Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental.

  1. Multimodal sequence learning.

    Science.gov (United States)

    Kemény, Ferenc; Meier, Beat

    2016-02-01

    While sequence learning research models complex phenomena, previous studies have mostly focused on unimodal sequences. The goal of the current experiment is to put implicit sequence learning into a multimodal context: to test whether it can operate across different modalities. We used the Task Sequence Learning paradigm to test whether sequence learning varies across modalities, and whether participants are able to learn multimodal sequences. Our results show that implicit sequence learning is very similar regardless of the source modality. However, the presence of correlated task and response sequences was required for learning to take place. The experiment provides new evidence for implicit sequence learning of abstract conceptual representations. In general, the results suggest that correlated sequences are necessary for implicit sequence learning to occur. Moreover, they show that elements from different modalities can be automatically integrated into one unitary multimodal sequence. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Sequence Read Archive (SRA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Sequence Read Archive (SRA) stores raw sequencing data from the next generation of sequencing platforms including Roche 454 GS System®, Illumina Genome...

  3. Dog Y chromosomal DNA sequence: identification, sequencing and SNP discovery

    Directory of Open Access Journals (Sweden)

    Kirkness Ewen

    2006-10-01

    Full Text Available Abstract Background Population genetic studies of dogs have so far mainly been based on analysis of mitochondrial DNA, describing only the history of female dogs. To get a picture of the male history, as well as a second independent marker, there is a need for studies of biallelic Y-chromosome polymorphisms. However, there are no biallelic polymorphisms reported, and only 3200 bp of non-repetitive dog Y-chromosome sequence deposited in GenBank, necessitating the identification of dog Y chromosome sequence and the search for polymorphisms therein. The genome has been only partially sequenced for one male dog, disallowing mapping of the sequence into specific chromosomes. However, by comparing the male genome sequence to the complete female dog genome sequence, candidate Y-chromosome sequence may be identified by exclusion. Results The male dog genome sequence was analysed by Blast search against the human genome to identify sequences with a best match to the human Y chromosome and to the female dog genome to identify those absent in the female genome. Candidate sequences were then tested for male specificity by PCR of five male and five female dogs. 32 sequences from the male genome, with a total length of 24 kbp, were identified as male specific, based on a match to the human Y chromosome, absence in the female dog genome and male specific PCR results. 14437 bp were then sequenced for 10 male dogs originating from Europe, Southwest Asia, Siberia, East Asia, Africa and America. Nine haplotypes were found, which were defined by 14 substitutions. The genetic distance between the haplotypes indicates that they originate from at least five wolf haplotypes. There was no obvious trend in the geographic distribution of the haplotypes. Conclusion We have identified 24159 bp of dog Y-chromosome sequence to be used for population genetic studies. We sequenced 14437 bp in a worldwide collection of dogs, identifying 14 SNPs for future SNP analyses, and

  4. Genome sequence analysis of five Canadian isolates of strawberry mottle virus reveals extensive intra-species diversity and a longer RNA2 with increased coding capacity compared to a previously characterized European isolate.

    Science.gov (United States)

    Bhagwat, Basdeo; Dickison, Virginia; Ding, Xinlun; Walker, Melanie; Bernardy, Michael; Bouthillier, Michel; Creelman, Alexa; DeYoung, Robyn; Li, Yinzi; Nie, Xianzhou; Wang, Aiming; Xiang, Yu; Sanfaçon, Hélène

    2016-06-01

    In this study, we report the genome sequence of five isolates of strawberry mottle virus (family Secoviridae, order Picornavirales) from strawberry field samples with decline symptoms collected in Eastern Canada. The Canadian isolates differed from the previously characterized European isolate 1134 in that they had a longer RNA2, resulting in a 239-amino-acid extension of the C-terminal region of the polyprotein. Sequence analysis suggests that reassortment and recombination occurred among the isolates. Phylogenetic analysis revealed that the Canadian isolates are diverse, grouping in two separate branches along with isolates from Europe and the Americas.

  5. Memory and learning with rapid audiovisual sequences

    Science.gov (United States)

    Keller, Arielle S.; Sekuler, Robert

    2015-01-01

    We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed. PMID:26575193

  6. Memory and learning with rapid audiovisual sequences.

    Science.gov (United States)

    Keller, Arielle S; Sekuler, Robert

    2015-01-01

    We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed.

  7. Multineuronal Spike Sequences Repeat with Millisecond Precision

    Directory of Open Access Journals (Sweden)

    Koki eMatsumoto

    2013-06-01

    Full Text Available Cortical microcircuits are nonrandomly wired by neurons. As a natural consequence, spikes emitted by microcircuits are also nonrandomly patterned in time and space. One of the prominent spike organizations is a repetition of fixed patterns of spike series across multiple neurons. However, several questions remain unsolved, including how precisely spike sequences repeat, how the sequences are spatially organized, how many neurons participate in sequences, and how different sequences are functionally linked. To address these questions, we monitored spontaneous spikes of hippocampal CA3 neurons ex vivo using a high-speed functional multineuron calcium imaging technique that allowed us to monitor spikes with millisecond resolution and to record the location of spiking and nonspiking neurons. Multineuronal spike sequences were overrepresented in spontaneous activity compared to the statistical chance level. Approximately 75% of neurons participated in at least one sequence during our observation period. The participants were sparsely dispersed and did not show specific spatial organization. The number of sequences relative to the chance level decreased when larger time frames were used to detect sequences. Thus, sequences were precise at the millisecond level. Sequences often shared common spikes with other sequences; parts of sequences were subsequently relayed by following sequences, generating complex chains of multiple sequences.

  8. Comparative genomics of the pIPO2/pSB102 family of environmental plasmids : sequence, evolution, and ecology of pTer331 isolated from Collimonas fungivorans Ter331

    NARCIS (Netherlands)

    Mela, Francesca; Fritsche, Kathrin; Boersma, Hidde; van Elsas, Jan D.; Bartels, Daniela; Meyer, Folker; de Boer, Wietse; van Veen, Johannes A.; Leveau, Johan H. J.

    2008-01-01

    Plasmid pTer331 from the bacterium Collimonas fungivorans Ter331 is a new member of the pIPO2/pSB102 family of environmental plasmids. The 40 457-bp sequence of pTer331 codes for 44 putative ORFs, most of which represent genes involved in replication, partitioning and transfer of the plasmid. We

  9. Comparative analysis of complete genome sequences of European subtype tick-borne encephalitis virus strains isolated from Ixodes persulcatus ticks, long-tailed ground squirrel (Spermophilus undulatus), and human blood in the Asian part of Russia

    Czech Academy of Sciences Publication Activity Database

    Demina, T. V.; Tkachev, S. E.; Kozlova, I. V.; Doroshchenko, E. K.; Lisak, O. V.; Suntsova, O. V.; Verkhozina, M. M.; Dzhioev, Y. P.; Paramonov, A. I.; Tikunov, A. Y.; Tikunova, N. V.; Zlobin, V. I.; Růžek, Daniel

    2017-01-01

    Roč. 8, č. 4 (2017), s. 547-553 ISSN 1877-959X Institutional support: RVO:60077344 Keywords : TBEV * complete genome * European subtype * Western Siberia * Eastern Siberia * nucleotide * Amino acid sequence Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology OBOR OECD: Infectious Diseases Impact factor: 3.230, year: 2016

  10. Comparative analysis of the full genome sequence of European bat lyssavirus type 1 and type 2 with other lyssaviruses and evidence for a conserved transcription termination and polyadenylation motif in the G-L 3' non-translated region.

    Science.gov (United States)

    Marston, D A; McElhinney, L M; Johnson, N; Müller, T; Conzelmann, K K; Tordo, N; Fooks, A R

    2007-04-01

    We report the first full-length genomic sequences for European bat lyssavirus type-1 (EBLV-1) and type-2 (EBLV-2). The EBLV-1 genomic sequence was derived from a virus isolated from a serotine bat in Hamburg, Germany, in 1968 and the EBLV-2 sequence was derived from a virus isolate from a human case of rabies that occurred in Scotland in 2002. A long-distance PCR strategy was used to amplify the open reading frames (ORFs), followed by standard and modified RACE (rapid amplification of cDNA ends) techniques to amplify the 3' and 5' ends. The lengths of each complete viral genome for EBLV-1 and EBLV-2 were 11 966 and 11 930 base pairs, respectively, and follow the standard rhabdovirus genome organization of five viral proteins. Comparison with other lyssavirus sequences demonstrates variation in degrees of homology, with the genomic termini showing a high degree of complementarity. The nucleoprotein was the most conserved, both intra- and intergenotypically, followed by the polymerase (L), matrix and glyco- proteins, with the phosphoprotein being the most variable. In addition, we have shown that the two EBLVs utilize a conserved transcription termination and polyadenylation (TTP) motif, approximately 50 nt upstream of the L gene start codon. All available lyssavirus sequences to date, with the exception of Pasteur virus (PV) and PV-derived isolates, use the second TTP site. This observation may explain differences in pathogenicity between lyssavirus strains, dependent on the length of the untranslated region, which might affect transcriptional activity and RNA stability.

  11. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  12. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  13. Comparative sequence analysis of the complete set of 40S ribosomal proteins in the Senegalese sole (Solea senegalensis Kaup) and Atlantic halibut (Hippoglossus hippoglossus L.) (Teleostei: Pleuronectiformes): phylogeny and tissue- and development-specific expression.

    Science.gov (United States)

    Manchado, Manuel; Infante, Carlos; Asensio, Esther; Cañavate, Jose Pedro; Douglas, Susan E

    2007-07-03

    Ribosomal proteins (RPs) are key components of ribosomes, the cellular organelle responsible for protein biosynthesis in cells. Their levels can vary as a function of organism growth and development; however, some RPs have been associated with other cellular processes or extraribosomal functions. Their high representation in cDNA libraries has resulted in the increase of RP sequences available from different organisms and their proposal as appropriate molecular markers for phylogenetic analysis. The development of large-scale genomics of Senegalese sole (Solea senegalensis) and Atlantic halibut (Hippoglossus hippoglossus), two commercially important flatfish species, has made possible the identification and systematic analysis of the complete set of RP sequences for the small (40S) ribosome subunit. Amino acid sequence comparisons showed a high similarity both between these two flatfish species and with respect to other fish and human. EST analysis revealed the existence of two and four RPS27 genes in Senegalese sole and Atlantic halibut, respectively. Phylogenetic analysis clustered RPS27 in two separate clades with their fish and mammalian counterparts. Steady-state transcript levels for eight RPs (RPS2, RPS3a, RPS15, RPS27-1, RPS27-2, RPS27a, RPS28, and RPS29) in sole were quantitated during larval development and in tissues, using a real-time PCR approach. All eight RPs exhibited different expression patterns in tissues with the lowest levels in brain. On the contrary, RP transcripts increased co-ordinately after first larval feeding reducing progressively during the metamorphic process. The genomic resources and knowledge developed in this survey will provide new insights into the evolution of Pleuronectiformes. Expression data will contribute to a better understanding of RP functions in fish, especially the mechanisms that govern growth and development in larvae, with implications in aquaculture.

  14. Comparative sequence analysis of the complete set of 40S ribosomal proteins in the Senegalese sole (Solea senegalensis Kaup and Atlantic halibut (Hippoglossus hippoglossus L. (Teleostei: Pleuronectiformes: phylogeny and tissue- and development-specific expression

    Directory of Open Access Journals (Sweden)

    Cañavate Jose

    2007-07-01

    Full Text Available Abstract Background Ribosomal proteins (RPs are key components of ribosomes, the cellular organelle responsible for protein biosynthesis in cells. Their levels can vary as a function of organism growth and development; however, some RPs have been associated with other cellular processes or extraribosomal functions. Their high representation in cDNA libraries has resulted in the increase of RP sequences available from different organisms and their proposal as appropriate molecular markers for phylogenetic analysis. Results The development of large-scale genomics of Senegalese sole (Solea senegalensis and Atlantic halibut (Hippoglossus hippoglossus, two commercially important flatfish species, has made possible the identification and systematic analysis of the complete set of RP sequences for the small (40S ribosome subunit. Amino acid sequence comparisons showed a high similarity both between these two flatfish species and with respect to other fish and human. EST analysis revealed the existence of two and four RPS27 genes in Senegalese sole and Atlantic halibut, respectively. Phylogenetic analysis clustered RPS27 in two separate clades with their fish and mammalian counterparts. Steady-state transcript levels for eight RPs (RPS2, RPS3a, RPS15, RPS27-1, RPS27-2, RPS27a, RPS28, and RPS29 in sole were quantitated during larval development and in tissues, using a real-time PCR approach. All eight RPs exhibited different expression patterns in tissues with the lowest levels in brain. On the contrary, RP transcripts increased co-ordinately after first larval feeding reducing progressively during the metamorphic process. Conclusion The genomic resources and knowledge developed in this survey will provide new insights into the evolution of Pleuronectiformes. Expression data will contribute to a better understanding of RP functions in fish, especially the mechanisms that govern growth and development in larvae, with implications in aquaculture.

  15. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko; Tanaka, Tsuyoshi; Ohyanagi, Hajime; Hsing, Yue-Ie C.; Itoh, Takeshi

    2018-01-01

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  16. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko

    2018-02-14

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  17. Analysis of Pteridium ribosomal RNA sequences by rapid direct sequencing.

    Science.gov (United States)

    Tan, M K

    1991-08-01

    A total of 864 bases from 5 regions interspersed in the 18S and 26S rRNA molecules from various clones of Pteridium covering the general geographical distribution of the genus was analysed using a rapid rRNA sequencing technique. No base difference has been detected amongst the three major lineages, two of which apparently separated before the breakup of the ancient supercontinent, Pangaea. These regions of the rRNA sequences have thus been conserved for at least 160 million years and are here compared with other eukaryotic, especially plant rRNAs.

  18. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  19. Anomaly Detection in Sequences

    Data.gov (United States)

    National Aeronautics and Space Administration — We present a set of novel algorithms which we call sequenceMiner, that detect and characterize anomalies in large sets of high-dimensional symbol sequences that...

  20. DNA sequencing conference, 2

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, R.M. [Georgetown Univ., Kennedy Inst. of Ethics, Washington, DC (United States); Venter, J.C. [National Inst. of Neurological Disorders and Strokes, Bethesda, MD (United States); Gilbert, W. [Harvard Univ., Cambridge, MA (United States); Mulligan, J. [Stanford Univ., CA (United States); Mansfield, B.K. [Oak Ridge National Lab., TN (United States)

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  1. sequenceMiner algorithm

    Data.gov (United States)

    National Aeronautics and Space Administration — Detecting and describing anomalies in large repositories of discrete symbol sequences. sequenceMiner has been open-sourced! Download the file below to try it out....

  2. Locomotor sequence learning in visually guided walking

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-01-01

    walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 years, N = 20) could learn a specific sequence...... of step lengths over 300 training steps. Younger children (age 6-10 years, N = 8) have lower baseline performance, but their magnitude and rate of sequence learning was the same compared to older children (11-16 years, N = 10) and healthy adults. In addition, learning capacity may be more limited...... to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence non-specific learning during...

  3. The Sequencing of Basic Chemistry Topics by Physical Science Teachers

    Science.gov (United States)

    Sibanda, Doras; Hobden, Paul

    2016-01-01

    The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…

  4. Deep-sequencing protocols influence the results obtained in small-RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Joern Toedling

    Full Text Available Second-generation sequencing is a powerful method for identifying and quantifying small-RNA components of cells. However, little attention has been paid to the effects of the choice of sequencing platform and library preparation protocol on the results obtained. We present a thorough comparison of small-RNA sequencing libraries generated from the same embryonic stem cell lines, using different sequencing platforms, which represent the three major second-generation sequencing technologies, and protocols. We have analysed and compared the expression of microRNAs, as well as populations of small RNAs derived from repetitive elements. Despite the fact that different libraries display a good correlation between sequencing platforms, qualitative and quantitative variations in the results were found, depending on the protocol used. Thus, when comparing libraries from different biological samples, it is strongly recommended to use the same sequencing platform and protocol in order to ensure the biological relevance of the comparisons.

  5. Sequence Comparison: Close and Open problems

    NARCIS (Netherlands)

    Lenzini, Gabriele; Cerrai, P.; Freguglia, P.

    Comparing sequences is a very important activity both in computer science and in a many other areas as well. For example thank to text editors, everyone knows the particular instance of a sequence comparison problem knonw as ``string mathcing problem''. It consists in searching a given work

  6. Multiplexed microsatellite recovery using massively parallel sequencing

    Science.gov (United States)

    Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C.

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5M (USD).

  7. T2-weighted MR imaging of liver lesions: a prospective evaluation comparing turbo spin-echo, breath-hold turbo spin-echo and half-Fourier turbo spin-echo (HASTE) sequences; Estudio de lesiones hepaticas con imagenes de resonancia magnetica potenciadas en T2: evaluacion prospectiva comparando secuencias turbo eco del espin, turbo eco del espin con respiracion sostenida y half-Fourier turbo eco del espin (HASTE)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.; Villajos, M.; Oses, M. J.; Veintemillas, M.; Rue, M.; Puig, J.; Sentis, M. [Fundacion Parc Tauli. Sabadell (Spain)

    2000-07-01

    To compare turbo spin-echo (TSE), breath-hold TSE and half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences quantitatively and qualitatively in T2-weighted images of liver lesions. The authors evaluated prospectively 89 liver lesions in 73 patients using a 1.0-T magnetic resonance system to compare TSE, breath-hold TSE and HASTE sequences. The quantitative parameters were: lesion-to-liver contrast and lesion-to-liver contrast-to-noise ratio. The qualitative analysis was performed by two observers in consensus who examined four parameters: respiratory artifacts, lesion edge definition, intrahepatic vessel definition and image quality. Repeated measures analysis of variance was utilized to compare the quantitative variables and Friedman's nonparametric test for the qualitative parameters. In quantitative terms, the lesion-to-liver contrast was similar in TSE and breath-hold TSE sequences (2.45{+-}1.44 versus 2.60{+-}1.66), both of which were significantly better than the HASTE sequence (1.12{+-}0.72; p<0.001). The lesion-to-liver contrast-to-noise ratio was significantly higher in the TSE sequence (62.60{+-}46.40 versus 40.22{+-}25.35 versus 50.90{+-}32.10 for TSE, breath-hold TSE and HASTE sequences, respectively; p<0.001). In the qualitative comparisons, the HASTE sequence was significantly better than the TSE and breath-hold TSE sequences (p<0.001) in terms of artifacts and definition of lesion edge and intrahepatic vessels. Image quality was also significantly greater in the HASTE sequence (p<0.001). In quantitative terms, the TSE sequence is better than the breath-hold TSE and HASTE sequences, but there are no movement artifacts in the HASTE sequence, which is also significantly superior to TSE and breath-hold TSE sequences in qualitative terms and, thus, can be employed for T2-weighted images in liver studies. (Author) 17 refs.

  8. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

    Science.gov (United States)

    Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi

    2017-07-01

    PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.

  9. Sequences for Student Investigation

    Science.gov (United States)

    Barton, Jeffrey; Feil, David; Lartigue, David; Mullins, Bernadette

    2004-01-01

    We describe two classes of sequences that give rise to accessible problems for undergraduate research. These problems may be understood with virtually no prerequisites and are well suited for computer-aided investigation. The first sequence is a variation of one introduced by Stephen Wolfram in connection with his study of cellular automata. The…

  10. Sequence History Update Tool

    Science.gov (United States)

    Khanampompan, Teerapat; Gladden, Roy; Fisher, Forest; DelGuercio, Chris

    2008-01-01

    The Sequence History Update Tool performs Web-based sequence statistics archiving for Mars Reconnaissance Orbiter (MRO). Using a single UNIX command, the software takes advantage of sequencing conventions to automatically extract the needed statistics from multiple files. This information is then used to populate a PHP database, which is then seamlessly formatted into a dynamic Web page. This tool replaces a previous tedious and error-prone process of manually editing HTML code to construct a Web-based table. Because the tool manages all of the statistics gathering and file delivery to and from multiple data sources spread across multiple servers, there is also a considerable time and effort savings. With the use of The Sequence History Update Tool what previously took minutes is now done in less than 30 seconds, and now provides a more accurate archival record of the sequence commanding for MRO.

  11. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  12. FRESCO: Referential compression of highly similar sequences.

    Science.gov (United States)

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  13. Rapid and Accurate Sequencing of Enterovirus Genomes Using MinION Nanopore Sequencer.

    Science.gov (United States)

    Wang, Ji; Ke, Yue Hua; Zhang, Yong; Huang, Ke Qiang; Wang, Lei; Shen, Xin Xin; Dong, Xiao Ping; Xu, Wen Bo; Ma, Xue Jun

    2017-10-01

    Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  14. The Colliding Beams Sequencer

    International Nuclear Information System (INIS)

    Johnson, D.E.; Johnson, R.P.

    1989-01-01

    The Colliding Beam Sequencer (CBS) is a computer program used to operate the pbar-p Collider by synchronizing the applications programs and simulating the activities of the accelerator operators during filling and storage. The Sequencer acts as a meta-program, running otherwise stand alone applications programs, to do the set-up, beam transfers, acceleration, low beta turn on, and diagnostics for the transfers and storage. The Sequencer and its operational performance will be described along with its special features which include a periodic scheduler and command logger. 14 refs., 3 figs

  15. Contrast-enhanced MR imaging of metastatic brain tumor at 3 Tesla. Utility of T1-weighted SPACE compared with 2D spin echo and 3D gradient echo sequence

    International Nuclear Information System (INIS)

    Komada, Tomohiro; Naganawa, Shinji; Ogawa, Hiroshi

    2008-01-01

    We evaluated the newly developed whole-brain, isotropic, 3-dimensional turbo spin-echo imaging with variable flip angle echo train (SPACE) for contrast-enhanced T 1 -weighted imaging in detecting brain metastases at 3 tesla (T). Twenty-two patients with suspected brain metastases underwent postcontrast study with SPACE, magnetization-prepared rapid gradient-echo (MP-RAGE), and 2-dimensional T 1 -weighted spin echo (2D-SE) imaging at 3 T. We quantitatively compared SPACE, MP-RAGE, and 2D-SE images by using signal-to-noise ratios (SNRs) for gray matter (GM) and white matter (WM) and contrast-to-noise ratios (CNRs) for GM-to-WM, lesion-to-GM, and lesion-to-WM. Two blinded radiologists evaluated the detection of brain metastases by segment-by-segment analysis and continuously-distributed test. The CNR between GM and WM was significantly higher on MP-RAGE images than on SPACE images (P 1 -weighted imaging. (author)

  16. Gomphid DNA sequence data

    Data.gov (United States)

    U.S. Environmental Protection Agency — DNA sequence data for several genetic loci. This dataset is not publicly accessible because: It's already publicly available on GenBank. It can be accessed through...

  17. Cassini Mission Sequence Subsystem (MSS)

    Science.gov (United States)

    Alland, Robert

    2011-01-01

    This paper describes my work with the Cassini Mission Sequence Subsystem (MSS) team during the summer of 2011. It gives some background on the motivation for this project and describes the expected benefit to the Cassini program. It then introduces the two tasks that I worked on - an automatic system auditing tool and a series of corrections to the Cassini Sequence Generator (SEQ_GEN) - and the specific objectives these tasks were to accomplish. Next, it details the approach I took to meet these objectives and the results of this approach, followed by a discussion of how the outcome of the project compares with my initial expectations. The paper concludes with a summary of my experience working on this project, lists what the next steps are, and acknowledges the help of my Cassini colleagues.

  18. Magnetic resonance imaging of the cranial nerves in the posterior fossa: a comparative study of t2-weighted spin-echo sequences at 1.5 and 3.0 tesla.

    Science.gov (United States)

    Fischbach, F; Müller, M; Bruhn, H

    2008-04-01

    High-field magnetic resonance imaging (MRI) at 3.0 Tesla (T) is rapidly gaining clinical acceptance. Whether doubling of the field strength of 1.5T and the subsequent increase in signal-to-noise ratio (SNR) leads to a significant improvement of image quality is not automatically given. To evaluate the depiction of fine anatomic detail in the posterior fossa, focusing on brain nerves, on T2-weighted imaging, and to define the potential advantage of imaging at 3.0T versus 1.5T. In total, 10 brainstem nerve pairs of 12 volunteers were identified on T2-weighted MR images of 2- and 5-mm section thickness acquired at 1.5T and 3.0T. The MR images were compared for each subject at both field strengths by three independent readers who rated image quality according to depiction of anatomic detail and contrast by using a rating scale. In general, MR images at 3.0T were considered more conspicuous and less noisy than images at 1.5T. The SNR value measured was almost doubled. With respect to structural identification and contrast according to the rating scale, observer scores were significantly improved both for standard imaging with 5-mm sections and high-resolution imaging with 2-mm sections at 3.0T. Direct comparison revealed a significant increase for evaluated image quality criteria and the number of nerves detected. The comparison revealed a clear advantage in favor of T2-weighted MRI at 3.0T vs. 1.5T in depicting the roots and course of brain nerves in the posterior fossa.

  19. Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image (T{sub 2} and FLAIR) Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong Kap [Dept. of Radiology, Cheomdan Medical Center, Gwangju (Korea, Republic of); Im, Jung Yeol [Dept. of Digital Management Information Graduate School of Nambu Univesity, Gwangju (Korea, Republic of)

    2009-09-15

    Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in T{sub 2}-DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  20. Dynamic Sequence Assignment.

    Science.gov (United States)

    1983-12-01

    D-136 548 DYNAMIIC SEQUENCE ASSIGNMENT(U) ADVANCED INFORMATION AND 1/2 DECISION SYSTEMS MOUNTAIN YIELW CA C A 0 REILLY ET AL. UNCLSSIIED DEC 83 AI/DS...I ADVANCED INFORMATION & DECISION SYSTEMS Mountain View. CA 94040 84 u ,53 V,..’. Unclassified _____ SCURITY CLASSIFICATION OF THIS PAGE REPORT...reviews some important heuristic algorithms developed for fas- ter solution of the sequence assignment problem. 3.1. DINAMIC MOGRAMUNIG FORMULATION FOR

  1. HIV Sequence Compendium 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kuiken, Carla [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Foley, Brian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leitner, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Apetrei, Christian [Univ. of Pittsburgh, PA (United States); Hahn, Beatrice [Univ. of Alabama, Tuscaloosa, AL (United States); Mizrachi, Ilene [National Center for Biotechnology Information, Bethesda, MD (United States); Mullins, James [Univ. of Washington, Seattle, WA (United States); Rambaut, Andrew [Univ. of Edinburgh, Scotland (United Kingdom); Wolinsky, Steven [Northwestern Univ., Evanston, IL (United States); Korber, Bette [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-12-31

    This compendium is an annual printed summary of the data contained in the HIV sequence database. In these compendia we try to present a judicious selection of the data in such a way that it is of maximum utility to HIV researchers. Each of the alignments attempts to display the genetic variability within the different species, groups and subtypes of the virus. This compendium contains sequences published before January 1, 2010. Hence, though it is called the 2010 Compendium, its contents correspond to the 2009 curated alignments on our website. The number of sequences in the HIV database is still increasing exponentially. In total, at the time of printing, there were 339,306 sequences in the HIV Sequence Database, an increase of 45% since last year. The number of near complete genomes (>7000 nucleotides) increased to 2576 by end of 2009, reflecting a smaller increase than in previous years. However, as in previous years, the compendium alignments contain only a small fraction of these. Included in the alignments are a small number of sequences representing each of the subtypes and the more prevalent circulating recombinant forms (CRFs) such as 01 and 02, as well as a few outgroup sequences (group O and N and SIV-CPZ). Of the rarer CRFs we included one representative each. A more complete version of all alignments is available on our website, http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html. Reprints are available from our website in the form of both HTML and PDF files. As always, we are open to complaints and suggestions for improvement. Inquiries and comments regarding the compendium should be addressed to seq-info@lanl.gov.

  2. General LTE Sequence

    OpenAIRE

    Billal, Masum

    2015-01-01

    In this paper,we have characterized sequences which maintain the same property described in Lifting the Exponent Lemma. Lifting the Exponent Lemma is a very powerful tool in olympiad number theory and recently it has become very popular. We generalize it to all sequences that maintain a property like it i.e. if p^{\\alpha}||a_k and p^\\b{eta}||n, then p^{{\\alpha}+\\b{eta}}||a_{nk}.

  3. Identification of 10 882 porcine microsatellite sequences and virtual mapping of 4528 of these sequences

    DEFF Research Database (Denmark)

    Karlskov-Mortensen, Peter; Hu, Z.L.; Gorodkin, Jan

    2007-01-01

    the human genome (BLAST cut-off threshold = 1 x 10-5). All microsatellite sequences placed on the comparative map are accessible at http://www.animalgenome.org/QTLdb/pig.html . These sequences increase the number of identified microsatellites in the porcine genome by several orders of magnitude...

  4. Pairwise Sequence Alignment Library

    Energy Technology Data Exchange (ETDEWEB)

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  5. IDENTIFICATION OF AVIAN-SPECIFIC FECAL METAGENOMIC SEQUENCES USING GENOME FRAGMENT ENRICHMENTS

    Science.gov (United States)

    Sequence analysis of microbial genomes has provided biologists the opportunity to compare genetic differences between closely related microorganisms. While random sequencing has also been used to study natural microbial communities, metagenomic comparisons via sequencing analysis...

  6. Probabilistic Motor Sequence Yields Greater Offline and Less Online Learning than Fixed Sequence.

    Science.gov (United States)

    Du, Yue; Prashad, Shikha; Schoenbrun, Ilana; Clark, Jane E

    2016-01-01

    by concurrent online and offline learning. In addition, as the acquisition of a probabilistic sequence requires greater procedural memory compared to the acquisition of a fixed sequence, our results suggest that offline learning is more likely to take place in a procedural sequence learning task.

  7. Adaptive Processing for Sequence Alignment

    KAUST Repository

    Zidan, Mohammed A.; Bonny, Talal; Salama, Khaled N.

    2012-01-01

    Disclosed are various embodiments for adaptive processing for sequence alignment. In one embodiment, among others, a method includes obtaining a query sequence and a plurality of database sequences. A first portion of the plurality of database sequences is distributed to a central processing unit (CPU) and a second portion of the plurality of database sequences is distributed to a graphical processing unit (GPU) based upon a predetermined splitting ratio associated with the plurality of database sequences, where the database sequences of the first portion are shorter than the database sequences of the second portion. A first alignment score for the query sequence is determined with the CPU based upon the first portion of the plurality of database sequences and a second alignment score for the query sequence is determined with the GPU based upon the second portion of the plurality of database sequences.

  8. Adaptive Processing for Sequence Alignment

    KAUST Repository

    Zidan, Mohammed A.

    2012-01-26

    Disclosed are various embodiments for adaptive processing for sequence alignment. In one embodiment, among others, a method includes obtaining a query sequence and a plurality of database sequences. A first portion of the plurality of database sequences is distributed to a central processing unit (CPU) and a second portion of the plurality of database sequences is distributed to a graphical processing unit (GPU) based upon a predetermined splitting ratio associated with the plurality of database sequences, where the database sequences of the first portion are shorter than the database sequences of the second portion. A first alignment score for the query sequence is determined with the CPU based upon the first portion of the plurality of database sequences and a second alignment score for the query sequence is determined with the GPU based upon the second portion of the plurality of database sequences.

  9. A comparison of 454 sequencing and clonal sequencing for the characterization of hepatitis C virus NS3 variants

    NARCIS (Netherlands)

    Ho, Cynthia K. Y.; Welkers, Matthijs R. A.; Thomas, Xiomara V.; Sullivan, James C.; Kieffer, Tara L.; Reesink, Henk W.; Rebers, Sjoerd P. H.; de Jong, Menno D.; Schinkel, Janke; Molenkamp, Richard

    2015-01-01

    We compared 454 amplicon sequencing with clonal sequencing for the characterization of intra-host hepatitis C virus (HCV) NS3 variants. Clonal and 454 sequences were obtained from 12 patients enrolled in a clinical phase I study for telaprevir, an NS3-4a protease inhibitor. Thirty-nine datasets were

  10. Clinical evaluation of further-developed MRCP sequences in comparison with standard MRCP sequences

    International Nuclear Information System (INIS)

    Hundt, W.; Scheidler, J.; Reiser, M.; Petsch, R.

    2002-01-01

    The purpose of this study was the comparison of technically improved single-shot magnetic resonance cholangiopancreatography (MRCP) sequences with standard single-shot rapid acquisition with relaxation enhancement (RARE) and half-Fourier acquired single-shot turbo spin-echo (HASTE) sequences in evaluating the normal and abnormal biliary duct system. The bile duct system of 45 patients was prospectively investigated on a 1.5-T MRI system. The investigation was performed with RARE and HASTE MR cholangiography sequences with standard and high spatial resolutions, and with a delayed-echo half-Fourier RARE (HASTE) sequence. Findings of the improved MRCP sequences were compared with the standard MRCP sequences. The level of confidence in assessing the diagnosis was divided into five groups. The Wilcoxon signed-rank test at a level of p<0.05 was applied. In 15 patients no pathology was found. The MRCP showed stenoses of the bile duct system in 10 patients and choledocholithiasis and cholecystolithiasis in 16 patients. In 12 patients a dilatation of the bile duct system was found. Comparison of the low- and high spatial resolution sequences and the short and long TE times of the half-Fourier RARE (HASTE) sequence revealed no statistically significant differences regarding accuracy of the examination. The diagnostic confidence level in assessing normal or pathological findings for the high-resolution RARE and half-Fourier RARE (HASTE) was significantly better than for the standard sequences. For the delayed-echo half-Fourier RARE (HASTE) sequence no statistically significant difference was seen. The high-resolution RARE and half-Fourier RARE (HASTE) sequences had a higher confidence level, but there was no significant difference in diagnosis in terms of detection and assessment of pathological changes in the biliary duct system compared with standard sequences. (orig.)

  11. Computer-aided visualization and analysis system for sequence evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Mark S.; Wang, Chunwei; Jevons, Luis C.; Bernhart, Derek H.; Lipshutz, Robert J.

    2004-05-11

    A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments are improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device.

  12. Main sequence mass loss

    International Nuclear Information System (INIS)

    Brunish, W.M.; Guzik, J.A.; Willson, L.A.; Bowen, G.

    1987-01-01

    It has been hypothesized that variable stars may experience mass loss, driven, at least in part, by oscillations. The class of stars we are discussing here are the δ Scuti variables. These are variable stars with masses between about 1.2 and 2.25 M/sub θ/, lying on or very near the main sequence. According to this theory, high rotation rates enhance the rate of mass loss, so main sequence stars born in this mass range would have a range of mass loss rates, depending on their initial rotation velocity and the amplitude of the oscillations. The stars would evolve rapidly down the main sequence until (at about 1.25 M/sub θ/) a surface convection zone began to form. The presence of this convective region would slow the rotation, perhaps allowing magnetic braking to occur, and thus sharply reduce the mass loss rate. 7 refs

  13. Electricity sequence control

    International Nuclear Information System (INIS)

    Shin, Heung Ryeol

    2010-03-01

    The contents of the book are introduction of control system, like classification and control signal, introduction of electricity power switch, such as push-button and detection switch sensor for induction type and capacitance type machinery for control, solenoid valve, expression of sequence and type of electricity circuit about using diagram, time chart, marking and term, logic circuit like Yes, No, and, or and equivalence logic, basic electricity circuit, electricity sequence control, added condition, special program control about choice and jump of program, motor control, extra circuit on repeat circuit, pause circuit in a conveyer, safety regulations and rule about classification of electricity disaster and protective device for insulation.

  14. Next-generation sequencing

    DEFF Research Database (Denmark)

    Rieneck, Klaus; Bak, Mads; Jønson, Lars

    2013-01-01

    , Illumina); several millions of PCR sequences were analyzed. RESULTS: The results demonstrated the feasibility of diagnosing the fetal KEL1 or KEL2 blood group from cell-free DNA purified from maternal plasma. CONCLUSION: This method requires only one primer pair, and the large amount of sequence...... information obtained allows well for statistical analysis of the data. This general approach can be integrated into current laboratory practice and has numerous applications. Besides DNA-based predictions of blood group phenotypes, platelet phenotypes, or sickle cell anemia, and the determination of zygosity...

  15. Comparative effectiveness of inter-simple sequence repeat and ...

    African Journals Online (AJOL)

    iisr

    2013-10-10

    Oct 10, 2013 ... with marijuana (Cannabis sativa L). Figures 1 and 2 represent the banding pattern by Garcinia species indi- cating considerable level of polymorphism. In ISSR profiling, largest number of monomorphic bands were produced by primers 810 and 815 (3 bands), whereas primers 816 and 848a produced only ...

  16. Delineation of the genus Actinobacillus by comparison of partial infB sequences

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Niels; Christensen, H; Okkels, H.

    2004-01-01

    A 426 bp fragment of infB, a housekeeping gene that encodes translation initiation factor 2, was sequenced from 59 clinical isolates and type strains of Actinobacillus species and sequences were compared. Partial sequences of 16S rRNA genes were also obtained. By comparing infB sequences, Actinob...

  17. Biological sequence analysis

    DEFF Research Database (Denmark)

    Durbin, Richard; Eddy, Sean; Krogh, Anders Stærmose

    This book provides an up-to-date and tutorial-level overview of sequence analysis methods, with particular emphasis on probabilistic modelling. Discussed methods include pairwise alignment, hidden Markov models, multiple alignment, profile searches, RNA secondary structure analysis, and phylogene...

  18. THE RHIC SEQUENCER

    International Nuclear Information System (INIS)

    VAN ZEIJTS, J.; DOTTAVIO, T.; FRAK, B.; MICHNOFF, R.

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) has a high level asynchronous time-line driven by a controlling program called the ''Sequencer''. Most high-level magnet and beam related issues are orchestrated by this system. The system also plays an important task in coordinated data acquisition and saving. We present the program, operator interface, operational impact and experience

  19. Twin anemia polycythemia sequence

    NARCIS (Netherlands)

    Slaghekke, Femke

    2014-01-01

    In this thesis we describe that Twin Anemia Polycythemia Sequence (TAPS) is a form of chronic feto-fetal transfusion in monochorionic (identical) twins based on a small amount of blood transfusion through very small anastomoses. For the antenatal diagnosis of TAPS, Middle Cerebral Artery – Peak

  20. simple sequence repeat (SSR)

    African Journals Online (AJOL)

    In the present study, 78 mapped simple sequence repeat (SSR) markers representing 11 linkage groups of adzuki bean were evaluated for transferability to mungbean and related Vigna spp. 41 markers amplified characteristic bands in at least one Vigna species. The transferability percentage across the genotypes ranged ...

  1. Variable depth recursion algorithm for leaf sequencing

    International Nuclear Information System (INIS)

    Siochi, R. Alfredo C.

    2007-01-01

    The processes of extraction and sweep are basic segmentation steps that are used in leaf sequencing algorithms. A modified version of a commercial leaf sequencer changed the way that the extracts are selected and expanded the search space, but the modification maintained the basic search paradigm of evaluating multiple solutions, each one consisting of up to 12 extracts and a sweep sequence. While it generated the best solutions compared to other published algorithms, it used more computation time. A new, faster algorithm selects one extract at a time but calls itself as an evaluation function a user-specified number of times, after which it uses the bidirectional sweeping window algorithm as the final evaluation function. To achieve a performance comparable to that of the modified commercial leaf sequencer, 2-3 calls were needed, and in all test cases, there were only slight improvements beyond two calls. For the 13 clinical test maps, computation speeds improved by a factor between 12 and 43, depending on the constraints, namely the ability to interdigitate and the avoidance of the tongue-and-groove under dose. The new algorithm was compared to the original and modified versions of the commercial leaf sequencer. It was also compared to other published algorithms for 1400, random, 15x15, test maps with 3-16 intensity levels. In every single case the new algorithm provided the best solution

  2. Detection of M-Sequences from Spike Sequence in Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Yoshi Nishitani

    2012-01-01

    Full Text Available In circuit theory, it is well known that a linear feedback shift register (LFSR circuit generates pseudorandom bit sequences (PRBS, including an M-sequence with the maximum period of length. In this study, we tried to detect M-sequences known as a pseudorandom sequence generated by the LFSR circuit from time series patterns of stimulated action potentials. Stimulated action potentials were recorded from dissociated cultures of hippocampal neurons grown on a multielectrode array. We could find several M-sequences from a 3-stage LFSR circuit (M3. These results show the possibility of assembling LFSR circuits or its equivalent ones in a neuronal network. However, since the M3 pattern was composed of only four spike intervals, the possibility of an accidental detection was not zero. Then, we detected M-sequences from random spike sequences which were not generated from an LFSR circuit and compare the result with the number of M-sequences from the originally observed raster data. As a result, a significant difference was confirmed: a greater number of “0–1” reversed the 3-stage M-sequences occurred than would have accidentally be detected. This result suggests that some LFSR equivalent circuits are assembled in neuronal networks.

  3. Targeted sequencing of plant genomes

    Science.gov (United States)

    Mark D. Huynh

    2014-01-01

    Next-generation sequencing (NGS) has revolutionized the field of genetics by providing a means for fast and relatively affordable sequencing. With the advancement of NGS, wholegenome sequencing (WGS) has become more commonplace. However, sequencing an entire genome is still not cost effective or even beneficial in all cases. In studies that do not require a whole-...

  4. Almost convergence of triple sequences

    OpenAIRE

    Ayhan Esi; M.Necdet Catalbas

    2013-01-01

    In this paper we introduce and study the concepts of almost convergence and almost Cauchy for triple sequences. Weshow that the set of almost convergent triple sequences of 0's and 1's is of the first category and also almost everytriple sequence of 0's and 1's is not almost convergent.Keywords: almost convergence, P-convergent, triple sequence.

  5. A few Smarandache Integer Sequences

    OpenAIRE

    Ibstedt, Henry

    2010-01-01

    This paper deals with the analysis of a few Smarandache Integer Sequences which first appeared in Properties or the Numbers, F. Smarandache, University or Craiova Archives, 1975. The first four sequences are recurrence generated sequences while the last three are concatenation sequences.

  6. SeqCompress: an algorithm for biological sequence compression.

    Science.gov (United States)

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan

    2014-10-01

    The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Allele Re-sequencing Technologies

    DEFF Research Database (Denmark)

    Byrne, Stephen; Farrell, Jacqueline Danielle; Asp, Torben

    2013-01-01

    The development of next-generation sequencing technologies has made sequencing an affordable approach for detection of genetic variations associated with various traits. However, the cost of whole genome re-sequencing still remains too high to be feasible for many plant species with large...... alternative to whole genome re-sequencing to identify causative genetic variations in plants. One challenge, however, will be efficient bioinformatics strategies for data handling and analysis from the increasing amount of sequence information....

  8. Multilocus Sequence Typing

    OpenAIRE

    Belén, Ana; Pavón, Ibarz; Maiden, Martin C.J.

    2009-01-01

    Multilocus sequence typing (MLST) was first proposed in 1998 as a typing approach that enables the unambiguous characterization of bacterial isolates in a standardized, reproducible, and portable manner using the human pathogen Neisseria meningitidis as the exemplar organism. Since then, the approach has been applied to a large and growing number of organisms by public health laboratories and research institutions. MLST data, shared by investigators over the world via the Internet, have been ...

  9. Achalasia Carcinoma Sequence

    OpenAIRE

    Makmun, Dadang

    2001-01-01

    We report a case of carcinoma of the esophagus in a 58 years old woman with achalasia, who has been diagnosed since 30 years ago, which initiated by surgical treatment (myotomy) and the symptoms recurred since 3 years ago. According to the progress of the disease, Malignancy was strongly suspected due to prolonged stasis and mucosal irritation caused by achalasia (achalasia carcinoma sequence). Because of these contributing factors for the development of serious complications such as Malignan...

  10. Sequencing BPS spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gukov, Sergei [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Max-Planck-Institut für Mathematik,Vivatsgasse 7, D-53111 Bonn (Germany); Nawata, Satoshi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Centre for Quantum Geometry of Moduli Spaces, University of Aarhus,Nordre Ringgade 1, DK-8000 (Denmark); Saberi, Ingmar [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Stošić, Marko [CAMGSD, Departamento de Matemática, Instituto Superior Técnico,Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Mathematical Institute SANU,Knez Mihajlova 36, 11000 Belgrade (Serbia); Sułkowski, Piotr [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland)

    2016-03-02

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  11. Sequencing BPS spectra

    International Nuclear Information System (INIS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-01-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  12. Image sequence analysis

    CERN Document Server

    1981-01-01

    The processing of image sequences has a broad spectrum of important applica­ tions including target tracking, robot navigation, bandwidth compression of TV conferencing video signals, studying the motion of biological cells using microcinematography, cloud tracking, and highway traffic monitoring. Image sequence processing involves a large amount of data. However, because of the progress in computer, LSI, and VLSI technologies, we have now reached a stage when many useful processing tasks can be done in a reasonable amount of time. As a result, research and development activities in image sequence analysis have recently been growing at a rapid pace. An IEEE Computer Society Workshop on Computer Analysis of Time-Varying Imagery was held in Philadelphia, April 5-6, 1979. A related special issue of the IEEE Transactions on Pattern Anal­ ysis and Machine Intelligence was published in November 1980. The IEEE Com­ puter magazine has also published a special issue on the subject in 1981. The purpose of this book ...

  13. Ensembl 2002: accommodating comparative genomics.

    Science.gov (United States)

    Clamp, M; Andrews, D; Barker, D; Bevan, P; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Hubbard, T; Kasprzyk, A; Keefe, D; Lehvaslaiho, H; Iyer, V; Melsopp, C; Mongin, E; Pettett, R; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Birney, E

    2003-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.

  14. Sequence to Sequence - Video to Text

    Science.gov (United States)

    2015-12-11

    by centering x and y flow values around 128 and multiplying by a scalar such that flow values fall between 0 and 255. We also calculate the flow magni...as for MPII- MD. 4.2. Evaluation Metrics Quantitative evaluation of the models are performed us- ing the METEOR [7] metric which was originally pro...candidate refer- ence sentences. METEOR compares exact token matches, stemmed tokens, paraphrase matches, as well as semanti- cally similar matches

  15. ASAP: Amplification, sequencing & annotation of plastomes

    Directory of Open Access Journals (Sweden)

    Folta Kevin M

    2005-12-01

    Full Text Available Abstract Background Availability of DNA sequence information is vital for pursuing structural, functional and comparative genomics studies in plastids. Traditionally, the first step in mining the valuable information within a chloroplast genome requires sequencing a chloroplast plasmid library or BAC clones. These activities involve complicated preparatory procedures like chloroplast DNA isolation or identification of the appropriate BAC clones to be sequenced. Rolling circle amplification (RCA is being used currently to amplify the chloroplast genome from purified chloroplast DNA and the resulting products are sheared and cloned prior to sequencing. Herein we present a universal high-throughput, rapid PCR-based technique to amplify, sequence and assemble plastid genome sequence from diverse species in a short time and at reasonable cost from total plant DNA, using the large inverted repeat region from strawberry and peach as proof of concept. The method exploits the highly conserved coding regions or intergenic regions of plastid genes. Using an informatics approach, chloroplast DNA sequence information from 5 available eudicot plastomes was aligned to identify the most conserved regions. Cognate primer pairs were then designed to generate ~1 – 1.2 kb overlapping amplicons from the inverted repeat region in 14 diverse genera. Results 100% coverage of the inverted repeat region was obtained from Arabidopsis, tobacco, orange, strawberry, peach, lettuce, tomato and Amaranthus. Over 80% coverage was obtained from distant species, including Ginkgo, loblolly pine and Equisetum. Sequence from the inverted repeat region of strawberry and peach plastome was obtained, annotated and analyzed. Additionally, a polymorphic region identified from gel electrophoresis was sequenced from tomato and Amaranthus. Sequence analysis revealed large deletions in these species relative to tobacco plastome thus exhibiting the utility of this method for structural and

  16. Ancestral sequence alignment under optimal conditions

    Directory of Open Access Journals (Sweden)

    Brown Daniel G

    2005-11-01

    Full Text Available Abstract Background Multiple genome alignment is an important problem in bioinformatics. An important subproblem used by many multiple alignment approaches is that of aligning two multiple alignments. Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a multiple alignment is the sum of its induced pairwise alignment scores. However, the biological meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment algorithms. An alternative approach to aligning alignments is to first infer ancestral sequences for each alignment, and then align the two ancestral sequences. In addition to being fast, this method has a clear biological basis that takes into account the evolution implied by an underlying phylogenetic tree. In this study we explore the accuracy of aligning alignments by ancestral sequence alignment. We examine the use of both maximum likelihood and parsimony to infer ancestral sequences. Additionally, we investigate the effect on accuracy of allowing ambiguity in our ancestral sequences. Results We use synthetic sequence data that we generate by simulating evolution on a phylogenetic tree. We use two different types of phylogenetic trees: trees with a period of rapid growth followed by a period of slow growth, and trees with a period of slow growth followed by a period of rapid growth. We examine the alignment accuracy of four ancestral sequence reconstruction and alignment methods: parsimony, maximum likelihood, ambiguous parsimony, and ambiguous maximum likelihood. Additionally, we compare against the alignment accuracy of two sum-of-pairs algorithms: ClustalW and the heuristic of Ma, Zhang, and Wang. Conclusion We find that allowing ambiguity in ancestral sequences does not lead to better multiple alignments. Regardless of whether we use parsimony or maximum likelihood, the

  17. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing.

    Directory of Open Access Journals (Sweden)

    Jonas Binladen

    2007-02-01

    Full Text Available The invention of the Genome Sequence 20 DNA Sequencing System (454 parallel sequencing platform has enabled the rapid and high-volume production of sequence data. Until now, however, individual emulsion PCR (emPCR reactions and subsequent sequencing runs have been unable to combine template DNA from multiple individuals, as homologous sequences cannot be subsequently assigned to their original sources.We use conventional PCR with 5'-nucleotide tagged primers to generate homologous DNA amplification products from multiple specimens, followed by sequencing through the high-throughput Genome Sequence 20 DNA Sequencing System (GS20, Roche/454 Life Sciences. Each DNA sequence is subsequently traced back to its individual source through 5'tag-analysis.We demonstrate that this new approach enables the assignment of virtually all the generated DNA sequences to the correct source once sequencing anomalies are accounted for (miss-assignment rate<0.4%. Therefore, the method enables accurate sequencing and assignment of homologous DNA sequences from multiple sources in single high-throughput GS20 run. We observe a bias in the distribution of the differently tagged primers that is dependent on the 5' nucleotide of the tag. In particular, primers 5' labelled with a cytosine are heavily overrepresented among the final sequences, while those 5' labelled with a thymine are strongly underrepresented. A weaker bias also exists with regards to the distribution of the sequences as sorted by the second nucleotide of the dinucleotide tags. As the results are based on a single GS20 run, the general applicability of the approach requires confirmation. However, our experiments demonstrate that 5'primer tagging is a useful method in which the sequencing power of the GS20 can be applied to PCR-based assays of multiple homologous PCR products. The new approach will be of value to a broad range of research areas, such as those of comparative genomics, complete mitochondrial

  18. Comparison of next generation sequencing technologies for transcriptome characterization

    Directory of Open Access Journals (Sweden)

    Soltis Douglas E

    2009-08-01

    Full Text Available Abstract Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19. We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica and the magnoliid avocado (Persea americana using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB, 119,518 (88.7% mapped exactly to known exons, while 1,117 (0.8% mapped to introns, 11,524 (8.6% spanned annotated intron/exon boundaries, and 3,066 (2.3% extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance

  19. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  20. Foundations of Sequence-to-Sequence Modeling for Time Series

    OpenAIRE

    Kuznetsov, Vitaly; Mariet, Zelda

    2018-01-01

    The availability of large amounts of time series data, paired with the performance of deep-learning algorithms on a broad class of problems, has recently led to significant interest in the use of sequence-to-sequence models for time series forecasting. We provide the first theoretical analysis of this time series forecasting framework. We include a comparison of sequence-to-sequence modeling to classical time series models, and as such our theory can serve as a quantitative guide for practiti...

  1. Hospital Compare

    Data.gov (United States)

    U.S. Department of Health & Human Services — Hospital Compare has information about the quality of care at over 4,000 Medicare-certified hospitals across the country. You can use Hospital Compare to find...

  2. Novel expressed sequence tag- simple sequence repeats (EST ...

    African Journals Online (AJOL)

    Using different bioinformatic criteria, the SUCEST database was used to mine for simple sequence repeat (SSR) markers. Among 42,189 clusters, 1,425 expressed sequence tag- simple sequence repeats (EST-SSRs) were identified in silico. Trinucleotide repeats were the most abundant SSRs detected. Of 212 primer pairs ...

  3. Time sequence photography of Roosters Comb

    Science.gov (United States)

    The importance of understanding natural landscape changes is key in properly determining rangeland ecology. Time sequence photography allows a landscape snapshot to be documented and enables the ability to compare natural changes overtime. Photographs of Roosters Comb were taken from the same vantag...

  4. Mitochondrial DNA sequence evolution in shorebird populations

    NARCIS (Netherlands)

    Wenink, P.W.

    1994-01-01

    This thesis describes the global molecular population structure of two shorebird species, in particular of the dunlin, Calidris alpina, by means of comparative sequence analysis of the most variable part of the mitochondrial DNA (mtDNA) genome. There are several reasons

  5. Comparison of 61 Sequenced Escherichia coli Genomes

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Wassenaar, T. M.; Ussery, David

    2010-01-01

    Escherichia coli is an important component of the biosphere and is an ideal model for studies of processes involved in bacterial genome evolution. Sixty-one publically available E. coli and Shigella spp. sequenced genomes are compared, using basic methods to produce phylogenetic and proteomics...

  6. Predictive uncertainty in auditory sequence processing

    DEFF Research Database (Denmark)

    Hansen, Niels Chr.; Pearce, Marcus T

    2014-01-01

    in a melodic sequence (inferred uncertainty). Finally, we simulate listeners' perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models...

  7. Infinite sequences and series

    CERN Document Server

    Knopp, Konrad

    1956-01-01

    One of the finest expositors in the field of modern mathematics, Dr. Konrad Knopp here concentrates on a topic that is of particular interest to 20th-century mathematicians and students. He develops the theory of infinite sequences and series from its beginnings to a point where the reader will be in a position to investigate more advanced stages on his own. The foundations of the theory are therefore presented with special care, while the developmental aspects are limited by the scope and purpose of the book. All definitions are clearly stated; all theorems are proved with enough detail to ma

  8. Harnessing Whole Genome Sequencing in Medical Mycology.

    Science.gov (United States)

    Cuomo, Christina A

    2017-01-01

    Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.

  9. Synaptotagmin gene content of the sequenced genomes

    Directory of Open Access Journals (Sweden)

    Craxton Molly

    2004-07-01

    Full Text Available Abstract Background Synaptotagmins exist as a large gene family in mammals. There is much interest in the function of certain family members which act crucially in the regulated synaptic vesicle exocytosis required for efficient neurotransmission. Knowledge of the functions of other family members is relatively poor and the presence of Synaptotagmin genes in plants indicates a role for the family as a whole which is wider than neurotransmission. Identification of the Synaptotagmin genes within completely sequenced genomes can provide the entire Synaptotagmin gene complement of each sequenced organism. Defining the detailed structures of all the Synaptotagmin genes and their encoded products can provide a useful resource for functional studies and a deeper understanding of the evolution of the gene family. The current rapid increase in the number of sequenced genomes from different branches of the tree of life, together with the public deposition of evolutionarily diverse transcript sequences make such studies worthwhile. Results I have compiled a detailed list of the Synaptotagmin genes of Caenorhabditis, Anopheles, Drosophila, Ciona, Danio, Fugu, Mus, Homo, Arabidopsis and Oryza by examining genomic and transcript sequences from public sequence databases together with some transcript sequences obtained by cDNA library screening and RT-PCR. I have compared all of the genes and investigated the relationship between plant Synaptotagmins and their non-Synaptotagmin counterparts. Conclusions I have identified and compared 98 Synaptotagmin genes from 10 sequenced genomes. Detailed comparison of transcript sequences reveals abundant and complex variation in Synaptotagmin gene expression and indicates the presence of Synaptotagmin genes in all animals and land plants. Amino acid sequence comparisons indicate patterns of conservation and diversity in function. Phylogenetic analysis shows the origin of Synaptotagmins in multicellular eukaryotes and their

  10. Next-Generation Sequencing Platforms

    Science.gov (United States)

    Mardis, Elaine R.

    2013-06-01

    Automated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.

  11. GATA: A graphic alignment tool for comparative sequenceanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Nix, David A.; Eisen, Michael B.

    2005-01-01

    Several problems exist with current methods used to align DNA sequences for comparative sequence analysis. Most dynamic programming algorithms assume that conserved sequence elements are collinear. This assumption appears valid when comparing orthologous protein coding sequences. Functional constraints on proteins provide strong selective pressure against sequence inversions, and minimize sequence duplications and feature shuffling. For non-coding sequences this collinearity assumption is often invalid. For example, enhancers contain clusters of transcription factor binding sites that change in number, orientation, and spacing during evolution yet the enhancer retains its activity. Dotplot analysis is often used to estimate non-coding sequence relatedness. Yet dot plots do not actually align sequences and thus cannot account well for base insertions or deletions. Moreover, they lack an adequate statistical framework for comparing sequence relatedness and are limited to pairwise comparisons. Lastly, dot plots and dynamic programming text outputs fail to provide an intuitive means for visualizing DNA alignments.

  12. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    Directory of Open Access Journals (Sweden)

    Wadim L. Matochko

    2013-01-01

    Full Text Available Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N×1 frequency vector n=ni, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N×N matrix and a stochastic sampling operator (Sa. The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of Sa and use them to define the sequencing operator (Seq. Sequencing without any bias and errors is Seq=Sa IN, where IN is a N×N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (CEN, which describes elimination or statistically significant downsampling, of specific reads during the sequencing process.

  13. The advantages of SMRT sequencing

    OpenAIRE

    Roberts, Richard J; Carneiro, Mauricio O; Schatz, Michael C

    2013-01-01

    Of the current next-generation sequencing technologies, SMRT sequencing is sometimes overlooked. However, attributes such as long reads, modified base detection and high accuracy make SMRT a useful technology and an ideal approach to the complete sequencing of small genomes.

  14. Putting instruction sequences into effect

    NARCIS (Netherlands)

    Bergstra, J.A.

    2011-01-01

    An attempt is made to define the concept of execution of an instruction sequence. It is found to be a special case of directly putting into effect of an instruction sequence. Directly putting into effect of an instruction sequences comprises interpretation as well as execution. Directly putting into

  15. Region segmentation along image sequence

    International Nuclear Information System (INIS)

    Monchal, L.; Aubry, P.

    1995-01-01

    A method to extract regions in sequence of images is proposed. Regions are not matched from one image to the following one. The result of a region segmentation is used as an initialization to segment the following and image to track the region along the sequence. The image sequence is exploited as a spatio-temporal event. (authors). 12 refs., 8 figs

  16. The complete sequence and comparative analysis of a multidrug- resistance and virulence multireplicon IncFII plasmid pEC302/04 from an extraintestinal pathogenic Escherichia coli EC302/04 indicate extensive diversity of IncFII plasmids

    Directory of Open Access Journals (Sweden)

    Wing Sze eHo

    2016-01-01

    Full Text Available Extraintestinal pathogenic Escherichia coli (ExPEC that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA and FIB with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as blaTEM-1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok and a plasmid partitioning system, ParAB and PsiAB, which are important for plasmid maintenance were also found.Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of

  17. The Complete Sequence and Comparative Analysis of a Multidrug-Resistance and Virulence Multireplicon IncFII Plasmid pEC302/04 from an Extraintestinal Pathogenic Escherichia coli EC302/04 Indicate Extensive Diversity of IncFII Plasmids.

    Science.gov (United States)

    Ho, Wing Sze; Yap, Kien-Pong; Yeo, Chew Chieng; Rajasekaram, Ganeswrie; Thong, Kwai Lin

    2015-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA, and FIB) with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as bla TEM-1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR) to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD) which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM)-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA)-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok) and a plasmid partitioning system, ParAB, and PsiAB, which are important for plasmid maintenance were also found. Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of clinical

  18. Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine

    Science.gov (United States)

    Craig S Echt; Surya Saha; Dennis L Deemer; C Dana Nelson

    2011-01-01

    Genomic DNA sequence databases are a potential and growing resource for simple sequence repeat (SSR) marker development in loblolly pine (Pinus taeda L.). Loblolly pine also has many expressed sequence tags (ESTs) available for microsatellite (SSR) marker development. We compared loblolly pine SSR densities in genome survey sequences (GSSs) to those in non-redundant...

  19. Log-balanced combinatorial sequences

    Directory of Open Access Journals (Sweden)

    Tomislav Došlic

    2005-01-01

    Full Text Available We consider log-convex sequences that satisfy an additional constraint imposed on their rate of growth. We call such sequences log-balanced. It is shown that all such sequences satisfy a pair of double inequalities. Sufficient conditions for log-balancedness are given for the case when the sequence satisfies a two- (or more- term linear recurrence. It is shown that many combinatorially interesting sequences belong to this class, and, as a consequence, that the above-mentioned double inequalities are valid for all of them.

  20. BLAST and FASTA similarity searching for multiple sequence alignment.

    Science.gov (United States)

    Pearson, William R

    2014-01-01

    BLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology. The BLAST and FASTA packages of sequence comparison programs provide programs for comparing protein and DNA sequences to protein databases (the most sensitive searches). Protein and translated-DNA comparisons to protein databases routinely allow evolutionary look back times from 1 to 2 billion years; DNA:DNA searches are 5-10-fold less sensitive. BLAST and FASTA can be run on popular web sites, but can also be downloaded and installed on local computers. With local installation, target databases can be customized for the sequence data being characterized. With today's very large protein databases, search sensitivity can also be improved by searching smaller comprehensive databases, for example, a complete protein set from an evolutionarily neighboring model organism. By default, BLAST and FASTA use scoring strategies target for distant evolutionary relationships; for comparisons involving short domains or queries, or searches that seek relatively close homologs (e.g. mouse-human), shallower scoring matrices will be more effective. Both BLAST and FASTA provide very accurate statistical estimates, which can be used to reliably identify protein sequences that diverged more than 2 billion years ago.

  1. New MR pulse sequence

    International Nuclear Information System (INIS)

    Harms, S.E.; Flamig, D.P.; Griffey, R.H.

    1990-01-01

    This paper describes a method for fat suppression for three-dimensional MR imaging. The FATS (fat-suppressed acquisition with echo time shortened) sequence employs a pair of opposing adiabatic half-passage RF pulses tuned on fat resonance. The imaging parameters are as follows: TR, 20 msec; TE, 21.7-3.2 msec; 1,024 x 128 x 128 acquired matrix; imaging time, approximately 11 minutes. A series of 54 examinations were performed. Excellent fat suppression with water excitation is achieved in all cases. The orbital images demonstrate superior resolution of small orbital lesions. The high signal-to-noise ratio (SNR) in cranial studies demonstrates excellent petrous bone and internal auditory canal anatomy

  2. New PN Even Balanced Sequences for Spread-Spectrum Systems

    Directory of Open Access Journals (Sweden)

    Inácio JAL

    2005-01-01

    Full Text Available A new class of pseudonoise even balanced (PN-EB binary spreading sequences is derived from existing classical odd-length families of maximum-length sequences, such as those proposed by Gold, by appending or inserting one extra-zero element (chip to the original sequences. The incentive to generate large families of PN-EB spreading sequences is motivated by analyzing the spreading effect of these sequences from a natural sampling point of view. From this analysis a new definition for PG is established, from which it becomes clear that very high processing gains (PGs can be achieved in band-limited direct-sequence spread-spectrum (DSSS applications by using spreading sequences with zero mean, given that certain conditions regarding spectral aliasing are met. To obtain large families of even balanced (i.e., equal number of ones and zeros sequences, two design criteria are proposed, namely the ranging criterion (RC and the generating ranging criterion (GRC. PN-EB sequences in the polynomial range are derived using these criteria, and it is shown that they exhibit secondary autocorrelation and cross-correlation peaks comparable to the sequences they are derived from. The methods proposed not only facilitate the generation of large numbers of new PN-EB spreading sequences required for CDMA applications, but simultaneously offer high processing gains and good despreading characteristics in multiuser SS scenarios with band-limited noise and interference spectra. Simulation results are presented to confirm the respective claims made.

  3. Phylogenomics of Phrynosomatid Lizards: Conflicting Signals from Sequence Capture versus Restriction Site Associated DNA Sequencing

    Science.gov (United States)

    Leaché, Adam D.; Chavez, Andreas S.; Jones, Leonard N.; Grummer, Jared A.; Gottscho, Andrew D.; Linkem, Charles W.

    2015-01-01

    Sequence capture and restriction site associated DNA sequencing (RADseq) are popular methods for obtaining large numbers of loci for phylogenetic analysis. These methods are typically used to collect data at different evolutionary timescales; sequence capture is primarily used for obtaining conserved loci, whereas RADseq is designed for discovering single nucleotide polymorphisms (SNPs) suitable for population genetic or phylogeographic analyses. Phylogenetic questions that span both “recent” and “deep” timescales could benefit from either type of data, but studies that directly compare the two approaches are lacking. We compared phylogenies estimated from sequence capture and double digest RADseq (ddRADseq) data for North American phrynosomatid lizards, a species-rich and diverse group containing nine genera that began diversifying approximately 55 Ma. Sequence capture resulted in 584 loci that provided a consistent and strong phylogeny using concatenation and species tree inference. However, the phylogeny estimated from the ddRADseq data was sensitive to the bioinformatics steps used for determining homology, detecting paralogs, and filtering missing data. The topological conflicts among the SNP trees were not restricted to any particular timescale, but instead were associated with short internal branches. Species tree analysis of the largest SNP assembly, which also included the most missing data, supported a topology that matched the sequence capture tree. This preferred phylogeny provides strong support for the paraphyly of the earless lizard genera Holbrookia and Cophosaurus, suggesting that the earless morphology either evolved twice or evolved once and was subsequently lost in Callisaurus. PMID:25663487

  4. Attentional load and implicit sequence learning.

    Science.gov (United States)

    Shanks, David R; Rowland, Lee A; Ranger, Mandeep S

    2005-06-01

    A widely employed conceptualization of implicit learning hypothesizes that it makes minimal demands on attentional resources. This conjecture was investigated by comparing learning under single-task and dual-task conditions in the sequential reaction time (SRT) task. Participants learned probabilistic sequences, with dual-task participants additionally having to perform a counting task using stimuli that were targets in the SRT display. Both groups were then tested for sequence knowledge under single-task (Experiments 1 and 2) or dual-task (Experiment 3) conditions. Participants also completed a free generation task (Experiments 2 and 3) under inclusion or exclusion conditions to determine if sequence knowledge was conscious or unconscious in terms of its access to intentional control. The experiments revealed that the secondary task impaired sequence learning and that sequence knowledge was consciously accessible. These findings disconfirm both the notion that implicit learning is able to proceed normally under conditions of divided attention, and that the acquired knowledge is inaccessible to consciousness. A unitary framework for conceptualizing implicit and explicit learning is proposed.

  5. Metal resistance sequences and transgenic plants

    Science.gov (United States)

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  6. Progressive multiple sequence alignments from triplets

    Directory of Open Access Journals (Sweden)

    Stadler Peter F

    2007-07-01

    Full Text Available Abstract Background The quality of progressive sequence alignments strongly depends on the accuracy of the individual pairwise alignment steps since gaps that are introduced at one step cannot be removed at later aggregation steps. Adjacent insertions and deletions necessarily appear in arbitrary order in pairwise alignments and hence form an unavoidable source of errors. Research Here we present a modified variant of progressive sequence alignments that addresses both issues. Instead of pairwise alignments we use exact dynamic programming to align sequence or profile triples. This avoids a large fractions of the ambiguities arising in pairwise alignments. In the subsequent aggregation steps we follow the logic of the Neighbor-Net algorithm, which constructs a phylogenetic network by step-wisely replacing triples by pairs instead of combining pairs to singletons. To this end the three-way alignments are subdivided into two partial alignments, at which stage all-gap columns are naturally removed. This alleviates the "once a gap, always a gap" problem of progressive alignment procedures. Conclusion The three-way Neighbor-Net based alignment program aln3nn is shown to compare favorably on both protein sequences and nucleic acids sequences to other progressive alignment tools. In the latter case one easily can include scoring terms that consider secondary structure features. Overall, the quality of resulting alignments in general exceeds that of clustalw or other multiple alignments tools even though our software does not included heuristics for context dependent (mismatch scores.

  7. Quantum-Sequencing: Fast electronic single DNA molecule sequencing

    Science.gov (United States)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.

  8. Physician Compare

    Data.gov (United States)

    U.S. Department of Health & Human Services — Physician Compare, which meets Affordable Care Act of 2010 requirements, helps you search for and select physicians and other healthcare professionals enrolled in...

  9. Transcriptome sequencing of the Microarray Quality Control (MAQC RNA reference samples using next generation sequencing

    Directory of Open Access Journals (Sweden)

    Thierry-Mieg Danielle

    2009-06-01

    Full Text Available Abstract Background Transcriptome sequencing using next-generation sequencing platforms will soon be competing with DNA microarray technologies for global gene expression analysis. As a preliminary evaluation of these promising technologies, we performed deep sequencing of cDNA synthesized from the Microarray Quality Control (MAQC reference RNA samples using Roche's 454 Genome Sequencer FLX. Results We generated more that 3.6 million sequence reads of average length 250 bp for the MAQC A and B samples and introduced a data analysis pipeline for translating cDNA read counts into gene expression levels. Using BLAST, 90% of the reads mapped to the human genome and 64% of the reads mapped to the RefSeq database of well annotated genes with e-values ≤ 10-20. We measured gene expression levels in the A and B samples by counting the numbers of reads that mapped to individual RefSeq genes in multiple sequencing runs to evaluate the MAQC quality metrics for reproducibility, sensitivity, specificity, and accuracy and compared the results with DNA microarrays and Quantitative RT-PCR (QRTPCR from the MAQC studies. In addition, 88% of the reads were successfully aligned directly to the human genome using the AceView alignment programs with an average 90% sequence similarity to identify 137,899 unique exon junctions, including 22,193 new exon junctions not yet contained in the RefSeq database. Conclusion Using the MAQC metrics for evaluating the performance of gene expression platforms, the ExpressSeq results for gene expression levels showed excellent reproducibility, sensitivity, and specificity that improved systematically with increasing shotgun sequencing depth, and quantitative accuracy that was comparable to DNA microarrays and QRTPCR. In addition, a careful mapping of the reads to the genome using the AceView alignment programs shed new light on the complexity of the human transcriptome including the discovery of thousands of new splice variants.

  10. The Processing on Different Types of English Formulaic Sequences

    Science.gov (United States)

    Qian, Li

    2015-01-01

    Formulaic sequences are found to be processed faster than their matched novel phrases in previous studies. Given the variety of formulaic types, few studies have compared processing on different types of formulaic sequences. The present study explored the processing among idioms, speech formulae and written formulae. It has been found that in…

  11. Ebolavirus comparative genomics

    Science.gov (United States)

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  12. Genomic sequencing in clinical trials

    OpenAIRE

    Mestan, Karen K; Ilkhanoff, Leonard; Mouli, Samdeep; Lin, Simon

    2011-01-01

    Abstract Human genome sequencing is the process by which the exact order of nucleic acid base pairs in the 24 human chromosomes is determined. Since the completion of the Human Genome Project in 2003, genomic sequencing is rapidly becoming a major part of our translational research efforts to understand and improve human health and disease. This article reviews the current and future directions of clinical research with respect to genomic sequencing, a technology that is just beginning to fin...

  13. Biosensors for DNA sequence detection

    Science.gov (United States)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  14. Insights from 20 years of bacterial genome sequencing

    DEFF Research Database (Denmark)

    Land, Miriam; Hauser, Loren; Jun, Se-Ran

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along...... the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative...... genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling...

  15. Sequence memory based on coherent spin-interaction neural networks.

    Science.gov (United States)

    Xia, Min; Wong, W K; Wang, Zhijie

    2014-12-01

    Sequence information processing, for instance, the sequence memory, plays an important role on many functions of brain. In the workings of the human brain, the steady-state period is alterable. However, in the existing sequence memory models using heteroassociations, the steady-state period cannot be changed in the sequence recall. In this work, a novel neural network model for sequence memory with controllable steady-state period based on coherent spininteraction is proposed. In the proposed model, neurons fire collectively in a phase-coherent manner, which lets a neuron group respond differently to different patterns and also lets different neuron groups respond differently to one pattern. The simulation results demonstrating the performance of the sequence memory are presented. By introducing a new coherent spin-interaction sequence memory model, the steady-state period can be controlled by dimension parameters and the overlap between the input pattern and the stored patterns. The sequence storage capacity is enlarged by coherent spin interaction compared with the existing sequence memory models. Furthermore, the sequence storage capacity has an exponential relationship to the dimension of the neural network.

  16. Comparative Genomics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 8. Comparative Genomics - A Powerful New Tool in Biology. Anand K Bachhawat. General Article Volume 11 Issue 8 August 2006 pp 22-40. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Comparative Advantage

    DEFF Research Database (Denmark)

    Zhang, Jie; Jensen, Camilla

    2007-01-01

    that are typically explained from the supply-side variables, the comparative advantage of the exporting countries. A simple model is proposed and tested. The results render strong support for the relevance of supply-side factors such as natural endowments, technology, and infrastructure in explaining international...

  18. Comparative perspectives

    African Journals Online (AJOL)

    IT

    Ideology, policy and implementation: Comparative perspectives from two ... how both political as well as particular language ideologies play a major role in influencing and ..... attitudes as a field of research, many scholars still draw on the concept of .... The data for this study were collected through the use of questionnaires ...

  19. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria

    DEFF Research Database (Denmark)

    Larsen, Mette Voldby; Cosentino, Salvatore; Rasmussen, Simon

    2012-01-01

    Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the "gold standard" of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS...

  20. Sequence Capture versus Restriction Site Associated DNA Sequencing for Shallow Systematics.

    Science.gov (United States)

    Harvey, Michael G; Smith, Brian Tilston; Glenn, Travis C; Faircloth, Brant C; Brumfield, Robb T

    2016-09-01

    Sequence capture and restriction site associated DNA sequencing (RAD-Seq) are two genomic enrichment strategies for applying next-generation sequencing technologies to systematics studies. At shallow timescales, such as within species, RAD-Seq has been widely adopted among researchers, although there has been little discussion of the potential limitations and benefits of RAD-Seq and sequence capture. We discuss a series of issues that may impact the utility of sequence capture and RAD-Seq data for shallow systematics in non-model species. We review prior studies that used both methods, and investigate differences between the methods by re-analyzing existing RAD-Seq and sequence capture data sets from a Neotropical bird (Xenops minutus). We suggest that the strengths of RAD-Seq data sets for shallow systematics are the wide dispersion of markers across the genome, the relative ease and cost of laboratory work, the deep coverage and read overlap at recovered loci, and the high overall information that results. Sequence capture's benefits include flexibility and repeatability in the genomic regions targeted, success using low-quality samples, more straightforward read orthology assessment, and higher per-locus information content. The utility of a method in systematics, however, rests not only on its performance within a study, but on the comparability of data sets and inferences with those of prior work. In RAD-Seq data sets, comparability is compromised by low overlap of orthologous markers across species and the sensitivity of genetic diversity in a data set to an interaction between the level of natural heterozygosity in the samples examined and the parameters used for orthology assessment. In contrast, sequence capture of conserved genomic regions permits interrogation of the same loci across divergent species, which is preferable for maintaining comparability among data sets and studies for the purpose of drawing general conclusions about the impact of

  1. SVX Sequencer Board

    International Nuclear Information System (INIS)

    Utes, M.

    1997-01-01

    The SVX Sequencer boards are 9U by 280mm circuit boards that reside in slots 2 through 21 of each of eight Eurocard crates in the D0 Detector Platform. The basic purpose is to control the SVX chips for data acquisition and when a trigger occurs, to gather the SVX data and relay the data to the VRB boards in the Movable Counting House. Functions and features are as follows: (1) Initialization of eight SVX chip strings using the MIL-STD-1553 data bus; (2) Real time manipulation of the SVX control lines to effect data acquisition, digitization, and readout based on the NRZ/Clock signals from the Controller; (3) Conversion of 8-bit electrical SVX readout data to an optical signal operating at 1.062 Gbit/sec, sent to the VRB. Eight HDIs will be serviced per board; (4) Built-in logic analyzer which can record the most important control and data lines during a data acquisition cycle and put this recorded information onto the 1553 bus; (5) Identification header and end of data trailer tacked onto data stream; (6) 1553 register which can read the current values of the control and data lines; (7) 1553 register which can test the optical link; (8) 1553 registers for crossing pulse width, calibration pulse voltage, and calibration pipeline select; (9) 1553 register for reading the optical drivers status link; (10) 1553 register for power control of SVX chips and ignoring bad SVX strings; (11) Front panel displays and LEDs show the board status at a glance; (12) In-system programmable EPLDs are programmed via 1553 or Altera's 'Bitblaster'; (13) Automatic readout abort after 45us; (14) Supplies BUSY signal back to Trigger Framework; (15) Supports a heartbeat system to prevent excessive SVX current draw; and (16) Supports a SVX power trip feature if heartbeat failure occurs.

  2. Sequence Algebra, Sequence Decision Diagrams and Dynamic Fault Trees

    International Nuclear Information System (INIS)

    Rauzy, Antoine B.

    2011-01-01

    A large attention has been focused on the Dynamic Fault Trees in the past few years. By adding new gates to static (regular) Fault Trees, Dynamic Fault Trees aim to take into account dependencies among events. Merle et al. proposed recently an algebraic framework to give a formal interpretation to these gates. In this article, we extend Merle et al.'s work by adopting a slightly different perspective. We introduce Sequence Algebras that can be seen as Algebras of Basic Events, representing failures of non-repairable components. We show how to interpret Dynamic Fault Trees within this framework. Finally, we propose a new data structure to encode sets of sequences of Basic Events: Sequence Decision Diagrams. Sequence Decision Diagrams are very much inspired from Minato's Zero-Suppressed Binary Decision Diagrams. We show that all operations of Sequence Algebras can be performed on this data structure.

  3. Heuristics for multiobjective multiple sequence alignment.

    Science.gov (United States)

    Abbasi, Maryam; Paquete, Luís; Pereira, Francisco B

    2016-07-15

    Aligning multiple sequences arises in many tasks in Bioinformatics. However, the alignments produced by the current software packages are highly dependent on the parameters setting, such as the relative importance of opening gaps with respect to the increase of similarity. Choosing only one parameter setting may provide an undesirable bias in further steps of the analysis and give too simplistic interpretations. In this work, we reformulate multiple sequence alignment from a multiobjective point of view. The goal is to generate several sequence alignments that represent a trade-off between maximizing the substitution score and minimizing the number of indels/gaps in the sum-of-pairs score function. This trade-off gives to the practitioner further information about the similarity of the sequences, from which she could analyse and choose the most plausible alignment. We introduce several heuristic approaches, based on local search procedures, that compute a set of sequence alignments, which are representative of the trade-off between the two objectives (substitution score and indels). Several algorithm design options are discussed and analysed, with particular emphasis on the influence of the starting alignment and neighborhood search definitions on the overall performance. A perturbation technique is proposed to improve the local search, which provides a wide range of high-quality alignments. The proposed approach is tested experimentally on a wide range of instances. We performed several experiments with sequences obtained from the benchmark database BAliBASE 3.0. To evaluate the quality of the results, we calculate the hypervolume indicator of the set of score vectors returned by the algorithms. The results obtained allow us to identify reasonably good choices of parameters for our approach. Further, we compared our method in terms of correctly aligned pairs ratio and columns correctly aligned ratio with respect to reference alignments. Experimental results show

  4. Dynamic programming algorithms for biological sequence comparison.

    Science.gov (United States)

    Pearson, W R; Miller, W

    1992-01-01

    Efficient dynamic programming algorithms are available for a broad class of protein and DNA sequence comparison problems. These algorithms require computer time proportional to the product of the lengths of the two sequences being compared [O(N2)] but require memory space proportional only to the sum of these lengths [O(N)]. Although the requirement for O(N2) time limits use of the algorithms to the largest computers when searching protein and DNA sequence databases, many other applications of these algorithms, such as calculation of distances for evolutionary trees and comparison of a new sequence to a library of sequence profiles, are well within the capabilities of desktop computers. In particular, the results of library searches with rapid searching programs, such as FASTA or BLAST, should be confirmed by performing a rigorous optimal alignment. Whereas rapid methods do not overlook significant sequence similarities, FASTA limits the number of gaps that can be inserted into an alignment, so that a rigorous alignment may extend the alignment substantially in some cases. BLAST does not allow gaps in the local regions that it reports; a calculation that allows gaps is very likely to extend the alignment substantially. Although a Monte Carlo evaluation of the statistical significance of a similarity score with a rigorous algorithm is much slower than the heuristic approach used by the RDF2 program, the dynamic programming approach should take less than 1 hr on a 386-based PC or desktop Unix workstation. For descriptive purposes, we have limited our discussion to methods for calculating similarity scores and distances that use gap penalties of the form g = rk. Nevertheless, programs for the more general case (g = q+rk) are readily available. Versions of these programs that run either on Unix workstations, IBM-PC class computers, or the Macintosh can be obtained from either of the authors.

  5. Draft genome sequences of two virulent serotypes of avian Pasteurella multocida

    Science.gov (United States)

    Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent Pasteurella multocida strain Pm70....

  6. Genome Sequence of the Probiotic Strain Lactobacillus rhamnosus (Formerly Lactobacillus casei) LOCK900

    OpenAIRE

    Aleksandrzak-Piekarczyk, Tamara; Koryszewska-Bagi?ska, Anna; Bardowski, Jacek

    2013-01-01

    Lactobacillus rhamnosus LOCK900 fulfills the criteria required for probiotic strains. In this study, we report a whole-genome sequence of this isolate and compare it with other L.?rhamnosus complete genome sequences already published.

  7. Draft Genome Sequences of Two Virulent Serotypes of Avian Pasteurella multocida

    OpenAIRE

    Abrahante, Juan E.; Johnson, Timothy J.; Hunter, Samuel S.; Maheswaran, Samuel K.; Hauglund, Melissa J.; Bayles, Darrell O.; Tatum, Fred M.; Briggs, Robert E.

    2013-01-01

    Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent P.?multocida strain Pm70.

  8. Draft Genome Sequences of Two Virulent Serotypes of Avian Pasteurella multocida

    Science.gov (United States)

    Abrahante, Juan E.; Johnson, Timothy J.; Hunter, Samuel S.; Maheswaran, Samuel K.; Hauglund, Melissa J.; Bayles, Darrell O.; Tatum, Fred M.

    2013-01-01

    Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent P. multocida strain Pm70. PMID:23405337

  9. Tools for integrated sequence-structure analysis with UCSF Chimera

    Directory of Open Access Journals (Sweden)

    Huang Conrad C

    2006-07-01

    Full Text Available Abstract Background Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit; (c can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. Results The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. Conclusion The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is

  10. GuiTope: an application for mapping random-sequence peptides to protein sequences.

    Science.gov (United States)

    Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert

    2012-01-03

    Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.

  11. GuiTope: an application for mapping random-sequence peptides to protein sequences

    Directory of Open Access Journals (Sweden)

    Halperin Rebecca F

    2012-01-01

    Full Text Available Abstract Background Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. Results GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. Conclusions GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.

  12. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers.

    Directory of Open Access Journals (Sweden)

    Stephan Pabinger

    Full Text Available Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM. Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage

  13. Chameleon sequences in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali

    2016-01-01

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix to coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.

  14. Direct, rapid RNA sequence analysis

    International Nuclear Information System (INIS)

    Peattie, D.A.

    1987-01-01

    The original methods of RNA sequence analysis were based on enzymatic production and chromatographic separation of overlapping oligonucleotide fragments from within an RNA molecule followed by identification of the mononucleotides comprising the oligomer. Over the past decade the field of nucleic acid sequencing has changed dramatically, however, and RNA molecules now can be sequenced in a variety of more streamlined fashions. Most of the more recent advances in RNA sequencing have involved one-dimensional electrophoretic separation of 32 P-end-labeled oligoribonucleotides on polyacrylamide gels. In this chapter the author discusses two of these methods for determining the nucleotide sequences of RNA molecules rapidly: the chemical method and the enzymatic method. Both methods are direct and degradative, i.e., they rely on fragmatic and chemical approaches should be utilized. The single-strand-specific ribonucleases (A, T 1 , T 2 , and S 1 ) provide an efficient means to locate double-helical regions rapidly, and the chemical reactions provide a means to determine the RNA sequence within these regions. In addition, the chemical reactions allow one to assign interactions to specific atoms and to distinguish secondary interactions from tertiary ones. If the RNA molecule is small enough to be sequenced directly by the enzymatic or chemical method, the probing reactions can be done easily at the same time as sequencing reactions

  15. Chameleon sequences in neurodegenerative diseases.

    Science.gov (United States)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to "helix to strand (HE)", "helix to coil (HC)" and "strand to coil (CE)" alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Farey sequences and resistor networks

    Indian Academy of Sciences (India)

    Green's function, while the perturbation of a network is investigated in [3]. ... In Theorem 1 below, we employ the Farey sequence to establish a strict .... We next show that the Farey sequence method is applicable for circuits with n or fewer.

  17. DNA Sequencing by Capillary Electrophoresis

    Science.gov (United States)

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  18. Graphene nanodevices for DNA sequencing

    NARCIS (Netherlands)

    Heerema, S.J.; Dekker, C.

    2016-01-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with

  19. Chameleon sequences in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Bahramali, Golnaz [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Goliaei, Bahram, E-mail: goliaei@ut.ac.ir [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Minuchehr, Zarrin, E-mail: minuchehr@nigeb.ac.ir [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of); Salari, Ali [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of)

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix to coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.

  20. Commercial Art: Scope and Sequence.

    Science.gov (United States)

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for a commercial art vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed by teachers, parents, and the…

  1. Pareto optimal pairwise sequence alignment.

    Science.gov (United States)

    DeRonne, Kevin W; Karypis, George

    2013-01-01

    Sequence alignment using evolutionary profiles is a commonly employed tool when investigating a protein. Many profile-profile scoring functions have been developed for use in such alignments, but there has not yet been a comprehensive study of Pareto optimal pairwise alignments for combining multiple such functions. We show that the problem of generating Pareto optimal pairwise alignments has an optimal substructure property, and develop an efficient algorithm for generating Pareto optimal frontiers of pairwise alignments. All possible sets of two, three, and four profile scoring functions are used from a pool of 11 functions and applied to 588 pairs of proteins in the ce_ref data set. The performance of the best objective combinations on ce_ref is also evaluated on an independent set of 913 protein pairs extracted from the BAliBASE RV11 data set. Our dynamic-programming-based heuristic approach produces approximated Pareto optimal frontiers of pairwise alignments that contain comparable alignments to those on the exact frontier, but on average in less than 1/58th the time in the case of four objectives. Our results show that the Pareto frontiers contain alignments whose quality is better than the alignments obtained by single objectives. However, the task of identifying a single high-quality alignment among those in the Pareto frontier remains challenging.

  2. Rapid Diagnostics of Onboard Sequences

    Science.gov (United States)

    Starbird, Thomas W.; Morris, John R.; Shams, Khawaja S.; Maimone, Mark W.

    2012-01-01

    Keeping track of sequences onboard a spacecraft is challenging. When reviewing Event Verification Records (EVRs) of sequence executions on the Mars Exploration Rover (MER), operators often found themselves wondering which version of a named sequence the EVR corresponded to. The lack of this information drastically impacts the operators diagnostic capabilities as well as their situational awareness with respect to the commands the spacecraft has executed, since the EVRs do not provide argument values or explanatory comments. Having this information immediately available can be instrumental in diagnosing critical events and can significantly enhance the overall safety of the spacecraft. This software provides auditing capability that can eliminate that uncertainty while diagnosing critical conditions. Furthermore, the Restful interface provides a simple way for sequencing tools to automatically retrieve binary compiled sequence SCMFs (Space Command Message Files) on demand. It also enables developers to change the underlying database, while maintaining the same interface to the existing applications. The logging capabilities are also beneficial to operators when they are trying to recall how they solved a similar problem many days ago: this software enables automatic recovery of SCMF and RML (Robot Markup Language) sequence files directly from the command EVRs, eliminating the need for people to find and validate the corresponding sequences. To address the lack of auditing capability for sequences onboard a spacecraft during earlier missions, extensive logging support was added on the Mars Science Laboratory (MSL) sequencing server. This server is responsible for generating all MSL binary SCMFs from RML input sequences. The sequencing server logs every SCMF it generates into a MySQL database, as well as the high-level RML file and dictionary name inputs used to create the SCMF. The SCMF is then indexed by a hash value that is automatically included in all command

  3. Accident sequence quantification with KIRAP

    International Nuclear Information System (INIS)

    Kim, Tae Un; Han, Sang Hoon; Kim, Kil You; Yang, Jun Eon; Jeong, Won Dae; Chang, Seung Cheol; Sung, Tae Yong; Kang, Dae Il; Park, Jin Hee; Lee, Yoon Hwan; Hwang, Mi Jeong.

    1997-01-01

    The tasks of probabilistic safety assessment(PSA) consists of the identification of initiating events, the construction of event tree for each initiating event, construction of fault trees for event tree logics, the analysis of reliability data and finally the accident sequence quantification. In the PSA, the accident sequence quantification is to calculate the core damage frequency, importance analysis and uncertainty analysis. Accident sequence quantification requires to understand the whole model of the PSA because it has to combine all event tree and fault tree models, and requires the excellent computer code because it takes long computation time. Advanced Research Group of Korea Atomic Energy Research Institute(KAERI) has developed PSA workstation KIRAP(Korea Integrated Reliability Analysis Code Package) for the PSA work. This report describes the procedures to perform accident sequence quantification, the method to use KIRAP's cut set generator, and method to perform the accident sequence quantification with KIRAP. (author). 6 refs

  4. Accident sequence quantification with KIRAP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Un; Han, Sang Hoon; Kim, Kil You; Yang, Jun Eon; Jeong, Won Dae; Chang, Seung Cheol; Sung, Tae Yong; Kang, Dae Il; Park, Jin Hee; Lee, Yoon Hwan; Hwang, Mi Jeong

    1997-01-01

    The tasks of probabilistic safety assessment(PSA) consists of the identification of initiating events, the construction of event tree for each initiating event, construction of fault trees for event tree logics, the analysis of reliability data and finally the accident sequence quantification. In the PSA, the accident sequence quantification is to calculate the core damage frequency, importance analysis and uncertainty analysis. Accident sequence quantification requires to understand the whole model of the PSA because it has to combine all event tree and fault tree models, and requires the excellent computer code because it takes long computation time. Advanced Research Group of Korea Atomic Energy Research Institute(KAERI) has developed PSA workstation KIRAP(Korea Integrated Reliability Analysis Code Package) for the PSA work. This report describes the procedures to perform accident sequence quantification, the method to use KIRAP`s cut set generator, and method to perform the accident sequence quantification with KIRAP. (author). 6 refs.

  5. Repeated DNA sequences in fungi

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K

    1974-11-01

    Several fungal species, representatives of all broad groups like basidiomycetes, ascomycetes and phycomycetes, were examined for the nature of repeated DNA sequences by DNA:DNA reassociation studies using hydroxyapatite chromatography. All of